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Clustered regularly interspaced short palindromic repeat (CRISPR) 

loci and their associated (Cas) proteins provide adaptive immunity against 

viral attack in prokaryotes. Upon infection, short phage sequences known as 

spacers integrate between CRISPR repeats and are transcribed into small 

RNA molecules that guide the Cas9 nuclease to the viral targets 

(protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome 

requires the presence of a 5′-NGG-3′ protospacer adjacent motif (PAM) 

sequence immediately downstream of the viral target. Before my graduate 

work, it was not known whether and how viral sequences flanked by the 

correct PAM are chosen as new spacers. My work revealed that Cas9 

selects functional spacers by recognizing their PAM during spacer 

acquisition. The replacement of cas9 with alleles that lack the PAM 

recognition motif or recognize an NGGNG PAM eliminates or changes PAM 

specificity during spacer acquisition, respectively. Cas9 associates with 

other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), 

presumably to provide PAM-specificity to this process. This was a newly 

identified function of Cas9 in the genesis of prokaryotic immunological 

memory.  

 



To further explore the link between Cas9 and spacer acquisition, I 

performed random mutagenesis of the RNA-guided Cas9 nuclease to look for 

variants that provide enhanced immunity against viral infection. I identified a 

mutation, I473F, which increases the rate of spacer acquisition by more than 

two orders of magnitude. This patented variant of Cas9 highlights the enzyme’s 

role during CRISPR immunization, provides a useful tool to study this 

otherwise rare process, and holds promise to be developed into a 

biotechnological application.  

 

Researching Cas9 and spacer acquisition involved many rounds of 

high-throughput sequencing of millions of spacers acquired by bacteria during 

phage infection. These experiments revealed that the abundance of each 

spacer in the surviving population was highly uneven. Since the molecular 

mechanisms underlying this bias were not known, I decided to look into the 

factors that affect the distribution of individual spacer sequences during phage 

infection of cells harboring the CRISPR system from Streptococcus pyogenes. 

My work has shown that spacer patterns are established early during infection 

and correlate with spacer acquisition rates, but not with spacer targeting 

efficiency. The data suggests that the rate of spacer acquisition depends on 

unique sequence elements within the spacers and therefore determines the 

abundance of different spacers within the adapted population. These results 

elucidate a fundamental mechanism behind the generation of immunological 

diversity during the type II CRISPR-Cas response. 
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Chapter I. 

Introduction 

Clustered, regularly interspaced, short palindromic repeats (CRISPR) loci 

and their associated genes (cas) confer bacteria and archaea with adaptive 

immunity against phages and other invading genetic elements. A fundamental 

requirement of any immune system is the ability to build a memory of past 

infections in order to deal more efficiently with recurrent infections. The adaptive 

feature of CRISPR-Cas immune systems relies on their ability to memorize DNA 

sequences of invading molecules and integrate them in between the repetitive 

sequences of the CRISPR array in the form of ‘spacers’. The transcription of a 

spacer generates a small antisense RNA that is used by RNA-guided Cas 

nucleases to cleave the invading nucleic acid in order to protect the cell from 

infection. The acquisition of new spacers allows the CRISPR-Cas immune 

system to rapidly adapt against new threats and is therefore termed ‘adaptation’. 

Recent studies have begun to elucidate the genetic requirements for adaptation 

and have demonstrated that rather than being a stochastic process, the selection 

of new spacers is influenced by several factors. This chapter reviews our current 

knowledge of the CRISPR adaptation mechanism. 
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Chapter 1.1. Overview of CRISPR Immunity 

Bacteria and archaea have evolved to thrive in hostile environments under 

the constant threat of viral (phage) attack. As a result, these organisms have 

devised numerous strategies to prevent phage infection, including abortive 

infection, surface exclusion and restriction modification systems1,2. While highly 

effective, these innate defense strategies provide non-specific immunity. In 

contrast, the CRISPR-Cas immune system provides an adaptive defense 

mechanism against phages and other mobile genetic elements3–5.  

Since their discovery in Escherichia coli in 19876, CRISPR systems have 

proven to be widespread among bacteria and archaea7–9. Generally, a CRISPR 

locus contains the CRISPR-associated (cas) genes and the CRISPR array. The 

cas genes encode a diverse family of Cas proteins carrying predicted functional 

domains of proteins that participate in nucleic acids transactions, such as DNA-

binding proteins, nucleases, polymerases and helicases4,10. The CRISPR array 

consists of identical nonadjacent sequences (repeats) interspaced by similarly 

sized variable sequences (spacers). An AT-rich leader sequence located 

upstream of the first repeat promotes the transcription of the CRISPR array11,12 

and is essential for spacer acquisition. Repeats are usually conserved within the 

same locus, and in most cases contain partially palindromic sequences13. 

Spacers are highly diverse even among closely related strains and were 

therefore initially exploited for strain typing purposes14. In 2005, independent 

bioinformatics studies revealed homology between spacer sequences and mobile 
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genetic elements3,15. This observation led to the hypothesis that CRISPR may 

provide protection against invading phages and plasmids4. Soon, spacers were 

confirmed to provide sequence-specific interference against all prokaryotic routes 

of horizontal gene transfer, including bacteriophage infection5,16,17, plasmid 

conjugation18 and transformation19,20.  

CRISPR-Cas systems provide immunity against phages through a three-

step defense pathway (Figure 1-1). First, a fragment of the invading nucleic acid 

(protospacer) is incorporated into the CRISPR array along with a synthesis of an 

additional repeat unit. This process is known as adaptation and is responsible for 

the unique adaptive features of CRISPR5. Second, during the crRNA biogenesis 

phase, the CRISPR locus is transcribed and then processed into mature guide 

RNAs (crRNAs)21. Third, crRNAs recruit effector complexes and guide them to 

their target by base pairing with the invading nucleic acids22. This last step of 

CRISPR immunity is known as interference and ends with the cleavage of the 

exogenous genetic element23. Despite this general mode of action, CRISPR 

systems have been classified into six types (I-VI), each of them with several 

subtypes, depending on the gene composition and architecture of the 

respective cas operons24,25. While studies of the mechanisms of crRNA 

biogenesis and interference are well advanced, CRISPR adaptation, also known 

as immunization or spacer acquisition, perhaps the most puzzling and fascinating 

aspect of these systems, remains poorly understood. 



4	

Figure 1-1. The three stages of CRISPR immunity. CRISPR loci consist of 

clusters of repeats (white rectangles) and spacers (colored rectangles) that are in 

proximity of the upstream leader sequence and CRISPR-associated (cas) genes. 

During adaptation, new spacers derived from the genome of the invading virus 

are incorporated into the CRISPR array along with a new repeat unit. During 

crRNA biogenesis, the array is transcribed, and the precursor transcript is 

processed by Cas endoribonucleases in order to generate small crRNAs. During 

interference, the crRNA guides a complex of Cas proteins to the matching target 

to initiate nucleolytic cleavage (scissors) of the invading nucleic acid. 
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Chapter 1.2. Spacer Acquisit ion 

Spacer acquisition was first demonstrated under laboratory conditions in 

2007 for the type II-A system of Streptococcus thermophilus5. In these studies, 

investigators examined the CRISPR array of phage-immunized bacteria and 

found the addition of new repeat-spacer units, with all new spacers perfectly 

matching regions of the genome of the challenging phage. Mutants that acquired 

spacers targeting sequences shared between two phages were resistant to both 

viruses. These results established CRISPR-Cas systems as an adaptive, 

sequence-specific immune system against phages and were corroborated in 

other bacteria and archaea containing different CRISPR-Cas Types: Escherichia 

coli type I-E26–28, Pseudomonas aeruginosa type I-F29, Streptococcus agalactiae 

type II-A30, Haloarcula hispanica type I-B31, and Sulfolobus solfataricus type I-A 

and III-B32.  

Chapter 1.2.1. The Protospacer Adjacent Motif 

When investigators aligned newly acquired spacers from the S. 

thermophilus CRISPR-Cas system in search for common motifs, they found 

something unexpected. Instead of a common sequence within the spacers they 

found a conserved sequence outside the target (also known as protospacer), 

which was termed Protospacer Adjacent Motif (PAM)17. Therefore, it became 

clear early on that not all phage sequences are equal for the CRISPR-Cas 
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system, suggesting that the adaptation machinery only acquires spacers that 

have adjacent PAMs. The PAM is not only important for the acquisition of spacer 

sequences, it is also required for the interference phase of CRISPR immunity 

since PAM mutations in types I and II prevent Cas nuclease cleavage17,33–36. This 

interference requirement is readily exploited by phages, which can avoid CRISPR 

immunity by mutating the PAM sequence17. The PAM is fundamental to avoid 

auto-immunity. If CRISPR immunity relied only on base-pair interactions between 

the crRNA and the target DNA, then the spacer sequence on the CRISPR array 

would be a target for the crRNA as well. Since the flanking sequences of a 

spacer in the CRISPR array are the CRISPR repeat, which lack a proper PAM, 

auto-immunity is prevented and only protospacers that are flanked with the 

correct PAM can be cleaved. Type III CRISPR-Cas systems, however, seem to 

be an exception, as no PAM is evident from the alignment of protospacer 

sequences acquired by these systems, nor it is required for target cleavage37,38. 

As a consequence, Type III systems developed a different mechanism to prevent 

auto-immunity38. 

While the recognition of a PAM by the acquisition machinery is essential 

for a protospacer to be selected, it appears that other mechanisms further 

influence the protospacer choice. Studies of spacer acquisition by the E. coli type 

I-E28,39  and the S. thermophilus type II-A40 CRISPR-Cas systems reported 
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unequal distributions of protospacers across various targets. The expansion of 

the CRISPR arrays from S. thermophilus was monitored using DNA deep-

sequencing upon infection with a lytic phage40 and roughly half a million phage-

derived spacer sequences were analyzed. Surprisingly, the top 10% most 

overrepresented spacers accounted for 99% of the identified sequences. In 

contrast, some candidate protospacers that could have been theoretically 

acquired from the target based on PAM compatibility were never sampled. Due to 

partial sequence similarities between some endogenous spacers and the target, 

Paez-Espino et al.40 propose priming (Figure 1-2a) as a possible explanation for 

the strong overrepresentation of certain protospacers. In a similar study in type I-

E, all potential protospacer sequences adjacent to a PAM were used as spacer 

donors, but the frequencies were indeed highly unequal39. While no correlation 

was observed between the frequency of protospacer incorporation and its 

nucleotide sequence, melting temperature, GC content, ssDNA secondary 

structure, or transcription pattern, other investigators detected additional 

sequence motifs besides the PAM that influence the acquisition efficiency of a 

protospacer41. By exchanging nucleotide blocks of various lengths upstream or 

downstream of one high-acquisition and one low-acquisition protospacer, 

investigators were able to reverse their rates of acquisition, suggesting that DNA 

motifs located at both ends of the highly acquired protospacer were responsible 

for its frequent incorporation. More specifically, in addition to the PAM, a 

dinucleotide AA motif termed Acquisition Affecting Motif (AAM) located at the 3’ 
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end of the protospacer can boost the rate of incorporation of a given protospacer. 

Sequences of more than two million spacers confirmed the overrepresentation of 

the AA motif in highly sampled protospacers. Nonetheless, the AAM was not 

present in all highly sampled protospacers, indicating that other unidentified DNA 

motifs might influence the sampling frequencies of protospacers. In a different 

study, the AAM was not confirmed among plasmid-derived spacers. 

Chapter 1.2.2. Naïve and Primed Acquisit ion 

Cas1 and Cas2 are the only Cas proteins universally conserved across all 

types and subtypes of CRISPR-Cas systems10,24. Initial studies on the role of Cas 

proteins revealed that mutations or deletions of Cas1 and Cas2 did not impact 

interference and crRNA maturation in type I42, type II43,44, and type III45,46. These 

observations led to the hypothesis that the two universal Cas proteins might be 

involved in adaptation. Indeed, in E. coli, overexpression of both cas1 and cas2 

alone in the absence of the other cas genes was sufficient to acquire new 

plasmid-derived or host-derived spacers26,28. Yosef et al. (2012) also found that 

Cas1/2 mediate the preferential acquisition of spacers with a correct PAM, 

demonstrating that there is a mechanism to select spacer sequences flanking 

this motif, as opposed to the random acquisition of DNA sequences followed by 

the selection of those with correct PAMs. The biochemical properties of Cas1 

support its role in spacer acquisition. Pseudomonas aeruginosa Cas1 has been 

shown to bind dsDNA in a sequence-independent manner with high affinity, and 
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to work as a metal-dependent endonuclease which cleaves dsDNA into short 

fragments, that might serve as precursors for new spacers47,48. Nonetheless, it is 

still unclear whether new spacers are cut or copied from the invading molecule. 

Because Cas1 also has the ability to resolve Holliday junctions and thus promote 

DNA integration and recombination events, it could promote the integration of 

spacer sequences into the repeat-spacer array. While many Cas2 crystal 

structures have been solved and studied biochemically49–51, a general consensus 

regarding its activity has not been reached. 

The Cas1/2-mediated acquisition can add repeat-spacer units to a minimal 

CRISPR locus consisting of only one repeat sequence28. This indicates that this 

mechanism of acquisition does not require the presence of any other spacers, i.e. 

a previous exposure to the same or related phages and therefore is referred as 

“naïve” acquisition. This is in contrast to “primed” acquisition, where the presence 

of spacers with a full or partial match to the target DNA increases the frequency 

of acquiring another spacer (Figure 1-2a). 

Primed acquisition has been studied in E. coli, which CRISPR-Cas system 

harbors the genes encoding the Cascade (CRISPR associated complex for 

antiviral defense) complex that contains the crRNA guide and is responsible for 

target recognition42 and the Cas3 nuclease responsible for target cleavage22, in 

addition to Cas1 and Cas2. One study showed that this CRISPR system can 

acquire spacers from a plasmid present in the cell, resulting in plasmid curing27. 

While the acquisition of a single spacer is enough to cure the plasmid, multiple 



Figure 1-2. A model for the acquisit ion of new spacers. (a) 

Naïve vs. primed spacer acquisition. Upon lytic infection with a phage previously 

not encountered, incorporation of a new spacer into the CRISPR array ensures 

cell survival. Only protospacers adjacent to PAMs are sampled. Naïve adaptation 

(left) requires the concerted action of Cas1 and Cas2 alone. Primed acquisition 

(right) presupposes the existence of a non-targeting crRNA with partial homology 

to a region of the infecting phage (purple). Following the low-affinity target 

recognition by the interference machinery, the complex slides along the target 

DNA and, aided by Cas1 and Cas2, and recruits spacers from the same strand at 

a high rate. (b) A model for spacer integration onto the CRISPR array. The 

protospacer (green) is acquired from the viral genome and inserted into the 

CRISPR array at the leader-proximal end. Upon integration, the first pre-existent 

repeat serves as a template for the new repeat. In this model I speculate that the 

palindromic sequence of the repeat allows it to fold into DNA hairpins (grey). 

10
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spacers were frequently incorporated into the CRISPR array. Interestingly these 

were always acquired from the same strand of DNA. This led to the hypothesis 

that the acquisition of one spacer can trigger the acquisition of additional spacers 

from the same strand of the target DNA27. These authors hypothesize that the 

Cascade complex is directed to bind the foreign nucleic acid by a spacer already 

present in the array. If the match is good enough to trigger interference, Cas3 will 

degrade the dsDNA and these cleavage products can be used by Cas1 and 

Cas2 as precursors for new spacers recruited from the same strand. 

Another study reported primed adaptation during infection of E. coli with 

the M13 phage26. The acquisition of new spacers was much more frequent when 

a spacer already targeting the M13 phage was present in the array. The authors 

showed how the orientation of the priming target determines the orientation of 

new protospacers. Interestingly, priming events occurred when mismatches that 

abolish interference were present between the crRNA and its target. This 

suggests that degradation of the target DNA by CRISPR interference is not 

necessary to prime adaptation. It is hypothesized that the Cascade complex can 

bind an imperfect target and trigger the acquisition of new spacers from the same 

molecule. Mutagenesis of the cas genes showed that in addition to Cas1 and 

Cas2, primed adaptation requires the Cascade complex and Cas3. Subsequent 

high-throughput analysis of spacer acquisition in E. coli confirmed that spacers 

are preferentially acquired from the primed strand with a 10-fold bias39. Assuming 

that spacers acquired from the non-primed strand are due to naïve adaptation, 
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the authors conclude that primed adaptation occurs at much higher rates than 

naïve adaptation. Recently, a comprehensive study performed in type I-E showed 

that priming is nucleotide-dependent, as well as sensitive to the number of 

mutations and their locations with the target. Accordingly, high-throughput 

plasmid-loss assays revealed that priming tolerates up to 13 mutations within the 

PAM and protospacer. While the nucleotide-dependence of priming appears to 

be a more complex mechanism that needs to be further characterized, it appears 

that G-rich spacers are more likely to prime a better adaptation response. 

These observations led to the “sliding” hypothesis for primed acquisition: 

after a low-affinity target recognition by the Cascade-crRNA complex, the 

complex slides along the target DNA randomly stopping at PAM sequences to 

recruit more spacers from the same strand (Figure 1-2a). This hypothesis was 

tested by several studies with results that both corroborated or challenged it. In a 

recent study of the E. coli type I-E system, Savitskaya et al.39 argue that sliding 

from the priming position should lead to a preferential acquisition of nearby 

spacers, producing a gradient in spacer acquisition frequency relative to the 

priming location, which they did not observe. Moreover, insertion of poly-PAM 

blocks on the target molecule next to the priming site failed to halt the putative 

sliding acquisition machinery. Notably, these experiments were carried out on 

rather short (~ 3kb) circular plasmids that might have obstructed acquisition 

gradients caused by the priming site or poly-PAM brakes. In contrast, a recent 

study of Haloarcula hispanica type I-B system showed that protospacers in close-
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proximity of the priming protospacers were sampled more often than 

protospacers located farther away31, thus supporting the sliding hypothesis. 

Regions located both upstream and downstream of the priming protospacer were 

highly sampled, but from opposite strands. Therefore, the authors proposed that 

sliding also involves stochastic Cas3 flipping from one strand of the DNA to the 

other. These contradicting results could be explained either by the presence of 

multiple priming sites or differences in the sliding dynamics, since a fast-sliding 

Cascade would prevent the generation of a positional gradient of acquired 

spacers. 

The priming mechanism has likely evolved as a way to counteract phage 

mutants that escape CRISPR immunity by single point mutations in the target 

sequence. The spacers matching mutated targets cannot direct cleavage but can 

still be used to trigger the acquisition of new spacers and adapt against an 

evolving threat. Furthermore, priming favors the acquisition of multiple spacers 

targeting the same DNA molecule, which reduces the probability of escape and 

strengthens resistance. Notwithstanding the benefits of primed spacer 

acquisition, naïve adaptation remains crucial to detect unknown foreign 

molecules and is probably a universal feature of CRISPR systems. 

Chapter 1.2.3. Spacer Integration 

Once a target has been selected on the invading genome, it has to be 

incorporated into the CRISPR array. During this process, not only the spacer is 
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incorporated, but also a new repeat is added to the array. Spacer insertion is 

polar, since the vast majority of new spacers are incorporated at the 5’ end of the 

array, upstream of the first repeat5,16,52–56. Little is known about this process; 

however, the first repeat and the region immediately upstream of it, known as the 

leader sequence, seem to play a role. 

The 200-500 bp region located upstream of the first repeat contains an 

A/T rich leader sequence that usually harbors the promoter of the CRISPR array, 

but it is also involved in adaptation. Deleting or scrambling the 60 nucleotides 

immediately adjacent to the array of the type I-E CRISPR-Cas system of E. coli 

prevents spacer acquisition28. This indicates that the leader contains specific 

sequence motifs essential for adaptation. Interestingly, deleting the Pribnow box 

required for the transcription of the array does not prevent spacer acquisition28, 

suggesting that transcription is not essential for the adaptation process. It is 

believed that the leader sequence is recognized by the acquisition machinery. 

Evidence supporting this hypothesis comes from a study showing that Cas1 and 

Cas2 from the E. coli K12 strain can direct spacer acquisition in the CRISPR 

array of the O157:H7 strain, which carries a different leader sequence57. 

However, this artificial leader-Cas combination led to frequent abnormal 

acquisition events where the spacers were integrated in the wrong orientation. 

This suggests that the interaction between Cas proteins and the leader sequence 

determines the orientation of newly acquired spacers. Furthermore, in some 

instances, the insertion site was shifted by 2 bases, suggesting that the 
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acquisition complex is anchored at the leader-repeat boundary where a first cut is 

made, and uses a ruler mechanism to cut the other strand on the other side of 

the repeat. The nucleotide content of the spacer is also thought to impact the 

orientation of newly acquired spacers. In type I-E, an underrepresentation of G 

and overrepresentation of C at the end of highly acquired spacers may serve as 

signals for insertion in the correct orientation. 

The presence of a single repeat has been shown to be necessary and 

sufficient for both naïve and primed adaptation in the type I-E CRISPR 

system26,58, and the presence of additional repeats does not increase the rate of 

acquisition of new spacers41. Interestingly, spacers incorporated into a minimal 

CRISPR array (one repeat, no preexisting spacers) have the correct length58, 

suggesting that the protein machinery, rather than preexistent repeat-spacer 

units, dictates the size of additional spacers. In type I-E systems, the new repeat 

(29 nt long) is copied from the first repeat in the array since point mutations 

introduced in the first repeat are replicated in newly incorporated spacer-repeats 

units26,28. Interestingly, mutations of the last nucleotide of the repeat were not 

passed on to new repeats, indicating that only bases 1 through 28 of the repeat 

serve as a template for new repeats. In contrast, the 29th base originates from the 

protospacer and represents the last nucleotide of the PAM26,59. While the last 

nucleotide of the 5’-AWG-3’ PAM is highly conserved in E. coli, this is not the 

case in many other systems where this mode of repeat duplication remains to be 

determined. Based on these results and on the known mechanisms of insertion 
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of transposable elements60 and retroviruses61 a model for spacer acquisition has 

emerged (Figure 1-2b). The first repeat sequence of the CRISPR locus is 

subjected to ssDNA nicking at the 3’ end of each repeat strand. This cleavage 

could be facilitated by the stem-loop structure that can form on most repeats due 

to their partially palindromic sequences. Proximity to the leader would provide 

recognition of the first repeat and/or help recruit the spacer acquisition 

machinery. The free 3’-ends of repeats are ligated to the 5’ end of viral 

fragments, leading to the insertion of a new spacer and the generation of a 

staggered intermediate. The gaps are filled by DNA polymerase I, thus adding a 

new repeat to the array. Current research across different laboratories is testing 

this model. 

Chapter 1.3. Unanswered Questions 

Although recent studies have established molecular requirements as well 

as a general mechanism for the acquisition phase, many details of CRISPR 

adaptation are still poorly understood. An extra layer of complexity is added by 

the many different types of CRISPR-Cas systems, some of which could have 

different mechanisms of spacer acquisition. Indeed, variations in the way spacers 

are acquired from the target likely exist between CRISPR types and subtypes. In 

the type I-A of the crenarchaeon Thermoproteus tenax, Cas1 and Cas2 are fused 

as a single protein that forms the CRISPR-associated complex for the integration 

of spacers (Cascis) together with Csa1 and Cas462. In type II, Csn2 was reported 



18	

to be required for adaptation5. Structural studies have revealed that this protein 

forms a ring-like structure around DNA, suggesting that it might recruit other 

proteins to the protospacer and could form a sliding clamp that facilitates primed 

acquisition63. In type III, interference is transcription dependent and requires 

crRNAs that are antisense to their cognate RNA targets64. Since transcription of 

CRISPR loci is unidirectional, type III spacers need to be incorporated into the 

correct orientation in order to produce functional crRNAs. The underlying 

mechanism of this requirement is not understood. 

I believe that future research will focus on understanding how the leader 

sequence is recognized, how the first repeat is cleaved, and the new spacer 

ligated in a way that allows the generation of an additional repeat, and whether 

the length of the array is regulated. In addition, it is still unknown why spacers are 

acquired preferentially from certain molecules or certain positions on a given 

molecule, and whether any mechanisms truly exist to prevent, or at least limit, the 

 of self-targeting spacers. An interesting question also arises from the 

observation that the PAM motif is recognized both during acquisition and 

interference, and that the motif might be recognized by different protein 

complexes in each of these stages of the CRISPR immunity pathway. As the 

exact sequence requirements might be different for these two functions, it has 

been proposed to use the term Spacer Acquisition Motif (SAM) when referring to 

the sequence recognized by the acquisition machinery and the term Target 

Interference Motif (TIM) when referring to the sequence recognized by the 
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interference machinery65. A mutation that affects SAM recognition might lead to 

the acquisition of spacers that will not be effective during the interference stage. 

