
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2019 

ESTIMATES OF FOREST CHARACTERISTICS DERIVED FROM ESTIMATES OF FOREST CHARACTERISTICS DERIVED FROM 

REMOTELY SENSED IMAGERY AND FIELD SAMPLES: REMOTELY SENSED IMAGERY AND FIELD SAMPLES: 

APPLICABLE SCALES, APPROPRIATE STUDY DESIGN, AND APPLICABLE SCALES, APPROPRIATE STUDY DESIGN, AND 

RELEVANCE TO FOREST MANAGEMENT RELEVANCE TO FOREST MANAGEMENT 

John S. Hogland 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Hogland, John S., "ESTIMATES OF FOREST CHARACTERISTICS DERIVED FROM REMOTELY SENSED 
IMAGERY AND FIELD SAMPLES: APPLICABLE SCALES, APPROPRIATE STUDY DESIGN, AND RELEVANCE 
TO FOREST MANAGEMENT" (2019). Graduate Student Theses, Dissertations, & Professional Papers. 
11505. 
https://scholarworks.umt.edu/etd/11505 

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University 
of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers 
by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11505?utm_source=scholarworks.umt.edu%2Fetd%2F11505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


 i 

ESTIMATES OF FOREST CHARACTERISTICS DERIVED FROM REMOTELY 

SENSED IMAGERY AND FIELD SAMPLES: APPLICABLE SCALES, 

APPROPRIATE STUDY DESIGN, AND RELEVANCE TO FOREST 

MANAGEMENT  

By 

John S. Hogland 

BS, Auburn University, Auburn, AL, USA, 2001 

MS, Auburn University, Auburn, AL, USA, 2005 

Dissertation 

presented in partial fulfillment of the requirements 

for the degree of 

 

Doctorate 

in Forest & Conservation Sciences 

 

The University of Montana 

Missoula, MT 

 

December 2019 

 

Approved by: 

 

Scott Whittenburg, 

Graduate School Dean 

 

David L.R Affleck 

W.A. Franke College of Forestry & Conservation 

 

Solomon Dobrowski 

W.A. Franke College of Forestry & Conservation 

 

 

Carl Seielstad 

W.A. Franke College of Forestry & Conservation 

 

Jon Graham 

Department of Mathematical Sciences 

 

Robert Smith 

Department of Computer Science 

 

Nathaniel M. Anderson 

USDA Forest Service, Rocky Mountain Research Station 



 ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© COPYRIGHT 

 

by 

 

John S. Hogland 

 

2019 

 

All Rights Reserved 

  



 iii 

Hogland, John, Doctorate, December 2019 

Forest and Conservation Sciences  

 

ESTIMATES OF FOREST CHARACTERISTICS DERIVED FROM REMOTELY 

SENSED IMAGERY AND FIELD SAMPLES: APPLICABLE SCALES, 

APPROPRIATE STUDY DESIGN, AND RELEVANCE TO FOREST 

MANAGEMENT 

 

Chairperson:  David L.R. Affleck 

 

Abstract:  Information and knowledge about a given forested landscape drives 

forest management decisions. Within forest management though, information 

that adequately describes various characteristics of the forested environment in 

the spatial detail desired to make fully informed management decisions is often 

limited. Key metrics such as species composition, tree basal area, and tree density 

are typically too expensive to collect using ground-based inventory methods 

alone across broad extents for forest level planning (thousands of ha) at fine 

spatial detail that permit use at tactical spatial scales (tens of ha). However, 

quantifying these metrics accurately, in spatial detail, across broad landscapes is 

important to inform the management process. While relating remotely sensed 

data to classical ground-based survey data through modeling has shown promise 

for describing landscapes at the spatial detail need to inform planning and 

tactical scale projects, questions remain related to integrating both sources of 

data, sample design, and linking plots to remotely sensed data. This dissertation 

addresses critical aspects of these questions by: quantifying and mitigating the 

impact of co-registration errors; comparing various sample designs and 

estimation techniques using simulated ground-based information, remotely 

sensed data, and a variety of modeling techniques; developing enhanced image 

normalization routines; and creating an ensemble approach to estimating various 

forest characteristics that describe species composition, basal area, and tree 

density.  This dissertation address knowledge gaps in the fields of forestry, 

remote sensing, data science, and decision science that can be used to efficiently 

and effectively inform the natural resource management decision-making 

process at fine spatial resolutions across broad extents. 
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Estimates of forest characteristics derived from 

remotely sensed imagery and field samples: 

applicable scales, appropriate study design, and 

relevance to forest management  

Abstract: Accurate information is critical for effective management. Within forestry, key 

information related to forest characteristics used to inform management include stand metrics such 

as species composition, tree basal area ( m2 per ha, BAH), and tree density (trees per ha, TPH). 

Quantifying those metrics accurately, in spatial detail, across broad landscapes is important to 

inform the management process. However, the acquisition of such information at fine spatial 

resolutions across large extents is cost prohibitive when only ground-based survey methods are 

utilized. In this dissertation, I describe and implement an alternative methodology to quantify forest 

metrics such as BAH and TPH at fine to medium spatial resolutions across large extents using 

remotely sensed data. From a theoretical perspective, I address issues of spatial scale, co-registration 

errors, ideal field sampling unit configurations, sample intensity and allocation, and use of derived 

BAH and TPH estimates. From an applied perspective, I focus on quantifying patterns of BAH and 

TPH across broad extents by relating field measurement to fine-grained remotely sensed data in the 

portion of northwest Florida, USA, known as the Florida Panhandle. The primary objectives of this 

dissertation are to address knowledge gaps in the fields of forestry, remote sensing, data science, 

and decision science which, once addressed, can be used efficiently and effectively to inform the 

natural resource management decision-making process at fine spatial resolutions across broad 

extents. 

Keywords: basal area, trees density, co-registration, sample design, longleaf, forest characteristics 

 

1. Introduction 

Forest management is a complex integrated process that combines multiple objectives to 

accomplish a predefined set of goals as they relate to forested lands [1]. Since the United States 

National Forest Management Act of 1976, the federal definition of forest management has expanded 

well beyond timber management to include tenets of economic and social goals as components of 

management choices, the consideration of larger socially defined multiple use management 

problems, and the need to quantitatively justify forest management plans and decisions. This 

expansion in scope fundamentally changes not only what we manage for, but how we justify our 

forest management decisions; emphasizing the action and need for planning in a broad context in 

both spatial extent and contextual scope.  

Across varying forests of differing ownership, complexity, size, and extent, forest plans guide 

management activities and steer silvicutural prescriptions to meet private, public, and more generally 

social objectives and goals. Effective planning and implementation of those plans requires knowledge 

of the biotic and abiotic condition of a forest as well as understanding of their interactions within the 

context of the objectives and goals defined for a given forest [2, 3]. To gain understanding of the 

existing structure and composition of forests, practitioners implement well established mensuration 

techniques [4]. Generally, these techniques can be described as aggregating a sample of field plots for 

a given geographic area to determine mean and variance estimates of forest characteristics within 

that geographic area. While these techniques are well described, they can be extremely expensive and 

problematic to implement at fine spatial resolutions across broad extents. Simultaneously, as the 

human population increases and more people rely on and move into forested areas, social questions 

related to the impacts of management activities on forest ecosystems, connectivity, sustainability, 
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water quality, esthetics, carbon, air quality, climate, and timber products markets become more 

important at finer spatial detail. Due to the cost associated with quantifying basic information used 

to describe many of these forest characteristics, often limited information is available to inform 

management decisions at the spatial scale of implementation.  

For example, well-known inventory endeavors such as the Forest Inventory Analysis Program 

of the U.S. Forest Service [5] provide a wealth of data related to our nation’s forests. However, the 

inferences that can be drawn using those data are applicable at regional spatial resolutions at best 

and provide little utility at the spatial resolution of a national or state forest. That is not to say these 

data are useless at these scales but instead to identify a mismatch between the intent and scope for 

which those data are collected and the needs of society to address spatially explicit questions 

pertaining to forest management. Owing to this discrepancy, forest managers must implement a 

more intensive sampling scheme for projects such as a timber cruise or sale. However, these 

endeavors tend to be inconsistent, vary in intensity and scope, and generally pertain to only small 

geographic areas (e.g., less than 1000 hectares), making the data collected incongruent with other 

inventory efforts and impractical to implement at broad extents. 

To illustrate the financial limitations of intensive field plot inventories, it is helpful to look at the 

per plot costs of endeavors such as the FIA. The cost of collecting basic forest information using the 

FIA protocol has been estimated to be $600 to $1,240 per plot [6]. On the other end of the cost 

spectrum, timber cruises conducted primarily to estimate timber volume have plot costs as low as 

$50 per plot [7]. Using this range of plot costs ($50 to $1,240), a 10% cruise for a forest of 100,000 

hectares would require 100,000 plots, each with a radius of 11.3 m, costing between $5 million (at $60 

/ plot) and $124 million (at $1,240 / plot). Assuming a 10% cruise is sufficient to accurately represent 

the complexity of a given forest for planning and project implementation purposes, the cost for such 

an endeavor across 100,000 hectares is prohibitive. Due to this expense, forest practitioners often 

cannot describe the forest condition at fine spatial resolution across broad extents, but settle for coarse 

depictions that describe forest characteristics generally as totals or averages for defined areas. This 

decision further impacts the forest planning process by forcing managers to make general forest plans 

with high levels of uncertainty about the existing condition of the forest at fine spatial resolutions.  

Forest traits such as species composition, spatial arrangement, basal area (m2 ha-1, BAH), and 

tree densities (trees ha-1, TPH) as described within a classical inventory framework [4] are not by 

themselves expensive to collect at the spatial resolution of the plot. The expense associated with the 

classical inventory framework stems from the number of plots required to quantify stand 

characteristics based on the geographic boundary of a stand or strata. Specifically, the classical 

inventory approach splits a forest into many stands of similar composition, stocking, tree size, and 

age class, and then summarizes sample units (plots) within each stand to estimate a mean and 

variance of species BAH and TPH. BAH and TPH estimates are then used at the stand level to inform 

the forest planning process [1].  

While this procedure can be applied in almost every situation, requires only plot data, and has 

been embraced within the forestry community, the method only produces estimates for the stand as 

a whole, typically requires a large sample size, and does not directly allow for additional sources of 

information. In instances where additional information is known about the forest, the classical 

approach has been expanded to include that information by grouping stands into like strata [4, 8]. 

Stratification aims to reduce sampling variation within like groups (i.e., the stratum), in turn reducing 

sampling intensity and cost to achieve a predefined level of accuracy. Within each stratum, plot data 

are summarized and mean and variance terms for a given variable are attributed to stands and pooled 

or combined in a weighted fashion to estimate an overall mean and variance for the forest as a whole.  

 In instances where supplementary information (e.g., remotely sensed data) about the 

population (e.g., BAH) is known and is correlated with the population variable of interest, regression 

can be employed to further increase the precision and efficiency of a given sample [4, 9]. Within this 

estimation framework [10], supplemental information can be categorical or continuous, tested for 

relevance with regard to minimizing variation, and used to estimate the strength of the relationship 
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between the response variable (e.g., BAH) and predictor variables (e.g. spectral values from imagery). 

While regression has been used by biometricians to develop many allometric equations [11], this 

technique has only recently been used on a limited basis to estimate key stand metrics such as species 

composition, BAH, and TPH for a forest. Historically, this may have been due to the availability, 

scale, and quality of supplemental information with regard to plots and stands within a forest. Today, 

however, there is a wealth of digital and remotely sensed data (e.g., [12-15]) that can be used to 

increase the precision of estimates of key stand metrics used to inform forest management, while 

simultaneously reducing sampling cost. 

For many years, remotely sensed data have been used to explore our surroundings [16] and 

stratify the terrestrial environment in useful ways [17, 18]. With recent advancements in technology, 

mathematics, statistics, machine learning, and computer science, remotely sensed relationships 

between reflected portions of the electromagnetic spectrum and the earth’s terrestrial surface have 

been documented and exploited to build a wide range of data products depicting terrestrial 

characteristics such as topography [19], land use and cover [20], vegetative indices [21], vegetation 

communities [22, 23], fire severity [24], land cover change [25], and temperature [26]. Spatially 

defining these terrestrial characteristics has elevated the importance of fields such as landscape 

ecology [27] in understanding the impacts of patterns within a forest as they relate to the landscape-

scale functions and services they provide. Within the context of forest management, these concepts 

underlie the necessity of accurately quantifying not only general amounts or resources and the 

condition of the forest as a whole, but spatially depicting spatial variations in forest characteristics 

such as species BAH and TPH with a high degree of fidelity.   

Given the benefits in sampling efficiency, precision of adopting regression techniques to 

estimate forest characteristics, and the wealth of supplemental remotely sensed data that are now 

available, it is surprising that regression has not been fundamentally adopted to quantify metrics 

such as BAH and TPH at the spatial scale of the plot, stand, and forest. Some reasons for this lack of 

adoption stem from practical limitations related to: 1) a lack of familiarity with remotely sensed data, 

2) historically coarse spatial resolution of remotely sensed data, 3) technical challenges associated 

with modeling and processing data, 4) additional cost associated with the acquisition of remotely 

sensed data, and 5) lack of appropriate statistical techniques and associated strong statistical 

relationships among coarse remotely sensed data and traditional forestry metrics.   

Despite some of these obstacles, field measured BAH and TPH have been successfully related to 

fine grained remotely sensed data, predictive models have been used to create surfaces that predict 

BAH and TPH continuously across forests at the spatial resolution of a plot, and those cell estimates 

have been successfully aggregated to stands and forests [28-35]. Moreover, using the spatially explicit 

outputs of this work, in collaboration with others, I have developed techniques to optimize a 

sustained yield across a 202,000 hectare forested landscape [36] and to estimate delivered costs and 

feedstock supply for more than 8 million hectares [37]. These examples demonstrate that the forest 

characteristics derived from linking field plots to remotely sensed data provide the baseline 

characterization of both stands and the forest needed to perform various fine resolution analyses in 

a spatially explicit manner. 

2. Summary of the Chapter Contributions 

While many of the practical issues associated with using remotely sensed data are currently 

being addressed through education and outreach (e.g., [38-40]), the development of new fine-grained 

sensors (e.g., Sentinel II), and new processing techniques and software (e.g., [31, 41, 42]), unanswered 

questions remain related to scale, sample design, modeling approaches, and the utility of derived 

outputs for forest planning and management. In this dissertation, I address aspects of these issues 

from theoretical and applied perspectives using tenets of data and decision science. From a theoretical 

perspective in chapters 2 and 3, I quantify the impact of co-registration errors and describe how to 

minimizing their impacts through spatial aggregation and outline the benefits of sample designs that 

spread and balance sample observations across predictor variable space for various estimation 
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techniques. From an applied perspective, I describe, develop, and quantify the improvements in 

forest composition, BAH, and TPH estimates given a new enhanced image normalization 

methodology, ensemble general additive modeling approach, and various sources of remotely sensed 

data across broad extents for a case study in an area of northwest Florida known as the Apalachicola 

Significant Geographic Area (Figure 1). This area is the focus of an intensive landscape scale, cross-

ownership hydrologic assessment and watershed management plan that includes restoration of 

longleaf pine (Pinus palustris) forests.  

 

Figure 1. Location of Apalachicola Significant Geographic Area (blue polygon). 

One of the primary objectives of this endeavor is to efficiently and effectively inform the natural 

resource management decision-making process by providing fine-grained descriptions of BAH and 

TPH patterns at less expense than traditional inventory approaches. From a research perspective, this 

dissertation helps move the disciplines of remote sensing, geography, forestry, landscape ecology, 

and data science forward by addressing knowledge gaps and solving theoretical and applied 

problems associated with: 1) scale as it relates to grain size of remotely sensed data and the field plot, 

2) co-registration errors between GPS field plot locations and remotely sensed data, 3) plot size, 

layout, sample intensity, and plot allocation across the landscape to meet a defined level of precision, 
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4) the importance of image normalization, and 5) how sources of modeling error can be expressed 

and integrated into spatially explicit outputs and used within the decision-making process.  

This dissertation consists of five chapters: this introductory chapter, three chapters in journal 

article format that are the bulk of the technical work, and a concluding communications chapter that 

synthesizes my findings and expresses how these results can be applied within decision science and 

forest management. Chapters two through four address the following topics: Chapter 2) Mitigating 

the impact of field and image registration errors through spatial aggregation, Chapter 3) Improving 

estimates of natural resources using model-based estimators: impacts of sample design, estimation 

technique, and strengths of association, and Chapter 4) Estimating forest characteristics for longleaf 

pine restoration using normalized fine and medium resolution remotely sensed imagery in Florida 

USA. In addition, this work contributes significantly to coding libraries that improve data collection, 

spatial analysis, and image processing that can be used to collect and store field data and efficiently 

quantify meaningful patterns in remotely sensed data. These libraries are included in supplemental 

materials for each article and can be used by data scientists to improve natural resource estimates 

and process larger amounts of data quickly and efficiently, providing the detailed information need 

to inform natural resource decision making.   
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Mitigating the Impact of Field and Image Registration 

Errors through Spatial Aggregation 

Abstract: Remotely sensed data are commonly used as predictor variables in spatially explicit 

models depicting landscape characteristics of interest (response) across broad extents, at relatively 

fine resolution. To create these models, variables are spatially registered to a known coordinate 

system and used to link responses with predictor variable values. Inherently, this linking process 

introduces measurement error into the response and predictors, which in the latter case causes 

attenuation bias. Through simulations, our findings indicate that the spatial correlation of response 

and predictor variables and their corresponding spatial registration (co-registration) errors can have 

a substantial impact on the bias and accuracy of linear models. Additionally, in this study we 

evaluate spatial aggregation as a mechanism to minimize the impact of co-registration errors, assess 

the impact of subsampling within the extent of sample units, and provide a technique that can be 

used to both determine the extent of an observational unit needed to minimize the impact of co-

registration and quantify the amount of error potentially introduced into predictive models. 

Keywords: attenuation; registration; aggregation; spatial correlation; co-registration 

 

1. Introduction 

Remotely sensed data play an ever-increasing role in characterizing and quantifying landscapes. 

These types of data have been used to study our surroundings [1], stratify the terrestrial environment 

[2, 3], and build a wide range of data products depicting terrestrial characteristics, such as topography 

[4], land use and cover [5], vegetative indices [6], vegetation communities [7, 8], fire severity [9], land 

cover change [10], and temperature [11]. Due to the success and relatively low cost of using remotely 

sensed data to depict landscape patterns and changes in those patterns, fields like landscape ecology 

[12] and concepts like spatial connectivity and the relationships between patterns and processes are 

now at the forefront of many land management and planning endeavors [13–16].  

Ideas such as spatial contiguity, patch size, and patch juxtaposition, and their relationships to 

processes and concepts such as forest management, land use planning, and sustainable forestry have 

in part fueled the desire to precisely and accurately define existing patterns at fine spatial detail, 

across broad extents [17–19]. Coupled with the availability of fine-grained remotely sensed data (< 5 

m) and advancements in computer hardware and software [20], a fine-scaled depiction of the 

landscape can now be produced across broad extents relatively quickly, at a low cost [21–23]. At the 

same time, the fine-grain nature of these types of data provide unique opportunities to relate 

characteristics of the landscapes measured for small spatial extents (response variables) to remotely 

sensed data (predictor variables) collected across vast areas. 

Many have capitalized on this point to develop mathematical, statistical, and spatial models that 

can be used to create surfaces depicting landscape variables of interest using geo-rectified field and 

remotely sensed data [18, 22–24]. Generally, this process can be described as: (1) registering both field 

and remotely sensed data to a known coordinate system, (2) using the spatial coordinates of the field 

and remotely sensed data to link measured values in the field to remotely sensed data, (3) building a 

model for the linked variable as a function of variables derived from the remotely sensed data, and 

(4) applying the model to remotely sensed surfaces to create a continuous surface of estimated 

characteristics. While straightforward, the linking process is subject to error (co-registration error) 

owing to the imperfectly identified spatial coordinates of the response and predictors, and this can 

have a negative impact on the accuracy of the model estimates (i.e., increased bias and imprecision). 

With regression models, predictor variables (Xi) are assumed to be measured without error. Response 

variables (Yi) can be measured with error, and this is accounted for within the modeling process, 
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often by specifying an additive random discrepancy, typically denoted as 𝜀𝑖 [25]. Take for example a 

simple linear model equation: 

𝑌𝑖 =  𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖, (1) 

where 𝛽0 and 𝛽1 correspond to the intercept and slope, and 𝜀𝑖 corresponds to model error which 

includes any potential error associated with measuring the response variable. When co-registration 

errors occur, this amounts to the introduction of error into the ability to measure Xi (e.g., spectral 

values) coincident with Yi (e.g., basal area per hectare). Measurement error in Xi is not typically 

accounted for in regression models and will cause attenuation bias [25, 26], which manifests in 

estimates trending towards the global mean of the response variable. 

To circumvent the impacts of co-registration errors, analysts have employed a wide variety of 

solutions, ranging from rectifying images in a relative manner [27] to ignoring these errors and 

assuming them to be of little importance in predictions [28]. Regardless of the precision of measuring 

the true or relative surface location, spatial error will always be part of the rectification process and 

will have an impact on the underlying predictive model. 

Within remote sensing literature, the impact of co-registration error has been recognized, 

especially for Light Detection and Ranging (lidar) data [29–32], but typically is not directly quantified. 

Often studies cite co-registration as an additional source of error that should be minimized, but fall 

short in describing the effects of those errors or providing suggestions to minimize the influence of 

those errors on predicted values. In this study, we address this knowledge gap by developing 

techniques to quantify this source of error and mitigate co-registration errors in applied work. 

Through simulation using Landsat 8 and National Agriculture Imaging Program (NAIP) imagery 

and images created with specific spatial correlation, based on Landsat 8 and NAIP images, we 

investigate co-registration errors and their impacts on the modeling process, and test the hypothesis 

that co-registration errors can be mitigated through spatial aggregation. Additionally, given 

estimates of global spatial continuity and co-registration errors, we provide recommendations on the 

size and layout of field observations with respect to the grain size of remotely-sensed data that will 

help to minimize the impact of co-registration errors. 

2. Materials and Methods 

2.1. Theoretical Background  

The impact of co-registration errors on predictive models should be related to four primary 

factors: (1) the horizontal misalignment between response and predictor variables, (2) the spatial 

extent of the sample unit, (3) the spatial correlation of predictor and response variables, and (4) the 

strength and form of the relationship between response and predictor variables. Prior to performing 

a study, researchers typically do not know the spatial correlation of response variables, nor the 

strength or form of the relationship between response and predictor variables. To address this lack 

of information in our study, remove issues of measurement error, and focus our study solely on the 

impacts of co-registration error, we constrain our predictor surfaces to have a one-to-one relationship 

with our response variables. In this scenario, the Y and X surfaces, in the absence of co-registration 

errors, should exhibit a perfect linear relationship (i.e., an intercept of 0, a slope of 1, and a coefficient 

of determination of 1). Also, where the relationship between X and Y is linear, aggregated values (i.e., 

averages over multiple adjacent pixels) will also exhibit the same one-to-one relationship as non-

aggregated values. Given this design, deviations from a one-to-one relationship can be solely 

attributed to co-registration errors.  
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Figure 1. Graphical depiction of co-registration error. The location of a sample unit determined by a 

global positioning system (GPS) (Y) and its corresponding location found within an image (X) 

represent the same extents located on surface of the earth, but due to co-registration errors, X and Y 

only share a portion of the same area in projected space (diagonal black lines). 

Additionally, assuming that co-registration errors manifest as random noise within the 

regression models, we anticipate that the proportion of variation in Y explained by X (R2) should 

follow the squared geometric relationship between the sample unit size (As) and the area of overlap 

(Ao) between the X and Y units, when the X values are distributed independently at random over 

space (Figure 1, Appendix A). This can be expressed as follows: 

𝑅2 =  (
𝐴𝑜

𝐴𝑠

)
2

   (2) 

In concept, each sample unit’s Y values are related to a combination of the corresponding X 

values now attached to an area only partially overlapping with the sample unit (cross-hatched area 

in Figure 1), as well as to X values attached to distinct spatial areas that have been falsely aligned 

with the sample unit. The latter occurs only because co-registration errors incorrectly identify a 

spatial match. If the X values are distributed independently at random over space, then on average 

the proportion of information on Y that can be explained by X should correspond to the average 

amount of area shared between response and predictor sample units, given the registration errors. 

Given this assumption, deviation from this condition in our simulations can be attributed to the 

spatial correlation within a landscape, and provide a rationale for using measures like global Moran’s 

index (GMI) [33] as predictors, to estimate the proportion of modeling error contributed by co-

registration errors.  

