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ABSTRACT

This essay treats of the relationship between quantum and

classical mechanics. Both physicists and philosophers hold that

quantum mechanics reduces to classical mechanics as �� 0, or that

classical mechanics is a special case of quantum mechanics in this

limit. If one theory reduces to another, certain formal and nonformal

conditions must be satisfied. These conditions are formulated and it

is shown that the Wigner transformation can serve as a natural

reduction function in a reduction which satisfies the formal and non

formal conditions. Finally, it is argued that this reduction does not

aid in solving the problem of providing an adequate metaphysical

interpretation of quantum theory.
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I. INTRODUCTION

A question of particular interest for the philosophy of physics

is in what sense, if any, is classical mechanics a limiting case of

quantum mechanics. A more general philosophical question also arises:

What does it mean to say that one theory is a limiting case of another?

Neither question is easy to answer. The present study attempts to

formulate a rigorous answer to the first question in the hope that it

will generate some insight into the methodological issues surrounding

the second, more general question.

With respect to the relation between classical mechanics and

quantum mechanics, physicists assume one of two positions. Most

physicists believe that classical mechanics is a limiting case of

quantum mechanics in the sense that classical mechanics can be derived

from quantum mechanics in the limit � + O. For example, Gottfried

writes: "
••• from a satisfactory quantum theory one must be able to

deduce classical mechanics and electrodynamics by taking an appropriate

limit" (Gottfried 1966:6). Call this the orthodox view. A second,

minority view is that classical mechanics is not a limiting case of

quantum theory. Bohr maintains that classical theory is logically

prior to quantum theory and that while a formal analogy obtains between

the two theories, there is no stronger relation between them (Bohr 1949).

David Bohm also subscribes to the view that quantum theory logically

presupposes classical theory. Furthermore, Bohm believes that the con

cepts of classical theory are generally valid and that the concepts of

quantum theory are special cases of their classical analogues. In

contrast to the orthodox position, the minority stance is that it is not

possible to "deduce classical concepts as limiting cases of quantum

concepts" (Bohm 1951:625).

There are difficulties with holding either the orthodox or the

minority view. The orthodox view appears to imply that there is a we11-

defined, mathematical limit as h + 0 whereby, given quantum theory,

classical physics can be recovered. However, arguments in support of

the orthodox view do not justify the existence of such a limit. The

arguments in the literature are usually based on formal analogies



2

between the two theories or on a cor£espondence between the central

concepts of quantum theory and those of classical theory. For

example, quantum equations of motion can be written in terms of the

commutator bracket of two dynamical variables and classical equations

can be written in terms of the Poisson bracket of dynamical variables.

Such formal analogies are instructive, but the existence of such

analogies does not imply the existence of a conceptual relation between

the theories, which would allow one to claim that classical mechanics

is a limiting case or special case of quantum mechanics. There are

far-reaching analogies between hydrodynamics and the theory of heat,

yet one cannot maintain that hydrodynamics can be derived from the

theory of heat. Hence, a proponent of the orthodox view is obliged to

show that the relation between classical and quantum theory goes beyond

that of formal analogy.

Difficulties with the minority view are of a different kind.

The minority view has undersirable metaphysical and methodological

consequences. On the minority view, classical mechanics is the correct

universal theory with quantum mechanics appearing as an appendage which

serves to generate predictions for micro-phenomena. However, quantum

theory does appear to offer a complete account of the structure of

matter in terms of its atomic and subatomic constituents. Quantum

theory seems to be our best candidate for a universal theory of matter.

Hence, one would expect that classical mechanics, valid for macroscopic

objects, should be accounted for in terms of quantum theory, the best

theory of micro-phenomena. The minority view denies the possibility of

so accounting for the success of classical theory. This denial violates

our metaphysical intuitions because we do believe that adequate

explanations of macro-phenomena can be given by examining the behavior

of their micro-constituents.

A rigorous answer to the first question raised above would serve

to settle the issue between the orthodox and the minority views.

Analogous positions can be delineated with respect to the more

general methodological question. The issue of whether one theory is a

limiting case of another arises in the context of intertheoretic

reduction. An approximation or limiting case is a kind of reductive

relation that might hold between two theories.
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Here it is necessary to clarify a terminological problem. Both

physicists and philosophers believe that under certain circumstances

one theory reduces to another, but they use the term differently. In

philosophical parlance, the less fundamental theory is said to reduce

to the more fundamental theory. A philosopher would say that thermo

dynamics reduces to statistical mechanics. For the physicist, reduction

is based on the idea of reducing the more fundamental theory to the

less fundamental theory by applying some operation to the former theory.
The physicist would say that statistical mechanics reduces to thermo

dynamics, if by applying some operation to the statistical mechanical

formalism, the equations of thermodynamics could be obtained. In this

study, the physicists' usage will be adopted. It will be said that the

primary theory reduces to the secondary theory, or that the new theory

reduces to the old theory.

One can also distinguish two general positions on intertheoretic

reduction. The orthodox view holds that such reductions are central to

scientific progress. A new scientific theory for a class of phenomena,
as a general rule, subsumes the prior theory for that domain. One

should be able to deduce the old theory from the new theory (cf. Nagel

1961:Ch. 11). The minority position is that science progresses by means

of "scientific revolutions" (Kuhn 1962). On this account, science

develops via conceptual revolutions, wherein one scientific paradigm

gives way to another. In many instances, this change of paradigm, or

change or world view, is so severe that the successive theories are

logically incommensurate.

Consistently maintaining either of these pOSitions also proves

to be problematic. The notion of scientific revolution is supposed to

explain how science progresses and develops. A new theory emerges

when, faced with theoretical anomalies, the scientific community begins
to view the data differently. The paradigm shifts, a new theory comes

forth, and the anomalies are resolved. On this account, an explanation
is forthcoming as to how a new theory might emerge, but the explanation

in terms of a change of paradigm isolates the new theory, logically and

conceptually, from its precursor. One is hard pressed, in this circum

stance, to explain how scientific knowledge develops. Apparently we do

not progressively learn more about the physical world, rather from time
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to time we are prone to view things differently and offer new explanations

for our observations which need bear no conceptual relation to our

previous system of beliefs.

The orthodox view of progress by reduction also has a short

coming, a shortcoming which is exemplified nicely in the purported

relation of classical mechanics to quantum mechanics as a limiting case.

The advantage of the orthodox view is that it does attempt to provide

some account of how scientific knowledge accumulates. A new theory for

a given range of phenomena subsumes, and in some case corrects, the

previous theory. The belief that the old theory can be derived from the

new one reflects our confidence in our ability to accumulate knowledge
about the world.

The difficulty with the thesis of scientific development by
reduction is that it seldom is the case that the old theory can be

derived exactly from the new one. Related to the thesis of development

by reduction is the doctrine of scientific realism. One tenet of

scientific realism is that well-confirmed theories are (in some sense)

approximately true. The primary problem with the orthodox view is in

clarifying this notion of approximate truth. For a successful reduction,
the reduced theory must be approximately true in a sense strong enough

to allow for a logical derivation of the old theory from the new one.

Proponents of the orthodox view recognize that the notion of an

approximate derivational reduction, a reduction where the primary theory

yields an approximation to the secondary theory, requires considerable

clarification (Sklar 1967:111, Schaffner 1967:136). The revolutionaries

attempt to refute or discredit the orthodox view by attacking the notions

of approximate derivation and approximate truth. They argue that if

only an approximation to the old theory can be derived from the new one,

then there can be no logical relation of reduction between the reduced

and the reducing theories, as in most cases the approximation to the old

theory is logically incompatible with the old theory (Feyera�nd 1962:

46-8, Kuhn 1962:Sec. IX).

Thus, the questions posed at the outset are closely related.

Philosophical positions on the issue of development by reduction

parallel the views of physicists on the nature of the relation between
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quantum and classical mechanics. Quantum mechanics is a well-confirmed

theory and one of our fundamental theories of physical phenomena.

Classical mechanics is a well-confirmed theory within its range of

applicability. If quantum theory, as a universal theory, does not

subsume classical mechanics in some sense, then one would have to

abandon the doctrine of scientific realism or admit that, contrary to

prevailing belief, one of the theories is not well-confirmed. The

orthodox physicist and the orthodox philosopher feel compelled to

maintain the connection between the theories on grounds that the

minority views have undesirable metaphysical and methodological conse

quences. In order to maintain the orthodox positions, the philosopher
must give a convincing explication of approximate truth and the

physicist must give a rigorous characterization of the classical limit

of quantum theory.

The complications that plague the orthodox philosophical position

can be traced to two related sources, the formal framework within which

philosophers attempt to explicate reduction and the belief that the

reductive relationship between theories must be a relationship of strict

logical derivability.

The philosophical literature on reduction is characterized by

two kinds of discussion. In one type, reduction is discussed by means

of examples from theories. Here typical questions are of the form:

Is temperature definable as mean kinetic energy? Is a gene a muton,

a cistron, or a recon? (Schaffner 1967:142). The basic preoccupation

is with whether one term, say from genetics, can be defined in terms of

notions from molecular biology. This ordinary language approach can

offer no insight into the problems of approximate reduction because

there are no interesting cases of reduction where ordinary language

is the theoretical vernacular. Even if there were such cases, no

precise notion of limit or approximation would be forthcoming. Concepts

are either definable in terms of others or they are not, "approximately
definable" is a nonsensical notion. (Although it offers no solution to

the problems raised here, Teller (1971) does make some progress toward

explicating the relationship between ordinary language and scientific

language. The scientific concepts refine the concepts expressed in

ordinary language. For example, quantum mechanics refines our pre-
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scientific concept of position and refines it in a manner different

from the refinement suggested by classical physics.)

The second type of discussion attempts to introduce some formal

rigor by relying on the predicate calculus and model theory. These

formal discussions are not applicable in any straightforward manner to

particular cases of purported approximate reduction. For example, the

following are among the necessary and sufficient conditions Schaffner

puts on a successful reduction: (i) There is a correspondence, �,

between the primitive terms of the primary theory and the primitive

terms of the secondary theory; (ii) every n-place primitive predicate
of the secondary theory is effectively associated with an open sentence

in n free variables of the primary theory such that the open sentence

T(x) is true if and only if F(�(x » is true (Schaffner 1967:144).
n n

This kind of formal rigor is not very helpful. It is just not

the case that the theories of central interest in this debate are

formulated, or even can be readily formulated, in the predicate

calculus. What are the primitive terms and predicates of quantum

theory, Newtonian mechanics, or General Relativity? In these cases,

where approximate reductions and limiting cases are of crucial

importance, one is given no indication as to how proposed reduction

patterns are to be applied.

Sneed (1971) offers the most exhaustive attempt at a highly

formalized approach to reduction. However, on Sneed's account all that

is required for intertheoretic equivalence or intertheoretic reduction

is the existence of an appropriate mapping from the intended models of

one theory to the models of the other theory (Sneed 1971:Ch. VII).

Sneed's approach again assumes that the theories in question can be

readily formulated in the language of the predicate calculus. A more

serious fault is that Sneed's conditions on reduction contain no apparent

requirement that the reduction function preserve any structure between

the theories. If one is discussing a limiting case reduction between

two theories with such explicit mathematical structures as the quantum

and classical theories, one would expect, or one would at least like to

show, that as the limit is approached, the structure of quantum theory

approaches the structure of classical theory.
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One difficulty, then, in presenting and defending a notion of

approximate reduction is that the conceptual apparatus which the

philosopher brings to bear is not adequate for the task. This

difficulty can be overcome by noting that the interesting cases of

approximations and limits of theories arise most often with respect to

theories that have well-defined mathematical structures. In most of

these cases, the structures of the theories are such that one can employ

the methods of mathematical analysis. As a mathematical theory,

analysis provides a proven and natural idiom for discussing limits and

approximations.

The second difficulty a proponent of the orthodox position must

deal with in explicating the notion of an approximate reduction is the

belief that the secondary theory must be logically derivable from the

primary theory. This belief derives from the traditional logical

empiricist view that in a reduction the primary theory must explain the

secondary theory and that in any explanation the explanandum must be

logically derivable from the explanans. Here the orthodox philosopher
must recognize the cogency of the minority view criticism alluded to

above. In most cases, the primary theory and the secondary theory are

logically incompatible; so, the traditional, orthodox view could not

possibly succeed.

This criticism forces the orthodox philosopher to abandon the

narrow logical empiricist construal of explanation which over-emphasizes

the formal component of an explanation. The philosopher must also

consider the epistemological, or pragmatic, component of an explanation.

For discussions of reduction, the broadened outlook amounts to recognizing

that there is both a formal and a nonformal aspect to a successful

reduction. The formal aspect is concerned with the relation between

the languages of the primary and secondary theory. Where the theories

involved are capable of mathematical formulation, this becomes a concern

with the relation between the mathematical structures of the theories.

As a species of explanation, a satisfactory reduction must also satisfy

certain pragmatic or epistemological requirements which can be called

the non formal cmndit10ns oh an adeq�ate reduction. The orthodox tenet

of requiring some conceptual continuity between successive theories

can be maintained by requiring that an adequate reduction consists of
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defining some formal relation between the languages of the two theories

such that this relation, or reduction function, generates a plausible
account of the apparent success and the limitations of the secondary

theory in terms of the primary theory.