Conversely, a mutation that affects the TIM recognition might render preexisting 

as well as newly acquired spacers useless. In the presence of this apparent 

evolutionary bottleneck, PAM sequences might be expected to be highly 

conserved, yet an extensive diversity has been described. How these two facts 

can be reconciled remains to be investigated. 
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Chapter II.  

The Role of Cas9 in Spacer Acquisit ion 

This chapter investigates the molecular requirements of spacer 

acquisition in the type II-A CRISPR system of Streptococcus pyogenes. Cas9 

cleavage of the viral genome requires the presence of a 5′-NGG-3′ 

protospacer adjacent motif (PAM) sequence immediately downstream of the 

viral target. It is not known whether and how viral sequences flanked by the 

correct PAM are chosen as new spacers. Here I show that Cas9 selects 

functional spacers by recognizing their PAM during spacer acquisition. The 

replacement of cas9with alleles that lack the PAM recognition motif or 

recognize an NGGNG PAM eliminated or changed PAM specificity during 

spacer acquisition, respectively. Cas9 associates with other proteins of the 

acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-

specificity to this process. This chapter introduces a new function for Cas9 in 

the genesis of prokaryotic immunological memory. 
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2.1. The Protospacer Adjacent Motif is Highly Conserved 

Based on their cas gene content, CRISPR-Cas systems can be classified 

into six distinct types, I-VI24,25. Each CRISPR-Cas type possesses different 

mechanisms of crRNA biogenesis, target destruction and prevention of 

autoimmunity. In the type II CRISPR-Cas system present in Streptococcus 

pyogenes the Cas9 nuclease inactivates infective phages using crRNAs as 

guides to introduce double-strand DNA breaks into the viral genome23. Cas9 

cleavage requires the presence of a protospacer adjacent motif (PAM) sequence 

immediately downstream of the protospacer34,67. This requirement avoids the 

cleavage of the spacer sequence within the CRISPR array, i.e. autoimmunity, 

since the adjacent repeat lacks a PAM sequence. The importance of the PAM 

sequence for target recognition and cleavage34,67–69 suggests the presence of a 

mechanism to ensure that newly acquired spacer sequences match protospacers 

flanked by a proper PAM sequence. For the type I-E CRISPR-Cas system of 

Escherichia coli, over-expression of cas1 and cas2 is sufficient for the acquisition 

of new spacers in the absence of phage infection. Reports indicate that spacers 

acquired in this fashion match preferentially (25–70%, depending on the study) to 

protospacers with the correct PAM (AWG, W=A/T)26,28,57,70, suggesting that Cas1 

and Cas2 are sufficient for spacer acquisition and have some intrinsic ability to 

recognize protospacers with the right PAM. In the type II system of S. pyogenes 

the PAM sequence is NGG (and also NAG at a much lower frequency)4,33,34, 

where N is any nucleotide, and it is recognized and bound by a domain within the 
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Cas9 tracrRNA:crRNA-guided nuclease during target cleavage67,71. How spacers 

are acquired in this system, particularly how spacers with correct PAM 

sequences are selected during this process, is not known. 

2.2. Cas9 is required for spacer acquisit ion 

To investigate the mechanisms of recognition of PAM-adjacent 

protospacers during spacer acquisition, Icloned the type II-A CRISPR-Cas locus 

of S. pyogenes (Figure 2-1a) into the staphylococcal vector pC194 and 

introduced the resulting plasmid64 into Staphylococcus aureus RN422072, a strain 

lacking CRISPR-Cas loci. Ichose this experimental system because it facilitates 

the genetic manipulation of the S. pyogenes CRISPR-Cas system. Ifirst tested 

the ability of the cells to mount adaptive CRISPR immunity by infecting them with 

the staphylococcal phage ϕNM4γ4, a lytic variant of ϕNM473 (see Methods for a 

description of ϕNM4γ4 isolation).  
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Figure 2-1. Cas9 is required for spacer acquisit ion. (a) Organization of 

the S. pyogenes type II-A CRISPR-Cas locus. Arrows indicate the annealing 

position of the primers used to check for the expansion of the CRISPR array. (b) 

PCR-based analysis of cultures to check for the acquisition of new spacer 

sequences. In the presence or the absence of phage φNM4γ4 infection. Wild-type 

(WT) as well as different cas mutants were analyzed. MOI; multiplicity of 

infection. (c) Cultures over-expressing Cas1, Cas2 and Csn2 under the control of 

a tetracycline-inducible promoter were analyzed using PCR for spacer acquisition 

in the absence of phage infection. The strain was complemented with plasmids 

carrying either Sp or St Cas9 (see Fig. S3). aTc; anhydrotetracycline. 

Plate-based assays performed by mixing bacteria and phage in top agar 

allowed the selection of phage-resistant colonies that were checked by PCR to 

look for the expansion of the CRISPR array (Figure 2-2a). On average 50 % of 

the colonies acquired one or more spacers (8/13, 5/11 and 7/16 in three 

independent experiments), whereas the rest of the resistant colonies survived 
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million reads detected protospacers adjacent to 2083 out of 2687 NGG 

sequences present in the viral genome, although with variation in the frequency 

of acquisition of each sequence (Figure 2-2b). The data revealed a prominent 

selection of spacers matching protospacers with downstream NGG PAM 

sequences (99.97 %, Figure 2-2c). The acquisition of new spacers by cells in 

liquid culture proved to be simple and highly efficient, providing the possibility to 

look at millions of new spacers in a single step. It was therefore implemented in 

the rest of our studies. 

To determine the genetic requirements for spacer acquisition Imade 

individual deletions of cas1, cas2 or csn2 and challenged the mutant strains with 

phage ϕNM4γ4. Spacer acquisition was decreased to levels below our limit of 

detection in each of these mutants (Figure 2-1b), corroborating previous 

experiments26,43. Therefore, while Cas1, Cas2 and Csn2 are dispensable for anti-

phage immunity in the presence of a pre-existing spacer (Figure 2-3b and c), 

they are required for spacer acquisition. 

phage infection by a non-CRISPR mechanism, most likely including phage 

receptor mutations (Figure 2-3a). To maximize the capture of new spacer 

sequences, Iperformed the same assay in liquid and recovered surviving bacteria 

at the end of the phage challenge. These were analyzed by PCR of the CRISPR 

array and the amplification products of expanded loc I was subjected to Illumina 

MiSeq sequencing to determine the extent of spacer acquisition. Analysis of 2.96 



Figure 2-2. The S. pyogenes type II CRISPR–Cas system displays a 

strong bias for the acquisit ion of spacers matching viral 

protospacers with NGG PAMs. (a) Analysis of bacteriophage-insensitive 

mutant colonies using PCR and agarose gel electrophoresis, representative of 

five technical replicates. Bacteria and phage were mixed in top agar and 

incubated overnight. DNA was isolated from individual colonies resistant to 

phage infection and used as template for a PCR reaction with primers (arrows) 

H182 and H183, which amplify the end of the S. pyogenes CRISPR array. The 

size of the PCR band indicates the number of new spacers (shown at the top of 

the gel). Cells without additional spacers resist infection by a CRISPR-

independent mechanism, presumably envelope resistance. (b) Analysis of 

acquired spacers during phage infection of a population of bacteria carrying the 

S. pyogenes type II CRISPR–Cas system. Liquid cultures of bacteria were 

infected with phage, surviving cells were collected at the end of the infection, 

DNA extracted and used as template for a PCR reaction as described above. 

Amplification products were separated by agarose gel electrophoresis and the 

DNA of the bands corresponding to products with additional spacers was 

extracted and sent for MiSeq next generation sequencing. Reads corresponding 

to newly acquired spacers were plotted according to their position in the phage 

genome (x axis) and their abundance (y axis). Each dot represents a unique 

spacer sequence; blue and red dots indicate a corresponding protospacer with 

an NGG or non-NGG PAM. Top and bottom plots indicate protospacers in the top 

and bottom strands of the viral DNA. The map as well as the different functions of 

the phage genes are indicated in between the plots. (c) Weblogo showing the 

conservation of the 59 flanking sequences of 10,000 protospacers randomly 

selected from the experiment shown in b. Absolute conservation of the NGG 

PAM was observed. 
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Figure 2-3. Cas1, cas2 and csn2 are not required for the execution 
of immunity. (a) Analysis of bacteriophage-resistant mutants that do not 
acquire a new spacer. Three colonies that survived phage infection in our in-plate 
adaptation assay (Figure 2-2) were subjected to phage adsorption assay. Briefly, 
surviving colonies as well as the wild-type S. aureus RN4220 control were grown 
in liquid and mixed with bacteriophage. After a brief incubation, cells were 
pelleted by centrifugation and the phages present in the supernatant (unable to 
bind and infect cells) were counted on a lawn of sensitive cells. The number of 
plaque-forming units (p.f.u.) of a control experiment in the absence of host cells 
were used to determine the 100% free phage, or 0% adsorption value. No 
plaques were observed in the control experiment using wild-type cells and this 
value was used to set the 100% adsorption limit. The three CRISPR-
independent, bacteriophage-resistant mutants displayed a marked defect in 
phage adsorption (about 50%), indicating that most likely they carry envelope 
resistance mutations. (b) cas1, cas2 and csn2 are not required for the execution 
of immunity using previously acquired spacers. Position within the phage NM4 
genome of the type II CRISPR–Cas target used in this experiment. The 
protospacer sequence is in the bottom strand (shown in 3’–5’ direction) and 
flanked by a TGG PAM (in green). (c) Comparison of immunity provided by a 
type II CRISPR–Cas system programmed to target the sequence shown in panel 
(a) in the presence (wild-type, wt) or absence (dcas1,dcas2, dcsn2) of cas1, 
cas2 and csn2. Immunity is measured as the p.f.u. of a phage lysate spotted on 
top agar lawns of S. aureus RN4220 cells containing no CRISPR system, a wild-
type S. pyogenes CRISPR–Cas type II system (wt, pRH233), or the same 
CRISPR–Cas systems with a deletion of cas1, cas2 and csn2 genes (dcas1, 
dcas2, dcsn2, pRH079). 
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To determine whether these genes are also sufficient for this process, 

Iover-expressed cas1, cas2 and csn2 in the absence of cas9 using a 

tetracycline-inducible promoter in plasmid pRH223 and looked for the integration 

of new spacers in the absence of phage infection using a highly sensitive PCR 

assay (Figure 2-4). Iwere unable to detect new spacers even in the presence of 

the inducer (Fig. 2-1c). However, the addition of a second plasmid expressing 

tracrRNA and Cas9 from their native promoters (Figure 2-4a) enabled spacer 

acquisition only in the presence of the inducer, with all the new spacers matching 

chromosomal or plasmid sequences (Figure 2-1c). Although most likely the 

acquisition of such spacers causes cell death or plasmid curing, respectively, the 

acquisition event can still be detected in liquid culture using our highly sensitive 

PCR assay (Figure 2-4b and c). The tracRNA (Figure 2-1a) is a small RNA 

bound by Cas9 that is required for crRNA processing and Cas9 nuclease activity. 

Iwondered if Cas9 involvement in spacer acquisition also required the presence 

of the tracrRNA. Deletion of the tracrRNA prevented spacer acquisition in the 

absence of phage infection (Figure 2-1c), suggesting that apo-Cas9 is not 

sufficient to promote spacer acquisition and that association with its cofactor is 

also required. Altogether these data indicate that Cas1, Cas2 and Csn2 are 

necessary but not sufficient for the incorporation of new spacers and that 

tracrRNA/Cas9 is also required. This is in contrast to the type I-E CRISPR-Cas 

system of E. coli, where over-expression of Cas1 and Cas2 alone is sufficient for 

spacer acquisition. It is important to note that the CRISPR array used in this 
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assay consists of a single repeat, without pre-existing spacers (Figure 2-4). 

Therefore, the Cas9 requirement is not a consequence of the phenomenon 

known as “primed” spacer acquisition. This refers to an increase in the frequency 

of spacer acquisition observed in type I CRISPR-Cas systems that relies on the 

presence of a pre-existing spacer with a partial match to the phage genome as 

well as the full targeting complex (Cascade)26,31,74. 



contains cas1, cas2 and csn2 from S. pyogenes under a tetracycline-inducible 
promoter. Cells containing this plasmid only acquired spacers when a second 
plasmid expressing cas9 was introduced, pRH240 or pRH241, containing the 
tracrRNA gene, the leader and first repeat from the S. pyogenes type II CRISPR–
Cas system as well as cas9 from S. pyogenes (cas9Sp) or S. thermophilus 
(cas9St), respectively. The leader is a short, AT-rich sequence immediately 
upstream of the first repeat that contains the promoter for the transcription of the 
CRISPR array. (b) Highly sensitive PCR assay to enrich for amplification 
products of adapted CRISPR loci. Arrows indicate primer annealing position and 

direction. The forward primer (JW8) anneals on the leader. For the reverse 
primer, a cocktail of JW3, JW4 and JW5 was used. The three reverse primers 
anneal on the repeat and differ only in their 3’-end nucleotide that never matches 
the last nucleotide of the leader (red arrowhead). Because this nucleotide is 

critical for the annealing of the primers, loci that acquire spacers ending in A, C or 
T are preferentially amplified over unadapted loci. (c) To quantify the sensitivity 
of this technique, Imixed pGG32 (one repeat, unadapted) with pRH087 (repeat-

spacer-repeat, adapted) in known ratios. The amplification of adapted plasmid 

was detected even when it represented 0.01% of the total plasmid template, 

representative of three technical replicates. This highly sensitive PCR assay is 

not required to detect acquisition during phage infection, as in this case adapted 

cells survive and are enriched within the population, making their detection much 
easier. 

Figure 2-4. Generation of an experimental system for the 
overexpression of cas1, cas2 and csn2 and the detection of spacer 

acquisit ion in the absence of phage infection. (a) Plasmids used in the 

spacer acquisition experiments presented in Figure 2-1c and 2-6c and d. pRH223 
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2.3. Cas9 specif ies the PAM sequence of newly acquired spacers 

Given this newfound requirement in the CRISPR adaptation process and 

the well-established PAM recognition function of Cas9 during the surveillance 

and destruction of viral target sequences, I hypothesized that this nuclease could 

participate in the selection of PAM sequences during spacer acquisition. To test 

this I exchanged the cas9 genes of S. pyogenes (Sp) and S. thermophilus (St) 

CRISPR-Cas systems to create two chimeric CRISPR loci: tracrRNASp-cas9St-

cas1Sp-cas2Sp-csn2Sp and tracrRNASt-cas9Sp-cas1St-cas2St-csn2St (Figure 2-6a). I 

chose the type II-A CRISPR-Cas system of S. thermophilus (also known as 

CRISPR3) because it is an ortholog of the S. pyogenes system75. While the PAM 

sequence for the Sp CRISPR-Cas system is NGG, the PAM sequence for the St 

system is NGGNG16 (Figure 2-6b). I infected each naïve strain with phage 

ϕNM4γ4, sequenced the newly acquired spacers, and obtained the PAM of the 

matching protospacers using WebLogo76. I found that each chimeric system 

acquired spacers with PAMs that correlated with the cas9, but not the tracrRNA, 

cas1, cas2 or csn2, allele present (Figure 2-6b). To rule out the possibility that 

non-functional spacers are negatively selected during phage infection, i.e. they 

are acquired randomly and only those cells containing spacers with a correct 

PAM for Cas9 cleavage provide immunity and allow cell survival, I sequenced the 

PAMs of spacers acquired in the absence of phage infection (Fig. 2-1c and 2-6c). 
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Either Cas9Sp or Cas9St were produced in cells overexpressing Cas1Sp, Cas2Sp 

and Csn2Sp. In this experiment, as explained above, spacers matching 

chromosomal or plasmid sequences will be acquired. The PCR products 

containing new spacers were cloned into a commercial vector from which they 

were sequenced. Expression of Cas9Sp led to the incorporation of spacers 

matching protospacers with an NGG PAM sequence, whereas the expression of 

Cas9St in the same cells shifted the composition of the PAM to NGGNG (Fig. 2-

6d). These results demonstrate that Cas9 specifies PAM sequences to ensure 

the acquisition of functional spacers during CRISPR adaptation. 

Figure 2-6. Cas9 determines the PAM sequence of acquired 

spacers. (a) (c) Genetic composition of the CRISPR–Cas loci tested for spacer 

during phage infection (a), or in the absence of infection (c), with the 

experimental set up shown in Figure 2-4. (b) (d) Sequence logos obtained after 

the alignment of the 3’ flanking sequences of the protospacers matched by the 

newly acquired spacers in panels (a) and (c) respectively. Numbers indicate the 

positions of the flanking nucleotides downstream from the spacer. Number of 

sequences used in each alignment indicated as n. 
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2.4. Cas9 associates with other Cas proteins involved in spacer 

acquisit ion 

In type I CRISPR-Cas systems, Cas1 and Cas2 form a complex70 and the 

dsDNA nuclease activity of Cas1 has been implicated in the initial cleavage of the 

invading viral DNA to generate a new spacer48. The genetic analyses presented 

above suggest that in the type II S. pyogenes CRISPR-Cas system, the PAM-

binding function of Cas9 observed in vitro67 could specify a PAM-adjacent site of 

cleavage for Cas1, or other members of the spacer acquisition machinery. This 

would guarantee that newly acquired spacers have the correct PAM needed for 

Cas9 activity later in this immune pathway. This hypothesis predicts an 

interaction between Cas9 and Cas1, Cas2 and/or Csn2. To test this, I expressed 

the type II Cas operon in E. coli, using a histidyl tagged version of Cas9, and 

looked for other proteins that co-purify. I observed an abundant co-purifying 

protein with an apparent molecular weight close to 33 kDa, the expected size of 

Cas1 (Figure 2-5). 
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Figure 2-5. Purif ication of a Cas9–Cas1–Cas2–Csn2 complexes. (a) 

The cas9–cas1–cas2–csn2 operon of S. pyogenes SF370 was cloned into the 

pET16b vector (generating pKW07) to add an N-terminal histidyl tag to Cas9 and 

express all proteins in E. coli. Purification was performed using Ni-NTA affinity 

chromatography. SDS–PAGE followed by Coomassie staining of the purified 

proteins revealed a co-purifying protein that was identified as Cas1 by mass 

spectrometry, in a result representative of five technical replicates. (b) The cas9–

cas1– cas2–csn2 operon of S. pyogenes SF370 was cloned into the pET23a 

vector (generating pKW06) to add a C-terminal histidyl tag to Csn2 and express 

all proteins in E. coli. Purification was performed using Ni-NTA affinity 

chromatography followed by ion exchange chromatography. The elution fractions 

that constituted the peak containing the complex (Figure 2-7a) were separated by 

SDS–PAGE and visualized 

Mass spectrometry confirmed the identity of both of these proteins as well 

as the presence of Cas2 and Csn2 co-purifying with Cas9 (Table 1). This result 
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suggested the formation of a Cas9-Cas1-Cas2-Csn2 complex and therefore I 

explored other purification strategies to unequivocally determine its existence.  I 

was able to isolate a Cas9-Cas1-Cas2-Csn2 complex when the histidyl tag was 

added to Csn2 (Figure 2-7a and b). The identity of the purified proteins was 

confirmed by mass spectrometry (Table 2). This demonstrates a biochemical link 

between the Cas9 nuclease and the other Cas proteins that function exclusively 

to acquire new spacers, supporting the role of Cas9 as a PAM specificity factor in 

the adaptation phase of CRISPR immunity. 

Table 1. Mass spectrometry analysis of proteins purif ied through Ni-
NTA 
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Table 2. Mass spectrometry analysis of protein bands from the 
purif ied Cas9–Cas1–Cas2–Csn2 complex 



Figure 2-7. S. pyogenes Cas9 PAM recognit ion domain is required 

for the acquisit ion of spacers with an NGG PAM sequence. (a) 

Separation of the Cas9–Cas1–Cas2–Csn2 complex by ion exchange 

chromatography. (b) SDS– PAGE of fraction 19 (peak) from the complex elution 

shown in panel (a), representative of five technical replicates. The four proteins of 

the complex were individually purified and run alongside the purified fraction to 

identify each protein in the complex. (c) Spacer acquisition was tested as in 

Figure 2-1c in the presence or absence of different Cas1 or Cas9 activities. 

Image is representative of eight technical replicates. dCas1, nuclease-dead Cas1 

(E220A mutation); dCas9, nuclease-dead Cas9 (D10A, H840A mutations); 

Cas9PAM lacks the PAM recognition function (R1333Q, R1335Q mutations). (d) 

Sequence logos obtained after the alignment of the 39 flanking sequences of the 

protospacers matched by the newly acquired spacers in panel (c). Numbers 

indicate the positions of the flanking nucleotides downstream from the spacer. 

Number of sequences used in each alignment indicated as n. 
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Cas1, Cas1E220A (catalytically dead or dCas148), wild-type Cas9, Cas9D10A,H840A

(catalytically dead or dCas934) and Cas9R1333Q,R1335Q (Cas9PAM, containing 

mutations in the PAM-binding motif that substantially reduces binding to target 

DNA sequences with NGG PAMs in vitro71). I observed that the nuclease activity 

of Cas1 is necessary for spacer acquisition (Figure 2-7c). In contrast, the 

nuclease activity and PAM-binding function of Cas9 are dispensable for this 

process. Next I determined the PAM of the acquired spacers in the presence of 

mutated Cas9 (Figure 2-7). I found that whereas spacers acquired in the 

presence of dCas9 displayed correct PAMs, those acquired in the presence of 

Cas9PAM matched DNA regions without a conserved flanking sequence, i.e. 

without a PAM sequence. The same result was obtained with St dCas9 (Figure 2-

8). Altogether these results indicate that Cas1 and Cas9 are part of a complex 

dedicated to spacer acquisition which requires Cas1 nuclease activity and Cas9 

PAM-binding properties for the selection of new spacer sequences. 

2.5. The PAM binding motif of Cas9 is required for PAM selection 

Within this complex the PAM-binding domain of Cas9 would specify a 

functional spacer (one adjacent to a correct PAM) and the nuclease activity of 

Cas1 and/or Cas9 would cleave the invading DNA to extract the spacer 

sequence. To test this I performed adaptation studies in the absence of phage 

selection as described in Figure 2-4 but using different combinations of wild-type 



41	

Figure 2-8. dCas9St can also support spacer acquisit ion. A plasmid 
derived from pRH241 containing mutations in the active site of S. thermophilus 
Cas9 (D10A, H847A; dCas9St) was used to characterize spacer acquisition in 
the absence of phage infection. Upon overexpression of Cas1, Cas2 and Csn2 
using anydrotetracycline (aTc), I was able to detect spacer acquisition. 
Sequencing of spacers and alignment of the protospacer flanking sequences 
demonstrated the selection of an NGGNG PAM. The image is representative of 
three technical replicates. 

2.6. Discussion 

The selection of new spacers with a correct PAM is fundamental for the 

survival of the infected host during CRISPR-Cas immunity. In the simplest 

scenario there is no active selection of PAM-flanked protospacers; any spacer 

sequence can be acquired but only those with the correct PAM allow Cas9 

cleavage of the invader and survival. Bacteria that acquire spacers with 

ineffective flanking sequences are killed by the virus and as a consequence 

PAM-flanking spacers are enriched in the population. Here I show that even in 

the absence of phage selection, the type II CRISPR-Cas system acquires new 

spacers with correct PAMs, a result that rules out the possibility of random 

spacer selection with subsequent selection for functional spacers. How are PAM-

flanked protospacers selected during type II CRISPR-Cas immunity? One 
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possibility is that the proteins exclusively dedicated to spacer acquisition perform 

the PAM-selection function. The inability of cells over-expressing only cas1, cas2 

and csn2 to expand the CRISPR array strongly suggest that none of the proteins 

encoded by these genes can recognize and select correct PAMs. Another 

possibility is that the known PAM recognition function of Cas971,77, essential for 

destroying the invading virus, could also be used during spacer acquisition to 

recognize PAM-flanking viral sequences. Experiments showing that the cas9 

allele, but not the cas1-cas2-csn2 alleles, determine the PAM sequence of the 

newly acquired spacers, demonstrated that this scenario is likely correct. How 

does Cas9 select new spacers with the correct PAMs? Our experiments 

demonstrate that Cas9 forms a stable complex with Cas1, Cas2 and Csn2 that 

presumably participates in the selection of new spacers. 

