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SUMMARY

We investigate the problem of deriving bounds on strong inter­

action scattering amplitudes from the results of axiomatic field theoryo
The bounds on the TI-TI scattering amplitude at points within its

analyticity domain which have been obtained by tukaszuk and Martin are

especially interesting because they contain no free parameters, and they

impose absolute limits on the size of the renormalized coupling constant

for TI-TI scattering.

We improve the rigorous upper bound derived by tukaszuk and Martin

for the TIo_TIo scattering amplitude at the symmetric point. Our prin­

ciple new tool is the "parametric dispersion relation" of Auberson and

Khuri.

Also, for a ¢4 type field theory with a scalar bound state which

is not too tightly bound, we generalize the methods developed by
Martin for TI-TI scattering to establish upper and lower bounds on the

renormalized coupling constant and an upper bound on the physical

coupling constant to the bound state. These new bounds are functions

of the mass of the bound state. Numerical examples of the bound on

the physical coupling constant are given for several bound state

masses 0

Finally, we discuss the relevance of our results to constructive

field theory. We point out that, while our bounds do not apply to a

¢4 field theory in 1 space +1 time dimensions, they do limit the values

of the renormalized coupling constant for which one could construct a

¢4 field theory in 2 space +1 time (and, of course, 3 space +1 time)

dimensions.
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CHAPTER I

Introduction

During the decade of the 1950's particle physicists began to

realize that, contrary to their previous expectations, the problem of

exploiting a realistic quantum field theory for the strong inter-

actions was beyond their mathematical capabilities and that such a

theory might not even be self-consistent. The difficulty was that the

perturbation expansion approach, which provided nearly all of the results

of quantum electrodynamics and which was the only available method for

systematically extracting physical consequences from a nontrivial field

theory, failed for the strong interactions because the expansion para­

meter (e.g. the coupling constant) was too large. However, no alter­

native theory has been proposed which offers a better framework for

developing an understanding,of the interactions of hadrons. Since

the theory of quantum electrodynamics had been, and continues to be,
so successful, and since the general principles which are the founda­

tions of any local field theory seem so eminently believable, some

physicists began to ask themselves what results could be derived from

those principles without getting involved in the intricacies of a

particular field theory. Even this modest goal has proved to be

difficult to achieve, and the definitive answers have yet to be dis­

covered 0 Yet the results which have already come out of this program

are more than even optimistic physicists would have expected fifteen

years ago.

Logically, the first step in this development was to find a math­

ematically precise formulation of the general physical principles which

form the basis of any local field theory. Those principles include:

1) Lorentz invariance; 2) causality; 3) the existence of a unique
vacuum state relative to which physical states have positive energy;

4) completeness of the set of physical states; and 5) unitarity. With
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the addition of certain technical assumptions common to most field

theories these principles have been axiomatized in various ways, for

example, by Lehmann, 8ymanzik, and Zimmermann (L8Z)1 and by Wightman2•
There are then three relevant questions: 1) Are these axioms self­

consistent? If so, 2) what are their consequences, and 3) are those

consequences consistent with experiment?

If the axioms are self-consistent, then the best way to prove it

would be to actually construct and solve a nontrivial example of a field

theory satisfying them. This, of course, is a difficult problem. None­

theless, it has been possible to demonstrate that in 1 space +1 time

dimensions there is such a theory, namely a �4 field theory, at least for

small enough values of the coupling constant.3 All of the features of

this theory have not yet been worked out, but its existence does provide
some encouragement. For theories in 3 + 1 dimensions the question is

still opene In the absence of evidence to the contrary we assume that

the axioms are self-consistent and proceed to the descri.ption of some

of their consequences.

Most of the physical results which have been obtained from axiomatic

field theory take the form of bounds and inequalities which limit the be­

havior of the scattering amplitude. In the derivation of these bounds

the analyticity properties of the scattering amplitude as a function

of energy and momentum transfer playa central role. We will there-

fore begin by enumerating some of the analyticity properties which are

rigorous consequences of local field theory.

To do this we must first define our notation. We will limit our

discussion to elastic two-body scattering:

A + B +A + B • (1-1)

The complications which arise for particles with spin will not be men­

tioned. Let PA' PA', PB' and PB' be respectively the ingoing and out­

going four-momenta of particles A and B. Then s=(PA+PB)2 is the square
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of the center of mass energy for the reaction (1-1). Similarly,
2 2

t=(PA-PA') and u=(PA-PB') are the squares of the center of mass

energies for the reactions:

(1-2)

and
- -

A+B+A+B. (1-3)

The Mandelstam variables s, t, and u satisfy the constraint:

s + t + u = 2(� + �). (1-4)

They are related to the s-channel center of mass momentum and

scattering angle by:

s =

t = -2k2 (1 - cosS )
s

(1-5)

u = -2k2 (1 + cosS ) •

s

4
In 195? Goldberger proposed that the forward pion-nucleon

scattering amplitude satisfies a dispersion relation in s. Subse­

quently, the TI-N dispersion relation was proved from the LSZ formula­

tion of the principles of quantum field theory by Bogoliubov and

collaborators;5 an independent proof for the forward dispersion re­

lation was given by Symanzik.6 The proof has been extended to many

other processes of physical interest,7 including for example TITI + TITI

and KTI+KTI; but for some of the most important reactions, especially
NN+NN and KN+KN, there are unphysical thresholds which have so far

prevented the proof from being carried out.

We remind the reader that in order for a scattering amplitude to

satisfy a dispersion relation it must have no singularities in some

simple domain in the complex energy variable, and it must be poly-
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nOmial1y bounded in the limit lsi +00. What has been proved is the

following: a) For fixed physical e , -to < t � 0, the scattering

amplitude FAB�AB is the boundary value �O F(s+i£,t) of a function

analytic in the complex s-plane with real cuts s ?sO and

s �2(MI + M�) - t -

uO• Along the left hand cut �N F(s-i£,t) =

=FAB�B. The discontinuities of F across the right and left hand

cuts are the absorptive parts in the sand u channels, respectively,
and So and Uo are the physical tresholds for the processes (1-1) and

(1-3). b) The polynomial boundedness of F has been proved in the
8

LSZ formalism and also from the Wightman axioms by Hepp. Therefore,

for t fixed, -to < t � 0, we can write the scattering amplitude as:

00 00

N ds' A (s',t) N du' A (u' t)
F(s,t,u)

s I s +.!!_ I u'
=--

1f N 1T Uo N
So s' (s ' �s) u' (u'-u) (1-6)

+ Polynomial in sand u.

Here A (s',t) and A (u',t) are the absorptive parts in the sand u
s u

channels, respectively.

The interpretation of the boundary value of F(s,t,u) on the cuts

which we have given above runs into trouble near threshold for fixed
t

negative t. For s�sO' cose = 1 + --2 becomes large and negative,
s 2k

so it is no longer in the physical region. This difficulty was over-

9
come by Lehmann who showed that for fixed physical s the scattering

amplitude is an analytic function of cose inside an ellipse with
s

foci cosf = ± 1 and semi-major axis:

(1-7)

Here MA' and ME' are the lowest mass states for which (A'ljA(O)IO)
I 0 and (B' IjB'(O)IO) � 0; jA and jB are the source currents for the

colliding particles. In addition Lehmann showed that the absorptive
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part A (s,t) = 1m F(s,t) is analytic in a larger confocal ellipse
s

with semi-major axis

2
coseA = (2cos eO - 1). (1-8)

It follows that the partial wave expansions for the amplitude and its

ahsorptive part converge within the small and large Lehmann ellipses

(1-7) and (1-8), respectively:

F(s,t) =
I:S � (2t + 1) f ( ) p (

,

e)k
t=o

t
s

t cos ,

A(s,t) =
IS � (2t + 1) () p ( e)k

t=O
at s

t
cos ,

where at(s) = 1m ft(s). Therefore, for coses outside the physical

range -l�coses �l it is still possible to give a meaning to F(s,t)
and A(s,t) via (1-9) within their ellipses of convergence.

(l-9a)

(l-9b)

Both Lehmann ellipses shrink to the real line -1 �cose � 1 for
s

s�. This is not sufficient for many of the purposes we will en-

counter. However, MartinlO proved that for physical s, F(s,t) is

regular inside a circle Itl<R, where R is independent of s. Now

the unitarity constraint,

(1-10)

requires that the absorptive part of the partial wave amplitudes be

positive. It follows from the theory of expansion in Legendre poly­
nomials that the ellipse of convergence of (l-9b) must include the

right extremity t = R of Martin's circle. The absorptive part A(s,t)
is therefore analytic in an ellipse in the t-plane with foci 0 and

2 11-4k and right extremity R. This is Lehmann-Martin ellipse. Sommer

has calculated R, for cases in which �=(MA' - MA)= (MB' -ME), as:

R = �2 = (M '
_ M )2A A (1-11)
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2
For TIn and Kn scattering this gives R = 4� , where � is the pion mass.

Sommer's technique gives a lower value of R for nN scattering, but

Bessis and Glaser12 have succeeded in proving R = 4�2 for that case

as well. In most cases one gets the physically expected value of R.

Martin's enlargement of the Lehmann ellipse makes it possible to ex­

tend the range of t for which F(s,t) satisfies a dispersion relation.

For nn scattering Martin13 has proved the dispersion relation for

(1-12)

The analyticity results we have mentioned so far say nothing about

the analyticity properties of F(s,t) for sand t both complex. It was

first shown by Mandelstam14 for nn scattering, where there are dis­

persion relations in all three channels, that the scattering amplitude
is simultaneously analytic in both sand t. He obtained the domain

Istl<256�4 inside which the only singularities are the physical cuts

2 15
s, t, and u.a:.4�. Mandelstam's argument was later generalized by Lehmann

to processes, such as TIN scattering, with only a fixed-t dispersion re­

lation. Finally, for TIn scattering Martin13 has considerably extended

Mandelstam's domain. We mention here only that Martin's domain contains

domains of the form:

(1-13)

minus the physical cuts.

pion mass and the points a .•

1

almost the entire boundary of the Mandelstam double spectral functions.

The constants A. are known functions of the
1

The real sections of these domains contain

This concludes our brief discussion of the analyticity results

which have been rigorously proved from axiomatic field theory. We now

proceed to the enumeration of bounds on the scattering amplitude which

follow from these analyticity properties combined with unitarity.

The first example of a bound on the asymptotic behavior of a

scattering amplitude at high energy was derived by Froissart.16
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Starting with the postulate of the Mandelstam representation he proved
for the total cross-section the upper bound:

<
2

const log s , (l-14a)
s�

which is equivalent to the bound on the forward amplitude:

IF(s,O) 1< const s log2s. (l-14b)

Later Martin17 proved the Froissart bound from the axioms of field theory;
the crucial input for which his proof had to wait was the analyticity
of F(s,t) within the Lehmann-Martin ellipse.
forward amplitude have been proved as well.

Upper bounds on the non-

Ma
. 18

b
.

drtln 0 talne :

IF(s,t)1 <

s�

3/2
const slog s, (1-15)

for fixed physical t < 0.

The Froissart bound obviously requires that the dispersion relation

for real physical t<O has at most two subtractions. Jin and Martin
19

-

were able to show that this result also holds in the region It I < R.
20

that the forward amplitude, which in addition toThey also proved

satisfying a twice-subtracted dispersion relation has a discontinuity
of definite sign on each cut, cannot decrease faster than 1/s2 for

I s 1+ 00 :

2
const/s • (1-16)

For asymptotic energies the forward amplitude is thus bounded above

and below.