In this study, it will be shown that there is a definite sense

in which classical mechanics is a strict limiting case of quantum theory.

In the process of establishing an affirmative answer to the physical

question, it will also be shown that the relation between the two

theories is an example of an approximation or a limiting case reduction.

Chapter II is concerned with the formal aspect of the reduction.

The reduction function must be a structure preserving mapping between

the two formalisms. A discussion of abstract mechanics motivates a

decision as to which structures of the formalisms must be preserved,

yielding the formal conditions on the reduction. A transformation due

to Wigner (1932) is shown to be a natural choice for a reduction function.

Using methods of mathematical analysis, three propositions are derived.

On the basis of these propositions it can be claimed that the Wigner

transformation satisfies the formal conditions.

The nonforma1 conditions are discussed in Chapter III. It is

shown, with the aid of a reduction scheme due to G1ymour (1970), that

the Wigner transformation allows the formulation of an account of the

apparent success and the limitations of the classical theory. It is

concluded that the Wigner transformation provides an adequate reduction

of quantum mechanics to classical mechanics and that classical mechanics

is a limiting case of quantum mechanics as � + O. Finally, it is

argued that although the Wigner transformation leads to an adequate

reduction, it does not aid in solving the main interpretative problem
of quantum theory.

The discussion in this study is confined to the case of a non

relativistic system with one degree of freedom. This simplification is

justified on two grounds. First, most of the interesting theoretical

problems already arise in this simple case. The results below can

easily be extended to systems of more degrees of freedom. Second, many

classical problems can be simplified to the one dimensional case. Where

this is not possible, classical mechanics continues to be a lively area

of mathematical research.
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II. FORMAL CONDITIONS ON THE REDUCTION

The formal conditions on an adequate reduction are most easily

determined by viewing a scientific theory as a collection of sentences

formulated in a formalized, mathematical language. If quantum mechanics

reduces to classical mechanics in the limit as h goes to zero, then

some relation between the mathematical structures of these two theories

must be demonstrated in this limit. In particular it must be shown

that the appropriate mathematical structures of the classical theory

can be derived from quantum theory as h � o.

According to the philosophical paradigm of reduction, this

derivation should be achieved by means of a reduction function which

maps the reducing theory into the reduced theory in such a way that

the essential mathematical relations within the theories are preserved
under the mapping. This suggests that the reduction function must be

some kind of homomorphism from the reducing theory to the reduced theory.
The kind of homomorphism required depends on the particular mathematical

structures involved. Thus, in order to formulate an acceptable reduction

function, it is necessary to specify explicitly the mathematical

structures of the theories involved in the reduction and to show that

the proposed reduction function is a homomorphism of these structures�

The essential mathematical structures involved become obvious

when quantum and classical mechanics are treated as two different

mathematical formalizations of an abstract concept of a mechanical

system. A mechanical system consists of a system of particles, or mass

points, the behavior of which is described by a law of motion. To

describe a mechanical system two types of entities, dynamical variables

and states, are posited, and two rules, a kinematical law and a

dynamical law, are given. The dynamical variables are a set of

properties of the system which are assumed to be pertinent to any

description of the dynamical behavior of the system. A state of a

system is simply the situation or disposition of the system's
constituent particles at an instant of time. The kinematical rule

relates the dynamical variables and states at an instant of time. At

each instant, every dynamical variable has a particular real value.

The kinematical law states a rule whereby the states of the system map

the dynamical variables onto the real numbers. The value this rule gives
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for a state and a dynamical variable at a time is called the expec

tation value of that variable for that state at that time. This

kinematical rule is also such that given expectation values for all

dynamical variables of the system a unique state is determined. The

dynamical law is a rule telling how the states of the system change

over time. This abstract notion of a mechanical system is formalized

when suitable mathematical entities are chosen to represent the dyna
mical variables and states, and the kinematical and dynamical laws are

represented by functional relationships between these entities. Abstract

mechanics is the study of the mathematical entities and structures which

can be employed in the formalization of a mechanical theory (cf.

Sudarshan 1962, Prosser 1966).

The basic assumption of abstract mechanics, and one that is most

difficult to motivate, is that the mathematical structure of the

dynamical variables can be derived from a free associative algebra over

the complex numbers. Under this assumption, for any two dynamical

variables their formal sum and formal product is also a dynamical

variable. The dynamical variables form a free algebra because it is

initially assumed that every distinct string of symbols represents a

distinct dynamical variable. For the present purposes, two dynamical

variables, position (q) and momentum (p), are of primary importance

because all other dynamical variables we will be concerned with are

functions of position and momentum. A second assumption made about the

dynamical variables is that only those elements of the free algebra

that are self-conjugate, A=A*, are admitted as physically significant

where * is defined by

(i)

(ii)

(iii)

(A+aB) * = A*+iB*, a f; cL

(AB)* = B*A*

q*=q, p*=p

Self-conjugacy guarantees that when a physically significant dynamical

variable is measured the result of the measurement is always a real

number. The elements of the free algebra that are self-conjugate form

the set of observables.

Additional structure is imposed on the algebra by requiring that

some dynamical variables are equal to others. In classical mechanics it

is assumed that pq=qp, while in quantum mechanics it is assumed that
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pq-qp�/i. This assumption is motivated by physical considerations.

If the system under study obeys the laws of classical mechanics, then

according to classical theory observations can be made on the system

in such a way that disturbances on the system are negligible. The

order in which observations are made on the system. in particular
fundamental observations of position and momentum, is irrelevant.

Quantum mechanically, however, an observation has a non-negligible

effect on the observed system. Within the quantum formalism this fact

is reflected by the canonical commutation relation on the fundamental

dynamical variables, pq-qp=h/i (See Geroch n.d. :114). To incorporate

these physical facts into abstract mechanics, the algebra of observables

}lis taken to be the quotient algebra of the free algebra by an

appropriate ideal. Classically, the appropriate ideal is that

generated by the element pq-qp of the free algebra. In the quantum

mechanical case, it is the ideal generated by the element pq-qp-h/i
of the free algebra. This last assumption has the effect of partitioning

the free algebra into equivalence classes, each such class representing

a distinct dynamical variable.

The next task in the development of abstract mechanics is to

specify the set of admissable states, or the state space of the system.

The set of admissable states must map the elements of the observable

algebra � into the real numbers. Linear functionals over an algebra

map elements of that algebra into the field of the algebra. The

complex numbers form the field of�, so not all linear functionals on

� can represent states. Any element A of � is called strictly positive

if A=BB*. A linear combination of strictly positive elements of A with

real non-negative coefficients is called a positive element of the

algebra�. A positive linear functional over }Lis a linear functional

which maps positive elements of � into positive numbers, that is F is

positive if F(AA*) � O. The linear functional F is normalized if

F(U)=l, where II is the identity element of�. Thus, the set of states

is the set of positive normalized linear functionals over�.

This specification of the dynamical variables and the states

leads to a natural formulation of the kinematical rule which generates

expectation values. The expectation value of A in state f is the value
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of the linear functional f(A). Linear functionals on �form a space

which is called the dual space of�. Formally an inner product is a

mapping which assigns to each pair (f,A) a scalar from the field of;l.
So the kinematical rule for calculating expectation values is given

by taking the inner product of the state with the dynamical variable.

This completes the kinematical structure of a mechanical theory.

The characterization of the dynamical law requires the intro

duction of another mathematical structure, a Lie algebra. The elements

of the Lie algebra� are the dynamical variables. The product in the

Lie algebra is a nonassociative product [A,B] such that

fA, B J = - [B ,A]

[A,[B,C]l + (B,[C,A]] + (C,[A,B]) = 0

making X a non-associative algebra. The algebras A. and.;( are related

by the requirement that the product in}l and the product in .r satisfy

[A B,C] = A [B,C] + (A,C] B.

When this condition is satisfied, one says that the Lie product is a

derivation in a linear associative algebra with the product A B. If

a particular associative algebra is chosen as)l, it is said that )L

provides a realization of rA. by derivations.

To specify the dynamical law, a particular element, H, of Jl,
called the Hamiltonian for the system, is designated. The dynamical
law is given by

d
dt F = - [F, H].

In this abstract scheme the dynamical law can be viewed as defining the

dynamical operator d/dt. The dynamical operator d/dt operating on an

element of the algebra F is equal to the negative of the Lie product of

F with the Hamiltonian element.

The formalization of the concept of a mechanical system can be

summarized as follows: A theory of mechanics consists of a linear

associative algebra A., of dynamical variables which provides a realization

of the Lie algebra;( by derivations. States are normalized, positive
linear functionals over)L. As particular types of mechanical theories,
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classical mechanics and quantum mechanics share this abstract structure.

They differ in being different representations of this abstract structure.

In classical mechanics the basic dynamical variables are position
and momentum, q and p. These are associated with the points on a two

dimensional Euclidean space called the classical phase plane. The elements

of the associative algebra � are all analytic functions of p and q.
c

Classical point mechanics treats of the situation in which ideal,

perfect data is available. Under such circumstances a state is specified

by a point on the phase plane; that is, by an exact value of q and an

exact value of p. Statistical mechanics allows for the possibility that

such an exact state description might be unattainable in practice. Where

ideal precision is unattainable, a state is not represented by a point on

the phase plane but rather in terms of an area of the plane, reflecting
the inaccuracy of the specification. The earlier definition of a state

in abstract mechanics as any normalized positive function in the state

space is intended as a general definition of a state which covers the

broader notion of state used in statistical mechanics.

Where ideal data are not attainable, one cannot ask whether a par

ticle is at point (q,p) at t; one can only ask with what probability a

particle can be found within a given area of the phase plane at t. This

requires that states be given a statistical characterization. Classically,

a state is then represented by a probability density on the phase plane,

p, called a Liouville density. The states of the system are statistical

states characterized by the set of Liouville density functions p(q,p).

Such a function of q and p prescribes the joint probability that the posi

tion and momentum of a particle lie within any specified pair of ranges.

Consistent with the conditions placed on admissable states, the Liouville

density p(q,p) is normalized

J �(q,p)dpqp = 1

and for any function of the canonical coordinates, A(q,P), the expectation

value is given by

<A(q,p» = f A(q,p)p(q,p)dqdp
which is an inner product of the functions A(q,P) and �(q,p) on the phase

plane. Note that from the normalization condition it follows that the
-1

physical dimension of p(q,p) is [(qp) ].
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The algebra II serves as a real:lza tj._on of the Lie algebra l by
c c

derivations as required, where the Lie product is the familiar Poisson

bracket; for A(q,p) and B(q,p)

{A B} =
aA aB

_

aA aB
,

aq ap ap aq

The Poisson bracket, as the Lie product for classical statistical mechanics,

gives the dynamical law

d� p(q,p) = -{p(q,p) , H(q,p)}

where p is a Liouville density and HE � is the Hamiltonian of the system.
c

In this form the dynamical law is called the Liouville equation.

In quantum mechanics position and momentum are also basic dynamical

variables, but position and momentum are represented by noncommuting Hermi-

tian operators Q and P. The elements of the algebra lLQ are all "analytic
functions" of these two noncommuting operators considered as formal power series.

Quantum mechanical states are usually represented by wave functions

�(q), which are elements of a Hilbert space. When the arguments of the wave

functions are position coordinates, q's, one is said to be in the coordinate

representation. A quantum mechanical system can also be described by wave

functions that take momentum values as arguments, �(p). This is called the

momentum representation. The two representations are equivalent and are

related by a Fourier transformation

�(p) = _L f .dq 'IjJ(q) e-ip q/h-.
'27rl'r

The observables are then Hermitian operators on the Hilbert space. To

strengthen the analogy with classical mechanics, a quantUm mechanical state

here will be represented by a von Neumann density operator or, in von Neu

mann's words a "statistical operator" (von Neumann 1955:315). Von Neumann

showed that each quantum state represented by a wave function can be asso

ciated with a density "matrix" defined (in the coordinate representation) by
*

p(q,q') = 'IjJ(q)'IjJ (q').
This can be thought of as an infinite dimensional matrix where q labels the

rows and q' labels the columns. The defining properties of the density matrix

are

(i)

(ii)

(iii)

*

p(q,q') = p (q' ,q)

Trp = /p(q,q)dq = 1
2·

Trp A � 0, any Hermitian A

(self-adjoint)
(normalizable)

(positive definite)

Note that these are exactly the formal properties that an admissable state

function must satisfy. The diagonal elements of p give the probability
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density for finding a system at coordinate q. Also note that from (ii)

it follows that the physical dimension of the �on Neumann density matrix

p(q,q') is (q-l).
The density matrix also provides a ready characterization of quantum

mechanical pure states and mixed states or mixtures. A pure state is a

state of maximum specificity and is represented by a single vector in the

Hilbert space. A state which is represented with the help of at least two

states is said to be a mixture. A pure state cannot be represented as a

mixture of two others. When states are described by density matrices one

has that

= I dqd�'p(q,q')p(q',q) [= 1,

< 1,

p a pure sta te

p a mixed state.