The nuclease activity of Cas1, but not of Cas9, is required for spacer 

acquisition. The tracrRNA is also required, suggesting that the apo-Cas9 

structure77, very different from holo-Cas971, does not have the correct 

conformation to participate in spacer acquisition. The key residues involved in 

Cas9 PAM recognition are not required for spacer acquisition, but they are 

necessary for the incorporation of new spacers with the correct PAM sequence. 

This suggests that the reported non-specific DNA binding property of Cas934,67 is 

sufficient for spacer acquisition, but not for the selection of functional spacers. 

There are currently two models for the incorporation of new spacers into the 

CRISPR array, one where the future spacer sequence is cut from the invading 
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viral DNA, the “cut and paste” model, and another where this sequence is copied 

from the viral genome, the “copy and paste” model78. In the context of the first 

model, our data suggests that, at a low frequency that may reflect the dynamics 

of spacer acquisition, Cas1 cleaves the invading genome to extract a new spacer 

sequence. However, on its own, Cas1 nuclease activity is non-specific48. 

Therefore, I propose that through the formation of the Cas9-Cas1-Cas2-Csn2 

complex, Cas9 binding to PAM-adjacent sequences provides specificity to Cas1 

endonuclease activity. In the “copy and paste” model, Cas1 nuclease activity is 

most likely necessary for downstream events, such as the cleavage of the repeat 

sequence that precedes spacer insertion, and Cas9 is required to “mark” 

sequences adjacent to GG motifs to be copied into the CRISPR array. In any 

case, following yet unknown processing and integration events, the selected DNA 

becomes a new functional spacer, i.e. its matching protospacer will have the 

correct PAM to license Cas9 cleavage (Figure 2-9). The molecular steps that 

take place after protospacer selection to incorporate it as a new spacer in the 

CRISPR array are still unknown. All genes of the type II-A CRISPR-Cas locus 

(tracrRNA, cas9, cas1, cas2 and csn2) are required for spacer acquisition, 

therefore most likely all the members of the Cas9-Cas1-Cas2-Csn2 complex 

participate in the process. Future work will address this and other aspects of the 

mechanisms of spacer integration in different CRISPR-Cas systems. 

The present chapter reveals a new function for Cas9 in CRISPR immunity. 

This nuclease is fundamental for both the execution of immunity, participating in 
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the surveillance and destruction of infectious target viruses, and the generation of 

immunological memory, selecting the viral sequences that allow adaptation and 

resistance to viral predators. 

Figure 2-9. A model for the selection of PAM-flanking spacers by 

Cas9. After injection of the phage DNA, an adaptation complex formed by Cas9, 

Cas1, Cas2 and Csn2 uses the Cas9 PAM binding domain to specify functional 

protospacers, that is, that are followed by the correct PAM. It is not known how 

the protospacer sequence is extracted from the viral DNA to become a spacer. In 

the ‘cut and paste’ model, a nuclease, possibly Cas1, cuts the viral DNA to 

generate the spacer. In the ‘copy and paste’ model the protospacer sequence is 

copied first. Once loaded with the selected protospacer sequence, this complex 

promotes the integration of this sequence into the CRISPR array, thus becoming 

a new spacer. Previous studies demonstrated that Cas1 dimerizes and interacts 

with Cas270, Csn2 has been determined to forma tetramer63. 
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Chapter III .  

Generation of Cas9 Variants that 

Increase Spacer Acquisit ion 

Having learned that Cas9 participates in spacer acquisition by specifying 

functional viral targets, I wanted to further explore this topic by engineering Cas9 

mutants that provide enhanced CRISPR immunity. Here I performed random 

mutagenesis of the RNA-guided Cas9 nuclease to look for variants that provide 

enhanced immunity against viral infection. I identified a mutation, I473F, which 

increases the rate of spacer acquisition by more than two orders of magnitude. 

The results presented in this chapter highlight the role of Cas9 during CRISPR 

immunization and provide a useful tool to study this otherwise rare process and 

develop it as a biotechnological application. 

3.1 Changing the PAM specif icity of Cas9 

Based on their cas genetic repertoire, CRISPR-Cas systems have been 

classified into six types, I through VI24,83. Cas9 is the crRNA-guided nuclease of 

the type II-A CRISPR-Cas system of Streptococcus pyogenes34. In addition to 

protospacer recognition by the crRNA, Cas9 target cleavage requires a 5’-NGG-



46	

3’ protospacer adjacent motif (PAM) immediately downstream of the 

target17,33,34,71. Cas9 is also required for the immunization step of the CRISPR 

response84,85, using its PAM binding domain to specify functional spacer 

sequences that are flanked by the required NGG motif84. In support of its role in 

spacer acquisition, Cas9 can associate in vivo with the other proteins encoded by 

the type II-A CRISPR-Cas system: Cas1, Cas2 and Csn284. 

To further study the role of Cas9 in spacer acquisition, I decided to change 

its PAM specificity. Earlier work from our lab tested in vivo cleavage of targets 

having the same protospacer sequence but different PAMs displaying all possible 

trinucleotide combinations. I found that, in addition to the complete cleavage of 

targets with NGG PAMs, wild-type Cas9 displays approximately 50% of in vivo 

cleavage of targets with NAG PAMs. In an effort to understand how Cas9 affects 

the acquisition of spacers flanked by NGG motifs, I decided to evolve this weak 

but detectable affinity of the nuclease for NAG PAMs. After structural analysis 

determined the PAM interacting domain of Cas971,77, different groups have 

specifically mutated this domain to obtain a versatile set of nucleases for genome 

editing purposes and have obtained an NAG-recognizing Cas986. I took a 

different approach and searched for mutations in any region of the nuclease that 

would increase its specificity for NAG-flanked targets. I found one such mutation, 

I473F, which provided partial immunity when directed (programmed) to recognize 

an NAG viral protospacer. Importantly, this mutation also expanded the levels of 

the CRISPR-Cas adaptive immune response, increasing the number of CRISPR-
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mediated, bacteriophage-resistant colonies by more than two orders of 

magnitude. I performed experiments to understand the molecular basis of the 

enhanced CRISPR-Cas immunity and determined that the I473F mutation 

mediates a significant increase in spacer acquisition. Our results highlight the 

role of Cas9 during CRISPR immunization and provide a useful tool to study this 

otherwise rare process. 

3.2. Evolved Cas9 has increased NAG PAM specif icity 

S. pyogenes Cas9 has an innate ability to cleave NAG-adjacent targets, 

but with much lower efficiency than it cleaves canonical (NGG) targets33. To 

enhance the ability of the nuclease to target protospacer sequences flanked by 

NAG PAMs, I constructed a library of plasmids carrying mutagenized cas9 

variants by subjecting the entire gene to error-prone PCR (Figure 3 -1a). The 

library plasmids also harbor the trans-activating crRNA (tracrRNA) gene44 and a 

single-spacer CRISPR array targeting a protospacer sequence 

(AAAAACAAAAATGTTTTAACACCTATTAACG) followed by a TAG PAM on the 

genome of the lytic staphylococcal bacteriophage ϕNM4γ464. The library was 

transformed into Staphylococcus aureus RN4220 cells that were subjected to 

phage infection on soft-agar plates to select for phage-resistant bacterial 

colonies. These colonies originated either from cells that acquired surface 

mutations preventing phage adsorption or cells harboring mutant cas9 alleles 

with improved NAG cleaving efficiency that can sustain anti-viral immunity. To 

enrich for bacteria harboring desired Cas9 mutants, I isolated and re-transformed 

the plasmids of surviving colonies to perform a second round of phage infection. 
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Several colonies were obtained, and I proceeded with a further analysis of one of 

the “evolved” mutants that gained phage resistance. Sequencing of the plasmid 

revealed the presence of six single-nucleotide substitutions in the cas9 gene, 

producing the following missense mutations: R425G, I473F, K500I, S701G, 

P756L and A1032G. 

To evaluate the importance of each of these mutations in the gain-of-

function phenotype I introduced them individually into the cas9 gene and tested 

the ability of the resulting plasmid to prevent ϕNM4γ4 propagation by measuring 

the number of plaque forming units (pfu) that result after infection of the host cells 

(Figure 3-1b). Whereas cells harboring a control vector do not provide any 

immunity and allow high levels of phage propagation (up to ~1010 pfu/ml), cells 

containing wild-type Cas9 provide partial immunity and reduce phage 

propagation by about two orders of magnitude. Cas9 harboring the R425G, 

S701G, P756L and A1032G mutations allow wild-type levels of phage 

propagation and therefore do not contribute to the gain-of-function-phenotype of 

the evolved cas9 allele I isolated. In contrast, cells containing Cas9 with the 

I473F or K500I mutations decrease phage propagation by about four orders of 

magnitude. This is close to the levels of immunity provided by wild-type Cas9 

when programmed against NGG-flanked targets (a reduction of ~ 5 orders of 

magnitude, see Figure 3-3b). Similar results were obtained when other NAG 

PAMs were used in this assay (AAG, CAG, GAG, Fig. S1). Therefore, the I473F 

and K500I mutations enhance the ability of Cas9 to recognize targets with NAG 

flanking PAMs. 



directed evolution assay. S. pyogenes cas9 was mutagenized by error-prone 

PCR and library amplicons were cloned into a plasmid carrying a spacer 

matching a TAG- adjacent target sequence on the fNM4g4 phage. Library cells 

were infected with lytic phage to screen for mutants displaying improved NAG 

cleaving efficiency. (b) Phage propagation was measured as the number of 

plaque-forming units (PFUs) per milliliter of stock on cells targeting the NAG-

adjacent proto- spacer and harboring plasmids with different mutations on cas9: 

one of the ‘‘evolved’’ alleles or each of the six mutations present in this allele. 

Mutations with PFU values significantly different than wild- type are highlighted 

(**p < 0.05 compared to WTCas9). Data are represented as mean ± SD of three 

representative biological replicates. (c) Colony-forming units (CFUs) obtained 

after phage infection of naive cells (not programmed to target any viral sequence) 

harboring plasmids with different mutations in cas9. Mutations with CFU values 

significantly different than wild-type are highlighted. Data are represented as 

mean ± SD of three representative biological replicates. (d) Location of residues 

I473 and K500 on the Cas9:single-guide RNA ribonucleoprotein (PDB: 4UN3). 

Red, I473; purple, K500; orange, sgRNA; green, target DNA (the GG PAM 

highlighted in red); gray, a-helical (REC) lobe; yellow, HNH domain; light blue, 

RuvC domain; blue, PAM-interacting CTD. 

Figure 3-1. Directed Evolution of cas9 Generates Mutants with 

Increased Specif icity for NAG Targets (a) Schematic diagram of the 

49
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Figure 3-2. Protection of host cells by hCas9 programmed against 

different NAG-flanked targets.  (a) The ability of hCas9 to target 

protospacers with different PAM was tested by measuring phage propagation in 

cells harboring CRISPR-Cas systems containing either wtCas9 or hCas9 and 

programmed to target the sequences shown, which are followed by TAG, AAG, 
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GAG or CAG PAMs. (b) Phage propagation was measured as the number of 

plaque forming units (pfu) per ml of stock, on cells targeting the TAG, AAG, GAG, 

and CAG-adjacent protospacers and hCas9. Data are represented as mean ± SD 

of three representative biological replicates. (c) Measurement of pfu formation on 

staphylococci carrying plasmids with different cas9 mutations after infection with 

φ85, a phage lacking the target recognized in φNM4γ4. Data are represented as 

mean ± SD of three representative biological replicates.  (d) Location of residue 

K500 on the Cas9:single-guide RNA ribonucleoprotein (PDB 4UN3). Purple, 

K500; orange, sgRNA; green, target DNA (the GG PAM highlighted in red); grey, 

alpha-helical (REC) lobe; yellow, HNH domain; light blue, RuvC domain; blue, 

PAM-interacting CTD. 

Given the requirement of Cas9 for the immunization phase of the CRISPR-

Cas immune response, i.e. the generation of phage-resistant bacteria through the 

acquisition of viral sequences as spacers84,85, I wondered whether the evolved 

Cas9 as well as the individual mutants affected this process. To test this, I 

introduced the different alleles of cas9 into a plasmid also harboring the tracrRNA 

coding sequence, the S. pyogenes SF370 CRISPR array (containing six spacers, 

none of them matching the genome of ϕNM4γ4) and the type II-A genes involved 

exclusively in the acquisition of new spacers, cas1, cas2 and csn284,85. S. aureus 

cells containing the different plasmids were infected with ϕNM4γ4 and the 

number of survivors were enumerated as colony forming units (cfu) (Figure 3-1c). 
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Cells harboring a vector control provide the threshold for the number of non-

CRISPR phage resistant mutants. Only a small fraction of cells containing wild-

type Cas9 are able to acquire new spacers, about 2-fold over the threshold 

control. In contrast, the evolved cas9 allele containing all six mutations increased 

the number of CRISPR-surviving cells by about 60-fold. Analysis of single 

mutants revealed that this highly significant increase was provided almost 

exclusively by the I473F mutation (Figure 3-1c). Due to the sharp enhancement 

of the CRISPR-Cas immune response conferred by the I473F mutation I decided 

to name the Cas9I437F mutant “hyper-Cas9”, or hCas9. I473 is located close to 

the surface of Cas9, outside of the PAM-interacting domain, and it is part of a 

projection from the Helical III domain that interacts with the nexus of the guide 

RNA87 (Figure 3-1d). This position does not suggest an evident effect of the 

I473F mutation on Cas9 activity and therefore I decided to investigate the basis 

for its phenotype by performing a detailed comparison with the CRISPR-Cas 

immune response mediated by wild-type Cas9. 

3.3. Mutant Cas9 enhances CRISPR adaptive immunity by 100-fold 

To perform a more accurate comparison between wild-type (wtCas9) and 

hCas9, I counted the number of CRISPR-mediated, phage resistant cells that 

arise after phage infection. Figure 3-3a shows representative plates of infected 

cells containing plasmids with the wtCas9 or hCas9 S. pyogenes CRISPR-Cas 

locus, showing a striking difference in the number of surviving colonies. As 
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mentioned before, most of these colonies arise from single cells that were able to 

acquire a new spacer matching the ϕNM4γ4 genome. However, a fraction of the 

surviving cells repels phage attack by non-CRISPR related mechanisms, such as 

envelope resistance84. To make a more accurate quantification of the CRISPR-

Cas response, I analyzed individual colonies by PCR of the CRISPR array28,84  to 

detect those in which new spacers were acquired, i.e. “adapted” cells (Figure 3-

3b). Not only did many more resistant colonies originated from cells harboring 

hCas9 (an average of 31 cfu for wtCas9 vs 4,312 cfu for hCas9, Figure 3-3c), but 

also most of them showed CRISPR-mediated phage resistance (23% for wtCas9 

vs 90% for hCas9, Figure 3-3c). 

We wondered whether this was a consequence of the specific substitution 

of I473 by phenylalanine. To test this, I introduced an I473A mutation into Cas9 

and compared this mutant with wtCas9 and hCas9 in this assay (Figure 3-4). I 

found that cells harboring the I473A mutant produced a number of CRISPR-

mediated immune cfu comparable to cells carrying wtCas9, but 10 times lower 

than the cfu obtained from infection of cells expressing hCas9. Therefore, I 

conclude that the I473F mutation increases the CRISPR-adaptive immune 

response through a specific effect of the phenylalanine residue in position 473 

and by more than two orders of magnitude: on average, approximately 7 cfu 

(31×0.23) per experiment for infected wtCas9-containing cells, and approximately 

3,863 cfu (4,312×0.90) for infected hCas9-expressing bacteria. I sequenced PCR 
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Figure 3-3. Cas9I473F or hyper-Cas9 Mounts an Enhanced CRISPR
Adaptive Immune Response.  (a) Representative plates obtained after lytic 
infection of cells harboring the full CRISPR system of S. pyogenes with WTCas9 
or hyperCas9 (hCas9) showing the number of surviving colonies. (b) Agarose 
gel electrophoresis of PCR products of the amplification of the CRISPR of arrays 
of surviving cells to detect newly acquired spacers (asterisks). Molecular markers 
(in kilobases) are indicated in black and the number of new spacers added in 
green. (c) Quantification of total surviving colonies (gray bars) and surviving 
colonies with newly incorporated spacers, as detected by PCR (blue and red 
bars). Data are represented as mean ± SD of three representative biological 
replicates. (d) Growth curves of cultures of cells harboring the full CRISPR 
system of S. pyogenes with WTCas9 or hCas9 with (+) or without (-) phage 
infection. (e) PCR-based analysis of the liquid cultures shown in (c) (at 24 hr 
post-infection) to check for the acquisition of new spacer sequences in the 
presence (+) or the absence (-) of phage infection by cells expressing WTCas9 
or hCas9. Molecular markers (in kilobases) are indicated in black and the number 
of new spacers added in green. Image is representative of three technical 
replicates. 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products to determine the PAM of the spacers acquired by 40 colonies 

expressing wtCas9 or hCas9. Interestingly, all 40 spacers acquired by cells 

expressing hCas9 matched targets with an NGG PAM, suggesting that this 

nuclease can still target sequences followed by the canonical PAM in addition to 

targets with NAG PAMs. 

Figure 3-4. CRISPR-Cas immune response of cells expressing 

Cas9I473A. Cultures harboring plasmids with tracrRNA, cas1, cas2 and csn2

genes, and either wild-type, I473F or I473A cas9 alleles, were infected with 

ΦNM4γ4 phage on top agar media and poured on plates. After 24 hours of 

incubation at 37 °C the CRISPR-surviving colonies were counted. Data are 

represented as mean ± SD of three representative biological replicates. 
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Similar results were observed when cells in culture carrying naïve wtCas9 

or hCas9 CRISPR-Cas systems were infected with phage. Upon addition of 

ϕNM4γ4, the cultures lyse, as the vast majority of cells do not undergo spacer 

acquisition (Figure 3-3). Nonetheless, hCas9 cultures were able to regrow much 

earlier (~14 hours post-infection) than wtCas9 cultures (~17 hours post-infection). 

PCR analysis of the population of surviving cells (i.e., using DNA extracted from 

the whole culture, not individual resistant bacteria) at 24 hours post-infection 

corroborated the earlier observation that hCas9 cells mount a more robust 

CRISPR immune response (Figure 3-3e). Whereas the PCR products using DNA 

from immune cells carrying wtCas9 showed the presence of both adapted and 

non-adapted CRISPR arrays in the surviving population, the PCR results from 

cultures carrying hCas9 showed very little non-adapted CRISPR arrays, with the 

great majority of the cells acquiring one or two new spacers. Altogether these 

data show that the I473F mutation in Cas9 allows for a more robust CRISPR-Cas 

immune response due to a specific effect of the phenylalanine residue. 



58	

3.3.1. Hyper Cas9 provides wild-type cleavage eff iciency  

The CRISPR-Cas response can be divided into two distinct stages7. First 

there is spacer acquisition, where sequences from the invading virus are 

incorporated into the CRISPR array. This is followed by the second stage where 

the acquired spacers provide the crRNA guides to the Cas nucleases for the 

destruction of the viral DNA. Therefore, the enhanced immunity phenotype of 

hCas9 documented in Figure 3-3 could be in principle due to an increase in the 

frequency of spacer acquisition, a more robust cleavage by hCas9 of its targets, 

or both. 

First, I considered the possibility that hCas9 could provide better cleavage 

of the infecting viral DNA. In this scenario both wtCas9 and hCas9 populations 

can acquire a similar number of new spacers but a more robust cleavage of the 

target DNA by hCas9 would lead to a faster recovery of the bacteria that acquired 

the spacers. This will result in the clonal expansion and the consequent increase 

in the number of surviving bacteria. To test this hypothesis, I infected cells 

carrying plasmids with either wtCas9 or hCas9 programmed to target the 

ϕNM4γ4 virus and the tracrRNA gene, but without the spacer acquisition 

machinery (cas1, cas2 and csn2). This genetic background supports CRISPR-

Cas anti-viral defense but does not allow the acquisition of new spacer 

sequences84. Because our data suggested that hCas9 can still target 

protospacers followed by NGG PAMs, I tested the immunity of cells programmed 

to attack targets with either an NAG or an NGG PAM located in the same region 
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of the ϕNM4γ4 genome (Figure 3-5). As a control, cells harboring a vector 

control were also infected. 

Figure 3-5. In vivo and in vitro targets. (a) Region of the ΦNM4γ4 phage 

genome (nucleotides 1441 to 1490) containing the TAG- and TGG-flanked 

protospacers, yellow and blue respectively, used in Figures 3-6a and 3-6b. (b) 

Sequences of the dsDNA target oligonucleotides used in Figure 3-6c. The 

protospacer sequence is the same, but it is flanked by either a TAG (yellow) or 

TGG (blue) PAM sequence. Radiolabel is at the 5’ end (P). Grey and black 

arrowheads mark the cleavage sites of the RuvC and HNH domains, 

respectively. 

Bacteria containing different plasmids were infected with phage during 

exponential growth and the optical density of the culture was followed over time 

to measure the immunity provided by Cas9 cleavage of the viral genome (Figure 
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3-6a). As expected, control cells were rapidly lysed by the addition of phage. In 

contrast, cells expressing wtCas9 programmed against an NGG target cleared 

the infection efficiently and continued the exponential growth. In contrast, the 

poor targeting of NAG-flanked protospacers by wtCas9 led to substantial lysis, 

although not as dramatic as the non-Cas9 control, suggesting a low level of 

target cleavage. The population of hCas9-containing cells targeting an NGG-

flanked viral protospacer was protected to levels indistinguishable from the 

immunity provided by bacteria expressing wtCas9 programmed against the same 

target. Targeting of the protospacer followed by an NAG PAM was more efficient 

in cells having hCas9 than in the wtCas9 population. However, hCas9 did not 

provide full immunity as was the case for NGG-containing targets. Similar results 

were obtained when phage propagation was measured instead of cell survival 

(Figure 3-6b). To do this, I compared the number of plaques (measured as 

plaque forming units or pfu) obtained when a ϕNM4γ4 lysate was applied to 

plates seeded with the five different cultures used in Figure 3-6a. Cells harboring 

an empty vector allowed extensive phage propagation, up to more than 1010 pfu 

per ml of phage stock. In contrast, bacteria harboring wtCas9 or hCas9 

programmed to target the NGG-flanked protospacer in the ϕNM4γ4 genome 

reduced phage proliferation by more than four orders of magnitude (~ 106 pfu/ml). 

When the target contained an NAG PAM, wtCas9 only reduced viral 

multiplication by an order of magnitude compared to the non-CRISPR control, 
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whereas hCas9 reduced it by about three orders of magnitude, but nevertheless 

failing to fully restrict the virus. 

Figure 3-6. hCas9 has increased interference eff iciency against 

NAG-adjacent, but Not NGG-adjacent, targets. (a)   Growth curves of 

cultures infected with fNM4g4 harboring the WTCas9 or hCas9 (but not Cas1, 

Cas2, and Csn2) programmed to target either NAG- or NGG-flanked viral 

sequences. (b) Phage propagation, measured in PFU/mL, of the bacteria 

presented in (a). Data are represented as mean ± SD of three representative 

biological replicates. (c) Cleavage of radiolabeled dsDNA targets, flanked by 

either NGG or NAG PAMs, by WTCas9 or hCas9.  (d) Quantification of the 

cleavage results shown in (c). Data are represented as mean ± SD of three 

representative biological replicates. 
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Both in vivo experiments measuring bacterial survival (Figure 3-6a) and 

phage propagation (Figure 3-6b) suggest that hCas9 has not improved efficiency 

of cleavage of NGG-flanked targets and displays only a small increase in the 

cleavage of NAG-flanked sequences. To unequivocally demonstrate this, I 

performed in vitro cleavage assays with purified wtCas9 and hCas9 (Figure 3-

6c). In this case,  I was able to compare cleavage of radiolabeled 

oligonucleotides containing the same protospacer sequence followed by either a 

TGG or TAG PAM (Figure 3-5b). Consistent with in vivo data, experiments 

showed similar cutting rates of the NGG target for wtCas9 and hCas9. 

Quantification of the cleavage products showed that hCas9 cleaved more of the 

NAG target than wtCas9 over longer timescales (Figure 3-6d). Altogether, the 

data presented in Figure 3 indicate that while there is a modest increase in the 

NAG-targeting properties of hCas9, this cannot explain the rise in the number of 

CRISPR-resistant colonies mediated by the I473F mutation (Figure 3-3c). 

3.3.2. Hyper Cas9 promotes higher rates of spacer acquisit ion 

A second hypothesis that could explain the increase in CRISPR-Cas 

immunity conferred by hCas9 is, as explained above, a possible increase in the 

frequency of spacer acquisition by the cells expressing this mutant. To test this, I 

performed a comparison of the spacer repertoires acquired by cells harboring 

wtCas9 or hCas9. I made two plasmid libraries, carrying the spacer acquisition 

genes cas1, cas2 and csn2 and wtcas9 or hcas9, the tracrRNA gene and the S. 
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pyogenes array of repeats and spacers preceded by a “barcode” sequence of 10 

nucleotides 50 bp immediately upstream of the CRISPR array (Figure 3-7a). 

