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ABSTRACT 

 

The wastewater effluents produced by poultry and the red meat industries were 

analysed in the quest to detect the presence of heavy metals in abattoir wastewater 

and to establish and optimize alternative methods of purifying wastewater from 

Bloemfontein abattoirs in an effort to reduce water pollution. Water samples were 

randomly collected from two categories of local abattoirs in Bloemfontein, namely 

poultry and red meat abattoirs. The samples were found to contain high levels of alkali 

and alkaline earth metals (Ca, Mg, K and Na) at rates above 100 mg/ℓ. Other elements 

present in the wastewater samples that were analyzed included Cr, Ni, Cu and Pb, 

which are elements that have been reported to cause devastating effects in animals 

and the environment. Analyses of the Cr, Ni, Cu and Pb using ICP-OES showed the 

presence of ultra-trace levels (0.05 – 0.2 mg/ℓ) in both wastewater solutions. These 

elements confirmed the presence of heavy metals in the water bodies at the abattoirs. 

A chromatographic technique using different chitosan products as adsorbents was 

developed.  

 

Some cross-linked chitosan products were synthesized from different chitin (mussel, 

prawn, pang and silver) products. The modified chitosan products were obtained from 

cross-linking the chitin with glutaraldehyde, formaldehyde, epichlorohydrine, maleic 

anhydride, p-benzoquinone, poly (ethylene) glycol diglycidyl ether (PEG diglycidyl 

ether), 1-vinyl-2-pyrrolidone, 1,3-dichloroaceone, acrylic acid and s-methyl-

benzylamine. Characterization of these cross-linked chitosan products was performed 

using FTIR, SEM and viscometer assessments. The results obtained from the 

analyses using SEM spectroscopy revealed that the different products had different 

morphological structures. The results of the analyses showed significant adsorption 

rates of alkali and alkaline earth metals (Ca, Mg, K and Na) using shrimp chitosan that 

was cross-linked with maleic anhydride (J1) and shrimp chitosan that was cross-linked 

with acrylic acid (I2) chitosan products. The shrimp and crab chitosan starch that was 

cross-linked with formaldehyde (C1 and C2) was also shown to effectively adsorb the 

alkali and alkaline earth metals present in the waste samples. Lower concentrations 

of heavy metals were recovered (0.05 - 0.2 mg/ℓ) for Cr, Ni, Cu and Pb using these 

chitosan products. Although no complete adsorption of these elements was achieved 
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in both the wastewater samples, the results showed a substantial improvement of the 

water eluted which demonstrated the effectiveness of the method using synthesized 

chitosan products.  
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 INTRODUCTION 

 

 General background and motivation for this study 

Chemical water pollution due to heavy metals in industrial waste remains a serious 

environmental and public concern. The most common source of surface water 

pollution in South Africa is waste from industrial abattoirs which contributes to ‘’up to’’ 

85% of water pollution in this country. Industrial wastewater from abattoirs contains 

mixtures of solid particles and liquid wastes that include blood, carcasses, hides, 

carcass trimmings, grease, feathers, manure, grit, undigested feed, bones, horns, hair, 

fat, bile, urine and dissolved chemicals. These waste products, together with other 

heavy metals from chemical waste in abattoirs, pollute fresh water sources (e.g., 

rivers, dams and boreholes) and ultimately spread sickness and diseases such as 

typhoid and cholera (Chukwu et al. 2011). Moreover, heavy metals in wastewater have 

been found to severely affect human cellular organelles, particularly the cell 

membrane, endoplasmic reticulum, nuclei, mitochondrial, lysosome and some 

enzymes involved in the detoxification toxins in the body (Wang & Shi, 2001).  

 

The liquid waste (or effluent) from industrial abattoirs contains a variety of dissolved 

chemicals, heavy metals ions, aromatic compounds such as phenolic derivatives and 

polycyclic aromatic compounds, dyes and humic pigments (Rio & Delebarre, 2003) 

that often result in coloured effluents. When these effluents are disposed of in and 

then washed down river streams, the effects are devastating and range from 

immediate to long-term damage to humans and the environment. Heavy metals are 

not biodegradable and tend to accumulate in living organisms, thereby causing 

immediate ill effects in animals (Van der Oost et al. 2003). Humic substances and 

some persistent organic micro-pollutants found in effluents are also harmful to 

organisms and to human health (Irshad, 2013). Other pigments such as synthetic dyes 

that are extensively used in the textile industry for dyeing, paper printing and additives 

in petroleum products are recalcitrant organic molecules that also strongly colour 

wastewater. These pigments are the most common contaminants in wastewater and 

are regarded as carcinogenic.  
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The effective disposal of abattoir wastewater (Figure 1.1) is therefore a matter of 

severe concern because most current techniques do not completely address the issue 

of heavy metals due to the complexity of the chemistry involved and problems 

associated with waste separation techniques (Adeyemo, 2002). 

 

  

Figure 1.1: Abattoir effluent released in the environment  

Source: Irshad, 2013 

 

Several techniques have been used to treat industrial effluents in an attempt to prevent 

water pollution. These techniques include the use of conventional methods such as 

activated carbon, precipitation, coagulation-flocculation, and the application of 

synthetic polymers (Brostow et al. 2009).  Treatment of wastewater using these 

techniques is divided into primary, secondary and tertiary treatment categories (Massé 

& Massé, 2000). Primary treatment predominantly targets the removal of suspended 

solid particles, the separation of floating and heavy solids using screens or catch 

basins, dissolved air floatation, flow equalization, oil and grease removal, and settlers 

for the recovery of proteins and fats. Secondary treatment mainly involve the removal 

of organic matter using biological treatment methods such as aerobic and anaerobic 

lagoons, facultative lagoons, activated sludge systems, extended aeration, oxidation 

ditches and sequencing batch reactors. The tertiary treatment stage involves the 

removal of nitrate, phosphate and heavy metals. 
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 Motivation for the study 

Fresh water supplies in South Africa are increasingly becoming scarcer due to water 

pollution that is derived mainly from abattoirs. The recent drought that ravaged Cape 

Town in 2018 and the persistent drought in other inland areas have highlighted the 

need to recycle wastewater from abattoirs and to establish ways to minimize water 

pollution (Otto and Wolski, 2018). The availability of clean water from already scarce 

sources is threatened by the continuous addition of abattoir wastes and contaminated 

industrial waste chemicals into watercourses (Lvovich, 1979). Techniques to 

effectively recycle wastewater, disinfect micro-organisms in water and isolate heavy 

metals are still a major challenge in South Africa.  

Conventional wastewater treatment methods such as chemical precipitation and 

coagulation-flocculation systems using inorganic materials, activated carbon, 

synthetic polymers or natural biopolymers are the most commonly used techniques 

for purifying industrial wastewater. However, the application of these techniques in the 

treatment of wastewater has been shown to produce inconsistent results, and each 

technique has been reported to have its pros and cons depending on the nature of the 

water analysed. The flocculation technique has been widely used for removing 

suspended particles (flocculants) in wastewater. However, this technique has the 

drawback of leaving large volumes of sludge that strongly affect the pH of the medium 

when excess amounts of salts (flocculants) remain (Brostow et al., 2009). Other 

disadvantages of using flocculation are the effects caused by temperature variations, 

particle size of the flocculants used, and the water chemistry (matrix) (Vijayaraghavan 

et al., 2011). Activated-carbon flocculants have also been used and have been shown 

to be non-selective and costly (Crini, 2005; Ali et al., 2012).  

 

Other commonly used techniques for wastewater treatment include the use of natural 

biopolymers (polysaccharides). Biopolymers such as chitosan that were used in the 

past in commercial applications − particularly in the biomedical, food and chemical 

industries − have recently received increased attention in wastewater treatment 

(Knorr, 1984; Muzzarelli, 1973; Sandford & Hutchings, 1987). Chitosan is a modified, 

natural carbohydrate polymer derived by deacetylation of chitin (Figure 1.2), which is 

a major component in the shells of crustacea such as crab, prawn and crayfish. It is 

the second most abundant natural biopolymer after cellulose (No & Meyers, 1989).  

© Central University of Technology, Free State
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a flocculent would be its availability, cost effectiveness, and ease to be regenerated 

after use. A cost-effective technique using different types of chitosan was therefore  

designed with the intention of providing an effective method to curb water pollution, 

particularly with reference to the Mangaung (Bloemfontein) Metropolitan Municipality’s 

abattoir effluents. The effectiveness of each synthetic modified chitosan was tested in 

the laboratories with respect to its ability to effectively purify and isolate heavy metals 

in the effluent of selected abattoirs.   

 

 Aim of this study 

The aim of the study was to detect heavy metals in abattoir effluent and to establish 

an alternative method of purifying wastewater from Bloemfontein abattoirs in an effort 

to reduce water pollution.   

 

To achieve this, the following objectives had to be achieved: 

 

 Identify raw materials (domestic waste) such as fish scales (silver and pang 

scales), Crustacean shells (crab), and Mollusk shells (oyster, prawns) for the 

preparation of chitin and chitosan products to be used for wastewater treatment; 

 

 Synthesize a variety of absorbents from chitin and chitosan biopolymers 

obtained from fish scales and prawn, crab, oyster, and mussel shells for 

wastewater purification; 

 

 Characterize these adsorbents using spectroscopy techniques such as 

solubility tests, viscometer determinations, degree of acetylation, and SEM and 

FTIR spectroscopy; and  

 

 Sample abattoir wastewater and investigate the effectiveness of the modified 

product(s) in purifying these wastewater effluents through comparative studies 

with commercially available adsorbents such as chitosan beads, chitins, natural 

polysaccharides, and Amberlite resins. 
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 PRODUCTION AND DISPOSAL OF WASTEWATER FROM 

ABATTOIRS – A LITERATURE SURVEY 

 

 Introduction 

The meat industry is often subdivided into two categories, namely the red meat sector 

that processes beef, mutton and pork and the white meat sector that processes 

poultry. The white meat industry has the highest consumption of water (6 to 10 million 

m3 per annum) compared to the red meat processing industry that consumes 

approximately 4 to 5 million m3 of water per annum (Steffen et al. 1989). The 

production of wastewater, particularly by the red meat processing industry, has 

increased at an alarming rate (Kieppar, 2001) which, by implication, has also resulted 

in an increase in water pollution. A detailed literature study was thus conducted to 

determine the source of water pollution and the effects it has caused.  The main 

objective of this chapter is thus to illuminate the composition and quantity of 

wastewater generated by the red meat and poultry processing industries and to assess 

the impact that their wastewater has on the environment.   

 

 Distribution of abattoirs in South Africa 

South Africa is amongst the highest meat producing countries in the world, with an 

estimated 13.5 million cattle, 29 million sheep and 6.6 million goats slaughtered each 

year (Van Zyl, 1995). Most of the agricultural land in South Africa is used for livestock 

farming (ca. 80%) with sheep and goat farming occupying approximately 590 000 km2 

of land. According to statistics, the provinces with the highest meat production are the 

Eastern Cape (22.9%), KwaZulu-Natal (20.3%) and the Free State (16.5%) (Van Zyl, 

1995) (Figure 2.1). 
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Figure 2.1:  Cattle production per province in South Africa  
Source: Van Zyl, 1995 
 

Increasing demands on meat production locally and internationally have led to the 

increase in the number of abattoirs where animals are slaughtered. Ironically, the Free 

State Province has the highest number of meat processing centres compared to the 

Eastern Cape and KwaZulu-Natal (KZN), where more meat is produced (Table 2.1).  

The large number of abattoirs in the Free State Province thus makes it one of the 

highest water consumers with an estimated of 96.91 million m3 per annum water 

consumption (Department of Water Affair, 2011). High per annum water consumption 

rates are also reported for the Eastern Cape (149.61 million m3) and KwaZulu-Natal 

(299.80 million m3), and these high rates suggest a correlation between water 

consumption and pollution. The Free State Province has been experiencing an 

increase in water pollution due to increased industrial activities (Coleman, 2015), and 

it is inevitable that the meat processing industry contributes significantly to this plight. 
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Table 2.1: Distribution of registered abattoirs in South African per province (Red 
Meat Abattoir Association, 2003) 

Province Registered  

Abattoirs 

RMAA* 

Gauteng 41 19 

Limpopo 31 11 

North West 30 11 

Free State 85 26 

KZN 49 19 

Eastern Cape 83 21 

Western Cape 69 24 

Mpumalanga 40 20 

Northern Cape 64 20 

 Total: 492 171 

  

 

 Chemical composition of wastewater  

The effluent from red meat abattoirs contains various soluble and insoluble materials 

that are disposed of as waste from the abattoir (Scheme 2.1). The composition of the 

waste was of significance in this study as it plays a critical role in determining the ideal 

methods for recovering essential elements and paving ways to curb pollution. During 

the slaughtering process in the meat processing industry, a lot of water (6 to 10 million 

m3 per annum) is used mainly for washing the animals and cleaning the meat, which 

makes abattoirs one of the biggest water consumption industries in the country. The 

solid and liquid wastes are washed down drains where they are often filtered to remove 

the insoluble material. The effluent waste constitutes nearly 90% of the soluble 

substances which, amongst others, include blood, urine, organic lipids and chemicals. 

Suspended material constitutes nearly 10% of the red meat effluent waste and mainly 

consists of fat and oils (Figure 2.2).  
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Scheme 2.1: Wastewater production (effluent) in the red meat processing    

industry  

Source: Verheijen et al., 1996 
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Figure 2.2: Effluent from a red meat processing abattoir  

Source: Aniebo et al., 2009 

 

 Effects of the soluble components in effluent wastewater 

The wastewater from meat abattoirs, but particularly from red meat abattoirs, contains 

numerous soluble substances that, amongst others, include heavy metals, dyes, 

humic substances and organic pollutants. The effects caused by these substances are 

discussed below.  