The density matrix, or the density operator, must map vectors of the

Hilbert space linearly into vectors of the Hilbert space. The density

operator can be expressed as a linear integral operator

p(o/(q» = f p(q,q')o/(q')dq' = o/'(q)

where p(q,q') is called the kernel of the operator p. By the above defini

tion of the von Neumann density, p is a positive definite, symmetric kernel;

hence, by Mercer's theorem (Courant and Hilbert 1937:138) the density matrix

can always be expanded as

p(q,q') = l A F (q)F *(q')n n n
n

where

IIFn(q)12dq = 1

IF (q)F *(q)dq = 0, m # n
n m

that is, the density operator can always be expanded in terms of its eigen

functions. A pure state corresponds to the situation where only one of the

A is non-zero and takes the value unity.
n

If states are represented by density matrices, the prescription for

calculating expectation values becomes

<A> = f A(q,q')p(q',q)dqdq' = TrAp.

By definition the inner product of two operators A and B is the trace of
*

the product A B. This again is consistent with the role of an inner product
in the kinematical structure of a mechanical theory, as observed in the

above presentation of abstract mechanics.
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The algebra 7l.Q provides a realization by derivations of,A Q
where the

Lie product is given by

[A,B] = ih [AB - BA].

The dynamical law is expressed in terms of the Lie product operation. Where

p is a von Neumann density and H the Hamiltonian operator, the time develop
ment of p is given by

-(itt)
-1

[p, H] •

This equation is due to von Neumann and is frequently called the quanta1
Liouville equation on the basis of its similarity to the classical Liouville

equation.

Approaching the reduction of quantum mechanics to classical mechanics

by way of abstract mechanics results in an explicit statement of what an

adequate reduction function must achieve. Formally, a successful reduction

of quantum mechanics to classical mechanics as rr + a requires that classical

kinematics and dynamics be derivable from quantum theory in this limit. �Q
andlQ are the mathematical structures representing quantum kinematics and

dynamics. An adequate reduction func tion should map It Q
to �c and i.

Q
to Xc

homomorphica11y as rr + O. Such a mapping allows for the recovery of classical

kinematics and dynamics from quantum theory in the desired limit. Specifi-
*

cally, the mapping from the elements of �Q to � should map the trace of A B

to an inner product of A{q,p) and B(q,p) on the phase plane, the product in

�Q to the product in �c as h + 0, and ap/at to ap/at + O{h) where as h + a the

error term O(h) also goes to zero.

Classical statistical mechanics represents states of a system

by Liouville density functions on the classical phase plane. In von

Neumann's formulation of quantum theory, states are represented by von

Neumann density operators. Eugene Wigner, in "On the Quantum Correction

for Thermodynamical Equilibrium" (Wigner 1932), derived a transformation

function, the Wigner transformation, which maps von Neumann density

operators to density functions on the classical phase plane. This

suggests that the Wigner transformation might serve as a reduction

function from quantum mechanics to classical statistical mechanics.

Wigner's paper appeared at a time when attempts were being made

to interpret quantum theory as a theory of classical probabilistic or

stochastic processes. These attempts were based on formal analogies
between quantum equations and classical transport or diffusion equations.
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The similarity between the SchrBdinger equation and a classical

diffusion equation was noted by Schrodinger (Schrodinger 1931, 1932).

However, in Schrodinger's mind the disanalogies far outweighed the

analogies and he neither endorsed nor suggested a stochastic inter

pretation of quantum theory. In the same vein, Furth showed that just
as there is a stochastic analog to the SchrBdinger equation there is

also a stochastic analog to the Heisenberg uncertainty relations

(Furth 1933).

Wigner's 1932 paper encouraged the search for classical inter

pretations of the quantum theory. His result suggested that the relation

between quantum and classical theory might be stronger than mere formal

&lalogy. Wigner observed that the relative probability of momentum and

position for a classical statistical density function is given by

(-l/kT)H�(q,p)dqdp = e dqdp

where k is Boltzmann's constant, T the absolute temperature, and

H = p2/2m+V the classical Hamiltonian. For a quantum mechanical system,

the expectation value of a physical quantity is given by von Neumann's

prescription

where A is the operator representing the quantity> H the quantum

Hamiltonian, and eC-l/kT)H the van Neumann density operator representing
the state in question. Explicit calculations using the von Neumann

density proved to be cumbersome. Wigner's insight was that for a wave

function �(q), and hence for its associated von Neumann density, a

density function p on the phase plane could be constructed by

�(q.p) = fW(q-T/c) e(i/�)TP W*{q+T/2)dT.
The resulting density p(q,p), called the Wigner density, is always real

but is not everywhere positive. It has the following interesting

properties: (i) When integrated with respect to p it yields the correct

quantum mechanical expectation values for position; (ii) when integrated

with respect to q it yields the correct quantum mechanical expectation

values for momentum; (iii) by applying classical techniques it yields the

correct quantum mechanical expectation values of any function of position
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or any function of momentum for a given state; (iv) it similarly yields

the correct expectation values for a sum of a function of position and

a function of momentum.

The appearance of the Wigner transformation encouraged the belief

that quantum theory could be interpreted as a classical probabilistic

theory. The Wigner transformation maps quantum mechanical states to

density functions on the classical phase plane whereupon in many cases

classical methods yield the correct quantum mechanical expectation

values. Wigner himself recognized the major obstacle to following

through on such a program: The Wigner transformation is not everywhere

positive. Probabilities must be non-negative; hence, Wigner believed

that his density function could not be consistently interpreted as a

s�multaneous probability. Wigner viewed his transformation function

as a discovery of practical importance that facilitated calculations.

He felt that even though the Wigner density can assume negative values,

this "must not hinder the use of it in calculations as an auxiliary

function which obeys many relations we would expect from such a

probability" (Wigner 1932: 751) •

Other attempts were made at defining an appropriate joint distri

bution function which would satisfy the conditions on a probability

density. Most notable of these attempts were the papers of Groenewold

(1946) and Moyal (1949). Moyal concluded that the theoretical diffi

culties with any such joint distribution are such that it could not be

employed to generate an interpretation of quantum mechanics as a

classical statistical theory. However, such functions could be used

to solve quantum mechanical problems by the methods of classical

probability theory. More recently Cohn has shown that no such trans

formation function can preserve the desired functional relationships

between observables (Cohn 1966). These findings have relegated the

Wigner transformation to the realm of practical problem solving and

have discouraged the belief that one could formulate quantum theory as

a classical probability theory. (In Chapter III, these theoretical

deficiencies of the Wigner transformation will be related to the proofs

that a hidden variable interpretation of quantum mechanics cannot be

given. )
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The theoretical deficiencies of the Wigner transformation suggest

that it is impossible to use the transformation to interpret quantum

mechanics as a classical statistical theory. However, the deficiencies

of the Wigner transformation are not such as to preclude its use as a

reduction function to show that in some sense, specifically in some

appropriate limit, quantum mechanics reduces to classical statistical

mechanics. The Wigner transformation depends on the value of hj hence,

it does make sense to inquire as to what becomes of the image of a von

Neumann density on the classical phase plane as h � O. It is also

non-singular, as will be shown below, so the transformation and its

inverse provide a means to go back and forth between the quantum and

classical formalisms.

Although the Wigner transformation appears to satisfy several

requirements on a reduction function, nothing has been said about the

theoretical basis of this transformation. The transformation is not

merely a formal trick that happens to yield the desired result. The

next task will be to show that the Wigner transformation, W, and its
-1

inverse, W ,can be derived uniquely given the structure of classical

and quantum mechanics.

Before embarking on the derivation of the Wigner transformation,
some insight can �e gained into the nature of the task by examining
the structure of the transformation. The Wigner transformation takes a

von Neumann density

where c��O all �, and IC�=l, into a Wigner density, a function of p and
�

q, by

1 J
.

a
C(q,p) =

� dae1P p(q-.an/2, q+ a�/2).

The action of the Wigner transformation on a von Neumann density can be

described by saying that it consists of a linear substitution of

variables, q-�/2 for q and q+�/2 for q', and a Fourier transformation

of the resulting von Neumann density.

One fact about the quantum and classical theories will be used in

the derivation of the Wigner transformation. The derivation will exploit



20

the fact that both classical mechanics and quantum mechanics are

invariant under the transformations of the Galilean group. The

requirement of Galilean invariance for both theories dictates that

this invariance must be preserved under the reduction. Hence, an

additional requirement on W and W-l is that they must be invariant

under the transformations of the Galilean group, which is to say that

W and W-l must commute with the action of the Galilean group. If the

transformation can be derived from quantum and classical theory under

this assumption, then it can be justifiably claimed that the Wigner

transformation provides a natural reduction function between the quantum

and classical theories.

The requirement that Wand W-l be invariant under the Galilean

group leads naturally to the employment of various notions from repre

sentation theory in the derivation of the Wigner transformation. A

representation of an abstract topological group on a vector space H is

a homomorphism

IT: G -+ GL(H)

of G into a group of continuous linear automorphisms of the space H such

that for every element v of H the map of G into GL(H) given by

x � IT(x)v

is continuous. A given abstract group can have different representations

on different spaces. For example,

IT: G -+ GL(H)

IT ': G -+ GL(H')

Representations of groups on a vector space form an algebraic category

where the morphism of the category is called an intertwining operator or

a coupling operator. An intertwining operator between representations

is a continuous linear map, A: H -+H', between the spaces such that for

every element x of the group G the following diagram commutes:

H

11 (x) 1
H

A

A

H'

1 11' (x)

H'
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In other words, the intertwining operator A commutes with the action of

the group on H and H' •

The assumption of Galilean invariance for both quantum and
-1

classical theory requires, as mentioned above, that Wand W commute

-1
with the action of the Galilean group. Hence, Wand Ware inter-

twining operators between the Galilean group as represented on the

classical phase plane and the Galilean group as represented on the space

of von Neumann densities.

The Galilean group, which consists of all translations of

position and concurrent changes in velocity (or in momentum) is an

abelian group, as a total change in position and momentum is indifferent

to the order in which incremental changes are imposed. Any element of

the Galilean group evidently may be expressed as a product of two

elements, drawn from the two subgroups which give translations in position
alone and shifts in momentum alone. An element of the former subgroup,
which translates position by an amount q, we will call Q , a member of

q
the latter subgroup which shifts momentum by an amount p we will call P •

P

The subgroup elements have an evident natural action upon functions

�(q',p') over the classical phase plane, namely

Qq� (q ,
,p ')

P p� (q , ,p')

�(q'-q,p')

!S(q' ,p'-p).

(1)

(2)

The set of functions on the phase plane comprise a "function space,"
that is, a very big vector space, whereby equations (1) and (2) define

actions of Q and P as linear operators upon a vector space. That is
q p

to say (1) and (2) define a representation of the Galilean group. Now

a representation (with complex scalars) of an abelian group may be

resolved into irreducible representations which are one dimensional,

with each group element represented by a complex number on the unit

circle. We now resolve our representation, of Galilean actions upon

functions of the phase plane, in this way. We seek a function

!Sks(q',P') upon the phase plane which has the two properties that

= eikq �

I-Iks (3)

= isp
e ISks• (4)
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Evidently the function sought is

-ikq' -isp'
�ks(q',P') = e e (5)

as substitution of (5) into (1) and (2) shows at once. Moreover, a

general normalized function on the phase plane can be resolved as a

superposition into I-dimensional representation functions of the form

(5), as

f -ikq' -isp'�(q' ,p') = dkdse e c(k,s) (6)

simply asserts that normalized functions on the phase plane may be

expressed as Fourier integrals. The appropriate weighting coefficient

c(k,s) for any given Liouville density �(q,p) is given by the familiar

Fourier integral inversion formula

1 f ikq ispc(k,s) =

(2n)2 dqdp e e �(q,p). (7)

We will now express the way in which Galilean transformations

act upon the quantum mechanical von Neumann density operators. As

these density operators correspond to integral kernels, which are

members of a function space, we will again obtain a representation of

the Galilean group as a set of linear operators. This representation

may be resolved into irreducible one dimensional representations, which

prove to have a one-to-one relationship with counterparts which we have

already found on the classical phase plane, at equation (5). Finally

we may define a linear transformation which carries each irreducible

subspace in the space of von Neumann densities to its irreducible

counterpart on the classical phase plane; that transformation is the

Wigner transformation.

The Galilean subgroup of position transformations perform shifts

in the origin of the position coordinate; the member Q shifts the
q

origin by an amount q. This subgroup thus has a natural action on

functions p (q' ,q "'- in the space of von Neumann densities:

Q p(q',q") = p(q'-q, q"-q).
q

The action of P on von Neumann densities is less immediate. We note
p

first its natural action upon wave-functions W(q'): If for the set of

(8)

momenta p', W (q') describes the set of quantum-mechanical pure states,
p

each of which corresponds to momentum p', then P by its definition
p
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gives *

P � ,(q') = � , H(q').
p p p -p

(9)

The momentum pure states are by definition the eigenfunctions of

translation

-ip'q'/h
�p,(q') = e (10)

whence by substitution in (9), and back to (10),

Pp�p,(q') = e-i(p'-p)q'/h = eipq'/h �p,(q'). (11)

We note the coefficient exp (i p q'/h) is independent of the momentum

pure state's momentum value p'. As any pure state �(q') may be built up

from a superposition of momentum states, we have in general

P �(q') = eipq'/h �(q').
p

(12)

Now a general von Neumann density p(q',q") may be constructed from a

superposition of densities for pure states, of the form

*

p�(q' ,q") = �(q')�(q")

and by (12) the action of P on such a density operator is
p

(13)

P p (q' q")
p �

, (P �(q'»(P �(qll»* = eipq'/h�(q')e-ipqll/h$(qll)*
p p

(14)

As the coefficient exp(ipq'/h).·exp(-ipq"/h) does not depend on

$, by the superposition property we have in general

Ppp(q',qll) = eip(q'-q")/hp(q' ,q"). (15)

Equations ($ and (15) are the Galilean transformation counterparts, for

von Neumann density functions, of the Galilean transformation equations

on the classical phase plane, (1) and (2). These Galilean transformation

equations are both less symmetric and less familiar than their classical

counterparts (1) and (2), whence the job of finding the one-dimensional

irreducible representation functions is not quite trivial. However,

the abelian nature of the Galilean group implies that such functions

Pks(q',qU) exist, and satisfy

*
The minus sign appears as a matter of convention: We index the group
element in accordance with its action on the function rather than the
coordinate system. This is the same convention which we have already
adopted in the classical case.