Cells harboring each library were infected with phage ϕNM4γ4 and DNA from the 

adapted cells was used to amplify the CRISPR array via PCR and collect 

sequence information of all the new acquired spacers using next generation 

sequencing. The primers used also amplify the barcode sequence (Figure 3-7a) 

and therefore each new spacer sequence can be associated with a unique 

barcode, allowing us to count how many times a given spacer was independently 

acquired in each bacterial population. Over three million reads belonging to either 

library were analyzed. 

The frequency of reads corresponding to each acquired spacer sequence 

was plotted according to its position in the ϕNM4γ4 genome (Figure 3-8a). 

Analysis of the PAMs of the acquired spacers showed that over 99.5% of the 

spacer reads contained the NGG sequence in both libraries (Figure 3-8b), 

corroborating our in vivo data showing that hCas9 retained NGG PAM specificity. 

In addition, I looked at the repertoire of unique different spacers independently of 

the number of reads per sequence (Figure 3-8c). Consistent with our previous 

finding that the PAM specificity of Cas9 is responsible for the PAM sequence of 

the new protospacers, the hCas9 library showed a 5-fold increase in the 

acquisition of spacers matching NAG-flanked targets. I also observed an 

increase in the total number of different spacer sequences, from 1980 for wtCas9 

cells to 2500 for the hCas9 sample. 
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Figure 3-7. hCas9 Promotes Higher Rates of Spacer Acquisit ion  . (a) 
Schematic diagram of the S. pyogenes CRISPR locus showing the barcode and 
primers (arrows) used to measure the number of independent spacer acquisition 
events. (b) Cultures expressing WTCas9 or hCas9 were infected with fNM4g4 
phage, and surviving cells were collected after 24 hr, had DNA extracted, and 
were used as template for PCR of the CRISPR arrays. Amplification products 
were separated by agarose gel electrophoresis (not shown), and the DNA of the 
expanded CRISPR array was subject to MiSeq next-generation sequencing. The 
number of barcodes for each spacer sequence across the phage genome, 
normalized by the total number of spacer reads obtained, was plotted. (c) The 
hCas9/WTCas9 frequency of independent acquisition events ratio for 1,938 
common spacer sequences was plotted across the phage genome. The zone 
where the ratio is greater than one is shown in gray. The red line shows the 
average ratio. (d) Same as (b) but without phage infection; i.e., a measure of 
acquisition of spacers derived from the host chromosome and resident plasmids. 
(e) Pairwise competition between staphylococci expressing WTCas9 or hCas9. 
The change in the relative frequency of cells carrying the hcas9 allele (y axis) is 
plotted against the number of culture transfers (1 transfer/day, x axis). 
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To calculate the frequency of acquisition of every spacer I divided the 

number of different barcodes for a given spacer sequence by the total number of 

reads. This value was plotted according to its position in the ϕNM4γ4 genome 

(Figure 3-7b). The data show an increase in the frequency of acquisition in 

hCas9 cells, with a 6-fold increase in the average frequency. For all spacer 

sequences shared between the two libraries (1938 sequences were shared 

between the 1980 and 2500 different sequences for wtCas9 and hCas9, 

respectively), I calculated the ratio of unique adaptation events (i.e. number of 

different barcodes) for hCas9 reads compared to wtCas9 (Figure 3-7c). I found 

that more than 97% of the spacers were acquired more frequently in the hCas9 

library (ratio > 1), with an average ratio of ~18. All together, these findings show 

that hCas9 provides the host bacterium with more efficient spacer acquisition and 

suggest that this is a major contribution to the enhanced CRISPR-Cas immunity 

granted by hCas9. 
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Figure 3-8. Analysis of next-generation sequencing results. (a) Data 

presented in Figure 3-7b was plotted as the number of reads for each spacer 

sequence across the phage genome, normalized by the total number of spacer 

reads obtained. Spacers matching protospacers with NGG PAMs are shown in 

blue, with NAG PAMs in yellow. (b) Quantification of the data shown in panel 

a.  (c) Quantification of the data shown in Figure 3-7b.  (d) Alignment of Cas9

protein sequences belonging to type II CRISPR-Cas systems. Highlighted in 

orange is the I473 residue. An equivalent residue is not found in some type II-B 

and II-C systems.  (e) Fraction (%) of staphylococci retaining the plasmid 

harboring wtcas9 and hcas9 after 10 days of culture; with one transfer (1:100 

dilution into fresh media) per day. Cells were plated in solid media with and 

without chloramphenicol, an antibiotic that selects for cells harboring the 

pCRISPR plasmid. The fraction of staphylococci carrying this plasmid was 

obtained dividing the chloramphenicol-resistant cfu by the total cfu count. Data 

are represented as mean ± SD of three representative biological replicates. 
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3.4. Discussion 

Here I performed random mutagenesis on the cas9 gene to identify 

mutants with an expanded CRISPR-Cas response. Specifically, I looked for 

mutants that would allow Cas9 to recognize not only NGG- but also NAG-

containing targets. I isolated a mutant, harboring an I473F substitution, that 

displayed a modest increase in NAG-target recognition. More importantly, the 

mutation increased the CRISPR-Cas immune response of the bacterial host by 

more than two orders of magnitude, as measured by the number of CRISPR-

mediated bacteriophage resistant colonies obtained after phage infection. Due to 

this hyper-activity in CRISPR immunity I named the mutant version of Cas9 

hyper-Cas9, or hCas9. Deeper analysis of hCas9 revealed that it can perform 

crRNA-guided cleavage of targets containing an NAG PAM better than wtCas9. 

However, this improvement is minor and does not seem to contribute significantly 

to the rise of a high number of CRISPR-mediated resistant cells. On the other 

hand, upon phage infection bacteria expressing hCas9 are able to acquire many 

more viral spacers than those expressing wtCas9. I hypothesize that this high 

rate of spacer incorporation is the basis for the observed increase in the 

CRISPR-mediated phage resistant colonies. 



69	

At the molecular level, the mechanism by which the I473F mutation 

enables this increase in spacer acquisition is not clear. I previously reported the 

existence of a complex between the four Cas proteins encoded by the type II-A 

CRISPR locus, namely Cas9, Cas1, Cas2 and Csn284. I hypothesized that these 

complex functions in spacer acquisition, with Cas9 selecting sequences flanked 

by NGG PAMs84 and Cas1 and Cas270,79 being involved in the integration of 

these sequences into the CRISPR array. The precise role of Csn2 in spacer 

acquisition remains to be elucidated. I thought that the I473F mutation could 

affect the formation of the complex, since the mutated residue is located on Cas9 

surface and could participate in its interaction with another Cas protein. The 

substitution could enhance protein-protein interactions and either increase the 

abundance or the stability of the complex, thus increasing the rate of spacer 

acquisition. To test this, I incubated the four proteins along with a single-guide 

RNA34 and subjected them to gel filtration to detect the formation of the complex. 

However, I did not observe significant amounts of stable complexes neither in the 

presence of wtCas9 nor hCas9. In wtCas9, the isoleucine residue is in direct 

contact with bases of the tracrRNA (Figure 3-1d) that are equivalent to the nexus 

in the single-guide RNA88. Specifically, nucleotide U59 of the tracrRNA inserts 

into a hydrophobic pocket lined by I473 and its adjacent residues87. It is possible 

that the bulkier phenylalanine residue could interfere with the tracrRNA:Cas9 

association, affecting the involvement of Cas9 in the immunization step of the 

CRISPR-Cas response. This hypothesis is supported by the wild-type phenotype 
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of the I473A mutation (Figure 3-4), since the smaller alanine residue most likely 

will not interfere with the tracrRNA interaction. Another mutation in a residue 

close to I473, K500I, also seems to affect Cas9 target specificity, but not the rate 

of spacer acquisition. Future work will explore the importance of this region in 

Cas9 activity during the different phases of CRISPR-Cas immunity. 

In a recent study89, the E. coli type I-E CRISPR-Cas adaptation machinery 

has been repurposed as a recording device to store information (such as 

environmental signals) in the form of spacers in the CRISPR array. Because the 

adaptation frequency is relatively low, decoding requires deep sequencing of a 

population of cells. This limits the number of stimuli that can be recorded. Using 

hyperactive adaptation machinery such as hCas9 can boost the adaptation 

frequency and thus the recording capacity of such synthetic devices. Moreover, 

combined with introduction of sheared genomic DNA, the hyperactive CRISPR 

adaptation machinery can be used to generate diverse and unbiased gRNA 

libraries in vivo. I speculate that hCas9 is able to sample much larger genomes 

then the type I-E Cas1-Cas2 complex 
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Chapter IV. 

Spacer Acquisit ion and Immunological 

Diversity 

Previous studies have shown that the abundance of each spacer in the 

surviving population is highly uneven. However, the molecular mechanisms 

underlying this bias are poorly understood. Here, I studied the factors that affect 

the distribution of individual spacer sequences after phage infection of cells 

harboring the type II-A CRISPR system from Streptococcus pyogenes. I show 

that spacer patterns are established early during infection and correlate with 

spacer acquisition rates, but not with spacer targeting efficiency. I also show that 

the rate of spacer acquisition depends on unique sequence elements within the 

spacer, which in turn determines the abundance of different spacers within the 

adapted population. Our results elucidate a fundamental mechanism behind the 

generation of immunological diversity during the type II CRISPR-Cas response. 
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4.1. An uneven spacer distribution across the phage genome 

In the type II-A CRISPR system from Streptococcus pyogenes, cleavage is 

performed by the crRNA-guided nuclease Cas934, whose catalytic activity 

depends on the recognition of a 5’-NGG-3’ protospacer adjacent motif (PAM)33,34 

Cas9 contains a PAM-interacting domain to recognize this motif33,71 that is not 

only required for target cleavage but also for the acquisition of spacers with the 

appropriate PAM84. 

Besides the presence of a functional PAM, the rules that govern spacer 

acquisition in type II CRISPR-Cas systems are not completely understood. 

Multiple studies have shown an uneven pattern of spacer acquisition, where 

different spacer sequences have markedly different abundances within the 

population of cells that survive phage infection40,84,90. This observation led to the 

hypothesis that some spacers become overrepresented because they are more 

effective at directing targeting and/or cleavage by Cas9 and therefore have a 

selective advantage40. However, even when spacer acquisition was measured 

within 30 minutes of infection, i.e. before the viral lytic cycle is completed and the 

spacers cannot be selected for their abilities to guide DNA destruction, the 

pattern of spacer acquisition is constricted to the viral region that is first injected 

but with highly variable frequencies of acquisition for different spacers sequences 

within this genomic location91. These data suggest that the abundance of a 

spacer in the population of surviving bacteria can be independent of its targeting 

properties and determined solely by its acquisition rate. 
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Here I used the type II-A CRISPR system from Streptococcus pyogenes 

expressed in Staphylococcus aureus RN4220 cells84 to investigate the 

mechanisms behind the pattern of spacer acquisition when cells are infected with 

the staphylococcal phage ϕNM4γ464,84. First, I determined that this pattern is 

remarkably reproducible, with a set of spacer sequences consistently acquired 

at high frequencies. By measuring spacer abundance early and late during 

infection, I show that the frequency of individual spacers is mainly determined 

at the onset of infection and that there is little selection of spacer sequences 

thereafter. This led to the hypothesis that spacer abundance depends on the 

rate of acquisition rather than enhanced Cas9 cleavage activity. I tested this on 

selected spacer sequences at each end of the distribution spectrum by 

performing targeting assays and quantifying CRISPR acquisition of spacer-

length oligonucleotides. These experiments demonstrated that high and low 

abundance spacers have similar targeting abilities but differ dramatically in 

their efficiency of acquisition. I established that the intrinsic spacer sequence 

dictates its acquisition rate, with the sequences proximal to the PAM being 

most critical. Our studies reveal that, for type II-A systems, spacer acquisition 

rates are fundamental to determine the distribution and diversity of the 

CRISPR-Cas immune response. 
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4.2. Spacer distribution is biased and reproducible 

To analyze spacer distribution in the type II-A CRISPR system of S. 

pyogenes (Figure 4-1a) I performed infection assays with lytic phage ϕNM4γ4, 

as described previously92. DNA from surviving cells was used to amplify the 

CRISPR array by PCR and perform next generation sequencing of newly 

acquired spacers. I performed the infection in duplicate and obtained two libraries 

of 2.52 and 2.28 million phage-mapping reads, respectively. Of all the possible 

2,318 NGG-adjacent protospacers on the genome of ϕNM4γ4, 2,096 were 

sampled in both libraries. The frequency of each spacer was normalized as 

reads per million (RPM) and plotted across the phage genome (1 kb bins, Figure 

4-1b). I observed a similar pattern of spacer distribution for each duplicate 

experiment. To determine if the correlation is present not only in the groups of 

spacers within each 1 kb bin, but also at the level of the individual spacer 

sequences, I compared the RPM value for each of the 2,096 spacers (Figure 4-

1c). 
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Figure 4-1. Acquired spacer sequences display a consistent 

distribution pattern. (a) Schematic diagram of the type II-A CRISPR system 

from Streptococcus pyogenes. Arrows indicate the position of the PCR primers 

used to check for spacer integration. (b) Average abundance (in reads per 

million per 1-kb bins, RPM) of φNM4γ4 viral sequences incorporated as spacers 

into the CRISPR array, mapped against location on the phage genome, in 

duplicate (red and green traces). (c) Individual spacers common to the two data 

sets in (b) were plotted with RPM values for replicate 1 on the x axis and 

replicate 2 on the y axis. The dotted line represents the linear regression fit. Ten 

spacers were color-coded based on their abundance (warm colors for low 

abundance and cold colors for high abundance). 
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We found a remarkable correlation of the spacer frequencies in both 

replicas, particularly of the most abundant spacer sequences. I arbitrarily picked 

five spacer sequences with high or low RPM and marked them with different 

colors to follow their abundance over different experiments. This is an effort to 

illustrate the relative consistency in the distribution of individual spacer 

sequences, for example after mapping the spacers across the phage genome in 

our replicates (Figure 4-2a-c). To test if this correlation extends to experiments 

using other phages and type IIA CRISPR-Cas systems, I performed duplicate 

infection experiments of cells containing the S. pyogenes type IIA system with the 

phage ϕ8593 (Figure 4-2d), or cells harboring the type IIA (also known as 

CRISPR317) from Streptococcus thermophilus with ϕNM4γ4 (Figure 4-2e). 

Although I obtained fewer spacer reads in both cases (the efficiency of spacer 

acquisition is reduced under these conditions84), a very strong correlation for 

spacer abundance in the replicas was found. Altogether, these results indicate 

that the abundance of individual spacer sequences within the population of 

surviving cells is relatively constant during the type IIA CRISPR-Cas immune 

response. 
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Figure 4-2. Biased sampling of phage DNA protospacers is a feature 
of other bacteriophages and type II CRISPR systems. (a), (b) 
Abundance (in reads per million, RPM) of φNM4γ4 viral sequences incorporated 
as spacers into the CRISPR array, mapped against location on the phage 
genome, in duplicate (raw data for Figure 4-1b and 4-1c). (c) Overlap of data in 
(a) and (b), zoomed on the first 5kb of the viral genome. Only spacers with RPM 
> 5,000 are shown (d). RPM values of spacers sampled in two replicates during 
infection with lytic phage φ85 of cells harboring the Streptococcus pyogenes 
CRISPR system. (e) RPM values of spacers sampled in two replicates during 
infection with φNM4γ4 of cells harboring the Streptococcus thermophilus type II-
A CRISPR3 system. 
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4.2.1. Effects of DNA cleavage eff iciency on spacer distribution 

In principle, the different but reproducible abundance of spacers could be 

explained by two mutually non-exclusive forces that depend on their individual 

sequences: their inherent frequency of acquisition and/or their efficiency of viral 

targeting. To explore these possibilities, I compared the spacer distribution 30 

minutes after infection, when the great majority of cells have not lysed yet (the 

ϕNM4γ4 viral cycle takes ~ 40 minutes), with the distribution obtained after 16 

hours of infection, a time during which the acquired spacers can be selected 

against or for their targeting properties (Figure 4-3a). 
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Figure 4-3. Spacer distribution due to init ial acquisit ion is not 

perturbed over the course of a l ive phage infection. (a) Diagram of 

assay used to measure the effects of interference efficiency on spacer 

abundance. (b) Average abundance (in reads per million per 1-kb bins, RPM) of 

φNM4γ4 viral sequences incorporated as spacers into the CRISPR array, 

mapped against location on the phage genome, in the early and late time point 

libraries (red and green traces). (c), (d) Abundance (in reads per million, RPM) 

of φNM4γ4 viral sequences incorporated as spacers into the CRISPR array, 

mapped against location on the phage genome in the early and late time point 

libraries (raw data for Figure 4-4). (e) Spacers ranked by decreasing fitness 

(ratio of abundance in late time point divided by abundance in early time point) 
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were order of magnitudes more frequent than other spacers with similar finesses 

(Figure 4-4b). Interestingly, I did not detect a strong positive selection for any 

spacer sequence (the maximum fitness value was 3.3), but there were 14 that 

displayed more than a 100-fold negative selection (Figure 4-4c, Figure 4-3e). On 

average, the acquired spacers have a fitness value close to 1 (Figure 4-4c), with 

approximately half of them displaying fitness higher than 1 and half lower than 1 

(Figure 4-3e). These findings indicate that the relative abundance of spacer 

sequences is determined at their time of acquisition, early during the CRISPR-

Cas immune response, and remains relatively constant during the targeting 

phase of CRISPR immunity. 

We analyzed over 0.72 million spacers for the early time point and 12.3 

million spacers for the late time point, with 1,517 sequences shared between the 

two libraries. I observed a strong correlation for the values obtained at both time 

points for the frequency of each individual spacer (Figure 4-4a) and for their 

overall distribution across the phage genome (Figure 4-3b-d). This result 

suggests that spacer abundance is determined early after infection, and selection 

throughout the recovery of CRISPR-adapted cells has a minimal impact on 

shaping the spacer distribution. To explore this more directly, I calculated the 

fold-increase in abundance from the early time point to the late time point for 

each spacer. This value reflects the fitness of each sequence after its acquisition; 

i.e., the positive or negative selection suffered by a spacer due to its targeting

abilities. I found that the fitness range of the entire spacer repertoire was narrow 

and did not correlate with spacer abundance (Figure 4-4b). For example, our set 

of highly abundant spacers had average finesses close to 1, even though they 



Figure 4-4. The spacer distribution pattern is established early 

during infection. (a) Individual spacers common to the early and late time 

point samples plotted as RPM values against each other. (b) Spacer abundance 

in the live-phage sample (Figure 4-1) as a function of interference efficiency 

(fitness = abundance in late / early time point). (c) The fold increase in 

abundance in the late vs. early sample (fitness, y-axis) mapped across the phage 

genome. The yellow curve represents average fitness in 1-kb bins. 
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along with barcoded leaders were amplified by PCR (Figure 4-5a) and subjected 

to next-generation sequencing. I analyzed 2.00 million spacer reads each with its 

respective barcode that sampled almost all (2,274) of the existing protospacers 

on the ϕNM4γ4 genome (Figure 4-6a-b). To test the barcoded system, I plotted 

the relative abundance versus the number of different barcodes for each 

individual sequence (Figure 4-6c). Assuming that different barcode sequences 

in front of the same spacer are the result of independent events of integration, 

this value reflects how many times a given spacer was acquired during 

4.2.2. Effects of acquisit ion rates on spacer distribution 

To test whether targeting efficiency affects the relative abundance of 

individual spacer sequences, I performed a barcoded, phage-free spacer 

acquisition experiment. For this I used a plasmid-based, modified type IIA 

CRISPR-Cas system (Figure 4-5a) in which a single-repeat CRISPR array was 

preceded by a random 10 nt sequence located 50 bp immediately upstream of 

the repeat, a barcoding strategy I previously used to count independent 

acquisition events92. In addition, expression of the cas1, cas2 and csn2 genes, 

essential for spacer acquisition, is controlled by an anhydrotetracycline-inducible 

promoter, allowing to turn on and off spacer integration84,91. Instead of using a 

live lytic virus, cells harboring this engineered CRISPR-Cas locus were 

transformed via electroporation with ϕNM4γ4 phage DNA, sheared into ~150 bp 

fragments by sonication, in the presence of anhydrotetracycline. After two hours 

the inducer was washed off, DNA was extracted from cells and the CRISPR loci 
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Figure 4-5. Spacer abundance is determined by the rate of 
acquisit ion. (a) Schematic diagram of the modified S. pyogenes CRISPR locus 
showing the location of the leader barcodes and primers (arrows) used to 
quantify the number of independent spacer acquisition events from sheared 
phage DNA. (b) Overlap of spacer distribution during a live phage infection 
(Figure 4-1) and number of barcodes as a measure of acquisition frequency, both 
plotted in 1-kb bins. (c) Comparison between abundance of individual spacers 
during a live phage infection and independent acquisition events from sheared 
phage DNA. 
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We then compared the number of barcodes with the number of reads 

obtained for each spacer sequence in the experiment using live phage 

presented Figure 1. In this way I can determine how much of the spacer 

distribution obtained after viral infection (measured as the average RPM of the 

replica experiments of Figure 4-1) can be explained by the intrinsic rate of 

acquisition of each viral spacer sequence (measured by the number of 

barcodes obtained in Figure 4-6). First I compared the distribution patterns 

across the ϕNM4γ4 genome (Fig. 4-5b). I found very similar distribution 

patterns, with a conservation of most peaks and valleys in both curves (note 

that the RPM and number of barcode values are intrinsically different and 

therefore the curves do not overlap). Next, I plotted both values against each 

other and found a good correlation, in which our ten selected spacers 

maintained their low or high abundance, and with an r2 value of 0.536 (Fig. 4-

5c). This indicates that the distribution of at least half of the spacers acquired 

in response to viral infection can be explained by their intrinsic rate of 

acquisition; i.e. independent of the targeting abilities of the spacer sequence. 

infection. I detected a strong correlation between the abundance of a spacer 

and its number of barcodes, a result that validates the use of barcode count as 

an absolute measure of the acquisition of a given spacer sequence present in 

the ϕNM4γ4 genome. 
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Figure 4-6. Oversampling of phage protospacers is due higher rates 

of acquisit ion. (a) (b) Abundance (in reads per million, RPM) of spacers 

incorporated into the CRISPR array, mapped against location on the phage 

genome, following electroporation of sheared phage DNA (raw data for Figure 4-

5). (c) Abundance of individual spacers following electroporation of sonicated 

phage DNA plotted against barcodes as a measure of the number of times each 

spacer was acquired. 
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4.3. Analysis of spacer sequences that determine the rate of 

acquisit ion 

Our data suggests that the efficiency of the spacer acquisition process, i.e. 

the selection and integration of a PAM-flanked phage sequence that happens 

early during infection, is the most important factor to determine the abundance of 

a spacer sequence during the CRISPR-Cas immune response. If this hypothesis 

is correct, when comparing a high- and low-abundance spacer it would be 

expected that (i) their ability to direct Cas9-mediated DNA cleavage should be 

similar, and (ii) their rate of acquisition should be dramatically different. To test 

these predictions, I selected two spacer sequences that were consistently over- 

and under-represented (the “dark green” and “red” spacers, respectively, in 

Figure 4-1c) in all our assays (Fig. 4-7a). 

We tested the first prediction by comparing the efficiency of in vitro DNA 

cleavage by Cas9 using each of these spacers as guides and I found similar 

cleavage kinetics (Fig. 4-7b and Figure 4-8a-c). Second, I measured the cleaving 

capacity of each of these spacers in vivo, through the quantification of the 

reduction in phage propagation that they mediate (Fig. 4-7c). I did not detect 

significant differences between the spacers, a result that demonstrates that not 

only in vitro, but also in vivo, these sequences provide similar levels of defense. 

Because the sequences I decided to follow in these assays reside in different 

regions of the phage genome, which could be a variable affecting their targeting 

ability91, I repeated these assays with two other sequences that overlap with 
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each other but have markedly dissimilar abundances (“light blue” and “tan” in 

Figure 4-1c, Figure 4-9a). Again, I found no differences in DNA cleavage in vitro 

(Figures 4-8a,d,e and 4-9b) or in vivo (Fig. 4-9c). All these results corroborate the 

prediction that DNA targeting does not dictate spacer abundance. 