 

2.4.1 Effects of heavy metals in wastewater 

The source of elements and heavy metals in wastewater is often attributed to the 

washing of intestines and a variety of chemicals used in the meat processing industry 

(US Environmental Protection Agency [USEPA], 2005). Some of the common 

elements found in wastewater include iron (Fe), copper (Cu), zinc (Zn), lead (Pb) nickel 

(Ni), selenium (Sn), mercury (Hg), chromium (Cr), arsenic (As), aluminium (Al), and 

cadmium (Cd) which are all reported to be present in the range of 0.023 to 0.50 mg/kg 

(Nkansah & Ansah, 2014; Ubwa et al. 2013). Anthony and Kozlowski (1982) reports 

of the environmental effects caused by these elements are due to their toxicity that 

affects aquatic life and disrupts the ecological balance in the aquatic environment. The 

latent fatal effects of heavy metals in wastewater that is discharged into fresh water 

bodies are devastating. These effects are dependent on the quantity and composition  

© Central University of Technology, Free State



11 
 

 

 

of the discharges (Owuli, 2003; Akpor & Muchie, 2011). Heavy metals are easily 

absorbed by aquatic species and the effects thereof have been shown to inhibit growth 

and reproduction, which eventually leads to the extinction of aquatic life forms. 

Amongst the common metals found in effluent are Cr(VI) ions from the oxidation of 

Cr(III) compounds that affect the health and survival of aquatic species (Saikia et al., 

2014). Khansari et al. (2005) found an accumulation of mercury and arsenic in human 

tissues. Substantial concentrations of these metals result in health problems such as 

damage to the nervous system, the kidneys and the cardiovascular system (Järup, 

2003).   

 

Contamination of fresh water bodies by wastewater is very common in South Africa, 

particularly in the outskirts of Bloemfontein in the Free State where most of the 

abattoirs in this province are located (Benotti et al., 2009). Most of the effluent from 

abattoirs is carried into the river streams where it pollutes these fresh water bodies. 

The effects of heavy metals have also been reported to have severe adverse effects 

on humans as they cause diseases like gastrointestinal disorders, diarrhoea, 

stomatitis, haemoglobinuria, ataxia, paralysis, convulsion, vomiting, depression and 

pneumonia. A study by Salem, Eweida and Farag (2000) on the effects of lead in 

humans showed severe damage to the nervous system of the human body. The study 

also indicated that the ingestion of large quantities of lead (up to 12 mg/ℓ) is fatal to 

human health and also results in diminution in haemoglobin production. It also affects 

the kidneys and the cardiovascular system (Nolan, 1983; Galadima & Garba, 2012; 

Okegye & Gajere, 2015).  

 

Disposal of wastewater that contains heavy metals can alter the chemical composition 

of the soil where it is discarded, which ultimately affects the growth of plants. Morso, 

Khan et al. (2015) studied the effects of heavy metals on plants and report that a large 

quantity of heavy metals in soil inhibits growth, uptake of nutrients and water, and 

physiological and metabolic processes (Guala et al., 2010). According to Gardea-

Torresdey et al. (1998), the presence of heavy metals in plants can also decrease 

seed germination, enzyme activity, chlorophyll production and inhibit photosynthesis 

which will ultimately lead to yield depression. 
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2.4.2 The effects of dyes (colorants) 

Most wastewater contains a significant percentage (estimated between 2 to 20%) of 

dye which is often used in abattoirs for meat packaging and for textile and paper 

printing. These compounds are often the major components responsible for the 

formation of coloured effluents. The most common types of dyes used in the meat 

processing industry are synthetic dyes that are used to colour meat products (Aksu, 

2005). There are various derivatives of synthetic dyes which include anionic, non-ionic 

and cationic dyes. Non-ionic dyes do not ionize in aqueous environments and are less 

soluble, unlike the anionic dyes that are soluble. The anionic dyes are very common 

in abattoir effluent due to their bright colour and solubility in water. Congo red (Figure 

2.3) and Orange 16 azo dye are commonly known anionic dyes that are used in 

abattoirs for colouring, and these dyes are often detected in abattoir wastewater due 

to their brilliant colours.  

NH2
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O O Na
+
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Figure 2.3: Structure of Congo red dye and anionic dye  

Source: Jabbar et al., 2014  

 

Non-ionic dyes such as disperse red 1 (Figure 2.4) are also brightly coloured and 

insoluble in water and often form emulsion in most effluent waste.   

 

OH

N

N N

O2N

 

Figure 2.4: Structure of disperse red 1, a non-ionic dye  

Source: Attla, Girgis & Fathy, 2008 
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The presence of dyes in effluent causes an unpleasant appearance and the colourant 

and other breakdown products impact aquatic life forms negatively. The decomposed 

structures of dyes also contain aromatic compounds that, in the presence of light, can 

form radicals which can be toxic to aquatic life. The dyes present in effluent give 

persistent colour to the receiving streams and interfere with photosynthesis in aquatic 

life (Cunningham & Saigo, 2001). Research by Crini and Badot (2008) and Pagga and 

Brown (1986) on the effects of synthetic dyes showed that highly coloured effluent 

blocks the penetration of sunlight and oxygen in water. This causes the destabilization 

of biological activity and reduces photosynthetic processes. Most dyes are non-

biodegradable with carcinogenic action, causing allergies and dermatitis in humans as 

their synthetic nature and structure are aromatics (Carmen & Daniela, 2012).  

 

2.4.3 Organic and humic substances 

Effluents from abattoirs have also been reported to contain soluble and suspended 

organic particles and other decayed substances like humic substances (Figure 2.5). 

Humic substances are usually dark-brown mixtures of complex organic compounds 

with high molecular weight ranges which are often derived from decomposed organic 

debris.  

 

 

Figure 2.5: Organic waste substances from abattoirs that contain humic 
substances  

Source: Aniebo et al., 2009 
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These decomposed organic substances often randomly coil to form macromolecules, 

micelles or pseudo-micelles in wastewater. The degradation of animal waste materials 

often results in the formation of acidic compounds such as fulvic and humic acids 

(Figure 2.6) (Senn & Kingman, 1973). These substances contain a number of 

conjugated unsaturated bonds that are capable of absorbing light (Corin et al., 1998).  

 

 

Figure 2.6: Organic structure of humic acid  

Source: Steveson, 1994 

 

Abattoir waste products have also been shown to contain a wide variety of persistent 

organic pollutants (POP) that, amongst others, include polycyclic aromatic 

hydrocarbons and polychlorinated biphenyls that are the by-products of the 

decomposition or degradation of organic matter. Recent investigations have estimated 

the concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls 

in raw abattoir wastewaters to be in the range of 250 to 1 250 µg/L. The solubility, 

semi-volatility, biodegradability and lipophilicity of POP enable their widespread, 

environmental transportation and bioaccumulation. The effects of these aromatic 

derivative compounds also add to the toxicity of wastewater (Badmus et al, 2018). 

 

Abattoir waste such as blood (haemoglobin) decomposes into small, persistent 

organic compounds such as maleimide and dipyrrole (Figure 2.7). Haemoglobin often 

undergoes autoxidation to form superoxide (O2−) in the presence of light which then 

undergoes dis-mutation to produce hydrogen peroxide. These series of reactions 

triggers a cascade of secondary oxidative reactions that decompose to form toxic 

products (Alayash, 2004). 
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Figure 2.7: Degradation of haemoglobin in wastewater 

Source:  Alayash, 2004 

 

 

 Conclusion 

It can be concluded that wastewater from abattoirs contributes significantly to water 

pollution and the meat processing industry is one of the biggest water polluter. This 

wastewater is known to have heavy metals, dyes and organic and humic substances, 

and it was shown that the effects of heavy metals are devastating in animals and 

plants. It was also shown that heavy metals alter the chemical composition of the soil 

where they are deposited and that this ultimately affects the growth of plants. It was 

also argued that the effects of other components such as organic and humic 

substances are not immediate, but ultimately devastating.    
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 Techniques used in the separation of heavy metals from 

wastewater − Literature Survey 

 

 Introduction 

The discourse in the previous chapters elucidated the fact that wastewater from the 

red meat processing industry contributes significantly to water pollution in South Africa. 

Wastewater from the meat industry undeniably contains heavy metals, dyes, organic 

and humic substances and an accumulation of these substances in fresh water bodies 

such as rivers, dams and lakes causes devastating effects on both animals and plants 

(Grozes et al., 1995; Gongwala et al., 2014). The effects of the accumulation of heavy 

metals in wastewater are critical as the pollution of water due to heavy metals causes 

more serious effects compared to other pollutants. The literature revealed that several 

techniques had been used to separate heavy metals from wastewater. These methods 

included gravimetric, chromatographic and solvent extraction (Adeniji et al. 2017), but 

it is clear that none of these methods have had the desired effect of curbing water and 

hence environmental pollution. Therefore, in order to develop an effective method for 

the removal of heavy metals from abattoir wastewater, it was deemed crucial to 

explore the challenges associated with current techniques in order to illuminate 

possible opportunities for improvement. An in-depth literature study was therefore 

conducted as a springboard for refreshing old methods and developing new 

techniques to optimize the efficiency of decontaminating poultry and red meat abattoir 

effluent.  

 

 Gravimetric techniques 

Gravimetric methods are amongst the oldest analytical techniques used in the 

separation and quantification of heavy metals. There are four major types of 

gravimetric analysis strategies/methods used in the extraction of heavy metals, 

namely physical gravimetry, thermo gravimetry, precipitative gravimetric analysis 

(often called chemical precipitation), and electrodeposition. The most commonly used 

technique to separate heavy metals from industrial effluent is the chemical 

precipitation method. This method involves the use of different chemicals called 

precipitation reagents to precipitate analyte species. The advantages of using this 

method are that it requires a simple operation and costs are low. However, the 
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drawbacks of this technique are that it is time consuming, tedious, labour intensive, 

and involves a number of stages such as pre-separation of the interfering substances 

and pre-concentration of the analyte species. However, the simplicity of the chemical 

precipitation method has rendered this technique both desirable and versatile amongst 

researchers. The success of this technique has often been attributed to the 

precipitation rate, temperature, pH of the wastewater, the solubility product (Ksp) of the 

metals involved, and the equilibrium constant of the metal-hydroxide complexes. 

Different precipitation reagents such as hydroxide, carbonate, sulphide and phosphate 

have been used in the isolation of heavy metals from wastewater (Charerntanyarak, 

1999). The formed precipitates are removed as sludge after coagulation, flocculation, 

sedimentation and filtration. The use of hydroxides as a precipitation reagent in the 

removal of heavy metals in solutions has been widely advocated as a method of choice 

due to a number of reasons, such as its low cost and simplicity and ease of automatic 

pH control (Mirbagheri & Hosseini, 2004; Aziz et al., 2008). Moreover, the solubility of 

various metal hydroxides is minimized for pH in the range of 8.0 to 11.0. 

 

The process of precipitating heavy metals using the chemical precipitation technique 

is achieved by producing an insoluble precipitate from the solution. Once the metals 

precipitate and form solids, they can then easily be removed and the water, now with 

low metal concentrations, can be discharged or reused. The mechanism of this 

process is centred on promoting conditions that favour the precipitation of soluble 

metal ions using a precipitating agent like hydroxide salts or any chelating agent. 

Percentage recoveries of metal ions in solution have also been shown to be improved 

by adjusting parameters such as the pH, temperature initial concentration, and charge 

of the ions. The precipitation of heavy metals using hydroxides in wastewater effluent 

has also been reported to occur according to Equation 1 below:  

 

                 Mn+   +     2(OH)−  ↔    M(OH)n  ↓                                                            …1                                                          

                 Where Mn+ =  metal ions; and 

                 M(OH)n is the insoluble metal hydroxide precipitate. 
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Heavy metals that are often found in wastewater i.e. Cd, Cu, Cr, Ni, Pb and Zn – 

reportedly cause devastating effects in both plants and animals (Nkansah & Ansah, 

2014). Unlike organic contaminants, heavy metals are not biodegradable and tend to 

accumulate in living organisms and cause several health issues. To ensure the 

cleanliness of water and a healthy environment, these elements must be removed 

completely from all effluent. Several research studies have been conducted using the 

chemical precipitation technique such as the work done by (Mirbagheri and Hosseini, 

2004), who successfully isolated Cu(II) and Cr(IV) in the presence of ferrous sulphate 

from wastewater using Ca(OH)2 and NaOH as a precipitate agent.  They reported that 

complete removal of these metals from the solution required the correct pH adjustment 

in achieving a complete precipitation. Maximum precipitation of Cr(III) as Cr(OH)3 was 

achieved at a pH of 8.7, which significantly reduced concentration of chromium in the 

wastewater from 30  to 0.01 mg/ℓ. However, the removal of copper was successfully 

achieved at a pH of 12 using the same precipitating reagents. Substantial reduction in 

copper concentration in the wastewater from 48.51 to 0.694 mg/ℓ was achieved. 

 

Studies have also shown that selective precipitation of various metals occurs at 

various pH levels depending on the precipitating agent used. Chemical precipitation 

of various metals has been shown to occur at different pH values using hydroxides. 

Selective isolation of different metals in solution was also achieved using these 

differences in pH and Ksp values for metal ions (Suponik, 2010). A theoretical pH range 

for the precipitation of various metals using hydroxides is presented in Figure 

3.1.These findings were based on the solubility product Ksp of the metal hydroxide 

(Nkansah & Ansah, 2014). 
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Figure 3.1: Metal hydroxide solubility as a function of its concentration  
and pH   
Source: Suponik, 2010 
 

Analyses by Mirbagheri and Hosseini (2004) were corroborated by the predicted pH 

values by (Suponik, 2010) as presented in Figure 3.1, which shows the chromium 

species to be quantitatively isolated at pH between 7 and 8. Further research on the 

isolation of heavy metals using hydroxides showed that lead and zinc could be 

successfully isolated using Ca(OH)2 and NaOH at a pH range of 10 to 11. The results 

also showed a significant reduction of lead and zinc metals concentrations in the 

effluent from 100.0 to 0.45 mg/ℓ respectively. The success of this method was 

attributed to the use of coagulants such as alum (hydrated potassium hyfroxide), 

organic polymer and iron salt to facilitate the precipitation process (Charentanyarak, 

1999). The biggest challenge in using this technique has been ascribed to the huge 

quantities of chemicals (precipitants) that are required to reduce metals to an 

acceptable level for discharge. 