2.2. Overview 

All analyses within this study were performed using R [34]. Images created with specified 

amounts of spatial correlation (virtual images) were built using the raster [35] and gstat [36, 37] 

packages. Our simulations use one Landsat 8 [38] and five NAIP [39] images as baseline datasets 

taken from varying landscapes (Figure 2, Table 1), to produce nine virtual Landsat images and ten 

virtual NAIP images, respectively. To determine the amount of spatial correlation associated with 

the Landsat and NAIP baseline images, a uniform random selection of 20 locations was used to 

extract raster cell values within a 200 by 200 cell window, and to calculate empirical omnidirectional 

covariogram statistics [40].  
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Figure 2. Base images used in simulations. Zoomed-in areas illustrate the extent for which images 

were subset and summarized to estimate mean digital number, sill, nugget, and range values. 

Table 1. Average digital number (MDN), sill, nugget, and global Moran’s index (GMI) and maximum 

range (in number of cells) values for Landsat and National Agriculture Imaging Program (NAIP) 

imagery. Averages and maximum values were based on all bands within an image. 

Name Label MDN Sill Range Nugget GMI 

Landsat 8 Coast Coast 7,478.1 552,790.7 40.5 180,321.3 0.93 

NAIP City City 140.2 1,630.3 30.1 348.7 0.93 

NAIP Agriculture Ag 115.7 449.3 46.0 161.0 0.97 

NAIP Forest Forest 86.3 525.0 31.2 187.4 0.94 

NAIP Forest & Agriculture Forest & Ag 119.0 593.9 41.9 78.7 0.97 

NAIP Forest & Water Water 88.9 548.3 33.8 113.9 0.96 

Cell values within each 200 by 200 cell window were summarized to estimate a mean digital 

number (DN) value, as well as sill, nugget, and range values for empirical omnidirectional 

covariograms. Mean DN, sill, and nugget statistics from each band were then averaged across image 

sources and used as inputs for creating Landsat- and NAIP-based virtual surfaces. To mimic different 

degrees of spatial correlation, range values were allowed to vary from 0.5 cells (completely random 

image) to the maximum range found among bands within each image source. Together, mean DN, 

sill, nugget, and ranges with a spherical spatial model were used to create virtual NAIP and Landsat 

surfaces (36, 37). A complete listing of the code used to estimate spectral and spatial statistics and 

create virtual Landsat and NAIP images can be found in Appendix B (general libraries). 
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After creating the single band virtual image, two simulated sampling experiments were 

conducted, using actual and virtual Landsat 8 and NAIP images to evaluate the impacts of co-

registration errors, spatial aggregation, sampling intensity, and spatial correlation on model 

prediction. The first set of simulations (stage I) were used to quantify the impacts of spatial 

aggregation of individual cells into multi-cell sampling units with regards to model prediction given 

co-registration error and defined spatial correlations (Figure 3). To account for potential logistical 

constraints of sampling large areas in the field, a second simulation was performed (stage II) that 

explored the impacts of alternative subsampling configurations corresponding to varying levels of 

measurement intensity and sample unit extent.  

 

Figure 3. Visualization of Stage I simulations. A total of 200 sample locations (red points) were used 

to extract and calculate mean values from an image for different spatial extents around a point before 

and after a spatial shift was introduced (yellow and blue squares). Values were then regressed against 

one another to determine the impact of co-registration errors. This process was performed for each 

image used in the study. 

Due to computational limitations associated with calculating range values for the extent of 

Landsat and NAIP imagery, we explored using GMI as a surrogate for range. GMI, while different 

than range, quantifies spatial correlation as an index value bounded between −1 (negative correlation) 

and 1 (positive correlation), with a value of zero corresponding to no spatial correlation (completely 

random image). For each band within each image of our simulations, GMI was calculated as follows: 

GMI =
𝑁

𝑊

∑ ∑ 𝑤𝑖𝑗(𝑥𝑖 − 𝑥̅)𝑗𝑖 (𝑥𝑗 − 𝑥̅)

∑ (𝑥𝑖 − 𝑥̅)2
𝑖

  ,   (3) 

with x equal to values within a raster surface indexed by i and j rows and columns, wij representing 

a weighted spatial matrix (rook’s case), N being the number of cells, and W being the sum of all 

weights. The remainder of this section describes in detail the design and implementation of each 

simulation stage within our study and model fitting used to estimate the impact of co-registration 

errors. 
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2.3. Stage I Simulations 

Co-registration errors were mimicked based on published NAIP (6 m) [39], Landsat 8 (37 m) 

[41], and global positioning system (GPS; 7 m) [42] horizontal errors. For each image, 200 sample 

locations (L1) were selected spatially at random and used to extract DN values for sequentially 

increasing spatial extents, with side lengths ranging from 1–100 cells (response). Mean cell DN values 

were calculated and recorded for the extent of the sample unit size at each L1 location. L1 locations 

were then randomly shifted based on co-registration errors between GPS locations and imagery to 

produce L2 locations. Random shifts were implemented to the nearest cell by adding random 

distances and azimuths to easting and northing coordinates, based on a normal distribution with 

mean 0 and standard deviation expressed as the root mean squared error (RMSE) for each source of 

spatial error. Because Landsat 8 absolute geodetic accuracy is reported at the 90% confidence level, 

while NAIP imagery is reported at the 95% confidence level, we adjusted Landsat 8 horizontal error 

to the 95% confidence level. For Landsat 8, this transition amounts to an absolute error of 48 m (1.6 

cells). The source code used to perform spatial shifts (function shiftXY), image value extractions 

(function extractRC), and mean calculations (function getMeanBlockValue) can be found in 

Appendix B (general libraries). 

L2 locations follow the same DN extraction and summarization process as L1 locations 

(predictor). Using response and predictor variables for each image, band, and sample unit size, we 

performed a simple linear regression using ordinary least squares and recorded RMSE (measured in 

units of mean DN value), as well as intercept, slope, and coefficient of determination (R2) fit statistics. 

To minimize the effects of sampling variation, this procedure was performed 10 times, and regression 

results were averaged across all iterations. Additionally, for each image and band GMI was 

calculated. Regression fit statistics and coefficients were then compared across sample unit sizes and 

spatial correlation to identify and quantify the impact of co-registration errors and determine an array 

of suitable field sampling extents, to evaluate measurement intensity for Stage II of the simulations. 

 

Figure 4. Subsampling layout and subsampling intensity for varying sample unit sizes. Yellow square 

boxes define the spatial extent sampled within an image, while the shifted blue boxes illustrate the 

impact of co-registration errors and define a subsampling layout and proportion of area measured 

within each yellow extent. Large brown cubes denote iterations for potential sample unit sizes. 
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2.4. Stage II Simulations 

Preferably, when relating remotely sensed data to field samples, the entire area within a sample 

unit would be measured on the ground. However, due to practical limitations related to collecting 

field data for sample units with large spatial extents, this is often not economically feasible. This 

situation can lead to instances when the only practical way to estimate a mean for a spatial extent is 

to use subsampling. To quantify the impact of six common subsampling (subplots) layouts and 

various subsampling intensities (area measured) within a given sample unit size (plot), we 

investigated multiple plot/subplot layouts. A depiction of plot extents, subplot layouts, and 

subsampling intensities are illustrated in Figure 4. 

Identical to Stage I simulations, Stage II simulations mimic registration errors for 200 

observations and extract cell values surrounding each plot location for each sample unit size. For the 

response variable, the mean values for each sample unit size are calculated based on the spatial extent 

of one of six subplot layouts, and subsampling intensities ranging from 0.05 to 0.95 of the plot extent, 

by increments of 0.05. Subplot layouts include one subplot located in the center of the plot (One), four 

subplots located systematically in the corners of the plot (Sys 4), four randomly located subplots 

within the plot (Rnd4), four subplots oriented in a similar fashion as the U.S. Forest Service Forest 

Inventory Analysis (FIA) program plot protocol (FIA 4)[43], five subplots systematically placed 

within the plot extent (Sys 5), and nine plots systematically placed within the subplot (Sys 9). For 

predictor variables, mean values were calculated using all cell values within the extent of the plot 

(Pall), and for only the areas within the subplots (Psub). Regression fit statistics and coefficients were 

then compared with results from 100% of the sample unit size measured in stage I. 

2.5. Modelling the Impacts of Co-Registration Error  

After performing each simulation and recording error and fit statistics for each image, we 

developed a suite of models to relate those statistics to predictors measuring spatial correlation in the 

images (GMI) and the magnitude of spatial co-registration errors (expected proportion of area 

overlapped between field plots and corresponding image locations). While the overlap between two 

rectangles can be calculated if both the distance and direction of co-registration errors are known, the 

direction of co-registration errors is seldom calculated or reported. Therefore, within our iterations 

we estimated the expected proportion of overlap (PO) for each sample unit size, given the offsets 

used to simulate co-registration errors. 

For virtual images with no spatial correlation, we hypothesized a one-to-one relationship 

between PO2 and the proportion of variation explained (R2). However, as spatial correlation increases 

within images, we anticipate that the ratio of R2 to PO2 will be greater than one and will interact with 

spatial correlation metrics. Additionally, we recognize that PO2 would be difficult to calculate in 

practice given commonly reported horizontal rectifications. Therefore, when modeling the impact of 

co-registration errors on R2 in the presence of spatial correlation, we used only sample unit size and 

GMI as predictors and beta regression with a logit link [44]. Similar in concept to logistic regression, 

beta regression was developed to work with observations between zero and one, and is typically 

used to characterize natural rates or proportions on a continuous scale. Using a logit link, our 

proposed model takes the following form: 

𝑙𝑛 (
𝑅2

1 − 𝑅2
) = 𝛽0 + 𝛽1𝑓(|𝑠𝑎𝑚𝑙𝑝𝑒 𝑢𝑛𝑖𝑡|) + 𝐵2𝑔(𝐺𝑀𝐼) + 𝛽3𝑓(|𝑠𝑎𝑚𝑝𝑙𝑒𝑢𝑛𝑖𝑡|) ∗ 𝑔(𝐺𝑀𝐼) (4) 

where f() and g() are known transformations of the sample unit size and image GMI, respectively, 

and the βk are parameters estimated from the data. Transformations of predictor variables were 

determined based on graphical analyses. While we anticipated needing sample unit size, GMI, and 

their interaction to estimate R2, we also evaluated nested models using only sample unit size and 

GMI. All beta regression models were compared using Akaike’s information criterion (AIC)[45, 46].  
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3. Results 

3.1. Datasets 

Estimated mean DN, sill, and nugget and maximum range values varied by image (Table 1). 

While most of these characteristics varied substantially by data source due to pixel depth (Landsat 

16-bit pixel depth versus NAIP 8-bit pixel depth), range values, measured in cells, were quite similar. 

Using the average DN, sill, and nugget and maximum range values of each data source, we created 

nine virtual Landsat images and ten virtual NAIP images of varying spatial correlation (Figure 5). It 

should be noted that virtual image GMI values were less than actual image GMI values, suggesting 

that there was less positive spatial correlation in the virtual images than in the actual images. 

However, the range of simulated autocorrelations produced virtual images with a variety of spatial 

structures and aggregated patterns that closely resembled patterns found within homogenous 

patches of actual images (Figure 2 zoomed-in examples and Figure 5). Generally, the boundaries 

between patches representing different DN values within the virtual images were not as sharp when 

compared to the base images. However, the patterns created in the virtual images provide an 

objective way to evaluate varying levels of spatial correlation. 

 

Figure 5. Subset of images created from average digital number (DN), sill, and nugget and maximum 

range values derived from NAIP and Landsat 8 imagery. 

3.2. Stage I 

Comparisons in stage I indicate that increasing the spatial footprint of a sample unit can mitigate 

the effects of co-registration errors on predictive models. On average, horizontal shifts between L1 

and L2 locations were 1.6 and 7.8 cells for Landsat 8- and NAIP-based images, respectively. For all 

images and bands analyzed, the extent of the sample unit was strongly related to the magnitude of 

deviation from the anticipated one-to-one regression relationship (intercept, slope, and R2 equal to 0, 

1, and 1, respectively). Linear models derived from raster datasets with large spatial correlation, in 

terms of range or GMI, produced slope and intercept estimates closer to 1 and 0, respectively (less 
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attenuation), than raster datasets, with less spatial correlation for both Landsat- and NAIP-based 

datasets (Figure 6 and 7). While larger sample unit sizes reduced attenuation bias, for spatial 

correlation ranges above 30 cells, sample unit sizes greater than approximately 9 and 40 cells for 

Landsat- and NAIP-based images, respectively, appear to produce only marginal reductions in 

parameter bias or improvements in R2. For NAIP-based imagery, this suggests that a field plot with 

an extent as large as 40 m by 40 m might be required to mitigate the effects of co-registration errors 

between NAIP imagery and GPS locations. Similarly, for Landsat-based images a field plot with an 

extent as large as 270 m by 270 m may be required to mitigate model error introduced by co-

registration error.  

 

Figure 6. Stage I Virtual Landsat image regression statistics for varying sample unit sizes and spatial 

correlation (Range), given an average image registration error of 1.6 cells and an average GPS 

navigational unit error of 0.23 cells. Actual Landsat image regression statistics are shown in Appendix 

C (Figure A1). 
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Figure 7. Stage I virtual NAIP image regression statistics for varying sample unit sizes and spatial 

correlation (Range), given average raster and GPS registration errors of 6 and 7 cells respectively. 

Actual NAIP image regression statistics are shown in Appendix C (Figure A2). 

3.3. Stage II 

Comparisons in stage II had similar trends as found in stage I, and verify that subsampling 

intensity and layout also impacted the amount of variation explained by models in the Pall 

subsampling scenario. For sample unit sizes between 20 and 50 cells and 5 and 20 cells for NAIP- and 

Landsat-based imagery, respectively, larger proportions of the area subsampled within a sample unit 

consistently explained more variation within the data, and produced smaller RMSE across all levels 

of spatial correlation and data sources. After the proportion of area subsampled reached 

approximately 80% of the plot extent (Psub), R2 appeared to differ only marginally relative to the R2 

associated with Pall (Figure 8). This was also the case for RMSE. Across all subsampling intensities 

and sample unit sizes, the worst-performing subplot layouts were Rnd 4, FIA 4, and Sys 5. Subplot 

layouts One, Sys 4, and Sys 9 produced similar results, especially when the proportion of area 

measured within the plot extent was greater than 75%. As expected, Psub generally produced better 

results than Pall, given that the response and predictor variables shared the same spatial 

configurations. However, there was little difference between Psub and Pall subsampling techniques 

when greater than 80% of the plot extent was measured. As one might expect, smaller subsampling 

intensities (< 20% of the sample unit extent) substantially reduce R2 in our linear models. In some 

cases, when subsampling intensity and spatial correlation was small, the reduction in R2, compared 

to measuring all the area within a plot extent, was greater than 60%. However, for actual Landsat 8 

and NAIP images, which have relatively high levels of spatial correlation, the reduction in variation 

ranged from approximately 0.4% to 30%, depending on the data source, subsampling intensity, 

spatial correlation, and co-registration errors (Appendix C, Figures A3, A4). Similar to stage I 

simulations, increased amounts of spatial correlation generally dampened the negative effects of co-

registration errors in stage II simulations. Additionally, this same dampening effect carried over to 

subsampling intensities when estimating means for all cells within a sample unit extent of a predictor 

variable. 
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Figure 8. Reduction in the proportion of variation explained (R2) for Landsat 8 and NAIP virtual images by 

subsample intensity (Proportion of Extent), sample unit size (in cells), and spatial correlation (Range) using 

SYS 4 and Pall subsampling layout. Figures A3 and A4 in Appendix C show actual Landsat 8 and NAIP 

image reductions. 

Table 2. Linear regression statistics for 19 independently random images, given the average 

proportion of overlap (PO) determined by sample unit size and simulated co-registration errors. 

Model Equation Slope R2 RSE F-stat P-value 

Landsat 8 R2  =  0 + PO2 1.008 0.9984 0.03456 11440 < 0.001 

NAIP R2  =  0 + PO2 1.035* 0.9983 0.02364 10330 < 0.001 
* Statistically different than one at α = 0.01. 

3.4. Model Fitting 

Regressed mean DN values for L1 and L2 locations in both simulations indicate that co-

registration errors can have substantial impacts on model fit, and can bias DN estimates. Globally, 

across the extent of each image, estimates of mean DN were necessarily unbiased. However, local 

estimates tended to over- or under-estimate DN values that were respectively smaller or larger than 

the mean (attenuation). The degree of attenuation in our models, identified by deviations from 

theoretical intercept and slope, was strongly related to both the spatial extent of an observation 

(sample unit size) and the spatial correlation of predictor variables (Figure 6 and 7). 

For completely independent virtual images, the amounts of variation explained in our linear 

models were closely related to PO2 (Table 2, Figure 9). For both Landsat 8- and NAIP-based imagery 

with average co-registration errors of 1.6 and 7.8 cells, respectively, R2 and PO2 closely followed a 

one-to-one ratio. For images with spatial correlation, exploratory analysis revealed that sample unit 

size and GMI did not appear to be linearly related to the logit of R2. However, the natural log of 

sample unit size (LSS) and the exponentiation of GMI (EGMI) did appear to be linearly related to R2. 

Therefore, we included LSS and EGMI in our suite of models for comparison (Table 3). Our top fitting 

models were statistically significant (p-value < 0.001), and included LSS, GMI, and the interaction 
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between LSS and GMI for both Landsat 8- and NAIP-based images (Table 4). RMSE values for top-

fitting Landsat 8 and NAIP models were 0.019 and 0.089, respectively (expressed on the scale of R2). 

Regression diagnostics of our top-fitting models are shown in Appendix A, Figure A5. 

Untransformed, observed versus predicted R2 followed a one-to-one relationship for both Landsat- 

and NAIP-based imagery (Figure 10), and the latter was constrained to fall between 0 and 1, with 

more variation occurring within the middle portion of the observed domain, as expected.  

Table 3. Suite of potential models and their associated AIC and ΔAIC values. Interaction term 

denoted by * specifies a full interaction model. 

Model Rank Source Predictors AIC ΔAIC 

1 6 Landsat 8 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒 −1723.823 −651.018 

2 4 Landsat 8 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒 + 𝐺𝑀𝐼 −1920.781 −454.06 

3 3 Landsat 8 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒 ∗ 𝐺𝑀𝐼 −1938.580 −436.261 

4 5 Landsat 8 ln (𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒) −1870.267 −504.574 

5 2 Landsat 8 ln(𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒) + 𝑒𝐺𝑀𝐼 −2368.824 −6.017 

6 1 Landsat 8 ln(𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒) ∗ 𝑒𝐺𝑀𝐼 −2374.841 0 

1 6 NAIP 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒 −1086.606 −681.595 

2 5 NAIP 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒 + 𝐺𝑀𝐼  −1469.469 −298.732 

3 3 NAIP 𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒 ∗ 𝐺𝑀𝐼 −1494.508 −273.693 

4 4 NAIP ln (𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒) −1193.989 −574.212 

5 2 NAIP ln(𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒) + 𝑒𝐺𝑀𝐼  −1728.674 −39.527 

6 1 NAIP ln(𝑠𝑎𝑚𝑝𝑙𝑒 𝑢𝑛𝑖𝑡 𝑠𝑖𝑧𝑒) ∗ 𝑒𝐺𝑀𝐼  −1768.201 0 

 

Figure 9. Scatter plot of proportion of variation explained (R2) versus the squared proportion of 

overlap between L1 and L2 locations, given various sample unit sizes, independent random surfaces, 

and Landsat 8 and NAIP horizontal registration errors. The gray diagonal line is a one-to-one line, for 

the purpose of comparison. 

Table 4. Beta regression coefficients and statistics for top fitting Landsat 8 and NAIP based images 

given natural log sample unit size (LSS), exponent of global Moran’s index (EGMI), interaction 

between LSS and EGMI, and simulated average co-registration errors. 

Model N Intercept+ LSS+ EGIM+ EGMI * LSS+ Pseudo DR2 [45] P-value 

Landsat 8 304 −3.743 1.089 2.423 −0.085 0.918 < 0.001 

NAIP 570 −9.364 1.883 3.481 −0.419 0.8255 < 0.001 

+ Statistically different from zero at α = 0.01. 
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Figure 10. Observed versus predicted proportion of variance explained (R2) for co-registration errors 

associated with Landsat 8 and NAIP imagery and virtual imagery, given various sample unit sizes, 

measures of spatial correlation, and top-fitting beta regression models. The gray diagonal line is a 

one-to-one reference line. 

4. Discussion 

Through our simulations, we have documented that spatial co-registration errors produce 

attenuation bias in linear models (Figures 6 and 7). For studies that relate field data located using 

GPS to geo- or ortho-rectified remotely sensed data, this bias will manifest in regression coefficients 

biased toward 0 and regression estimates trending towards the sampled mean value of the variable 

of interest (Appendix C, Table A1). While every attempt to minimize the amount of co-registration 

error should be taken, technical and financial limitations often make it impractical to completely 

remove this source of error. Due to these limitations, we explored the impacts of spatial aggregation 

of observational units on model performance when predictor variables have spatial co-registration 

errors. 

Our findings demonstrate that increasing the spatial extent of sample units can help to reduce 

the impacts of imperfect co-registration. This result further verifies that larger field plots can mitigate 

the effects of co-registration error found by others [29, 30, 47, 48]. However, when choosing the extent 

of a field sample unit, one must take into consideration practical issues associated with the costs of 

implementation and measurement (i.e., large plots cost more to measure), as well as the fact that large 

field sampling units can have a smoothing effect on spatial variability [29]. Moreover, subsampling 

within the extent of a field plot, regardless of the subplot layout, introduces additional variability 

into the predictive models, and should be used sparingly when spatially relating field measurements 

to remotely sensed information.  

Effectively linking remotely sensed data to field plot data is a powerful tool for landscape 

modeling and requires thoughtful design to minimize the negative impacts of co-registration errors. 

Given the sample unit sizes, co-registration errors, and spatial correlation we investigated, we 

recommend selecting a field plot extent large enough to substantially reduce bias in linear regression, 

while also keeping the extent of the field plot as small as possible to retain spatial detail. In the case 

of NAIP imagery, this recommendation would correspond to a field plot with an area between 400 

m2 and 1,600 m2. For Landsat 8 imagery, this recommendation corresponds to a field plot with an 

area between 8,100 m2 and 72,900 m2. Fortunately, most NAIP and Landsat 8 images have a large 

degree of spatial correlation, suggesting that the lower end of these recommendations may suffice in 

mitigating the impacts of co-registration errors. For other sources of remotely sensed information that 

have different co-registration errors, simulations similar to those presented in this study should be 

completed to help determine suitable field plot extents and sampling intensities.  
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If subplots are used to estimate mean values within the extent of a sample unit, it is important 

that the subplot layout covers as much of the area within the extent of the sample unit as possible. 

For NAIP imagery, we recommend measuring 75% or more of the sample unit area to minimize the 

negative effects of subsampling. When it is too costly to measure 75% of the area within a sample 

unit, a tradeoff between cost and precision must be made. In this situation, collecting more sample 

units with less than 75% of the subsample area measured can help to offset the losses in precision 

associated with subsampling (Figure 9). Additionally, when subsampling is used, layouts should be 

chosen such that there is no overlap among subplots, such as layout Sys 4 from this study (e.g., Figure 

11). 

The actual extent of a sampling unit should depend on the amount of co-registration error, the 

spatial correlation within the imagery, and the amount of model error one is willing to accept, and 

the resources available for measuring plots in the field. For readily available Landsat and NAIP 

imagery, their reported horizontal accuracies, and their estimated spatial correlations, we can 

estimate the co-registration error-induced reduction in variation explained by linear regression for 

various sample unit sizes (Equation 4 and Table 4). From these estimates, one can select a sample unit 

extent that both reduces estimation bias and quantifies error in predictor variables due to co-

registration. For example, if a project was to use NAIP imagery with a sample unit size of 20 cells 

(field plot extent of 400 m2) and an estimated GMI of 0.92, then one would expect the logit of R2 to be 

approximately 1.744, and the loss in predictive ability associated with co-registration errors to be 1−R2 

= 0.149.  

 

Figure 11. Example of a recommended field plot size and layout for NAIP imagery. 

While Equation 4 and the coefficients from Table 4 can be used to help guide the size of a field 

plot needed to mitigate the negative impacts of co-registration (Appendix C, Table A2), they should 

be interpreted as a best-case scenario. Specifically, our simulations were developed under the premise 

that there was a perfect one-to-one relationship between response and predictor variables. In many 

applications this will not be the case, and co-registration errors will be coupled with model error. To 

decouple co-registration errors from model errors, model coefficients can be dis-attenuated [26, 49]. 