Many other bounds have since been derived. For example, from

unitarity one gets an inequality relating the elastic and total cross

. 21
sectlons:

atot2(s)
ael (s ) � const

2
log s

(1-17)
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Unitarity also provides a lower bound on the width of the diffraction

peak: 22

� = IF(s,O)1

I dF(s,t)1
dt t=O

� const

2
0tot (s)

4
log s

(1-18)

To conclude our discussion of asymptotic bounds we would like to

mention an important relation which can be deduced from the axioms of

field theory only if one makes some additional asusmptions. This is

the Pomeranchuk theorem23 which states that the total cross-sections

for scattering of particles and antiparticles on the same target become

equal asymptotically. The additional assumptions necessary for the proof
h b

. 1 k d h d M
. 24

f' 11ave een progresslve y wea ene over t e years, an artln was lna y

able to reduce them to a single assumption on the growth of the real

parts of the forward amplitudes F±(s,O) for particle and antiparticle

scattering. However, there exists a mathematical counter-example which

is consistent with axiomatic field theory (AFT) and which violates Martin's

condition. Therefore the Pomeranchuk theorem cannot be proved from the

axioms of field theory alone, and additional input is needed to under­

stand why the condition on the real parts should be true.

None of the results derived form local field theory have ever been

shown to be in contradiction with experiment. However, the weakness

of all of the bounds we have mentioned up to this point is that they

contain arbitrary constants relating to the energy at which asymptotic

considerations can be expected to become valid. As pointed out by

Martin, they provide no restrictions on the scattering amplitude at

finite energies.

Using a different approach to the problem, Martin25 showed that

the axioms of field theory impose quantitative non-asymptotic restric­

tions on the strength of the strong interactions, at least for the case

of TITI scattering. From the requirements of analyticity (as discussed

earlier), unitarity, and crossing s�etry he proved that within its
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analyticity domain, including the symmetric point s = t = u = 4�2/3,
the �o�o scattering amplitude is bounded above and below as a function

of the pion mass alone. From these bounds follows a lower bound on the

�o_�o s-wave scattering length. Finally, Martin and others26 have

found an interesting group of restrictions on the TI-TI partial wave

amplitudes below threshold (0 < s < 4). For the TIo_TIo s-wave amplitude
one has the best results. Among them are:

dfO(s)
---> 0

ds
1.697 � s < 4,

dfO(s)---< 0
ds

o < s $.1. 127 , (1-19)

2
d fO(s)
---->0

ds 1.72s>0.

The minimum of fO(s), the s-wave amplitude, must occur in the interval

1.127 < s < 1. 697.

This brings us to the subject of this dissertation. Martin's

d 1 b d h
0 0 •

l' d
.

hi
.

upper an ower oun s on t e TI -TI scatter1ng amp 1tu e W1t n 1ts

analyticity domain are important for two reasons: First, they contain

no arbitrary constants and represent quantitative restrictions on the

size of the amplitude at finite energies. With the exception of the

lower bound on the s-wave scattering scattering length they cannot be

compared directly with experiment. However, they do impose restrictions

on models for TI-TI scattering, and therefore one would like to have the

best bounds which can be obtained with the analyticity, unitarity, and

crossing symmetry from AFT. Using a refinement of Martin's original

method, iukaszuk and Martin27 succeeded in improving Martin's numerical

results, but their bounds are still not the best which can be obtained.

We have used a "parametric dispersion relation" for TIo_TIo scattering,
which has recently been derived from the results of axiomatic field
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theory by Auberson and Khuri28 and which is fully and explicitly cross­

ing symmetric, to derive an improved upper bound on the amplitude at

the symmetric point.

In addition to their physical interest for TI-TI scattering, these

bounds are of theoretical interest because they limit the range of re­

normalized coupling constants for which one could construct a consistent

field theory. In a �4 field theory, for example, the renormalized

coupling constant can be directly related to the amplitude at the symmetric

point.

In the real world there are no bound states in the TI-TI system, and

their absence has been explicitly incorporated in the analyticity assump­

tions used to derive the bounds on the TIo_TIo amplitude. However, in more

general field theories there may be bound states and one would like to

know if there exist bounds on coupling constants when bound states are

present. We have generalized the methods developed for TIo_no scattering

by Martin to the case of scattering of identical neutral pseudoscalar
bosons of mass � which couple to a bound state of mass m with physical

2 �
coupling constant g. For masses in the range 4/3<2 < 4 we have proved
a rigorous upper bound on g2 which depends only on �he masses m and �.

We have also proved that if one is willing to accept a larger analyticity
domain which has not been proved from the axioms of field theory, but

which is true in perturbation theory, then this bound can be extended
m2

to I <--2 < 4. The latter result also covers the scattering of identical
-�

neutral scalar particles with a bound state pole at the particle mass,

for example in a ¢3 field theory. Finally, we have demonstrated that
2

for 2 <m2 <4 one can still obtain upper and lower bounds on the con-

vention�lly defined (in terms of the amplitude at the symmetric point)
m2

renormalized coupling constant. For 4/3 <2 �2 one no longer has the
�

lower bound, but it is possible to choose a different definition of the

renormalized coupling constant for which both lower and upper bounds can

be calculated. Again, this result can be extended to all masses in the
2

range I � m2 <4 if one is willing to accept some analyticity from per­
u
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turbation theory.

The organization of this thesis is the following: In Chapter II

we give a thorough review of the methods and results of Martin and of

tukaszuk and Martin. Chapter III contains a brief discussion of the

Auberson-Khuri representation. In Chapter IV we discuss our improvement
of the LM upper bound on the TIo_1ro amplitude at the symmetric point; we

also describe our attempts to improve their other numerical results. We

generalize Martin's methods to theories with bound states in Chapter V,

and we conclude by discussing the relevance of our results to constructive

field theory in Chapter VI. In the Appendix we show how the Poisson­

Jensen formula can be used to prove a group of inequalities which are

used extensively throughout the text.
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CHAPTER II

The'Bounds of Martin and iukaszuk

A. Introduction

Ma
• 25

h f
.

f· d· b d
.

hrt1n was t e 1rst person to 1n r1gorous oun s W1t no

free parameters on the �o_�o scattering amplitude at points within its

analyticity domain. He took as his starting point the following results

from axiomatic field theory:

1) Analyticity: The �o_�o scattering amplitude 'F(s,t,u) is an

analytic function of the Mandelstam variables s, t, and u, with

s + t + u = 4. Note that we always work in a system of units

in which the pion mass is unity. For fixed physical s � 4, the

amplitude is analytic in t within the Lehmann-Martin ellipse,
and its partial wave expansion converges in that ellipse:

I:; 2t
F(s,t,u)= k L: (2Ul)fR,(s)PR,(x=1+ s-�·R, even

(2-1)

For fixed real t within the Lehmann-Martin ellipse, F(s,t,u)
is analytic in the s-plane with real cuts from s=4 to 00 and

from s = -t to _00 ; F satisfies a twice subtracted dispersion
relation in s. There are no bound states in the �-� system.

The amplitude is regular within the Mandelstam triangle where

s, t, and u are real and below threshold:' s < 4, t < 4, u < 4.

Within this triangle is the small Mandelstam triangle s > 0,
t > 0, u > o. Both triangles are displayed in the usual tri­

angular coordinate system in Figure I.
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u=4

Figure I

The Mandelstam Triangle. Inside this triangle s, t, and u are real

and below threshold: s < 4, t < 4, u < 4. It contains the small Mandelstam

triangle s > 0, t > 0, u > o.

2) Unitarity: Let A{s,t) and a2{s) be the absorptive parts of the

full scattering amplitude and the £th partial wave amplitude,

respectively:

rs
A(s,t)=ImF(s,t)= 1k L (22+l)a2(s)P2 (x).

i even

(2-2)

Our normalization is defined so that the unitarity constraint

takes the simple form:

(2-3)
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It follows that, for t�O,

A(s,t»O. (2-4)

3)
o 0

Crossing Symmetry: The TI -TI scattering amplitude is a

completely symmetric function of s,t, and u.

From these three statements Martin demonstrated, using a method

first introduced by Meiman29, that with the Mande1stam triangle, for

example at the symmetric point, the TIo_TIo amp1tiude is bounded above

and below as a function of the pion mass alone. Martin's original
method was subsequently refined by iukaszuk30, and with this more

sophisticated method iukaszuk and Martin
27

improved the numerical

results of Martin.

At this point I would like to mention the significance of these

results. The size of the scattering amplitude within the Mande1stam

triangle is a measure of the strength of the TIo_no interaction. The

scattering amplitude takes its minimum value within the Mande1stam

triangle at the symmetric point20

a =F(4/3,4/3,4/3).
o

(2-5)

31
The conventional definition, due to Chew and Mande1stam, of the re-

o 0
normalized coupling constant A for n -TI scattering is:

(2-6)
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The bounds on the scattering amplitude are therefore equivalent to bounds

on the renromalized coupling constant. These bounds, which follow from

analyticity, unitarity, and crossing symmetry, are not restricted to

nO_no scattering and they apply to any local field theory which satisfies

these requirements, i.e. a ¢4 field theory with no bound state. In addi­

tion, the bounds of iukaszuk and Martin impose a lower bound on the

nO_TIo s-wave scattering length. As pointed out earlier, these bounds

contain no free parameters, and therefore, unlike the asymptotic bounds,

they represent a real constraint on the amplitude at finite energies.

We will divide the rest of this chapter into three sections. First,

in Section B we will describe Martin's original method for obtaining
bounds on F(s,t,u); since only a very sketchy outline of this procedure
is available in the literature, we have explained the technique in

complete detail. Then in Section C we will explain Lukaszuk's30 modifica­

tion of Martin's25 method as used by Lukaszuk and Martin27. The paper of

LM is somewhat misleading in that the procedure used to calculate their

bounds does not fully coincide with the method described by them; we

present the method actually employed to obtain numerical results. Finally,
in Sectl0n D we summarize the numerical results. We have independently
�hecked the calculations of LM and found one small error; we correct their

mistake and also provide an improved calculation.

B. Martin's Original Method

To begin, Martin wrote a twice-subtracted fixed-t dispersion relation

for F(s,t,u) with t real and positive:

1
00

= - I ds'p(s'; sl' s t)A(s',t),TI
4

0' (2-7a)
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where

(S1-S )(S1-U ) (2s'-4+t)
p (s '; s

l' SO' t) == _.
0 0

_

(S'-S1)(S'-Ul)(S'-SO)(S'-UO)
(2-7b)

He noticed that for sl > so' s1>uO' ul � 0, and both points (sl,t,ul)
andes ,t,u ) within the Mandelstam triangle, the difference (2-7a) is

o 0

positive and unitarity allows one to derive a non-linear inequality of the

form:

(2-8)

with N �2. C is a known constant dependent on N.

Combined with t� crossing symmetry this inequality gives an upper

bound on F(s ,t,u). Furthermore, if the point (s ,t,u ) as well as
o 0 0 0

(sl,t,ul) is outside the inner Mandelstam triangle, then one can also

obtain a second inequality:

> C IF(s ,u ,t) IN.
000

(2-9)

Equations (2-8) and (2-9) and t� crossing then produce absolute bounds

on both F(s ,t,u ) and F(sl,t,ul). Finally, having obtained bounds on the
o 0

amplitude at these points it is possible to obtain a lower bound on the

amplitude at any point within the inner Mandelstam triangle at a momentum

transfer t'� t.