In the water treatment process, chemical precipitation using hydroxides is currently 

being employed in municipal water treatment for the removal of heavy metals in 

wastewater (Figure 3.2). The use of hydroxide in the removal of heavy metals by 

chemical precipitation has been shown to significantly improve metal recovery using 
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pH between 9 and 11. Caustic (sodium hydroxide) and lime (calcium hydroxide) are 

amongst the commonly employed precipitant agents used due to their availability and 

low cost. In municipal wastewater treatment systems, lime is often preferred due to its 

lower cost, whereas in small wastewater treatment systems caustic soda is used due 

to ease of handling. In cases where fluoride or phosphate removal from the 

wastewater is required, lime is used for pH adjustment. The use of lime or caustic soda 

seems to have no great effect on the rate of sedimentation, but the volume of sludge 

will be twice as large when using lime compared to using caustic soda (Wang and Shi, 

2004). 

 

 

Figure 3.2: Chemical precipitation processes used in wastewater treatment 

plants 

Source: Wang and Shi, 2004 
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3.2.1 Isolation of heavy metals using chelating agents as precipitating agents 

Removal of heavy metals from wastewater has also been achieved by using different 

chelating agents. The use of chelating agents seemingly improves selectivity and 

sensitivity compared to the use of hydroxides. The commonly used chelating agents 

in the purification of wastewater are ethylene diamine tetra acetic acid (EDTA)  

(Figure 3.3), citric acid (CA), nitriliacetic acid (NTA), diethylene triaminentaacetic 

(DTPA), and oxoic acids (OA). EDTA is the preferred ligand and has been reported to 

form stable complexes with the transition elements due to its ability to form a 

hexadentate ligand which results in chelate or complex metals ions in the ratio 1:1 

(metal to EDTA complex).  

 

Figure 3.3: EDTA metal structure  

  Source: Sun et al., 2001 

 

Factors influencing the choice of the chelating agents include the Ksp values of the 

metal-ligand complex and the ability of the formed complex to liberate the metal ion. 

The common problem encountered in the selection of the chelating agent is the 

removal of chelated metals (i.e., metal liberation from the complex molecule). In its 

deprotonated form, EDTA has been shown to form hexadentate ligand whilst CA and 

OA form tridentate and bidentate ligands respectively (Al-Qahtani, 2017). These 
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ligands bind with the metal cation in a ratio of 1:1 respectively according to the 

following equations:   

 

Mn+     +   EDTA      →      Metal - EDTA   Complex 

Mn+    +    OA         →       Metal - OA       Complex 

Mn+    +    CA         →       Metal - CA       Complex 

 

 

Figure 3.4: Influence of pH on the removal of copper and mercury from 
wastewater using 0.1 M of EDTA, OA and CA at room temperature  

Source: Al-Qahtani, 2017 

 

In a study that was conducted by Dupare (2015), the effectiveness of EDTA and CA 

as chelating agents in isolating Zn, Cu, Cd, Pd and As from wastewater was 

demonstrated. In this latter study, the effects of increasing the chelating concentration 

were analysed. The effectiveness of these chelating reagents were also studied at a 

constant pH (5.2) and at room temperature. The metal concentration was held 

constant whilst the chelating concentration was varied. The effect of increasing the 

concentration of the chelating agent was determined by analysing the amount of the 

metal ions isolated. Results obtained in this study latter (Tables 3.1 to 3.3) showed 

that higher percentage recoveries of the metal ions were obtained using 0.1 M of the 

chelating agent (EDTA and CA). The highest concentration recoveries at lower EDTA 

and CA concentrations (0.01 M) were in the order Zn>Cd>Cu>Pb>As and 
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Zn>Cu>Cd>Pb>As respectively. At higher concentration (0.1 M) of the chelating 

agents, the recoveries of EDTA were in the same order as CA and increased from 

Zn>Cu>Cd>Pb>As. 

 

Table 3.1: Recoveries of metal ions from wastewater samples using 0.01 M EDTA   
and 0.01 M citric acid (CA) at pH 5.2 (Dupare, 2015) 

Wastewater 

sample 

mg/dm3 

Zn (II) Cu (II) Cd (II) As (II) Pb (II) 

EDTA CA EDTA CA EDTA CA EDTA CA EDTA CA 

S1 212 302 78 58 82 52 32 26 44 32 

S2 220 304 76 56 84 54 32 24 48 30 

S3 210 306 78 59 83 56 36 24 55 32 

S4 222 310 80 60 85 55 30 20 60 40 

  

Table 3.2: Recoveries of metal ions from wastewater samples using 0.05 M EDTA 
and 0.05 M citric acid (CA) at pH 5.2 (Dupare, 2015) 

Wastewater 

sample 

mg/dm3 

Zn (II) Cu (II) Cd (II) As (II) Pb (II) 

EDTA CA EDTA CA EDTA CA EDTA CA EDTA CA 

S1 228 332 206 312 162 208 88 56 112 92 

S2 230 334 208 316 168 206 83 58 114 94 

S3 234 336 204 314 172 211 84 54 116 96 

S4 248 340 210 320 180 215 90 60 120 98 
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Table 3.3: Recoveries of metal ions from wastewater samples using 0.10 M EDTA 
and 0.10 M citric acid (CA) at pH 5.2 (Dupare, 2015) 

Wastewater 

sample 

mg/dm3 

Zn (II) Cu (II) Cd (II) As (II) Pb (II) 

EDTA CA EDTA CA EDTA CA EDTA CA EDTA CA 

S1 230 374 186 342 162 264 91 71 112 111 

S2 232 368 186 348 164 268 92 74 114 113 

S3 228 372 184 344 168 263 94 76 116 114 

S4 232 330 200 380 170 265 95 80 120 120 

 
 
Although significant research has been done to isolate heavy metals using chelating 

agents, the use of this technique has shown to be expensive compared to the use of 

hydroxides. Moreover, the use of chelating agents requires optimum conditions that  

sometimes take long to achieve and it often takes longer for the metal and ligand to 

complex. The cost of using this technique is further increased by the use of excess  

chelating reagents in order to attain the best recoveries, as can be observed in the 

above data.   

 

 Ion exchange technique  

The ion exchange technique involves the use of an ion exchange resin or agent (the 

stationery phase) and metal ions present in the wastewater sample (the mobile 

phase). This technique has been used extensively in the separation of heavy metals 

from wastewater. Various synthetic and naturally occurring ion exchangers (zeolites) 

have been used in the isolation of different metal ions. Synthetic ion exchanges are 

preferred because of their effectiveness and ability to uptake the majority of the 

targeted metal ions from the solution (Álvarez-Ayuso et al., 2003). The ion exchange 

technique has also shown to effectively treat inorganic effluent waste within a relatively 

wide range of metal ion concentrations of up to 100 mg/ℓ (Sapari et al., 1996). Despite 

these advantages, this technique has also some limitations in the treatment of 

wastewater that is laden with heavy metal ions as, quite often, suitable ion exchange 

resins are not available for all heavy metal ions and the capital and operational costs 

are high. 

 

Metal cations affecting the purity of water such as those identified in Chapter 2 Section 

2.3 pass through the ion exchanger (stationery phase) where these positively charged 
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ions are exchanged with the positively charged ions from the resins such as hydrogen 

and sodium ions (Figure 3.5). The same concept is also used for the separation of 

negatively charged anions present in a wastewater solution where sulfate, nitrate and 

chromate ions that are released replace the hydroxyl and chloride ions from the resins. 

The resins are therefore categorized as either cation or anion exchangers depending 

on the charges of the ions exchanged. The efficiency of this technique has been 

reported to depend highly on pH, temperature, metal concentrations and contact time 

between the metal ion and the stationery phase (Fenglian & Wang, 2011).  

 
 
 
 
 
 

 
 

Figure 3.5: The displacement of Na+ ions by the Ca2+ ion in a cationic exchange 
ion resin  

Source: Lower, 2007 

 

The widely used strong cation exchanges have a sulfonic acidic group (-SO3H) whilst 

the weak cationic exchangers have carboxylic acid groups (-COOH) that are attached 

to them and that function as shown in Equations 2 and 3:  

 

                         nR - SO3H + Mn+                   (R-SO3
-)n  Mn+ + nH+                              …2 

                         nR - COOH + Mn+               (R-COO-)n  Mn+ + nH+                                  …3 
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A research study that was conducted by Shaidan, Eldemerdash, and Awad (2012) in 

which they used strong acidic cation exchange resin (Ceralite IR 120) to extract nickel 

from wastewater showed excellent recoveries of as high as 97%. The use of Ceralite 

IR 120 had the advantages of being effective and also being capable of treating large 

volumes of effluent at the same time. The replacement of the H+ ions on the resin by 

the Ni2+ ions was reportedly dependent on the pH of the solution. The results showed 

that the optimum pH for Ni2+ isolation was about 5 as shown in Figure 3.6. Excessive 

protonation of the active sites of the resin was reported for pH below 3 and this resulted 

in no formation of links between Ni2+ ion and the active site.  It was also observed that, 

at moderate pH values between 3 and 6, the H+ ions were released from the active 

sites creating room for the Ni2+ to bind, hence increasing the percentages of recovery.   

 

 

 

Figure 3.6: Effects of pH in nickel recovery using cation exchange resin 
(Ceralite IR 120)  

Source: Shaidan et al., 2012 
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The effect of the Ni2+ concentration used was also investigated and the results 

obtained showed that the percentage nickel recovered decreased with a concomitant 

increase in nickel concentration from 100 to 500 mg/ℓ (Figure 3.7). The optimum 

concentration for nickel removal was 100 mg/ℓ with a recovery rate of 96.42%. The 

decrease in the percentage recovery of nickel was almost 91.02% and was attributed 

to the blockage of the active sites of the resin by the nickel ions. The results obtained 

by Shaidan et al. (2012) correlated with those of Sapari et al. (1996) who reported that 

the ion exchange technique was effective with metal ion concentrations of up to  

100 mg/ℓ. 

 

 

Figure 3.7: Effects of the metal concentration in the recovery of Ni2+ using  
cation exchange resin (Ceralite IR 120)  
 
Source: Shaidan et al., 2012 

 

Various types of ion exchange resins have been used for the selective removal of 

heavy metals in wastewater. It has been shown that precise selection of the resin is 

crucial for the complete removal of the targeted metal ion. Amongst the notable resins 

used is Purolite C100, which has been used for the selective removal of Pb2+ ions with 

a 99.71% recovery rate. Other types of resin used by several researchers for the 

removal of different metals in wastewater are summarised in Table 3.4 below.   
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Table 3.4: Summary of the ion exchange resins used in the removal of heavy   
metals in wastewater effluents 

Heavy metal Initial metal 

conc. (mg/ℓ) 
Resin Optimum pH Removal 

Efficiency 
(%) 

References 

Cu, Zn and 
Cd 

- Amberlite IR - - Lee et al. 
(2007) 

Pb - Purolite C100 - 99 Badawy et al. 
(2009) 

Cu 50 – 150 Indion 225H 6.3-6.5 - Thakare & 
Jana (2015) 

Ni and Pb 800  − 1 250 Amberjet1200 - 98 Zewail & 
Yousef (2015) 

Hg and As - - - 99 Oehmen et al. 
(2006) 

Ni 1800 – 3 800 Acidic cation 
exchange 

resin 

3-7 97 Shaidan et al. 
(2012) 

Cd and Pb 100 – 6 000 Sargassum 
muticum 

loaded with 
calcium 

5 - Carro et al. 
(2015) 

 

Chitin is the second most abundant natural polysaccharide in nature after cellulose 

and is widely distributed in marine invertebrates, insects, fungi and yeast (Kamble et 

al., 2007). It is often used in the pharmaceutical, cosmetic, environmental and 

agricultural industries for applications that include wound dressings, lotions, contacts, 

pesticides, package film coatings and wastewater treatment. The chemical structure 

of chitin is composed of linear repeating beta-1,4-linked Nacetyl-D-glucosamine 

monomer units that are linked by (1-4)-β bonds, as shown in Figure 3.8.  

 

 
Figure 3.8: The chemical structure of chitin  

Source: Tang et al., 2015 
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Studies on the chemical properties of purified chitin have revealed it to be insoluble in 

water, but with the ability to dilute acids, organic solvents and concentrated alkali 

solutions. However, chitin is reported to be soluble in anhydrous formic acid, 

hypochlorite solutions and concentrated mineral acids. Both pure and cross-linked 

chitin have been widely used as ion exchangers and as an adsorbent in the purification 

of wastewater.  Research by Nada et al. (2006) and Giles and Hassan (1958) on the 

adsorption properties of pure chitin using various metal ions and using ionic species 

of sulfonated azo dyes showed a high chelating ability of chitin in the removal of trace 

metal ions such as mercury, copper, zinc, chromium, cadmium, nickel and lead from 

contaminated wastewater  

 

A study by Mohamed et al. (2015) demonstrated the effectiveness of cross-linked 

chitin in the isolation of heavy metals (Ni, Mg, Zn and Pb) using alkali and acid pre-

treated chitin (Figure 3.9). Their results showed that acid pre-treated chitin derivatives 

that were phosphorylated were more efficient in removing heavy metals compared to 

the use of pure chitin. Their results also showed that phosphorylated cross-linked 

chitin treated with acid had the highest heavy metal ion removal ability compared to 

those in the alkali solutions. The high capacity of chitin derivatives for absorbing metal 

ions was attributed to a combination of unique properties such as its ionic nature, its 

affinity for water, and its porous polymer structure (Yoshida et al., 1993).  

 

 

Figure 3.9: Effects of cross-linking of phosphorylated chitin on metal ion uptake 

capacity 

Source: Mohamed et al., 2015 
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3.3.1 Uses of chitin derivatives (chitosan) in the isolation of heavy metals 

Chitin usage in the purification wastewater has been reported to be enhanced from N-

deacetylation of chitin to form chitosan (Figure 3.10). Both these polysaccharides are 

copolymers of β (1-4) linked N-acetyl-D-glucosamine and D-glucosamine units. The 

degree of acetylation (DA) represents the proportion of N-acetyl-D-glucosamine units 

with respect to the total number of units. The degree of acetylation is often used to 

distinguish between chitin and chitosan (a chitin derivative) with the former being 

below 50% (Tokura & Nishi, 1995). The poor solubility of chitin in acid solutions makes 

it more complicated to work with compared to chitosan, which is chemically soluble 

and more versatile than chitin or cellulose, hence its preference as a method of choice. 