24

ikq
= e Pks (16)

(17)

in analogy to equations (3) and (4) for the classical case.

If we eliminate Q Pk from equations (8) and (16), and likewise
q s

eliminate P Pk from equations (15) and (17), we obtain
p s

Pks (q' -q ,q"-q) ikq
= e P ks (q' ,q ") (18)

i (' ") /+t i
e

p q -q
Pks(q' ,q") = e SPPks(q' ,q").

These two equations, which express both the action of the Galilean

(19)

group on quantum-mechanical density operators, and the defining property

of irreducible one-dimensional representations, must determine the form

of the representation functions Pks(q',q"). We now undertake that

determination, starting with equation (18).

In form, (18) is a functional equation. For convenience let

Pks
= exp r

and take the logarithm of equation (18); the result is

(20)

r(q'-q, q"_q) - r(q', q") = i k q. (21)

This is a linear, inhomogeneous functional equation for the unknown

function r. It shares a generic property of linear inhomogeneous

equations: Its general solution is of the form

r =

rp + rH
where rp is any particular solution to equation (21) and rH is the most

general solution to the homogeneous equation

(22)

rH(q'-q, q"-q) - r(q', q") = O.

We observe that (21) has the immediate particular solution

(23)

'+ II

rp(q',qll) - -ik 9 29 • (24)

(We have chosen to maintain q' and q" on a formally synnnetric footing

so far.) As the homogeneous equation (23) must hold for all free choices
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of q, q', q", it must hold if in particular we choose q = q", ""hence

(23) becomes

rH(q',q") = r(O,q'-q"). (25)

Thus rH(q' ,q") must be a function only of the difference q'-q". We

observe that an arbitrary function of that difference, rH(q '-q"),
evidently solves the homogeneous equation (23), whence the most general

solution to equation (21) is

'+ "

r(q' ,q") =-ikq 29 + rH(q'-q") (26)

where rH(q) is arbitrary. If we let exp rH=F, then (20) gives back

the corresponding solution to the original functional equation (18):

. q'+q"-l.k(- -)
Pks(q',q") = e 2 F(q'-q") (27)

where F(u) is an arbitrary function. We observe that the general

solution (27) to the functional equation (18) could have been derived

without resort to logarithmic transformation: That transformation

simply enabled us to appeal to classical results which apply to linear

equations, which saved our having to prove the "exponentials" of those

results for ourselves.

We have not yet used the "momentum shift" equation (19), whose

demand upon Pks now can, at most, specify the form of F(q'-q").
Substitute the solution (27) into (19):

eiP(q'-q")/hF(q'_q") = eisPF(q'_q") (28)

where we have divided both sides by the common non-zero factor

exp(-ik(q'+q")/2). To simplify (28) let q'-q" = u, whence

�(u-hS)
e F(u) = F(u) (29)

Thus either

F(u) = 0 (30)

(31)or u - tis = 0,

so F(u) must be of the form

F(u) = AQ(u - 11s) (32)

where A is a yet undetermined constant. Thus finally, fro� both
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equations (18) and (19)

9'+q"
Pks (q' ,q") = e

-ike 2 ) M (q' -q"-hs) (33)

which follows most directly from (32) and (27). The constant A we will

regard as fixed, at a value which we will choose below for our con

venience.

The functions Pks(q',q") given by (33) are the I-dimensional

representation functions for the action of the Galilean group upon the

space of von Neumann densities, as substitution into equations (17),

(18) will demonstrate (with equation (18) the vanishing-property of the

ofunction must be used). These representation functions also form a

complete basis for the space of von Neumann densities, in the usual

sense that an arbitrary density may be expanded in the form

P (q' ,q") = J dkdr;>Pks (q' q") c(k,s) • (34)

The proof, which we only sketch, is the following: The integral on s

may be performed at once, as it only involves the ofunction; the

remaining integral is a Fourier transformation from the variable k to

the variable (q'+q")/2, and completeness follows from the non-singular

nature of the Fourier transform.

The Wigner transformation now may be defined by its action on

the irreducible representation functions:

-
q '+q"

.

W(Ae ike 2 )O(q'-q"-hs» = e4.kqe-iSp, (35)
or

(36)

where q, p are the coordinate and momentum of the classical phase plane.

We note that the Wigner transformation is parametric in Planck's constant

�, but this dependence appears at only one place, where it relates the

scale of the coordinate q to that of the reciprocal momentum s.

All that remains is to derive expedient expressions for the ways
-1

in which W and W carry a general member of the one function space to a

-1
member of the other. The easier choice is to first calculate how W
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moves a function on the phase plane to the space of von Neumann

densities. Using equation (36), let W-1 act upon �(q,p) as given

by equation (6):

q '+Q"-ike )
w-1,s (q ,p) =p (q I ,q") =1dkds e

2
0( q

I -q"-hs) c(k, s)

As ds = (l/n) d(�), the integral on s is immediate and gives

(37)

9 '+g"

I
-ike 2) '"

o (q' ,q")=(l/n)A dke c(k,q �q ).

g'-g"Now evaluation of c(k, h) in terms of �(q,p), from equation (7) gives

q'+g" g'-g"

J
ike q 2 ) i( oft ) p

p (q' ,q") =(l/n)_L_ dpdqdk e e p( q, p) •

(L.TI) 2

(38)

(39)

The integral on k is

9'+9"
1 I

ike q 2) 9 '+Q"
2TI

dke = o(q 2 ) (40)

q '+g"
so that in (39) the integral on q simply replaces �(q,p) by �( 2 ,p)

and the final result is

g'--q"
A

f
i ( h )

P q '+q"p(q' ,q") - dpe �(- - p)2'JTh tJ 2 ' • (41)

We may now evaluate the constant A by requiring that the Wigner trans

formation preserve the property of normalization, namely:

fdq'p(q',q') = IdqdP/S(q,P) (42)

Set q"=q' in (41) and integrate on q'; we see that (42) is immediately

satisfied if we let

A-=2rlT (43)

Equation (41) for W-1 is in the form of a Fourier transform on the

variable (q'_q"), with the other independent variable (q'+q")/2 simply

playing the role of a fixed parameter.

The inverse transformation, for W, is easily evaluated. In (41),
let q'_q"=X and (q'+q")/2=q. Solving these relations simultaneously
for q' and q" yields
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q' = q + x/2

q" = q - x/2

(44)

Substituting these values of q' and q" into (41) gives
x x A J ixp/h �r(x,q) = p(q + 2 ' q -

2 ) =

2nh dpe p(q,p) (45)

or

1 1 J ixp/h �

A r(x,q) =

2n
dxe p(q,p). (46)

Thus, we have expressed the von Neumann density as a Fourier transform

of a Liouville density, where p is the Fourier variable and q is a

parameter. But then by the Fourier integral theorem we have that

J -ixp/h:l 1 J -ixp/h x x
)p(q,p) = dxe �r(x,q) =

A dxe p(q + 2 ' q -

2 . (47)

If in (47), we let x = -ah, then

00 -00

-00

� ) = 2� J daeiap p(q
00

an-
+

aft
)2 ,q 2 (48)p(q,p) -AI J d -ixp/h ( + �

= ae
.

p q 2' q

or

�(q,p) = 2� J daeiap p(q - a; , q + a; ) (49)

which is exactly the Wigner transformation as it was quoted above.

-1
Wand W provide one-to-one mappings between the space of

classical density functions and the space of von Neumann densities.

By linearity this result extends to elements of AQ and �c· ThepPks(q,p)
form a complete basis for the classical space. By elementary Fourier

�

analysis, any function A(q,p) on the classical space can be expressed as

A(q,p) = JJ ask�ks(q,P) Jk.J�
ks

f *
�

where ask = P ks(q,p)A(q,p)dqdp. This is a statement of completeness.

Wand w-l, as intertwining operators, take one dimensional representations

to one dimensional representations; hence, the completeness is inherited

by the images in the space of von Neumann densities, and the Pks(q',q")
form a complete basis for the Hilbert space on which the von Neumann

densities are defined. Because of this relation every operator A can be

expressed as
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where ask=Tr(PksA).
This derivation of the Wigner transformation from the assumption

of Galilean invariance, justifies the Wigner transformation as a

natural choice for a reduction function between quantum and classical

mechanics. Even though it is a natural choice for a reduction function,

if it is to be an adequate reduction function, it must satisfy the

formal conditions on such a function. These formal conditions, based

on the discussion of abstract mechanics, are that the function map�Q
into lL and J;Q into.x homomorphically as 1t -+ O. Several propositions

c
-1

c

concerning Wand W will be established showing that the Wigner

transformation fulfills these formal conditions and hence that classical

mechanics is a bona fide limiting case of quantum mechanics. The

following operations will be investigated: (i) Products of von Neumann

densities as 1t -+ 0; (ii) commutators of von Neumann densities as 1t -+ 0;

(iii) anti-commutators of von Neumann densities as 1t -+ O.

The general strategy of the proofs is to begin with two Liouville

densities defined on the classical phase plane. Apply the inverse

Wigner transformation to carry the Liouville densities to the space of

von Neumann densities. Compose the resulting von Neumann densities in

the appropriate (quantum mechanical) manner. Apply the Wigner trans

formation to the result and show that as 1t -+ 0 the image of the Wigner

transformation is the result of the analogous composition of the

original classical densities in the classical phase plane. The reason

for starting with classical densities and carrying them to the space of

the von Neumann densities, composing, and returning to the classical

space is merely the need to be explicit as to what stays fixed when

limits are being taken. The arbitrary choice is that the classical

density functions stay fixed.

Let p, cr denote von Neumann densities, �, 6 denote functions

on the classical phase plane, p denote the Fourier transform of

�[(q'+q")/2, p] with respect to its second argument, and Pk denote

the first derivative of p with respect to its kth argument. The basic

result to be established is the following:
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Proposi tion 1.
-1""

p a (q , ,q") = W p a ( q J p) +0 (fr) •

Proof. By definition of the inverse Wi�ner transformation

The product of von Neumann densities is given by

pa(q',q") = fdY p(q',y)a(y,q").

Let q" = y in (50) and q' = y in (51). Then

���a[ 2 ' iT ]. (52)

Add and subtract q"/2 from the first argument of p and add and

subtract q'/2 from the first argument of a in (52)

J '+" (-q"±y)pa(q' ,q")= dyp[q 2q +
2

.L:Y � q '+q" (-q '±y) �
iT ]a[ 2

+
2 'iT]

f - q '+q" iT (-q"+y) .L:Y � q '+q" !! (-q '+y) �= dyp [ 2
+ '2 iT 'iT ] a [ 2

+
2 ft- 'h ] (53)

Expand the integral in (53) as a power series in iT, obtaining

J r� q '+9" n '-v h v-n" � q '+q" n'-v
pa(q' ,q") = dy!_p[ 2 ' hl + '2 h Pl[- 2- , "h] X

'+ " " iT ' '+ "

"� 2
X "!'[q 9 �] + - zza; -

[q q .L:!L] + O(iT )a
2 'iT 2 rr a1 2 ' iT

_

• (54)

Carrying out the multiplication and recomhining terms yields

f '+" n'-v q'+q" v-n"
pa(q' ,q") = dY�H9 29 , "h] cr [- 2- , "h] +

iT f [� 9 '+9".L:Y � � q '+9" �+ '2 dy 'p 1 [ 2 ' iT]· iT 0-[ 2 ' h ]-

(] '-v _. q'+q" n '-v 9 '+q" v-n" l 2
- "h p[- 2- , "hl °1 [ 2 ' �]J + O(ir ). (55)

In both integrals (q '+q,") /2 appears simply as a parameter.

i(X), k(x) on the real line, their convolution is defined as

For functions

t*k(x) = fdY t(x-y)k(y) = fdY k(x-y)t(y).
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The same rule of convolution holds for translations �(x-z), k(x-z)

t*k(x-z) = fdY t(x-y)k(x-z) = fdW t[(x-z)-w]k(w).·

The first integral in (55) is a convolution. A fundamental result of

Fourier analysis is the Convolution Theorem: The Fourier transform of

the product of two functions equals the convolution of the Fourier

transform. Accordingly,

f � q'+q" n'-v "! q'+q" v-n" ."....._, q'+q" q'_q" -1
dy p[- 2- , �] o[ 2-'�] = p·o[- 2- ,

-

n- ] = W �6(q,p) (56)

Another basic relation in Fourier an�lysis is that if f(�) is the

Fourier transform of f(x), then �f(�) is the Fourier transform of
"

id/dx f(x). This relation and the Convolution Theorem allow one to

express the second integral in (55) as

n f r� 9'+q" � • � � q'+q" � -

"2 dy I:' 1 [ 2 ' h-] h- 01 2 ' h ]

� "" q'+q" � ':'" q'+qll- .

h- p [ 2 ' h- ] 01 [ 2 '

ih- -1 a a a a
=

-z W [aqp(q,p) ap &(q,p) -

ap �(q,p) aq a(q,p)]. (57)

So combining (56) and (57)

-1 ih- -1 2
po(q' ,q") = W �6(q,P) + 2' W {p(q,p), 6(q,p)} + O(w ). (58)

Therefore, as h- � 0 only the first term in this expression remains and

-1
po(q' ,q") = W �6(q,P). (59)

In the limit as n � 0 under the action of the Wigner transformation the

noncommutative operator product in the space of von Neumann densities

becomes the commutative product defined in the classical space.