We will now describe in detail how one arrives at the inequalities

(2-8) and (2-9). The method for obtaining lower bounds at pOints within

the inner Mandelstam triangle is explained in Section D.
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To obtain Equation (2-8) it is best to limit our attention to the

case u1=0; then the point (s ,t,u ) lies within the inner Mande1stam
o 0

triangle. The reason for this choice of points will be mentioned later.

The first step is to minimize the right hand side of the dispersion rela­

tion (2-7) by finding an inequality of the form:

(2-10)

for s � 4 and N� 2. From unitarity and the partial wave expansions (2-1)
and (2-2) we have:

== A(s,t), (2-11a)

IF(s,O) I � � � (2t+l) Ift(s) I
t even

== F(s). (2-11b)

By the Lagrange multiplier technique and unitarity it follows that the

set· {ft(s)} minimizing A(s,t) for a given F(s) has the form:

1 = 0,2, ••• , 2L ,

(2�12)
f

1 (s) =
c (s )

,1 = 2L + 2, ...

p l(x)
The Lagrange multiplier c(s) is a function of s and satisfies the in­

equalities:

(2-13)
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IF(s) INTo obtain the inequality (2-10) we then maximize
A(s,t)

as a function

of c{s). The result is:

rs 2L
N {_s_ [L (21+1)2e(s) k

o

00 N-1
+ c (s) L (£+1) Ip1 (x) J},

2L+2 (2-14)

with c(s) and L=L(s) fixed by the equations:

IS 2L

X(s, t)= � [L (21+1)P1 (x)
o

00

+c2(s) L (21+1)/P1(x)],
2L+2

(2-15a)

2L

'1{s) =
IS

[ L (21+1)k
o

00

+c(s) L (21+1)/P1{x)],
2L+2

2c(s)F(s)

(2-15b)

A(s,t) = (2-15c)
N

and the inequalities (2-13). Inserting Equation (2-10) into the dispersion
relation (2-7) we have the inequality:

(2-16)

The next step is to transform the s-p1ane with real cuts s�4 and

s�O onto the unit disk in the y-p1ane. As an intermediate step, trans­

form the twice-cut s-p1ane onto the once-cut z-p1ane with real cut z21:

(2-17)
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Then transform the cut z-p1ane onto the unit disk Iy I �l:

y =

rz:l
i--J�--.

i+ft-ll-c

(2-18a)

with

(2-l8b)

This sequence of transformations maps the point s=sl onto the point

y = o. The integration range s � 4 is mapped onto the unit semi-circle

in the upper-half y-plane: y = ei<l>, 0 � 0 � 'IT. The amplitude F(s (y) ,0)
is analytic in the interior of the unit circle. With this change of

variables Equation (2-16) becomes:

F(Sl,t,O)-F(s ,t,u ) >
o 0

(2-l9a)

where

(2-19b)

and J(s' ,0,sl) is the Jacobian of the transformation from s' to 0. The

reality property F(s*,O)=F*(s,O) and the theorem on arithmetic and

geometric means allow us to get from (2-19) the inequality:

F(Sl,t,O)-F(s ,t,u )
o 0

1 'IT .<1>
N

> C exp{-- Jd<l>lnlF(s'(e1 ),0)1 }
'IT

0

= C exp � J d<l>lnIF(s'(ei¢),O) IN},'IT
-'IT

(2-20a)
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where

.

1 7T

C = exp [n I 'd<f)lnW(¢)].
o

Finally, t� crossing symmetry and Poisson' inequality reguire:

(2-20b)

F(Sl,t,O) -F(s ,t,u )
o 0

> CIF(Sl,O,t)IN
= CIF(sl't,O) IN.

(2-21)

For a detailed discussion of the Poisson and related inequalities we

refer the reader to the Appendix. It follows immediately from (2-21)

that F(s ,t,u ) has the upper bound:
o 0

1

F(so' t,uo) < (1- �) (ic )N-1 (2-22)

which is the result we are looking for.

Next we will show how one obtains Equations (2-8) and (2-9), and

from them absolute bounds on F(sl,t,u1) and F(so,t,uo)' for both points

(sl,t,u1) and (s ,t,u.) outside or on the border of the inner Mande1stam
o 0

triangle. It will be simplest, as well as desirable (as will be ex-

plained later), to limit ourselves to the case uo= 0. Then starting
from the dispersion relation (2-7), the identical considerations which

led to (2-21) now require:

F(Sl,t,Ul)-F(so,t,O)
N

> C IF(s ,t,O) I ·

o 0
(2-23a)

where

1 7T
C = exp {- I d¢ln

o 7T 0
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The only difference between this and Equation (2-21) is that here the

point (s ,0,4-s ), rather than (sl,0,4-s1), has been mapped onto the
o 0

center of the unit circle in the y-plane; that is, (2-l8b) must be

replaced by

c = z (s ).
o

(2-l8b' )

To derive absolute bounds on F{sl,t,Ul) and F{s ,t,u ) we will need
o 0

in addition to Equation (2-23) an inequality of the same form, but with

IF{so,t,O)1 replaced by IF{sl,t,u1)1 on the right hand side. The first

step in obtaining that inequality is to find an inequality of the form

(2-24)

to replace (2-l0). Let us write a partial wave expansion for the non­

forward amplitude F{s,ul):

(2-25)

and define:

(2-26a)

L: (2t+l) la_Q, (s ) (I-at (s ) Ipt (y) I. (2-26b)
even

It follows from the unitarity constraint (2-3) that

(2-27a)

and hence,

(2-27b)
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For 4 �s < sl+ t , the amplitude F(S,Ul) is unphysical (Le.
u = 4-s-u1>0) and the partial wave expansion, with partial wave

amplitudes determined by the minimization procedure we are about to

describe, will diverge. Therefore we must minimize A(s,t) by zero in

the interval 4� s < sl+ t , For s� sl+ t, F(s,u1) is physical and so we

can maximize IPs-F(S'U1)12 for a given [PsA(s,t)]. From the Lagrange

mUltiplier method we obtain:

1-2ai (s)
--------------- =

2/at (s ) (l-ai (s))

A(S)Pi(x)-I(S,u1)Pt(y)
R(s,u1) IPi(y) I

(2-28)

w�re A(S� is the undetermined multiplier.
IF(s,u1) I

A(s,t)

To fix A(S) we maximize

for N �2. The extremum occurs at:

R2(s,u1)+I2(s,U1)
A(S) =

NA(s,t) (2-29)

With this value for A(S), (2-28) becomes:

1-2ai(s) 1
=------ x

2 lat(s)(l-ai(s)) R(S,U1) IPt(y)I

[R2(S,U1)+I2(S,U1)]PO(X)
x{ N

- I(s,u1)Pt(y)}
NA(s,t)

- Kt(s)/2. (2-30a)_

Solving for at(s) we find:

Kt(s)
at (s) = t [1- ----] •

/4+Ki (s)

The solution to the set of Equations (2-26), (2-30), and (2-2) determines

(2-30b)
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[R2(s,U1)+I2(S,U1)]
gN (s , t , U 1) =

A(s,t)
(2-31)

Inserting the inequality (2-24) into the dispersion relation (2-7) we

get:

00

(2-32)
1

> - I
1T

sl+t

As before, the next step is to map the twice-cut s-plane, with real cuts

s � 4 and s �s 1+ t - 4 = -ul ' onto the unit disk in the y-plane. Here,

however, the transformation must be slightly different in order to deal

with the part of the integration range 4;S s < S 1 + t where A(s, t) was

minimized by zero. The necessary sequence of mappings is:

sl+t 2

(s -

2 )
z =

(4 _

s l+t
)

2

2

(2-33)

and

y =

. j§=-a1-
a-c (2-34a)

i+J z-a
.

a-c

with

a :: z (s
1
+t) =z (0) ,

(2-34b)

Note that after the second mapping, s = sl is mapped onto y = O. The

part of the integration range 4 � s < s 1 + t is mapped onto the segment

B - y (s=4) � y < 1 (2-35)
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and the remainder of the integration range s! S,l + t is mapped onto

the unit semi-circle in the upper-half y-plane:' y = ei<P, ° � 0 �7f •

The amplitude F(s(y), ul) is analytic inside the unit circle lyl<l
except for a cut from y = S to Y = 1.

Introducing this change of variables into (2-32), it follows from

the theorem on arithmetic and geometric means and the reality property
*' *

F(Sl' ul)=F (S,Ul) that:

F(Sl,t,ul)-F(so,t,O)
. 1

7f
> Clexp {27f I

-1T

(2-36a)

where

(2-36b)

and Jl(s' ,0,s1,t) is the Jacobian of the transformation from s' to 0.

Because 0< u = 4 - s - u1<4 in the region 4� s < s1+ t, we know

from unitarity and the partial wave expansion that the absorptive part

of A(s',u1) (and hence the discontinuity of 1nF(s',u1» across the cut

S � y < 1) is positive in that interval. Therefore we can employ a modi­

fied Poisson inequality (as discussed in the Appendix) and t�u crossing

symmetry to obtain:

F(S1,t,U1)-F(So,t,O»C1SNIF(S1,u1,t)IN
= C1SNIF(s1,t,u1) IN. (2-37)

This is the second of the pair of inequalities for which we are search­

ing.

The maximal allowed values for IF(s1,t,U1)1 and IF(So,t,0)lwi11
occur when F(Sl't,U1) >0, F(so,t,O)<O, and the inequalities (2-23) and
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(2-37) are saturated. Solving these equations we find:
,

,

'1'
C l-' 1

.

'(
0

}1-' N-1
_

' ,1+ '-S-- Cl
F = IF(s ,t,O) 1<[ ]

o 0 C
o

(2-38a)

, ,

'1
N-1

(2-38b)

These are the absolute bounds on the amplitude.

Before proceeding to tukaszuk's more refined method, let us mention

the reason we have restricted ourselves to the cases u =0 or ul=O. To
o

use points within the inner Mande1stam triangle it would be necessary

to minimize A{s, t} for a given 1 F{s,u.} I with t > u ,
> O. With the set

1. 1.

of partial wave amplitudes determined by this minimization, the partial
wave expansion does not converge. Therefore, this minimization cannot

be performed in· practice, at least using this technique. On the other

hand, for points outside the inner triangle, but within the large
Mande1stam triangle, one must minimize A(s,t} for a given IF{s,ui} I
with t > 0 and u. < O. Along part of the integration range F{s,u.} becomes

1. 1.

unphysical {i.e. u=4-s-u. >O} and, again, it is possible to perform the
1.

minimization described above. In this case one can minimize A{s,t} by
zero for that part of the integration range where F(s,ui) is unphysical,
but then one loses information. The best results are therefore obtained

by considering cases in which one point is on the border of the inner

triangle.

c. tukaszuk's Modification of Martin's Method

There is no reason to believe that the bounds (2-22) and {2-38} are

the best which can be obtained starting from a fixed-t dispersion rela­

tion. They can in fact be improved by a refinement of Martin's method
30

developed by tukaszuk and applied to the cases we are interested in by

tukaszuk and Martin.27
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The relevant observation is that we are really interested in max­

imizing the right hand side of the dispersion relation (2-7) for given
values of IF(Sl,t,u1)1 and IF(so,t,uO)I , and then showing that these

amplitudes cannot be increased arbitrarily without making the right
hand side of (2-7) larger than the left hand side.