Within that context, simulations similar to the ones performed in our study, which use a random 

sample of the predictor variables and regress those values against shifted locations, can be used to 

estimate a ratio adjustment factor for model coefficients, as described by Forest and Thompson [49]. 

Appendix B (general libraries) provides examples of R coding that can be used to simulate co-

registration errors and determine ratio adjustment factors.  
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Fortunately, most remotely-sensed images have relatively high levels of spatial correlation, 

which in turn dampens the impacts of co-registration errors. In our study, we evaluated the effects 

of co-registration on model error for levels of spatial correlation that spanned independent random 

landscapes, to those commonly found in terrestrial environments. For all actual landscapes used in 

our study, the minimum spatial correlation found had a GMI value of 0.93. Interestingly, virtual 

images with ranges comparable to actual image ranges had corresponding GMI values that were 

substantially less than those found in the actual images. This is likely due to the dramatic transitions 

found between land use and cover types that can occur within actual landscapes (e.g., a forest 

adjacent to agricultural lands). This further suggests that natural landscapes have more localized 

spatial correlation than our virtual landscapes, and that edges between land use and cover types 

constitute a substantial amount of the overall area within an image. Because these edge areas can 

make up a substantial component of the landscape, it is important that they are included in future 

investigations that use simulated landscapes, and more importantly, model training. Mapping 

endeavors that omit these transition areas from training sets do so at the cost of extrapolating model 

results to potentially large portions of an image. 

5. Conclusions 

In this study, we looked at the impacts of co-registration errors on model prediction. We found 

that increasing field plot size helps to mitigate the negative impacts of co-registration errors by 

reducing attenuation bias. Additionally, we identified that increased positive spatial correlation 

within imagery reduces the negative impacts of co-registration for a given sample unit size. Finally, 

we presented a simulation methodology that can be easily applied to remotely sensed data that both 

quantifies the impact of co-registration on model prediction and can be used to estimate 

measurement error in predictor variables. Using our plot size recommendation and components of 

the simulation techniques described, estimation bias can be mitigated, which in turn should help 

analysts and managers to precisely define the complex spatial relationships needed to promote more 

effective, spatially informed decision making. 

Appendix A 

The relationship between the proportion of overlapping area between two square sampling units offset by 

a specified direction and distance (PO) and Pearson’s correlation. 

 

Let X(p) be the DN value of pixel p in a random raster and 𝑋(𝑝) =  𝜇 + 𝑒(𝑝) where e(p) are offsets 

from the mean DN μ with expected value 0 and variance 𝜎𝑒
2. Then let X(b) be the mean DN value of 

a block b of pixels. Denote the size (in pixels) of b by |b|. Then 

𝑋(𝑏) = |𝑏|−1 ∑ 𝑋(𝑝) =  𝜇 + |𝑏|−1

𝑝𝜖𝑏

∑ 𝑒(𝑝)

𝑝𝜖𝑏

 (5) 

For blocks selected uniformly at random, the expected value of X(b) is μ and its variance is |b|-1 

𝜎𝑒
2 provided that e(p) are uncorrelated (but var[X(b)] > |b|-1 𝜎𝑒

2 if there is positive spatial 

autocorrelation among the e(p)). The covariance between any X(b) and X(b’) is  

𝑐𝑜𝑣[𝑋(𝑏), 𝑋(𝑏′)] = 𝐸[𝑒(𝑏)𝑒(𝑏′)]  (6) 

=
1

|𝑏|2 𝐸 [(∑ 𝑒(𝑝)

𝑝𝜖𝑏

) (∑ 𝑒(𝑝)

𝑝𝜖𝑏′

)]   (7) 

≥
1

|𝑏|2 𝐸 [( ∑ 𝑒(𝑝)2

𝑝𝜖(𝑏∩𝑏′)

)] =
|𝑏 ∩ 𝑏′|

|𝑏|2 𝜎𝑒  
2  (8) 

with equality holding only if the e(p) are spatially uncorrelated. 
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Co-registration error can be simulated by shifting the original raster X by some random amount, 

resulting in a shifted raster Y where Y(p) = X(p’) and thus Y(b) = X(b’). If the e(p) are spatially 

uncorrelated, then  

𝑐𝑜𝑣[𝑋(𝑏), 𝑋(𝑏′)] = 𝑐𝑜𝑣[𝑋(𝑏′), 𝑋(𝑏)] =
|𝑏∩𝑏′|

|𝑏|2
𝜎𝑒

2. (9) 

Furthermore, 

𝑐𝑜𝑟𝑟[𝑌(𝑏), 𝑋(𝑏)] =  
𝑐𝑜𝑣[𝑋(𝑏′), 𝑋(𝑏)]

√𝑣𝑎𝑟[𝑋(𝑏′)]𝑣𝑎𝑟[𝑋(𝑏)]
=

|𝑏 ∩ 𝑏′||𝑏|−2𝜎𝑒
2

|𝑏|−1𝜎𝑒
2 =  

|𝑏 ∩ 𝑏′|

|𝑏|
 (10) 

Where the last quantity is the proportion of the original block b that is overlapped by the shifted block b’. As a 

result, the coefficient of determination (R2) obtained by regressing Y(b) on X(b) will be directly related to the 

proportion of block overlap: 

𝑅2 = (𝑐𝑜𝑟𝑟[𝑌(𝑏), 𝑋(𝑏)])2 = (
|𝑏 ∩ 𝑏′|

|𝑏|
)

2

 (11) 

 

Appendix B 

See R Libraries coding section (pp. 76-144).  

Appendix C 

 

Figure A1. Stage I Landsat image regression statistics for varying bands and sample unit size lengths 

given an average image registration error of 1.6 cells and an average GPS navigational unit error of 

0.23 cells. 
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Figure A2. Stage I NAIP image regression statistics for varying sample unit sizes and spectral bands 

given average raster and GPS registration errors of 6 and 7 cells respectively. 

 

Figure A3. Reduction in the proportion of variation explained (R2) for Landsat 8 image by subsample 

intensity (Proportion of Extent), sample unit size, and spectral band using SYS 4 and Pall subsampling 

layout.  
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Figure A4. Reduction in the proportion of variation explained (R2) for NAIP images by subsample 

intensity (Proportion of Extent), sample unit size and spectral band using SYS 4 and Pall subsampling 

layout. 

 

Figure A5. Scatter plot of standardized Residuals vs linear predictors (Logit) given block size for beta 

regression Landsat 8 and NAIP based models. 
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Table A1. Examples of remote sensing applications impacted by co-registration errors and the impact 

on model fit and estimates. 

Application Data Source  Impact on Model Fit and Estimates 

Mapping forest 

characteristics using 

models derived from 

field data and 

remotely sensed data. 

Landsat imagery 

Attenuated estimates and reduction in model fit. 

The amount depends on the spatial correlation 

within the imagery, the co-registration error 

between imagery and field data, and the spatial 

extent of the field data observations (Table A2).   

NAIP imagery 

Attenuated estimates and reduction in model fit. 

The amount depends on the spatial correlation 

within the imagery, the co-registration error 

between imagery and field data, and the spatial 

extent of the field data observations (Table A2).   

Other remotely sensed 

data. 

Attenuated estimates and reduction in model fit. 

The amount depends on the spatial correlation 

within the imagery, the co-registration error 

between imagery and field data, and the spatial 

extent of the field data observations. 

Change detection 

derived from multiple 

images of a given area. 

Satellite and aerial based 

imagery 
Attenuated estimates and reduction in model fit. 

Image radiometric 

normalization 

Satellite and aerial based 

imagery 
Attenuated estimates and reduction in model fit. 

Image segmentation Attenuated outputs 
Less variation in estimated values potentially 

reducing the accuracy of the segmentation process. 

Practitioner use of 

attenuated spatial data 

products derived from 

field plots and 

remotely sensed 

imagery. 

Attenuated outputs 

Mean estimates derived from the entire surface will 

not be bias. Subsets of the derived surface will be 

biased and will either over estimate (values < mean) 

or under estimate (values > mean) the true values.  

Table A2. Estimated reduction in R2 (∆R2) for Landsat 8 and NAIP imagery given equation 4, sample 

unit size, GMI value, and published horizontal image and GPS errors. 

Source 
Sample Unit Size 

(Cells Wide) 
GMI ∆R2 

Landsat 8 3 0.8 0.067 

Landsat 8 5 0.8 0.043 

Landsat 8 9 0.8 0.026 

Landsat 8 3 0.9 0.040 

Landsat 8 5 0.9 0.026 

Landsat 8 9 0.9 0.016 

Landsat 8 3 0.95 0.030 

Landsat 8 5 0.95 0.019 

Landsat 8 9 0.95 0.012 

NAIP 20 0.8 0.226 

NAIP 30 0.8 0.166 

NAIP 40 0.8 0.131 

NAIP 20 0.9 0.148 

NAIP 30 0.9 0.109 

NAIP 40 0.9 0.088 

NAIP 20 0.95 0.116 

NAIP 30 0.95 0.087 

NAIP 40 0.95 0.070 
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Improving estimates of natural resources using 
model-based estimators: impacts of sample design, 
estimation technique, and strengths of association    

Abstract: Natural resource managers need accurate depictions of existing resources to make 

informed decisions. The classical approach to describing resources for a given area in a quantitative 

manner uses probabilistic sampling and design based-inference to estimate population parameters. 

While probabilistic designs are accepted as being necessary for design based-inference, many recent 

studies have adopted non-probabilistic designs that do not include elements of random selection or 

balance and have relied on models to justify inferences. While common, model-based inference 

alone assumes that a given model accurately depicts the relationship between response and 

predictors across all populations. Within complex systems, this assumption can be difficult to 

justify. Alternatively, models can be trained to a given population by adopting design-based 

principles such as balance and spread. Through simulation, we compare estimates of population 

totals and pixel-level values using linear and nonlinear model-based estimators for multiple sample 

designs that balance and spread sample units. Findings indicate that model-based estimators 

derived from samples spread and balanced across predictor variable space reduce the variability of 

population and unit-level estimators. Moreover, if samples achieve approximate balance over 

feature space, then model-based estimates of population totals approached simple expansion-based 

estimates of totals. Finally, in all comparisons made, improvements in estimation were achieved 

using model-based estimation over design-based estimation alone.  

Keywords: sample design; model-based estimation; spread; balance 

 

1. Introduction 

Managers of natural resources need accurate information describing the resources they manage 

to make informed decisions. Owing to high acquisition costs, managers typically employ sampling 

and estimation techniques to describe various aspects of a given population. Additionally, to increase 

estimation accuracy, ancillary data, such as remotely sensed data, can be used to improve population 

estimates through specification and application of models that characterize how the resources of 

interest vary as a function of the ancillary data (e.g., [1-3]). Whether or not such models are employed 

or if simple expansion based techniques are used to estimate population parameters, sample design 

plays an important role in estimation accuracy [4, 5].  

Within the context of estimating forest characteristics from remotely sensed data, less emphasis 

is generally placed on rigorous sample design to train models than when validating models [6]. In 

large part this discrepancy stems from the conditions required for design versus model-based 

inference [1, 2]. As Gregoire [5] describes, “in the design-based framework, the population is 

regarded as fixed whereas the sample is regarded as a realization of a stochastic process”. Conversely 

the model-based framework assumes, “that the values yi, …, yn are regarded as realizations of 

random variables Yi,…,Yn and hence the population is a realization of a random process”. The 

primary difference being, “in the model-based approach [inference] stems from the model, not from 

the sampling design”. While some rely on the availability of models as justification for deviating from 

probabilistic designs when drawing inferences, it is critical to remember that with natural systems 

we seldom understand or can collect all the information needed to build models that completely 

describe the complexities of those systems. This can lead to model misspecification, localized 

deviations in relationships, and more generally to models that do not describe a specific population 

well. Therefore, sample designs used to calibrate models that include randomness in the selection 

process are critical to developing models that can be used to estimate population and subpopulation 

parameters. Moreover, probabilistic samples that also capture characteristics such as balance and 
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spread across feature space can reduce the variability of population estimates while more consistently 

including sample units across the entirety of feature space.    

However, many mapping projects employ non-probabilistic sample designs when calibrating 

predictive models [6] or use designs that may not fully capture the spread of predictor variables and 

that may be unbalanced with regard to the population. Furthermore, some authors have argued that 

sample units should only contain pure homogenous examples of a given class [7-12] and have 

developed sampling protocols to ensure that outcome. Compared to probabilistic sampling designs, 

samples of homogeneous units can be expected to estimate lower error rates when calibrating and 

validating models. However, such metrics can only be attributed to the class of units targeted for 

sampling and typically cannot be generalized to the rest of the population [13, 14].  

Stehman [13, 15, 16] describes multiple probabilistic sampling designs and outlines their 

associated strengths and weaknesses as they relate to map accuracy. Tille and Wilhelm [17], 

Grafstrom et al. [3], and Steven and Olsen [18] further describe the importance of probabilistic designs 

while highlighting concepts of balance and spread as they relate to the precision of estimators. 

Balance and spread in this case refers to characteristic of a sample with regard to auxiliary variables. 

Specifically, a balanced sample is defined as the condition when sample means or totals of auxiliary 

variables equal or approximately equal population means or totals [17]. Whereas a sample that is 

spread in auxiliary space refers to how well sample units are dispersed across the auxiliary values of 

that population [18]. For population estimates, balance of a sample draws on the strength of the 

relationship between response and auxiliary variables and recognizes that when a sample captures 

the true mean or total of an auxiliary variable, it will also capture the true mean or total of the 

response variable. Likewise, a sample that is well spread across auxiliary variables has the advantage 

of being balanced [19] while also capturing the variability in auxiliary variables. While often 

described for expansion-based estimators, these arguments are equally important as they relate to 

samples collected to develop models to support estimation [6, 17, 20-22]. Nevertheless, many 

researchers disregard these warnings and build models derived from unbalanced, non-probabilistic 

sampling schemes to estimate characteristics of a given population.  

Reasons for deviating from a probabilistic study design typically stem from logistical constraints 

and cost of implementation. However, using predicted values derived from models developed from 

non-probabilistic designs to describe complex natural systems such as a forested landscape can be 

highly questionable. Questions pertaining to how sample units should be spread across multiple 

dimensions of feature and geographical space and subsequent impacts on estimator accuracy and 

inference are at the very forefront of understanding how resource assessments and maps can be used 

to inform decision making. In this study, we investigate these questions through a series of 

simulations that compare and contrast estimates of population totals and pixel values obtained under 

varying sampling designs. We also evaluate the relative impact of sampling design on estimators 

derived without use of ancillary data and from various linear, parametric, non-linear, and non-

parametric models. Specifically, in this study we 1) evaluate the relative accuracy of alternative 

model-based estimators of unit values and population totals across populations where the form 

and/or strength of associations vary, 2) evaluate the impact of probabilistic designs that spread and 

balance samples over geographic or feature space on the accuracy of those estimators, 3) demonstrate 

the potential impact of using a probabilistic sampling design taken from a subset of geographic space 

on the performance of those estimators and 4) assess the impact of misspecified models on the 

accuracy of estimation.  

2. Theoretical Background 

In this study we assess expansion and model-based estimation procedures applied to 

populations constructed according to distinct functional relationships between response and 

predictor variables but tempered by normally distributed errors of varying magnitudes. While 

fundamentally different, expansion and model-based estimation techniques can be used to estimate 

population parameters [23]. For expansion-based methods, parameter estimators are derived from 
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elements of a probabilistic sample design. In this approach, the population is regarded as fixed and 

variations in parameter estimates are due to randomness within the sample design [4]. In contrast, 

model-based estimators of population parameters are derived from a model of how the response 

variables change across the population. In this approach, the emphasis is on estimating model 

parameters which can then be indirectly used to estimate either parameters of a given realization of 

the model, or the model-expectations thereof [23]. Contrary to the expansion-based methodology, the 

model-based approach is not necessarily tied to a specific population but instead assumes that a given 

population is a realization of some random process, meaning that the emphasis of the model-based 

approach is on the relationship between a variable of interest (response) and some other variable(s) 

(predictors). Given that relationship, model error, and the predictor variable values within a specific 

population, one can then estimate population parameters. 

While models do not necessarily need to be tied to a given population, it is the case that within 

natural systems the underlying shapes and forms of the relationships between response and predictor 

variables vary and may be unknown and noisy. Therefore, model development is often based on a 

specific population (e.g., [24, 25]), making models uniquely calibrated to a given time and place. 

Though uniquely calibrated, different modeling techniques make different assumption with regard 

to the relationships between response and predictor variables. For many natural systems these 

assumption may be difficult to meet and can lead to a model that is misspecified.  To assess the impact 

of potential model misspecification on estimating population and subpopulation parameters, we use 

simulated landscapes with known functional relationships and introduced error (Figure 1). The 

functional shape of relationships evaluated in our simulations include linear, quadratic, and 

nonlinear distributions with normally distributed errors and various amounts of introduced noise 

(section 3.1). Additionally, estimation techniques are evaluated under various sample designs to 

assess the impact of spread and balance on parameter estimation (section 3.2). Expansion and model-

based estimators were chosen based on their popularity, underlying assumptions, and flexibility in 

capturing various relationships among response and predictor variables. Modeling techniques 

evaluated include linear regression (LN), neural networks (NNs), support vector machines (SVMs), 

random forests (RF), and generalized additive models (GAMs).  

In terms of complexity, expansion estimators are the simplest, followed by LN, NNs, SVMs, RF, 

and GAMs. Expansion estimators are limited to a single estimate such as mean or total for a 

population of interest [4]. Conversely, linear regression models can estimate the mean response value 

of a class of pixels for given values of predictor variables, but are obviously limited in their ability to 

describe nonlinear relationships and can produce estimates outside the range of values observed in 

a sample [26]. NNs, a machine learning technique, can represent nonlinear associations by 

introducing activation functions and weighting schemes of linear coefficients [27]. SVMs use kernel 

functions to identify subsets of the data within multidimensional feature space that describe the 

relationship between response and predictor variables [27]. RFs allow for discontinuities in the 

response function across feature space by implementing classification and regression trees (CART) 

and incorporating bagging and randomness into model training. RF ultimately rely on ensembles of 

CART models to capture relationships between response and predictors, and can yield only estimates 

limited to the range of observed response values [28]. GAMs are a flexible modeling technique that 

assumes additivity between response and predictor variables, and that response values change 

smoothly over feature space. GAMs allow for nonlinear, nonparametric relationships between 

response and predictor variables [29] and can explicitly account for non-Gaussian error distributions.  

Of particular interest with regard to expansion and model-based estimators is that an expansion 

estimator can be thought of as a model-based estimator with only an intercept parameter if an equal 

probability design is used and if the presumed model incorporates an independently identically 

distributed error structure. That is, if the same sample is used by an expansion estimator to calibrate 

an intercept only model, the population estimates from the expansion and model-based estimators 

will be the same. Furthermore, when models are calibrated with predictors that are unrelated to a 

given response, expansion and model-based estimates will also be the same. Owing to this, within 
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our simulation we predict that as the amount of model error (noise) introduced into the relationship 

between response and predictors is increased, model and expansion-based estimates will converge. 

Conversely, as the amount of noise introduced between response and predictor decreases, the 

estimated values from the model-based estimators will be less variable than the expansion-based 

estimates. Similarly, within our simulations we anticipate that when underlying model relationships 

are misspecified or calibrated in the absence of important correlated data, model-based estimates will 

converge with expansion-based estimates. Moreover, we predict that samples drawn from 

probabilistic designs that are spread and balanced across predictor variable space produce better 

estimates of the population and subpopulations than samples drawn in a manner that may not be 

balanced or spread within feature space.  

 

Figure 1. Diagram of simulations and workflow to determine the impact of sample designs on model 

and design-based estimates. The gray box in sample design denotes a probabilistic sample design for 

a subset of geographic space. NAIP = National Agriculture Imagery Program imagery; SRS = simple 

random sample, SYS = systematic random sample, GRTS = generalized random tessellation stratified, 

RSNR = simple random sample near roads, LN = linear model; GAM = generalized additive models, 

SVM = support vector machines, NN = neural networks, RF= random forests, EX = Horvitz Thompson 

expansion estimator.   

3. Materials and Methods 

3.1 Simulated raster surfaces 

A spatial subset extracted from a National Agricultural Imaging Program (NAIP) [30] image 

located in the panhandle of Florida, USA serves as our base dataset for all derived raster surfaces 

used within our simulations. This subset covers approximately 6 km2 of a mixed forested/urban 

landscape (Figure 2). The four spectral bands of the NAIP image (xi; i = 1, 2, 3, 4) were transformed 

to produce three distinct continuous surfaces (SC1, Figure 2). The first SC1 surface was obtained by 

averaging the band values for each pixel: 
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μ1j = 0.25 ∑ xij
4
i=1                                                                            (1) 

The second SC1 surface was obtained as the square of the first,  

μ2j =  μij
2                                                                                    (2) 

and thus is a quadratic function of the individual band values and their cross-products. Finally, a 

discontinuous, nonlinear SC1 surface was created by adding an additional logical query on the NAIP 

band 4 cell values: 

μ3j =  λjμ1j                                                                                 (3) 

where λj is an indicator variable taking the value 1 if the value of band 4 for pixel j falls between 170 

and 210, and is 0 otherwise.   

For each SC1 surface (Linear, Quadratic, and Nonlinear), normally distributed errors were 

added to create response surfaces ykj = μ3j + εj (Figure 2), where the εj are independent, identically 

distributed errors. Normally distributed errors were generated using a standard deviation 

proportional to the standard deviation of pixel values within a given SC1 and a mean of zero. The 

constants of proportionality modifying the normal standard deviation parameters were set to 20%, 

40%, 60%, and 80% to provide an equal distant range of noise added to each relationship and to 

evaluate the impact of noise on model estimation. The realized errors produced a homoscedastic 

surface with error values centered at zero before being added to SC1 surfaces. In total, 12 unique 

continuous response surfaces were created, with various shapes and amounts of error (% noise).     

 

Figure 2. Depiction of the NAIP, Linear, Quadratic, and Nonlinear transformations (SC1). Normally 

distributed error terms are additive (% Noise) and based on SC1 surface standard deviation statistics. 

Mean, standard deviation, minimum, maximum, and global Moran’s I [31] (rook neighborhood) 

statistics are presented for each response surface by transformation type and noise level.  

3.2 Sample designs 

To evaluate the impact of sample designs on estimation, we compared population and raster cell 

estimates for each of our response surfaces using four different sampling designs. Sample designs 

included simple random sampling (SRS), systematic random sampling (SYS), modified Generalized 

Random Tessellation Stratified sampling (GRTS; [18, 32]), and randomly selecting sample units next 
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to roads (RSNR). In our simulation, SRS selects locations across the spatial domain of the image, 

independently and uniformly at random. SYS spreads sample units evenly across the spatial domain 

of the image by distributing locations over a square grid of fixed orientation. The dimensions of each 

square grid cell was calculated as the square root of the total image area divided by a sample size of 

50. A fixed sample size for SYS was achieved by selecting a random start within the bottom east 

square grid cell and systematically selecting locations based on the grid cell dimensions. Owing to 

the systematic nature of the design and the dimension of each grid cell, some SYS samples had fewer 

or more than 50 sample units. For SYS samples with more than 50 location selected, location were 

randomly removed until the sample size reached 50. For SYS samples with less than 50 locations 

selected, random locations across the spatial domain of the image were added to the sample until the 

sample size reached 50. GRTS spreads and balances samples in auxiliary space based on the NAIP 

spectral values (bands 1-4). To achieve this, we selected an initial SRS of 100,000 locations within the 

NAIP image, extracted cell values from each band at those locations, and performed a principal 

components analysis (PCA) using the bands’ correlation matrix. Using the loadings of the first two 

components of the PCA, we then transformed the 100,000 sampled NAIP cell values to bivariate 

component scores. These were then input into the GRTS algorithm [32] to select a sample spread and 

balanced within a two-dimensional PCA score space. RSNR uses Tiger Road files [33] and a 50 m 

buffer around roads to subset the population and then randomly select sample unit locations within 

those subsets. Sample sizes for model calibration and parameter estimation were held constant at 50 

for each comparison. 

3.3 Model calibration and estimation 

LN, GAM, SVM, NN, and RF models were trained separately for each sample drawn from the 

12 response surfaces and 4 sample designs. For LN models, ordinary least squares regression was 

used to relate response and predictor variables [34]. For GAMs, the Gaussian family with an identity 

link and additive thin plate penalized regression splines were used to relate response and predictor 

variables [35]. SVM models used Epsilon Regression and a Radial Basis kernel (Gaussian) [36]. NNs 

fit a single layer hidden linear model (least squares) with a size parameter equal to half the sample 

size and a decay parameter equal to 1/10 the size parameter [37]. RF models averaged the results of 

20 regression trees that each randomly selected one predictor variable at each training node, for 66% 

of the data [38]. All model calibrations assumed independent, homoscedastic errors.  