The results for commutators and anticommutators ate simple
corollaries of Proposition 1.
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Proposition 2.
i -1 2

-

h {pcr-ap] = W {�,e} + O(h).

Proof. Suppressing the arguments of the density functions

i
-

h [pcr-crp] =

So in the limit as h + 0 under the action of the Wigner transformation

the Lie product in the space of von Neumann densities becomes the Lie

product in the classical space.

Proposition 3.

Proof.

If the power series expansion of pcr(q',q") in (54) is carried out one more

term, the Convolution Theorem and the result on the relation between

Fourier transforms and their derivatives can again be applied, allowing

one to calculate 0(h2) as

o ('iT2) -n-2 -1 ..2l a2�
=

"2 W [apaq apaq]
Then

Every operator in � and a fortiori every element of { can be

expanded in terms of the functions Q(g' ,q"). Propositions land 2 show
"-$

that the Wigner transformation carries the operator product of �Q to the

commuting product of Ac and the Lie product of ;(Q (commutator bracket) to

the Lie product of�c (Poisson bracket). In the limit as h + 0, the

Wigner transformation carries the quantum mechanical operation to its

classical counterpart homomorphica11y. The Wigner transformation is

then not only a natural choice for a reduction function; it is also a
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reduction function which satisfies the formal requirements that have

been placed on such a function. Now it must be determined whether

the proposed reduction of quantum mechanics to classical mechanics

by means of the Wigner transformation meets the nonformal conditions

on a reduction.
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III. NONFORMAL CONDITIONS ON THE REDUCTION

The results of the previous chapter show that the formal

requirements for a successful reduction of quantum mechanics to

classical mechanics are satisfied: A reduction function, the Wigner

transformation, maps �Q � Ac and�Q � � in such a way that as n � 0 the

classical kinematical and dynamical laws are recovered from the quantum

structure. Yet several nonformal requirements must be satisfied if

this reduction is to be entirely adequate.

These nonformal requirements derive directly from the philo

sophical problem outlined in Chapter 1. The philosopher's interest in

reduction is a response to a common phenomenon in the development of

science. As a science develops theories are proposed and tested; some

are accepted as well-confirmed. In many instances, these well-confirmed

theories are found to be deficient in some respect and are replaced by

new, well-confirmed theories. A philosophical account of inter

theoretic reduction is an attempt to give a rational account of the

process whereby one well-confirmed theory is superceded by another.

Given the assumption that science advances, the general theme of these

rational reconstructions is that the old theory must be explained or

accounted for by the new theory. Thus, intertheoretic reduction

becomes intertheoretic explanation in which the secondary science is

explained by the primary science.

The formal and nonformal requirements for an adequate reduction

mirror the formal and nonformal conditions .for an adequate explanation.

According to the accepted philosophical paradigm for explanation, the

explanandum must be derivable from a set of premises, the explanans.
In intertheoretical explanation the reduction function is intended to

mediate this derivation. Of course, the construction of such a

derivation does not guarantee that any explanation at all has been

given. For the present case, the Wigner transformation per � is a

function that maps a noncommutative operator algebra to a commutative

algebra of functions on the phase plane. This in itself tells us

nothing about the relation between quantum and classical mechanics as

physical theories. Such a formal relation is at best a necessary, and

certainly not a sufficient, condition for an adequate explanation of

classical mechanics by quantum mechanics.
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In fact, the formal relation does not treat the most interesting
facet of reduction, namely of how a well-confirmed theory can be

rationally replaced by another well-confirmed theory that is incom

patible with it. This facet of reduction is addressed by the nonformal

requirements. Explanations are stories or accounts of a certain kind.

Usually an explanation gives an account of something poorly understood

in terms of something that is more clearly understood or an account of

some particular thing in terms of a more general framework. Thus,

there are pragmatic and epistemic features present in an explanation.

These features must also be present in any adequate intertheoretica1

explanation. The nonformal requirements which are of epistemic and

pragmatic character, ensure that the inductive support of the secondary

theory is passed on to the primary theory, thus showing how one we11-

confirmed theory can be replaced, consistently, by another wel1-

confirmed theory.

It is the requirement that the primary theory inherit the

inductive support of its predecessor that forces attention to the

epistemic and pragmatic aspects of reduction. These aspects, or the

nonforma1 conditions on a reduction, must pay special attention to

the particular interpretations of the mathematical formalisms of the

theories in question. Certain of the mathematical entities in each

formal structure are interpreted as standing for physical properties

of a system. Laws are statements relating the entities so interpreted.

Experiment and observation provide inductive support for the laws and

hence indirectly for the physical interpretation of the mathematical

formalism. If the nonformal conditions on reduction are to be met,

some account is required of how evidence for the primary theory is

related to that for the secondary theory.

The difficulty of specifying these conditions exactly is

exacerbated by the fact that in many cases the primary and secondary

theories are logically incompatible. The logical incompatibility of

the primary and secondary theories was the crux of Feyerabend's

critique of reduction given in Chapter I. To circumvent Feyerabend's
criticism, it is necessary to state the conditions under which an

approximate reduction obtains. Formally, the Wigner transformation
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serves this purpose well, as the Wigner transformation allows for the

recovery of the classical theory. This is achieved by taking the usual

interpretation of the quantum formalism and mapping it onto the classical

phase plane. The Wigner transformation generates a model for quantum

theory in terms of the classical quantities; that is. under that

transformation the quantum laws are approximations to classical laws

such that in the limit as h � 0 the approximations become the classical

laws. This relation in the limit is not a relation of logical deri

vability but it is as strong a formal relation as one would expect to

obtain between logically incompatible theories.

Inductive support for a theory is generated when observation

gives evidence that the theory is true. If the theories are logically

incompatible, both of them cannot be true, and we were mistaken in

believing that one of the theories was well-confirmed. This compli

cation leads to a natural formulation of inter-theoretical explanation

given by Glymour (1970:341):

Intertheoretical explanation is an exercise in the

presentation of counterfactuals. One does not

explain one theory from another by showing why the
first is true; a theory is explained by showing under
what conditions it would be true, and by contrasting
those conditions with the conditions that actually
obtain.

This is a natural formulation of the reductive relation in that the

emErgence of the new theory and the deficiencies of the old theory

reveal that the old theory is wrong, whereas the reduction tells us in

addition why we were wrong and how it was possible that the old theory
could have become accepted. This relation goes far beyond a mere

formal relation and does capture the pragmatic and epistemic aspects

of intertheoretic explanation.

For the case of quantum and classical mechanics the formal

condition as met by the Wigner transformation is that quantum theory
under its usual interpretation be modeled in the usual interpretation

of classical theory in such a way that as h � 0 this model of quantum

theory becomes a formulation of the classical theory. Such a reduction

function leads to an adequate reduction if the following two nonformal

conditions are also fulfilled:
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(i) Explanatory condition. The reduction must generate an

account of how and where the secondary theory was successful and

deficient, where this account is told in terms of the primary theory;

(ii) Unity condition. The reduction must unify physical theory.

Fulfillment of the first condition guarantees that the reducing

theory accounts for the phenomena that the reduced theory accounted for

and that it accounts for these phenomena in such a way that the

inductive support of the reduced theory is inherited by the reducing

theory. It is this condition, too, that contains the counterfactual

aspect of the reduction. The proposed account contains statements of

the form: "Classical statistical mechanics would be true if it were

the case that •••

" where the ellipses are replaced by some statement

that is contrary to fact about the structure of the physical world

correctly described by quantum theory.

As a simple example illustrating this condition consider the

relation between the van der Waals gas law and the ideal gas law. The

ideal gas law may be derived from the assumption that gas molecules

are point masses and that there are no forces of intermolecular

attraction present. To derive his law, van der Waals assumes that

molecules are solid spheres with weak intermolecular forces present.

The two laws are logically incompatible, as are assumptions on which

they are based. The ideal gas law would be true if molecules had no

volume and if there were no intermolecular forces. The ideal law

w�rks well in many cases because for extremely dilute gases, molecular

diameters and intermolecular forces are insignificant. It is possible

here to compare and contrast the conditions placed on the molecules by

the two laws and give an account in terms of the properties of the

van der Waals molecules of why the ideal law is generally incorrect

and why it worked as well as it did.

The unity condition has not been motivated as well as the

explanatory condition. The explanatory condition is concerned with

the inductive support of theories, the observational support for the

theories, and the inheritance of this inductive support in reduction.

Strong inductive grounding is one reason why theories are accepted.
A second subsidiary feature that might lead one to accept one theory
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over another is the degree of systematization that the theory imposes

on the phenomena in question. The degree of systematization, or the

theoretical simplicity or elegance, of a theory is not a feature that

is easily characterized. For the present purposes it can be said that

the degree of systematization is related to the number of ad hoc

assumptions the theory requires. Fewer ad hoc assumptions indicate

a greater degree of systematization. Another desideratum that a

reduction should fulfill is that some of the assumptions of the

secondary theory be derivable from the laws of the primary theory.
Fulfillment of this desideratum unifies physical theory in that it

shows that the primary theory has greater theoretical economy, allowing

the science to proceed on fewer ad hoc assumptions. This condition is

not usually considered in reductions of the kind treated here.

In our particular case, an investigation of whether the non

formal requirements for a successful reduction are satisfied requires,

as we have seen, that certain relationships obtain between the specific

interpretations of the abstract algebras on which the Wigner trans

formation acts. The process by which these interpretations are

formulated presents another interesting area of philosophical research.

It is not easy to specify how abstract mathematical entities are

endowed with empirical significance. As stated in the earlier dis

cussion of abstract mechanics, it is extremely difficult to motivate

the assumptions leading to the rigorous mathematization of physical

theories. For the present purposes, it will be assumed that this

interpretative problem of the abstract algebras has been solved by

means of Weyl's group theoretic approach (see Stein 1972:Sec. XI).

It will be assumed that � is an operator algebra generated by the

operators P and Q which represent position and momentum. Likewise it

will be assumed that � is an algebra of functions generated by p and
c

q where these canonical coordinates represent position and momentum

in the classical theory.

Interestingly, we do not view the problem of interpreting the

classical formalism as presenting the same kind of difficulties as

interpreting the quantum formalism. As far as interpreting an abstract

formalism is concerned, it is difficult to motivate the interpretation
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of either theory. However, these conceptual problems of interpretation

are not as pressing in the case of classical theory. The interpretation

we have adopted in the classical case is psychologically pleasing and

epistemologically accessible in that the interpretation is clear, vivid,

and easily visualized. One might say that we have an excellent model

of classical theory in terms of functions on the classical phase plane.
The dynamical variables and states of the theory are defined in terms

of this plane. For the physically interesting functions of position

and momentum, one can picture these functions on the phase plane. This

modelling process gives us the feeling that we have a clear under

standing of what the notions of classical theory mean. This model puts

us epistemologically at ease with the classical theory, in a way that

we are not at ease with quantum theory. Classical theory is epistemo

logically accessible in a way that quantum theory is not.

The epistemological accessibility of the classical theory can

be readily exploited to show that the first nonformal condition on a

reduction, the explanatory condition, is satisfied in this case. The

Wigner transformation maps quantum theory into classical theory. But

classical mechanics is formulated and visualized as a theory of the

classical phase plane; so, under W quantum mechanics can be formulated

as a theory of the phase plane. The proposed reduction function, when

this is viewed as operating on the interpreted observable algebras

)Q and Ac' allows us to compare and contrast the two theories on

common ground as different theories of the phase plane. Formal require
ments on the quantum mechanical pure states impose a definite structure

on their phase-plane images, which leads to an explicit criterion

whereby it can be determined when classical mechanics can serve as an

adequate theory of the phase plane and when quantum mechanics must be

used. The criterion, although based on a formal requirement, is

rendered empirically significant by the connection between pure states

and measurement. Pure states are the states of maximum specificity
allowed by a theory given ideal measurements. On the assumption that

quantum mechanics is the true universal theory, it is the true theory
of the phase plane, and classical mechanics is at best an approximation
to it. The proposed criterion can be used to give an account, in terms

of quantum mechanics, of how "almost true" classical mechanics is, of
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why classical mechanics appears to be true in certain cases, and of

why classical mechanics fails as a universal theory. This is just

the kind of account required by the first nonformal condition on an

adequate reduction.