 

Figure 3.10: Conversion of chitin to chitosan through deacetylation using   

concentrated sodium hydroxide  

Source: Devi et al., 2016 

 

During the past several years, chitosan has received increased attention for its 

commercial applications in wastewater treatment due to its biocompatibility, 

biodegradability, bioactivity and its ability to act as a polycationic electrolyte in acidic 

solutions (Chen & Chen, 1998). Chemically modified chitosan such as N-

carboxymethyl and N-benzyl sulphonated are extensively used as adsorbents in the 

removal of heavy metals in wastewater. These modifications are reported to enhance 

the polymer’s metal removal properties and to improve polymer stability in acidic 

environments (Muzzarelli et al., 1985).  Chen et al. (2009), reporting on the adsorption 

of Cu(II), Zn(II), and Pb(II) ions using glutaraldehyde cross-linked chitosan, found that 

maximum adsorption of the metal ions occurred at pH 5 as shown in Figures 3.11 and 

3.12.  
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Figure 3.11: Adsorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions on the 
glutaraldehyde cross-linked chitosan in 50 mg/ℓ aqueous solution of metal 
ions  

Source: Chen et al., 2009 

 

 

Figure 3.12: Adsorption mechanism of the metal ions (M2+ = Cu, Zn, Ni  
and Pb using cross-linked chitosan  
 
Source: Chen et al., 2009 
 

 

The use of chitosan as an adsorbent is also enhanced by its ability to be moulded into 

various shapes such as beads or fibres. This moulding is achieved by neutralizing the 

acidified chitosan in sodium hydroxide (Arora et al., 2010). These modified forms of 

chitosan have the potential to be used as materials for ion exchange due to their 

increased affinity for heavy metals.  
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 Conclusion 

The use of adsorption material such as chitosan for the removal of heavy metals from 

wastewater was shown to have several advantages compared to other commonly 

used methods such as gravimetric and ionic exchange techniques.  Although the 

gravimetric technique was shown to be an effective method for removing heavy metals 

in wastewater, its demand for large quantities of chemicals (precipitants) to reduce 

metals to an acceptable level, coupled with its poor selectivity, was noted as a 

significant drawback. The biggest challenges in using the ionic exchange technique 

were shown to be its concentration limitation in the separation of heavy metals and the 

unavailability of resins for selective metals. On the other hand, the use of chitosan 

products was shown to have the advantage of being affordable and locally available. 

Furthermore, the use of chitosan products was also shown to be versatile as they have 

the ability to be modified to any shape and chemical structure through cross-linking in 

order to meet the required conditions.  
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 SYNTHESIS AND CHARACTERIZATION OF CHITOSAN 

DERIVATIVE PRODUCTS 

 

 Introduction 

It was argued in Chapter 3 Section 3.4 that the use of chitin and chitosan derivatives 

is a promising technique for the removal of heavy metals from wastewater. Chemically 

modified chitosan products such as N-carboxymethyl and N-benzyl sulphonate have 

been used extensively in the selective isolation of heavy metals in wastewater. 

Structural modifications of chitosan through cross-linking have also been shown to 

enhance the polymer’s metal removal properties and improve polymer stability in 

acidic environments. With this information as background, this study attempted to 

synthesize different cross-linked chitosan products in the quest to improve the 

purification of wastewater from poultry and red meat abattoirs. An objective was also 

to characterize the synthesized chitin and chitosan products using various 

spectrometric and spectrophotometric techniques as summarized in Flow chart, 4.1. 
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Figure 4.1:  Flow diagram of the synthesis and characterization processes of 
chitosan derivative products 

  

© Central University of Technology, Free State



© Central University of Technology, Free State



36 
 

 

As the starting material, mussel, oyster, crab and prawn shells and silver and pang 

fish scales (Figure 4.2) were supplied by Ocean Basket, a local restaurant in the Loch 

Logan Mall in Bloemfontein. 

 

       
 
 

     
 
 

    
                                   

Figure 4.2: Graphical presentation of the locally sourced starting material 

 

 

Crab shells Prawn shells 

Silver scale Pang scale 

 

 

 

 

 

 

 

Mussel shells 
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4.2.2 Glassware and general house keeping  

 
Grade A-type Schott Duran beakers and round bottom flasks were used in all the 

experimental procedures. Glass and plastic Pasteur pipettes with high accuracy 

values (±0.01 mℓ) were used to dispense accurate volumes of reagents. Appropriate 

handling regimens of chemicals, reagents, standards and solutions were strictly 

adhered to in order to avoid cross contamination and to ensure quality assurance of 

all analytical results. Contamination of glassware was avoided by soaking them in 

freshly prepared 10% v/v HNO3 for at least 48 hours and finally washing them with 

deionised water prior to use.  

 

 Instrumentation 

4.3.1  Viscometer and centrifuge    

Suspended chitin and chitosan products in solution were separated using Eppendorf 

centrifuge equipment whilst a Brookfield viscometer from the Department of Food 

science (UFS) (Figure 4.3), Model DV-II supplied by Brookfield Engineering 

Laboratories Inc., Stonghton, was used to measure the viscosity of all the chitin and 

chitosan products.   

 

 

Figure 4.3: Eppendorf centrifuge (A) and Brookfield viscometer (B) 
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4.3.2 Fourier-transform infrared spectroscopy (FTIR)  

 
Characterization of the chitin and chitosan products was done using a Thermo 

Scientific Nicolet (6700 FTIR) spectrometer from the Physics department (UFS) 

(Figure 4.4). The dried samples were pressed into pellets with powdered potassium 

bromide (KBr) in the ratio 1:100 respectively and analysed. The FTIR was first 

calibrated by running a background scan (10 scans) before analysing the samples. 

The pellet sample for analysis was mounted on a crystal plate using an adjustable 

pressure clamp. Sample spectrums were collected from 64 repetition scans; the 

resultant scans were base line corrected and the final peaks labelled. All the infrared 

spectrums were plotted on all specimens over the frequency range 4000-400 cm-1. 

 

Figure 4.4: A Thermo Scientific Nicolet (6700 FTIR) spectrometer 
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4.3.3 Scanning electron microscope (SEM) 

A scanning electron microscope (model JSM-7800F) from the Center of Microscopy 

(UFS) (Figure 4.5) was used to determine the physical morphology of the newly 

synthesized chitosan products. Samples were mounted on stubs slides at 35⁰C 

(Cambridge pin type, 10 mm) using double sided carbon-carbon tape and gold coated 

(± 60 nm) with a Bio-Rad sputter coater (United Kingdom). Pictures of the specimens 

were taken at different magnifications depending on the sample.  

 
 

 
 
Figure 4.5: SEM instrument showing the electron column, sample chamber, 
Energy-dispersive X-ray spectroscopy (EDX) detector, electronics console and 
visual display monitors 

 
4.3.4 Weighing balance and magnetic hot plate 

All the samples were accurately weighed using a Shimadzu (AW320) electronic 

balance, calibrated under ISO 9001. All experimental samples and reagents used in 

the study were weighed by adding a sample in a pre-weighed plastic petri dish or filter 

paper. A  digital magnetic stirrer/hotplate (H3760-HS) purchased from Lasec was used 

for stirring and heating of the chemical reactions 
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 Experimental processes and discussion of results 

4.4.1 Chitin extraction  

 

The preliminary procedure in the synthesis of chitosan was the extraction of chitin from 

the raw materials. The raw material was first washed, dried and then crushed into a 

powder and stored in opaque glass/plastic containers before use. The raw materials 

were the shells from molluscs (mussels and oysters), crustaceans (crabs and prawns) 

and fish scales (silver and pang). A two-step procedure was used to isolate chitin from 

the raw materials: thus deproteinization was used for the removal of proteins and 

demineralization was used for the removal of minerals. Chitosan was formed from 

deacetylation of the newly isolated chitin products.  

 
4.4.1.1 Deproteinization 
 

A sodium hydroxide (10%) solution was added to the dried, powdered crustacean 

(oyster) (100 g) sample and the resultant mixture was stirred until a colourless solution 

was formed (ca.18 to 24 hours). The colourless solution that formed was a 

confirmation of the complete removal of proteins (Abdulkarim et al., 2013). The 

resultant white solid residue was filtered with a glass funnel and washed with copious 

amounts of water (Abdulkarim et al. 2013).  

 

The residue was dried at room temperature and a white solid powder product (68.85 

g, 69.65%) was obtained. The same procedure was used for mussel, oyster, prawn 

and crab shells and silver and pang scales. The results are presented in Table 4.2. 
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Table 4.2: Percentage yields of chitin isolated from mussel, oyster, prawn and 
crab shells and silver and pang scales 

 

Raw materials % Chitin 

 
Oyster shells 

 
69.65 

 
Mussel shells 

 
35.03 

 
Crab shells 

 
60.00 

 
Prawn shells 

 
40.16 

 
Pang scales 

 
35.53 

 
Silver scales 

 
31.30 

  

 

4.4.1.2 Demineralization 
 

The samples of the deproteinized chitin (0.20 g) derived from mussel, oyster, prawn 

and crab shells and silver and pang scales were stirred in hydrochloric acid (10%) for 

16 to 72 hours to remove calcium salts (CaCl2 and CaSO4) and other water-soluble 

impurities. The mixtures were filtered and washed with copious quantities of deionised 

water and the resultant white solid precipitate was collected and dried before use in 

the synthesis of chitosan products (Abdulkarim et al. 2013). 

 

4.4.1.3 Determination of the degree of acetylation (DA) of the chitin products at 
different temperatures 

 

Chitin samples (0.20 g) were dissolved in HCl (30 mℓ; 0.1 mol/ℓ) in separate beakers 

and stirred at different temperatures (50 – 100oC) until they were completely dissolved 

(ca. 50 mins). The resultant solutions were cooled at room temperature and a methyl 

orange indicator (5 − 6 drops) was added. The resultant solutions were titrated with 

NaOH (0.1 mol/ℓ) to a yellow colour (Domard & Rinaudo, 1983). The obtained titrant 

values were used to calculate the degree of acetylation measured at different 

temperatures using Equation 4.1 as described by Czechowska-Biskup et al. (2012). 

The results of the analyses were tabulated and are presented in Table 4.3.  
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4.1 

DA    =     2.03 • (V2 – V1)                                                                                           

                m + 0.0042 • (V2-V1) 

where: m – is the weight of the sample used,  

V1 and V2 are the volumes of 0.1 mol·dm-3 sodium hydroxide solution 

corresponding to the deflection points,  

2.03 – is the coefficient resulting from the molecular weight of chitin monomer 

unit, 0.0042 – coefficient resulting from the difference between molecular weights 

of chitin and chitosan monomer units. 

 

Table 4.3: Degree of acetylation (DA) of chitin obtained at different 
temperatures 

Temperature (ºC) 50 60 70 80 90 100 

Mussel shells 77.2 83.3 85.8 91.0 93.2 96.5 

Oyster shells 69.7 74.0 80.0 85.6 90.4 93.3 

Prawn shells 40.2 45.8 48.6 51.6 54.2 60.6 

Crab shells 54.1 56.5 63.7 69.4 74.2 74.6 

Pang scales 50.1 52.6 56.9 62.4 65.8 69.1 

Silver scales 47.6 49.2 52.2 56.1 60.1 65.9 

 

The influence of temperature on the degree of acetylation of chitin was investigated 

using the refined chitin as described in Section 4.4.1.2. Figure 4.6 shows how increase 

in temperature influenced the degree of acetylation of the chitin products. The degree 

of acetylation for all the chitin products was found to increase with an increase in 

temperature (50 – 100ºC). A linear correlation between the temperature and the 

degree of acetylation was observed and a maximum degree of acetylation for all the 

chitin products was obtained at 100ºC whereas the lowest was recorded at 50oC. The 

degree of acetylation of all the chitin products was in the order mussel < oyster < crab 

< pang< silver< prawn shells/scales.    
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Figure 4.6: Determination of the degree of acetylation of chitin at various 
temperatures at 50, 60, 70, 80, 90 and 100oC 

 

4.4.1.4 Determination of the intrinsic viscosity, molecular weight and solubility 
of the isolated chitin 

 

Determination of the intrinsic viscosity, molecular weight and solubility of the chitin 

samples, methods were modified from (Brine and Austin,1981; Wang et al., 1991; 

Terbojevidh and A. Cosani,1997).This procedure was performed using a Brookfield 

viscometer (see Figure 4.4).  The samples of chitin were dissolved in 1% acetic acid 

and measurements were done in duplicate using a spindle at 50 rpm at a temperature 

range of 5 − 80ºC. The results are presented in Table 4.4. The highest solubility was 

achieved for mussel chitin at 86%, followed by oyster chitin at 78%. The prawn chitin 

recorded the least solubility up to 68%.  The poor solubility of prawn shell and silver 

and pang fish scale chitin samples possibly occurred as a result of the close packing 

of chains and the strong inter- and intramolecular bonds among the hydroxyl and 

acetamide groups (Urbariczyk et al., 1997).  

  

shell
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Table 4.4: Determination of the intrinsic viscosity, molecular weight and 
solubility of the isolated chitin at 25oC 

Sample of chitin 

(shell and scale 

waste) 

Average 

intrinsic 

viscosity      

 ɳ (Cps) 

Average 

intrinsic 

viscosity (%) 

Molecular weight 

(Mw) (Da) 

Solubility in 

acetic acid 

(%) 

Mussel shells 4500 30 7.5 x 106 85.7 

Oyster shells 3500 18 5.8 x 106 77.8 

Prawn shells 2300 15 3.7 x 106 58.3 

Crab shells 1500 11 2.3 x 106 70.7 

Pang scales 1000 5 1.5 x 106 68.0 

Silver scales 600 4 0.9 x 106 67.7 

 

Tests to determine the intrinsic viscosity, molecular weight and solubility of the 

samples revealed a variation in both chemical and physical properties of the chitin 

products. The mussel chitin product had the highest intrinsic viscosity value (4500 

Cps) compared to the other chitin products. Chitin with the least intrinsic viscosity 

value was procured from the Silver scale sample that recorded 600 Cps. It was 

determined that a direct correlation existed between intrinsic viscosity and molecular 

weight; i.e., an increase in molecular weight resulted in higher intrinsic viscosity. 