Model predictor variables initially included all four NAIP band cell values. That is, all 

information used to generate the response surfaces were made available in the modeling process as 

predictor variables. Below, we refer to these as fully-specified models. A second class of models 

(partially specified models) utilized only the first three NAIP bands as predictors. This represents the 

common situation in which the available predictor variables do not fully describe the response 

function. 

Once trained, model and NAIP cell values were used to create prediction surfaces of estimated 

raster cell values. Estimates of the population total (𝜏̂𝑦) were calculated by aggregation  

𝜏̂𝑦 = ∑ 𝑦̂𝑖
𝑁
𝑖=1    ,                                                                          (4) 

where 𝑦̂𝑖 is an estimated pixel value obtained from a calibrated model of one of the above types and 

N is the total number of pixels in the population.  

Additionally, from the response values alone, each sample provided an expansion estimate of 

the population total obtained simply from the per-pixel sample mean expanded by the population 

size:  

𝜏̂𝑦 =
𝑁

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1                                                                               (5) 

where n is the sample size (50). 
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3.4 Evaluation 

For each sample design (d) and response surface (k), 100 samples (iterations) were drawn and 

used to calibrate models and estimate surface characteristics. The spread of each sample (B) was 

measured using the approach described in [19, 39]. Briefly, Mahalanobis distance [40] was used to 

identify Voronoi polytopes (pi) around each selected pixel of a particular sample in multidimensional 

predictor space or in geographic space. Inclusion probabilities (n/N) were then summed within each 

polytope and the variance of these sums were then calculated: 

𝐵 =  
1

𝑛
∑ (𝑣𝑖 − 1)2

𝑖∈𝑠 ,                                                                (6) 

where vi is the sum of inclusion probabilities in pi.  

For each response surface, sample design, and estimation technique, estimates were compared 

against the corresponding response surface total or against individual cell values. For a global 

perspective, estimates of the response surface totals were recorded and compared against actual 

totals. For a local perspective, estimated cell values were recorded and the RMSE was calculated 

across cells as follows: 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1 .                                                    (7) 

RMSE was also calculated for the expansion estimator reflecting the fact that the expansion estimator 

(scaled by N) is the only available estimate of cell values as follows: 

 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦̅ − 𝑦𝑖)2𝑁

𝑖=1 ,                                                         (8) 

where 𝑦̅ is the simple sample mean. While similar to the variance of the expansion estimator, 

this 𝑅𝑀𝑆𝐸 expression is evaluated over the entire population and is a measure of within response-

surface variability.       

4. Results 

4.1 Allocation of sample units 

 

Figure 3. Distribution of sample mean digital number (DN) values of bands 1 and 4 (left panel; Feature 

Space) and sample mean northing and easting values (right panel; Geographic Space) for 100 samples 

obtained form generalized random tessellation stratified (GRTS, black), simple random sampling 

(SRS, green), systematic random sampling (SYS, red), and random sampling near roads (RSNR, blue) 

designs. Gray dashed lines identify population mean values. A sample size of 50 was used for each 

of the 100 samples. 
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Of all the sample designs considered, only GRTS utilized information from feature space. 

Although it used only the first two principal components of the 4 bands, these accounted for 

approximately 97% of the total variation in the NAIP image. Within feature space, GRTS sample 

means were approximately balanced, clustering near the population mean values for each band 

(Figure 3). By contrast, samples drawn by SRS, SYS and RSNR designs were unbalanced, with 

individual sample means varying substantially from band averages (Figure 3). In geographic space, 

GRTS, SRS, and RSNR had similarly dispersed distributions of sample means while the distribution 

of sample means for the SYS design was tighter (Figure 3). Imbalance of SYS samples in geographic 

space was higher than anticipated, possibly as a result of the sample adjustments made to ensure a 

constant sample size of 50 units.       

While, the RSNR design only selected sample units within 50 m of roads inside the study area 

and appeared to under represent impervious surfaces such as industrial areas and buildings (Figure 

4), mean values of NAIP bands and northing and easting closely matched population parameters 

(Figure 3). Moreover, even though no sample units were selected further than 50 m from a road in 

the RSNR design, sample unit locations appeared to be generally spread across the study area in both 

feature and geographic space (Figure 3). While the areas within 50 m of a road represent a subset of 

the geographic domain of the study area, the spatial extent of that subset still spanned a broad 

distribution of feature space (Figure 3).    

 

Figure 4. Illustration of spatial distribution (density) of sample unit locations for each sample design 

across the study area. The NAIP image is used for reference; the density raster surfaces depict the 

frequency of selected cell locations for samples using the SRS, SYS, GRTS, and RSNR designs. To 

enhance the display of density surfaces, each surface was created by drawing 2000 random samples 

(sample size 50) for each design and counting the number of sample units falling within each density 

raster cell (50 m grain size). White cells within the density raster surfaces identify cells where no 

sample units were selected. Note, the spatial clustering in sample density depicted by high density 

values (orange to red areas) for both GRTS and RSNR designs. SRS = simple random sample; SYS = 

systematic random sample; GRTS generalized random tessellation stratified; RSNR = random sample 

near roads. 
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4.2 Model calibration and functional relationships 

While trends in population estimates were generally consistent across response surfaces, the 

most interesting results occurred when estimators were applied to the nonlinear SC1 response 

surfaces. For these surfaces, the RF estimator would presumably have an advantage over expansion, 

LN, SVM, NN, and GAM estimators given that the latter techniques presume smooth response 

functions over feature space and are limited in their ability to capture the discontinuities in these 

response surfaces. Figure 5 depicts the averaged fitted estimates over the 100 SRS iterations for a slice 

of feature space (40% introduced normally distributed errors). Relatively speaking, fully-specified 

GAM, RF, and SVM estimators were able to reproduce the rise and drop of the response surface cell 

values. While NN estimators partially capture the rise in values, they were not able to capture the 

subsequent fall in those values in nonlinear relationships (Figure 5). As expected, the linear 

estimators only allowed for constant rates of change. They could therefore describe patterns in the 

linear SC1 surfaces but failed utterly to describe characteristics of the nonlinear SC1 surfaces. 

These aspects of model performance were consistent across sample designs and levels of 

introduced noise. As anticipated, when more error was introduced into the response surfaces, 

variability in estimates increased. When comparing estimation techniques across these slices of SC1 

response surface values, fully-specified GAMs, RFs, and SVMs consistently outperformed other 

estimation approaches (Figure 5).  

  

Figure 5. Depiction of functional relationships of fully-specified estimators and SC1 surface values 

(blue line and y-axis) for a slice of predictor variable space where NAIP cell values were held constant 

at the mean for bands 1-3 while band 4 cell values (x-axis) were allowed to vary. The amount of 

random noise introduced into the relationships between predictor and SC1 surfaces was 40% of the 

SC1 surface standard deviation. Sample design used to generate models was simple random 

sampling. The blue solid line corresponds to the actual SC1 values within this slice of predictor 

variable space while the dashed colored lines correspond to averaged expansion and model based 

estimates. The grey shaded regions around each estimation technique correspond to the 99% 

confidence interval given the 100 iterations performed. Sample size for expansion estimates and 

model calibration was 50. Ex = expansion; LN = linear; GAM = general additive model; SVM = support 

vector machine; NN = neural networks; RF = random forests.  

4.3 Estimates using NAIP bands as predictors 

As expected, sample design had an impact on the accuracy of estimated pixel values and 

population totals (Figures 6 and 7). While we anticipated that the RSNR design would produce biased 

estimates, bias was minor in estimated values (Figure 7). Moreover, across all response surfaces, 

similar patterns in RMSE and variability in the estimated population totals were observed. Generally, 

as the proportion of noise increased in the response surfaces, RMSE and the variability in population 

estimates increased (Figures 6 and 7). Because results and trends were similar for linear, squared, and 

nonlinear response surfaces, we primarily present results for the nonlinear (most complex) response 

surfaces within this section.  
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For the expansion estimators, RMSE varied little across iterations within nonlinear response 

surfaces but consistently exceeded the RMSEs of the fully specified model-based estimators (Figure 

6). While there did appear to be minor improvements in RMSE for the GRTS design, it is difficult to 

clearly rank sample designs with regards to RMSE in these figures. Generally, though, GRTS and SYS 

designs had less variation in RMSE than the other designs (Table 1).  

 

Figure 6. Matrix of RMSE divided by SC1 image pixel standard deviation (RRMSE) boxplots for 

expansion and fully-specified model-based estimates derived from 100 iterations of nonlinear trend 

response surfaces. Response surfaces incorporated random errors at 20%, 40%, 60%, and 80% of the 

total nonlinear SC1 image standard deviation. Column and row titles identify sample designs and 

proportion of SC1 standard deviation used in response surfaces. Ex = expansion; LN = linear; GAM = 

general additive model; SVM = support vector machine; NN = neural networks; RF = random forests; 

SRS = simple random sample; SYS = systematic random sample; GRTS generalized random 

tessellation stratified; and RSNR = random sample near roads. 

From the perspective of population totals, it is clear that the GRTS designs had the largest 

positive impact on expansion-based estimators (Figure 7, reduction in variability of % bias). While 

the impact of sample designs were less apparent for model-based estimators, generally the GRTS 

design had the least variation in population estimates (Figure 7) while producing the smallest RMSEs 

(Table 1). Across all iteration the mean difference between observed and estimated total, measured 

as a percentage of the response surface total, was close to zero (Figure 7), suggesting that estimator 

bias, if present, was minor.    

The best performing estimator for all sample designs, transformations, and introduced errors 

was the GAM estimator followed by RF, SVM, NN, LN, and expansion estimators (smallest RMSE). 

Comparing results across sample designs for the GAM estimators, GRTS and SYS typically had the 

smallest RMSE and least variation in population estimates. While we anticipated that expansion and 

model-based estimates would be slightly biased for the RSNR sample design, our results did not fully 

support that claim. This is likely due to the relatively large proportion of area within 50 m of a road 

in the NAIP image subset, the identical trend and error distributions applied across the study area, 

and the similar distribution of spectral values found within the road buffers and the image.  
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Table 1. Design with smallest average root mean squared error (RMSE) across iterations by response 

surface distribution (SC1), fully-specified modeling technique, and amount of introduced noise (% 

Noise).   

SC1 % Noise GAM RF SVM NN LN EX 

Linear 

20 SRS GRTS*** GRTS*** GRTS* SRS GRTS*** 

40 GRTS GRTS GRTS*** SRS GRTS GRTS** 

60 GRTS GRTS* GRTS*** GRTS* RSNR GRTS*** 

80 SYS SYS GRTS** GRTS SYS GRTS* 

Squared 

20 GRTS* GRTS*** GRTS*** GRTS GRTS*** GRTS*** 

40 SYS GRTS*** GRTS** GRTS GRTS* GRTS*** 

60 GRTS GRTS* GRTS* SYS GRTS GRTS*** 

80 SRS GRTS GRTS* GRTS GRTS GRTS* 

Nonlinear 

20 GRTS* GRTS* SYS RSNR* GRTS GRTS* 

40 GRTS** GRTS GRTS GRTS GRTS GRTS 

60 GRTS GRTS RSNR GRTS GRTS GRTS 

80 GRTS GRTS* RSNR GRTS GRTS GRTS 

* statistically different than SRS at α = 0.05; ** statistically different than SRS at α = 0.01; *** statistically different 

than SRS at α = 0.001; GAM = general additive model; RF = random forests; SVM = support vector machine; NN 

= neural network; LN = linear model; EX = expansion estimator; SRS = simple random sample; SYS = systematic 

random sample; GRTS generalized random tessellation stratified; RSNR = random sample near roads. 

 

Figure 7. Boxplots of proportion bias matrix for differences from population totals. Difference values 

are expressed as a percentage of the population total for expansion and fully-specified model-based 

estimators derived from 100 iterations of nonlinear trend response surfaces with normally distributed 

errors based on 20%, 40%, 60%, and 80% of the total nonlinear SC1 image standard deviation. Column 

and row titles identify sample designs and proportion of SC1 standard deviation used in response 

surfaces. Ex = expansion; LN = linear; GAM = general additive model; SVM = support vector machine; 

NN = neural networks; RF = random forests; SRS = simple random sample; SYS = systematic random 

sample; GRTS generalized random tessellation stratified; and RSNR = random sample near roads.  

As anticipated, when evaluating designs, percent error, and model estimation techniques for 

various ranges of response variable values using nonlinear response surface cell values, we saw 

similar trends as described in section 4.2 and as displayed in Figure 5. Figure 8 illustrates these 
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relationships by presenting predicted versus observed smoothed trends for the GRTS sample 

designs, expansion and model-based estimators, and 40% introduced noise into the relationship 

between response and predictors. Of particular note in Figure 8 is that all methods produced 

attenuated estimates and that the GAM, RF, and SVM procedures more closely match the one-to-one 

line depicted in Figure 8 within the most common areas in feature space (frequency graphs above 

graphics in Figure 8). These general trends also extended to partially-specified estimators in which 

only NAIP bands 1-3 were used as predictor variables.  

Moreover, all models regardless of misspecification (model distribution or lack of predictors) 

tended to produced better estimates than expansion-based estimation alone. Similar to results in 

section 4.2, the GRTS sample design coupled with the GAM-based estimator produced the best 

results and more closely followed the one-to-one line when weighted by the frequency of sampled 

values (Figure 8). Finally, in all comparisons, as percent error increased departures from the one-to-

one line also increased (not shown). 

 

Figure 8. Smoothed trend of nonlinear response surface predicted values (y-axis) versus observed (x-

axis) values for design and model based estimators calibrated using generalized random tessellation 

stratified designs (GRTS) and image bands 1-4 (Fully-Specified) and image bands 1-3 (Partially-

Specified) as predictor variables. Introduced noise into the nonlinear response surface was held 

constant at 40% of the nonlinear SC1 surface standard deviation. Sample size was held constant at 50 

for each of the 100 iterations used in the study. The gray dashed lines within Fully-Specified and 

Partially-Specified graphs serve as a one-to-one reference line while the gray dashed line above the 

graph depicts relative frequency of each observed value. Ex = expansion; LN = linear; GAM = general 

additive model; SVM = support vector machine; NN = neural networks; RF = random forests  

4.4 Impact of spreading sample units in feature space 

While estimation approach had a larger effect on our results, sample design also impacted 

parameter estimates. Across all response surfaces, iterations, and modeling techniques the GRTS 

sample design had the smallest or was not statistically different than the smallest averaged RMSE 

(Table 1). Additionally, the variability in estimated population totals tended to be smaller for the 

GRTS sample design (Figure 7). Moreover, for the top three estimation techniques (GAM, RF, and 

SVM) and the most complex response surfaces (nonlinear), spreading samples in feature space 

generally produced the smallest RMSE (Figure 9, Table 1). Interestingly, estimates derived from 

samples spread in geographic space (SYS) often preformed equally to samples spread in feature space 

(GRTS) even though response surfaces did not depend directly on geography (eq. 1-3). In large part 
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this can be attributed to spatial correlation in NAIP bands (Figure 2, Moran’s I statistic). Nevertheless, 

across all estimation techniques, estimators derived from samples spread in feature space tended to 

have the smallest RMSE (Figure 9). Moreover, the sample design that typically had the smallest B 

statistic (well spread samples) was GRTS.  

 
Figure 9. Root mean squared error (RMSE) versus spread values (B, eq. 6) for the top three estimation 

techniques given nonlinear response surface sample design, 40% introduced noise into the 

relationship between response and predictors, a sample size of 50, and 100 iterations. Density of RMSE 

and B values are presented to the right and above each graph. GAM = general additive model; RF = 

random forests; SVM = support vector machine; SRS = simple random sample; SYS = systematic 

random sample; GRTS generalized random tessellation stratified; and RSNR = random sample near 

roads.  

5. Discussion 

While sample design affected the performance of all estimators, the estimation approach had a 

larger impact on cell and population estimates. As expected, in all instances evaluated, regardless of 

the underlying relationship between response and predictor variables, model-based estimators 

produced better pixel-level estimates than expansion estimators (Figure 6, Table 1). Additionally, 

when sample units were spread and balanced in feature space model-based estimators of population 

totals were typically less variable than expansion estimators and had relatively low bias. This finding 

suggests that models derived from samples balanced and spread in feature space produce low-bias 

estimates with less variability than RSNR, SRS, and SYS designs.  

Likewise, expansion estimators derived from samples spread and balanced across feature space 

(GRTS), produced similar estimates as model-based estimates of population totals with less 

variability than SYS, SRS, and RSNR expansion estimators; supporting the idea that spreading and 

balancing sample observations in feature space can substantially improve population estimates [3, 

17, 39]. Within our simulations, the variability in estimated totals was on average always less for 

model-based estimators and expansion estimators derived from samples spread and balanced in 

feature space. In all instances the increased precision (reduction in RMSE) of using a model-based 

estimator over expansion-based estimators alone outweighed the impacts of the bias introduced by 

model-based estimators, even when models were misspecified.   

Within our simulations, GAM and RF were the two best modeling techniques when all NAIP 

bands were used to calibrate models. Once calibrated, these estimators were able to better identify 

and track the underlying transformations of NAIP cell values better than other evaluated estimators. 

Additionally, when models were misspecified (e.g., a linear model applied to a nonlinear response), 

raster cell values approached expansion-based estimates. Furthermore, when only the first three 

NAIP bands were used to calibrate models, model-based cell estimates also approached expansion- 

based estimates. These findings suggest that using probability sampling, ancillary data, and models 

calibrated from probability samples improves pixel-level value estimates, even if the model is 

misspecified and especially if sample units are spread across the values of the ancillary data (feature 

space). This finding is especially relevant today with the availability of remotely sensed imagery and 
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the correlations between land cover (e.g., forest ecosystems) and spectral and textural image metrics 

(e.g., [24, 25]). While it is tempting to view our results as confirmation of the robustness of GAM and 

RF modeling techniques, it is important to recognize that within our simulation, randomness played 

a critical role in all sample designs [17] and that error and SC1 transformations were consistent across 

the spatial domain. Other relationships and error structures may favor different modeling techniques 

[8]. However, on average when samples were spread and balanced in feature space, pixel-level and 

population totals estimates derived from expansion and model-based procedures were as good as or 

better than samples that were not spread or balanced in feature space. Relatively speaking, this result 

is most likely because spreading and balancing sample units across feature space will more 

consistently find changes in complex relationship between response and predictors than samples that 

are not spread and balanced. 

While we did not directly evaluate sample size in our comparisons, we assume that the strength 

of the relationship between response and predictor variables, represented in our study as added 

random noise, would have impacts on estimation similar to sample size. Specifically, we would 

expect that an increase in sample size would have a similar impact to estimated values as a decrease 

in noise introduced into the response surfaces. This would suggest that as sample size increases, 

estimates should became more precise and measures of spread, such as the B statistic [19, 39] will 

become smaller. Future investigations should look at quantifying tradeoffs in sample size, spread, 

and the strength of the relationship between response and predictor variables on estimation for 

modeling techniques such as LN, GAM, RF, SVM, and NN.  

These simulated findings have practical relevance for natural resource managers who are 

interested in inventory, monitoring, and managing natural resources. Specifically, improvements in 

estimating characteristics of a natural resource for a given population (e.g. basal area in a forest) can 

be gained by incorporating models into the estimation process [1, 24, 25]. Moreover, indirect 

estimates of population subdomains (e.g., stands) can be made from model-based estimates [23]. In 

the case where observational units (e.g., pixels) cover a smaller spatial domain than the subdomain 

of interest (e.g., stands), those pixel estimates can be aggregated to the spatial extent of the stand. 

Conversely, when pixels have an extent larger than the stand of interest, model estimates can be 

attributed to the entire stand. In instances where pixel estimates partially cover the extent of the stand, 

estimates can be weighted and attributed to the stand based on the amount of overlapping area 

between pixels and the stand. However, models have estimation error, which should be incorporated 

into the standard errors of the estimates of the domain and subdomain characteristics [23, 41, 42].  

In our simulation, we used iteration and sampling to quantify estimation error. Our top 

performing estimator (GAM) on average had the least amount of bias and the smallest RMSE across 

iterations. However, there were instances (iterations) within our simulations when the GAM model 

had, relatively speaking, large RMSE. These instances within our iterations identify the case in which 

a sample drawn from the population were not well balanced or spread. While the GRTS sample 

design minimized the occurrence of samples that were not well balanced or spread, it did not 

eliminate those types of samples. This means that while rare, some samples may have a 

disproportionately large number of extreme occurrences within feature space which could adversely 

affect the calibration of a given model and model estimates. In this situation bagging or boosting 

could be used to iteratively draw random subsets from a given sample, calibrate multiple models, 

average model estimates, and empirically estimate standard error to reduce the impact of extreme 

observations [43, 44]. Applying methods such as this should have a similar impact to the variation in 

RMSE values as what is displayed in Figure 9 for the RF modeling techniques, which uses bagging 

and model averaging [28].  

For forest managers, this suggests that estimates of forest characteristics such as species 

composition, basal area, and tree counts can be improved for a given area by relating field 

measurements to remotely sensed imagery such as NAIP (e.g., [1, 24]). Moreover, with the relative 

abundance of free remotely sensed data and newer software designed to facilitate these types of 
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analyses (e.g., [45]), managers can estimate characteristics of the forests they manage with a greater 

level of detail and accuracy than was previously possible.  

6. Conclusion 

In this study we compared multiple estimators for a variety of response and predictor variable 

relationships, error distributions, amounts of noise, and sample designs. Our findings indicated that 

balance and spread are important aspects of a sample, estimates of pixel-level and population totals 

can be improved by incorporating models, and spreading samples within feature space can improve 

estimates. Likewise, for those same samples, when the relationship between response and predictor 

variables is misspecified, missing key information, or is extremely noisy, expansion and model-based 

estimates of the population converge, suggesting that with regards to estimation, nothing is lost by 

using ancillary data. Moreover, for mapping endeavors attempting to spatially depict various 

characteristics of a landscape, samples used to calibrate predictive models should aim to spread and 

balance observational units across feature space.      
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Estimating forest characteristics for longleaf pine 
restoration using normalized remotely sensed 
imagery in Florida USA 

Abstract: Effective forest management is predicated on accurate information pertaining to the 

characteristics and condition of forests. Unfortunately, the cost of acquiring detailed, accurate 

information that adequately described the complex spatial and contextual nature of forests, across 

broad landscapes, can be cost prohibitive to collect. While significant advancements in using 

remotely sensed data to derive fine scale information about our forests have been made, those 

advancements often fall short of providing the spatial detail desired for making well-informed 

management decisions. In large part, this disparity between what information is desired to make 

well-informed decisions and what information has been extracted from remotely sensed data stems 

from interacting challenges in big data and data science, and technical gaps between what is easily 

identified within remotely sensed imagery and what characteristics of the forest are used when 

planning and managing forests. In this case study we addressed big data challenges and bridged 

technical gaps related to describing forest characteristics by incorporating field plot layouts 

specifically designed to be used with remotely sensed data when calibrating predictive models, 

describing a new image normalization procedure that brings images of varying spatial resolutions 

to a common radiometric scale, and implementing an ensemble generalized additive modeling 

technique to accurately estimate the spatial distribution of key forest characteristics for longleaf pine 

(Pinus palustris) restoration efforts in the panhandle of Florida, USA. This work overcomes several 

of the major barriers associated with linking remotely sensed imagery with plot data over large 

areas.   

Keywords: restoration, longleaf, relative normalization, ensemble generalized additive models, 

forests, Big data, data science  

 

1. Introduction 

Longleaf ecosystems are some of the most endangered forest ecosystems in the world [1]. 

Historically, these ecosystems covered approximately 37 million ha in the southeast United States of 

America (USA) and provided habitat for a wide range of plants and animals due to their unique 

structure and adaptation to fire. The species composition and structure of these ecosystems is 

maintained by frequent fire, which preserves a diverse early successional understory and relatively 

open longleaf pine (Pinus palustris) dominated overstory [2]. Due to many anthropogenic factors such 

as land use change, the suppression of fire on the landscape, over harvesting of timber, and the 

replacement of longleaf pine with faster growing loblolly (Pinus taeda) and slash (Pinus elliottii) pines, 

less than 1.5 million ha of longleaf pine remain [2]. Because of this dramatic loss of habitat there has 

been a recent resurgence in longleaf ecosystem restoration and conservation that calls for more than 

doubling the existing area covered by longleaf ecosystems by 2024 [3].       