The explanatory condition is the condition which a reduction

must satisfy if we are to be assured that some plausible account can

be given of how the primary theory might inherit inductive support

from the secondary theory. Because of the connection between pure

states and measurements, an investigation of what happens to pure

states under the action of the Wigner transformation and its inverse

should generate an account of the inductive and confirmatory relations

between the two theories.

Pure states are the states of maximal specificity. Classically,

a pure state is specified by giving precise numerical values for the

position and the momentum of a particle. These numerical values are

determined by measurement. A classical pure state is given by a

classical maximal meas.urement, the accurate determination of position

and momentum. According to classical theory it is possible in

principle to make such exact measurements. In classical statistical

mechanics, the pure states defined by maximal measurements are the

states of optimal knowledge from which all other density functions

can be constructed by taking convex superpositions of the pure states.

The pure states are represented on the phase plane by delta functions.

Quantum mechanical pure states are also states of maximal

specificity from which all other states can be constructed by taking
convex superpositions. A maximal measurement in quantum mechanics is

an�experiment designed to uniquely specify the wave function for a

system. The maximal measurements of quantum mechanics are motivated

and given operational meaning in expositions of the theory by recourse

to filtration experiments where a measurement on a system is construed

as a filter that selects for a value of a certain dynamical quantity.

Weyl gives a criterion for the determination of a pure state where the

experimental conditions S represent such filtration processes:



41

We say that the conditions S' effect a greater
homogeneity than the conditions S if (1) every

quantity which has a sharp reproducible value
under S has the same definite value under S'
and if (2) there exists a quantity which is

strictly determined under S' but not under S.
The desired criterion is obviously this: The
conditions S guarantee a pure state if it is im

possible to produce a further increase in

homogeneity (Weyl 1950:78).

Classically, maximal homogeneity is achieved when all quantities of a

system have a definite value. According to quantum mechanics some

quantities, such as position and momentum, are incompatible in that

they cannot both have precise simultaneous values. It is exactly this

situation that Weyl's criterion takes into account. Thus, a quantum

mechanical pure state must be specified by data somewhat less complete

than exact values for position and momentum. Yet this is still a pure

state determined by a maximal measurement and the conditi�ns for a

maximal measurement are the conditions of optimal precision for the

theory. Quantum mechanical pure states are represented in the space

of von Neumann densities by projection operators, p(x,x') = E (x,x')
n

*

'lJ( x) ¢ (x').

The pure states of each theory are specified by the maximal

measurements under each theory. Quantum mechanical pure states are

not as precise as the pure states hypothesized by classical theory;

each theory makes a different claim as to what is a theoretically most

precise observation. Under W both theories are theories of the phase

plane and maximal measurements can be compared as they relate to the

phase plane.

If quantum mechanics is the correct, universal theory, then the

maximal measurements allowed by quantum mechanics represent the

theoretically most precise determination of the state of a system.

One thing that quantum theory tells us, then, is that the precision

assumed by classical theory is illusory; there can be no classical pure

states. The images of the quantum mechanical pure states under the

Wigner transformation represent optimal knowledge of the system, as

expressed on the phase plane. Thus, quantum mechanics is the correct

"fine-grain" theory of the phase plane. If classical mechanics is to
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be applicable at all, it must be as an approximation to this correct

"fine-grain" theory. Classical mechanics can serve as an adequate

"coarse-grain" theory of the phase plane. It works reasonably well

if we do not look too closely at the phase plane with extremely precise

measuring instruments.

In order to investigate the relation between quantum and

classical pure states,* it will first be shown that the delta function

representing any classical pure state can be recovered, as h + 0, from

an appropriate wave function, or quantum mechanical pure state. Any

wave function o(q) which has an expectation value of position and

momentum can be expressed as

where q and p are particular values of position and momentum, and
c c

where the position dependence of the wave function has been scaled by

a factor proportional to l/�. As particular values of position and

momentum, q
c

phase plane.

by the delta

and p are the coordinates of
c

The pure state corresponding
function o(x-x • p-p ).

c c

a point on the classical

to the point is represented

Consider the normalized wave function

1 2 1/4
lJl(q) = --� [-]

(b/-tr)l/2 'IT

ip q/tt:
c

e

The von Neumann density corresponding to this wave function is given by
*

p(q,q') = lJl(q)lJl (q') =

ip (q-q') /tt: - [ (q-q ) /b /1;] 2
c c

e e

2
- [ ( q' -q ) /b i1T] •

c
e

The Wigner transformation applied to this density gives

*
A particularly elegant relationship obtains between pure states of the

quantum-mechanical harmonic oscillator and functions on the classical

phase plane. See Appendix.
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1 1 2
1/2

I i a+r an
wp(q,qt) = --- [-'JTl da e

pa p[q -

-2 ' q + -2]2'JT bitt

e

2 2
1 1 2 1/2 -2( - )2/b2h I

-ha 12b
= - -- [-] e

q qc da e
2'JT bllt 'JT

.

i(p-p )a
c

e

This integral is evaluated by completing the square:

2 2 2 2
1 1 2 1/2 -2(q-qc) Ib h

f
�a 12b

- -- [-] e da e
2'JT b(1; 'JT

i(p-p )a
c

e

1 1 2 1/2 -2(q-qc)2/b2h _b2(p_p )2/2h
- - -- [-] e e

c
X-

2'JT b.f'h 'JT

fda e-[(�a/ lib + ib(p-pc)/1:2 �12

1 1 2 1/2 -2(q-qc)2/b2h -b2(P-pc)2/2h f _y2/2
=

2'JT
-- [TI] e e [� _l] dy e

bitt � Ii.

222 2
1:2 1 -2(q-qc) Ib h -b (p-pc) 12h •

= -- e e
'JTh

What happens to this function on the classical phase plane as

h � 01 As h � 0, the negative exponentials drop off more rapidly and

will have an appreciable value only very near the point (q ,p ) on the
c c

phase plane. But this is to say that as h � 0 the image of the quantum

mechanical pure state tends to a delta function 6(q-q , p-p ) on the
c c

classical phase plane. Delta functions represent classical pure

states; hence, as h � 0, the Wigner transformation allows one to

recover classical pure states. The classical pure states are literally
embedded in the set of quantum mechanical pure states as h � o.
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Investigating what happens to the formalism of quantum theory

as n � 0 was the topic of the previous chapter. As shown there, this

is a strictly mathematical problem which considers how the mathematical

entities of quantum theory behave in this limit. It was found that

in this limit the classical algebras could be recovered from the

quantum algebras. Here it has been shown that in this limit the

classical pure states can be recovered from the quantum pure states.

Although this is a formal result, nevertheless, it does tell us some

thing about the relationship between the two theories. This result

can be interpreted as showing that a relation exists between two

physically possible worlds, the world as described by quantum mechanics

and another physically possible world as described by classical

mechanics. These worlds differ in that h has a non-zero value in the

quantum world and is equal to zero in the classical world. The

reduction shows that by making the counterfactual assumption that

n + 0, the classical world is accessible from the quantum world. The

accessability of the classical world from the quantum world in this

limit shows that classical mechanics is literally embedded in quantum

theory as n + O. If a theory is explained by showing under what

conditions it would be true and by contrasting these conditions with

the conditions that obtain in the actual world, then part of that

explanation is given by literally letting h go to zero. Classical

theory is explained here by saying that it would be true if n were

equal to zero; but it is false because �, as a universal physical

constant, has an exact, experimentally determinable non-zero value.

This "explanation" of classical theory by quantum mechanics is of some

significance because it does show that an intimate conceptual

connection exists between the two theories. However, letting h � 0,

while enlightening vis-a-vis relations between physically possible

worlds, says nothing as to the applicability of classical mechanics

to the actual world where quantum theory is the true theory. Something

must be said of this applicability if an explanation that satisfies the

first nonformal condition on reduction is to be forthcoming.

To be assured that the explanatory condition is satisfied, one

must consider what it means to say that quantum theory is the correct

fine-grain theory of the phase plane and state a condition under which
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classical theory, the coarse-grain theory, would be applicable.

Suppose one has a measuring instrument on the phase plane and suppose

that one attempts to make simultaneous measurements of position and

momentum with this device. The results of a series of measurements

on similarly prepared systems would be represented by a Liouville

density on the phase plane that covers an area of the plane. As

measurements are made more and more precisely, the area covered

becomes smaller and smaller. According to classical theory, there

is no limit as to how small this area might become. Indeed, on the

classical theory it can shrink to a point, in which case one has a

classical pure state.

Quantum theory implies that there are no classical pure states

and a fortiori implies that there is a limit to how small the area of

the phase plane under the Liouville density can become: The area under

the Liouville density can be no smaller than h. Hence, a Liouville

density which is the image of a quantum mechanical pure state must at

least cover an area of the phase plane of order h. Quantum mechanics,

as the correct fine-grain theory of the phase plane, tells us that we

can only look at areas of the phase plane larger than h. One would

expect classical mechanics, as a coarse-grain theory of the phase

plane, to provide a good approximation for the situations in which an

area considerably larger than h is scrutinized, that is, in those

situations in which we are far from a quantum mechanical pure state.

These reflections on what fine-grain and coarse-grain

theories of the phase plane provide lead to a criterion whereby one

can judge where classical mechanics might be applicable. It was shown

above that the image under W of the pure state

p(q,q')
1

=--

bvlT

2 1/2
[-]

1T

ip (q-q')/h
c

e

_[(q_q )/bvlt]2
c

e

-[ (q'_q ) /bYh] 2
c

e

was

The function � has its maximum value at (qc'pc) and
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121
=

� Tr
•

Its maximum value is of order l/Tr. This is true for the classical

image of any quantum mechanical pure state. As a coarse-grain theory,
classical mechanics is applicable in situations far from a quantum

mechanical pure state. So one can say that classical mechanics is

applicable in those situations in which the maximum value of �(q,p)
is much less than lin, or

Max[�(q,p)] « l/�.

This criterion states the limit of the validity of the classical

approximation. It states a condition for the applicability of the

fine and coarse-grain theories of the phase plane.

The criterion reveals another relationship between quantum

and classical theory other than the conceptual relationship as Tr � O.

By dint of the connection between pure states and measurement the

metaphor of fine and coarse-grain can be extended to the measuring

instruments themselves. This makes it possible to say something

about the use of classical mechanics in this world.

A fine-grain theory requires tt�asurements of high resolution,

a coarse-grain theory employs low resolution measurements. Hence, if

the resolving power of the measuring devices used in a given situation

is relatively low, only imprecise measurements are possible. In such

a situation the coarse-grain theory, classical mechanics, would appear

to be correct. It would appear to be correct in that low resolution

observation of the phase plane would yield no data that would be

inconsistent with classical theory. At a time when only low resolution

observation was possible, the success of classical mechanics might

encourage the belief that a state could be given an ideal representation

by a point on the phase plane. Even after the advent of high resolution

instruments, there would still be situations in which low resolution

measurements would be adequate for the practical specification of a

state (e.g., macroscopic systems). In other words, a quantum mechanical

state would be indistinguishable from a phase point where the precision

of the measurements is significantly less than the precision allowed by

the maximal measurements of quantum theory.
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On the basis of these considerations an account or explanation

of classical theory is forthcoming that satisfies the first nonformal

condition on reduction. If quantum mechanics is a true universal

theory, then classical mechanics is an approximation that would hold

only (i) if tt were equal to zero; or (ii) if relatively imprecise

measurements were used to specify the states of the system. Classical

mechanics fails as a universal theory because Planck's constant is not

equal to zero, because precise measurements are possible, and because

there are no classical pure states. The precision assumed by classical

theory is unrealistic and unattainable.

Condition (ii) above is the facet of the explanation generated

by the reduction which ensures the fulfillment of the explanatory

condition. A reliance on low resolution observations explains the

apparent success of classical theory, why it appears to work for

macroscopic systems and why a false theory appeared to work for so

many cases. This relation between the theories shows how the classical

picture is incorporated into the quantum picture and shows how confir

matory relations of evidential support are established between the

theories. It is also (ii) that explains the success and justifies the

use of classical approximation techniques.

The intertheoretic explanation given of classical mechanics

by quantum mechanics differs somewhat from the typical examples of

limiting case reductions. First of all, it has been shown that one

can consider a limiting case by literally letting tt � 0 [(i) above]
or limiting cases where the tt dependence is negligible [(ii) above].
It is typically the latter case that is discussed in the literature.

As shown, such discussions validate the use of classical mechanics as

an approximation under certain experimental conditions or for certain

systems. This is the usual type of explanation given in limiting case

reductions. For example, in the explanation of the ideal gas law by

the van der Waals law, the van der Waals law states the following

relation among volume, pressure, and temperature.

(V - b)(P +�) = RT
V2

where R is the universal gas constant, b a constant characteristic of
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the substance depending on the molecular diameter and the number of

molecules present, and � another constant characteristic of the system.