To illustrate what we have in mind it is simplest to first consider

the upper bound on F(s ,t,u). As in Section B we specialize the dis-
o 0

persion relation to the case u1=0. The method for obtaining an upper

bound on F(s ,t,u ) consists of two steps: 1) First minimize the absorp­
o 0

tive part appearing in the dispersion relation as a function of the

magnitude of the full amplitude in the forward direction:

A(s,t)� A . (IF(s,O) I).mln
(2-39)

2) Second, maximize the difference

1 00

F(Sl,t,O)- - I ds'P(S';Sl,S ,t)A . (IF(s',O)I)�
4

0 mln

> F(s , t ,u ) •
- 0 0

(2-40)

The maximum value of the left hand side of (2-40) is then an upper

bound of F(s ,t,u ).
o 0

Again let us define A(s,t) and F(s) by (2-11). Then the set of

partial wave amplitudes {ft(s)} minimizing A(s,t) for a given F(s)
has the form (2-12) and (2-13). Therefore, from the dispersion relation

we have the inequality :

>1
-1T

00

Ids' P (s '
; s ,s , t )A . (F, s , t) ,

4
1 0 mln

(2-41)



27

with A . (F, s, t) given by
ml.n

rs 2L 00

A . (F ,s, t)= � [ L {25l.+l)P 5l. (x)+c 2 (s) L (25l.+l) Ip 0 (x)],IDl.n
0 2L+2 N

(2-42a)

_ IS 2L 00

F(s)= k [ L (25l.+l)+c (s ) L (25l.+l) Ip 5l. (x)] ,

o 2L+2
(2-42b)

and the subsidiary condition

(2-42c)

It is easy to see that for a given F(s) the parameters c(s) and L=L(s)

are uniquely determined by (2-42b) and (2-42c). If, on the contrary,

there existed another L' >L and c' satisfying these equations, then

one could obtain from (2-42b) the equation

R' 00

o = L (25l.+1)(l- �(s(»)+(c' (s)-c(s» L (25l,+1)/P5l.(x) 0 (2-43)
2L+2 5l.

x
2L'+2

However, for L' > L, c
' (s) > c (s ) , and for £3 2L+2, c (s ) �P 5l, (x), so the

right hand side will be greater than zero unless L'=L and c'(s)=c(s),
or L'=L+l and c'(s)=c(s)=P2L+2(x). The second possibility is ruled out

by the condition (2-42), and in any case it gives the same set of partial

waves for L'=L and L'=L+l, so c(s) and L are uniquely determined.

The next step is to determine the Lagrangian multiplier c(s) in

such a way as to maximize the difference

1
00

_ -

I

F(sl,t,O)- - I ds'p(s';s ,s ,t)A'. (F,s,t).� 4 1 0 ml.n
(2-44)

With that goal in mind, we will conformally transform the twice-cut s-plane
onto the unit disk in the y-plane by the sequence of transformations

(2-17) and (2-18). Equation (2-41) can then be written as:



28

F(Sl,t,O)-F(s ,t,u )
o 0

(2-4Sa)

where

(2-4Sb)

and J(s',¢,sl) is the Jacobian of the transformation from s' to ¢.

Now since F(y) =F(s(y),O) is analytic in Iyl <1, crossing symmetry

and Poisson's inequality tell us that

IF(Sl,t,o)1 = IF(sl,O,t) 1= IF(y=O) I
1 'JT "¢� exp[2TI I d¢ln\F(y=e1) I].

-TI

(2-46)

* .

*
It then follows from the reality property F (y)=F(y ) and the inequality

F(s) � IF(s,O) I that:

1 1T. - i¢IF(sl,t,O) 1 �exp[- I d¢lnF(y=e )] =F .

1T 0 0
(2-47)

The Lagrange mUltiplier c(s) is now fixed by minimizing the integral

_!_ J d¢W (¢)A " (F, s
' (¢) , t) .

1T
0

man
(2-48)

for a given F. This imposes the condition:
o

The new Lagrange mUltiplier y is independent of s. From Equations

(2-42) we have:

oA " (F,s,t)
ml.n

o'F(s)
= c(s) >0, (2-S0a)
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and

2-
. � A • (F, s , t)

IDln
-------------- =

of (s) 2

2 k/iS
-------�------ > ° .

00
(2-50b)

1: (2t+l)/Pt(x)
2L+2

oA .

mlnAt the changeover points L�L+l, A. and
sF

are continuous, so these
mln u �

points present no difficulty. Therefore, A. and
SF
in

are increasing
mln u

functions of ]f, and hence Equation (2-49) has a unique solution as a

function of F(s).

Now define

1 'IT --

I . (y) :: - I d<pW (<p )A . (F (y) ,s
' (<P) , t) ,mln 'IT 0

mln
(2-5la)

1 'IT - i<PF (y)=exp[- I d<plnF(e ,y)],o 'IT 0
(2-5lb)

with F(y,y) determined by the condition (2-49). Then:

�(y) :: F (y)-1 .n(Y)o ml

1 'IT, - -

> F(sl,t,O)- - I d<PW(<P)A . (F,s'(<P),t)-
'ITo m�

� F(s ,t, u ).
,. 0 0

(2-52)

The final step is to determine the Lagrange multiplier so as to maximize
-

�(y). Taking the functional derivative of �(y) with respect to F(y,y)
we find:

o �(y) 1
F (y) oA . (F(y,y),s'(<p),t)

[
0

- W(<p)
mln

]= -

of(y,y)
'IT

F�y,y) OF(y, y)

[F (y)-y]
0 (2-53a)=

7fF (y, y)
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and

02Amin (F{y, y) ,s
t (<f)), t).

+W{<p) }<o •
-

2OF{y,y)
(2-53b)

Clearly, the extremum of �(y) occurs at F (y )=y and is a maximum.
o m m

Therefore we have found the new maximum for F{s ,t,u ),
o 0

� (y ) > F (s ,t,u ) ,m" 0 0
(2-54)

which is an improvement over (2-22).

The same technique can be used to improve bounds (2-38). However,

despite some misleading statements to the contrary, LM never carried

out the improved method for the non-forward case. That is, they used

essentially the same method we have just described to improve on the in­

equality (2-23), while they retained the inequality (2-37).

To obtain an improved substitute for (2-23) we specialize to the

case u =0 and then follow the steps which led to (2-45) to find:
o

l7f -

F{sl,t,u1)-F(s ,t,O) >- I d<pW(<p)A . (F,s'(<p),t),
o ."" tr 0 man

(2-55a)

where

(2-55b)

and A. is determined as a function of:F by (2-4l) and (2-42). Equations
mln

(2-55) differ from (2-45) in that here the point (s ,0,4-s ), rather than
o 0

(sl,0,4-s1), has been mapped onto the center of the unit circle in the

y-plane; i.e. as in Section B, (2-l8h) must be replaced by (2-l8b').

Poisson's inequality, crossing symmetry, and the reality of F(s,O) now

require:
1 7f i¢

IF(so,t,O) 1=IF{So,O,t) 1::F{y=O)�exp[1T I d<plnIF(e ) I]
o

1 7f - i<P
� exp[7f � d<PlnF(e )] =F1• (2-56)



31

Next we minimize the right hand side of (2-55a) for a given Fl
to fix the Lagrange multiplier c{s):

oA . (F, s ( <j» , t )
mln

=Y • (2-57)

The determination of the Lagrange mUltiplier y is somewhat different

in this case. Here we are looking for the largest values ofl F(sl,t,Ul) I
and IF(so,t,O)1 such that the inequalities (2-37) and (2-55) can be

satisfied subject to the conditions (2-5�and (2-57). That these

equations cannot be satisfied for arbitrarily large values of IF(sl,t,u1) I
and IF(s ,t,O) I can be seen most easily by adding (2-37) and (2-55) to

o

obtain:
.

N N
[2 I F (s

1
' t , U 1) I-c 1

S I F (s
1
' t , U 1) I ]

+[2exp(! � d<j>lnF(ei<j»)-! � d<j>W{<j»A . (F,s'(<j»,t)]
1T 0 1T 0 man

)[2F{Sl,t,Ul)-C1SNIF(Sl,t,Ul) IN]
1T

+ [2IF(so,t,O) I - ! I d<j>W(<j»A . (F,s' (<j»,t)]
1T 0

man

� ° (2-58)

The first bracketed term in (2-58) will obviously become negative for

sufficiently large IF(s ,t,u1) I • To see that the second bracketed
1

term must also become negative for sufficiently large IF(s ,t,O) I , we
o

use the theorem on arithmetic and geometric means to bound it by:

1 1T - i<1> 1 1T -

� [2exp(- I d<1>lnF(e )-:;r I d<1>W(<1»Amin(F,s'(<j»,t)]1T 0 0

�o (2-59)



32

¥ow i�creasing IF(So,t,O)1 increases F(ei�) for all �. Also,
�in(F,s,t) _

F
is easily seen to be an increasing function of F:

<W
F

� A. (F, s
' (�) , t )

u [mln

(
k i F2 2L=rs/k [_IS� � (2£+1)P£(x)F 2
L (2£+1) /p£ (x)

2L+2

( 2f (2£+1» 2

o
----------------] >0 •

00 (2-60)
L (2£+1) /p £ (x)

2L+2

So for IF(s ,t,O) I sufficiently large, (2-59) will be violated and the
o

second bracketed term in (2-58)wil1 also be nagative.

The set of equations (2-55), (2-56), and (2-57) can therefore be

used to replace (and improve) the inequality (2-23), and combined with

(2-37) they impose absolute bounds on the amplitudes IF(Sl,t,u1)1 and

IF(so,t,O) I ·

D. Numerical Results

We will now enumerate the numerical results obtained by Martin25
and by tukaszuk and Martin.27 By specializing (2-52) and (2-54) to

sl = 8/3, t = 4/3, So
= 4/3, LM found

eto :: F(4/3, 4/3, 4/3) < 16, (2-61)

which is an improvement of nearly 40% over Martin's previous result,

obtained using (2-22):

(2-62)
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Similarly, with t = 2, sl= 3, So
= 2, LM found from (2-37), (2-55),

(2-56), and (2-57):

IF(3,2,-1) I < 150,

IF(2,2,0) I < 37. (2-63)

Martin's previous results, calculated from (2-38), were:

IF(3,2,-1) I < 150,

IF(2,2,O) I < 50. (2-64)

While Martin claimed to get these results for N=5 as the optimal value

for the exponent N in (2-23) and (2-24), we found that they are actually

produced with N=lO, and that this value of N is the optimal one. We

assume that Martin meant to say that he optimized (IF12)N , rather than
'F,N
� , to get inequalities (2-10) and (2-24).

Martin also showed that it is possible to obtain, from these bounds,
lower bounds on the amplitude within the inner Mandelstam triangle, in

particular at the symmetric point. His numerical result, which is also

quoted by LM, is:

Cto > - 100 • (2-65)

This is not correct. After we pointed out the error to Martin, he con-

32
structed the following counter-example: The function F(s,t,u)=

A+B(s2+t2+u2) is a limit of a twice-subtracted, crossing symmetric

amplitude with the correct positivity properties. When A and Bare

adjusted to fit F(3,2,-l)=150 and F(2,2,0)=-37, one finds Cto=F(4/3,4/3,4/3)=
= -120.

We will now show that the calculation described by 1M gives

Cto > - 130 , (2-66)
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and that this result can be improved to:

(2-67)

Take

ao =F(2,2,0)-[F(2,2,0)-F(4/3,2,2/3)]

- [F(2,4/3,2/3)- ao], (2-68)

and write the dispersion relations:

1 00

F(3,2,-1)-F(2,2,0)= - I ds'p(s')A(s',2) ,
'IT

4

1 00

F(2,2,0)-F(4/3,2,2/3)= - I ds'p (s')A(s' ,2),
'IT If I

1 00

F(2,4/3,2/3)-ao = - I ds'P2(s')A(s',4/3).'IT 4
(2-69)

Then we have immediately:

a > F(2,2,0)-[F(3,2,-1)-F(2,2,0)] x
o

PI (s') P2 (s ")
[1 + Max ]

s'>4 Pl(s')
,

."