Transforming such a large amount of the existing landscape back to a healthy longleaf ecosystem 

condition within today’s social framework will require well planned forest and natural resource 

management and education targeted towards public, private, and nonprofit agencies, organizations, 

and landowners that are receptive to achieving restoration goals. Moreover, the identification of 

restoration opportunities will require detailed, spatially explicit information about not only existing 

longleaf ecosystems but also the condition of other forested and nonforested landscapes. While 

detailed information is necessary to compare and evaluate restoration projects and make informed 

decisions, such information currently does not exist and is cost prohibitive to acquire across broad 

extents using ground-based inventory methodologies (e.g. [4]). Because of this limitation and the lack 
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of quality information, optimal restoration opportunities can be difficult to identify and fully justify, 

leaving managers to rely on opinion and intuition when making important and potentially costly 

restoration decisions.  

Alternatively, relating remotely sensed data to field measurements of existing forest 

characteristics to generate fine to medium grained spatially explicit information at a much lower cost 

than traditional inventory methodologies has shown great promise [5, 6]. However, in practice the 

implementation of these techniques and the use of modeled outputs has seen mixed success. In large 

part this discrepancy between promise and success stems from challenges and problems related to 

handling big data and the data science techniques used to transform these data into actionable 

information. Additionally, the lack of analysts and managers within natural resources with a 

requisite background in data science [7] and a legacy of the types of outputs historically created from 

remotely sensed imagery (e.g. [8, 9]) contribute to this inconsistency. While the scarcity of trained 

individuals in the field of data science is now being addressed at many universities [10], the broader 

issues related to handling big data, the techniques used to transform remotely sensed data streams 

into information to guide resource management, and the types of products created for informing 

restoration are active, ever evolving areas of research [11].   

Within this framework, we present a case study that: 1) used field plots and multiple sources of 

remotely sensed data to convert spectral data into products to inform silviculture and forest 

management, 2) developed and applied new techniques for normalizing multi-spectral imagery 

obtained at various spatial resolutions and extents, 3) evaluated the impact of image normalization 

on mapping key forest characteristics, and 4) implemented an ensemble modeling approach to 

estimate key forest metrics and measures of estimation error. These techniques and evaluations are 

applied across the Apalachicola Significant Geographic Area (ASGA) in the panhandle of 

northwestern Florida, USA, and are used to derive estimates of tree density and basal area by species 

groups for longleaf pine restoration purposes.  

2. Materials and Methods  

2.1 Study Area 

The ASGA is a large geographic area in the panhandle of Florida, USA, that consists of 

approximately 2 million ha of public and private land holdings (Figure 1). With regard to longleaf 

restoration, ASGA provides a unique combination of large intact remnant longleaf ecosystems 

clustered and intermixed with converted forest types, agricultural lands, and urban landscapes [12]. 

Longleaf ecosystems present within the boundary of the ASGA include sandhill, flatwoods, and 

upland pine communities that represent a national biodiversity “hot spot”, which provides habitat 

for various rare and threatened species such as the red-cockaded woodpecker (Leuconotopicus 

borealis), Bachman’s sparrow (Peucaea aestivalis), frosted flatwoods salamander (Ambystoma 

cingulatum), gopher tortoise (Gopherus polyphemus) and indigo snake (Drymarchon spp.) [12]. Equally 

distinctive within ASGA are the partnerships and coalitions dedicated to the restoration of longleaf 

pine, making this region an ideal location to quantify various aspects of the existing forest condition 

for the purposes of management and restoration.   
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Figure 1. Apalachicola Significant Geographic Area (ASGA) location map (right) and image 

acquisition dates and scene boundaries (left) used to bring images to a common relative radiometric 

scale. Landsat 8 and Sentinel II images were acquired for three seasons, representing a leaf on growing 

season (LGS), leaf on dormant season (LDS), and a leaf off winter season (LWS). Aerial imagery was 

only acquired for LDS. Image acquisition dates can be found in Table A1.   

2.2 Data  

Primary datasets used in this study consist of field inventory (plots), aerial based digital imagery 

[13], multi-temporal Sentinel II satellite imagery [14], and multi-temporal Landsat 8 satellite imagery 

with level 1 terrain precision (L1TP) correction [15, 16] for the extent of ASGA. Field plot 

measurements were collected by trained technicians [17] between the months of September 2017 and 

February 2018. Aerial imagery was flown by Quantum Spatial [13] at a nominal spatial resolution of 

0.6 m for blue, green, red, and near infrared portion of the electromagnetic spectrum between October 

26th and November 18th, 2017 (Figure 2). Multi-temporal Sentinel II images were manually selected 

for cloud free tiles and were downloaded from the European Space Agency (ESA) website Sentinel 

Online [18] for a leaf on growing season (LGS), leaf on dormant season (LDS) and a leaf off winter 

season (LWS) between the years of 2017 and 2018 (Figure 2). Sentinel II bands 2, 3, 4, and 8 at a 

nominal spatial resolution of 10 m were used for study comparisons. Landsat 8 L1TP images were 

also manually selected for cloud-free scenes and were downloaded from United States Geological 

Survey (USGS) website Earth Explorer [19] for similar LGS, LDS, and LWS periods between the years 

2015 and 2018 (Figure 2). Landsat 8 bands 2 - 7 were used for study comparisons (Table 1).     

To reduce the negative impacts of co-registration [20] we used a field plot layout consisting of 

four adjacent circular subplots, each with a radius of 9 m. In total, 244 field plots were installed and 

used to measure tree species counts and diameters at breast height (dbh; 1.37 m) (Figure 3). For the 

extent of each field plot (36 m by 36 m, containing 4 subplots each with 9.0 m radius), spectral and 

textural metrics derived from source and normalized Landsat 8, Sentinel II, and aerial imagery 

(section 2.4) were extracted and used to calibrate models that estimate the dominant forest type 

(DFT), longleaf pine presence (LPP), and basal area per ha (BAH) and trees per ha (TPH) of pine and 

other tree species groups (section 2.5). 
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Table 1. Sources, spatial resolution, and labeling of imagery used in comparisons. 

Source Code Resolution Bands Texture Metric Season ID 

Landsat 8 L 30 m 2-7 

Mean (cell) 

LDS 1-6 

LGS 7-12 

LWS 13-18 

Standard deviation (3 by 3 cells) 

LDS 19-24 

LGS 25-30 

LWS 31-36 

Sentinel II S 10 m 
2, 3, 4, 

and 8 

Mean (3 by 3  cells) 

LDS 1-4 

LGS 5-8 

LWS 9-12 

Standard deviation (5 by 5 cells) 

LDS 13-16 

LGS 17-20 

LWS 21-24 

Quantum 

Spatial 
A 0.6 m 1-4 

Mean (61 by 61 cells) LDS 1-4 

Standard deviation (61 by 61 cells) LDS 5-8 

 

 

 

 

 

Figure 2. Landsat 8, Sentinel II, and Quantum Spatial (Aerial) imagery true color displays for leaf on 

fall dormant (LDS), leaf on spring growing (LGS), and leaf off winter (LWS) season mosaics used in 

the study. The AGSA is outlined in orange. 
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Figure 3. Spatial allocation (Top), contextual scale (bottom left), and layout (bottom right) of field 

plots (yellow points) overlaid on aerial imagery used in the study. Target population (tan colored 

region) accounted for approximately 23% of the total area within the ASGA. 

2.3 Sample design 

A significant portion of ASGA is made up of private land holdings. Owing to access constraints, 

forests in these holdings could not be sampled. The remaining area, consisting primarily of public 

lands, constituted our target population (Figure 3). Plot locations within the target population were 

allocated spatially at random within 804 m of a road. In total a sample of 244 locations was drawn 

from the target population. This restriction on sampling necessitates the following assumptions: 1) 

the target population encompasses the spectral domain of the full ASGA and 2) the relationships 

between variables observed in the field and those derived from the imagery are the same across the 

target population and the full ASGA including all lands. Only the first of these can be empirically 

evaluated. 

To evaluate the first assumption, we partitioned the multivariate distribution of the normalized 

spectral and textural metrics (section 2.4) over the ASGA into 100 classes using an unsupervised k-

means classification [21, 22]. A simple random sample of 10,000 locations drawn from across the 

ASGA was used for this purpose. We then compared the class proportions for the full ASGA to the 

proportions across the 244 sample locations. 

2.4 Field data 

Plot data consisted of global position system (GPS) locations and tree measurements within the 

boundaries of subplots (Figure 3) at those locations. Basal area (BAH; m2 ha-1) and tree density (TPH; 

trees ha-1) were summarized for trees greater than 5 cm in dbh by species group. Additionally, each 

plot was assigned a dominant forest type (DFT) label of Nonforest, Pine, or Other using the rules 
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defined in Table 2. Finally, longleaf pine presence or absence (trees above 5 cm dbh) was described 

at the plot level (Table 2).  

Table 2. Definitions and queries used to label Pine, Other, and Nonforest dominant forest cover types 

and the presence of longleaf pine along with proportion of sampled observations meeting those 

criteria. 

Classification Label Definition/Query Proportion 

DFT 

Pine (2) (P_BAH > O_BAH) and not Nonforest 0.480 

Other (1) (O_BAH > P_BAH) and not Nonforest 0.340 

Nonforest (0) P_BAH + O_BAH < 2 m2 ha-1  0.180 

LPP Present LP BAH > 0 m2 ha-1 and not Nonforest 0.168 

*P_BAH = pine, O_BAH = other, and LP_BAH = longleaf pine basal area per ha measure in m2.  

Field plots were located using a Wide Area Augmentation System (WAAS) enabled global 

position system (GPS) embedded within a Trimble Recon© data recorder. Plot GPS and tree data 

were collected using Environmental Systems Research Institute (ESRI)’s ArcPad© version 10.0 and a 

suite of mobile data collection applets developed specifically for this project (ArcPad Libraries; Field 

Plot Protocol). While every attempt was made to navigate to the exact field plot location, real time 

navigation can introduce geographic error. To minimize this error when relating field plot summaries 

to remotely sensed data, 20 GPS positions were collected and averaged to estimate the exact center 

of the southeastern subplot within each 36 m by 36 m field plot. From the southeastern plot location 

remaining subplots centers were located based on ground distance and compass bearings. On 

average the standard deviation of GPS positions for each plot, across all plots was less than 1 m with 

a maximum standard deviation in northing of 2.8 m and easting of 5.1 meters occurring at one plot 

location (average horizontal dilution of precision of 0.93). 

2.5 Image normalization 

Remotely sensed data were re-scaled to a common radiometric scale using an enhanced 

aggregate no-change regression (EANR) methodology. While similar to aggregate no-change 

regression (ANR) [6, 23], this procedure seeks to leverage strong linear relationships among Landsat, 

Sentinel II, and aerial image bands to bring finer spatial resolution imagery to the same relative 

radiometric scale as coarser imagery. The main differences between EANR and ANR are: 1) an added 

aggregation step to bring finer resolution imagery to the same spatial scale as the reference imagery, 

2) a normalization of raw digital number (DN) values, 3) a trimming procedure to mitigate 

confounding effects of land use/cover changes for images acquired at different dates, and 4) a 

sampling scheme to extract spectral aggregates within overlapping image boundaries. 

 Like ANR, EANR extends the concepts of automatic scattergram-controlled regression [24] by 

applying an area slicing algorithm to identify no-change pixels and then spatially aggregating pixel 

values around selected locations to minimize the effect of co-registration errors [20, 23]. Aggregated 

values at selected locations of the subject image are then regressed against the corresponding values 

for a reference image using ordinary least squares regression (OLS) on a band-by-band basis. 

Regression coefficients are then applied to the subject image to bring it to the same radiometric scale 

as the reference image and to other fine-scaled images that overlap the same reference image.  

Critical to this process is the elimination of areas and pixels within the region of image overlap 

that have been affected by land use or land cover change. This was accomplished in two steps. The 

first step required visually estimating the proportion (pΔ) of area within the overlapping regions of 

the images that were impacted by changes due to phenomena such as clouds, land use change, or 

land cover change. For our study we used an estimate of pΔ = 20 percent to mask Landsat 8 and 

Sentinel II pixels. For aerial imagery we used a pΔ ranging between 20 and 30 percent. Specifically, 

DN values were separately normalized (𝐷𝑁̂) to the unit scale for each of the subject (S) and 
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reference (R) images and bands (k). Differences in the normalized 𝐷𝑁̂ values between subject and 

reference images were then obtained for each band: 

∆𝐷𝑁̂𝑘 =  𝐷𝑁̂𝑅𝑘
− 𝐷𝑁̂𝑆𝑘

                                                                             (1) 

After ordering the 𝛥𝐷𝑁̂𝑘 values from smallest to largest, the pixels in the lower 10% (i.e., 0.5pΔ) and 

upper 10% were identified as “change” pixels in the spatial aggregation process.  

The spatial aggregation process minimizes the effect of co-registration errors [20] by extracting 

and calculating the mean values of unchanged pixels within the overlap of each image at a coarser 

grain size. In this procedure an aggregation block window size of nine by nine pixels was chosen 

based on simulated results found for Landsat 8 co-registration errors reported in Hogland and 

Affleck [20]. Aggregated blocks with more than 30 percent of the pixels identified as no-change were 

used for regression analyses of subject image blocks on reference image blocks for individual bands. 

The resulting regression coefficients for each band were then applied back to the non-aggregated 

pixel values of the subject image. 

 For Landsat 8 and Sentinel II images we used EANR with 1,000 randomly chosen locations 

within regions of overlap to bring images within a given season to a common relative radiometric 

scale. For normalization of Landsat 8 imagery, path/row 18/39 data were used as the reference images 

for each season. Reference images for normalization of Sentinel II imagery are specified in Table A1. 

For aerial imagery, normalized Landsat 8 imagery was used as reference. In instances when 

substantial land use or land cover change had occurred due to differences in image acquisition dates 

(e.g., changes in agricultural fields), manually defined spatial masks were used to remove additional 

pixels prior to implementation of the EANR procedure (Figure 4).  

 

Figure 4. Example of spatial masks (semitransparent beige colored polygon with green boarder) and 

random locations (yellow points) used in the enhanced aggregate no-change regression procedure 

(EANR) for leaf on fall dormant Landsat 8, Sentinel II, and aerial imagery. Light blue polygons 

highlight the overlapping area between images acquired at different dates while masked areas 

highlight a subset of that area composed primarily of forest vegetation. 

Once normalized, focal mean and standard deviation analyses [5, 6] were performed to quantify 

texture and mimic field plot extents for each band, season, and source of remotely sensed imagery 

(Table 1). For Landsat 8 imagery, mean band DN values were extracted based on the location of a 

given field plot and the nearest pixel (30m by 30m spatial resolution). Additionally at those locations, 
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Landsat 8 band standard deviations for a three by three moving window (90m by 90m) were 

calculated for each pixel and extracted. For Sentinel II imagery a three by three moving window (30m 

by 30m) was used to calculate mean values and a five by five window (50m by 50m) was used to 

calculate standard deviation. For aerial imagery a 61 by 61 window (grain size of 0.6 m, ~37m by 37m) 

was used to calculate image mean and standard deviation at each location. In total 68 different metrics 

were created and extracted from the normalized remotely sensed imagery using the averaged GPS 

location of each field plot and the nearest image pixel. As shown in Table 1, these metrics include 36 

band values extracted from Landsat 8 based imagery (2 metrics for 6 bands and 3 seasons), 24 band 

values extracted from Sentinel II based imagery (2 metrics for 4 bands and 3 seasons), and 8 band 

values extracted from the aerial imagery (2 metrics for 4 bands and 1 season). To evaluate the impact 

of EANR on estimating DFT, LLP, BAH and TPH, this metric creation and extraction process was 

repeated for non-normalized imagery and the values were used to build and compare models. 

2.6 Model Development, Comparisons, and Raster Surface Creation 

For each response variable (DFT and LLP labels, and pine and other tree species BAH and TPH) 

we used the variable selection routine described in [5, 6], to select EANR normalized and non-

normalized remotely sensed metrics that significantly (α = 0.05) improved model fit of generalized 

additive models (GAMs), as defined by increased percent deviance explained. GAMs are a flexible 

modeling technique that can accommodate nonlinear relationships between response and predictor 

variables using penalized regression splines [25] and can be applied to non-Gaussian response data 

such as the DFT and LLP. While useful in identifying nonlinear, nonparametric relationships, GAMs 

can overfit sample data making estimates less generalizable to a given population [26]. To address 

the issue of overfitting, we employed a Monte Carlo re-sampling scheme to build a suite of 50 GAMs 

constructed from random subsets of our data. For each of the 50 GAMs, 75 percent of the observations 

within our sample were used to develop relationships between a given response and our previously 

selected predictor variables. The remaining 25 percent of the observations that were not used to build 

the GAM constituted an out of bag (OOB) subset of the data and were used to independently assess 

the accuracy of GAM estimates (𝑃̂). Statistics calculated for assessment were root mean squared error 

(RMSE) for continuous response variables (BAH and TPH) and classification accuracy (calculated 

from a most likely class rule) for the binomial (LPP) and multinomial (DFT) categorical response 

variables. Once calibrated, we applied the ensemble of 50 GAMs (EGAM) to estimate each response 

variable (𝐸̂) and corresponding standard error (𝑆𝐸̂) at the pixel level as follows: 

𝐸̂ =
1

𝑛
∑ 𝑃̂𝑖

𝑛
𝑖=1     𝑎𝑛𝑑    𝑆𝐸̂ =  √

1

𝑛
∑ (𝑃̂𝑖 − 𝐸̂)

2𝑛
𝑖=1  .                                             (2) 

EGAMs based on EANR normalized imagery were compared against EGAMs based on non-

normalized imagery using trained and OOB, RMSE and classification accuracy statistics, and trained 

Akaike information criterion (AIC) [27, 28]. Our best fitting EGAMs (normalized versus raw image 

based predictors) for DFT, LLP and pine and other tree species BAH and TPH were used with the 

corresponding image metrics to produce raster surfaces depicting the condition of forests in the 

ASGA. Additionally, estimation errors from field samples were evaluated for spatial correlation 

using a global Moran’s I test [29].    
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3. Results 

3.1 Field data and Image Normalization 

  

Figure 5. Histograms and summary statistics of field plot basal area ha-1 (BAH) and trees ha-1 (BAH) 

for pine and other tree species groups. 

Plot data summaries are displayed in Figure 5 and Table 2. Almost half the plots were in the 

pine condition, but only 16.8% contained longleaf pine trees above 5 cm (and a total BAH above 2 m2 

ha-1). Mean BAH was only slightly higher in the DFT Other class than in the DFT Pine class, but BAH 

was more variable in the former. Mean TPH and variability in TPH was substantially lower in the 

Pine class relative to the Other forested condition. Taken together this indicates that tree diameter 

(dbh) tended to be larger in the Pine condition. 

 

 

Figure 6. Landsat 8, Sentinel II, and Aerial true color displays for leaf on fall dormant (LDS), leaf on 

spring growing (LGS), and leaf off winter (LWS) season mosaics used in the study. Image mosaics 

depict imagery after performing the enhanced aggregation no-change regression procedure. The 

AGSA boundary is outlined in orange.   



  

59 

 

The EANR procedure brought Landsat 8, Sentinel II, and the aerial imagery to common 

radiometric scales (Figure 6). The R2 statistics for LDS, LGS, and LWS Landsat 8 normalization 

regressions were generally large (greater than 0.9; Figure 7) across all bands, with the lowest R2 

coinciding with LWS analyses. Similarly, for Sentinel II imagery, the R2 statistics of the image-to-

image overlap regressions were large (greater than 0.9) with the lowest occurring in LWS. The 

strength of these associations resulted in the improved radiometric consistency across Landsat 8 and 

Sentinel II images that is visually evident in Figure 6. In contrast, regressions of overlapping aerial 

and Landsat 8 Imagery were weak for several flight paths (Figure 7). The acquisition dates for these 

paths tended to be later (Figure 4) and potentially coincided with dramatic changes in plant 

phenology. As a result aerial scene boundaries were still apparent in normalized mosaics (Figure 6). 

 

 

 

Figure 7. Box plots of enhanced aggregate no-change normalization (EANR) coefficient of 

determination (R2) results for each source of imagery and season across all image bands. Leaf on 

dormant (LDS), leaf on growing (LGS), and leaf off winter (LWS) season box plots are displayed from 

left to right. Aerial imagery was only acquired during LDS and is absent from LGS and LWS. 

3.2 Sample distribution 

Strong correlations existed among the 68 spectral and textural metrics derived from the 

imagery, with the first 10 principal components accounting for 86.6 percent of the variation within 

the 10,000 locations spread at random across the ASGA (Figure 8). Clusters derived from those 

metrics using the k-means unsupervised clustering algorithm divided the feature space into 100 

classes of varying size (Figure 9). The distribution of the field plot locations across those same 100 

classes shows that the field plots spanned a wide range of the feature space, but did not capture all 

the spectral classes. Many of the classes not represented at the field plot locations corresponded to 

urban and agricultural cover types.  

 

 

Figure 8. Proportion of variance explained within the first 10 principal components. 
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Figure 9. Proportion of counts falling within each of 100 classes (Bins) derived from a k-means 

unsupervised classification of predictor variable value component scores from normalized Landsat 8, 

Sentinel II, and aerial imagery and a selection of 10,000 random locations representing the population 

(orange) compared to the counts of those same classes falling within a random sample of 244  

accessible locations (blue). 

3.3 Model Development, Comparisons, and Raster Surface Creation 

Spectral and textural metrics selected for each EGAM varied by response variable and whether 

images were normalized to a common radiometric scale (Table 3). Using the variable selection 

procedure described by Hogland et al. [6], EGAMs selected between four and twelve metrics out of 

the potential 68 at a significance threshold of α = 0.05. In all instances metrics were selected from each 

image source and from multiple seasons (Tables 1 and 3). Compared with EGAMs built using non-

normalized texture metrics, EANR based EGAMs generally improved model fit as measured by 

classification error, RMSE, and AIC (Table 3). EGAMs based on non-normalized imagery generally 

selected fewer metrics and tended to utilize metrics derived from Landsat 8 and Sentinel II data 

sources.  

Overall classification accuracies for DFT and LPP EGAMs were greater than 88 percent with the 

most common classification errors being the mapping of the Other forested condition as pine, and 

longleaf presence being mapped as absence (Figure 10). Training and OOB errors for DFT, LPP, BAH 

and TPH EGAMs are reported in Table 3 and suggest strong relationships among response and 

normalized predictor variables, particularly in Pine conditions. Estimated BAH and TPH values were 

also strongly correlated with observed values, though in densely stocked conditions (TPH above 1000 

stems ha-1, BAH above 20-30 m2 ha-1) EGAMs tended to underestimate BAH and TPH (Figure 11). 

Estimation errors for some EGAMs were positively spatially correlated, suggesting spatial patterns 

or trends in model errors (Table 4). Though tempting to address the spatial variability in estimation 

error using kriging [30], our sample design does not lend itself to accounting for spatial trends in the 

residuals across the largely privately-owned tracts of the AGSA that were outside the target 

population.  
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Table 3. Selected predictor variables and error statistics for normalized (EANR) and non-normalized 

(RAW) based Ensemble Generalized Additive Models (EGAMs). Deviance̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  denotes the average overall 

deviance of the sample (null model). Error statistics for DFT and LPP are in terms of 1 - accuracy of 

the classification while BAH and TPH errors are measured in terms of root mean squared error 

(RMSE) on the square root scale. Train and out of bag (OOB) errors denote whether error statics were 

calculated from observations used to train a given model or withheld from training, respectively. 

Mean Akaike information criterion (AIC̅̅ ̅̅ ̅) was calculated from EGAMs and used to compare models 

built from EANR and RAW based predictors. 

Response Normalization Predictors* Deviance̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Train OOB 𝐴𝐼𝐶̅̅ ̅̅ ̅ 

DFT 
EANR L3, L16, L17, S2, S5, S7, S21, A1 376.085 0.068 0.235 86.217 

RAW L8, L9,L16, L18, S11, S5 375.140 0.103 0.263 110.023 

LPP 
EANR L2, L17, S3, S4, A2, A5 166.455 0.056 0.129 94.683 

RAW L2, L13, S9, A6 166.094 0.095 0.148 113.617 

√𝑃𝑖𝑛𝑒 𝐵𝐴𝐻 

EANR 
L2, L8, L10, L11, L16, L17, L18,  

L22, A2, A8 
581.427 0.909 1.168 548.664 

RAW 
L2, L5, L6, L8, L10, L11, L17, 

L22, S9, S10, S11, s12, A4 
582.620 0.900 1.267 547.441 

√Other BAH 

EANR 
L3, L5, L11, S7, S9, S21, S23, A2, 

A5 
989.519 1.108 1.365 600.177 

RAW 
L3, L5, L11, L13, L16, S12, A5, 

A7 
992.229 1.188 1.541 637.448 

√Pine TPH 

EANR 
L3, L5, L8, L10, L11, L17, L28, 

S4, S11, A2, A5 
21,686.265 5.755 9.197 1,243.537 

RAW 
L1, L4, L5, l6, L13, L22, L31, S11, 

S20  
21,497.754 6.709 10.866 1,277.418 

√Other TPH 
EANR L9, L13, S2, S6, S7, S20 A1 66,299.997 11.787 14.977 1,471.036 

RAW L3, L5, L11, L13, S12, S20, A5 66,161.379 12.492 14.682 1,486.281 
*Predictor variable naming convention is based on the concatenation of Table 1 code and Id columns 

 

Table 4. Global Moran’s I (GMI) statistics and p-values for ensemble generalized additive model 

residuals (EGAMS). 