Where a and b are small, that is as �, l + 0, the van der Waals law

becomes

PV = RT

the ideal gas law. Because � and l are system dependent, this limiting

case argument explains the apparent success of the ideal law and

justifies its use as an approximation for certain systems. Similarly,

Newtonian mechanics explains Galileo's law of falling bodies. According

to Newtonian theory

ma = F
GmM 1

------

R2 (1 + h/R)
2

where G is the gravitational constant, m the mass of the body, M the

mass of the Earth, R the radius of the Ear th , and h the height of the

body above the surface of the Earth. As h/R goes to zero

or the acceleration of a body falling near the surface of the Earth is

constant, which is Galileo's law. This limiting case argument justifies

Galileo's law as an approximation valid for bodies very close to the

Earth's surface. In both of these paradigmatic cases, an explanation

is given of why the secondary theory might appear to be sufcessful in

some cases and not in others.

For the quantum mechanical case, in addition to this usual type

of explanation, an explanation was also forthcoming where one let

n + ° and where this limit could be approached in a mathematically

rigorous manner. This formal result generates an explanation of classical

theory in terms of a relation between physically possible worlds,

emphasizing the conceptual connection between the two theories. The

present result suggests that two types of intertheoretic explanation

might be possible in limiting case reductions, one where the limit is

taken with respect to a system specific parameter of function and one

where the limit is taken with respect to a universal physical constant.

In the former case empirical connections are established between the

theories; in the latter case conceptual connections are established

between the theories.
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It should be mentioned here that a given limiting case reduction

might not always fall entirely under one or the other of these two

types of intertheoretic explanation. The example of Galileo's law and

the quantum mechanical cases under (ii) above are clearly limits with

respect to system specific parameters or functions. The van der Waals

case, where the constants �, l � 0, is usually interpreted as

establishing empirical connections between the two laws, justifying
the applicability of the ideal law under certain conditions. However,

the constants � and�, even though they refer to system specific

properties of molecular diameter and intermolecular attraction, do

characterize actual properties of gas molecules. One could as well

interpret �, �, � 0 as envisioning a possible world where the molecules

were ideal mass points with no forces of intermolecular attraction.

Under such an interpretation, an explanation emphasizing the conceptual

connections between the two gas laws might be forthcoming.

The explanation given to classical mechanics in the present

reduction also differs from the typical examples in being extremely

abstract. Quantum theory and classical theory are compared and con

trasted as theories of the phase plane, where this is a mathematical

construct invented to facilitate the description of mechanical systems.

On the formulation of intertheoretic explanation adopted, the

explanation consists of contrasting conditions that do obtain with the

conditions under which the secondary theory would be true, where these

conditions can be cited as causes for the success of the primary

theory and the failure of the secondary theory. The abstractness of

the proffered explanation of classical mechanics might be criticized

as being no "causal" explanation at all.

Explanations of the ideal gas law or of phenomenological

thermodynamics are more concrete, or at least more readily visualizable.

For the gas laws one imagines that �, k � O. These constants are

dependent upon molecular diameters and the density of the gas. By

considering limits on these constants, one is contrasting the van der

Waals assumption of molecules as hard spheres subject to forces of

intermolecular attraction with the ideal law assumption of molecules

as point masses subject to no intermolecular forces. There is a

visualizable picture at hand in terms of which it is possible to see

exactly what the ideal law left out and to envisage situations in
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which that oversight is insignificant, namely, for dilute gases.

Similarly, statistical mechanics as a theory of the behavior of large

numbers of particles explains the gross thermodynamical properties of

matter by showing how systems of particles produce the gross effects.

The formal aspect of this reduction leads to an account of how

collisions of the particles on a container wall can be associated

with the pressure of the gas in the container. In both of these

cases, there is available an acceptable visualizable model for both

the primary and secondary theory which facilitates the understanding

of what causal conditions must be varied or ignored to formulate an

adequate explanation.

The explanation of classical mechanics by quantum mechanics

might be criticized as being too abstract or may not seem to be as

compelling as the explanation in the above examples. These qualms

stem from the fact that there is no visualizable model available for

quantum theory in its usual formulation. However, such criticisms

are misguided. The Wigner transformation yields a phase plane version

of quantum theory. As long .as the problem of the interpretation of

the classical formalism is deemed solved by appeal to the phase

plane model, the present reduction does employ as adequate an inter

pretation of the quantum formalism as is possible at present. This

reduction fulfills the requirements for a significant reduction by

making full use of the developed formalisms of each theory to generate

a picture of the two theories. That this picture must be formulated

within an abstract, mathematical space is no impediment to the

adequacy of the reduction, given the role of that space in the inter

pretation of classical theory and the epistemological accessability
of that interpretation.

The second nonformal condition on an adequate reduction, the

unity condition, states that the reduction must result in the unifi

cation of physical theory. Fulfillment of this condition guarantees

that the primary theory is superior to the secondary theory in its

range of explanatory power and in its theoretical economy. This

superiority is manifested (i) by the primary theory being able to

account for a significant portion of the phenomena, and in ideal cases

all of the phenomena, explained by the secondary theory and (ii) by
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the primary theory being able to justify some of independent primitive

assumptions of the secondary theory. (It is necessary to distinguish

the ideal case from the general case because there are instances where

one wants to claim that a reduction does unify physical theory, but

where the primary theory cannot, in its current formulation, give a

completely adequate account of all the phenomena explained by the

secondary theory. Quantum mechanics is one such case. Quantum

mechanics reduces to classical mechanics and, as will be shown, unifies

physical theory; yet, there is at present no adequate quantum theory

of gravity). Where the primary and secondary theories treat of

apparently distinct phenomena, this particular aspect of reduction is

most noticeable and significant.

Again, the reduction of statistical mechanics to thermodynamics

affords a prime example of how reduction can unify physical theory.

Thermodynamics was a well-confirmed theory, describing relations between

certain gross properties of systems such as temperature, pressure, and

entropy. Another extremely successful theory emerged, the atomic

theory of matter, which implied that all matter is composed of small

particles which obey certain physical laws. The conceptual problem

was that these two successful theories appeared to be independent of

each other, where one would expect that if the atomic theory of matter

is correct, the gross properties of material systems should be

explicable in terms of their constituent particles. The successful

reduction did show that the thermodynamical properties of matter could

be explained in terms of the constituent particles. Where previously

there were two sets of laws explaining two independent sets of

phenomena, the reduction shows that one set of laws will suffice and

that the previously independent sets of phenomena are indeed xeLated ,

That greater theoretical economy should also be expected from the

reduction is made a condition on its success by Khinchin:

••• statistical mechanics considers every kind of
matter as a certain mechanical svstem an4 tries to

deduce the genel:.al. physIcal (in particular, thermo

dynamical) laws governing the behavior of this
matter from the most general properties of
mechanical systems, and � ipso to eliminate from
the corresponding parts of physics any theoreti

cally unjustified postulation of their funda
mental laws (Khinchin 1949:7).
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Thus, in this reduction both the second law of thermodynamics and the

ideal gas law can be derived from statistical mechanics, whereas in

classical thermodynamics these laws are stated as independent primitive

assumptions. Statistical mechanics unifies physical theory because

it not only accounts for the data of classical thermodynamics, it

also explains and justifies primitive assumptions of that theory (cf.

Friedman 1974).

The reduction of statistical mechanics to thermodynamics is an

example of a heterogeneous reduction--a reduction wherein the domains

of the primary and secondary theory are distinct. And it is with this

type of reduction that the unification of physical theory is most

dramatic. Where the primary and secondary theories are two different

theories of the same set of phenomena, a homogeneous reduction,

reduction is often viewed as only a formal problem of relating the

structures of the two theories. The case of the reduction of quantum

mechanics to classical mechanics is clearly a case of homogeneous

reduction, if for no other reason than that both theories were believed

to be universally applicable. This being the prevailing belief, there

is no possibility of viewing the theories as treating of distinct,

independent domains. Even so, significant unification of physical

theory results from this reduction.

The reduction of quantum mechanics to classical mechanics unifies

physical theory by explaining or justifying some of the independent

primitive assumptions of classical theory. In particular, the

reduction explains or justifies the laws of conservation of linear

momentum, angular momentum, and energy.

Newton's great achievement was the discovery of his dynamical

law. This law, as the second law of motion, is the principle postulate

of Newtonian mechanics. However, given the second law and the

assumption of Galilean invariance the laws of conservation of linear

and angular momentum, which are equivalent to Newton's third law,
cannot be deduced; and given these laws the conservation of energy

cannot be derived. The classical conservation laws can be derived

using the second law and the additional assumption that the forces

involved can be derived from a potential depending only on the

distances between the particles. Mach's derivation of these laws
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requires two additional assumptions: That the force on any particle

can be resolved into a sum of forces each due to another particle and

that such forces depend only on the positions, and not on the

velocities of the interacting pair (Mach 1893:376). There are then

two alternatives open to us in Newtonian mechanics. Either the

second law and the conservation laws must be assumed as primitive

postulates of a somewhat arbitrary kind, or additional special

assumptions must be made which allow the derivation of the conser

vation laws from Newton's second law.

Newton did advance an argument for the third law from the first

law (cf. Home 1968:43). He gave a reductio ad absurdam for the third

law based on the following thought experiment: Imagine an obstacle

placed between two attracting bodies. If one body experiences a

stronger attraction than the other, the pressure of this body on the

obstacle will overcome the pressure of the other body on the obstacle

causing the system to accelerate to infinity. But such a circumstance

is impossible by the first law. This argument, however, would also

appear to make use of Mach's first assumption that the force on any

particle can be resolved into a sum of forces each due to another

particle. In this case, the force on the obstacle is resolved into

a sum of forces due to the two attracting bodies.

For quantum mechanics the situation is much simpler. The

conservation laws follow directly from quantum kinematics and the

assumption of Galilean invariance without appeal to any dynamical law.

The one assumption required for the derivations is von Neumann's

postulate that states are represented by vectors in an abstract

Hilbert space and that physical quantities are represented by self

adjoint operators on these vectors. Suppose that in the Schrodinger

picture the time development of the expectation value of an op�rator

A is calculated

iiT ddt (lj), Alj) = (lj), AUt�) - (ih ll, A\jJ) + (\jJ iiT
aA

",)ot at 'at If'

(lj), AHlj) - (\jJ, HA\jJ) + iiT (\jJ, �� \jJ)
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where H is the Hamiltonian operator for the system. Where A does not

depend explicitly on time,

d
in

dt (�, A�) = (�, AH-HA �).

If A commutes with the Hamiltonian, AH = HA, then the time

development of the expectation value of A is zero, and A is a quantum

mechanical constant of the motion or a conserved quantity. If A is a

generator of the Galilean group, say the total momentum operator P,

then by the assumption of invariance

PH� = HP�

for all states�. P commutes with H and is a conserved quantity,

which is to say that linear momentum is conserved. Analogous arguments

establish the conservation of angular momentum, and for energy the

result is immediate, as A = H and H2_H2 = o.

Quantum mechanically, a quantity is conserved if its operator

commutes with the Hamiltonian operator, that is if its commutator with

H is zero. According to Proposition 2 of the preceding chapter in the

limit as n � 0 the image of the commutator equals the Poisson bracket;

so

o = W
i

(AH - HA) = {A, H} .

tt

But if the Poisson bracket of a classical quantity and the classical

Hamiltonian is zero, then, according to classical theory, that quantity
is conserved; hence, under the Wigner transformation in the limit

n � 0, the quantum mechanical conservation laws yield the conservation

laws for the corresponding classical quantities.

This is not a new result, indeed it is widely accepted that "the

simplest proof of the conservation laws in classical theory is based

on the remark that classical theory is a limiting case of quantum

theory" (Wigner 1967:20). But this simple proof of the classical

conservation laws requires considering the behavior of the quantum

equations as tt � 0. To the extent that this limiting relation is

imprecise, the proofs are imprecise. Exhibiting the limiting relation

in a rigorous manner by means of the Wigner transformation removes this

imprecision. Furthermore, the Wigner transformation is the reduction
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function for the reduction of quantum mechanics to classical mechanics,

so these proofs show that the reduction unifies physical theory. By

means of the reduction, the classical conservation laws need not be

assumed as postulates nor need they rely on additional ad hoc assumptions

for their derivation. Quantum mechanics explains and justifies these

primitive assumptions of classical theory and consequently the reduction

satisfies the second nonformal condition on reductions.

Although the reduction satisfies all of the proposed conditions

on an adequate reduction and it can be claimed that quantum mechanics

does explain classical mechanics, there is another facet to the

relation between the theories which has not yet been addressed. A

compelling motive for the sustained research, by both philosophers

and physicists, into the foundations of quantum mechanics is the

presence of formidable problems of theoretical interpretation. The

preceding discussions of the relation of quantum theory to classical

theory assumed that the quantum theory is suitably interpreted by

associating elements of the algebra AQ with the states and observables

of mechanical systems. The mathematical formalism when interpreted in

this way is extremely successful over a wide range of phenomena. In

the discussion of the first nonforma1 condition, the maximal measure

ments of the two theories were easily compared and contrasted. The

fulfillment of the first condition was defended from various criticisms

on the ground that quantum mechanics is as adequately interpreted as is

classical mechanics in terms of the phase plane model. From this point

of view, quantum theory is as adequately interpreted as any other

theory of mathematical physics. However, this interpretation of the

quantum formalism which allows for its successful experimental appli

cation solves the interpretative problem of quantum mechanics only in

what Howard Stein calls the epistemological sense (Stein 1972:369).