Analysis of the chitin intrinsic viscosity at different temperatures showed lower 

readings at higher temperatures (80ºC) compared to lower temperatures (5ºC) (Figure 

4.7). 
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Figure 4.8: Scanning electron microscope images and FTIR spectrums of crab 
and shrimp chitosan products 

 

Synthesis of crab and shrimp chitosan was achieved through deacetylation of the 

respective chitin products. Comparatively, a higher percentage yield was achieved for 

chitosan crab (98%) than for chitosan shrimp (88%). The SEM images of crab chitosan 

revealed a mixture of small and large spherical, cube-like structures that appeared 

amorphous while the shrimp chitosan appeared flaky with small particles appearing 

closely-packed at higher magnification (x15000). FTIR analysis of the crab chitosan 

powdered products showed a prominent peak at 3375 cm-1 which corresponded to OH 

stretching. The presence of the methyl group in NHCOCH3, the methylene group in 

CH2OH and the methylene group in the pyranose ring was shown by the 

corresponding peaks in the range 2923 − 2870 cm-1 respectively. The band at 1630 

cm-1 was due to CO stretching of the amide group, and the band at 1500 cm-1 

corresponded to the NH bending vibration in the amide group, which suggested the 

effective deacetylation of chitin. A small band observed at 1310 and 1280 cm-1 was 
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due to the CH3 in the NHCOCH3 group and CH in the pyranose ring complex vibrations 

of the NHCO group and the band at 1050 cm-1 was due to CO stretching vibration. 

The bending at vibration CO in the ring CH at 762 cm-1 represented a β-linked chitosan 

molecule (Zvezdova, 2010). 

 

Characterization of chitosan shrimp using FTIR revealed a strong band which was 

observed ranging from 3200 − 3700 cm-1 and this was due to the NH2 and OH 

associated in the primary amine group stretching vibrations.  The presence of a methyl 

group in NHCOCH3, a methylene group in CH2OH and a methylene group in the 

pyranose ring was demonstrated by the corresponding stretching vibrations range 

2870 and 2340 cm-1 respectively. The bands between the ranges of 1651 − 1558 cm-1 

describe vibrations of CO bonds of the amide group RNHCO (secondary amide at 

1657 cm−1).  The bending vibrational stretch of the CH2 groups was attributed to the 

bands formed at 1421, 1379 and 1389 cm-1. The absorption bands in the range 1160 

− 1000 cm−1 were related to the stretching vibrations of the CO groups. The small 

peaks occurring at 647 and 610 cm-1 as a result of the bending vibration of NH and 

OH related to the wagging of the polysaccharide morphology of chitosan. These were 

observed out of the chitosan plane (Zvezdova, 2010).  

 

Zvezdova (2010) confirms that the presence of crab chitosan has prominent peaks 

occurring in the region of 3425 cm-1 which he suggests corresponds to OH stretching, 

while the band in the current study at 2921 cm-1 corresponded to a methylene group 

in CH2OH. However, the band at 1630 cm-1 was present because of the CO stretching 

of the amide group while, on the other hand, the band occurring between 1656 and 

1628 cm-1 corresponded to NH bending vibration in the amide group. The occurrence 

of small bands around 1257 − 1380 cm-1 corresponded to CH3 in the NHCOCH3 group 

and CH in the pyranose ring complex vibrations of the NHCO group. The COC 

glycosidic linkage was represented by bands at 1158 and 1154 cm-1 which 

corresponded to the COC glycosidic linkage. The band of 1099 cm-1 (CO) was present 

there because of the secondary OH group while 1027 was in the primary OH group. 

The bending occurred at vibration CO in the ring CH at 894 cm-1 pyranose ring skeletal 

vibrations while 665 and 603 cm-1 were out of the plane.  

 

The shrimp chitosan product revealed a strong peak in the region of 3424 cm-1 which 

corresponded to the OH group. The presence of a methylene group in CH2OH was  
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confirmed by the corresponding stretching vibration in the region of 2879 cm-1. The 

shoulder band in the region of 1667−1597 cm-1 was due to the presence of the CO in 

NHCOCH3 group. Small bands around 1257 − 1380 cm-1 corresponded to CH3 in the 

NHCOCH3 group and CH in pyranose ring complex vibrations of the NHCO group. 

The bands at 1152 cm-1 corresponded to the COC glycosidic linkage. The band  

1093 cm-1 (CO) was present there because of the secondary OH group while the  

1035 cm-1 was in the primary OH group. The bending occurred at vibration CO in the 

ring CH at 897 cm-1 pyranose ring skeletal vibrations while 664 and 614 cm-1 were out 

of the plane. 

 

4.4.3 Synthesis and characterization of cross-linked crab and shrimp chitosan 

compounds    

Using separate glass vessels, two sets of solutions of glutaraldehyde, formaldehyde, 

epichlorohydrine, acrylic acid, 1-vinyl-2-pyrrolidone, glutaraldehyde, poly (ethylene) 

glycol diglycidyl ether, s-methyl-benzylamine, p-benzoquinone, 1,3-dichloroacetone 

and maleic anhydride (8 mℓ) were added to an acetic acid solution (100 mℓ; 1%) and 

stirred for 15 minutes until a homogeneous solution was obtained. Powdered crab 

chitosan and starch and shrimp chitosan and starch (2 g; 0.131 mmol; 1%) were added 

to the respective solutions. The resultant mixtures were stirred at ambient temperature 

for 24 – 48 hours until a viscous colour solution had formed (Table 4.2). Drops of 

NaOH solution (2%) were added to neutralize the acidity and the mixtures were filtered 

and the respective brown products were collected as a precipitate and dried at room 

temperature (Li and Bai, 2006). The percentage yields are presented in Table 4.5. 

Characterization of the chitosan cross-linked products was conducted using SEM and 

FTIR. These results are presented in Figures 4.9 to 4.18.  
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 Figure 4.9: Scanning electron microscope images and FTIR spectrums of crab 

and shrimp chitosan starch cross-linked with glutaraldehyde 

 

The crab and shrimp chitosan starch samples that were cross-linked with 

glutaraldehyde yielded 98 and 72% respectively. SEM analysis of the products 

showed an irregular shape of both products. The FTIR analysis of crab chitosan starch 

that was cross-linked with glutaraldehyde showed that the OH stretching peak of 

chitosan (A1) and the chitosan product (A2) were diminished from 3375 to 3360 cm-1, 

whereas the CH2 group shifted upwards from 2870 to 2860 cm-1.  A symmetrical peak 

was obtained at 2930 cm-1, which was an indication of the CH2 group that was not 

present in the starting crab chitosan material. The absence of peaks within the region 

1740 − 1720 cm-1 showed that the addition of an amount of glutaraldehyde to the bead 

solution reacted completely with the chitosan and starch. The observed change 

obtained in bond cleavage was assessed for comparative augmentation and a 

decrease in the intensity of the band, linked to the functional groups present in beads, 

was found. The corresponding band to the amino group shifted from cross-linked crab 

chitosan to normal crab chitosan and shifted from 1630 to 1640 cm-1. This was an 

indication of interaction between the hydroxyl group of starch and the amino group of 

chitosan.  

 

It was observed that the intensity of wave number 1133 cm-1 reduced when chitosan 

starch beads were cross-linked with glutaraldehyde. The reduction of intensity showed 

a bond cleavage in the reaction, even though a precise and accurate confirmation of 

the chitosan starch product could not be established by this process. When shrimp 

chitosan was blended with starch in the presence of glutaraldehyde as the cross-

linking agent, the corresponding band to the amino group of chitosan shifted from 1651 
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to 1655 cm-1, indicate the presence of interaction between the hydroxyl group of starch 

and the amino group of chitosan.  

 

When the chitosan and starch were cross-linked with glutaraldehyde (B2), the OH 

stretching peak shifted from 3414 to 3345 cm-1 while the CH2 group shifted from 2889 

to 2879 cm-1 and from 2338 to 2335 cm-1 respectively. The amino peak of chitosan 

shifted from 1571 to 1639 cm-1 with the addition of starch. These analyses shows that 

the interactions occurred between the hydroxyl groups of starch and the amino groups 

of chitosan. There was an absence of peaks in the region 1740 − 1720 cm-1, indicating 

that the addition of a small quantity of glutaraldehyde to the bead solution reacted 

completely with the chitosan and starch. The observed change in bond cleavage was  

estimated to have occurred from the relative augmentation or reduction in the intensity 

of the band corresponding to the functional groups present in the beads.  

 

When the chitosan starch beads were cross-linked with glutaraldehyde, there was a 

reduction of the intensity of the wavenumber to 1110 cm-1. The reduction of intensity 

indicated a cleavage in the reaction, even if a precise and accurate confirmation of the 

chitosan starch product could not be established (spectrum B2). Based on a direct 

comparison of the chitosan cross-linked spectrum and the conventional chitosan 

spectrum of shrimp (B1), the following differences may be singled out: A broad and 

strong band was observed ranging from 3200 − 3700 cm-1 (i.e., stretching vibration of 

OH and stretching vibration of NH). The peak located at 1651 cm-1 was characteristic 

of CO in the amine group, and the band at 1514 and 1558 cm-1 corresponded to the 

NH bending vibration in the amide group. 

 

4.4.3.2 Crab and shrimp chitosan starch (CT-ST) cross-linked with 
formaldehyde 
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Figure 4.10: Scanning electron microscope images and FTIR spectrums of 

crab and shrimp chitosan starch cross-linked with formaldehyde 

 

 

When cross-linked with formaldehyde, the results of the yield for crab chitosan starch 

was 69%, which was higher than the conventional shrimp chitosan starch when cross-

linked with formaldehyde, which was 65%. The scanning electron microscope image 

of crab chitosan starch that was cross-linked with formaldehyde under low 

magnification (x100) showed a crystalline structure with small blocks of filament that 

are closely packed together. When shrimp chitosan starch was cross-linked with 

formaldehyde at lower magnification (x300), a micro-structure with a similar shape of 

large globular cube-like structures with small and low surfaces was observed. 

Nonetheless, slightly different particles sizes without any significant differences in 

homogeneity were observed.  

 

The FTIR spectrum of a crab cross-linked bead (C2) was slightly similar to that of the 

initial crab chitosan (C1). The corresponding band to the amino group of chitosan 

shifted from 1630 − 1668 cm-1, which was an indication of the presence of interaction 

between the hydroxyl group of starch and the amino group of chitosan. In the process 

of cross-linking with formaldehyde, a peak was observed at 1668 cm-1 because of the 

carbonyl stretching vibration. A prominent peak was visible at 1502 cm-1 (Figure 4.10 

[C2]) which was due to the imine bonds (CN) that formed due to a cross-linking 

reaction between the amino groups in the chitosan and the aldehyde group in the 

formaldehyde. The characteristic peak assured the formation of a Schiff base after the 

reaction of the formaldehyde with the chitosan. The peak of the ether group (C2) 
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became stronger and shifted slightly from chitosan to cross-linked chitosan, in which 

case 1058 − 979 cm-1 (C2) indicated the formation of a new opened chain of ether 

linkage in the bead after reaction to cross-linking. A comparison of this spectrum with 

the chitosan beads (C1) from crab shell indicated the following differences: The 

characteristic peaks were situated at 337 cm-1, indicating the stretching of OH and NH; 

the absorption bands at 2340 and 2870 cm-1 were represented by the CH2 group 

stretching vibration; the peak situated at 1630 cm-1 was due to the CO stretching of 

the amide group; while the band at 1500 cm-1 corresponded to the NH bending 

vibration in the amide group. 

 

The FTIR spectrum resulting from cross-linking (D2) showed some similarities with 

that of the initial shrimp chitosan (D1). The corresponding band to the amino group of 

the chitosan shifted from 1651 to 1658 cm-1, which was an indication of the presence 

of interaction between the OH group of starch and the NH2 group of chitosan. When 

cross-linked with formaldehyde, the peak obtained at 1658 cm-1 was due to the 

stretching of carbonyl vibration of the remaining acetamide group in chitosan, while 

the peaks at 1514 and 1511 cm-1 were due to imine bonds (CN) constructed via a 

cross-linking reaction between the amino groups in the chitosan and aldehyde groups 

in the formaldehyde. The occurrence of a Shiff base after the reaction of formaldehyde 

with chitosan was confirmed by its characteristic peaks. The peak of the ether group 

(D2) became stronger and shifted slightly from 1029 – 1027 cm-1, which suggested 

that a new open chain ether linkage was formed in the bead due to a cross-linking 

reaction. The following differences were observed when comparing the cross-linked 

chitosan spectrum (D2) with the chitosan beads from the shrimp shell (D1) sample:  A 

broad and strong band was observed ranging from 3200 − 3700 cm-1 (stretching 

vibration of OH and stretching vibration of NH); the peak located at 1651 cm-1 was the 

result of CO in the amine group; and the band at 1514 and 1558 cm-1 indicated an NH 

bending vibration in the amide group (see spectrum D1). 
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4.4.3.3 Crab and shrimp chitosan starch (CT-ST) cross-linked with 
epichlorohydrine  

 

   

                    

Figure 4.11: Scanning electron microscope images and FTIR spectrums of 
crab and shrimp chitosan starch cross-linked with epichlorohydrine 

 

When crab chitosan was cross-linked with epichlorohydrine, the yield was 55%, which 

was considerably lower than the 72% yield when conventional shrimp chitosan starch 

was cross-linked with formaldehyde. The scanning electron microscope image of crab 

chitosan starch that was cross-linked with epichlorohydrine under low magnification 

(x100) showed a crystalline structure with small blocks of filament which were closely 

packed together. The shrimp chitosan starch that was cross-linked with 

epichlorohydrine to the same magnification showed that the microstructure possessed 
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tiny stone-like shapes similar to structures with small and low surfaces, but with slightly 

different particles sizes, without any significant changes in homogeneity.  

 

The infrared spectrum of crab chitosan starch that was cross-linked with 

epichlorohydrine (E2) showed some similarity to the chitosan from wave number  

4000 − 1500 nm and from 1400 − 400 nm, but a big variety of differences with relative 

intensities was observed. The representative band of the amino group of chitosan 

shifted from 1630 to 1606 cm-1, which was an indication of interaction between the 

hydroxyl group of starch and the amino group of chitosan. The absorption intensity of 

the NH2 group and the OH group (peak value from 3200 to 3700 cm-1) of the cross-

linked chitosan was obviously lower than that of the NH2 and OH groups of chitosan. 