Figure 4-7. High and low abundance spacers have similar 
interference eff iciencies. (a) Sequences of a high abundance (Figure 4-1, 
dark green) and low abundance (Figure 4-1, red) spacer, following infection of 
CRISPR cells with live phage. (b) Quantification of in vitro cleavage of a 2-kb 
phage target by various concentrations of Cas9 loaded with sgRNAs 
corresponding to the two spacers in (a). (c) Phage propagation measured as the 
number of plaque forming units (pfu) per ml of stock, on cells without CRISPR or 
cells loaded with Cas9 and a spacer targeting either one of the phage 
protospacers in (a). 



91	

Figure 4-8. High and low abundance spacers have similar 
interference eff iciencies. (a) Location on the phage genome of the spacers 
colored dark green, red, light blue and tan in Figure 4-1. (b) Agarose gels in 
triplicate of in vitro cleavage products of 2-kb phage targets by various 
concentrations of Cas9 loaded with sgRNAs corresponding to the four spacers in 
(a). The tested Cas9 concentrations were 6.26, 12.5, 25, 50 and 100nM. 
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Figure 4-9. Partial ly overlapping spacers can provide similar 

interference eff iciencies, in spite of highly dissimilar abundances. 

(a) Sequence of two high abundance (Figure 4-1, light blue) and low abundance 

(Figure 4-1, tan) overlapping spacers. (b) Quantification of in vitro cleavage of a 

2-kb phage target by various concentrations of Cas9 loaded with sgRNAs 

corresponding to the two spacers in (a). (c) Phage propagation measured as the 

number of plaque forming units (pfu) per ml of stock, on cells without CRISPR or 

cells loaded with Cas9 and a spacer targeting either one of the phage 

protospacers in (a). (d) Relative acquisition rates (%) following electroporation of 

a single dsDNA oligonucleotide containing both protospacers. 
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To test the second prediction, that super-spacers have an intrinsic higher 

rate of acquisition, I designed an assay to compare the relative frequency of 

CRISPR incorporation of different sequences. I co-transformed staphylococci 

carrying the engineered type IIA CRISPR-Cas locus used for the acquisition of 

spacers from sheared phage DNA with annealed, dsDNA oligonucleotides at 

equimolar concentrations. Transformation was followed by next-generation 

sequencing of the amplified CRISPR array to quantify the relative frequency of 

acquisition for each transformed oligonucleotide. First, I compared the acquisition 

of the selected over- and under-represented sequence (“dark green” and “red” 

sequences, respectively, in Figure 4-1c), using oligonucleotides containing only 

the 30-nt spacer sequence followed by the 3-nt PAM (Figure 4-7a). I observed a 

striking difference in the number of reads, with ~ 96 % of the reads from oligo-

derived spacers matching the highly abundant sequence (Fig. 4-10a). 



Figure 4-10. Spacer sequences affect their rate of acquisit ion. 

Relative acquisition rates (%) of spacers following electroporation of various pairs 

(a)(c) or a set of 10 (c) dsDNA oligonucleotides mixed equimolar ratios. 

To corroborate this finding, I performed spacer-specific PCR after transformation 

using each of the spacer sequences as reverse primers to amplify the CRISPR 

array. Consistent with our next generation sequencing data, I was able to detect 

a strong PCR product only when using the highly acquired spacer as reverse 

primer (Fig. 4-11a). I repeated these assays using extended oligonucleotides 

harboring additional (15-nt) phage sequences flanking the spacers and obtained 

similar results (Figure 4-11a-c). In addition, I compared the frequency of 

acquisition of another high- and low-abundance spacer pair (the “light green” and 

“orange” spacers in Figure 1c, respectively), and observed the same differential 

integration into the CRISPR array (Fig. 4-10a). Finally, I measured acquisition of 

the two overlapping spacers with dramatically different abundances (Figure 4-9a) 

and found that even when a single dsDNA oligonucleotide containing both 

sequences is used, mostly the abundant spacer sequence is acquired (Figure 4-

9d). Altogether, these experiments demonstrate that for a given spacer 

sequence, its efficiency of acquisition but not its targeting capabilities, correlate 

with its abundance in the population of CRISPR-resistant cells. 
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Figure 4-11. Sequence determinants within the protospacer 
sequence affect the rate of acquisit ion. (a) Qualitative PCR to assess the 
integration of a low abundance (Figure 4-1, red) and high abundance (Figure 4-1, 
dark green) spacer after electroporation of corresponding dsDNA 
oligonucleotides mixed in a 1:1 molar ratio. The oligonucleotides tested were 
33bp long (protospacer + PAM only) or 63bp long (15bp upstream + protospacer 
+ PAM + 15bp downstream). Reverse primers anneal on the integrated spacers. 
(b) Sequence of oligonucleotides containing the protospacers in (a) with 15bp 
upstream and downstream of the protospacer swapped or not. (c) Relative 
acquisition rates (%) of spacers in (b) following electroporation of pairs of dsDNA 
oligonucleotides mixed equimolar ratios. (d) Unweighted probability Logo of the 
top 1% protospacers generated using kpLogo (showing only 10bp upstream of 
the PAM). Nucleotides shown on top were enriched, while the ones shown on the 
bottom were depleted in the spacers used to create the logo. Enriched or 
depleted consensus sequences are shown to the right.
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The above results suggest that there must be some element in the 

sequence of super-spacers that increases their rate of acquisition. To test this, I 

divided the sequence of the spacers into PAM-distal, middle and PAM-proximal 

10-nt regions (Figure 4-10a) and swapped these regions in the super-spacer and 

low abundance spacer sequences. Electroporation with different pairs of 

swapped oligos, followed by next generation sequencing of expanded CRISPR 

arrays revealed that the presence of the 10-nt PAM-proximal region of the super-

spacer was necessary and sufficient to ensure high levels of acquisition of a 

dsDNA oligo (Figure 4-10a). Moreover, the addition of the 10-nt PAM-proximal 

region of the “dark green” highly acquired spacer, but not the middle or PAM-

distal sequences, was also sufficient to increase the frequency of acquisition of 

the “orange” low-abundance spacer (Figure 4-10a). To corroborate these 

findings, I co-transformed 10 different dsDNA oligonucleotides containing 

different combinations of 10-nt regions of the “dark green” and “red” spacer 

sequences (Figure 4-10b). Again, I found that dsDNA oligos containing the 10-nt 

PAM-proximal sequence of the highly acquired spacer were integrated into the 

CRISPR array at significantly higher frequencies than those having the same 

region from the low-abundance spacer. Finally, due to the impossibility of testing 

every acquired spacer via oligo transformation, I evaluated the importance of this 

sequence within the entire set of acquired spacers. To do this, I used kpLogo94 to 

look for a conserved motif in the PAM-proximal 10-nt sequence of either the most 

abundant spacers (in the top 1 %, of average spacer reads in Fig. 1c). This 
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analysis yielded two motifs, corresponding to the enriched and depleted 

consensus within this sequence (Figure 4-11d). I appended these motifs to the 

low abundance (“red”) spacer to check for their influence in spacer acquisition. I 

found that the PAM-proximal motif derived from highly abundant spacers 

dramatically increased spacer acquisition (Figure 4-10c). The overall results of 

these experiments demonstrate that specific DNA sequences located 

immediately upstream of the PAM have important effects on the frequency of 

acquisition of the 30-nt spacer determined by that PAM. 

4.4. Discussion 

Early studies of the type II CRISPR-Cas response to phage infection have 

shown that the population of surviving bacteria has a diverse content of new 

spacer sequences, some much more abundant than others40,90,91. In principle, 

the abundance of a spacer should be determined by two factors: its frequency of 

integration into the CRISPR array and its targeting capabilities95. Here I found 

that the abundance of most spacers is determined early during infection, when 

positive or negative selection for good or bad targeting, respectively, is still not a 

factor at play. In addition, there is a strong correlation between the abundance of 

most spacers acquired during infection with live phage and their abundance after 

transformation with sheared phage DNA, again, when targeting is not required for 

survival. Finally, I showed that the frequency of most spacers in the surviving 

population correlates directly with their frequency of acquisition. 
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The data presented here show that the spacer abundance that emerges 

after the type II CRISPR-Cas immune response is basically determined shortly 

after infection, depending mostly on the acquisition rate of each acquired 

sequence and not on its properties as a guide for Cas9 DNA cleavage. This is 

also the prediction of theoretical analysis95. Modeling of the CRISPR-Cas 

immune response determined that high spacer acquisition probabilities will lead 

to greater diversity in the spacer distribution, while strong selection of spacers 

providing better phage clearance will tend to homogenize the population of 

spacers in favor of the most effective one (“winner takes all” situation). Previous 

studies in our lab that evaluated the effect of the concentration of CRISPR-

adapted cells on immunity91,96 could provide an explanation for such model for 

the impact of spacer acquisition on their distribution. The results showed that at 

very low concentrations of immune cells there is a marked effect on the recovery 

of these immune cells after infection. In this situation, equivalent to low 

acquisition rates, leads to the positive selection of spacers that are better at 

targeting due to their position in the CRISPR array96 or because they guide Cas9 

to the phage genome immediately after its injection91. On the other hand, when 

CRISPR-immune cells have high concentrations, the targeting efficiency of the 

spacers does not impact the host’s growth after phage addition. Although both of 

these studies investigated single-spacer cultures, I believe that a similar scenario 

can happen during the infection of naïve cultures that acquired multiple 

(thousands) of new spacers. The high rate of acquisition of certain sequences 
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most of the immunity to the population, and no further selection of these 

sequences due to their targeting efficiency will take place. 

Our findings showed that spacer abundance is mostly determined at the 

acquisition stage of type II CRISPR-Cas immunity. The uneven distribution of 

different spacer sequences could be in principle explained by the existence of 

phage genomic regions that are better substrates for spacer acquisition. Indeed, 

this is the case for the regions that first enter the host cell91 and is a possible 

explanation for the clustering of highly abundant spacers from the 5’ end of the 

would effectively create a high concentration of immune cells that will provide 

ϕNM4γ4 genome (Figure 4-2a-b). However, even within this region (and also 

close to the cos site in ϕ12γ391) there is a wide spectrum of spacer 

abundance. Here I showed that one explanation for these different abundances 

is the intrinsic frequency of acquisition of a given spacer sequence. 

Mutagenesis analysis revealed that the 10-nt sequence at the PAM end of a 

spacer is determinant for its frequency of acquisition and that there are 

conserved nucleotides within this region critical for the acquisition process. The 

molecular mechanisms behind this preferential acquisition are intriguing. The 

current model of spacer acquisition by type II CRISPR-Cas systems involves 

three steps: phage DNA is degraded by AddAB to create the spacer 

substrates91,97, these are selected and processed by a Cas9-Cas1-Cas2-Csn2 

complex84 and finally the processed spacer sequence is integrated by the 

Cas1-Cas2 integrase into the CRISPR array98. Future experiments will 
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investigate the impact of specific spacer sequences in the efficiency of these 

steps. In summary, our study begins to uncover the rules that govern the 

generation of immunological diversity during the type II CRISPR-Cas response to 

phage infection, revealing that spacer acquisition, a unique feature of these 

systems, is a key determinant to the structure of the surviving population. 
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Chapter V. 

Perspectives 

CRISPR-Cas is a DNA-encoded, sequence-specific immune system that 

protects bacteria and archaea against phages and other genetic elements. The 

adaptive feature of CRISPR-Cas immune systems relies on their ability to 

memorize DNA sequences from invading molecules (acquisition) and allows 

them to rapidly adapt against new threats. While recent research has drastically 

improved our understanding of adaptation, future studies will continue to address 

outstanding questions about the molecular mechanisms and technological 

applications of CRISPR, in general, and spacer acquisition, in particular. 

Molecularly, the functions of Cas1 and Cas2, two signature proteins 

present in all CIRSPR systems, have been thoroughly investigated. In the type I 

CRISPR system of E. coli, the Cas1-Cas2 complex is bound to a partially 

duplexed dsDNA (pre-spacer)79. The complex recognizes specific sequences 

upstream the CRISPR array to ensure leader-polarized spacer integration. This 

process is facilitated by host factors such as IHF (integration host factor)99,100. 

Similar findings were reported in type II-A CRISPR system of Streptococcus 

pyogenes96,101,102.  Integration of the spacer into the arrays is mediated by the 

integrase activity of Cas179 and the presence of a correct PAM in the pre-spacer 

facilitates integration in the right orientation103.  
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By contrast, little is known about the other Cas proteins involved in spacer 

acquisition. In type I-C of Bacillus halodurans, Cas4 has been shown to enhance 

the formation of functional memory by assisting PAM-compatible spacer 

selection104. In type II, Csn2 and Cas9 form a complex with Cas1 and Cas284 and 

are involved in adaptation5. Structural studies have revealed that Csn2 forms a 

ring-like structure around DNA, suggesting that it might recruit other proteins 

involved in spacer selection or integration63. In addition, the tracrRNA is also 

required84, suggesting that the apo-Cas9 structure77, very different from holo-

Cas971, does not have the correct conformation to participate in spacer 

acquisition. In addition to destroying the invading virus, Cas9 specifies PAM-

flanking viral sequences during adaptation to ensure only functional spacers are 

acquired. This is in contrast to type I, where the Cas1-Cas2 complex is 

necessary and sufficient to direct incorporation of new spacers with correct 

PAMs. Therefore, the motif is sensed by only one protein in type II (Cas9)89, but 

by different protein complexes in type I: Cas1-Cas2 during acquisition and the 

Cascade complex during interference105. Recognition of the PAM by the Cascade 

leads to accelerated integration of new spacers with correct PAMs during primed 

acquisition. By contrast, priming is yet to be shown to be a feature of type II 

CRISPR systems. Future work will address these and other mechanistical and 

molecular aspects of spacer acquisition in different CRISPR-Cas systems. 

In recent studies89,106, the E. coli type I-E CRISPR-Cas adaptation 

machinery has been repurposed as a recording device to store information (such 
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as environmental signals) in the form of spacers in the CRISPR array. Because 

the adaptation frequency is relatively low, decoding requires deep sequencing of 

a population of cells. This limits the number of stimuli that can be recorded. Using 

hyperactive adaptation machinery such as hCas9 can boost the adaptation 

frequency and thus the recording capacity of such synthetic devices. Moreover, 

combined with introduction of sheared genomic DNA, the hyperactive CRISPR 

adaptation machinery is able to sample much larger genomes than the type I-E 

Cas1-Cas2 complex and can be used to generate diverse and unbiased gRNA 

libraries in vivo. Further optimization of CRISPR-based molecular recording 

technologies, such as TRACE106, will enable high throughput parallel temporal 

recordings of biological states, such as fluctuations in gene expression or 

metabolite concentration. 

Besides these direct applications of spacer acquisition, CRISPR has 

emerged as a powerful DNA-editing technology used across all fields of 

biomedical research. Furthermore, CRISPR is expected to have tremendous 

contributions to agriculture and treatment of human diseases. In the U.S., the first 

clinical trials of CRISPR to treat genetic disorders like beta-thalassemia and 

sickle cell disease are expected to begin in 2018. 
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Chapter VI. 

Material and Methods 

Bacterial strains and growth condit ions 

Cultivation of Staphylococcus aureus RN422072 was carried out in heart infusion 

broth (BHI) at 37°C. Whenever applicable, media were supplemented with 

chloramphenicol at 10 μg/mL, erythromycin at 10 μg/mL or spectinomycin at 

250 μg/mL to ensure maintenance of pC194, pE194 and pLZ12 derived 

plasmids, respectively, or 5 mM CaCl2 for phage adsorption. 

Directed evolution of cas9  

The cas9 gene was mutagenized at a low rate of 0-4.5 mutations/kb by error 

prone PCR using GeneMorph II Random Mutagenesis Kit. The mutant cas9 

amplicons were cloned into a backbone plasmid containing a spacer matching a 

TAG-adjacent target on ϕNM4γ4. The library was subjected to soft-agar lytic 

phage infection and surviving colonies were re-streaked on fresh plates. The 

TAG-cleaving efficiency of surviving colonies was individually assessed by phage 

propagation assays. 

Spacer acquisit ion assay 

Spacer acquisition assays of cells harboring the full CRISPR system of 

Streptococcus pyogenes were performed as described previously, both in liquid 
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and on plate84. For plate acquisition assays, overnight cultures were launched 

from single colonies and diluted to equal optical densities. CRISPR arrays were 

amplified by PCR with primer pairs L400-H050 or L400-H052 (Supplementary 

table S3). 

Bacterial growth curves 

Overnight cultures were launched from single colonies and diluted 1:100 in BHI. 

After 1 hour of growth, optical density at 600 nm (OD600) was measured for each 

culture, and samples were brought to equal cell densities and loaded into 96-well 

plates along with ϕNM4γ4 at MOI =1. Measurements were taken every 10 

minutes for 24 hours. 

Cas9 target cleavage assay 

Cas9 was expressed and purified as previously described (Jinek et al., 2012). 

The I473F Cas9 expression vector was cloned by around-the-horn mutagenic 

PCR. crRNA and tracrRNA were transcribed using T7 RNA polymerase from 

single-stranded DNA templates and hybridized as previously described34,67. L2 

oligonucleotides (Supplementary table S3) were hybridized to generate the two 

different target DNA duplexes and native PAGE-purified before 5’ radiolabeling 

using [γ-32P]-ATP (Perkin-Elmer) and T4 polynucleotide kinase (New England

Biosciences). Cleavage assays were carried out essentially as previously 

described (Sternberg et al., 2014). In brief, Cas9 and crRNA:tracrRNA were 
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allowed to form an RNP complex before addition of target DNA. Final 

concentration of RNP was 100 nM and target was 1 nM. Reactions were 

incubated at room temperature, and aliquots were taken at 0.25, 0.5, 1, 2, 5, 10, 

30, and 60 minutes and quenched by addition of an equal volume of 95% 

formamide and 50 mM EDTA. Samples were run on 10% urea-PAGE, visualized 

by phosphorimaging, and quantified using ImageQuant (GE Healthcare). 

cleavage by Cas9 of various targets was assessed using the Guide-It Complete 

sgRNA Sreening System from Clontech (Cat. No. 632636) with minor 

modifications. Cas9 and the sgRNAs were pre-incubated for 5 min at 37C in 

equimolar ratio and then diluted into the cleavage reaction to final concentrations 

of 100, 50, 25, 12.5 and 6.25nM. All reactions contained 10nM of a phage-

derived PCR template with the target site. All reactions were stopped after 

5 minutes by heat inactivation at 80C for 5 minutes and stored at -80C until ready 

to be run on an agarose gel. 

Phage Interference Assay 

Overnight cultures were launched from single colonies. Serial dilutions of a stock 

of phage φNM4γ464 were spotted on fresh soft heart infusion agar (HIA) lawns of 

targeting cells containing chloramphenicol 10 μg/ml and 5 mM CaCl2. Plates 

were incubated at 37 °C overnight and interference efficiency was measured in 

plaque forming units (pfu). 
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Acquisit ion from live phage 

Acquisition from live phage in cells harboring the CRISPR system of 

Streptococcus pyogenes (plasmid pWJ40) or CRISPR3 of Streptococcus 

thermophilus (pRH200) was performed as described previously84. In Figure 4-3 

and 4-4, plasmid pWJ40* containing randomized leader barcodes was used 

instead of pWJ4092. The unweighted probability Logo of the top 1% protospacers 

was generated using kpLogo94. 

Acquisit ion from shredded phage DNA  

Phage DNA was shredded by sonication to fragments of ~150bp as described91. 

Following dialysis, 100μg of phage DNA was electroporated into competent S. 

aureus cells carrying plasmids pRH317 and pRH318*. Cells were recovered for 

2h in BHI supplemented with anhydrotetracycline at 1μg/μl. 

Acquisit ion from dsDNA oligos 

dsDNA substrates were obtained by annealing ssDNA oligos in Duplex Buffer 

from IDT. Following dialysis, 100nm of each competing dsDNA substrate were 

mixed and electroporated in competent S. aureus cells carrying plasmids 

pRH223 and pRH24084. Cells were recovered for 2h in BHI supplemented with 

anhydrotetracycline at 1μg/μl. Need to write the electroporated oligos for all 

samples either here or in a table. 
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High-throughput sequencing 

Plasmid DNA was extracted from adapted cultures. 200 ng of plasmid DNA was 

used as template for Phusion PCR to amplify the CRISPR locus with primer pairs 

H370-H371 (Figure 4-1, 4-2d), H180-B153 (Figure 4-2e), H370-H366 (Figure 4-5, 

early timepoint), H372-H366 (Figure 4-5, late timepoint) and H186-H366 (oligo 

electroporation). Following gel extraction and purification of the adapted bands, 

samples were subject to Illumina MiSeq (Figures 4-1, 4-2, 4-5, 4-6, 4-7) or 

NextSeq (Figures 4-3, 4-4) sequencing. Data analysis was performed in Python: 

first, all newly acquired spacer sequences were extracted from raw MiSeq 

FASTA data files. Next, the frequency, number of different barcodes, the phage 

target location, and the flanking PAM were determined for each unique spacer 

sequence. Analysis was finished in Excel. 

On-plate spacer acquisit ion assay 

To detect individual adapted colonies on a plate, cells from overnight cultures 

were mixed with phage at a m.o.i. value of 1 in top agar containing appropriate 

antibiotic and 5 mM CaCl2. The mixture was poured on BHI plates with antibiotic 

and incubated at 37 °C overnight. Subsequently, colonies that survived phage 

infection were re-streaked on fresh BHI plates in order to remove contaminating 

virus and dead cells. Plates were incubated at 37 °C overnight. To check for 

spacer acquisition, individual colonies were resuspended in lysis buffer (250 mM 

KCl, 5 mM MgCl2 50 mM Tris-HCl at pH 9.0, 0.5% Triton X-100), treated with 50 
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ng μl−1 lysostaphin and incubated at 37 °C for 5 min, then 98 °C for 5 min. 

Following centrifugation (16,000g), a sample of the supernatant was used as 

template for TopTaq PCR amplification with primers L400 and H050. The PCR 

reactions were analyzed on 2% agarose gels (Fig. 2-1a). 

Spacer Acquisit ion Enrichment PCR 

Overnight cultures launched from single colonies were diluted 1:1,000 into a 

fresh 10-ml culture of BHI containing appropriate antibiotic and 5 mM CaCl2. 

When the cultures reached D600 nm of 0.4, depending on the experiment, they 

were either infected with phage MOI value of 1 (Fig. 2-1b) or induced with 1 μg 

ml−1 anhydrotetracycline (Fig. 2-1c). After 16 h, plasmids carrying the CRISPR 

systems were extracted using a slightly modified QIAprep Spin Miniprep Kit 

protocol: the pelleted bacterial cells were resuspended in 250 μl buffer P1 

containing 50 ng μl−1 lysostaphin and incubated at 37 °C for 1 h, followed by the 

standard QIAprep protocol. 100 ng of plasmid DNA was used to amplify the 

CRISPR locus using Phusion DNA Polymerase (New England Biolabs) with the 

following primer mix: 3 parts JW8 and 1 part each of JW3, JW4 and JW5 

(Extended Data Table 4). The following cycling conditions were used: (1) 98 °C 

for 30 s; (2) (for 30 times) 98 °C for 10 s, 64 °C for 20 s, 72 °C for 10 s; (3) 72 °C 

for 5 min. The PCR reactions were analyzed on 2% agarose gels. To sequence 

individual spacers, the adapted bands were extracted, gel-purified and cloned via 

Zero Blunt TOPO PCR Cloning Kit (Invitrogen). CRISPR loci of individual clones 
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were checked for expansion of the arrays by PCR using the primers listed above 

and sent for sequencing. 

Phage adsorption assay 

The phage adsorption assay was performed as described previously30 with 

minor modifications. Cells were grown in BHI and 10 mM CaCl2 to a D600 nm 

(OD600) of 0.4. The phage solution was prepared at 106 plaque-forming units 

(p.f.u.) per ml and 100 µl of this was added to 900 µl of cells. The mixture was 

incubated for 10 min at 37 °C to allow adsorption of the phage to the cellular 

membrane. The mixture was centrifuged for 1 min at 16,000g and the number of 

phage particles left in the supernatant was determined by phage titer assay. 