EGAM* GMI p-value 

DFT (Nonforest) 0.364 <0.001 

DFT (Other) 0.067 0.190 

DFT (Pine) 0.093 0.153 

LPP (Present) 0.223 0.002 

LPP (Absent) 0.223 0.002 

Pine BAH 0.184 0.011 

Pine TPH 0.068 0.188 

Other BAH 0.087 0.131 

Other TPH 0.140 0.037 
* DFT = Dominant Forest Type, LPP = Longleaf Pine Presence, BAH = basal area per ha (m2), TPH = trees 

per ha 
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Figure 10. Accuracy assessment for dominant forest type (DFT) and presence of longleaf pine (LPP) 

using all 244 field plots and the corresponding ensemble generalized additive model (EGAM). Exact 

95 percent lower and upper confidence limits for each class are reported above and below bold 

numbers within the error matrix and within parentheses of overall accuracy.   

 

Figure 11. Predicted versus observed values (blue circles) of basal area per ha (BAH) and trees per ha 

(TPH) for pine and other tree species groups. The black dashed line shows the general trend based on 

a loess smooth estimator with grey shaded 95 percent confidence bands. The red line denotes a one 

to one line and provides reference for comparison between predicted and observed values. 
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EGAM raster surfaces were created at a spatial resolution of 30 m across the ASGA for all 

response variables. For DFT and LPP, EGAMs estimates include class probabilities and empirically 

derived standard errors for each cell within the study area. For pine and other √𝐵𝐴𝐻 and √𝑇𝑃𝐻, 

estimates and standard errors were calculated using squared transformations of EGAM estimates.  

DFT and LPP raster surfaces are presented in Figure 12 while BAH and TPH surfaces are 

presented in Figure 13. Additionally, Figures 12 and 13 display the spatial distribution of EGAM-

specific feature space k-means classes that were not represented within the sample. Some banding of 

estimates and standard errors is evident in Figures 12 and 13 for the models using the A2 and A5 

metrics (e.g., for LLP, Pine TPH, Other BAH) in the eastern portion of the ASGA. Those bands tend 

to appear in the corresponding sample representation maps, suggesting that certain flight paths in 

the aerial imagery could not be fully normalized and were not able to be adequately sampled in the 

field.  

     

 

Figure 12. The spatial distribution of the dominant forest type most likely class (DFT), class 

probabilities, and class probability standard errors for Nonforested (red), Other (green), and Pine 

(blue) cover types (Table 2). Additionally, presence and absence of longleaf pine within a plot based 

on a most likely class rule (LPP), presence probabilities, and presence probability standard errors 

(purple to green color gradient) for LPP EGAM predictions. Finally, the spatial location of K-mean 

classes not represented in the sample used to train EGAM’s are displayed as orange areas in the 

bottom row of graphics. 
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Figure 13. Display of BAH and TPH raster surfaces created from ensemble generalized additive 

models (EGAMs) for pine and other tree species groups. EGAM raster cell estimated values (top row 

of graphics) and standard errors (middle row of graphics) increase as colors transition from purple to 

green. The spatial location K-mean classes not represented in the sample used to train EGAM’s are 

displayed as red areas in the bottom row of graphics.   

4. Discussion 

We have mapped key forest characteristics across ASGA that can be used to inform spatially 

explicit longleaf restoration decision making. These surfaces transform data that are relatively easy 

to collect into pertinent information for longleaf pine restoration, providing the fine level of spatial 

detail and accuracy needed to make well-informed restoration decisions. We have also described how 

to and demonstrated the importance of bring images to a common radiometric scale across sources, 

years, and spatial resolutions (Figure 6). Models built with EANR-normalized spectral and textural 

metrics utilized distinct sources and bands, and had less error than models built using the raw 

imagery (Table 3). Additionally, our study highlights how multiple image resolutions (temporal, 

spectral, and spatial) can improve model fit and estimation, especially after images have been 

brought to a common radiometric scale using a technique like EANR. Finally, we presented and 

implemented an ensemble generalized additive modeling (EGAM) approach to estimate DFT, LPP, 

and BAH and TPH for pine and other tree species groups that accommodates nonlinear relationships 

while mitigating the potential for overfitting. Combined, EANR and EGAM produce better estimates 

of key forest characteristics than previous longleaf pine mapping efforts [5, 6] (reductions in 

classification error and RMSE). Moreover, the EGAM procedure provided spatial depictions of 

empirically derived estimation error (standard error surfaces) that can be used by resource managers 

when making management decision.  

Sample design in our study played an important role in inference. Because some areas were 

inaccessible, field sampling was limited to a subset of the total ASGA (Figure 3). This limitation means 

that inferences across ASGA must rely on the assumptions that the sample adequately characterizes 

the feature space and that the predictor-response relationships do not vary among different 

ownership types across the ASGA. Fortunately, our EGAMs could rely on relatively strong 

relationships among response and predictor variables and the sampled locations captured an 

appreciable extent of the feature space (Figure 8). For these reasons we feel relatively confident that 

model estimates provide an accurate depiction of forested conditions across the ASGA. However, 

our assessment did identify portions of feature space that were unsampled, and others that were 

overrepresented and underrepresented. From a model calibration perspective overrepresentation can 

be thought of as wasted effort when variability in the predictor-response relationship is relatively 
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minor. In those instances, observations from overrepresented regions of feature space could 

potentially be allocated to unsampled or underrepresented areas. Additionally, our assessment 

detected some geographic areas where the imagery could not be adequately normalized and thus 

may relate differently to the vegetation conditions. Future designs should attempt to spread sample 

locations across predictor variable space, while balancing the sample to mimic the distributional 

characteristics of the population [30]. Toward this end, the raster surfaces created from this study 

could be used to spread and balance sampling locations for future studies [31], thereby providing 

additional means to minimize error and reduce sample cost. 

Quantitatively, DFT and LPP EGAM fit statistics suggest that our models accurately depicted 

forest cover types and the presence of longleaf pine. Similarly BAH and TPH EGAM estimates were 

strongly correlated with observed plot BAH and TPH over the lower ranges of these variables. 

Moreover, EANR based EGAMs outperformed EGAMs based on spectral and textural metrics from 

raw imagery that was not normalized using EANR. Qualitatively, our raster surfaces display more 

detail and are less impacted by variation in image acquisition dates when compared to previous 

mapping efforts [5]. However, there were instances when our EGAMs appeared to underestimate 

TPH (Figure 11) and to omit instances when longleaf pine was present (Figure 10). For example, when 

TPH was greater than 1,000 ha-1 (e.g., as would be the case in young or overstocked stands) EGAMs 

underestimated TPH. Additionally, some areas dominated by cities, agricultural fields, water, and 

aquatic vegetation were underrepresented or not represented (Figures 12 and 13) in our sample and 

led to imprecise estimates (Figure 14). However, DFT, LPP, BAH and TPH models generally 

produced reliable, spatially explicit estimates. 

 

 

Figure 14. A close up example of locations with large standard errors in estimated Pine BAH due to 

under or no representation of feature space classes within the sample used to train the Pine BAH 

ensemble generalized additive model.  
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While estimation error could be reduced for almost every EGAM by including additional EANR 

normalized spectral and texture predictive variables (i.e., setting an α = 0.1), the added complexity 

and processing associated with including more variables outweighed the marginal gains in accuracy 

and precision. Similarly, many of the predictor variables used in our EGAMs were highly correlated, 

suggesting marginal utility of additional metrics. Additionally, areas within feature space that were 

underrepresented or not represented generally produced extremely variable estimates, which should 

be viewed with skepticism. Moreover, EGAMs that were more complex (i.e., more predictor 

variables) tended to have larger proportions of the expanded feature space underrepresented. This 

suggests that for limited sample sizes, simpler models (i.e., fewer predictors) may be preferred for 

wall to wall mapping endeavors along with masking land cover types that are not forested. Finally, 

for some of our EGAMs, estimation errors exhibited minor positive spatial correlation. While 

tempting to use kriging methods [32] to remove global spatial trends in estimation error, our design 

did not adequately sample geographic space across ASGA, limiting the utility of kriging methods to 

contiguous accessible areas sampled within our study. 

Though additional improvements can be made to our estimates of forest characteristics, 

tradeoffs between processing, model development, and sampling costs related to improvements in 

accuracy should be weighed to evaluate the level of precision needed to inform decision making [33]. 

Given the amount of model error potentially introduced by co-registration errors [20], our EGAMs 

explain the majority of the variation that can be accounted for within the field data and provide a 

substantial improvement over previous efforts [5, 6]. Additionally, by implementing an ensemble 

approach to generalized additive models, we were able to capture nonparametric trends in the data 

while mitigating overfitting and providing a technique to empirically estimate standard errors. The 

resultant estimates and standard errors provide the type of information needed to make both fine 

and coarse grained restoration decisions across the ASGA.      

5. Conclusions 

Adept forest management requires accurate information concerning the status and distribution 

of forest resources. To create accurate information pertinent to longleaf pine restoration, we 

developed procedures to bring multi-temporal images to a common radiometric scale, model 

nonparametric relationships between remotely sensed and field measured data, and produce spatial 

depictions of forest cover types, longleaf pine presence, and BAH and TPH by forest cover class. 

These procedures and sources of data were combined to produce the types of information needed to 

inform longleaf restoration planning and implementation at planning and tactical spatial scales 

across a relatively large area in northwestern Florida. 

Appendix A 

Table A1. Landsat 8, Sentinel II, and Aerial image acquisition dates by season and path, row, or tile. 

Source Season Path\Row\Tile Acquisition Date 

Landsat 8 LDS 18\39+ 10/11/2016 

Landsat 8 LDS 19\39 10/16/2015 

Landsat 8 LGS 18\39+ 5/7/2017 

Landsat 8 LGS 19\39 4/9/2016 

Landsat 8 LWS 18\39+ 1/18/2018 

Landsat 8 LWS 19\39 12/21/2016 

Sentinel II LDS 16RFV+ 10/12/2018 

Sentinel II LDS 16RFU+ 10/12/2018 

Sentinel II LDS 16RFT+ 10/12/2018 
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Sentinel II LDS 17RGU 10/14/2018 

Sentinel II LDS 17RKP 10/14/2018 

Sentinel II LGS 16RFV 3/16/2017 

Sentinel II LGS 16RFU 3/16/2017 

Sentinel II LGS 16RFT+ 5/2/2017 

Sentinel II LGS 17RGU+ 5/2/2017 

Sentinel II LGS 17RKP+ 5/2/2017 

Sentinel II LWS 16RFV+ 1/30/2018 

Sentinel II LWS 16RFU+ 1/30/2018 

Sentinel II LWS 16RFT 2/24/2017 

Sentinel II LWS 17RGU 1/12/2017 

Sentinel II LWS 17RKP 1/12/2017 

Aerial Imagery LDS 7001 10/26/2017 

Aerial Imagery LDS 7002 10/26/2017 

Aerial Imagery LDS 7003 10/26/2017 

Aerial Imagery LDS 7004 10/26/2017 

Aerial Imagery LDS 8001 11/10/2017 

Aerial Imagery LDS 8002 11/18/2017 

Aerial Imagery LDS 8003 11/18/2017 

Aerial Imagery LDS 8004 11/18/2017 

Aerial Imagery LDS 8005 11/5/2017 

Aerial Imagery LDS 8006 11/5/2017 

Aerial Imagery LDS 8007 11/5/2017 

Aerial Imagery LDS 8008 11/5/2017 

Aerial Imagery LDS 8009 11/5/2017 

Aerial Imagery LDS 8010 11/1/2017 

Aerial Imagery LDS 8011 11/1/2017 

Aerial Imagery LDS 8012 11/1/2017 

Aerial Imagery LDS 8013 11/1/2017 

Aerial Imagery LDS 8014 10/26/2017 

Aerial Imagery LDS 9017 10/29/2017 

Aerial Imagery LDS 9018 10/24/2017 

Aerial Imagery LDS 9019 10/24/2017 

Aerial Imagery LDS 9020 10/24/2017 

Aerial Imagery LDS 9021 10/24/2017 

Aerial Imagery LDS 9022 10/24/2017 

Aerial Imagery LDS 9023 10/24/2017 

Aerial Imagery LDS 9024 10/24/2017 

Aerial Imagery LDS 9025 10/24/2017 

Aerial Imagery LDS 9026 10/24/2017 

Aerial Imagery LDS 9027 10/24/2017 

+ Denotes reference image used to normalize a given image source. Aerial imagery was normalized to 

normalized Landsat 8 imagery. 
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Transforming data into information for natural 

resource decision making: Improving the utility of 

remote sensing products at tactical and planning 

scales 

Abstract: Big data and the information and knowledge we glean from it are fundamentally changing 

the way in which resource management decisions are being made. The use of remotely sensed data, 

ever expanding computer technology, and various processing techniques are helping to provide 

natural resource managers with depictions of various aspects of ecosystems at unprecedented 

spatial and temporal resolutions. While the technologies used to gather data about natural resources 

have arguably outpaced our abilities to efficiently produce and utilize the many types of 

information that can now be generated, fundamentally there are still important questions related to 

scale, relevance, and understanding of the information within various data streams that must be 

addressed before empirically-driven decision making will reach its full potential within the natural 

resource community. In this communications, we identify some of the obstacles to adopting data 

driven decision-making within the natural resource community and highlight recent studies and 

solutions that advance our ability to transform data into useful information to facilitate informed 

natural resource decisions.  

Keywords: Big data; decision science; data science; estimation; remote sensing; sub domain; natural 

resources; spatial modeling 

 

1. Introduction 

Our terrestrial environment is constantly being monitored. Today with satellite and airborne 

sensors such as MODIS [1], Landsat [2], Sentinel [3], and NAIP [4] we are able to acquire data about 

our environment at spatial, spectral, and temporal resolutions that were recently hard to imagine. 

Similarly, with advancements in drone technology and sensor hardware, the amount of remotely 

sensed data that can and is being acquired on a planned and ad hoc basis and used to quantify aspects 

of natural resources is staggering. In other fields such as finance and medicine, the recognition that 

large volumes of data are not being fully leveraged to inform the decision making process has led to 

an increased awareness of the fields of data science and the potential of what has become known as 

“big data” [5]. While still relatively new in concept and application, the tenets of data science and 

decision science with regards to big data streams appears to be lagging behind within the natural 

resources management community [6]. Though the products of many sensors can be manually 

interpreted by analysts to help visualize our environment, today the volume, velocity, and variety of 

data being collected requires an automated approach to interpretation [7]. Moreover, with 

advancements in image processing, many of the complex relationships that are difficult for a human 

analyst to visually identify can be made apparent through data mining, image processing, and 

statistical and machine learning techniques [8].  

However, there are many obstacles that prevent the common use of data science principles 

within the natural resources community. Commonly recognized impediments include the lack of 

education and skills associated with integrating the various mathematical, statistical, machine 

learning techniques, computer programming languages, data formats, and the size of the data [6]. 

Less understood issues revolve around how data transformed into information (e.g., modeled 

outputs) can be leveraged to inform efficient decisions, the impact of using models calibrated for 

large spatial domains to produce estimates for subdomains, the propagation of errors, and the impact 

of model misspecification. Within this context, many of the big data and processing challenges that 
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plague other fields apply to natural resources. However, issues of scale, domain, error, and relevance 

can have additional meanings within a natural resource setting that are tightly coupled with inherent 

complexities associated with dynamic natural systems. Because of these complexities and lack of 

personnel trained in advanced data analytics, studies and methodologies that convert data into 

pertinent forest related information such as described in Chapter 4 are seldom used to their potential 

to identify and justify planning and management decisions. Moreover, it is often the case that 

resource managers ignore these sources of information when making decisions, instead valuing 

expert opinion over data-driven information. Worse yet, because resource managers are often 

unfamiliar with many of the modeling techniques and the strengths and weaknesses associated with 

various estimates, modeled outputs can be easily misused to erroneously justify or negate 

management action. In other words, it is often difficult for practitioners to identify misspecified or 

misused models and outputs.  

In large part, the choice between expert opinion and data driven decision making is not binary. 

Instead, natural resource planning and management is better framed within the context of being 

justifiable, repeatable, and accurate [9], which requires expert interpretation and opinion regarding 

what can be measured, monitored, and documented. Within this context, appreciation for and 

understanding of what data science, remote sensing, and big data can provide for natural resource 

managers is paramount to meeting most resource based objectives. To highlight the possibilities 

provided by a data science approach to generating information for natural resource decision making, 

I synthesize the findings of this dissertation and discuss how data and decision science need to be 

integrated within the field of natural resources, and offer a path forward for such integration. 

2. Synthesis 

An important aspect of converting data into useful information is fundamentally understanding 

how the two are distinct from but related to one another. Here I make a distinction between data and 

useful information in that data represent numbers or values while useful information applies 

meaning to those numbers or values that bridges the gap between information and knowledge. For 

example, a tree diameter can be measured and recorded as a datum. However, when that datum is 

supplemented with the context that it defines the girth at breast height of a given tree, then it also has 

inherent meaning and contains information to a forester who can use their knowledge about tree 

growth to infer the size, age, and value of that tree from that measurement. Similarly, spectral 

reflectance can be recorded by a satellite and stored as data. In this setting the data values may have 

little meaning to a forester but when rendered spatially, patterns emerge based on electromagnetic 

reflectance across locations, generating useful information that conveys meaning related to trees and 

forests. Inherently, patterns are connected to the spatial scale of one’s vantage point. To convert 

patterns into useful information pertinent to a natural resource manager, measurements pertaining 

to trees and forests should be collected at similar spatial scales as the emergent patterns. While 

intuitive and straight forward, the implementation of a study design that directly relates what is 

found on the ground to the same location within an image is confounded by the difficulty of 

geographically registering the two sources of data, which leads to co-registration errors. In Chapter 

2, I explored the impact of co-registration error on converting image-based data into useful 

information. My findings indicated that substantial variation can be attributed to co-registration error 

and that spatial aggregation can help to reduce this source of error. Additionally, I identified that this 

source of error is dependent on the degree of spatial correlation within images, which in turn can be 

used to estimate the reduction in potential model explanatory power due to co-registration errors. 

Moreover, I quantified the impact of subsampling within a defined extent on model error and used 

those results to define a field plot layout for Chapter 4 that minimized the impact of co-registration 

errors, while at the same time being practical to implement when using satellite and aerial imagery 

to model forest cover types, basal areas, and tree density and generate accurate estimates of these 

metrics.  
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Another vital facet to converting data into useful information when modeling is sample design. 

In Chapter 3 I explored the impact to estimation when samples are spread and balanced in predictor 

variable space for multiple sample designs, amounts of modeling error, functional relationships, and 

modeling techniques. My findings suggested that as error is introduced into the relationship between 

variables, model and expansion-based estimates converge for probability based sampling. This 

further indicates that including ancillary variables in the estimation process can only improves 

parameter estimation when using samples based on a probabilistic design. While sample design had 

less of an impact on model based estimates, substantial reductions in estimation error could also be 

attributed to spreading samples within feature space for both expansion and model-based estimates. 

Moreover, when functional relationships matched theoretical model based assumptions, those 

models tended to outperform, or perform equally to, data centric machine learning techniques. 

However, machine learning techniques across all functional relationships tended to perform better 

when the underlying relationships between variables were unknown. Finally, for the majority of 

comparisons within Chapter 3, the generalized additive modeling approach (GAMs) produced the 

least amount of estimation error, suggesting that this technique can be used to successfully “mine” 

complex patterns in multidimensional data. 

Using the findings from Chapters 2 and 3, I conducted a case study in the panhandle of Florida 

(Chapter 4) that converted multi-temporal satellite imagery into useful information relevant to forest 

management and longleaf pine conservation. Information produced in this study included estimates 

of dominant forest cover types, the presence of longleaf pine, and pine and other tree species basal 

area (m2 ha-1 , BAH) and tree density (trees ha-1 , TPH). Additionally, in this study I developed and 

presented a new procedure to bring images to a common radiometric scale (enhanced aggregate no-

change regression, EARN) and implemented an ensemble GAM (EGAM) modeling technique. My 

estimates and associated standard errors of forest cover, longleaf presence, BAH, and TPH provide 

detailed spatial depictions of key forest information needed to inform planning and management. 

Moreover, in this chapter I highlight the negative impact of complex models and demonstrate that as 

the number of predictor variables increase, the proportion of feature space underrepresented or not 

represented within a sample increases, leading to reduced precision.   

3. Discussion and Future Research 

The intensity with which we can acquire data about our environment is constantly increasing, 

with expanding volume, variety, and velocity. Transforming those data streams into useful 

information relevant to natural resources requires skillsets that expand what is currently taught 

within the fields of natural resources to include what is commonly taught in computer science, 

information systems, mathematics, statistics, and machine learning. Emphasizing these skillsets 

within natural resources recognizes the potential of big data and how the tenets of data science can 

be used to inform better decisions. In this dissertation, I addressed knowledge gaps in relating field 

data to remotely sensed imagery, sample design, image normalization, and converting data into 

useful information. However, to convert the types of information described in Chapter 4 into 

decisions that can be implemented on the ground will require translating findings into knowledge 

and communicating their importance to managers and practitioners [7]. While I acknowledge that in 

the short run specialists will need to help translate information, perform many of the analyses, 

provide results to decision makers, and even market the need and potential of these technologies, I 

argue that decision makers will eventually need to be educated in the tenets of data and decision 

science to fully take advantage of the volume, velocity, and variety of the ever expanding nexus of 

available data streams. 

To this end future research should be equally focused on translating big data into useful 

information and building new technologies to address big data challenges, as using the types of 

information created in Chapter 4 in the decision making process to improve organizational 

operations and outcomes. While the former topic tends to dominate the scientific literature, the 

operational and translational piece [10, 11] continues to lag far behind [6]. This is not to suggest that 
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the applied or practitioner role should become the focus of scientists and researchers, but instead 

highlights that further manipulation of useful information such as described in Chapter 4 is often 

needed to incorporate complex and often competing objectives within natural resource management.  

For the scientist, researcher, and developer this type of research requires a larger upfront 

investment and appreciation for the existing organizational structure, workflows, goals, and 

objectives of a given organization (e.g., agency, non-governmental organization, business, or 

company) followed by a larger role in implementing recommendations and change. For managers, 

professionals, technicians, and practitioners this big data transition requires a deeper appreciation 

for the potential utility of technological advances and research findings and an ongoing desire to 

learn and continually adapted to new concepts and ideas that are proven to help reach, improve 

upon, and promote organizational goals and objectives. Of special interest here is communication 

and the flows of knowledge back and forth from the managers, practitioner, technicians, analysts, 

researchers, scientists, and developers.  

Specifically, within a data centric construct, it is false to assume that the organizational structure 

is independent from the operations occurring within the organization. In reality, both are tightly 

coupled and data, information, knowledge, and action are shared commodities flowing through a 

digital information system designed to digitally represent an organization and its workflows. This 

means that data are part of and at the forefront of transactions and interactions occurring within the 

entity and that digital systems must be designed such to store and access those transactions and 

interactions, not simply for reporting or retrieval but for the purpose of informed decision making, 

learning, and continual improvement in the organization. 

For example, Chapter 4 could be published in the scientific literature and the raster surfaces 

created in Chapter 4 could be stored on a file server for download by the Apalachicola National Forest 

(ANF) analysts in Florida. On one level this provide managers, professionals, technicians, and 

practitioners access to concepts and ideas used to create the datasets and the surfaces themselves. 