This indicated that a cross-linked reaction occurred between chitosan and 

epichlorohydrine. Additionally, the reduction in the intensities at 1488 cm-1 peak (in the 

NH2 amino group) showed that most of the main amino groups were involved in the  

 

cross-linking process. It is worth noting in this case that a comparison of the spectrum 

with the crab chitosan shell beads (E1) showed that the characteristic peaks were 

located at 3375 cm-1, which indicated OH and NH stretching. However, the absorption 

bands at 2340  and 2870 cm-1 were represented by the CH2 group stretching vibration 

while the peak located at 1630 cm-1 was an indication of the CO stretching of the amide 

group. The band at 1500 cm-1 corresponded to the NH bending vibration in the amide 

group (E1). 

 

The results obtained from the infrared spectrum of shrimp chitosan starch that was 

cross-linked with epichlorohydrine adsorbent (F2) presented some similarities to that 

of shrimp chitosan. Nonetheless, with the presence of functional groups of 

epichlorohydrine in chitosan (F1), the same vibrations were observed but with different 

relative intensities. An analysis of the obtained results showed in this case that the 

absorption intensity of the NH2 and OH groups (peak 3200 − 3700 cm-1) of cross-linked 

chitosan (F2) was obviously lower than that of the NH2 and OH groups of chitosan. 

This interpretation is an indication that a cross-linked reaction occurred between 

chitosan and epichlorohydrine. Thus the reduction in the intensities at 1488 cm-1 peak 

(NH2 in the amino group) indicated that most of the primary amino groups were 

involved in the cross-linking process. 

 

© Central University of Technology, Free State



56 
 

 

When comparing the cross-linked shrimp chitosan spectrum (F2) with the chitosan 

beads of shrimp shell (F1), a broad and strong band was observed that ranged from 

3200 to 3700 cm-1 (due to the stretching vibration of OH and NH), while the peak 

located at 1651 cm-1 was a representation of CO in the amine group. The 

representative band of the amino group of chitosan was also shifted from 1651 to 1664 

cm-1, which indicated interaction between the hydroxyl group of starch and the amino 

group of chitosan. Finally, the band at 1514 and 1558 cm-1 represented NH bending 

vibration in the amide group (see spectrum F1). 

 

4.4.3.4 Crab and shrimp chitosan starch (CT-ST) cross-linked with acrylic acid 

  

                

Figure 4.12: Scanning electron microscope images and FTIR spectrums of crab 
and shrimp chitosan starch cross-linked with acrylic acid 
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The results that were obtained experimentally yielded crab chitosan starch cross-

linked with acrylic acid at 98% in contrast with the yield for shrimp chitosan starch 

cross-linked with glutaraldehyde at lower than 72%. The scanning electron microscope 

image of the crab chitosan starch that was cross-linked with acrylic acid can be seen 

at the top of Figure 4.12. This image was viewed under low magnification (x100). It 

was observed that its crystalline structure showed various shapes and sizes of 

scattered filament and that they were closely packed together. However, the shrimp 

chitosan starch that was cross-linked with acrylic acid under the same magnification 

(x100) displayed a filament that was scattered in a leaf-like arrangement of globular  

structures. The micro-structure of the shrimp chitosan starch that was cross-linked 

with acrylic acid at low magnification (x100) had a more distinct stone-like appearance 

with large particle surfaces. Nevertheless, different particle sizes were observed 

without any significant changes in homogeneity. 

 

The results of the analysis of the spectrum of acrylic acid that was cross-linked with 

chitosan (G2) indicated a broad absorption potential with peaks ranging from 2973 to 

3731 cm-1. This result represents the OH bending vibration of the cross-linking agent, 

namely acrylic acid. The observation of peaks at 1550 and 1159 cm-1 suggests the 

stretching vibration of CO and CO of the carboxylic group. The peak at 1415 cm-1 is a 

representation of the OH bending vibration (G2), which thus suggests successful 

cross-linking of chitosan and starch with acrylic acid.  

 

When comparing the cross-linked chitosan spectrum with the normal chitosan beads 

from crab shell (G1), it was noticed that the characteristic peaks were located at  

3375 cm-1, indicating both OH and NH stretching vibration. Absorption bands at  

2340 and 2870 cm-1 were represented by the stretching vibration of the CH2 group. 

The peak located at 1630 cm-1 was an indication of the CO stretching of the amide 

group, while the band at 1500 cm-1 corresponded to the NH bending vibration in the 

amide group (G2).  

 

The results obtained from the analyses of the FTIR spectrum for normal shrimp 

chitosan beads and acrylic acid that was cross-linked with chitosan starch are depicted 

in Figure 4.12. These results indicate that the acrylic acid that was cross-linked with 

chitosan had broad absorption with peaks ranging from 2883 to 3588 cm-1, which 

represented the OH bending vibration of the cross-linking agent, acrylic acid, while the 
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peaks appearing at 1558 and 1151 cm-1 explained the stretching vibration of CO of 

the carboxylic group. However, the peak at 1419 cm-1 was due to the OH bending 

vibration (see spectrum H2). This indicates that the cross-linking reaction between 

chitosan and starch was successful. The cross-linking of the chitosan spectrum (H2) 

with the chitosan beads from shrimp shell (H1) revealed a broad and strong band at 

3200 − 3700 cm-1 because of the stretching vibration of OH and NH.  

 

The peak located at 1651 cm-1 represented the CO in the amine group and the band 

at 1514 and 1558 cm-1 indicated NH bending vibration in the amide group (see 

spectrum H1). 

 

4.4.3.5 Crab and shrimp chitosan starch (CT-ST) cross-linked with 1-vinyl-2-
pyrrolidone 

   

   

Figure 4.13: Scanning electron microscope images and FTIR spectrums of 
crab and shrimp chitosan starch cross-linked with 1-vinyl-2-pyrroidone 
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The empirical results of the characterization of crab chitosan starch that was cross-

linked with 1-vinyl-2-pyrrolidone resulted in a 53% yield, which in this case was slightly 

lower in comparison to that of the shrimp chitosan starch that was cross-linked with  

1-vinyl-2-pyrrolidone that yielded 55%. The corresponding scanning electron 

microscope image for crab chitosan starch that was cross-linked with epichlorohydrine 

under low magnification (x100) showed a crystalline structure with small filaments  

 

 

closely packed together. When comparing this image to the shrimp chitosan starch 

that was cross-linked with epichlorohydrine under similar magnification, the micro-

structure seemed to be retained in tiny and large block-shaped structures with small 

and low surfaces and different particle sizes, and with significant changes in 

homogeneity.  

 

The FTIR spectrum of chitosan starch that was cross-linked with 1-vinyl-2-pyrrolidone 

(I2) showed strong peaks at 3418 cm-1 which was ascribed to the OH and NH 

stretching of CO (amide), thus indicating the presence of 1-vinyl-2-pyrrolidone on the 

cross-linked chitosan beads. A change in intensity at 1660 cm-1 for the stretching of 

CO (amide 1) revealed the presence of 1-vinyl-2-pyrroliodne on the beads. This 

suggests that the cross-linking reaction between chitosan and starch was successful. 

More so, the observed peaks at 1570, 1421,1309, 1376 and 1261 cm-1 were due to 

the characteristics of the amide II tertiary amine group and the bending of CN and CO 

respectively.  

 

This spectrum differed from that of normal chitosan from crab shell (I1) in that it 

showed a broad peak at 3375 cm-1 due to the OH and NH stretching vibrations of the 

saccharide structure. The peak at 1630 cm-1 was attributed to the presence of the 

acetamide group with CO stretching. The peaks at 1370 and 1515 cm-1 corresponded 

to the CN bond stretching and the deformation of CH. The IR spectrum of chitosan 

starch − OH and NH stretching of CO (amide) − testified to the presence of 1-vinyl-2-

pyrrolidone on the cross-linked chitosan beads. A little change in intensity at peak 

1659 cm−1 for stretching of CO (amide I) also indicated the presence of 1-vinyl-2-

pyrrolidone on the beads. Furthermore, peaks at 1421, 1376 and 1260 cm-1 were 

observed because of the characteristics of amide II, the tertiary amine group, and the 

bending of the CN bond respectively. 
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Comparative results of the spectrum for J2 and normal chitosan from shrimp shell (J1) 

showed a broad peak at 3375 cm-1 because of the OH and NH stretching vibrations of 

the saccharide structure. The peak at 1630 cm-1 was attributed to the presence of the 

acetamide group with CO stretching. The peaks at 1370 and 1515 cm-1 were 

analogous to the CN bond stretching and the deformation of the CH. In this case, the  

result was an indication of the successful cross-linking reaction between chitosan 

starch and 1-vinyl-2-pyrrolidone. 

 
4.4.3.6 Crab and shrimp chitosan starch (CT-ST) cross-linked with polyethylene 

glycoldicglycider ether (PEG diglycider ether)  
 

    

       

Figure 4.14: Scanning electron microscope images and FTIR spectrums of crab 
and shrimp chitosan starch cross-linked with poly ethylene glycol dicglycidyl 
ether (PEG digylcidyl ether) 
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The empirical yields for the crab and shrimp chitosan starch samples that were cross-

linked with PEG diglycidyl ether were 58 and 72% respectively. The products were 

viewed under low magnification (x100) using a scanning electron microscope. The 

crab images revealed a small, scattered leafy filament with particles closely packed 

together. The shrimp images under same magnification showed a micro-structure with 

large and small block-shaped structures with small and low surfaces with no significant 

changes in homogeneity.  

 

The infrared stretching frequencies of PEG diglycidyl ether cross-linked with crab 

chitosan starch adsorbent (K2) were similar to those of crab chitosan from  

4000 - 1500 cm-1 but different in the region of 1400 - 400 cm-1. The band corresponding 

to the amino group of chitosan shifted from 1660 to 1623 cm-1, which was an indication 

of interaction between the hydroxyl group of starch and the amino group of chitosan. 

The absorption intensity of the NH2 and OH groups (peak values ranged from 3200 − 

3700 cm-1) showed that the cross-linked characteristics of chitosan were lower than 

those of the NH2 and OH groups from chitosan, which indicated that a cross-linked 

reaction occurred between chitosan and epichlorohydrine. In addition, the reduction in 

intensity at 1488 cm-1 peak (NH2 in the amino group) showed that most of the primary 

amino groups were involved in the cross-linking process. 

  

A difference was observed between this spectrum (K2) and the chitosan beads that 

were obtained from crab shell (K1), as the peaks that were located at 3375 cm-1 

represented OH and NH stretching. Moreover, the absorption bands at 2389 and  

2808 cm-1 were representative of the stretching vibration of the CH2 group. The peak 

located at 1630 cm-1 was due to CO stretching of the amide group while the band that 

was noted at 1500 cm-1 corresponded to the NH bending vibration in the amide group 

(K1).  

 

The infrared spectrum of shrimp chitosan starch that was cross-linked with PEG 

diglycidyl ether adsorbent (L2) was compared to that of normal crab chitosan beads 

and was found to be similar to that of shrimp chitosan beads (L1). However, with the 

presence of functional groups of PEG diglycidyl ether in chitosan, the same vibrations 

were observed but with different relative intensities. The absorption intensities of the 

NH2 and OH groups respectively peaked at 3283 and 3485 cm-1, while those of the 

cross-linked chitosan were lower than those of the NH2 and OH groups of chitosan. 
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This result confirmed a cross-linking reaction between chitosan and poly ethylene 

glycol diglycidyl ether. The reduction in the intensities at 1663 cm-1 peak (NH2 in the 

amino group) showed that most of the primary amino groups were involved in the 

cross-linking process. Comparison of the cross-linked chitosan spectrum (L2) with the 

chitosan beads from shrimp shell (L1) showed a broad and strong band in the range 

3100 − 3700 cm-1 due to the stretching vibration of OH and NH in both spectrums. The  

 

band in the region of 1535 − 1575 cm-1 could be ascribed to the stretching frequency 

of the NH bending vibration in the amide group (L1). 

 
Crab and shrimp chitosan starch (CT-ST) cross-linked with polyethylene s-
methylbenzylamine 
 

                                     

                       
 
Figure 4.15: Scanning electron microscope images and FTIR spectrums of crab 
and shrimp chitosan starch cross-linked with s-methylbenzylamine 
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The reaction of crab and shrimp chitosan starches that were cross-linked with s-

methylbenzylamine yielded 59 and 63% respectively. The crab and shrimp cross-

linked products’ structures as seen in images generated by the scanning electron 

microscope under low magnification (x100) revealed an amorphous spherical 

appearance with tiny and large stone-like structures with small and low surfaces. The 

s-methylbenzylamine cross-linked chitosan (M2) showed broad absorption peaks in 

the range of 2961 − 3654 cm-1.  The peaks appearing at 1559 and 1156 cm-1 were 

deemed depictions of the stretching vibration of CO of the carboxylic group, while the 

peak at 1478 cm-1 was due to the OH bending vibration which confirmed that  

successful cross-linking of chitosan and starch occurred. The presence of the 

characteristic peaks of normal chitosan beads from crab shell (M1) was observed at 

1630 and 1567 cm-1 and this was ascribed to the CO and the NH groups (M2). The s-

methylbenzylamine that was cross-linked with chitosan (M2) showed broad absorption 

with peaks ranging from 2771 − 3350 cm-1, representing the OH bending vibration of 

the cross-linking agent (s-methylbenzylamine). The peaks appearing at 1502 and 

1055 cm-1 depicted the stretching vibration of CO of the carboxylic group. The 

characteristic peak at 1431 cm-1 for the OH bending vibration (see N2) was a 

confirmation of a cross-linking reaction between chitosan and starch. The cross-linked 

chitosan product (N2) and the shrimp chitosan beads from shrimp shell (N1) resulted 

in a broad and strong band ranging from 3200 − 3700 cm-1. The stretching frequencies 

ranging from 1504 − 1580 cm-1 represented the presence of NH bending vibration in 

the shrimp chitosan starch (CT-ST) cross-linked with p-benzoquinone.  
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Figure 4.16: Scanning electron microscope images and FTIR spectrums of 

crab and shrimpchitosan starch cross-linked with p-benzoquinone 

 