(2-70)x Max

s'>4 p(s'),

which is the equation quoted by LM. It is easy to see that this can be

improved to:

a > F(2,2,0)-[F(3,2,-l)-F(2,2,0)] x
o

x Max

s'>4
".

PI (s' )+p 2
(s ' )

----] . (2-71)
p(s' )

With the bounds (2-63), Equations (2-70) and (2-71) give the results

(2-66) and (2-67), respectively.
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Martin32 has suggested that it may be possible to obtain the result

ao >-100 by first calculating absolute bounds on F(8/3,4/3,0) and

F(10/3,4/3,-2/3) and then using these absolute bounds to get a lower

bound on a by the method described above. We have tried this, and it
o

gives a worse result than (2-67). We have also tried using bounds at a

variety of other points to calculate a better lower bound on a
, but with

o

no success.

In summary, the best bounds obtained by the methods of LM for the

amplitude at the symmetric point are:

-122 < a < 16.
o

(2-72)

Recalling that the Chew Mande1stam coupling constant is defined as

A = -a. /6,
o

(2-73)

we see that these correspond to the bounds on the coupling constant:

20.33> A>-2.67 • (2-74)

Finally, we would like to point out that the bounds quoted above can

be used to produce a lower bound on the TIo_TIo s-wave scattering length
a. Recalling that

o

a
o

=
F(4,0,0)

2
(2-75)

and that the dispersion relation coupled with the positivity of the

absorptive part of the forward amplitude requires

F(4,0,0) >F(2,0,2) , (2-76)

it is obvious from (2-63) that the scattering length has the lower bound:

a >-18.5.
o

(2-77)
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Using a different method, Bonnier and Vinh Mau33 were able to show that

the bounds (2-63) and (2-65) require

a > -4.0 ,o
(2-78)

and this estimate was subsequently improved by Martin7 to

a >-3.5 •

o
(2-79)

We will not describe the method of Bonnier and Vinh Mau here because it

would take us too far afield.
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CHAPTER III

The Auberson-Khuri Representation

Recently Auberson and Khuri28 derived a "parametric dispersion
relation" for IT-lT scattering which exhibits the three-fold symmetry of

the IT-lT scattering amplitude in a completely explicit way, and which is

a rigorous consequence of local field theory. The fixed-t dispersion
relation is a special case of the more general class of parametric

dispersion relations of which the Auberson-Khuri (A-K) representation
is also an example. The advantage of having these more general repre­

sentations is that for any given problem one can select the representa­

tion best suited to it. As we shall see in Chapter IV, for the purpose

of deriving an upper bound on the lTo_lTo scattering amplitude at the

symmetric point, the A-K representation is superior to the fixed-t dis­

persion relation.

We now give a brief derivation of the A-K representation for lTo_lTb
scattering. For more details, and for the more general case of scattering

of charged pions, we refer the reader to the paper of Auberson and

Kh
. 28

url.

The lTo_lTo scattering amplitude F(s,t,u) is a completely symmetric

function of the Mandelstam variables s, t, and u(s+t+u=4). Auberson and

Khuri pointed out that for 0 � a < 4, the cubics

3
(s-a)(t-a)(u-a) = (4/3-a) (3-1)

lie within the analyticity domain D of the amplitude which Martin13,7
has proved from axiomatic field theory. For the purpose of writing a

dispersion relation they parameterized these cubics by the rational

mapping:
3

(z-zk)
sk = a+(4/3-a) 3 ' k = 1, 2, 3

(z -1)
(3-2)
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where s1=8, 82=t, S3=U and zk are the cube roots of unity. For all

complex z the amplitude F(s(z), t(z), u(z» can then be considered as

an analytic function of z and a:

F (z,a) = F(s(z), t(z), u(z» • (3-3)

The only singularities of�(z,a) in the z plane are the image V(a) of the

physical cuts sk�4, k=1,2,3. A-K proved that the set of admissable values

of the parameter a can be extended to include -28.19 < a < 4. For our pur­

poses the range 4/9 < a < 4 will be more than sufficient, and we will not

mention the complications which arise for smaller values of a.

From (3-2) we can calculate the image V(a) in the z plane of the

three physical cuts as:

(3-4a)

where

[�IV
1 (a) =

zl

Izl=l, 23TI �Iargzl� cpo(a) if %<a <4/3 (Case I)

1 z 1 =1 , CPo (a)� r argz k 2; if � < a < 4 (Case II)

(3-4b)
and

V2(a) = e2iTI/3 V1(a)

V3(a) = e4iTI/3 V1(a)

The function ¢ (a) is given by
o

(3-4c)

tf- (a) =tan-1{/(4-a)(a-479)}, O<cP <TI.
�o ' 0'

a-20/9
(3-5)

In both cases I and II the image of the cuts lies on the unit circle in

the z-p1ane but does not fully cover the circle. Therefore one can
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analytically continue from z < 1 to z > 1. In the case a=4/3 the cubic

degenerates into three straight lines and one would obtain a fixed-t

dispersion relation. We do not need to consider this case. In Figure 2

we display, for examples of both cases I and II, the image V(a) of the

physical cuts in the z-plane, and the corresponding contours in the

Mandelstam plane.

S = a ;;;;;;;;},,�..'� -,;::::;....... _

S=O�����--������

I

z

Figure 2

Integration paths fer the Auberson-Khuri representation, Equations (3-7)

and (3-23), are displayed in the Mandelstam plane and in the z-plane.

The two cases correspond to values of the parameter a in the intervals:

4/9 < a < 4/3 (I) and 4/3 < a < 4 (II) •
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Along the cuts V(a) the amplitude is either physical or obtainable

from a convergent physical partial wave expansion. This is guaranteed

by the choice of cubics (3-1) which requires that along each physical
cut the corresponding values of momentum transfer are always within the

Lehmann-Martin ellipse for that channel.

To write a dispersion relation in z it is necessary to relate the

discontinuity of F(z,a) across V(a) to the absorptive parts of the

amplitude F(s,t,u) in the s,t, and u channels:

(3-6)

A is the continuation via the appropriate partial
k

wave expansion of the physical absorptive part in the k channe1e

* * *
From (3-2) the reality condition F (s,t)=F(s ,t ) becomes:

-* - 1
F (z,a)=F(*,a).z

We define the discontinuity of F(z,a) across V(a) by:

(3-7)

A(z,a)= lim ii [F«l+s)z,a)-F«l-s)z,a)],
40

Izl = 1, (3-8a)

where

-*
A(z,a) = A (z,a) • (3.-8b)

The sign of lm(sk) on each side of V(a) is determined by:

lm s=3d4/3-a)
2 sin <p z= (l+s)ei<P •

2 '

(1+2 coso)
(3-9)

(3-10a)
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with

�O
1m _z .

{
zk

�O

+
on Vk(a)
on V�(a) • (3-l0b)

Then

+

ze:Vk (a < 4/3) or V� (a > 4/3)
A(z,a)=±�(s,t){

ze:V� (a < 4/3) or V� (a>4/3) (3-11)

We must also settle the question of subtractions. Jin and Martin19
have shown that:

2
F(s,t)=o(s ) for Isl� , t fixed,

(3-12)
(s,t) e:D.

(a-4/3)Therefore, using the fact that for z+zk' sk+a and s.+Const( )' jfk,
J z-zk

we see that:

F(z,a)+o (__

1
__) ,

(Z-Zk)2
(3-13)

for z+zk with a fixed. By writing a contour integral for the function

(z3-l)F(z,a) we can eliminate the contributions from the singular-
ities at z=zk. This is equivalent to the introduction of two subtrac­

tions into the usual fixed-t dispersion relation. Here the subtraction

constants are related to the coefficients in the Taylor expansion

00

F(z,a)= L:
n=O

n
f (a) z ,
n

(3-14)

which is convergent for I Z I < 1. From the full crossing synnnetry of the
o 0 - 3

1T -TI amplitude we know that F(z,a) is a function only of z , so the only

powers of z contributing in (3-14) are those for which n is an integral

mUltiple of three. Noting that

(3-1Sa)
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we see that fo is real and independent of a. Also, from (3-7) we have:

- --*

F(oo,a)=F (O,a)=f . (3-1Sb)
o

Writing Cauchy formulas for two circles Ci and Ce' interior and exterior

to V(a), we get for z < 1:

1 f ,z' 3_1 -, z3-1 - fo
21To

dz F(z -,.a)= ---=-.r F(z,a)+ -,
1. 3 Z 3

C. Z' (z'-z) Z
1.

(3-16a)

z,3_1
--------- F(z',a)=f .

z,3(z'-z) 0
(3-16b)

Subtracting and letting Ce and Ci approach V(a) we obtain the dispersion
relation on the cubic (3-1):

- z3
F(z a)=f + -

,
0 31-z

1
1T

I dz'
V(a)

A(z' ,a)
z,3(z'-z)

(3-17)

Since the discontinuities across the three physical cuts are

identical,

A (s,t)=At(s,t)=A (s,t),
s u

(3-18a)

it follows that:

-
- 2i1T/3 - 4i1T/3A(z,a)=A(e z,a)=A(e z,a). (3-18b)

Thus we can reduce (3-17) to an integral over only one segment of V(a):

3z3 dz'
(z' 3

....1)A(z' ,a) [
1 1

] . (3-19)F(z a)=f +-- J
+ �,

0 3 z,3_z3 1_z3z,31-z V1(a)
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In order to rewrite the parametric dispersion relation (3-19) in

terms of the usual Mandelstam variables it is convenient to introduce

the variables:

k = 1,2,3,

a = a - 4/3 • (3-20)

Simple algebra gives us the relation:

a =-----

st+tti-hi� (3-21)

+
On VI we have, from (3-11):

A(z,a)= �A(s,t+(s,a)) for a�4/3, (3-22a)

where

(3-22b)

Transforming from (z,a) to s,t,u) we get:

1
00

F (s , t , u) =c + - I d'S '
p (S' ;s ,t ,�) A (8' , t+ (s' ; s , t ,�) ) ,

o 'IT
8/3

(3-23)

-

- --- 1 s t
p(s';s,t,u)= --- {--- +---

S ' S ' :s s ' ":-t

+_u_} ,

S':U
(3-23b)

and

-,
- - - - s

t+(s';s,t,u)=4/3+ � 1--- - I} ,

s'-�
(3-23c)

with

stu
a =-----

st+t�-hI;
(3-23d)
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This is the Auberson-Khuri representation for the �o_TIo scattering

amplitude. The representation is fully and explicitly crossing symmetriC,
and there is only one subtraction constant, a =F(4/3,4/3,4/3). Our dis-

o

cussion has been limited to points on the cubics (3-1) with 4/9<a<4,
which will be enough for our applications. However, Auberson and Khuri

have proved that (3-23) can be analytically continued to all values of

(s,t,u) such that t+(s';;,t,�) lies within the analyticity domain of

A(s',t+) (which contains the Lehmann-Martin ellipse) for all s'�8/3.
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CHAPTER IV

New'Upper bound on F(4/3,4/3,4/3)

In this chapter we will derive an improved upper bound on the

nO_TIo scattering amplitude at the symmetric point. We remind the reader

that in order to obtain the bound a <16, iukaszuk and Martin started from
o

the fixed-t dispersion relation:

F(8/3,4/3,O)-a = Jl 7 ds'p(s')A(s',4/3).
o n 4

(4-1)

They minimized the absorptive part A(s',4/3) in the dispersion integral
for a given forward amplitude IF(s',O)1 using the Lagrange multiplier
method. After bounding IF(8/3,4/3,O) I as a function of an integral over

the forward amplitude using Poisson's inequality, they determined the

Lagrange multiplier by requiring that the difference

1 00

F(8/3,4/3,O)- �
I ds'p(s')A . (F(s',O))3a

II 4 mln 0
(4-2)

b� a maximum. This maximum was their upper bound on a •

o

The dispersion relation is explicitly crossing symmetric in sand

u. In addition, LM employed the relation F(8/3,4/3,O)=F(8/3,O,4/3)which
follows from t� crossing symmetry. There is, of course, much more in­

formation contained in the full crossing symmetry of the nO_no amplitude.
In particular, the fixed-t dispersion relation is somewhat restrictive

in that it allows direct comparison only between points at the same

momentum transfer t. The Auberson-Khuri representation, which contains

in an explicit way the full crossing symmetry of the nO_no scattering

amplitude, and which has only one subtraction constant, namely ao' will

allow us to directly compare any point within the Mandelstam triangle

with the symmetric point. By applying the method of LM to the A-K re­

presentation and selecting the optimal point for comparison with the

symmetric point, we will derive an improved upper bound on a. This
o
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chapter is mainly devoted to that derivation.