Plasmid construction 

Construction of pWJ40 was described elsewhere17. For the construction of 

pC194-derived and pE194-derived plasmids, cloning was performed using 

chemically competent S. aureus cells, as described previously17. The Δcas1 

(pRH059), Δcas2 (pRH061) and Δcsn2 (pRH063) mutants were constructed by 

one-piece Gibson assembly31 from pWJ40 using the pairs of primers H016–

H017, H018–H019, H020–H021, respectively (Extended Data Table 4). Plasmid 

pRH087 containing the wild type cas genes of S. pyogenes was obtained by 

inserting the first spacer of S. pyogenes (annealed primers H049 and H050 

containing compatible BsaI overhangs) in pDB184 using BsaI cloning32. BsaI 
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cloning was also used to construct pRH079 and pRH233 by inserting a ϕNM4γ4 

targeting spacer (annealed primers H029 and H030) into pDB114 and pDB184, 

respectively. Plasmid pRH200 harbours the wild-type CRISPR3 system from S. 

thermophilus LMD-9 amplified with H168 and H169 from genomic DNA. The 

fragment was inserted on pE194 via Gibson assembly using H166 and H167. 

pRH213 was constructed by replacing Cas9Sp on pRH087 with Cas9St from 

pRH200 using the primer pairs H232–H233 and H231–H234, respectively. 

pRH214 was constructed by replacing Cas9St on pRH200 with Cas9Sp from 

pRH087 using the primer pairs H227–H230 and H228–H229, respectively. 

pGG32 was created by reducing the CRISPR locus of pWJ40 to a single repeat. 

This was accomplished by ‘round the horn’ PCR33 using primers oGG82 and 

oGG83, followed by blunt ligation. pRH228 was constructed by replacing Cas9Sp 

on pGG32 with Cas9St from pRH200 using the primer pairs H232–H233 and 

H231–H234, respectively. pRH223 was constructed as a three-piece Gibson 

assembly combining TetR+ptet from pKL55-iTet (primers B534 and B616), 

pE194 (primers B532 and B617) and the cas1, cas2, csn2 genes and the array 

from pGG32 (primers H176–H177). pRH231 was constructed from pGG32 by 

one-piece Gibson assembly with primers H289–H290. pRH234 contains Cas1 

E220A and was constructed via one-piece Gibson assembly from pRH223, 

respectively, using the primer pair H312–H313. pRH227 was constructed from 

pGG32 via two sequential single-piece Gibson assemblies: first, D10A was 

introduced with B337–B338 and second, H840A was introduced with B339–
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B340. pRH229 was constructed via one-piece Gibson assembly from pGG32 

using the primer pair H276–H277. Plasmids pRH240, pRH241, pRH242, pRH243 

and pRH244 were constructed by one-piece Gibson assembly with primers 

H237–H238 from pGG32, pRH228, pRH227, pRH229 and pRH231, respectively. 

pRH245 was constructed from pRH241 via two sequential single-piece Gibson 

assemblies: first, D10A was introduced with H336–H337 and second, H847A 

was introduced with H338–H339. Plasmid pRH317 was constructed by deleting 

the CRISPR leader and array from pRH22384 via a one-piece Gibson assembly 

reaction with primer pair JM126-JM127. Plasmid pRH318 was constructed by a 

two-piece Gibson assembly reaction from pRH24084 and pLZ12 with primer pairs 

H558-H559 and H555-H557, respectively. Plasmid pRH318* (containing 

randomized leader barcodes) was constructed by a two-piece Gibson assembly 

with primers pairs H378-H294 and H379-H293. Plasmid pRH248, pRH249, 

pRH328 and pRH328 were constructed BsaI cloning as described in Heler 

Nature with annealed oligo pairs H433-H434, H435-H436, H641-H642, and 

H643-H645, respectively. 

Isolation and sequencing of ϕNM4γ4

For the initial isolation of ϕNM4, supernatants from overnight cultures of S. 

aureus Newman were filtered and used to infect soft agar lawns of TB4:: ϕNM1,2 

double lysogens. A single plaque was picked and then plaque-purified in two 

additional rounds of infection using TB4 soft agar lawns, and subsequently used 
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to lysogenize TB4. For the resultant lysogen, specific primers were used to verify 

the presence of ϕNM4 and the absence of ϕNM1,2 by colony PCR. High titer 

lysates of ϕNM4 (∼1011 p.f.u. per ml) were then prepared from this lineage and 

used for infection of TB4/pGG9 soft agar lawns harboring spacer 2B17. An 

escaper plaque was picked and then plaque-purified in two additional rounds of 

infection using TB4/pGG9 soft agar lawns. The resultant ϕNM4γ4 phage 

exhibited a clear plaque phenotype and was used to prepare a high titre lysate 

from which DNA was purified, deep sequenced, and assembled as described 

previously. The full sequence of the ϕNM4γ4 has been deposited in GenBank 

under accession number KP209285 and includes a 2,784 bp deletion 

encompassing the C-terminal 80% of the ϕNM4 cI-like repressor gene. 

Protein purif ication of Cas9 

pMJ806 (wild-type Cas9) plasmid was obtained from Addgene. The proteins 

were purified as described before6 with minor modifications as follows. The 

proteins were expressed in E. coli BL21 Rosetta 2(DE3) codon plus cells (EMD 

Millipore). Cultures (2 litres) were grown at 37 °C in Terrific Broth medium 

containing 50 μg ml−1 kanamycin and 34 μg ml−1 chloramphenicol until the 

D600nm reached 0.6. The cultures were supplemented with 0.2 mM isopropyl-1-

thio-β-D-galactopyranoside and incubation was continued for 16 h at 16 °C with 

constant shaking. The cells were collected by centrifugation and the pellets 

stored at −80 °C. All subsequent steps were performed at 4 °C. Thawed bacteria 
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were resuspended in 30 ml of buffer A (50 mM Tris–HCl pH 7.5, 500 mM NaCl, 

200 mM Li2SO4, 10% sucrose, 15 mM imidazole) supplemented with complete 

EDTA free protease inhibitor tablet (Roche). Triton X-100 and lysozyme were 

added to final concentrations of 0.1% and 0.1 mg ml−1, respectively. After 30 

min, the lysate was sonicated to reduce viscosity. Insoluble material was 

removed by centrifugation for 1 h at 16,200g in a Beckman JA-3050 rotor. The 

soluble extract was bound in batch to mixed for 1 h with 5 ml of Ni2+-

Nitrilotriacetic acid-agarose resin (Qiagen) that had been pre-equilibrated with 

buffer A. The resin was recovered by centrifugation, and then washed extensively 

with buffer A. The bound protein was eluted step-wise with aliquots of IMAC 

buffer (50 mM Tris-HCl pH 7.5, 250 mM NaCl, 10% glycerol) containing 

increasing concentrations of imidazole. The 200 mM imidazole elutes containing 

the His6-MBP tagged Cas9 polypeptide was pooled together. The His6-MBP 

affinity tag was removed by cleavage with TEV protease during overnight dialysis 

against 20 mM Tris-HCl pH 7.5, 150 mM KCl, 1 mM TCEP and 10% glycerol. The 

tagless Cas9 protein was separated from the fusion tag by using a 5 ml SP 

Sepharose HiTrap column (GE Life Sciences). The protein was further purified by 

size exclusion chromatography using a Superdex 200 10/300 GL in 20 mM Tris 

HCl pH 7.5, 150 mM KCl, 1 mM TCEP, and 5% glycerol. The elution peak from 

the size exclusion was aliquoted, frozen and kept at −80 °C. 
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Plasmid pKW01 (wild-type Cas1) was constructed by through amplification of 

pWJ40 as a template for polymerase chain reactions (PCRs) to clone Cas1 into 

pET28b-His10Smt3 using the primers PS192 and PS193 (Extended Data Table 

4). Full sequencing of cloned DNA fragment confirmed perfect matches to the 

original sequence. The pKW01 plasmid was transformed into E. coli BL21 (DE3) 

Rosetta 2 cells (EMD Millipore). Cultures were grown and protein was purified by 

Ni-affinity chromatography step, as mentioned before in Cas9 purification. The 

200 mM imidazole elutes containing the His10-Smt3 tagged Cas1 polypeptide 

was pooled together. The His10-Smt3 affinity tag was removed by cleavage with 

SUMO protease during overnight dialysis against 50 mM Tris-HCl pH 7.5, 250 

mM NaCl, 20 mM imidazole and 10% glycerol. The tagless Cas1 protein was 

separated from the fusion tag by using a second Ni-NTA affinity step. The protein 

was further purified by size exclusion chromatography using a Superdex 200 

10/300 GL in 20 mM Tris HCl pH 7.5, 500 mM KCl, 1 mM TCEP, and 5% 

glycerol. The elution peak from the size exclusion was aliquoted, frozen and kept 

at −80 °C. 

Protein purif ication of Cas2 

The sequence encoding Cas2 was PCR amplified with primers PS334 and 

PS335 from pWJ40 and inserted into a pET-His6 MBP TEV cloning vector 

(Addgene Plasmid number 29656) using ligation independent cloning (LIC). 

Sequencing of the resultant plasmid (pPS059) confirmed the matches to the wild-

Protein purif ication of Cas1 
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type sequence. The protein was expressed and purified following the same 

procedure as that for Cas9. 

Protein purif ication of Csn2 

Plasmid pPS060 was constructed by through amplification of pWJ40 as a 

template for polymerase chain reactions (PCRs) to clone Csn2 into pET28b-

His10Smt3 using the primers PS336 and PS337. Full sequencing of cloned DNA 

fragment confirmed perfect matches to the original sequence. Csn2 was 

expressed and purified following the same method as that of Cas1. Previously 

Csn2 was shown to form a tetramer34. Protein concentrations for all the 

purifications were determined by using the Bradford dye reagent with BSA as the 

standard. 

Protein purif ication of Cas9–Cas1–Cas2–Csn2 complex 

pKW07 (His10-Cas9–Cas1–Cas2–Csn2) was constructed by amplification of 

pWJ40 with primers PS199/PS202 and pET16b (Novagen) with primers 

PS200/PS203, followed by Gibson assembly of the fragments. Full sequencing of 

cloned DNA fragment was done to confirm perfect matches to the original 

sequence. The proteins were expressed in E. coli BL21 Rosetta 2(DE3) codon 

plus cells (EMD Millipore). Cultures were grown and protein was purified by Ni-

affinity chromatography step, as mentioned before in Cas9 purification with minor 

modifications. The 200 mM imidazole eluates were dialysed overnight against 20 
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mM Tris-HCl pH 7.5, 150 mM KCl, 1 mM TCEP and 10% glycerol and subjected 

to mass spectrometry for the identification of the co-purifying proteins. pKW06 

(Cas9–Cas1–Cas2–Csn2–His6) was constructed by amplification of pWJ40 with 

primers PS204/PS205 and pET23a (Novagen) with primers PS206/PS207 

(Extended Data Table 4), followed by Gibson assembly of the fragments. Full 

sequencing of cloned DNA fragment was done to confirm perfect matches to the 

original sequence. The proteins were expressed in E. coli BL21 Rosetta 2(DE3) 

codon plus cells (EMD Millipore). Cultures were grown and protein was purified 

by Ni-affinity chromatography step, as mentioned before in Cas9 purification with 

minor modifications. The 200 mM imidazole eluates were dialysed overnight 

against 20 mM Tris-HCl pH 7.5, 150 mM KCl, 1 mM TCEP and 10% glycerol. The 

proteins were further purified using a 5 ml SP Sepharose HiTrap column (GE Life 

Sciences), eluting with a linear gradient of 150 mM–1 M KCl. 

Oligonucleotides Used 

Name Sequence 
B337 GACGCTATTTGTGCCGATAGCTAAGCCTATTGAGTATTTC 
B338 GAAATACTCAATAGGCTTAGCTATCGGCACAAATAGCGTC 
B339 GGAAACTTTGTGGAACAATGGCATCGACATCATAATCACT 
B340 AGTGATTATGATGTCGATGCCATTGTTCCACAAAGTTTCC 
B532 CTTTTTCCGTGATGGTAACTGTTCATATTTATCAGAGCTCGTG 
B534 GAGCTCTGATAAATATGAACAGTTACCATCACGGAAAAAGGTTATG 
B616 TTATTTTAATTATGCTCTATCAA 
B617 GAGTGATCGTTAAATTTATACTGC 
H001 GGGCACTTTTTCACTCATTTTAGCTTCCTTAGCTCCTGAAAATC 
H002 GGTGCCAGCCAATGATTTTTTTAAGGCAGTTATTGG 
H003 GCTAAGGAAGCTAAAATGAGTGAAAAAGTGCCCGCC 
H004 ACTGCCTTAAAAAAATCATTGGCTGGCACCAAGCAG 
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H005 GCTAAGGAAGCTAAAATGATTGAACAAGATGGATTGCAC 
H006 ACTGCCTTAAAAAAATCAGAAGAACTCGTCAAGAAGGCG 
H007 GACGAGTTCTTCTGATTTTTTTAAGGCAGTTATTGGTGC 
H008 ATCTTGTTCAATCATTTTAGCTTCCTTAGCTCCTG 
H009 TCCATCTTGTTCAATCATTTTAGCTTCCTTAGCTCCTGAAAATC 
H010 GAGAAAGAGGGTTAATGGAAGCCGGCGGCACCTCGCTAAC 
H011 GTGCCGCCGGCTTCCATTAACCCTCTTTCTCAAGTTATCA 
H012 GCTATATGCGTTGAACCGGAATTGCCAGCTGGGGCGCCCT 
H013 GGTGCCGCCGGCTTCCATTCAGAAGAACTCGTCAAGAAGGCG 
H014 ACGAGTTCTTCTGAATGGAAGCCGGCGGCACCTCGCTAAC 
H015 CCAGCTGGCAATTCCGGTTCAACGCATATAGCGCTAGCAG 
H016 AGGAGGTGACTGATGGGAGTTCCTGAATTTAGGATATGAG 
H017 TAAATTCAGGAACTCCCATCAGTCACCTCCTAGCTGACTC 
H018 TTAGGATATGAGTGAGGCTTTTGATGAATCTTAATTTTTC 
H019 TTCATCAAAAGCCTCACTCATATCCTAAATTCAGGAACTC 
H020 TTTGATGAATCTTAATAAAAATATGGTATAATACTCTTAA 
H021 TTATACCATATTTTTATTAAGATTCATCAAAAGCCTCCCC 
H022 AAACACGAATATACAGGAAGAATACACGATGTTGG 
H023 AAAACCAACATCGTGTATTCTTCCTGTATATTCGT 
H024 AAACAAAAACAAAAATGTTTTAACACCTATTAACGG 
H025 AAAACCGTTAATAGGTGTTAAAACATTTTTGTTTTT 
H026 TGACGAGTTCTTCTGATTTTTTTAAGGCAGTTATTGGTGCCC 
H027 TGACGAGTTCTTCTGATTTTTTTAAGGCAGTTATTGGTGCCCTTA 
H029 AAACAAAAATGTTTTAACACCTATTAACGTAGTATG 
H030 AAAACATACTACGTTAATAGGTGTTAAAACATTTTT 
H031 GAACTTTGAAATCGGCTCAGGAAAAGGCCATTTTACCCTT 
H032 TTTAAAGGGTAAAATGGCCTTTTCCTGAGCCGATTTCAAA 
H033 GAACTTTGAGATCGGTTCTGGTAAGGGCCACTTCACTCTC 
H034 TTTAGAGAGTGAAGTGGCCCTTACCAGAACCGATCTCAAA 
H035 GAACATATCACACAAAGATAAACAAAAGTATAATTATTTC 
H036 TTTAGAAATAATTATACTTTTGTTTATCTTTGTGTGATAT 
H037 GAACATATCGCACAAGGACAAGCAGAAGTACAACTACTTT 
H038 TTTAAAAGTAGTTGTACTTCTGCTTGTCCTTGTGCGATAT 
H039 AAACCCCAGTCGACACCAGCAAAGTATTCTTTGATG 
H040 AAAACATCAAAGAATACTTTGCTGGTGTCGACTGGG 
H041 AAACCCATTGCACCTCAAGTATCGATGACTGATTCG 
H042 AAAACGAATCAGTCATCGATACTTGAGGTGCAATGG 
H043 AAACAAAAACGTTTTGACGCCCATCAACGTCGTGTG 
H044 AAAACACACGACGTTGATGGGCGTCAAAACGTTTTT 
H045 AAACAAGAACGTTTTGACCCCGATCAATGTCGTATG 
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H046 AAAACATACGACATTGATCGGGGTCAAAACGTTCTT 
H047 AAACAAGAACGTGTTGACCCCGATCAATGTCGTCTG 
H048 AAAACAGACGACATTGATCGGGGTCAACACGTTCTT 
H049 AAACTGCGCTGGTTGATTTCTTCTTGCGCTTTTTG 
H050 AAAACAAAAAGCGCAAGAAGAAATCAACCAGCGCA 
H051 AAACTTATATGAACATAACTCAATTTGTAAAAAAG 
H052 AAAACTTTTTTACAAATTGAGTTATGTTCATATAA 
H053 AAACAGGAATATCCGCAATAATTAATTGCGCTCTG 
H054 AAAACAGAGCGCAATTAATTATTGCGGATATTCCT 
H055 AAACAGTGCCGAGGAAAAATTAGGTGCGCTTGGCG 
H056 AAAACGCCAAGCGCACCTAATTTTTCCTCGGCACT 
H057 AAACTAAATTTGTTTAGCAGGTAAACCGTGCTTTG 
H058 AAAACAAAGCACGGTTTACCTGCTAAACAAATTTA 
H059 AAACTTCAGCACACTGAGACTTGTTGAGTTCCATG 
H060 AAAACATGGAACTCAACAAGTCTCAGTGTGCTGAA 
H061 TTTTAGGAGGCAAAAATGGATAAGAAATACTCAATAGGCT 
H062 CATCTAAAATATACTTCAGTCACCTCCTAGCTGACTCAAA 
H063 CTAGGAGGTGACTGAAGTATATTTTAGATGAAGATTATTT 
H064 GTATTTCTTATCCATTTTTGCCTCCTAAAATAAAAAGTTT 
H065 GAT ATA ATG GGA GAT AAG ACG GTT C 
H066 GGG ACC TCT TTA GCT CCT TG 
H067 AAACAAATGTTTTAACACCTATTAACGTAGTATTGG 
H068 AAAACCAATACTACGTTAATAGGTGTTAAAACATTT 
H069 AAACAGATAAAAACAAAAATGTTTTAACACCTATTG 
H070 AAAACAATAGGTGTTAAAACATTTTTGTTTTTATCT 
H073 AAACAACAAAAATGTTTTAACACCTATTAACGTAGG 
H074 AAAACCTACGTTAATAGGTGTTAAAACATTTTTGTT 
H075 AAACTATTAACGTAGTATTGGAATCTGATGAATATG 
H076 AAAACATATTCATCAGATTCCAATACTACGTTAATA 
H077 AAACTATTTTTAGATAAAAACAAAAATGTTTTAACG 
H078 AAAACGTTAAAACATTTTTGTTTTTATCTAAAAATA 
H079 AAACGATAAAAACAAAAATGTTTTAACACCTATTAG 
H080 AAAACTAATAGGTGTTAAAACATTTTTGTTTTTATC 
H081 AAACTGTTTTAACACCTATTAACGTAGTATTGGAAG 
H082 AAAACTTCCAATACTACGTTAATAGGTGTTAAAACA 
H083 AAACAAAATGTTTTAACACCTATTAACGTAGTATTG 
H084 AAAACAATACTACGTTAATAGGTGTTAAAACATTTT 
H085 AAACTCATCTCTCGGTATATATAATCCAAGTTATTG 
H086 AAAACAATAACTTGGATTATATATACCGAGAGATGA 
H089 AAACAAAACAAAAATGTTTTAACACCTATTAACGTG 
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H090 AAAACACGTTAATAGGTGTTAAAACATTTTTGTTTT 
H091 AAACAAACAAAAATGTTTTAACACCTATTAACGTAG 
H092 AAAACTACGTTAATAGGTGTTAAAACATTTTTGTTT 
H093 AAACATGTTTTAACACCTATTAACGTAGTATTGGAG 
H094 AAAACTCCAATACTACGTTAATAGGTGTTAAAACAT 
H095 AAACCAAAAATGTTTTAACACCTATTAACGTAGTAG 
H096 AAAACTACTACGTTAATAGGTGTTAAAACATTTTTG 
H097 AAACACAAAAATGTTTTAACACCTATTAACGTAGTG 
H098 AAAACACTACGTTAATAGGTGTTAAAACATTTTTGT 
H099 TCTATTTATTATTAATTATTGGGTAATATTTTTTGAAGAG 
H100 AAATATTACCCAATAATTAATAATAAATAGATTATAACAC 
H101 GCTATTTTGAGAGGACAAGAAGACTTTTATCC 
H102 GGATAAAAGTCTTCTTGTCCTCTCAAAATAGC 
H103 GGAAGTCTGAAGAAACATTTACCCCATGG 
H104 CCATGGGGTAAATGTTTCTTCAGACTTCC 
H105 GACAAACTTTGATATAAATCTTCCAAATGAAAAAGTACTACC 
H106 GGTAGTACTTTTTCATTTGGAAGATTTATATCAAAGTTTGTC 
H107 CCATGATGATGGTTTGACATTTAAAGAAGAC 
H108 GTCTTCTTTAAATGTCAAACCATCATCATGG 
H109 GGGCGGCATAAGCTAGAAAATATCG 
H110 CGATATTTTCTAGCTTATGCCGCCC 
H111 GCAAGAAATAGGCAAAGGAACCGC 
H112 GCGGTTCCTTTGCCTATTTCTTGC 
H113 AAACTTTAGCGATATTAATTATGCTCGTAAGAATG 
H114 AAAACATTCTTACGAGCATAATTAATATCGCTAAA 
H115 AAACTTTATTTTGCGTTAGAATTGACACCTCAAGAG 
H116 AAAACTCTTGAGGTGTCAATTCTAACGCAAAATAAA 
H117 AAACCTTTAAATGTTTTAAAAGAATAGCATCATTG 
H118 AAAACAATGATGCTATTCTTTTAAAACATTTAAAG 
H119 AAACACAGGAATTGAGACACCTCAATATATACTTGCG 
H120 AAAACGCAAGTATATATTGAGGTGTCTCAATTCCTGT 
H121 AAACAAAATGCAAGAATTAAACTACCCACCATATG 
H122 AAAACATATGGTGGGTAGTTTAATTCTTGCATTTT 
H123 AAACCTAAGATAGCTAAAGCAATACGTGATGATGTG 
H124 AAAACACATCATCACGTATTGCTTTAGCTATCTTAG 
H125 AAACATTTATATCCGATCTTATACGAAGTAAAGAG 
H126 AAAACTCTTTACTTCGTATAAGATCGGATATAAAT 
H127 TTTATCCATAAATTCGTTAAAGTCTTTACG 
H128 TTATTTTGAGGATTTATAATGATGCTAGAG 
H129 ATGAGTTATAGATATATGAGAATGATACTTATGTTTGATATGC 
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H130 ATTTGAGTCAGCTAGGAGGTGACTGATGATAGAGCTATCTAAATACAATATTTTAGT
G 

H131 GTATCATTCTCATATATCTATAACTCATGATTTATAAAATGAATATTGCTTAATATTTG
G 

H132 AAACAGGAATTGAGACACCTCAATATATACTTGCG 
H133 AAAACGCAAGTATATATTGAGGTGTCTCAATTCCT 
H134 AAACGTGCGAAAGATAGCAGACGAAGAAGGAATTG 
H135 AAAACAATTCCTTCTTCGTCTGCTATCTTTCGCAC 

H136 
TTTGAGTCAGCTAGGAGGTGACTGATGAAGAGTAAAAAGCATCCTCAAATC 

H137 TGTATTACTGCATTTATTAAGAGTACTCTAGCATCATTATAAATCCTCAAAATAATTA
AG 

H138 GAGTACTCTTAATAAATGCAGTAATACAGGGG 
H139 TCAGTCACCTCCTAGCTGACTC 
H140 TAACAACTACTATAACCTCTAGGCTTATGCCACTCTTATCCATCAATC 