Crab and shrimp chitosan starch that was cross-linked with p-Benzoquinone yielded 

62 and 59% respectively. The crab cross-linked product under low magnification 

(x100) was revealed to be composed of a tiny block structure with particles slightly 

spaced out, whilst the shrimp cross-linked product at similar magnification showed 

microfibrillar structures that were also slightly spaced out. The infrared spectrum of 

crab chitosan starch that was cross-linked with benzoquinone adsorbent (O2) was 

similar to that of the chitosan beads composed of crab shell. Similar stretching 

frequencies occurred but different relative intensities were noted. The adsorption 

intensity of the NH2 and OH groups from cross-linked chitosan (O2) was visible in the 

range 3200 − 3700 cm-1 and it was weaker than that of the NH2 and OH groups of 

normal chitosan from crab shell. This indicated a successful reaction. The reduction in 

intensity that peaked at 1488 cm−1 (NH2 in the amino group) showed that most of the 

primary amino groups were involved in the cross-linking process. The spectrum (O2) 

had a broad and strong band that ranged between 3200 − 3700 cm-1 (stretching 

vibration of OH and NH) compared to the spectrum of (O1). The characteristic peak 

that occurred in the region of 1651 cm-1 of the same spectrum confirmed the presence 

of CO in the carboxylic group. The shift in the stretching frequencies in spectrum O1 

from 1651 − 1618 cm-1 suggested the interaction between the hydroxyl group of starch 

and the amino group of chitosan. Moreover, the presence of the peak in the region of 

1575 cm-1 revealed the presence of NH bending vibration in the amide group (see 

spectrum O1). 
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4.4.3.7 Crab and shrimp chitosan starch (CT-ST) cross-linked with 1,3-
dichloroacetone  

                

        

Figure 4.17: Scanning electron microscope images and FTIR spectrums of 
crab and shrimp chitosan starch cross-linked with 1,3-dichloroacetone 

 

The crab chitosan starch and the shrimp chitosan starch that were cross-linked with 

1,3 dichloroacetone yielded 71 and 92% respectively. Scanning electron microscope 

images for the crab chitosan starch that was cross-linked with 1,3 dichloroacetone 

under low magnification (x100) revealed scattered tiny pieces of filament packed close 

to one another, whilst the shrimp particles of chitosan starch that were cross-linked 

with 1,3 dichloroacetone under similar magnification appeared micro-fibrillar in 

structure. Both products showed some similarity at wave number 4000 − 1500 cm-1 

and from 1400 − 400 cm-1 a large variety of differences with relative intensities could 

be observed. The presence of the amino group in the spectrum R2 was clearly visible 

in the 1630 − 1659 cm-1 range. The weaker absorption intensity of the NH2 and OH 
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groups in R2 (peak values from 3200 − 3700 cm-1) compared to R1 further confirmed 

that cross-linked reaction occurred between the chitosan and 1,3-dichloroacetone.  

Differences were noted between the obtained spectrum of crab cross-linked chitosan 

starch (Q2) and the chitosan beads from crab shell (Q1). These differences were: the 

characteristic peaks at 3375 cm-1 represented OH and NH stretching; the absorption 

bands at 2340 and 2870 cm-1 depicted the CH2 group stretching vibration; the peak 

located at 1630 cm-1 represented the CO stretching of the amide group; and the band 

at 1500 cm-1 corresponded to the NH bending vibration in the amide group (Q1). The 

infrared spectrum of shrimp chitosan starch that was cross-linked with 1,3-

dicloroacetone (Q2) revealed similar stretching frequencies in the region of  

3200 − 3700 cm-1. The NH group peak was visible in the region of 1488 cm-1 which 

was consistent with the previous results and served as confirmation of the success of 

the cross-linked product. 

 

4.4.3.8 Crab and shrimp chitosan starch (CT-ST) cross-linked with maleic 
anhydride  
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Figure 4.18: Scanning electron microscope images and FTIR spectrums of 

crab and shrimp chitosan starch cross-linked with maleic anhydride 

The crab and the shrimp chitosan starch samples that were cross-linked with maleic 

anhydride yielded 30 and 26% respectively. The scanning electron microscope 

analysis of crab chitosan starch that was cross-linked with maleic anhydride under low 

magnification (x100) revealed a crystalline structure with large, compact blocks of 

granules that had settled adjacent to one another, while the shrimp chitosan starch 

that was cross-linked with maleic anhydride under similar magnification appeared as 

large, microfibrillar blocks of granular particles.  

 

The characteristic stretching frequencies (NH2 and OH groups) of the cross-linked 

products (S2) were observed in the region of 3200 − 3700 cm-1.  The strong peak 

observed in the region of 1714 cm-1 in the crab chitosan starch that was cross-linked 

with maleic anhydride was ascribed to the carboxyl stretching vibration of the 

carboxylic acid. Absorption bands in the region of 2340 − 2870 cm-1 for the crab 

chitosan starch corresponded to the stretching frequencies of the CH2 group, whilst 

the peaks (S1) in the region of 1630 − 1500 cm-1 were ascribed to the CO and the NH 

groups. IR characterization of the shrimp chitosan starch that was cross-linked with 

maleic anhydride (T2) showed similar stretching frequencies in the NH2 and OH 

groups that were in the region of 3200 − 3700 cm-1. The CO peak was observed at 

1641 cm-1, which was slightly different from that of the shrimp (T1) product.  The peaks 

located at 1714 and 1651 cm-1 represented the CO in the amine group while the band 

at 1514 and 1558 cm-1 occurred as a result of the NH bending vibration in the amide 

group (see spectrum T1). 
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 Conclusion 

The isolation of chitin was achieved through extraction using mussel, oyster, shrimp 

and crab shells and silver and pang fish scales (starting material). Satisfactory yields 

were obtained from oyster and crab samples (60 - 70%) whilst lower yields were 

obtained from the mussel, shrimp, pang and silver fish samples (31 – 40%). 

Successful conversion of the chitin to chitosan was achieved through cross-linkage 

with glutaraldehyde, formaldehyde, epichlorohydrine, maleic anhydride, p-

benzoquinone, poly ethylene glycol (PEG) diglycidyl ether, 1-vinyl-2-pyrrolidone, 1,3-

dichloroaceone, acrylic acid and s-methylbenzylamine chitosan products.  

 

Characterization of these cross-linked chitosan products was performed using FTIR, 

SEM and viscometer applications. The FTIR results of the isolated cross-linked 

chitosan products showed a good correlation of the stretching frequencies to those 

cited in the literature, which confirmed the presence of the desirable product. Analyses 

using SEM spectroscopy revealed different morphological structures of the products 

and revealed how the particles were orientated in space. Determination of the 

physiochemical properties such as molecular weight, intrinsic viscosity and solubility 

revealed a direct correlation between the molecular weight and the intrinsic viscosity 

of the cross-linked chitosan products.    
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 ISOLATION OF HEAVY METALS FROM WASTEWATER USING 

CROSS-LINKED CHITOSAN PRODUCTS 

 

 

 Introduction 

The need to purify wastewater using chitosan derivatives was discussed in Chapter 3, 

while Section 3.4.1 demonstrated a promising technique to isolate heavy metals from 

wastewater. Therefore, a series of chitosan cross-linked products was synthesized 

and characterized as was discussed in the previous chapter. The differences in the 

morphological appearances and functional groups in the chitosan cross-linked 

products revealed features that have the potential to be used in the adsorption of 

metals from wastewater. The objective of this chapter is to determine the effectiveness 

of these modified chitosan derivatives in purifying wastewater from red meat and 

poultry abattoirs. Some of the common elements that affect animals and aquatic life 

such as Fe, Cu, Zn, Pb, Ni, Sn, Hg, Cr, As, Al and Cd as were identified in Chapter 2, 

Section 2.3.1 will be determined for their presence in purified water. The effectiveness 

of each cross-linked chitosan product will be assessed based on the number of 

elements adsorbed; i.e., the fewer elements retained the more efficient the chitosan 

product is, and vice versa.  

 

 
 Equipment 

5.2.1 Instrumentation 

A computer controlled Prodigy 7, ICP-OES sequential plasma spectrometer from the 

Institute for Groundwater Studies (UFS) (Figure 5.1) was used for the determination 

of the presence of heavy metals in abattoir effluent that was obtained from poultry and 

red meat abattoirs. The standard operating conditions of the ICP-OES are listed in 

Table 5.1.  
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5.2.2 Materials, reagents and glassware 

The chitosan products (see Chapter 4, Section 4.4.3) that were cross-linked with 

glutaraldehyde, formaldehyde, epichlorohydrine, maleic anhydride, p-benzoquinone, 

poly (ethylene) glycol diglycidyl ether, 1-vinyl-2-pyrrolidone, 1,3-dichloroaceone, 

acrylic acid and s-methyl-benzylamine were used as adsorbents in the isolation of 

heavy metals from the wastewater samples. The wastewater was collected and 

supplied to us in clean polyethylene containers (5 ℓ) and kept in a refrigerator. Other 

chemicals used included acids and solvents that were mentioned in Chapter 4, Section 

4.2.  Grade A-type Schott Duran beakers and Erlenmeyer flasks were used for all the 

wet chemical analyses. Glass burettes (50 mℓ) and plastic Pasteur pipettes of high 

accuracy and precision (±0.01 mℓ) were used to dispense accurate volumes during 

the chemical analyses.  

 

5.2.3 Description of the water samples 

Samples of the wastewater used in this research study were obtained from local 

poultry and red meat abattoirs situated in the outskirts of Bloemfontein in the Free 

State Province, South Africa. Samples were collected from effluent pipes and supplied 

to us in large 5ℓ containers. Strict regulation of equipment and adherence to 

confidentiality agreements were of high priority in securing the samples as most of the 

abattoirs did not want their identities revealed.   

 

 Experimental procedure  

5.3.1 Preparation of ICP-OES calibration standards 

 
ICP-OES multi-element standard (1000.00 μg/ℓ) stabilized in HNO3 (7% v/v) was 

purchased from Merck and was used in the preparation of calibration standards. 

Standards in the concentrations of 5, 10, 20, 30 and 40 ug/ℓ were prepared using the 

“Transferpette” micro-pipette. Nitric acid (5.0 mℓ; 65%) was added to all the standards 

before the flasks were filled up to the mark using deionised water. The solutions were 

homogenized before use. 
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5.3.2 Preliminary treatment of the wastewater  

Stock solutions of the red meat and poultry abattoir effluent/wastewater (2 x 5 ℓ) were 

first shaken to ensure homogeneity before filtered. The filtrates that contained most of 

the heavy metals were collected (2 x 2 ℓ) in separate beakers for ICP-OES analysis as 

shown in Scheme 5.1. The solid residues which included organic and inorganic wastes 

were removed from both solutions and discarded.  ICP-OES qualitative analysis 

results of both filtrates (control) are reported in Table 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 5.1: Wastewater treatment before elemental analyses using ICP-OES 

 

5.3.3  Preparation of the control solutions for ICP-OES analyses  

Two control samples from both red meat and poultry wastewater were prepared from 

the original stock solutions by filtering the solution to remove insoluble particles. 

Aliquots (10 mℓ) of each solution (poultry and red meat) were transferred to volumetric 

flasks. Nitric acid (5.0 mℓ, 65%) was added and the solutions were homogenized 

before analyzed using ICP-OES. The qualitative results of the elements present in 

both samples are reported in Table 5.2. 

 

 

 

2 stock solutions of the wastewaters 

from the poultry and meat abattoirs 

Filtration 

Residues containing insoluble 

organic and inorganic compounds 

Filtrate solution containing dissolved metal 

ions and other organic and inorganic 

solutes 

Qualitative and quantitative analyses to 

determine the elemental content in both 

wastewater categories 

Residue 

Addition of nitric acid for the liberation 

of ions for ICP-OES analysis 

Filtrate  
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 Results and Discussion  

5.4.1 Qualitative analyses of red meat and poultry wastewater samples  

 

Qualitative analyses of the wastewater samples (poultry and red meat) were done to 

determine which elements were present in the wastewater. The experimental results 

revealed the presence of different elements in each sample see Table 5.2. A total of 

16 and 18 elements were present in the poultry and red meat wastewater samples 

respectively. Estimates indicated high concentrations (above 100 mg/ℓ) of Ca, Na and 

K in the poultry wastewater samples, whereas Ca, Mg, Na, K and Si (above 100 mg/ℓ) 

were present in the red meat wastewater samples. The high number of elements that 

were detected in both categories clearly revealed that high quantities of elements were 

deposited as effluent in the meat industry. It could be concluded that the high 

concentrations of alkali and alkaline earth metals present in the effluent would have a 

hardening effect on the fresh water bodies they were deposited in, if not removed.   

 

5.4.2 Quantitative analyses of the poultry and red meat wastewater samples 
 

5.4.2.1    Poultry samples 
 

Quantitative analyses of the elements revealed high concentrations of Na 

 (207.7 mg/ℓ), K (120.2 mg/ℓ) and Ca (258.5 mg/ℓ) in the poultry wastewater samples. 

The presence of these alkali and alkaline earth metals in high concentrations 

presented a challenge in quantification. The analysis of these elements using flame 

techniques has been reported to result in false high percentage recoveries and the 

effects of alkali and alkaline earth metals, sometimes referred to as easily ionized 

elements (EIE), are well documented (Brenner et al., 1997). According to the literature, 

when these elements are present in high concentrations (exceeding 400 mg/ℓ), they 

can alter the flame properties due to the ionization and atomization ratios of the 

analyte, which will then result in false findings of high concentrations. In the current 

study, a slight yellowing of the flame was observed during ICP-OES analyses, which 

was a positive indication of the presence of EIE. According to Brenner et al. (1997), 

the presence of high concentrations of EIE (Li, Na and K) in the analyte solution often 

results in red, yellow and pink/purple/lilac flames respectively, all of which are not ideal 
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5.4.2.2 Red meat samples 
 

Quantitative analyses of the red meat wastewater samples showed the presence of 

high concentrations of alkali and alkali earth metals such as Ca (193.8 mg/ℓ), Mg 

(117.8 mg/ℓ), Na (987.3 mg/ℓ), and K (295.8 mg/ℓ). The abundance of the alkali and 

alkaline earth metals in the wastewater suggested the high usage of chemicals such 

as NaOH, KOH, Mg(OH)2 and Ca(CIO)2 in the abattoir for disinfection purposes. The 

presence of these elements in excessive concentrations undoubtedly contributes to 

the hardening of water which in turn affects aquatic life negatively. It is noteworthy that 

no apparent sources of Si from the abattoirs could attribute for the high concentrations 

of Si (130.1 mg/ℓ) found in the red meat wastewater. Silicon often exists as silica 

(silicon dioxide) and is commonly found in nature as quartz. Its presence in the 

wastewater could therefore be attributed to dissolved soil particles. The presence of 

other elements such as As, Co, Cu, Mo, Pb (0.1 mg/ℓ), Cr, Mn (0.2 mg/ℓ) and Sr, Zn 

(0.3 mg/ℓ) that were detected in lower concentrations was indicative of unsafe and 

poor abattoir practices that resulted in the indiscriminate disposal of waste in the 

environment.  