However, because the techniques and datasets are not directly integrated into the digital 

representation of ANF (the organization), it is unlikely that they will be directly used by employees 

to actively meet forest objectives. Alternatively, if the techniques and datasets described within 

Chapter 4 were packaged as part of the ANF digital framework and were integrated into ANF 

workflows as functions, tools, user forms, and datasets, it is much more likely that those data and 

techniques will inform forest management decisions (Figure 1-3). Similarly, knowing the objectives, 

workflows, and goals of ANF, and tailoring research questions in part to address those goals and 

objectives makes scientific discoveries and inventions relevant to a large user base. Equally important 

though, adopting such an integrated approach has the potential to streamline the scientific method 

while simultaneously moving scientific discovery and development forward at a faster pace. 
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Figure 1. An example of informing decision making. If the raster surfaces from chapter 4 were directly 

integrated into Apalachicola National Forest (ANF) digital enterprise with corresponding summary 

tools, stand estimates of pine basal area m2, ha-1 (BAH) or ft2, ac [BAA] could be compared against 

previous estimates to assess if management objectives are being met. In this example a 16.2 ha ANF 

stand measured in 1991 had a pine BAH of 11.8 m2 ha1. Using an integrated approach analysts could 

summarize raster surface cell values presented in chapter 4 for the area within a given stand (blue 

outline) to determine that in 2017 pine BAH has increased to 20.3 m2 ha-1. 

        

 
Figure 2. A second example of informing decision making. If the raster surfaces from chapter 4 were 

directly integrated into Apalachicola National Forest (ANF) digital enterprise and a plot allocation 

tools was developed based on findings from chapter 3, ANF employees could substantial reduce 

stand inventory costs. In this example if a forester wanted to be 95% sure their stand estimate of pine 

basal area (m2 ha-1) was within 10% of the true mean (blue outlined polygon), they could spread their 

samples using the raster surface values from chapter 4 and further use a ratio estimator [12] to 

spatially allocate plots (yellow points within the blue polygon in southeastern graphic) and reduce 

inventory cost from $3,200 to $400, assuming each tenth acre plot cost $80 to collect.  
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Figure 3. A third example of informing decision making. If the raster surfaces from chapter 4 were 

directly integrated into Apalachicola National Forest (ANF) digital enterprise and tools were 

developed to transform estimates of basal area (m2 ha-1) to maximum liters of water day-1 transpired 

by pine trees (based on [13]), hydrologists could quantify at fine spatial detail where and how much 

water is released into the atmosphere by pine trees and make informed recommendations related to 

tradeoffs in management and water quantity. In this example the 16.2 ha stand outlined in light blue 

transpires a maximum of 284,792 liters of water day-1 with 80% confidence limits reported in 

parentheses.      
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General Functions 
#R library developed and used in Coregistration Simulations 

#John Hogland 12/3/2018 

 

library(raster) 

library(gstat) 

library(RStoolbox) 

library(spsurvey) 

library(rgdal) 

library(rgeos) 

 

rasterOptions(maxmemory = 1e+09) 

rasterOptions(tmpdir = paste(getwd(), "tmp", sep = "/")) 

tmpDir(create = TRUE) 

 

###creates spatially correlated raster image.  

#rws = number of rows 

#clms = number of colunms 

#r = range 

#mdl = model-> Sph, Exp, Gau, Mat 

#mn = mean values 

#vr = variance 

#maxDist = maximum distance of spatial correlation (number of cells) 

#sim = number of simulations' 

getSpCorrImages <- function(rws, clms, r, mdl = "Sph", mn = 0, vr = 1, maxDist = 30, 

ng = 0, sim = 1) { 

    xy <- expand.grid(1:rws, 1:clms) 

    names(xy) <- c("x", "y") 

    g.dummy <- gstat(formula = z ~ 1, locations = ~x + y, dummy = T, beta = c(mn), 

model = vgm(psill = vr, model = mdl, range = r, nugget = ng), nmax = maxDist) 

    yy <- predict(g.dummy, newdata = xy, nsim = sim) 

    outSt <- stack() 

    for (k in seq(sim)) { 

        yys <- subset(yy, select = c("x", "y", paste("sim", k, sep = ""))) 

        gridded(yys) = ~x + y 

        rs <- raster(yys) 

        outSt <- addLayer(outSt, rs) 

    } 

    return(outSt) 

} 

#sample a raster and return a spatial points layer 

#rs = raster 
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#sampleSize = number of samples 

#type = srs, sys, grts, grts_b, stratified, mask' 

#stRS = stratum raster only for stratified 

#prs= predictor raster only for grts_b 

sampRaster <- function(rs, sampleSize, type = "srs", sp = TRUE, stRS = NULL, prs = 

NULL, mask = NULL, buffDist=50) { 

    outvl <- NULL 

    if (tolower(type) == "srs") { 

        outvl <- sampleRandom(rs, sampleSize, sp = sp) 

    } 

    if (tolower(type) == "sys") { 

        outvl <- sampleRegular2(rs, sampleSize) 

    } 

    if (tolower(type) == "stratified") { 

        outvl <- stratifiedSample(rs, sampleSize, stRs) 

    } 

    if (tolower(type) == "grts") { 

        outvl <- grtsSample(rs, sampleSize) 

    } 

    if (tolower(type) == "grts_b") { 

        outvl <- grtsSampleB(rs, sampleSize, prs) 

    } 

    if (tolower(type) == "mask") { 

        outvl <- maskSample(rs, sampleSize, mask,buffDist) 

    } 

    return(outvl) 

} 

maskSample <- function(rs, sampleSize, mask, buffDist=50) { 

    flNm <- strsplit(basename(mask),".shp")[[1]] 

    dirPath <- dirname(mask) 

    roadLayer <- readOGR(dsn = dirPath, layer=flNm) 

    rdBuff <- gBuffer(roadLayer, width = buffDist) 

    rsm <- mask(rs, rdBuff) 

    srs <- sampRaster(rsm, sampleSize, 'srs') 

    return(srs) 

} 

stratifiedSample <- function(rs, sampleSize, stRs) { 

    return(outvl) 

} 

grtsSample <- function(rs, sampleSize) { 

    ext <- extent(rs) 

    poly <- as(ext, 'SpatialPolygons') 

    crs(poly) <- crs(rs) 
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    Equaldsgn <- list(None = list(panel = c(PanelOne = sampleSize), seltype = 

"Equal")) 

    df <- data.frame(st = 1) 

    spdf <- SpatialPolygonsDataFrame(poly, df) 

    outvl <- grts(design = Equaldsgn, DesignID = 'st', type.frame = "area", 

src.frame = "sp.object", sp.object = spdf, shapefile = F) 

    tb <- as.data.frame(extract(rs, outvl@coords)) 

    spdf <- SpatialPointsDataFrame(outvl@coords, tb) 

    return(spdf) 

} 

grtsSampleB <- function(rs, sampleSize, prs) { 

    srs <- sampRaster(prs, 10000, "srs", sp = T) 

    pca <- princomp(srs@data, cor = TRUE) 

    srs@data$uid <- 1:nrow(srs@data) 

    sc <- pca$scores 

    df <- data.frame(uid = 1:nrow(sc), Comp.1 = sc[, 1], Comp.2 = sc[, 2]) 

    Equaldsgn <- list(None = list(panel = c(PanelOne = sampleSize), seltype = 

"Equal")) 

    outvl <- grts(design = Equaldsgn, type.frame = "finite", src.frame = 

'att.frame', att.frame = df, xcoord = "Comp.1", ycoord = "Comp.2", shapefile = F) 

    outdf <- merge(outvl@data, df, by = c('Comp.1', 'Comp.2')) 

    coords <- as.data.frame(srs@coords) 

    coords$uid <- (1:nrow(sc)) 

    scoords <- subset(coords, coords$uid %in% outdf$uid.x) 

    coordinates(scoords) = c("x", "y") 

    tb <- as.data.frame(extract(rs, scoords@coords)) 

    scoords@data = tb 

    return(scoords) 

} 

#adjustment to regular sample routine to implement random start 

sampleRegular2 <- function(rs3, sampSize) { 

    xl <- xmin(rs3) 

    xr <- xmax(rs3) 

    yb <- ymin(rs3) 

    yt <- ymax(rs3) 

    a <- (xr - xl) * (yt - yb) 

    skip <- sqrt(a / sampSize) 

    r_rc <- runif(2, 1, (skip / 2)) 

    iterx <- seq(xl + r_rc[1], xr, skip) 

    itery <- seq(yb + r_rc[2], yt, skip) 

    x <- vector(mode = 'double', length(iterx) * length(itery)) 

    y <- vector(mode = 'double', length(x)) 

    cnt <- 1 
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    for (i in iterx) { 

        for (j in itery) { 

            x[cnt] <- i 

            y[cnt] <- j 

            cnt <- cnt + 1 

        } 

    } 

    coords <- cbind(x, y) 

    tb <- as.data.frame(extract(rs3, coords)) 

    spdf <- SpatialPointsDataFrame(coords, tb, proj4string = crs(rs3)) 

    return(spdf) 

} 

#shift an existing set of locations to simulate co-registration errors and returns 

the shifted locations as a dataframe 

#pts = Spatial points dataset 

#gpsError = RMSE in gps expressed as cells 

#imgError = RMSE in image rectification expressed as cells' 

shiftXY <- function(pts, d1, d2) { 

    x <- pts$X 

    y <- pts$Y 

    cnt <- length(x) 

    #d1 <- rnorm(cnt, mean = 0, sd = gpsError) 

    #d2 <- rnorm(cnt, mean = 0, sd = imgError) 

    b1 <- runif(cnt, min = 0, (2 * pi)) 

    b2 <- runif(cnt, min = 0, (2 * pi)) 

    xp1 <- sin(b1) * d1 

    yp1 <- cos(b1) * d1 

    xp2 <- sin(b2) * d2 

    yp2 <- cos(b2) * d2 

    xpd <- xp1 + xp2 

    ypd <- yp1 + yp2 

    df <- data.frame(X = round(xpd + x), Y = round(ypd + y), D = round(sqrt(xpd ** 2 

+ ypd ** 2))) 

    return(df) 

} 

 

#get full image matrix 

getImgMatrix <- function(rs) { 

    return(getValuesBlock(rs, row = 1, nrows = nrow(rs), col = 1, ncols = ncol(rs), 

format = "matrix", byrow = TRUE)) 

} 

 

#extract list of point block size matrix 
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#rcDF = locations 

#rs = raster 

extractRcLst <- function(rcDf, rsMatrix, blcSize) { 

    outLst <- vector(mode = "list", length = nrow(rcDf)) 

    xc <- rcDf$X 

    yc <- rcDf$Y 

    for (r in 1:length(outLst)) { 

        x <- xc[r] 

        y <- yc[r] 

        outLst[[r]] <- rsMatrix[y:(y + blcSize), x:(x + blcSize)] 

#getValuesBlock(rs, row = y, nrows = blcSize, col = x, ncols = blcSize, format = 

'matrix') 

    } 

    return(outLst) 

} 

#gets multiple values and returns value lst 

getMeanBlockValues <- function(lstBlc, lyt, prop) { 

    rws <- length(lstBlc) 

    mt <- matrix(ncol = 2, nrow = rws) 

    for (r in 1:rws) { 

        vl <- getMeanBlockValue(lstBlc[[r]], lyt, prop) 

        mt[r,] <- vl 

    } 

    return(mt) 

} 

#extract values from raster: return dataframe 

#rcDf = locations 

#rs = raster' 

extractRC <- function(rcDf, rs, blcSize, pltLayout = 1, pltProp = 1) { 

    rws <- nrow(rcDf) 

    mt <- matrix(ncol = 2, nrow = rws) 

    xc <- rcDf$X 

    yc <- rcDf$Y 

    for (r in 1:rws) { 

        x <- xc[r] 

        y <- yc[r] 

        vl <- getMeanBlockValue(getValuesBlock(rs, row = y, nrows = blcSize, col = 

x, ncols = blcSize, format = 'matrix'), pltLayout, pltProp) 

        mt[r,] <- vl 

    } 

    return(mt) 

} 

#summarizes values within a block given a specified layout 
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#blc=matrix of cell values 

#lyt = plot layout [1,2,3,4,5,6] 1=center, 2=4 corners, 3=4 random, 4=FIA, 

5=9equal,6=corners & center 

#prop = proportion of area sampled within the plot extent 

getMeanBlockValue <- function(blc, lyt, prop) { 

    outVl <- 0 

    outProp <- 0 

    rws <- nrow(blc) 

    clm <- ncol(blc) 

    tCells <- sum(!is.na(blc)) 

    #print(paste("total cells:",tCells,sep=" ")) 

    if (prop == 1) { 

        outVl <- mean(blc, na.rm = TRUE) 

        outProp <- 1 

    } 

    else { 

        if (lyt == 1) { 

            bSize <- round(sqrt(tCells * prop)) 

            #print(paste("blockSize:", bSize, sep = " ")) 

            bSize2 <- bSize - 1 

            hb <- round(bSize / 2) 

            brw <- round(rws / 2) - hb 

            bclm <- round(clm / 2) - hb 

            outVl <- mean(blc[brw:(brw + bSize2), bclm:(bclm + bSize2)], na.rm = 

TRUE) 

            ccnt <- sum(!is.na(blc[brw:(brw + bSize2), bclm:(bclm + bSize2)])) 

            #print(paste("ccnt:", ccnt, sep = " ")) 

            outProp <- ccnt / tCells 

        } 

        else if (lyt == 2) { 

            bSize <- round(sqrt((tCells * prop) / 4)) 

            bSize2 <- bSize - 1 

            ccnt <- 0 #bSize**2*4 

            #print(paste("BSize2 =",bSize2,sep=" ")) 

            ms <- blc[1:bSize, 1:bSize] 

            m1 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[(rws - bSize2):rws, (clm - bSize2):clm] 

            m2 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[(rws - bSize2):rws, 1:bSize] 

            m3 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 
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            ms <- blc[1:bSize, (clm - bSize2):clm] 

            m4 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            outVl <- (m1 + m2 + m3 + m4) / ccnt 

            outProp <- ccnt / tCells 

        } 

        else if (lyt == 3) { 

            bSize <- round(sqrt((tCells * prop) / 4)) 

            bSize2 <- bSize - 1 

            ccnt <- 0 #bSize**2*4 

            rClm <- as.integer(runif(4, 1, clm - bSize2)) 

            rRw <- as.integer(runif(4, 1, rws - bSize2)) 

            sTot <- 0 

            for (i in 1:4) { 

                r <- rRw[i] 

                c <- rClm[i] 

                ms <- blc[r:(r + bSize2), c:(c + bSize2)] 

                sTot <- sTot + sum(ms, na.rm = TRUE) 

                ccnt <- ccnt + sum(!is.na(ms)) 

                #print(paste("rc:", r, c, sep = " ")) 

                #print(paste("tot:", sTot, sep = " ")) 

            } 

            outVl <- sTot / ccnt 

            outProp <- ccnt / tCells 

        } 

        else if (lyt == 4) { 

            bSize <- round(sqrt((tCells * prop) / 4)) 

            bSize2 <- bSize - 1 

            ccnt <- 0 #bSize**2*4 

            hbSize <- round(bSize / 2) 

            hc <- round(clm / 2) - hbSize 

            hr <- round(rws / 2) - hbSize 

            ms <- blc[hr:(hr + bSize2), hc:(hc + bSize2)] 

            m1 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[(rws - bSize2):rws, (clm - bSize2):clm] 

            m2 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[(rws - bSize2):rws, 1:bSize] 

            m3 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[1:bSize, hc:(hc + bSize2)] 

            m4 <- sum(ms, na.rm = TRUE) 
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            ccnt <- ccnt + sum(!is.na(ms)) 

            sTot <- m1 + m2 + m3 + m4 

            #print(paste("tot:", sTot, sep = " ")) 

            outVl <- sTot / ccnt 

            outProp <- ccnt / tCells 

        } 

        else if (lyt == 5) { 

            bSize <- round(sqrt((tCells * prop) / 9)) 

            bSize2 <- bSize - 1 

            ccnt <- 0 #bSize**2*9 

            hbSize <- round(bSize / 2) 

            hc <- round(rws / 2) - hbSize 

            hr <- round(clm / 2) - hbSize 

            rClm <- c(1, hc, (clm - bSize)) 

            rRw <- c(1, hr, (rws - bSize)) 

            sTot <- 0 

            for (i in 1:3) { 

                for (j in 1:3) { 

                    r <- rRw[i] 

                    c <- rClm[j] 

                    ms <- blc[r:(r + bSize2), c:(c + bSize2)] 

                    sTot <- sTot + sum(ms, na.rm = TRUE) 

                    ccnt <- ccnt + sum(!is.na(ms)) 

                    #print(sTot) 

                } 

            } 

            outVl <- sTot / ccnt 

            outProp <- ccnt / tCells 

        } 

        else if (lyt == 6) { 

            bSize <- round(sqrt((tCells * prop) / 5)) 

            bSize2 <- bSize - 1 

            ccnt <- 0 #bSize**2*5 

            hbSize <- round(bSize / 2) 

            hc <- round(clm / 2) - hbSize 

            hr <- round(rws / 2) - hbSize 

            ms <- blc[hr:(hr + bSize2), hc:(hc + bSize2)] 

            m1 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[1:bSize, 1:bSize] 

            m2 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[(rws - bSize2):rws, (clm - bSize2):clm] 
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            m3 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[(rws - bSize2):rws, 1:bSize] 

            m4 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            ms <- blc[1:bSize, (clm - bSize2):clm] 

            m5 <- sum(ms, na.rm = TRUE) 

            ccnt <- ccnt + sum(!is.na(ms)) 

            sTot <- m1 + m2 + m3 + m4 + m5 

            #print(sTot) 

            outVl <- sTot / ccnt 

            outProp <- ccnt / tCells 

        } 

        else { 

            outVl <- 0 

            outProp <- 0 

        } 

    } 

    return(c(outVl, outProp)) 

} 

#get vector of images 

#dir = search directory 

#ext=extension of images' 

getImgPath <- function(imgDir, ext = ".tif") { 

    outVec = c() 

    imgNames <- list.files(path = imgDir, pattern = ext) 

    for (i in imgNames) { 

        ext2 <- extension(i) 

        if (tolower(ext2) == ext) { 

            outPath <- paste(imgDir, i, sep = "\\") 

            outVec = c(outVec, outPath) 

        } 

    } 

    return(outVec) 

} 

#returns max sill (nugget + psill), max (range) in cells 

getSampledMaxSillRange <- function(rsPath, sSize = 20, blSize = 200) { 

    r <- raster(rsPath) 

    outDf <- data.frame(nm = character(), bnd = double(), mn = double(), sill = 

double(), rng = double(), nug = double(), cnt = integer()) 

    rndX <- as.integer(runif(sSize, blSize, nrow(r) - blSize)) 

    rndY <- as.integer(runif(sSize, blSize, ncol(r) - blSize)) 

    for (b in 1:nbands(r)) { 
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        print(paste("Working on band", b, sep = " ")) 

        mVar <- 0 

        mRange <- 0 

        mMean <- 0 

        mNugget <- 0 

        rs <- raster(rsPath, b) 

        dn <- 0 

        for (bl in 1:sSize) { 

            mtVl <- getValuesBlock(rs, row = rndX[bl], nrows = blSize, col = 

rndY[bl], ncols = blSize, format = 'matrix', byrow = T) 

            rs2 <- raster(mtVl) 

            mMean <- mMean + cellStats(rs2, mean) 

            cellSize <- res(rs2)[1] 

            frm <- formula(paste(names(rs2), "1", sep = "~")) 

            v <- variogram(frm, as(rs2, "SpatialPixelsDataFrame")) 

            f <- tryCatch(fit.variogram(v, vgm("Sph")), warning = function(w) 

return(NA), error = function(e) return(NA)) 

            if (is.na(f)) { 

                print(paste("Error with", names(r), b, bl, sep = " ")) 

            } 

            else { 

                mVar <- mVar + f$psill[2] 

                mNugget <- mNugget + f$psill[1] 

                mRange <- mRange + (f$range[2] / cellSize) 

                dn <- dn + 1 

            } 

        } 

        outDf <- rbind(outDf, data.frame(Name = names(r), Band = b, Mean = mMean / 

dn, Sill = mVar / dn, Rng = mRange / dn, Nugget = mNugget / dn, cnt = dn)) 

    } 

    names(outDf) <- c("Name", "Band", "Mean", "Sill", "Rng", "Nugget", "Count") 

    return(outDf) 

} 

#creates a random set of cells, returns data frame of row and column 

getRandomCells <- function(rs, numCells, insideBuffer, moff) { 

    w <- ncol(rs) 

    h <- nrow(rs) 

    rx <- as.integer(runif(numCells, moff, w - (insideBuffer + moff))) 

    ry <- as.integer(runif(numCells, moff, h - (insideBuffer + moff))) 

    return(data.frame(X = rx, Y = ry)) 

} 

#perform simulations 
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SimSampling <- function(ImgPaths, sampSize, blockWidth, shiftGps, shiftImg, prop = 

1) { 

    outDf <- data.frame(NAME = character(), BAND = double(), BLOCKSIZE = double(), 

LAYOUT = integer(), EPROP = double(), TPROP = double(), TYPE = integer(), RMSE = 

double(), MAE = double(), INTERCEPT = double(), SLOPE = double(), R2 = double(), N = 

integer(), MORI = double(), OVERLAP = double()) 

    for (i in seq(length(ImgPaths))) { 

        pt <- ImgPaths[i] 

        print(paste("Working on ", pt, sep = "")) 

        rs <- raster(pt) 

        nm <- names(rs) 

        bndCnt <- nbands(rs) 

        d1 <- rnorm(sampSize, mean = 0, sd = shiftGps) 

        d2 <- rnorm(sampSize, mean = 0, sd = shiftImg) 

        d3 <- max(d1) + max(d2) + 1 

        pnts <- getRandomCells(rs, sampSize, max(blockWidth), d3) 

        spnts <- shiftXY(pnts, d1, d2) 

        for (b in 1:bndCnt) { 

            print(paste("  Band ", b, sep = "")) 

            rsb <- convertRasterBandToFloat(raster(pt, b)) 

            mori <- Moran(rsb, matrix(c(0, 1, 0, 1, 0, 1, 0, 1, 0), nrow = 3)) 

#rooks case 

            rsM <- getImgMatrix(rsb) 

            for (bl in blockWidth) { 

                print(paste("    Block ", bl, sep = "")) 

                shiftMt <- extractRcLst(spnts, rsM, bl) 

                #shiftVls <- extractRC(spnts, rsb, bl, 1, 1) 

                shiftVls <- getMeanBlockValues(shiftMt, 1, 1) 

                vlsMt <- extractRcLst(pnts, rsM, bl) 

                chv <- prop[1] 

                ovlp = 0 

                if (chv == 1 || is.null(chv)) { 

                    #vls <- extractRC(pnts, rsb, bl, 1, 1) 

                    ovlp <- getOverLap(pnts, spnts, bl) 

                    vls <- getMeanBlockValues(vlsMt, 1, 1) 

                    tDf <- getLmDf(vls, shiftVls) 

                    outDf <- rbind(outDf, data.frame(NAME = nm, BAND = b, BLOCKSIZE 

= bl, LAYOUT = 0, EPROP = 1, TPROP = 1, TYPE = 0, RMSE = tDf$RMSE, MAE = tDf$MAE, 

INTERCEPT = tDf$INTERCEPT, SLOPE = tDf$SLOPE, R2 = tDf$R2, N = tDf$N, MORI = mori, 

OVERLAP = ovlp)) 

                } 

                else { 

                    for (j in seq(1, 6, 1)) { 
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                        print(paste("      Layout ", j, sep = "")) 

                        for (p in prop) { 

                            print(paste("        Proportion ", p, sep = "")) 

                            vls <- getMeanBlockValues(vlsMt, j, p) 

                            mprop <- mean(vls[, 2]) 

                            shiftVls2 <- getMeanBlockValues(shiftMt, j, p) 

                            tDf <- getLmDf(vls, shiftVls) 

                            outDf <- rbind(outDf, data.frame(NAME = nm, BAND = b, 

BLOCKSIZE = bl, LAYOUT = j, EPROP = p, TPROP = mprop, TYPE = 1, RMSE = tDf$RMSE, MAE 

= tDf$MAE, INTERCEPT = tDf$INTERCEPT, SLOPE = tDf$SLOPE, R2 = tDf$R2, N = tDf$N, 

MORI = mori, OVERLAP = ovlp)) 

                            tDf <- getLmDf(vls, shiftVls2) 

                            outDf <- rbind(outDf, data.frame(NAME = nm, BAND = b, 

BLOCKSIZE = bl, LAYOUT = j, EPROP = p, TPROP = mprop, TYPE = 2, RMSE = tDf$RMSE, MAE 

= tDf$MAE, INTERCEPT = tDf$INTERCEPT, SLOPE = tDf$SLOPE, R2 = tDf$R2, N = tDf$N, 

MORI = mori, OVERLAP = ovlp)) 