What remains problematic is an adequate metaphysical or ontological

interpretation of the theory. The difficulty is that certain conceptual

questions arise out of the formalism that admit no easy answer. Lacking

such answers, it is extremely difficult to say what is really going on

in the world as it is described by quantum theory. Can the reduction

of quantum mechanics to classical mechanics aid in answering these

questions?
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It is a testimony to the clarity and precision of the quantum

formalism that these conceptual problems can be given a rigorous

formulation. The root of the metaphysical problem of interpretation

is that what appears to be the case when the theory is applied to

specific atomic systems is demonstrably inconsistent with the formalism

of the theory. In particular, every time a dynamical quantity of an

elementary particle is measured a reasonably precise value is ascer

tained for that quantity. Thus, measurements would lead one to believe

that for any atomic system each dynamical quantity has, at all times, a

precise value. But although the evidence suggests the general hypothesis

that all dynamical quantities have precise simultaneous values, the

existence of precise simultaneous values is inconsistent with the

formalism of quantum mechanics. The inconsistency of what is observed

with the formal theory follows from a corollary of Gleason's theorem:

If the dimensionality of the state space is greater than two, the

additivity requirement for expectation values of commuting operators

cannot be met by dispersion free states (cf. Bell 1966). This corollary

treats of the case of an infinite number of operators. The proof of

Kochen and Specker (1967) establishes a similar result for the case of

a finite number of operators, and it is this proof that will be

discussed here.

Proofs such as that of Kochen and Specker are quite sophisti

cated mathematically and are the subject of considerable current

research in their own right; but for the purpose of investigating the

relation between reduction and the metaphysical problem of interpre

tation, it suffices to consider simply the structure and basic

assumptions of these proofs. Results like the corollary to Gleason's

Theorem are usually invoked to show that it is impossible to construct

a hidden variable interpretation of quantum theory. In a hidden

variable interpretation, a phase space of hidden states, having the

same formal structure as the phase space of classical statistical

mechanics, is posited. The quantum theory is then interpreted by

defining a mapping, w, which takes the quantum states to the phase

space of the hidden states. The mapping w must satisfy two conditions.

First of all it is required that the mapping be such that the

expectation value of the quantum observable A in the state p be giYen
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by phase-space averaging of the image of p and A

Tr(pA) = b �(w)A(w)dw.

This is to say that in the hidden variable theory expectation values

(1)

are to be calculated by the classical prescription. Kochen and Specker
show that this requirement can be trivially satisfied, but satisfied

in such a way that observables become independent random variables

over the phase space of hidden states. However, the observab1es of a

theory are not all independent of one another; indeed, some observables

are functions of others. This being the case, observables have an

algebraic structure. Kochen and Specker make it a second condition

on w that it preserve this structure. This second condition on w can

be formulated

A � A =7f(A) � f(A) (2)

where w maps quantum operators into real valued functions on the space

of hidden states and where f is any function of A.

In terms of conditions (1) and (2), Kochen and Specker formulate

a precise necessary condition for the existence of hidden variables:

If a hidden variable interpretation of quantum mechanics is possible
then there must be an embedding, w, of the noncommutative algebra of

quantum mechanics into a commutative algebra. Kochen and Specker
formulate this condition in terms of the partial algebra of quantum

observab1es. However, the notion of a partial algebra is introduced

solely for the purpose of making condition (2) more tractable (cf.

Kochen and Specker 1967:64). In the present context this complication

can be avoided, as the introduction of partial algebras is not crucial

to the strategy or general assumptions of the proof. Kochen and

Specker proceed to prove that no such embedding w can exist. The

proof consists of showing that (2) is inconsistent with another general

constraint on the structure of quantum theory, the additivity requirement:

w '" w '" w '" '"

A -+ A and B -+ B � A + B -+ A + B. (3)

This condition must be satisfied if it is to be maintained that for

all quantum states the expectation value of a sum of operators is the

sum of the expectation values. Quite simply then, the strategy of the
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proof is to show that the existence of the algebra homomorphism required

by (2) is inconsistent with the additivity requirement (3).

Note that this is a very strong result. It establishes that

there can be no homomorphism from the noncommutative algebra of

quantum observables, �, into any commutative algebra whatsoever; a

fortiori there can be no homomorphism from � to)b. Hidden variable

interpretations of quantum theory, the existence of dispersion free

measures (a probability measure is dispersion free if and only if it

assigns Oor I to each indempotent of �), and truth value assignments

to quantum mechanical propositions are likewise all shown to be

impossible as they require the existence of a homomorphism from � to

a commutative algebra.

A further consequence of the Kochen-Specker result is that

precise simultaneous values of all dynamical observables cannot exist.

For suppose that every observable has a precise value at a given time.

Then there must exist a real valued function w which maps each operator

A into the value that it has at that time. If it is required for any

function f(A) that

w[f(A)] = f[w(A)]

then w must be a homomorphism from the noncommutative algebra of

quantum observables �Q into the commutative algebra of real numbers.

By the Kochen-Specker result no such w can exist. Therefore, precise

simultaneous values of all observables cannot exist.

In this way the Kochen-Specker result throws the conceptual

difficulties of a metaphysically adequate interpretation of quantum

theory into sharp relief. On our best interpretation of that theory,

whenever the theory is used and measurements are made, it appears as

if all dynamical quantities have precise simultaneous values; yet the

existence of such values is inconsistent with the quantum formalism.

The Wigner transformation maps quantum mechanics onto the

classical phase plane. It might be thought that the reduction

achieved by means of this transformation could aid in resolving the

conceptual problems surrounding the quantum theory.
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W is a one-to-one, and hence invertible, mapping of �Q into �c.
The Wigner transformation was originally proposed as a means for

computing quantum mechanical expectation values by the method of

classical statistical mechanics. So at least in some instances W

satisfies (1). However, W does not satisfy (2) and hence it is not

a homomorphism of a noncommuting algebra of Hermitian operators into

a commuting algebra. A simple counter-example suffices to show that

(2) is violated. Consider the case of the linear harmonic oscillator

and let ft be its classical Hamiltonian. Then

1 p2 1 2W- (�) = -- + - aQ2m 2 (4)

and

(5)

but

(6)

aft
2im (PQ+QP)

= W-l(H2) =
iah

QP +
ah2

m 2m

that is, W-l(H2) � [W-l(H)]2; so W, W-l are not homomorphisms and (2)

is not satisfied.

According to Proposition 1, the basic result of the reduction,
there is a mutual embedding of the commutative algebra of classical

mechanics into the noncommutative algebra of quantum mechanics in the

limit as tt � O. Also, in this limit (5) equals (6) in the above

counter-example. Thus, if * has any non-zero value, W does not

satisfy the conditions placed by Kochen and Specker on an embedding

from a noncommutative algebra into a commutative algebra. Where tt � 0

and W is used to map AQ into �c all of the negative results of the

Kochen and Specker proof stand, and precise simultaneous values are

impossible. Because the conceptual problems of an adequate meta

physical interpretation of quantum theory can be formulated in terms

of the existence of precise simultaneous values, the Wigner transfor

mation and the associated reduction of quantum mechanics to classical
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statistical mechanics do not aid in solving these conceptual problems.
As n � 0, W becomes a homomorphic mapping of quantum theory into

classical theory. Whereas W does not sanction the reduction of a

theory of classical structure to quantum theory, as the hidden variable

theorists desire, it does yield a reduction of quantum mechanics to

classical mechanics as n � o.
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SUMMARy

At the outset of this essay, two questions were posed: In what

sense, if any, is classical mechanics a limiting case of quantum

mechanics? What does it mean to say that one theory is a limiting
case of another? After reviewing the orthodox and heterodox answers

to these questions, it was concluded that the orthodox position would

be tenable only if classical mechanics were a bona fide mathematical

limit of quantum mechanics as n + 0 and only if the orthodox view of

intertheoretic explanation could be broadened to allow intertheoretic

explanation where the secondary theory was not strictly derivable from

the primary theory. This broadened outlook requires that an adequate

reduction satisfy both formal and nonformal conditions.

In Chapter II the formal conditions on an adequate reduction of

quantum mechanics to classical mechanics were discussed. A detour

through abstract mechanics motivated the claim that, formally, an

adequate reduction of quantum mechanics to classical mechanics requires

the existence of a structure preserving mapping, or reduction function,

from the quantum algebra of observab1es, �Q' to the classical algebra
of observables, �c' and from the Lie algebra of quantum theory, -<Q,
to the Lie algebra of classical mechanics,�, in the limit as n + O.

c

The Wigner transformation, W, was shown to be a natural reduction

function. Three propositions were proved shOWing that W satisfies

the formal conditions on an adequate reduction of quantum theory to

classical theory as n + O.

Nonformal conditions on the reduction were discussed in Chapter

III. The pragmatic and epistemic facets of explanation require that a

reduction, as a species of explanation, satisfy an explanatory condition

and a unity condition in addition to the formal conditions presented

in Chapter II. The Wigner transformation as a reduction function

generated a reduction of quantum mechanics to classical mechanics

which satisfies the explanatory and unity conditions. The explanations

of classical theory by quantum theory resulting from this reduction

were compared and contrasted with other examples of intertheoretica1

explanation.
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An additional topic was treated in Chapter III. The problem of

formulating an adequate metaphysical interpretation of quantum theory
was presented and made precise in terms of the Kochen-Specker result.

Where n � 0 and W is used to map �Q into �c' the negative results of

Kochen-Specker stand and W provides no obvious solution to the meta

physical problems of interpretation.

On the basis of these arguments, it can be concluded that

classical mechanics is a strict limiting case of quantum mechanics

as n� 0 and that if one theory is to be a limiting case of another,

certain formal and nonformal conditions must be stated and satisfied.

These conclusions support the orthodox physical and philosophical

positions.
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APPENDIX: THE IMAGE OF HARMONIC OSCILLATOR PURE STATES UNDER W

In the position representation, the normalized pure states of

the one-dimensional harmonic oscillator are*

�n(q) �
1 e-(1/2h)q2

/2nn: ITIiT

H [.Lt
n Ih

where H (q//h) is the nth Hermite polynomial. The von Neumann densityn

corresponding to this wave function is

For products of Hermite polynomials the following generating function

obtains (Morse and Feshbach 1953:786)

_(x2+y2_2xyz/1-z2) 2 2 00

_e = e-x -y L
/1+z2 �o

n

[_z_] H (x) H (y).
2n, n n

n.

(i+y2)/2
Multiplying both sides of this expression by e and simplifying

the left-hand side yields

222
-(x +y ) (l+z )+2xy(2z) 2 2

00

n

e 2 ( 1- z 2) = e
(-x -y ) /2 L [_z_] H (x) H (y).

------......._------------ n=O 2n, n n

�
n.

11+z-

(1)

The Wigner transformation is

1 f ipa aft ah
Wp(q,q') ="2; da e [q -2' q +2] •

The Wigner transformation is linear, so it can be applied to (1).

Letting x = (2q-ah)/2� and y = (2q+ah)/2/h in (1), one gets

1 1 _(q2/h) (l-Z)/(l+z)j d ipa -(fta2/4) (l+z)/(l-z)
e a e e =

21T �

/l+z�
t n 2 2
L [_z__] 1 da eipa e-q /ft e--fta /4

H [2q-ah]H [2q+ah]
n=Q 2nn! n

2vh
n

2&

*
Note that here 9 is the 9/b of p. 42 and p is the bp of p. 42.
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The left hand integral can be evaluated by completing the square:

1 1 _(q2/h)(1-z)/(1+z) fd ipa -(ha2/4) (l+z)/(l-z)
211" 12.

e a e e

11+z-

1 1 e-(q2/h-)(1-z)/(1+z)=

2n
h+z2

_(p2/�)(1-z)/(1+z) r _[ih )t+z a� �-z]2e

J
da e 2 1-z Ih 1+z

= 1- 1 2/I=Z 1- e-(q2/h) (1-z)/(1+z)
211" r--?

vi+z
2 AT 11+z 12

e-Cp2/h)Cl-z)/Cl+z) fdye-y2/2
;2; 1 1 ;r=z _[(q2+p2)/ft] (1-z)/(1+z)

= -------- e
211" 12 At h+z2 11+z

1 1 /I=Z _[(q2+p2)/�] (1-z)/(1+z) •

= -- e

.r; At /1+z2 11+z

In this expression, let t/1-t = (l-z)/(l+z); that is, let z = 1-2t.

On making this substitution and simplifying, the resulting expression

one finds that

1 1 /I=Z _[(q2+p2)/�] (l-z)/(l+z)
-_ e

.r; .,4; 11+z2 Il+z
2 2

= _1_.L J# e-[ (q +p ) /�] t/1-t

2/; vh t+1
1 - t

2 2
1 1 I2t 00

n Ln [(q +p ) /�]
=

2/; �v' �1 n�o t
n!

Hence, the result of applying the Wigner transformation to the generating
function for products of Hermite polynomials is the generating function

for the Laguerre polynomials in (q2+p2)/�:
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00

= L
n=O

Quantum mechanical pure states for the harmonical oscillator are mapped

to Laguerre functions in the action variable on the classical phase plane.
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