Examples of cubics

(s-a) (t-a) (u-a) = (4/3-a)3 (4-3)

passing through the Mandelstam triangle are displayed in Figure 2. In

addition to providing a representation for the difference between the

amplitude at any point within the Mandelstam triangle (all points within

that triangle lie on the cubics (4-3)) and the amplitude at the symmetric

point (which is common to all the cubics (4-1)), the A-K representation

permits direct comparison between any two points on the same cubic, i.e.

for the same value of a. This makes possible the calculation of absolute

bounds on the amplitude at pairs of points (sl,tl,ul) and (so,to'uo).
Unfortunately, none of these bounds represent a significant improvement
over the bounds LM found on IF(3,2,-1)1 and IF(2,2,O)I. Since the

methods used are the same as in Chapter II, and since there is no real

improvement, we only list the results of these calculations.

We will now show that the methods of LM can be applied to the A-K

representation:

00

( )
1

I d-' (-'
--

-)A(-' )F s,t,u =a + - s p s ;s,t,u s ,t+ '
o 7f

8/3
(4-4)

with p(s';s,t,u) and t+=t+(s';s,t,u) given by Equations (3-23). Two

conditions must be satisfied: The kernal pCS';s,t,u,) and the momentum

transfer t+(s';s,t,u) in the absorptive part A(s',t+) must both be real

and positive for all s' � 8/3. Then by unitarity A(s' ,t+) will be positive for

s'�8/3, and we can use the unitarity constraint to minimize the absorptive

part as a function of the forward amplitude. We will prove that these

properties hold for all points (s,t,u) within the Mandelstam triangle.

For proving the positivity of both p and t+, the first important

observation is that for all points within the Mandelstam triangle the

variable a defined by (3-21) is in the range

-8/9 <a < 16/9, (4-5a)
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or equivalently,

4/9 < a < 28/9. (4-5b)

To see this note that:

a(s=-4,t=4,u=4)=16/9,

a(s=4,t=O,u=O)=-8/9, (4-6a)

and

def
Os -

f· d=t 1.xe

3 _-

1: (s-u)

(4-6b)

= -1/3 •

t=u

The bounds (4-5) on the parameter a follow immediately from Equations

(4-6) and confirm the statement made in Chapter III that the range of

values 4/9 < a < 4 for which we exhibited a proof of the A-K representation

will be sufficient for the applications we have in mind.

It is now trivial to see that the kernal p of the A-K representation,

which can be written in the form

p(s' ;8, t,u) =
(2s' -3a) (4-7)

is real and positive for all points (s,t,u) within the Mandelstam tri­

angle and s'�8.3.

Next we show that t+ is real and positive for a in the range (4-5),
and so for all points within the Mandelstam triangle the absorptive part

A(s' ,t+) is a positive definite function of s' �8/3. The reality pro­

perty of t+ follows immediately from the definition (3-23c) and the

observation that for a in the specified range,
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"S'+3ci
s�a

>0 • (4-8)

To prove positivity is only a little more difficult. Notice that for a

bounded by (4-5) and s' .?; 8/3, t+(s' ,a)�t±(s' ,8.=-8/9). Since t+(8/3,-8/9)=0,
dt+(s' -tl/9) _all we have to do is show that d�' > 0 for s '�8/3. From (3-23c)

we have:

=

d'S' 2(-,_-)[8'+3;;
,

s a _, -

s -a

x

(4-9)

The denominator in (4-9) is clearly positive, so it is left to show that

the bracketed term is positive. For s'�,

[(S,2_3a:2)-(s'-a) js'2+2as'-3� ]

4-3
� - �, >0, for a=-8/9.

s
(4-10)

dt+
Also, ds'

has no zero between 8'=8/3 and 00 because the condition for a

zero is s'=3a/2, which is negative for a=-8/9. Therefore, dt+C:�:-8/9»0,
and so t+ (s',a) is positive for all points within the Mandelstam tri­

angle.

Since the kernal p(s';s,t,u) and the momentum transfer t+<S';s,'t,u)
are real and postive, the method of iukaszuk and Martin can be applied

directly to the Auberson-Khuri representation to obtain a new upper

bound on a. Our task is to find the best point (s,t,u) inside the
o

Mandelstam triangle for comparison with the symmetric point. Recall

from Chapter II that the optimization procedure used to obtain the LM

bounds can only be applied to the amplitude at points outside or on the

border of the inner Mandelstam triangle (s>O,t>O,u>O). For points outside

the inner triangle there is a loss of information because the minimiza­

tion procedure fails along part of the integration range. Therefore we

know from the start that it is best to consider only points on the border
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of the inner Mande1stam triangle, and crossing symmetry then allows

us to limit our attention to points (see Figure 3):

(4-11)

u=4

Figure 3

The Mande1stam Triangle. The segment uO=O, 2�so<4 is indicated by a

thick line. Sections of two cubics which intersect this segment are

represented by dashed curves. The symmetric point is the intersection

of the dotted lines (s=4/3, t=4/3, u=4/3).

Specializing to this case, the A-K representation becomes:

(4-12a)

where

2s'(sf-4s1+ �)+ t sl (sl-4)

s'(s'-sl)(s'+s1-4)(s'-4/3)
(4-12b)
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and t+ is given by (3-23c).

To derive a new upper bound on a , we now make the replacements:o

(4-13)
F(s ,t,u)� ,
000

A(s',t) A(s',t+) ,

in Equations (2-40) through (2-54). We remind the reader that the pro­

cedure is the following: Minimize the absorptive part A(s' ,t+) as a

function of the magnitude of the amplitude in the forward direction,

IF(s',O)1 , using the Lagrange multiplier method:

ex> __

Ids'p(s',sl)A. (F(s'),s',t+).
4

nun
(4-14)

Transform the twice-cut s-p1ane of the forward amplitude onto the unit

circle in the y-p1ane and maximize the magnitude of the amplitude at the

center of the circle (chosen to be F(y=O)=F(sl,t,O)) using the Poisson

inequality:

1 7T - i¢IF(sl,t,O)I<exp[- Id¢ln F(y=e ) =F •

, 7T 0 0
(4-15)

Fix the s-dependent Lagrange multiplier by minimizing the integral

� 7 ds'p(s' ,sl)A . (F(S'),s!t+)7T 4 man

1 7T - - i¢= -

I d¢W(¢)A . (F(y=e ),s'(¢),t+),7T mln

o

for a given value of F , again using the Lagrange multiplier method.
o

This determines F(s') as a function of the new s-independent Lagrange

(4-16)

multiplier y. Finally, maximize the difference:

(4-17)
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The extremum is our upper bound on a :
o

�(y»a,
m 0

(4-18)

To numerically evaluate our upper bound on a =F(4/3,4/3,4/3) we
o

performed a computer calculation in which, for sl in the range (4-11)
and starting from y=O we successively calculated �(y) (using Equations

(2-42), (2-46), (2-49), (2-51), and (2-52) with the replacements (4-13))
and incremented y until the maximum of �(y) was reached. Varying sl we

found that the upper bound on ao had a maximum at sl=2, decreased to

its minimum value

a <11
o

(4-19)

at sl=47/12, and then increased again as sl approached 4. Equation (4-19)

is an improvement of more than 30% over the result a <16 obtained by LM.
o

Our bound corresponds to the lower bound

A::-a /6>-1. 84
o

(4-20)

on the Chew Mandelstam coupling constant A •

We have also tried to improve the other bounds of LM by using the

A-K representation, but with no success. For completeness we list in

Table I the absolute bounds we have calculated at various pairs of points

(sl,tl,ul) and (so,to'uo) using both the fixed-t dispersion relation and

the A-K representation. From each pair of absolute bounds in Table I

a lower bound on a can be calculated by the simple procedure described
o

in Chapter III, Section D; but the bound

a > -122
o

(4-21)

calculated by us in Chapter II is the best result we have been able to find.

To summarize, our best bounds on the nO_no scattering amplitude at

the symmetric points and on the Chew-Mande1stam coupling constant are:

-122 <a :: F(4/3,4/3,4/3) < 11
o

(4-22)
20.33 > A :: -a. /6 >-1. 84

o
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CHAPTER V

Bounds on Coupling Constants in the Presence of Bound States

o 0
In the previous chapters we have discussed bounds on the IT -IT

scattering amplitude at points within its analyticity domain, i.e.

at the symmetric point, which follow from analyticity, unitarity,

and crossing symmetry. There are no bound states in the IT-IT system,

and they have been explicitly excluded. The bounds we have considered

t 1·
.

d �o 0 .

d h 1 f· ld hare no lmlte to" -IT scatterlng, an t ey app y to any le t eory

which satisfies these requirements. They are important because in a �4
field theory, for example, the renormalized coupling constant A can be

defined as

A = -F(4/3,4/3,4/3)/6 , (5-1)

and a bound on the amplitude at the symmetric point is therefore also a

bound on the renormalized coupling constant. In Chapter VI we will me­

ntion the possible future relevance of these results for the constructive

field theorists.

While we know that in the real world there are no bound states in

the IT-IT system, it is theoretically interesting to consider as well

theories with bound states. We will show that the methods used to obtain

bounds on the ITo_ITo scattering amplitude can be generalized to prove

that there exists an upper bound on the coupling to the bound state which

is a function of the particle and bound state masses. We will also

show that upper and lower bounds on the renormalized coupling constant

can still be derived.