H141 
AGCATCATTATAAATCCTCAAAATAACTCGTAGACTATTTTTGTCTAAAAAATTTTG 

H142 TTATTTTGAGGATTTATAATGATGCTAGAGG 
H143 AAGCCTAGAGGTTATAGTAGTTGTTAAAT 
H144 GAACACTTTTGCGCTGGTTGATTTCTTCTTGCGCTTTTT 
H145 TTTAAAAAAGCGCAAGAAGAAATCAACCAGCGCAAAAGT 
H146 GAGCAAGTTAACATTAAATTAGATAAAACT 
H147 AGTTTTATCTAATTTAATGTTAACTTGCTC 
H148 AATATTTGGCGTAGTATGAAAGATTTAATT 
H149 AATTAAATCTTTCATACTACGCCAAATATT 
H150 GAACATAGGTAGCCTTTATACGGTCCATAAACATGGGGAT 
H151 TTTAATCCCCATGTTTATGGACCGTATAAAGGCTACCTAT 
H152 GGAAGAAGACAAGAACCATGAACGTCATC 
H153 GATGACGTTCATGGTTCTTGTCTTCTTCC 
H154 GATGAAGTTGCTTATCGTGAGAAATATCC 
H155 GGATATTTCTCACGATAAGCAACTTCATC 
H156 CTTAGCGCATATGTTTAAGTTTCGTG 
H157 CACGAAACTTAAACATATGCGCTAAG 
H158 CACAAGTGTTTGGACAAGGCGATAG 
H159 CTATCGCCTTGTCCAAACACTTGTG 
H160 GTTGTCGATAATGGTGCTTCAGCTC 
H161 GAGCTGAAGCACCATTATCGACAAC 
H162 GTGATGAAACAGTTTAAACGTCGCC 
H163 GGCGACGTTTAAACTGTTTCATCAC 
H164 GCCAAGTTAATCACTAAACGTAAGTTTG 
H165 CAAACTTACGTTTAGTGATTAACTTGGC 
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H166 GAAATGTGAGAAGGGACCTCTGATAAATATGAACATGATGAGTGATCG 

H167 
GGACTCTTTTATCTCTACTCGTGCTATAATTATACTAATTTTATAAGGAGG 

H168 AGTATAATTATAGCACGAGTAGAGATAAAAGAGTCCTTTGGATGATTCC 
H169 TGTTCATATTTATCAGAGGTCCCTTCTCACATTTCAATACTAGACTC 
H170 GCTAGTATTTTGTCAACGAATAATAAGAGG 
H171 TTTTCTGTGATGATAAACGATTGCC 
H172 GCGTTAAATCAGTTAGGTGAGG 
H173 ATTAATTACTGATATTATAATGGCAGAGTG 
H174 TATCGGCACAAATAGCGATGCCACTCTTATCCATCAATCC 
H175 GGATAAGAGTGGCATCGCTATTTGTGCCGATATCTAAGCC 
H176 TTGATAGAGCATAATTAAAATAAGATGCCACTCTTATCCATCAATCC 
H177 GCAGTATAAATTTAACGATCACTCTAAAACCTCTCCAACTACCTCCC 
H178 CCAATTTTCGTTTGATGTCTAAAAAATTTCGTAATCGCAC 
H179 GAAATTTTTTAGACATCAAACGAAAATTGGATAAAGTGGG 
H180 TCTGGTAGAAAAGATATCCTACGAG 
H181 GAGCTTCCGAGACTGGTCTC 
H182 NNNNNCAGCAAAATTTTTTAGACAAAAATAGTC 
H183 NNNNNCAGAAGAAGAAATCAACCAGCGC 
H184 NNNNNTCACAAAATTTTTTAGACAAAAATAGTC 
H185 NNNNNTCAAAGAAGAAATCAACCAGCGC 
H186 NNNNNGTCCAAAATTTTTTAGACAAAAATAGTC 
H187 NNNNNGTCAAGAAGAAATCAACCAGCGC 
H188 NNNNNAGTCAAAATTTTTTAGACAAAAATAGTC 
H189 NNNNNAGTTAACCCTCTTTCTCAAGTTATC 
H190 CCCCAGCGAATTTTGAAGAAGTTGTCGATAAAGGTGC 
H191 CGACAACTTCTTCAAAATTCGCTGGGGTAATTGTTTCTTCAG 
H192 ATTGCTCGTAAAAAAGACGCGGATCCAAAAAAATATGG 
H193 CCACCATATTTTTTTGGATCCGCGTCTTTTTTACGAGC 
H194 GAAGTCTGAAGAAACAATTACCGCAGCGGCTTTTGAAGAAGTTGTCG 
H195 TCGACAACTTCTTCAAAAGCCGCTGCGGTAATTGTTTCTTCAGACTTCC 
H196 AAGCTTATTGCTCGTAAAAAAGCCGCGGCTCCAAAAAAATATGGTGG 
H197 CCACCATATTTTTTTGGAGCCGCGGCTTTTTTACGAGCAATAAGC 
H198 TGAAAAAATCTTGACTTTTCGAATTCC 
H199 AATACTCATAAAGCAAACTATGTTTTGG 
H200 GGAATTCGAAAAGTCAAGATTTTTTCAATCTTCTCACG 
H201 CCAAAACATAGTTTGCTTTATGAGTATTTTACGG 
H202 CAATATTGTCAAGAAAACAGAAGTACAGAC 
H203 TTAGCAACCACTAGGACTGAATAAGC 
H204 GCCTGTCTGTACTTCTGTTTTCTTGAC 
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H205 GAAGTCTGAAGAAACATTTACCGCAGCGGCTTTTGAAGAAGTTGTCG 

H206 
ATCGACAACTTCTTCAAAAGCCGCTGCGGTAAATGTTTCTTCAGACTTCC 

H207 GGAAGTCTGAAGAAACAGCTACCCCATGG 
H208 CCATGGGGTAGCTGTTTCTTCAGACTTCC 
H209 AATCACGGATTGGATAGAGGAAAACC 
H210 TTAACCCTCTCCTAGTTTGGCAAGG 

H211 
CTTGCCAAACTAGGAGAGGGTTAATCCATCACTGGTCTTTATGAAACACG 

H212 GTTTTCCTCTATCCAATCCGTGATTTGTTTTCTTGACAATATTGACTTGG 
H213 AAGTACAGACAGGCGGATTCTCC 
H214 CAGTCACCTCCTAGCTGACTC 
H215 TTGATTTGAGTCAGCTAGGAGGTGACTGACAATCTGTTACAGGCCTC 

H216 
CTTGGAGAATCCGCCTGTCTGTACTTCCTGTTCCTCAACTTTTTTCACAAC 

H221 GATAAAGGTGCTTCAGCTCAATC 
H222 AGACTTCCGAGTCATCCATGC 
H223 GGTTTTGATAGTCCAACGGTAGC 
H224 AAGCTTGTCCGAATTTCTTTTTGG 
H225 GCCGCGGCTCCAAAAAAATATGGTGGTTTTGATAGTCC 
H226 GCAGCGGCTTTTGAAGAAGTTGTCGATAAAGGTGC 
H227 TAATGGCAGGTTGGAGAACAGTAGTC 
H228 ACTACTGTTCTCCAACCTGCCATTAGTCACCTCCTAGCTGACTC 

H229 AGATTTTTCAAATAAGGAGAAATGTTTGAAATCATCAAACTCATTATGGATTTAATTT
AAACTTTTTATTTTAGG 

H230 ACATTTCTCCTTATTTGAAAAATCTAAATTTATAGAAATTATTATACGC 

H231 AACTTTTTATTTTAGGAGGCAAAAAGCGTATAATAATTTCTATAAATTTAGATTTTTC
AAATAAGG 

H232 TTTTGCCTCCTAAAATAAAAAGTTTAAATTAAATCCATAATGAG 
H233 TGATGGCTGGTTGGCGTAC 
H234 CAACAGTACGCCAACCAGCCATCAACCCTCTCCTAGTTTGGC 
H235 GATATCGGCACAAATAGCTTAGATGCCACTCTTATCCATCAATCC 
H236 AAGAGTGGCATCTAAGCTATTTGTGCCGATATCTAAGCC 
H237 GGCGTACTGATGAAGATTATTTCTTAATAACTAAAAATATGG 
H238 TTTAGTTATTAAGAAATAATCTTCATCAGTACGCCAACCAGCC 
H239 TCAATTGGACTTGATATTATAGACCTTGCCAAACTAGGAG 
H240 TTTGGCAAGGTCTATAATATCAAGTCCAATTGAGTATGGC 
H241 AACAGTAGTCATTTTAGACAAGGATTATATTTTGATGCCC 
H242 ATAATCCTTGTCTAAAATGACTACTGTTCTCCAACCTGCC 
H243 NNNNNTCGCAAAATTTTTTAGACAAAAATAGTC 
H244 NNNNNTCGAAGAAGAAATCAACCAGCGC 
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H245 NNNNNAGCCAAAATTTTTTAGACAAAAATAGTC 
H246 NNNNNAGCAAGAAGAAATCAACCAGCGC 
H247 NNNNNCATCAAAATTTTTTAGACAAAAATAGTC 
H248 NNNNNCATAAGAAGAAATCAACCAGCGC 
H249 NNNNNGACCAAAATTTTTTAGACAAAAATAGTC 
H250 NNNNNGACAAGAAGAAATCAACCAGCGC 
H251 NNNNNACTCAAAATTTTTTAGACAAAAATAGTC 
H252 NNNNNACTAAGAAGAAATCAACCAGCGC 
H253 NNNNNCTGCAAAATTTTTTAGACAAAAATAGTC 
H254 NNNNNCTGAAGAAGAAATCAACCAGCGC 
H255 NNNNNTGACAAAATTTTTTAGACAAAAATAGTC 
H256 NNNNNTGATAACCCTCTTTCTCAAGTTATC 
H257 AAGCTTTATATAACTCTCTTGCA 
H258 ATGGTAAAGCTTTTGTAAAAACCTG 
H259 GCTCTAGAAGCTTCAAAGTTTTAC 
H260 GCGAAAAGATAAACGAAAGCTTG 
H261 CTTAGAAGCTTGTACTAAGCCG 
H262 CTTCGACAGTAGCTTTAGTTGC 
H263 CAGAAAAACAATAACAGAAGCTTGGAA 
H264 CTTGTTGTTTAGTAAAAGCTTGAG 
H265 NNNNNGGGCAAAATTTTTTAGACAAAAATAGTC 
H266 NNNNNGGGAAGAAGAAATCAACCAGCGC 
H267 GGAATTATTTTGAAGCTGAAGTCATG 
H268 AAACAACCAAAAAAGGGAAGGGCTCGGTTGTACAG 
H269 AAAACTGTACAACCGAGCCCTTCCCTTTTTTGGTT 
H270 AAACAACCAAAAAAGGGAAGGGCTCGGTTGTATCG 
H271 AAAACGATACAACCGAGCCCTTCCCTTTTTTGGTT 
H272 CAATTGATCAAAAACGATATACGTCTAC 
H273 ATATCGTTTTTGATCAATTGTTGTATC 
H274 ATCGTAAACAATATACGTCTACAAAAGAAG 
H275 TAGACGTATATTGTTTACGATCAATTGTTG 
H276 TTGATCAAAAACAATATACGTCTACAAAAGAAG 
H277 TAGACGTATATTGTTTTTGATCAATTGTTGTATCAA 
H278 ORDERED. CHECK SEQUENCE 
H279  GATGCCACTCTTATCCATCAATCC 
H280 TTTTTATTTTAATTATGCTCTATCAATGATAGAGTGTC 
H281 GATAGAGCATAATTAAAATAAAAAGCATATTAAACTAATTTCGG 
H282 TGGATTGATGGATAAGAGTGGCATCTAAAACTTCTTTTGTAGACG 
H283 TGCGACTACAAAATTTTTTAGACAAAAATAGTCTACGAGG 
H284 TTTGTCTAAAAAATTTTGTAGTCGCACTATTTGTCTCAGC 
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H285 TGCGAGTACAAAATTTTTTAGACAAAAATAGTCTACGAGG 
H286 TTTGTCTAAAAAATTTTGTACTCGCACTATTTGTCTCAGC 
H287 GTACAATTCTTGTGTTGCTTATTTTTGTCAATAGCGGAGC 
H288 CAAAAATAAGCAACACAAGAATTGTACCGCCTCTTAATGG 
H289 AGCGCTTGGGAGAAATTCAAAGAAATTTATCAGCC 
H290 TTTCTTTGAATTTCTCCCAAGCGCTTTCAAAACGC 
H291 TCCAAGTTATTTGCATGCTCC 
H292 AAAGGTGGTGAAAAGAAATGCC 
H293 GCAAAAATGGATAAGAAATACTCAATAGGC 
H294 TATTGAGTATTTCTTATCCATTTTTGCCTCC 
H295 AACACGCATTGATTTGAGTCAGC 
H296 TCCTAGCTGACTCAAATCAATGCG 
H297 AAACCGAATAACTCACGTTCCATTGAATACTGTGTG 
H298 AAAACACACAGTATTCAATGGAACGTGAGTTATTCG 
H299 AAACACGTTCCATTGAATACTGTGTAGGCATGTTAG 
H300 AAAACTAACATGCCTACACAGTATTCAATGGAACGT 
H302 TTGGAGCTCCCGCTGC 
H303 GGATTGATGGATAAGAGTGGC 
H304 ATATTTAAAAGCAGCGGGAGC 
H305 GTTTTAGATGCCACTCTTATCC 
H306 CGTTTTGCATGGATGACTCG 
H307 TGATTGAGCTGAAGCACC 
H308 TGCGATCACAAAATTTTTTAGACAAAAATAGTCTACGAGG 
H309 TTTGTCTAAAAAATTTTGTGATCGCACTATTTGTCTCAGC 
H310 TGCGATGACAAAATTTTTTAGACAAAAATAGTCTACGAGG 
H311 TTTGTCTAAAAAATTTTGTCATCGCACTATTTGTCTCAGC 
H312 GATATTATGGCACCATTTAGGCCTTTAGTGG 
H313 AAAGGCCTAAATGGTGCCATAATATCGCTAGC 
H314 TATATCATGGTTTGGCAAATTTTGATCCGAG 
H315 ATCAAAATTTGCCAAACCATGATATAAATCC 
H316 TTTTGCTAGCGCTATTATGGAACCATTTAGGCC 
H317 TGGTTCCATAATAGCGCTAGCAAAATTGAACTG 
H318 CGGACACCGCTGAGGCACGAAAAGCCTATCG 
H319 GCTTTTCGTGCCTCAGCGGTGTCCGTCGGC 
H320 GAGGAAGCAAAAGCCTATCGAAAATTTCGG 
H321 ATTTTCGATAGGCTTTTGCTTCCTCAGCGGTG 
H322 GAGGAACGAAAAGCCTATGCAAAATTTCGG 
H323 ATTTTGCATAGGCTTTTCGTTCCTCAGCGG 
H324 ATCCTGGCATTGATTAAGTCCTTAGGAG 
H325 AAGGACTTAATCAATGCCAGGATTGTG 
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H326 TTAGGAGTAAAAGTAGCAACGCAAAGTG 
H327 TTGCGTTGCTACTTTTACTCCTAAGGAC 
H328 TTAGGAGTAGAAGTAGAAACGCAAAGTG 
H329 TTGCGTTTCTACTTCTACTCCTAAGGAC 
H330 AATTTAATGAGGAACCCGAAGTGAAATCG 
H331 TTTCACTTCGGGTTCCTCATTAAATTGAG 
H332 AAACTTTTAAGCTATTCATTTTAAAAGGTCATATG 
H333 AAAACATATGACCTTTTAAAATGAATAGCTTAAAA 
H334 AAACATTTTAAGCTATTCATTTTAAAAGGTCATAG 
H335 AAAACTATGACCTTTTAAAATGAATAGCTTAAAAT 
H336 CATACTCAATTGGACTTGCTATTGGAACGAATAGTGTTGG 
H337 CGTTCCAATAGCAAGTCCAATTGAGTATGGCTTAGTC 
H338 GTAATTATGATATTGATGCTATTATTCCTCAAGC 
H339 GAGGAATAATAGCATCAATATCATAATTACTTAATC 
H340 AAACTGCCTATTTTTTTATGTTATAGCTAGCCTTG 
H341 AAAACAAGGCTAGCTATAACATAAAAAAATAGGCA 
H342 AAACAATTCCTTGAATCGAAAGGAGGTTAGCCTTG 
H343 AAAACAAGGCTAACCTCCTTTCGATTCAAGGAATT 
H344 AAACCGTGTAAAGACATATTAGATCGAGTCAAGGG 
H345 AAAACCCTTGACTCGATCTAATATGTCTTTACACG 
H346 AAACATACGTGTAAAGACATATTAGATCGAGTCAG 
H347 AAAACTGACTCGATCTAATATGTCTTTACACGTAT 
H348 AAACAAGACATATTAGATCGAGTCAAGGAGGTTTG 
H349 AAAACAAACCTCCTTGACTCGATCTAATATGTCTT 
H350 AAACAGACATATTAGATCGAGTCAAGGAGGTTTTG 
H351 AAAACAAAACCTCCTTGACTCGATCTAATATGTCT 
H352 AAACGACATATTAGATCGAGTCAAGGAGGTTTTGG 
H353 AAAACCAAAACCTCCTTGACTCGATCTAATATGTC 
H354 CCCCAACAAGAGAATTGGC 
H355 CACCACCATAAACAACACAAGG 
H356 CAAATGGGACATCTCGATGG 
H357 GTCAGGACCTTTAGGTCATAGC 
H358 NNNNNCAGTAGCTGAGACAAATAGTGCG 
H359 NNNNNCAGCTCAACAAGTCTCAGTGTGC 
H360 NNNNNGCTTAGCTGAGACAAATAGTGCG 
H361 NNNNNGCTCTCAACAAGTCTCAGTGTGC 
H362 NNNNNCAGAAAACAGCATAGCTCTAAAACG 
H363 NNNNNCAGAAAACAGCATAGCTCTAAAACA 
H364 NNNNNCAGAAAACAGCATAGCTCTAAAACT 
H365 NNNNNCAGGGCTTTTCAAGACTGAAGTCTAG 
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H366 NNNNNGCTAAAACAGCATAGCTCTAAAACG 
H367 NNNNNGCTAAAACAGCATAGCTCTAAAACA 
H368 NNNNNGCTAAAACAGCATAGCTCTAAAACT 
H369 NNNNNGCTGGCTTTTCAAGACTGAAGTCTAG 
H370 NNNNNGACAGGGGCTTTTCAAGACTG 
H371 NNNNNGACGAAGAAATCAACCAGCGC 
H372 NNNNNACTAGGGGCTTTTCAAGACTG 
H373 NNNNNACTGAAGAAATCAACCAGCGC 
H374 NNNNNCTGAGGGGCTTTTCAAGACTG 
H375 NNNNNCTGGAAGAAATCAACCAGCGC 
H376 NNNNNTGAAGGGGCTTTTCAAGACTG 
H377 NNNNNTGAGAAGAAATCAACCAGCGC 
H378 CAGGGGCTTTTCAAGACTGNNNNNNNNNNGAGACAAATAGTGCG 
H379 CAGTCTTGAAAAGCCCCTG 

H380 TTCAAGGTAAGTTTTGTCGTATCGTTCAATTTTATTCCGATCAGGCAATAGTTGAAC
TTT 

H381 TGAAAAAGTTCAACTATTGCCTGATCGGAATAAAATTGAACGATACGACAAAACTTA
CCT 

H382 TAGAATATGAGTTATAGATATATGAGAATGATACTTATGTTTGATATGCC 
H383 CATTCTCATATATCTATAACTCATATTCTAAATTCAGGAATTTCCTCACC 
H384 AAATGTAGAATGATAAAATAGAGATAAAAGAGTCCTTTGG 
H385 GACTCTTTTATCTCTATTTTATCATTCTACATTTAGGCGC 
H386 TTCTATAAATTTAGATTTTAGTATTGGGTAATATTTTTTGAAGAG 
H387 TATTACCCAATACTAAAATCTAAATTTATAGAAATTATTATACGC 
H388 TTCAAGGTAAGTTTTAGAGCTATGCTGTTTTGAATGGTCCCAAAAC 
H389 TGAAGTTTTGGGACCATTCAAAACAGCATAGCTCTAAAACTTACCT 
H390 TTCATCCATTGTTTTAGAGCTATGCTGTTTTGAATGGTCCCAAAAC 
H391 TGAAGTTTTGGGACCATTCAAAACAGCATAGCTCTAAAACAATGGA 
H392 TTCAGTTTTAGAGCTATGCTGTTTTGAATGGTCCCAAAACAATGGA 
H393 TGAATCCATTGTTTTGGGACCATTCAAAACAGCATAGCTCTAAAAC 
H394 TTCAGTTTTAGAGCTATGCTGTTTTGAATGGTCCCAAAACTTACCT 
H395 TGAAAGGTAAGTTTTGGGACCATTCAAAACAGCATAGCTCTAAAAC 
H396 TTCAGAATAACTCACGTTCCATTGAATACTGTGTAGG 
H397 TGAACCTACACAGTATTCAATGGAACGTGAGTTATTC 

H398 TTCAGAATAACTCACGTTCCATTGAATACTGTGTAGGCATGTTATAATCCACACCCT
TGC 

H399 TGAAGCAAGGGTGTGGATTATAACATGCCTACACAGTATTCAATGGAACGTGAGTT
ATTC 

H400 
TTC AGT TTT GGG ACC ATT CAA AAC AGC ATA GCT CTA AAA CTT ACC T 

H401 
TGA AAG GTA AGT TTT AGA GCT ATG CTG TTT TGA ATG GTC CCA AAA C 
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H402 NNNNNCAGAGGGGCTTTTCAAGACTG 
H403 NNNNNCAGGAAGAAATCAACCAGCGC 
H404 NNNNNTCAAGGGGCTTTTCAAGACTG 
H405 NNNNNTCAGAAGAAATCAACCAGCGC 
H406 NNNNNGTCAGGGGCTTTTCAAGACTG 
H407 NNNNNGTCGAAGAAATCAACCAGCGC 
H408 NNNNNAGTAGGGGCTTTTCAAGACTG 
H409 NNNNNAGTGAAGAAATCAACCAGCGC 
H410 TTCCCAAAATAAAGGAAGAGTTATTTACTTTGTTTTCAG 
H411 AAGTAAATAACTCTTCCTTTATTTTGGGAAAAGGCTG 
H412 CCAAAATAAAGAGAAAGTTATTTACTTTGTTTTCAGATAC 
H413 ACAAAGTAAATAACTTTCTCTTTATTTTGGGAAAAGGCTG 
H414 TTTGTTTTCACGTACATTTTCATATAATGGTAAAGAGATG 
H415 TACCATTATATGAAAATGTACGTGAAAACAAAGTAAATAACTCTCTC 
H416 AAAAACAGTTTGCAGAAATGATTTATTTACATGGTGAAAG 
H417 TGTAAATAAATCATTTCTGCAAACTGTTTTTCCGTGACCG 
H418 TATTTACATGGTAAAAGAAATAATTGTATTGCAAACTCCG 
H419 TACAATTATTTCTTTTACCATGTAAATAAATCATTCGTGC 
H420 TGTATTGCAAACTCCGATAAAAGACTTGTATTTCTTGGGG 
H421 TACAAGTCTTTTATCGGAGTTTGCAATACAATTATTTCTTTCACC 
H422 GTATTTCTTGGGAAGGCTTTTGATGAATCTTAATTTTTCC 
H423 AGATTCATCAAAAGCCTTCCCAAGAAATACAAGTCTTTCATCGG 