 

5.4.2.3  Comparison of poultry and red meat results 
 

A comparison of the results obtained from the poultry and red meat wastewater 

samples (Table 5.4) shows that the red meat processing industry contributes more 

extensively to water pollution compared to the poultry industry. The higher 

concentration levels of the detected elements disposed of in drains revealed a 

significant water pollution contribution by both abattoir categories, but more specifically 

by red meat abattoirs. The Mg and K contents in the red meat waste were 

approximately three times higher than those in the poultry waste, while the Na content 

was five times higher in the poultry wastewater samples. The concentrations of Ca 

were slightly higher in the poultry (259 mg/ℓ) wastewater than in the red meat 

wastewater samples (194 mg/ℓ). However, it is undeniable that the accumulation of 

these alkali and alkaline earth metals in the fresh water bodies that they reach 

consistently increase the alkalinity and hardness of the water. 
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Table 5.4: Comparison of the concentrations of some of the major elements 
present in poultry and red meat wastewater 

Elements 
Concentration (poultry) 

(mg/ℓ) 
Concentration (red meat) 

(mg/ℓ) 

Ca 258.5 193.8 

Mg 43.8 117.8 

Na 207.7 987.3 

K 120.2 295.0 

Si 7.5 130.1 

Fe 5.7 11.3 

 

 

5.4.3 Determination of the elements present in poultry and red meat wastewater 

using various cross-linked chitosan products 

 

The objective of this phase of the study was to determine the effectiveness of the 

synthesized chitosan products in adsorbing heavy metals from the wastewater. The 

results of the analyses of eluted solutions of poultry and red meat wastewater using 

different chitosan products (stationery phases) in the chromatographic technique 

varied among the chitosan products. The presence of alkaline and alkali earth metals 

(Ca, Mg, Na and K) was predominant in the eluted solutions of all the chitosan 

products. However, lower percentages of Mg (18%) and K (20%) were recorded 

compared to the original red meat wastewater samples. Almost half of the 

concentrations of Ca (43%) and Na (46%) were eluted from the same wastewater 

solution. The eluted solutions from the poultry wastewater showed low average 

percentage concentrations of Ca (12%) and Mg (24%) and higher percentages for K 

(35%) and Na (55%) concentrations. Low retention rates of Mg in poultry (18%) and 

red meat (24%) were obtained, revealing the efficiency of these products to adsorb 

the Mg element. Further comparison of the poultry and red meat results showed the 

lowest concentrations of Mg eluted to be 5 and 12 mg/ℓ respectively (Figure 5.3).  
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epichlorohydrine (F2), and crab chitosan starch that was cross-linked with acrylic-acid  

(H2) (Figures 5.4 and 5.5). 

 

 

Figure 5.4: Concentrations of calcium in poultry and red meat wastewater eluted 

from the columns prepared using different chitosan products  

 

 

 

Figure 5.5: Concentrations of potassium in poultry and red meat wastewater 
eluted from the columns prepared using different chitosan products 
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The results also showed fluctuating recoveries of the eluted sodium concentrations 

from the poultry and red meat (control samples) whose initial concentrations were 

207.7 and 987.3 mg/ℓ respectively.  Low sodium concentrations (30 – 70 mg/ℓ) were 

eluted from the poultry wastewater using A2, B2, C2, D2, F2, L2, I2, J2, Q2, R2, S2, 

T2, O2 and P2 chitosan products, and this result indicated good separation or 

adsorbance potential of sodium from wastewater (Figure 5.6). However, higher sodium 

concentrations than the initial concentrations (above 207.7 mg/ℓ) were obtained using 

X, G2 and H2 (218 − 544 mg/ℓ), which might have been due to errors in the 

measurement (see Section 5.4.2 above). Analysis results of the sodium content in the 

eluted solutions from the red meat wastewater using the same chitosan products 

showed a similar trend as the poultry results. Reduced sodium concentrations (120 – 

361 mg/ℓ) were obtained using A2, E2, B2, C2, D2, L2, M2, N2, I2, J2, Q2, R2, S2, T2, 

O2 and P2 chitosan products. However, higher concentrations (440 – 967 mg/ℓ) of 

sodium were obtained using X, Y, K2, G2 and H2 chitosan products. These results 

were consistent with the results obtained from the poultry wastewater analyses, which 

suggests the inability of the X, Y, K2, G2 and H2 chitosan products to effectively 

adsorb sodium ions. The exceedingly high sodium content (1781 mg/ℓ) reported using 

F2 might also have occurred as a result of the false high measurement error discussed 

in Section 5.4.2 above.  

 

The results of the analyses to determine the removal potential of alkali and alkaline 

earth metals from wastewater using modified chitosan products were generally not 

encouraging, as it was clear that not all the modified chitosan products were capable 

of completely removing these elements. However, a few chitosan products were 

shown to adsorb appreciable quantities of alkali and alkaline earth metals from the 

wastewater samples, which significantly contributed to the reduction of these elements 

in the water samples. This finding is encouraging and thus needs further exploration.      
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Figure 5.6: Concentrations of sodium in poultry and red meat wastewater 
eluted from the columns prepared using different chitosan products 

 

5.4.3.1 Analyses of the content of other elements in poultry and red meat 
wastewater  

 

Quantitative analyses to determine the presence of elements (Cu, Zn, Pb, Ni, Sn, Hg, 

Cr, As, Al and Cd) in waste water were conducted. As was described in Chapter 2 

Section 2.3.1, these elements often cause health issues affecting animal and aquatic 

life, and their presence was thus assessed in the eluted solutions. Although not very 

high concentration levels of these elements were detected in the wastewater solutions 

(control samples), the results indicated the ability of the chitosan products to adsorb 

these elements. Trace amounts of Fe and Si (less than 0.1 mg/ℓ) and ultra-trace 

amounts of As, Cd, Cr and Pb were detected in both categories of wastewater samples 

using the chitosan products. The presence of these metals, even at ultra-trace levels, 

was enough to signal long-term effects and persistent water pollution. The continual 

deposition of these elements in rivers, lakes and dams will eventually lead to an 

intolerable increase in their concentrations (pre-concentration) due to water 

evaporation.   

 

Concentrations of Si and Fe were detected in appreciable quantities in both poultry 

(5.7 and 7.5 mg/ℓ) and red meat (11.3 and 130.1 mg/ℓ) respectively. As was mentioned 

in Section 5.4.1.2, the most probable source of Si was the dissolved particles of the  
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 EVALUATION OF THE FINDINGS AND RECOMMENDATIONS 

FOR FUTURE STUDIES 

 

 Introduction 

The main purpose of this chapter is to evaluate the outcomes of this study with 

reference to the objectives. 

The aim of the study was to assess the presence of heavy metals in abattoir 

wastewater and thus optimize and establish alternative methods of purifying 

wastewater from Bloemfontein abattoirs in the quest to reduce water pollution. 

The objectives were to: 

 Identify raw materials (domestic waste) such as fish scales (silver and pang), 

crustacean shells (crab, shrimp and prawn), and mollusc shells (oyster and 

mussel) for preparation of chitin and chitosan products to be used for 

wastewater treatment; 

 

 Synthesize a variety of adsorbents from chitins and chitosan biopolymers 

obtained from fish scales and prawn, shrimp, crab, oyster, and mussel shells 

that can be used for wastewater purification; 

 

 Characterize these adsorbents using spectroscopy techniques such as 

solubility tests, viscometer, degree of acetylation, SEM and FTIR spectroscopy; 

and   

 

 Sample abattoir wastewater and investigate the effectiveness of the modified 

product(s) in purifying abattoir wastewater/effluent by means of comparative 

tests using commercially available adsorbents such as chitosan beads, chitins, 

natural polysaccharides, and Amberlite resins.  

 

This study was successful in achieving the above-mentioned objectives. Different 

chitosan products were synthesized and cross-linked with various compounds in an 

attempt to determine the adsorption abilities of these products for use in wastewater 

purification. The analyses of wastewater samples from poultry and meat abattoirs  

© Central University of Technology, Free State



88 
 

 

 

 

detected high concentrations of alkali and alkaline earth metals (Ca, Mg, K and Na) 

exceeding 100 mg/ℓ in each sample. Other elements that were detected in both 

wastewater categories were Cr, Ni, Cu and Pb, which have all been reported to be 

contributing to water pollution. Characterization of the synthesized chitosan products 

using the FTIR and the SEM was aimed at identifying different functional groups within 

these compounds that might be active in the adsorption of the elements – particularly 

heavy metals that could be detected in the wastewater. The results of the investigation 

using FTIR and SEM analyses showed the presence of amorphous products with 

different functional groups. 

 

The results clearly revealed a disconcerting high potential for persistent water pollution 

by effluent from both the poultry and red meat industries. The presence of Cr, Ni, Cu 

and Pb in the wastewater was enough evidence to reveal the indiscriminate disposal 

of heavy metals by these meat industries in the environment. It is a matter of grave 

concern that the ICP-OES analyses revealed the presence of ultra-trace 

concentrations of Cr, Ni, Cu and Pb in the wastewater. However, the technique did not 

distinguish between Cr3+ and Cr6+ (the latter is considered to be toxic to both animals 

and the environment), and this suggests that future studies should explore the 

presence of this element in wastewater as a matter of urgency. The products that were 

derived from shrimp chitosan that was cross-linked with maleic anhydride (S2) and 

shrimp chitosan that was cross-linked with acrylic acid (G2) (Figure 6.1) were found to 

yield exceptional results, which rendered these findings encouraging for future 

application. Using these chitosan products to purify the poultry and red meat 

wastewater samples, a significant reduction of the alkali and alkali earth metals (Ca, 

Mg, K and Na) and other elements that are considered as toxic to the environment 

(Cr, Ni, Cu and Pb) was obtained.  
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Figure 6.1: (a) Shrimp chitosan cross-linked with maleic anhydride (S2); and  
(b) shrimp chitosan cross-linked with acrylic acid (G2). 
 
 

 Recommendations for future studies 

The results obtained from the shrimp chitosan that was cross-linked with maleic 

anhydride (S2) and acrylic acid (G2) and some other chitosan products showed 

excellent results for alkali and alkali earth metals. The significant differences that were 

observed between the original samples (wastewater) and the eluted solutions using 

S2 and G2 suggest that these adsorbents can be used in the separation of alkali and 

alkaline earth metals in, for example, the lithium industry. These chitosan products can 

also be applied in the water industry where they can be used for softening water and 

the removal of for example Ca and Cr in the wastewater of the abattoir industry. 

However, the exploration of the application of these products is in its infancy and future 

studies are required to explore the potential of these products on a larger scale.   

The detection of heavy metals in the wastewater of the meat industry, albeit in ultra-

low concentrations, was a disconcerting finding which suggests that future studies 

should explore this phenomenon and its eradication in the poultry and red meat 

industries as a matter of urgency. 

 

 

 

 

 

 

 

(a) (b) 
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APPENDIX A 

 

Abbreviation list of red meat wastewater samples  

 

RM X and RM Y - shrimp and crab chitosan bead 

RM A-2 and PB-2 - shrimp and crab chitosan starch cross-linked with glutaraldehyde 

RM C-2 and RM D-2 - shrimp and crab chitosan starch cross-linked with 

formaldehyde 

RM E-2 and RM F-2 - shrimp and crab chitosan starch cross-linked with 

epichlorohydrine   

RM G-2 and RM H-2- shrimp and crab chitosan starch cross-linked with acrylic acid 

RM H-2 and RM J-2 - shrimp and crab chitosan starch cross-linked with 1-vinyl-2-

pyrrolidone 

RM K-2 and RM L-2 - shrimp and crab chitosan starch cross-linked with poly-

ethylene diglycider ether 

RM M-2 and RM N-2 - shrimp and chitosan starch cross-linked with s-

methylbutylamine  

RM O-2 and RM P-2 - shrimp and crab chitosan starch cross-linked with 

benzoquinone 

RM Q-2 and RM R-2 - shrimp and crab chitosan starch cross-linked with 1,3 

dichloroacetone 

RM S-2 and RM T-2 – shrimp and crab chitosan starch cross-linked with maleic 

anhydride 
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APPENDIX D 

Abbreviation list of Poultry wastewater samples  

P X and Y - shrimp and crab chitosan bead 

P A-2 and P B-2 - shrimp and crab chitosan starch cross-linked with glutaraldehyde 

P C-2 and P D-2 - shrimp and crab chitosan starch cross-linked with formaldehyde 

P E-2 and P F-2 - shrimp and crab chitosan starch cross-linked with epichlorohydrine   

P G-2 and P H-2- shrimp and crab chitosan starch cross-linked with acrylic acid 

P H-2 and P-2 - shrimp and crab chitosan starch cross-linked with 1-vinyl-2-pyrrolidone 

P K-2 and P L-2 - shrimp and crab chitosan starch cross-linked with poly-ethylene 

diglycider ether 

P M-2 and P N-2- shrimp and crab chitosan starch cross-linked with s-

methylbutylamine  

P O-2 and P P-2 - shrimp  and crab chitosan starch cross-linked with benzoquinone 

P Q-2 and P R-2 - shrimpn and crab chitosan starch cross-linked with 1,3 

dichloroacetone 

P S-2 and P T-2 - shrimp and crab chitosan starch cross-linked with maleic anhydride 
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