To that end we will consider the scattering of neutral pseudoscalar

bosons of unit mass �=l which couple to a scalar bound state of mass m

1 1· W f
0 0 .

with physica coup lng constant g. e assume, as or IT -IT scatterlng,

that the scattering amplitude is fully crossing symmetric and that we

have the usual unitarity constraints on the partial wave amplitudes. It

then follows from axiomatic field theory that for fixed physical energy
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s�4 the scattering amplitude is an analytic function11 of momentum

transfer inside the circle Itl<m2• For t real and within this domain

the scattering amplitude is analytic in the twice-cut s-p1ane with real

cuts s�4 and s�-tand poles at s=m2 and u=4-s-t=m2• In perturbation theory
one can show that for fixed s�4 the amplitude is analytic in It I <4

2
except for a pole at t=m. However, to the best of our knowledge this

has not been proved from the axioms of field theory. The rigorously
proven domain Itl<m2 will permit us to derive an upper bound on the

physical coupling constant g2, provided 4/3<m2<4, and upper and lower

bounds on the Chew-Mande1stam coupling constant A for 2<m2<4. To find

both upper and lower bounds on the renormalized coupling constant for

413<m2�2 it is necessary to adopt instead of (5-1) a different definit­

ion of A. We will also mention how one could extend our methods to

the entire range 1�2<4 using the perturbation theory domain Itl<4.
The scattering of identical neutral scalar bosons via a �3 interaction,

for which there is a pole at m2=1, has already been treated by Martin7
with a different method using analyticity in Itl<4, and we mention later

in this section how our more general results compare with his.

We start with the twice-subtracted fixed-t dispersion relation:

(5-2)

(sl-s ) (sl-u ) 00

+
0 0

I ds' (2s'+t-4)A(s',t)

(s'-sl) (s'-u1) (s'-so) (s'-uo)4

Both points (sl,t,ul) and (so,t,uo) will be taken to be inside the

Mandelstam triangle. We will generalize the techniques developed by

Martin25 and reviewed in Chapter II, Section A, to demonstrate that
222

there exists an upper bound on the physical coupling constant, g (m »g ,

max2
which depends only on the particle and bound state masses for 4/3<m <4.

We have chosen this method for clarity of presentation, and because we

are mainly interested in showing that these bounds exist. Our numerical
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results could, of course, be improved by generalizing the more refined

method of iukaszuk and Martin27, and by replacing the dispersion re­

lation (5-2) with an Auberson-Khuri representation to make better use

of crossing symmetry. Later we will use our generalization of Martin's

method to discuss the existence of bounds on the renormalized coupling
constant in the presence of bound states.

For definiteness we specialize the dispersion relation (5-2) to

u =0:
o

+! I ds'p(s',sl,t)A(s',t) ,
1T

4

(5-3a)

where
2

sl(sl+t-4) (2m +t-4)
f(m2) = -----------

2 2 22'
m (m +t-4)(m -sl)(m +sl+t-4)

(5-3b)

We temporarily restrict ourselves to masses in the range 2<m2<4. Then

for m2>sl�t�2 and s}4, f(m2) and P(s,sl,t) are both positive. From

the dispersion relation (5-3) we will obtain two nonlinear inequalities:

(5-4a)

and

(5-4b)

As we shall see, these inequalities lead immediately to an upper bound

2
on g •

The first step in getting inequality (5-4a) is to find a lower bound

on the right hand side of (5-3a) using the inequality:

A(s,t) �
IF(s,O) IN

.

gN(s, t, 0)
(5-5)
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with N�2. We have already calculated gN(s,t,O) in Chapter II, and it

i� given by Equations (2-14) and (2-15). Inserting (5-5) into the

dispersion relation (5-3) we have:

2 2

F(sl,t,u1)-F(so,t,o)�g f(m )+

1
00 p(s',sl,t)IF(S',O) IN

+ - I ds'
n 4 gN(s',t,O)

(5-6)

The second step is to transform the twice-cut s-p1ane onto the unit

disk in the y-p1ane by the sequence of transformations (2-17) and (2-18).
2 2

The new feature here is that the poles at s=m and u=4-s=m are mapped on-

to a single pole at

(5-7)

This pole lies on the real y axis in the interval O<y<l. Making the

transformation s'+y in (5-6), and using the theorem on arithmetic and

geometric means and the reality of F(s,O), we get the inequality:

.

{
1

+C exp -2o n
In d<f>lnIF(s'(<f»,O) IN},
-n

(5-8a)

with

. 1 w p(s'(<f»,sl,t)J(s',<f>,so)
C = exp{- J do In } .

o TI
0 gN(s'(<f»,t,O)

(5-8b)
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J(s' ,¢,so) is the Jacobian of the transformation from s' to ¢,y=ei¢.
Finally, we can use the Poisson-Jensen formula, as shown in the Appendix,
and crossing symmetry to obtain:

N 2 I IN+C R (m ) F(s ,t,O) •

o 0 0
(5-9)

This is the first of the pair of inequalities for which we are looking.

To get the second inequality (5-4b) we will need an inequality of

the form

(5-10)

to replace (5-5). The function gN(s,t,ul) has also been calculated in

Chapter II and is given by Equations (2-31), (2-2), (2-26), and (2-30).
o 0

As for the case of TI -rr scattering, we must minimize A(s,t) by zero

for �s<sl+t. Inserting the inequality (5-10) into (5-3) we get:

2 2
F(sl,t,ul)-F(so,t,O)�g f(m )

p(s',sl,t)IF(S',ul)IN
ds'

1 00

+-f
TI

s +t
1

(5-11)

The next step is to transform the s-plane, with real cuts s�4 and
2 2

s�sl+t-4=-ul and poles at s=m and u=sl+t-s=m , onto the unit disk in the

y-plane by the sequence of transformations (2-33) and (2-34). As in

Chapter II the point s=sl is mapped onto the point y=O; the part of the

integration range 4�s<sl+t is mapped onto the segment

s= y(s=4)�y<l ; (5-12a)
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and the remainder of the integration range s�sl+t is mapped onto the

unit semi-circle in the upper half y-plane: y=ei�, O���TI. Here the

poles at s=m2 and u=m2 are mapped onto a single pole on the real axis

at

(5-12b)

with

2
O<Rl (m )<S • (5-l2c)

Introducing this change of variables into (5-11), it follows from the

theorem on arithmetic and geometric means and the reality of F(S,ul)
that:

(5-l3a)

where

(5-l3b)

and J1(s',�,sl) is the Jacobian of the transformation from s' to �.

Because O<u=4-s-ul<m2 in the regions 4�s<sl+t, we know from unitarity

and the partial wave expansion that the absorptive part A(s,ul) (and

hence the discontinuity of 1n(F(s,ul)) across the cut S� y<l) is positive

in that interval. Therefore we can employ a modified form of the Poisson

inequality deduced from the Poisson-Jensen formula in the Appendix,to

obtain:

(5-14)
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This inequality can be improved by noting that the imaginary part of

the amplitude above the pole at Y=Rl(m2) is positive, and so as shown

in the Appendix the Poisson-Jensen formula requires:

(5-15)

This is the second of the inequalities for which we have been searching.

It is easy to see that Equations (5-9) and (5-15) impose an upper

bound on g2. The maximum value of g2 will occur when both inequalities
are saturated, at which point:

C lIN R (m2)
IF(sl,t,ul) 1= ( co) 0

2 IF(s ,t,O) 1 •

1 � (m )
0

(5-16)

Inserting this value for IF(sl,t,u1) 1 into (5-9) we get the inequality:

C 1 R (m2)
1 1 0

- 0

F(so' t,O) [1+( Cl)N -Rl-(-mZ-)-]
-

N 2 I IN-C R (m) F(s ,t,O)
o 0 0

2 2
�g f(m ). (5-17)

Maximizing the left hand side of (5-17) as a function of IF(so,t,O)1
we find:

1
(1- -)2

<
N

g.... 2
f(m )

(5-18)

All quantities in (5�18) are determined by Equations (5-3b), (5-7),

(5-8b), (5-l2b), and (5-l3b). This is our upper bound on the coupling
2

constant g. It is an explicit function of the ratio of the bound

state mass m to the particle mass �=l, and it has the dimensions of mass.
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We .

d
2

rem1n the reader that sl must be chosen so that t(sl<m for masses

in the range 2�t<m2<4.
We can now remove the restriction m2>2. To do this we note that

for 2�2>t�4/3 and sl>so=4-t>m2,f(m2) and P(s,sl,t) are both positive
again. We can therefore carry out the derivations of (5-9) and (5-14),
the only change being that here R (m2) and Rl(m2) are negative, i.e.

2
0

-l<y(s=m )<0, so they must be replaced by their absolute values in (5-9)
and (5-14). As pointed out in the Appendix, the nagativity of Rl pre­

vents us from deriving (5-15). The inequalities (5-9) and (5-14) are

nonetheless sufficient to impose a bound on g2, and it is given by

(5-18) with the replacements:

Rl(m2)+SIRl(m2) I .

We have now proved using the rigorous analyticity domain Itl<m2
g2 is bounded as a function of m2 for 4>m2>4/3.

(5-19)

that

We would �ike to make some remarks about the possibility of extend-
2

ing these results to smaller masses l�m �4/3. If we are willing to

assume that the amplitude is analytic in Itl<4 for fixed s�4 except for

a pole at t-m2, then we can also write the dispersion relation (5-3) for

2
W' h f( 2). ..

f
4-t 2 4m <to e p01nt out t at m 1S pos1t1ve or �m < -t�t<sl' as

well as for 2<t<sl<m2<4. The derivation of (5-9) and (5-14) can still
" .....

be carried out for this case. Now the u pole in the physical amplitudes

F(s,O) and F(s,ul) lies to the right of the s pole, and, as for the case

4/3<m2�2, one can no longer obtain (5-15)0 The bound on g2 is now given

by (5-18) with the replacement:

Therefore, if we are willing to accept the analyticity domain Itl<4
from perturbation theory, then we can use the method we have described

above to derive bounds on the coupling constant g2 for any bound state

mass in the range 1�m2<4.
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We have calculated several examples of these bounds on the physical
cOupling constant. The results are listed in Table II and displayed
in Figure 4. In the Figure, the points calculated using the rigorous

104

g2
7

,
I

,

.P'

103
0- ....

"

102�--�----------�--------�--------�
1.0 2.0 3.0 4.0

Figure 4
2

Examples of bounds on physical coupling constants g to bound states of

mass m. The points connected by a solid line were calculated using the

rigorous domain Itl<m2• Those connected by a dashed line required the

use of the perturbation theory domain Itl<4�2.
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domain Itl<m2 are connected by a solid line, which gives a rough in­

dication of the behavior of our bound on g2 as a function of m2• It
. --2 m2 2

varies from 200 �- for �4 to 00 for �4/3. The bounds calculated
� �2

using the perturbation theory domain Itl<4 are connected with a dashed
- m2 2-2line. At ---2- =1 our result is g <1200� ; this also applies to the

�
renormalized coupling constant for the scattering of neutral scalar

par�icles via a ¢3 interaction, in which case the bound state is just
the particle itself. For this coupling constant Martin7 derived the

crude estimate g2(2xl07J2, which we have improved by four orders of

magnitude.

We want to emphasize that these are not the best bounds which can

be obtained. Us'Lng the method we have described, they could be improved

by varying sl and t to find the optimal bound for any given m2• Then

they could be further improved by generalizing the methods of iukaszuk

and Martin and by replacing the dispersion relation with an Auberson­

Khuri representation. Our expectation is that the bounds we have

calculated explicitly give a good order of magnitude estimate of the

best bounds which could be obtained by the techniques we have mentioned.

The possibility of improving these methods will be touched on in Chapter VI.

Finally, we want to discuss bounds on the renormalized coupling con­

stant A in the presence of bound states. As for the bound on the physical

coupling constant g2, the simplest case is for masses in the range

2<m2<4. For this case the rigorous analyticity domain Itl<m2 is sufficient.

Now for 2�t�sl<m2 we have inequalities (5-9) and (5-15) which require,
. 2f ( 2). ..