H424 
ACAATTGATCGTAAACAATATAGGTCTACAAAAGAAGTTTTAGATGCCAC 

H425 
TTGTAGACCTATATTGTTTACGATCAATTGTTGTATCAAAATATTTAAAAGCAGC 

H426 AAATATGGTGGTTTTGAAAGTCCAACGGTAGCTTATTCAGTCC 
H427 TACCGTTGGACTTTCAAAACCACCATATTTTTTTGGATCCC 
H428 AAACCGAAATCATACGCAAAAATATTCATGTTAAG 
H429 TTAACATGAATATTTTTGCGTATGATTTCGCAAAA 
H430 AAACGAAATCATACGCAAAAATATTCATGTTAACG 
H431 GTTAACATGAATATTTTTGCGTATGATTTCCAAAA 
H432 CCAAAATAAAGAGAAAGTTATTTACTTTGTTTTCACGTAC 
H433 AAACAAACAGTGACAGAAACTATTGAGTACGAGGG 
H434 AAAACCCTCGTACTCAATAGTTTCTGTCACTGTTT 
H435 AAACAGAAAACAGTGACAGAAACTATTGAGTACGG 
H436 AAAACCGTACTCAATAGTTTCTGTCACTGTTTTCT 
H437 TTGTTTCCCAAAACACCTATACCTG 
H438 ATTTTCAGGTATAGGTGTTTTGGG 
H439 GGAAGTCTGAAGAAACAGCTACCCCATGGAATTTTGAAG 
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H440 AAACTATTCAAATTGTTACTTCATAATCTTTTGTG 
H441 AAAACACAAAAGATTATGAAGTAACAATTTGAATA 
H442 AAACAAGCTAGGAAGATTTAACTTAATACCTAATG 
H443 AAAACATTAGGTATTAAGTTAAATCTTCCTAGCTT 
H444 AAACGAGCTAGGGAGTTTAACGGTATGGAAGAAGG 
H445 AAAACCTTCTTCCATACCGTTAAACTCCCTAGCTC 
H446 AAACACATGTAACAGAGAAAATGGACAGAGAGTTG 
H447 AAAACAACTCTCTGTCCATTTTCTCTGTTACATGT 
H448 AAACATGTCACTTATAACCAAATGTTCAAGAAATG 
H449 AAAACATTTCTTGAACATTTGGTTATAAGTGACAT 
H450 AAACCAAATGTTCAAGAAATGGAGTGAAGCATAAG 
H451 AAAACTTATGCTTCACTCCATTTCTTGAACATTTG 
H452 AAACTTCACTTAATTGACGCATATGATTTAACAAG 
H453 AAAACTTGTTAAATCATATGCGTCAATTAAGTGAA 
H454 AAACTAGCATACCTTGTGTTACGCGGTATGGGTAG 
H455 AAAACTACCCATACCGCGTAACACAAGGTATGCTA 
H456 AAACAAGAAGATGCTTATATAGAAAAATTCCTTAG 
H457 AAAACTAAGGAATTTTTCTATATAAGCATCTTCTT 
H458 AAACAGATACGTATGCACATTACACAAGGTATTAG 
H459 AAAACTAATACCTTGTGTAATGTGCATACGTATCT 
H460 AAACCTGGTGGTAGTCGTGCTACAAAGATTCCGTG 
H461 AAAACACGGAATCTTTGTAGCACGACTACCACCAG 
H462 AAACGTACAATCACTAATTTTGTTAGCAGTATTTG 
H463 AAAACAAATACTGCTAACAAAATTAGTGATTGTAC 
H464 AAACTCCGCCAATAAACTTATGTGTGTATGCCTTG 
H465 AAAACTCCGCCAATAAACTTATGTGTGTATGCCTT 
H466 AAACGACATCATCGCAACATGTTTAGCTACATCAG 
H467 AAAACTGATGTAGCTAAACATGTTGCGATGATGTC 
H468 AAACGCTTTTATGTTATAATTGCTTTTATATAGTG 
H469 AAAACACTATATAAAAGCAATTATAACATAAAAGC 
H470 AAACTTTTTAACTTCAGGTCGTTGATAATACTCTG 
H471 AAAACAGAGTATTATCAACGACCTGAAGTTAAAAA 
H472 AAACATGACTTTAGCATTCCCGTATAACAGTTTAG 
H473 AAAACTAAACTGTTATACGGGAATGCTAAAGTCAT 
H474 AAACCTTTTATATAGTAGGAGTGAACTATATAGCG 
H475 AAAACGCTATATAGTTCACTCCTACTATATAAAAG 
H476 AAACCCGTTATGGCCTAGAATCATATTGCTAAAAG 
H477 AAAACTTTTAGCAATATGATTCTAGGCCATAACGG 
H478 AAACTTATTTTGCGTTAGAATTGACACCTCAAGAG 
H479 AAAACTCTTGAGGTGTCAATTCTAACGCAAAATAA 
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H480 AAACTTATCGTGAGTGGGAGAAATATAAGCGAAAG 
H481 AAAACTTTCGCTTATATTTCTCCCACTCACGATAA 
H482 AAACGACAAATGCTATTCAACATTCAGTTAAAGAG 
H483 AAAACTCTTTAACTGAATGTTGAATAGCATTTGTC 
H484 AAACGCTAAAACAAAAGATTTTATTAAAGCAAGAG 
H485 AAAACTCTTGCTTTAATAAAATCTTTTGTTTTAGC 
H486 AAACTGATACATTAACATTTAGTAAATCATTACGG 
H487 AAAACCGTAATGATTTACTAAATGTTAATGTATCA 
H488 AAACTTGTTTATCGATTGGAGCATGCAAATAACTG 
H489 AAAACAGTTATTTGCATGCTCCAATCGATAAACAA 
H490 AAACAGTTGGATTTAGATGCAAACCCCGCTAAAAG 
H491 AAAACTTTTAGCGGGGTTTGCATCTAAATCCAACT 
H492 AAACATTACTTAACACACTGCTAACAGCTGCAATG 
H493 AAAACATTGCAGCTGTTAGCAGTGTGTTAAGTAAT 
H494 AAACGGATATTGTCGTTTTCCCGTCAAAGTATGGG 
H495 AAAACCCATACTTTGACGGGAAAACGACAATATCC 
H496 AGAGGTTGAACTACGTAAGAGG 
H497 TTGTGGTGGATACTGTGCC 
H498 TACGATAATACTTATTATTATGTATTTCGAGG 
H499 TTTACTGACTTTGCAAAACGC 
H500 GAGAAATATCAAAATGATGATGTG 
H501 GACTGTTTCTCTCATTGTTGCG 
H502 TTTTTTGTTATGATGTGTTACACATGC 
H503 AAGGAAGATGTCTCCTGTGG 
H504 GTGATGAAGAAGAAATATTTAAGATGG 
H505 TGTTAGATGAAGGTATGAGC 
H506 GATCTTGCAATGTCTTATGACC 
H507 ATGTTTTAACCATATCTAAATCAGC 
H508 AGGAAGACACTAATGAATAACCG 
H509 GGTATGGATTTCAGTGTTATGATTACG 
H510 CATGAATCGCACCGGC 
H511 TACTGCAATGGCTCCTATAGC 
H512 AAACAATTAGGTTTTATTACTAATAAAAATGATAG 
H513 AAAACTATCATTTTTATTAGTAATAAAACCTAATT 
H514 AAACGTTGGACTAATGGCGTTGCGCAACCTGGTTG 
H515 AAAACAACCAGGTTGCGCAACGCCATTAGTCCAAC 
H516 AAACCAAGCAGAAAAATGGTTTGACAATTCATTAG 
H517 AAAACTAATGAATTGTCAAACCATTTTTCTGCTTG 
H518 AAACACGGTTATTCAACTAATTCAAGAATTACAGG 
H519 AAAACCTGTAATTCTTGAATTAGTTGAATAACCGT 
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H520 AAGCAACAGGACAAGCACC 

H521 GCGGCCTCTAATACGACTCACTATAGGGCATATTAGATCGAGTCAAGGGTTTTAGA
GCTAGAAATAGCA 

H522 GCGGCCTCTAATACGACTCACTATAGGGAGACATATTAGATCGAGTCAGTTTTAGA
GCTAGAAATAGCA 

H523 GCGGCCTCTAATACGACTCACTATAGGGAGATCGAGTCAAGGAGGTTTGTTTTAGA
GCTAGAAATAGCA 

H524 GCGGCCTCTAATACGACTCACTATAGGGGATCGAGTCAAGGAGGTTTTGTTTTAGA
GCTAGAAATAGCA 

H525 GCGGCCTCTAATACGACTCACTATAGGGATCGAGTCAAGGAGGTTTTGGTTTTAGA
GCTAGAAATAGCA 

H526 AGCAGTAGGGATTATGACGG 
H527 ATCAAATCAGACTGATCGCTC 
H528 AAACACGCAGATTGTTTGAGTGGTTACGTCAAAAG 
H529 AAAACTTTTGACGTAACCACTCAAACAATCTGCGT 
H530 AAACTTTAGCGATATTAATTATGCTCGTAAGAATG 
H531 AAAACATTCTTACGAGCATAATTAATATCGCTAAA 
H532 AAACCTCTGATGACGAATTAGCTATCATAACTTCG 
H533 AAAACGAAGTTATGATAGCTAATTCGTCATCAGAG 
H534 AAACCATTTTAGATTTCAAAAGTTTAGTATCTATG 
H535 AAAACATAGATACTAAACTTTTGAAATCTAAAATG 
H536 AAACGTATCTCTATTGACACCAATTTCTTCAGAAG 
H537 AAAACTTCTGAAGAAATTGGTGTCAATAGAGATAC 
H538 AAACATAGGGATTTTACAAGTGTACTTACAAGTAG 
H539 AAAACTACTTGTAAGTACACTTGTAAAATCCCTAT 
H540 AAACGAAATTAACTTGAAGCATTTCAAAGAAAATG 
H541 AAAACATTTTCTTTGAAATGCTTCAAGTTAATTTC 
H542 AAACAGTAGCTACTGCATCTGCAAATACAATTTTG 
H543 AAAACAAAATTGTATTTGCAGATGCAGTAGCTACT 
H544 AAACGAATAACTCACGTTCCATTGAATACTGTGTG 
H545 AAAACACACAGTATTCAATGGAACGTGAGTTATTC 
H546 AAACTGAATATTCATCTCTCGGTATATATAATCCG 
H547 AAAACGGATTATATATACCGAGAGATGAATATTCA 
H548 AAACCCAGAAGTTATGATAGCTAATTCGTCATCAG 
H549 AAAACTGATGACGAATTAGCTATCATAACTTCTGG 
H550 AAACATGCTCCAATCGATAAACAATTAGATAAACG 
H551 AAAACGTTTATCTAATTGTTTATCGATTGGAGCAT 
H552 NNNNNGTCTCTGGTAGAAAAGATATCCTACGAG 
H553 NNNNNTCATCTGGTAGAAAAGATATCCTACGAG 
H554 NNNNNGTCCTCGTACAGTGAACCTTTTTCACC 
H555 NNNNNTCACTCGTACAGTGAACCTTTTTCACC 
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H556 AGTTCAACAAACGGGTCATAACCTGAAGGAAGATCTGG 
H557 CAGAATCCACGAGATCTGTGCCAGTTCGTAATGTCTGG 
H558 TACGAACTGGCACAGATCTCGTGGATTCTGTGATTTGG 
H559 CCTTCAGGTTATGACCCGTTTGTTGAACTAATGGGTGC 
H560 AAACGATTGAACAATAGATTGTCTAAAGTTGAGAG 
H561 AAAACTCTCAACTTTAGACAATCTATTGTTCAATC 
H562 AAACTGTGGGAAAGTGGAAGAACTGAACCTAGAAG 
H563 AAAACTTCTAGGTTCAGTTCTTCCACTTTCCCACA 
H564 AAACTTTGTTCAATGTTTCTAAAGGTTATCTCTTG 
H565 AAAACAAGAGATAACCTTTAGAAACATTGAACAAA 
H566 AAACACCTAGCGAATGTATAGCACTAAAAATAAAG 
H567 AAAACTTTATTTTTAGTGCTATACATTCGCTAGGT 
H568 AAACACAATCTATTGTTCAATCTGATTTCTTTTAG 
H569 AAAACTAAAAGAAATCAGATTGAACAATAGATTGT 
H570 AAACACTTGAAATTTTTTCGACCATACCCATTCTG 
H571 AAAACAGAATGGGTATGGTCGAAAAAATTTCAAGT 
H572 AAACATATGGAACCTCGATTTCGCTATCAAATTCG 
H573 AAAACGAATTTGATAGCGAAATCGAGGTTCCATAT 
H574 AAACTCCGTTTATTTTTAGTGCTATACATTCGCTG 
H575 AAAACAGCGAATGTATAGCACTAAAAATAAACGGA 
H576 AAACATAAAAGTGTAAAAACATTATATATAAGGAG 
H577 AAAACTCCTTATATATAATGTTTTTACACTTTTAT 
H578 AATAATTCTGTTGATTTCGTGCCACTGTGCGGG 
H579 CCCGCACAGTGGCACGAAATCAACAGAATTATT 

H580 ACTAAATTGTCCGTCAATAATTCTGTTGATTTCGTGCCACTGTGCGGGTGTGAATTG
CTTTCT 

H581 AGAAAGCAATTCACACCCGCACAGTGGCACGAAATCAACAGAATTATTGACGGACA
ATTTAGT 

H582 TGCACAAGCAGAAATGGAAGCTAAGAAAATTGG 
H583 CCAATTTTCTTAGCTTCCATTTCTGCTTGTGCA 

H584 TTCTAAGCCTGAATATGCACAAGCAGAAATGGAAGCTAAGAAAATTGGTGTAATTAT
TCCGTT 

H585 AACGGAATAATTACACCAATTTTCTTAGCTTCCATTTCTGCTTGTGCATATTCAGGC
TTAGAA 

H586 AACAACATCACCTATTTTAGGGTTAGCTTCTGG 
H587 CCAGAAGCTAACCCTAAAATAGGTGATGTTGTT 

H588 AGAATCCACCACTCTAACAACATCACCTATTTTAGGGTTAGCTTCTGGGAAATGTTC
ACGTAA 

H589 TTACGTGAACATTTCCCAGAAGCTAACCCTAAAATAGGTGATGTTGTTAGAGTGGT
GGATTCT 

H590 NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAGG 
H591 AATAATTCTGTTGATTTCGTGCCACTGTGC 
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H592 GCACAGTGGCACGAAATCAACAGAATTATT 
H593 GCACAGTGGCACGAAATCAACAG 
H594 GTTTGGAGTATGTAGAAGTACAGTATACAACTGG 
H595 CCAGTTGTATACTGTACTTCTACATACTCCAAAC 
H596 GTTTGGAGTATGTAGAAGTACAGTATACAACTAT 
H597 ATAGTTGTATACTGTACTTCTACATACTCCAAAC 
H598 GTTTGGAGTATGTAGAAGTACAGTATACAAC 
H599 GTTGTATACTGTACTTCTACATACTCCAAAC 
H600 GTAGAAGTACAGTATACAACTGG 
H601 CCAGTTGTATACTGTACTTCTAC 
H602 GTAGAAGTACAGTATACAACTAT 
H603 ATAGTTGTATACTGTACTTCTAC 
H604 GTAGAAGTACAGTATACAAC 
H605 GTTGTATACTGTACTTCTAC 
H606 NNNNNGTCGGCTTTTCAAGACTGAAGTCTAG 
H607 NNNNNCAGGGCTTTTCAAGACTGAAGTCTAG 
H608 NNNNNAGTGGCTTTTCAAGACTGAAGTCTAG 
H609 NNNNNTCAGGCTTTTCAAGACTGAAGTCTAG 
H610 NNNNNGCTGGCTTTTCAAGACTGAAGTCTAG 
H611 NNNNNCGAGGCTTTTCAAGACTGAAGTCTAG 
H612 ATGAATGGATTGAAGAGAACACAGACGAACAGG 
H613 CCTGTTCGTCTGTGTTCTCTTCAATCCATTCAT 

H614 TTAACCAAGCAATAGATGAATGGATTGAAGAGAACACAGACGAACAGGACAGACTA
ATTAACT 

H615 AGTTAATTAGTCTGTCCTGTTCGTCTGTGTTCTCTTCAATCCATTCATCTATTGCTTG
GTTAA 

H616 AGAAATTATCGAATACTTAAATAAAAAAGCAGG 
H617 CCTGCTTTTTTATTTAAGTATTCGATAATTTCT 

H618 TTCCATTCCCTATAAAGAAATTATCGAATACTTAAATAAAAAAGCAGGAAAGCATTTT
AAACA 

H619 TGTTTAAAATGCTTTCCTGCTTTTTTATTTAAGTATTCGATAATTTCTTTATAGGGAAT
GGAA 

H620 ATGAATGGATTGAAGCTTAAATAAAAAAGCAGG 
H621 CCTGCTTTTTTATTTAAGCTTCAATCCATTCAT 
H622 AGAAATTATCGAATAAGAACACAGACGAACAGG 
H623 CCTGTTCGTCTGTGTTCTTATTCGATAATTTCT 
H624 ATGAATGGATTGAAGAGAACATAAAAAAGCAGG 
H625 CCTGCTTTTTTATGTTCTCTTCAATCCATTCAT 
H626 ATGAATGGATGAATACTTAAACAGACGAACAGG 
H627 CCTGTTCGTCTGTTTAAGTATTCATCCATTCAT 
H628 ATGAATGGATGAATACTTAAATAAAAAAGCAGG 
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H629 CCTGCTTTTTTATTTAAGTATTCATCCATTCAT 
H630 AGAAATTATCTGAAGAGAACACAGACGAACAGG 
H631 CCTGTTCGTCTGTGTTCTCTTCAGATAATTTCT 
H632 AGAAATTATCTGAAGAGAACATAAAAAAGCAGG 
H633 CCTGCTTTTTTATGTTCTCTTCAGATAATTTCT 
H634 AGAAATTATCGAATACTTAAACAGACGAACAGG 
H635 CCTGTTCGTCTGTTTAAGTATTCGATAATTTCT 

H636 TTCCATTCCCTATAAATGAATGGATTGAAGAGAACACAGACGAACAGGAAAGCATT
TTAAACA 

H637 TGTTTAAAATGCTTTCCTGTTCGTCTGTGTTCTCTTCAATCCATTCATTTATAGGGAA
TGGAA 

H638 TTAACCAAGCAATAGAGAAATTATCGAATACTTAAATAAAAAAGCAGGACAGACTAA
TTAACT 

H639 AGTTAATTAGTCTGTCCTGCTTTTTTATTTAAGTATTCGATAATTTCTCTATTGCTTG
GTTAA 

H641 AAACATGAATGGATTGAAGAGAACACAGACGAACG 
H642 AAAACGTTCGTCTGTGTTCTCTTCAATCCATTCAT 
H643 AAACAGAAATTATCGAATACTTAAATAAAAAAGCG 
H644 AAAACGCTTTTTTATTTAAGTATTCGATAATTTCT 
H645 ATGAATGGATTGAAGAGAACACAGACGAACATT 
H646 AATGTTCGTCTGTGTTCTCTTCAATCCATTCAT 

H647 TTAACCAAGCAATAGATGAATGGATTGAAGAGAACACAGACGAACATTACAGACTA
ATTAACT 

H648 AGTTAATTAGTCTGTAATGTTCGTCTGTGTTCTCTTCAATCCATTCATCTATTGCTTG
GTTAA 

H649 AGAAATTATCGAATACTTAAATAAAAAAGCATT 
H650 AATGCTTTTTTATTTAAGTATTCGATAATTTCT 

H651 TTCCATTCCCTATAAAGAAATTATCGAATACTTAAATAAAAAAGCATTAAAGCATTTT
AAACA 

H652 TGTTTAAAATGCTTTAATGCTTTTTTATTTAAGTATTCGATAATTTCTTTATAGGGAAT
GGAA 

H653 TTCCATTCCCTATAAAGAAATTATCGAATACTTAAATAAAAAAGCAGGGGAGGGGTT
TAAACA 

H654 TGTTTAAACCCCTCCCCTGCTTTTTTATTTAAGTATTCGATAATTTCTTTATAGGGAA
TGGAA 

H655 CACATCAATTAGTAAGACGCCAAAAGTAACAGG 
H656 CCTGTTACTTTTGGCGTCTTACTAATTGATGTG 
H657 ATAATAATGAACATGTCTTGTCACAGTTTCAGG 
H658 CCTGAAACTGTGACAAGACATGTTCATTATTAT 
H659 ATGAATGGATTGAAGAGAACCAAAAGTAACAGG 
H660 CCTGTTACTTTTGGTTCTCTTCAATCCATTCAT 
H661 AGAAATTATCGAATACTTAATCACAGTTTCAGG 
H662 CCTGAAACTGTGATTAAGTATTCGATAATTTCT 
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H663 NNNNNCCCCAAAATTTTTTAGACAAAAATAGTC 
H664 NNNNNAAACAAAATTTTTTAGACAAAAATAGTC 
H665 NNNNNTTTCAAAATTTTTTAGACAAAAATAGTC 
H666 NNNNNAGTCCAAAATTTTTTAGACAAAAATAGTC 
H667 NNNNNCTGACAAAATTTTTTAGACAAAAATAGTC 
H668 ATAATAATGAACATGTCTTGACAGACGAACAGG 
H669 CCTGTTCGTCTGTCAAGACATGTTCATTATTAT 
H670 ATAATAATGATGAAGAGAACTCACAGTTTCAGG 
H671 CCTGAAACTGTGAGTTCTCTTCATCATTATTAT 
H672 ATGAATGGATACATGTCTTGTCACAGTTTCAGG 
H673 CCTGAAACTGTGACAAGACATGTATCCATTCAT 
H674 ATGGATTGAAGAGAACACAGACGAAC 
H675 GTCTGTGTTCTCTTCAATCCATTCAT 
H676 ATTATCGAATACTTAAATAAAAAAGC 
H677 TTTTATTTAAGTATTCGATAATTTCT 
H678 ATGGATTGAAGAGAACATAAAAAAGC 
H679 TTTTATGTTCTCTTCAATCCATTCAT 
H680 ATGGATGAATACTTAAACAGACGAAC 
H681 GTCTGTTTAAGTATTCATCCATTCAT 
H682 ATTATCTGAAGAGAACACAGACGAAC 
H683 GTCTGTGTTCTCTTCAGATAATTTCT 
H684 ATGGATGAATACTTAAATAAAAAAGC 
H685 TTTTATTTAAGTATTCATCCATTCAT 
H686 ATTATCTGAAGAGAACATAAAAAAGC 
H687 TTTTATGTTCTCTTCAGATAATTTCT 
H688 ATTATCGAATACTTAAACAGACGAAC 
H689 GTCTGTTTAAGTATTCGATAATTTCT 
H690 AAAGGATACGTGTAAAGACATATTAGATCGAGTCAAGGAGGTTTTG 
H691 CAAAACCTCCTTGACTCGATCTAATATGTCTTTACACGTATCCTTT 

H692 
AAAGGATACGTGTAAAGACATATTAGATCGAGTCAAGGAGGTTTTGGGGAAGTG 

H693 
CACTTCCCCAAAACCTCCTTGACTCGATCTAATATGTCTTTACACGTATCCTTT 

H694 CCTCTAATACGACTCACTATAGGTGAAGAGAACACAGACGAACGTTTAAGAGCTAT
GC 

H695 
CCTCTAATACGACTCACTATAGGAATACTTAAATAAAAAAGCGTTTAAGAGCTATGC 

H696 AACTGCTACTTGTTGGAGC 
H697 TTATCTCTTGTAGCAAACGTGG 
H698 TGGCGTTCAAGAACTTATGG 
H699 TACTCGTAACCATTCGGGTG 
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H700 TATAAAGAAATTATCGAATACTTAAACCGATCAGTAGGAAAGC 
H701 GCTTTCCTACTGATCGGTTTAAGTATTCGATAATTTCTTTATA 
H702 TATAAAGAAATTATCGAATACTTAATTAATGACTAAGGAAAGC 
H703 GCTTTCCTTAGTCATTAATTAAGTATTCGATAATTTCTTTATA 
JW3 AAAACAGCATAGCTCTAAAACG 
JW4 AAAACAGCATAGCTCTAAAACA 
JW5 AAAACAGCATAGCTCTAAAACT 
JW8 GGCTTTTCAAGACTGAAGTCTAG 
L400 CGAAATTTTTTAGACAAAAATAGTC 
oGG82 AACATTGCCGATGATAACTTGAG 
oGG83 GTTTTGGGACCATTCAAAACAGCATAGCTCTAAAACCTCGTAG 
PS192 CGCGGATCCATGGCTGGTTGGCGTACTGTTGTGG 
PS193 CGCCTCGAGTCATATCCTAAATTCAGGAACTCC 

PS199 
CGAGCATATGACGACCTTCGATATGATCGGCAATGTTGAATGGAGACCATTC 

PS200 
GAATGGTCTCCATTCAACATTGCCGATCATATCGAAGGTCGTCATATGCTCG 

PS202 
CATCATCATCATCATCACAGCAGCGGCATGGATAAGAAATACTCAATAGG 

PS203 
CCTATTGAGTATTTCTTATCCATGCCGCTGCTGTGATGATGATGATGATG 

PS204 
CGACAAGCTTGCGGCCGCACTCGAGCTTTTTATTTTAGGAGGCAAAAATG 

PS205 
GGATCTCAGTGGTGGTGGTGGTGGTGTACCATATTTTTAGTTATTAAGAAATAATC 

PS206 
GATTATTTCTTAATAACTAAAAATATGGTACACCACCACCACCACCACTGAGATCC 

PS207 
CATTTTTGCCTCCTAAAATAAAAAGCTCGAGTGCGGCCGCAAGCTTGTCG 

PS284 GCTAGCGATATTATGGCACCATTTAGGCCTTTAG 
PS285 CTAAAGGCCTAAATGGTGCCATAATATCGCTAGC 
PS334 TACTTCCAATCCAATGCAATGAGCTATCGCTATATG 
PS335 TTATCCACTTCCAATGTTATTATTAGCTTTCATCAAAGGC 
PS336 CGCGGATCCATGAACCTGAACTTTAGCCTGCTGG 
PS337 CGCCTCGAGTTACACCATATTTTTGGTAATCAG 
PS354 GTTCCTGAATTTAGGATATGAAACATTGCCGATCATATCGAAGG 
PS355 CCTTCGATATGATCGGCAATGTTTCATATCCTAAATTCAGGAAC 
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