S1nce g m 1S pos1t1ve:

N 2
I INF(sl,t,uI)-F(s ,t,O»C R (m ) F(s ,t,O) ,

000 0

(5-21)

These inequalities have the same form as (2-23) and (2-37), and they

impose absolute bounds on the magnitudffiof F(sl,t,ul) and F(so,t,O).
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In particular, choosing
2

bounds IF{2,2,O) I andt=2<sl<m w� get on

IF{s1'2,2-sl) I. By the same method as was used in Chapter II, Section D,

for o 0
scattering, we can get from this pair of bounds a lower bound1T -1T

on ao which will, of course, depend on the mass of the bound state. To

o 0 •

get an upper bound on a we need only note that, as for 1T -1T scatter1ng,
o ..

F{2,2,O)-F{4/3,2,2/3» and (F{2,4/3,2/3)-a ) are both positive, so the
o

upper bound on F{2,2,O) is also an upper bound on a. For m2>8/3 we
o

could get an upper bound on a more directly by considering (F(8/3,4/3,O)­
o

ao) as was done by Martin for 1To_1To• The important point is that for

4>m2>2 we can obtain upper and lower bounds on a as a function of the
2

0

bound state mass m , and that these correspond respectively to lower and

upper bounds on the Chew-Mandelstam coupling constant A.

For 4/3<m2�2 we can still get a lower bound on a , but not an upper
o

bound. For the lower bound we could, for example, calculate bounds on

IF{sl,4/3,8/3-sl)1 and IF(8/3,4/3,O) 1 , with 8/3<sl' using Equations (5-21)

with the substitutions (5-19). Then we could immediately get a lower

bound on a :
o

ao>-IF{8/3,4/3,O) I-K[ IF(sl,4/3,8/3-sl) 1+IF(8/3,4/3,O) I].
(5-22)

where K is determined from the dispersion relations for (F(8/3,4/3,O)­

-ao) and (F{sl,4/3,8/3-sl)-F(8/3,4/3,O» by the method described in

Chapter II. However, we see no way of getting an upper bound on a ,o

even using the larger perturbation theory analyticity domain Itl<4. The

reason is that for 4/3<m2�2 there is no way to show for any point

(s,t,u) outside or on the border of the inner Mandelstam triangle that

F(s,t,u»ao•
This difficulty is not as serious as it may seem, because the de­

finition of the renormalized coupling constant is to- some extant arbitrary.
For a given bound state mass we could, for example, equally well define

the renormalized coupling constant as

A' = -F(s,t,O) , (5-23)
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with 4>t>.4/3. For suitable choice of t we could then calculate upper and
�

2
lower bounds on A' for any bound state mass in the range 4/3<m <4.

For l�m2�4/3 we can only calculate bounds on the renormalized coupling
constant if we are willing to assume the perturbation theory analyticity
domain Itl<4. Even then we can calculate only a lower bound on a. The

o

situation is essentially the same as for 4/3<m2�2. Again, by defining

the renormalized coupling constant by (5-23) with t chosen appropriately
for the mass m, we can get upper and lower bounds on A' for any mass m.

We must point out, however, that there is no single definition of the re­

normalized coupling constant which will allow us to derive both upper and
2

lower bounds on the coupling constant for any bound state mass �m <4.
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CHAPTER VI

'Discussion and Conclusions

While our new upper bound on the no_rrn scattering amplitude at the

symmetric point represents a significant improvement over the bound ob­

tained by tukaszuk and Martin, there is no reason to believe that it is

the best bound which could be obtained from analyticity, unitarity, and

crossing symmetry. In particular, we have utilized only a very weak form

of unitarity. It is reasonable to expect that this entire class of

bounds for TI-TI scattering would benefit from an improved use of unitarityo

The virtue of the method of LM is that, after one has selected a represen­

tation for the amplitude and employed unitarity to minimize A(s,t) for a

given IF(s,O) I , one knows at each succeeding step that the prescribed

procedure is the optimal one. It would be desirable to have a method

in which, from the start, one knows that one has the best optimization

at every step.

As we have already mentioned, our bounds on coupling constants in

theories with bound states are definitely not the best which we could

obtain. Nonetheless, they are better than one might have expected from

Martin's result7 for a ¢3 interaction. These bounds also might be greatly

improved by a better use of unitarity.

We want to emphasize that the upper and lower bounds on the Chew­

Mandelstam coupling constant which were derived by LM and improved by us

are rigorous consequences of axiomatic field theory; they are true for the

renormalized coupling constant in any ¢4 type field theory with no bound

state. For a ¢4 field theory with a bound state we have shown in

Chapter V that it is still possible to calculate rigorous upper and

lower bounds on the renormalized coupling constant, defined a la Chew

and Mandelstam, provided 4>m2>2. The upper bound can also be derived
2

for 4/3<m �2, but the lower bound no longer exists in that case. How-

ever, we have shown that for a ¢4 type theory with a bound state of mass

4/3<m2<4 it is always possible to choose a definition for the renormalized
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coupling constant such that the magnitude of that coupling constant can­

not be arbitrarily large. For a bound state which is more tightly bound

(. 2
1.e. for l�m �4/3) we can obtain this result only if we are willing to

use the analyticity domain found in perturbation theory.

Our discussion so far has been restricted to field theories in 3

space + 1 time dimensions. The bounds on coupling constants require the

use of analyticity of the scattering amplitude in two independent variables.

In 1 + 1 dimensional theories there is only one independent variable, and

so there are no bounds of the type we are considering.

For theories in 2 + 1 dimensions there are again two independent
variables. We have checked that for this case the scattering amplitude
has the same analyticity domain in sand t as it does for 3 + 1 dimensions,

and that therefore the bounds on the renormalized coupling constant which

we have obtained hold in 2 + 1 dimensions. In an actual field theory
these bounds should, of course, be even more restrictive. This will

further complicate the already difficult task of constructing a ¢4 field

theory in 2 + 1 dimensions.3 When such a theory has been constructed, it

I will be interesting to see how the bounds on the coupling constant arise.
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APPENDIX

The Poisson-Jensen Formula

We will discuss here several inequalities which follow from the

P
•

J
34 ( )01sson- ensen formula and a simple generalization of it. Let f y

be a function analytic inside the unit circlelyl<l except for poles at the

points PI' P2' ••• , Pn' 1>lpil>o, and let fey) have zeros at the points

ql' q2' ••• , �, 1>lqJ >0. Then the Poisson-Jensen formula for fey) is:

Inlf(O) 1= 2; rrrd$lnlf(ei$) 1
-7f

n m

- E In Ip. 1+ E In I q. 1 •

i=l
1

j=l J
(A-I)

We also wish to consider functions F(y) which have the same properties as

fey) above except that F(y) has as an additional singularity a cut along

the real y-axis for l>Y�S>O. In that case we can generalize the Poisson­

Jensen formula (A-I) by including the integral around the cut as well as

the integral around the circle:

InIF(O) 1= 2� I7f d¢lnIF(ei¢) I
-7f

n m

- E In I p. 1+ E In I q. I
i=l

1
j=l J

1

+_!_I
27f

S
dx Im[lnF(x+iE)-lnF(x-iE)]

x

(A-2)

provided F(y) is not zero on a finite segment of the cut. In the cases of
* *

interest to us, F(y) satisfies the reality property F(y )=F (y) and the

phase �(y) of F(y) above the cut (S,l) is between 0 and 7f. Also, we

will need to consider functions with at most one real pole at y=R. There­

fore we can simplify (A-2) to:
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m

-lnIRI+ � lnlq. I
j=l J

� � 1 d¢ln IF(ei¢) I-In B
o

m

-lnIRI+ � lnlq. I •

j=l J
(A-3)

The only zeros of importance to us will be those on the real axis for the

case l>B>lq. I>R>O. There can at most a finite number of such zeros, and
J

it will be enough to retain only one of them if there are any. All other

zeros can be ignored by remembering that Iq.l<l. Therefore we can further
J

simplify (A-3) to:

where Q is the location of the (possible) zero. Exponentiating both sides

of (A-4) we find:

(A-5)

If the pole, cut, or zero are absent, then the corresponding factor R, B,
or Q should be replaced by unity in (A-2) through (A-5). For example, if

there is no pole, in which case we ignore the possible zero, then (A-5)

reduces to the modified Poisson inequality discussed by Drell, Finn, and
35 . 27

Hearn, and by iukaszuk and Martln:

lIn
I i¢"IF(O) I�Q exp{- J d¢ln" F(e )I}.

jJ 7f 0
(A-6)

If in addition there is no cut, then we get the standard Poisson inequality:

IF(O)I�exp{� 1 d<t>lnIF(ei¢)I} •

o
(A-7)
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The"most interesting situation occurs when there is a cut (S,l) and

a pole at y=R, O<R<S • Then if there is a zero at y=Q, R<Q<S, we will have

from (A-5):

(A-B)

On the other hand, if there is no zero, but the imaginary part of F(y)
above the pole is positive, then F(y) is negative in the gap R<y<S and

Im(lnF(x+iE»=R Therefore the phase of F(x+iE) is continuous and between

o and TIalong the entire interval R<x<l, so we can just as well treat that

interval as a single cut in lnF(y) with positive definite discontinuity.

Then we again get the inequality (A-8).

In general we do not know if there exists a zero on the interval

R<y<S. However, as long as we know that the imaginary part of F(y) above

the pole at y=R>O is positive, then we can get the inequality (A-8). If

we do not have positivity above the pole, or if R<O, then we must settle

for the weaker inequality:

. 1 TI

I i� Iexp{- I d�ln F(e ) }.
TI 0

(A-9)
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Table I

Absolute bounds on the 7To_7T0
scattering amplitude calculated at points

within the Mandelstam triangle using the method of iukaszuk and Martin.

The representation used to calculate each pair of bounds from (F(sl,tl)-
F(so,to» is indicated.

sl t1 s t IF(sl,tl) I IF(so,to) I max Repru���tation0 0 max

3.2 1.8 2.0 2.0 179 39 A-K

3.0 1.805 2.0 2.0 122 39 A-K

2.8 1.814 2.0 2.0 92 40 A-K

2.75 2.75 2.0 2.0 283 37 A-K

2.5 2.5 2.0 2.0 136 37 A-K

3.2 2.0 2.0 2.0 222 37 DR

3.0 2.0 2.0 2.0 150 37 DR

2!"8 2.0 2.0 2.0 111 37 DR

2.5 2.0 2.0 2.0 69 40 DR

2.5 2.5 1.5 2.5 134 36 DR

11/3 4/3 8/3 4/3 388 44 DR

10/3 4/3 8/3 4/3 135 42 DR

7/3 8/3 4/3 8/3 134 36 DR
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Table II

Examples of bounds on physical coupling constants to bound states. The

for each bound state mass m
2

andparameters used to calculate the bounds

the analyticity required (AFT or PT) are also tabulated. All results

were calculated using N=lO.

2 '2 2 2
m /ll g max/ll Analyticity sl t .S

0

5/3 3.xl04 AFT 10/3 4/3 8/3

2.
3

10/3 4/3 8/37.7xlO AFT

7/3
3

AFT 10/3 4/3 8/32.9xlO

2.7
3

AFT 2.5 2. 2.1.2xlO

3.25
2

AFT 3. 2. 2.4.3xlO

4.
2

AFT 10/3 4/3 8/32.xlO

1.
3

PT 7/3 8/3 4/31.2xlO

4/3
3

PT 2.5 2.5 1.51.4xlO /

5/3
3

PT 3. 2. 2.8.4xlO
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