                        } 

                    } 

                } 

            } 

        } 

    } 

    removeTmpFiles(h = 0) 

    return(outDf) 

} 

#Calculates mean overlap between shifted points given a block size 

getOverLap <- function(pnts, spnts, bl) { 

    s <- 0 

    ta <- bl ^ 2 

    for (i in 1:nrow(pnts)) { 

        l1 <- pnts[i, 1] 

        r1 <- l1 + bl 

        b1 <- pnts[i, 2] 

        t1 <- b1 + bl 

        l2 <- spnts[i, 1] 

        r2 <- l2 + bl 

        b2 <- spnts[i, 2] 

        t2 <- b2 + bl 

        ext1 <- extent(l1, r1, b1, t1) 

        ext2 <- extent(l2, r2, b2, t2) 

        int2 <- intersect(ext1, ext2) 

        if (!is.null(int2)) { 

            x <- xmax(int2) - xmin(int2) 
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            y <- ymax(int2) - ymin(int2) 

            s <- s + x * y 

        } 

    } 

    return(s / (nrow(pnts) * ta)) 

} 

#performs linear model 

getLmDf <- function(vls, shiftVls) { 

    md <- lm(vls[, 1] ~ shiftVls[, 1]) 

    mae <- mean(residuals(md)) 

    rmse <- mean(residuals(md) ** 2) ** 0.5 

    coef <- md$coefficients 

    int <- coef[1] 

    slp <- coef[2] 

    r2 <- (summary(md))$r.squared 

    n <- nrow(vls) 

    return(data.frame(RMSE = rmse, MAE = mae, INTERCEPT = int, SLOPE = slp, R2 = r2, 

N = n)) 

} 

#printMoransI 

printMoransI <- function(imgPaths, m = matrix(c(0, 1, 0, 1, 0, 1, 0, 1, 0), nrow = 

3)) { 

    for (i in imgPaths) { 

        rs <- raster(i) 

        bndCnt <- nbands(rs) 

        for (j in 1:bndCnt) { 

            rsb <- convertRasterBandToFloat(raster(i, j)) 

            mori <- Moran(rsb) 

            print(paste(i, j, mori, sep = " ")) 

        } 

    } 

    removeTmpFiles(h = 0) 

} 

#setFloat 

convertRasterBandToFloat <- function(rsb) { 

    dt <- dataType(rsb) 

    outRs <- rsb 

    if (dt == "FLT4S" || dt == "FLT8S") { 

    } 

    else { 

        outRs <- rsb * 1.0 

    } 

    return(outRs) 
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} 

#compare to a set number and return a vector of numbers 

compareValues <- function(df, fldIndex = 13, stepValue = 40) { 

    if (is.character(fldIndex)) { 

        fldIndex <- match(fldIndex, names(df)) 

    } 

    rIndx <- 0 

    dr2v <- vector(mode = "numeric", length = nrow(df)) 

    for (r in 1:nrow(df)) { 

        r2 <- df[r, fldIndex] 

        chx <- r %% stepValue 

        if (chx == 1) { 

            rIndx <- rIndx + stepValue 

        } 

        r2c <- df[rIndx, fldIndex] 

        dr2v[r] <- r2c - r2 

    } 

    return(dr2v) 

} 

#estimate spatial offsets 

estOffset <- function(gpsError = 6, imageError = 7, iterations = 1000, sampSize = 

200, domainSize = 1000) { 

    ss <- 0 

    for (i in seq(iterations)) { 

        xyDf <- data.frame(X = runif(sampSize, 0, domainSize), Y = runif(sampSize, 

0, domainSize)) 

        sDf <- shiftXY(xyDf, rnorm(sampSize, 0, imageError), rnorm(sampSize, 0, 

gpsError)) 

        ss <- ss + sum(sDf$D) 

    } 

    return(ss / (sampSize * iterations)) 

} 

#transform raster 

transformRaster <- function(rs, outName, type = "linear") { 

    #rs = input raster 

    #type = string [linear, exp, nonlinear] 

    bndCnt <- nbands(rs) 

    outRs <- convertRasterBandToFloat(subset(rs, 1)) 

    for (b in 2:bndCnt) { 

        outRs <- outRs + subset(rs, b) 

    } 

    outRs <- outRs / bndCnt 

    if (type == "squared") { 
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        outRs <- outRs ^ 2 

    } 

    if (type == "nonlinear") { 

        tRs <- subset(rs, 4) 

        tRs <- (tRs < 210 & tRs > 170) 

        outRs <- outRs * tRs 

    } 

    outRs <- writeRaster(outRs, paste(outName, ".tif", sep = ""), format = "GTiff", 

overwrite = TRUE) 

    removeTmpFiles(h = 0) 

    return(outRs) 

} 

#create a clustered image and kmeans model 

KmeansClassificationRs <- function(rs, outName, k = 10, ss = 10000) { 

    #rs = raster Brick 

    #outName = string 

    #k = number of clusters 

    #returns raster and model list(rs,model) 

    km <- unsuperClass(rs, nClasses = k, nSamples = ss) 

    km_model <- km$model 

    outRs <- writeRaster(km$map, paste(outName, ".tif", sep = ""), format = "GTiff", 

overwrite = TRUE) 

    removeTmpFiles(h = 0) 

    return(list(outRs, km_model)) 

} 

#create a principal component analysis from a sample of points in a raster 

pcaTrans <- function(rs, outName, ss = 10000) { 

    #rs=raster Brick 

    #outName = string 

    #ss=sample size 

    #returns a raster and PCS model; list(rs,PCA) 

    bndCnt <- nbands(rs) 

    samp <- sampRaster(rs, ss) 

    pca <- princomp(samp@data, cor = TRUE) 

    outRs <- predict(rs, pca, index = 1:bndCnt, paste(outName, ".tif", sep = ""), 

format = "GTiff", overwrite = TRUE) 

    removeTmpFiles(h = 0) 

    return(list(outRs, pca)) 

} 

#create continuous error for image 

ErrorRs <- function(rs, outName, type = 'norm', p_error = 0.2) { 

    #rs=raster surface 

    #type = type of error (norm, poisson, gamma) 
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    #p_error = percent of standard deviation 

    #returns a raster 

    mu <- cellStats(rs, mean) 

    std <- cellStats(rs, sd) 

    adj <- std * p_error 

    cellCnt <- ncell(rs) 

    outRs <- raster(rs) 

    if (type == 'poisson') { 

        outRs <- setValues(outRs, (rpois(cellCnt, mu) - mu)) + rs 

    } 

    if (type == 'gamma') { 

        outRs <- setValues(outRs, (rgamma(cellCnt, 5, 5) * adj) - adj) + rs 

    } 

    if (type == 'norm') { 

        outRs <- setValues(outRs, rnorm(cellCnt, mean = 0, sd = adj)) + rs 

 

    } 

    outRs <- writeRaster(outRs, paste(outName, ".tif", sep = ""), format = "GTiff", 

overwrite = TRUE) 

    removeTmpFiles(h = 0) 

    return(outRs) 

} 

#creates classification errors 

ErrorRsClass <- function(rs, outName, p_error = 0.3, k = 10) { 

    #rs = raster type 

    #p_error = percent cells with error 

    #returns a raster 

    cellCnt <- ncell(rs) 

    r1 <- raster(rs) 

    r1 <- setValues(r1, as.integer(runif(cellCnt) > p_error)) 

    r4 <- raster(rs) 

    r4 <- setValues(r4, as.integer(runif(cellCnt, 1, k))) 

    outRs <- (rs * r1) + (r4 * (1 - r1)) 

    outRs <- writeRaster(outRs, paste(outName, ".tif", sep = ""), format = "GTiff", 

datatype = 'INT1U', overwrite = TRUE) 

    removeTmpFiles(h = 0) 

    return(outRs) 

} 

#KS test for two populations 

#pop = data frame of columns, all columns will be used 

#samp = data frame of columns with same names as pop 

ksPcaTest <- function(pop, samp) { 

    pca <- princomp(pop, cor = T) 
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    ws<-pca$sdev^2/sum(pca$sdev^2) 

    pValLst <- vector(mode = "double", length = ncol(pop)) 

    ksValLst <- vector(mode = "double", length = ncol(pop)) 

    for (i in 1:length(ksValLst)) { 

        ks <- ksValLst[i] <- ks.test(pop[[i]], samp[[i]],) 

        ksValLst[i] <- ks$statistic * ws[i] 

        pValLst[i]<-ks$p.value * ws[i] 

        return(c(sum(pValLst),sum(ksValLst))) 

    } 

} 

 

#' Get best GAM 

#' 

#' @param indata = input data frame 

#' @param resp = response field name 

#' @param pred = vector of potential predictor variables 

#' @param alpha = significance level used to select variables (0.05) 

#' @param fam = family distribution (gaussian()) 

#' @param improveby = the amount needed to improve % deviance explained to include a 

predictor variable (0) 

#' 

#' @return = list of significant variable vector and GAM 

#' @export 

#' 

#' @examples 

getGamSigFldNames<-function(indata, resp, pred, alpha = 0.05, fam = gaussian(), 

improveby = 0) { 

    nlp = 1 

    if (fam$family == "multinom") { 

        nlp = fam$nlp 

    } 

    sigVar <- c() 

    pdiv <- 0 

    pr2 <- 0 

    for (i in seq(length(pred))) { 

        vars <- c(sigVar, pred[i]) 

        fm <- getFormula(resp,vars,nlp)  

        md <- gam(fm, data = indata, family = fam) 

        smry <- summary(md) 

        div <- smry$dev.expl 

        if (div > (pdiv + improveby)) { 

            print(paste("Adding variable", pred[i], collapse = " ")) 

            pvalues <- c(smry$s.pv) 



  

96 

 

            sigVar <- c() 

            nonSigVar <- c() 

            for (j in seq(length(vars))) { 

                pv <- getSmallestPvalue(j,pvalues,nlp) 

                if (pv <= alpha) { 

                    sigVar <- c(sigVar, vars[j]) 

                } 

                else { 

                    nonSigVar <- c(nonSigVar, vars[j]) 

                } 

            } 

            if (length(nonSigVar) > 0) { 

                for (k in nonSigVar) { 

                    print(paste(cat("\t"), "Rechecking non significant variables", 

k, collapse = " ")) 

                    vars2 <- c(sigVar, k) 

                    cfm <- getFormula(resp,vars2,nlp) 

                    nmd <- gam(cfm, data = indata, family = fam) 

                    nsmry <- summary(nmd) 

                    ndiv <- nsmry$dev.expl 

                    pvalues <- c(nsmry$s.pv) 

                    cpvalue <- getSmallestPvalue(length(vars2),pvalues,nlp) 

                    if (cpvalue <= alpha) { 

                        sigVar <- c(sigVar, k) 

                        print(paste(cat("\t"), "adding", k, "back to the model", 

collapse = " ")) 

                    } 

                } 

                ndiv <- pdiv 

                if (length(sigVar) > 0) { 

                    cfm <- getFormula(resp,sigVar,nlp) #as.formula(paste(resp, " ~ 

", paste("s(", sigVar, ")", collapse = " + "))) 

                    nmd <- gam(cfm, data = indata, family = fam) 

                    nsmry <- summary(nmd) 

                    ndiv <- nsmry$dev.expl 

                } 

                if (ndiv < (pdiv + improveby)) { 

                    print(paste(cat("\t"), "No improvement. Changing sig variables 

back to what they previously were")) 

                    sigVar <- vars[1:length(vars) - 1] 

                } 

                else { 

                    pdiv <- ndiv 
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                } 

            } 

            else { 

                pdiv <- div 

            } 

            print(paste(cat("\t"), "sig var for iter ", i, "(%Div = ",pdiv, "):", 

paste(sigVar, collapse = " "))) 

        } 

    } 

    print(paste(cat("\t"), "Removing variables that do not meet significance 

level",sep = "")) 

    fmd <- removeLeastSignificantVar(resp, indata, sigVar, fam, alpha, nlp) 

    while (!is.null(fmd[[1]])) { 

        sigVar = fmd[[1]] 

        fmd = removeLeastSignificantVar(resp, indata, sigVar, fam, alpha, nlp) 

    } 

    return(list(sigVar,fmd[[2]])) 

} 

removeLeastSignificantVar <- function(resp, indata, sigVar, fam, alpha, nlp) { 

    cfm <- getFormula(resp, sigVar, nlp) 

    nmd <- gam(cfm, data = indata, family = fam) 

    nsmry <- summary(nmd) 

    pvalues <- c(nsmry$s.pv) 

    fVar <- c() 

    malpha = NULL 

    nSigVar = NULL 

    for (i in 1:length(sigVar)) { 

        tpv <- getSmallestPvalue(i, pvalues, nlp) 

        fVar <- c(fVar,tpv) 

    } 

    fVarT = fVar > alpha 

    if (sum(fVarT) > 0) { 

        malpha = max(fVar) 

    } 

    if (!is.null(malpha)) { 

        mVarIndex = which(fVar == malpha) 

        nSigVar = sigVar[-mVarIndex] 

    } 

     

    return(list(nSigVar,nmd)) 

} 

getSmallestPvalue <- function(vlIndex, pvalues, nlp) { 

    mVl = pvalues[vlIndex] 
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    if (nlp > 1) { 

        cVec <- vector(mode = "numeric", length = nlp) 

        cnt = 1 

        for (i in seq(vlIndex, length(pvalues), length(pvalues)/nlp)) { 

            pvl = pvalues[[i]] 

            cVec[cnt] = pvl 

            cnt = cnt + 1 

        } 

        mVl = min(cVec) 

    } 

    return(mVl) 

} 

getFormula <- function(rVar, pVars, numlp) { 

    fm=as.formula(paste(rVar, " ~ ", paste("s(", pVars, ")", collapse = " + "))) 

    if (numlp > 1) { 

        fml = list(length = numlp) 

        fml[[1]] = fm 

        for (f in 2:numlp) { 

            fml[[f]] = as.formula(paste("~ ", paste("s(", pVars, ")", collapse = " + 

"))) 

        } 

        fm <- fml 

    } 

    return(fm) 

} 
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Chapter 2 
#Emperically determines the plot size and layout for relating plots to in-situ data 

#John Hogland 12/3/2018 

 

#setup directories 

baseDir <- 

"C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Papers\\Dis

sertation\\chapter1\\data" 

LandsatImgDir <- paste(baseDir, "Landsat", sep = "\\") 

NaipImgDir <- paste(baseDir,"NAIP",sep = "\\") 

setwd(baseDir) 

source("C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Pape

rs\\Dissertation\\Rscripts\\Dissertation\\Dissertation\\jhLib.R") 

 

#get genearal numbers for max continuity 

#df.gNumbers<-

data.frame(img=character(),band=integer(),mean=double(),sill=double(),range=double()

) 

#for(p in imgPaths) 

#{ 

#  print(tDf<-getSampledMaxSillRange(p)) 

#  df.gNumbers<-rbind(df.gNumbers,tDf) 

#} 

 

#create rasters 

#for (i in seq(0.5,30,5)) 

#{ 

#  rs<-getSpCorrImages(1000,1000,i,mn=2080,vr=245416,maxDist=60,ng=?) 

#  writeRaster(rs,paste("Range",i,".tif",sep=""),format="GTiff",overwrite=TRUE) 

#} 

 

LandsatImgPaths<-getImgPath(LandsatImgDir) 

NaipImgPaths <- getImgPath(NaipImgDir) 

 

#setup simulations 

sampSize <- 200 

blockWidth <- c(1, seq(3, 15, 3), seq(20, 55, 5), seq(60, 100, 10)) 

 

#Landsat 8 and GPS errors in pixels 

shiftImg<-48/30#*rmseImage #95% of the data (pixels) Landsat 37m 90% CI = 47.48m @ 

95% 

shiftGps<-7/30#*rmseGps #95% of the data (pixels)  
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#using all the data within a plot boundary (blockSize) to determine size of the plot 

for Landsat 

dfRegL <- SimSampling(LandsatImgPaths, sampSize, blockWidth, shiftGps, shiftImg) 

for (i in 1:9) { 

    dfRegL <- rbind(dfRegL,SimSampling(LandsatImgPaths, sampSize, blockWidth, 

shiftGps, shiftImg)) 

} 

write.csv(dfRegL, "LandsatBlockSizeReg10.csv") 

 

#NAIP and GPS errors in pixels 

shiftImg <- 6 #*rmseImage #95% of the data (pixels) NAIP 

shiftGps <- 7 #*rmseGps #95% of the data (pixels) 

 

#using all the data within a plot boundary (blockSize) to determine size of the plot 

for NAIP 

dfRegN <- SimSampling(NaipImgPaths, sampSize, blockWidth, shiftGps, shiftImg) 

for (i in 1:9) { 

    dfRegN <- rbind(dfRegN, SimSampling(NaipImgPaths, sampSize, blockWidth, 

shiftGps, shiftImg)) 

} 

write.csv(dfRegN,"NaipBlockSizeReg10.csv") 

 

#Using BlockSizes between 20 and 50 cells with varying layouts and proportions of 

area sampled (0.5-0.95 by 0.5) NAIP 

blockWidth <- seq(20, 50, 5) 

dfRegLayN <- SimSampling(NaipImgPaths, sampSize, blockWidth, shiftGps, shiftImg, 

seq(0.05, 1, 0.05)) 

write.csv(dfRegLayN, "NaipBlockSizeRegLayout.csv") 

 

#Landsat 

#Changing shift back to Landsat 

blockWidth <- seq(5, 35, 5) 

shiftImg <- 48/30 #*rmseImage #95% of the data (pixels) Landsat 

shiftGps <- 7/30 #*rmseGps #95% of the data (pixels) 

dfRegLayL <- SimSampling(LandsatImgPaths, sampSize, blockWidth, shiftGps, shiftImg, 

seq(0.05, 1, 0.05)) 

write.csv(dfRegLayL, "LandsatBlockSizeRegLayout.csv") 

 

#diff between total R2 

lsLayout <- read.csv("LandsatBlockSizeRegLayout.csv") 

lsLayout$DR2 <- compareValues(lsLayout, "R2", 40) 

lsLayout$DRMSE <- compareValues(lsLayout, "RMSE", 40) 
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write.csv(lsLayout, "LandsatBlockSizeRegLayout.csv") 

 

naipLayout <- read.csv("NaipBlockSizeRegLayout.csv") 

naipLayout$DR2 <- compareValues(naipLayout, "R2", 40) 

naipLayout$DRMSE <- compareValues(naipLayout, "RMSE",40) 

write.csv(naipLayout, "NaipBlockSizeRegLayout.csv") 
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Chapter 3 
#Impact of sample design and modeling technique 

#John Hogland 12/3/2018 

 
library(raster) 

library(parallel) 

library(mgcv) 

library(randomForest) 

library(nnet) 

library(kernlab) 

library(ggplot2) 

library(grid) 

library(gridExtra) 

 

 

sampGam <- function(rlst, naipC, ss, iter = 10, stype = 'srs', mask = NULL) { 

    rs <- stack(rlst) 

    crs(rs) <- crs(naipC) 

    rsStack <- stack(rs, naipC) 

    outDf <- data.frame(ids = integer(), dtrel = character(), design = character(), 

mdl = character(), stat = double(), value = double(), samplesize = integer()) 

    itCnt <- 1 

    for (j in 1:iter) { 

        print(paste("iteration", itCnt)) 

        srs <- sampRaster(rsStack, ss, stype, prs = naipC, mask = mask) 

        ndf <- na.omit(srs@data) 

        fldNm <- names(ndf) 

        nmSplit <- length(fldNm) - 3 

        respNm <- fldNm[1:nmSplit] 

        predNm <- fldNm[(nmSplit + 1):length(fldNm)] 

        predStr <- paste(predNm, collapse = " + ") 

        for (i in 1:length(respNm)) { 

            ors <- subset(rs, i) 

            tt <- cellStats(ors, sum) #true total 

            #modeled estimates (t_dif, rmse) 

            frm2 <- formula(paste(respNm[i], '~', paste('s(', predNm, ')', collapse 

= "+"), sep = "")) 

            g_vls <- getGam(frm2, ndf, naipC, tt, ors) #general additive model  

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'gam', stat = 'total', value = g_vls[1], samplesize = ss)) 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'gam', stat = 'rmse', value = g_vls[2], samplesize = ss)) 

        } 
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        itCnt <- itCnt + 1 

    } 

    removeTmpFiles(h = 0) 

    return(outDf) 

} 

 

sampSim <- function(rlst, naip, smp) { 

    #rlst = rlstNm 

    #naip = rsB 

    #smp =sampleLst 

 

    rs <- stack(rlst) 

    crs(rs) <- crs(naip) 

    rsStack <- stack(rs, naip) 

    outDf <- data.frame(ids = integer(), dtrel = character(), design = character(), 

mdl = character(), stat = double(), value = double(), samplesize = integer()) 

    itCnt <- 1 

    scnt = 1 

    for (j in 1:length(smp)) { 

        print(paste("iteration", itCnt)) 

        stype = "srs" 

        ss = nrow(smp[[j]]) 

        if (scnt == 2) stype = "sys" 

        if (scnt == 3) stype = "grts" 

        if (scnt == 4) stype = "rsnr" 

        scnt = scnt + 1 

        if(scnt>4) scnt = 1 

        srs <- cbind(as.data.frame(extract(rs, smp[[j]])), smp[[j]]@data) 

        ndf <- na.omit(srs) 

        fldNm <- names(ndf) 

        nmSplit <- length(fldNm) - 4 

        respNm <- fldNm[1:nmSplit] 

        predNm <- fldNm[(nmSplit + 1):length(fldNm)] 

        predStr <- paste(predNm, collapse = " + ") 

        for (i in 1:length(respNm)) { 

            ors <- subset(rs, i) 

            tt <- cellStats(ors, sum) #true total 

            d_m <- mean(ndf[[i]]) #design mean 

            d_t <- d_m * ncell(ors) #design total 

            d_dif <- tt - d_t #design total difference 

            d_rmse <- sqrt(cellStats(((ors - d_m) ^ 2), mean)) #design rmse 

difference 
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            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'design', stat = 'total', value = d_dif, samplesize = ss)) 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'design', stat = 'rmse', value = d_rmse, samplesize = ss)) 

            #modeled estimates (t_dif, rmse) 

            frm <- formula(paste(respNm[i], '~', predStr, sep = "")) 

            l_vls <- getLinear(frm, ndf, naip, tt, ors) #linear 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'linear', stat = 'total', value = l_vls[1], samplesize = ss)) 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'linear', stat = 'rmse', value = l_vls[2], samplesize = ss)) 

            frm2 <- formula(paste(respNm[i], '~', paste('s(', predNm, ')', collapse 

= "+"), sep = "")) 

            g_vls <- getGam(frm2, ndf, naip, tt, ors) #general additive model  

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'gam', stat = 'total', value = g_vls[1], samplesize = ss)) 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'gam', stat = 'rmse', value = g_vls[2], samplesize = ss)) 

            s_vls <- getSvm(frm, ndf, naip, tt, ors) #support vector machine  

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'svm', stat = 'total', value = s_vls[1], samplesize = ss)) 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'svm', stat = 'rmse', value = s_vls[2], samplesize = ss)) 

            n_vls <- getNn(frm, ndf, naip, tt, ors) #nueral networks 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'nn', stat = 'total', value = n_vls[1], samplesize = ss)) 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'nn', stat = 'rmse', value = n_vls[2], samplesize = ss)) 

            r_vls <- getRf(frm, ndf, naip, tt, ors) #random forest 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'rf', stat = 'total', value = r_vls[1], samplesize = ss)) 

            outDf <- rbind(outDf, data.frame(ids = itCnt, dtrel = respNm[i], design 

= stype, mdl = 'rf', stat = 'rmse', value = r_vls[2], samplesize = ss)) 

        } 

        itCnt <- itCnt + 1 

    } 

    removeTmpFiles(h = 0) 

    return(outDf) 

} 

getLinear <- function(frm, df, naip, total, ors) { 

    t_mdl <- lm(frm, data = df) #linear model 

    prs <- predict(naip, t_mdl) #predicted raster surface 

    m_t <- cellStats(prs, sum) #modeled total 
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    t_dif <- total - m_t #modeled total difference         

    m_rmse <- sqrt(cellStats(((ors - prs) ^ 2), mean)) #residuals 

    return(c(t_dif, m_rmse)) 

} 

getGam <- function(frm, df, naip, total, ors) { 

    t_mdl <- gam(frm, data = df) #gam 

    prs <- predict(naip, t_mdl) #predicted raster surface 

    m_t <- cellStats(prs, sum) #modeled total 

    t_dif <- total - m_t #modeled total difference         

    m_rmse <- sqrt(cellStats(((ors - prs) ^ 2), mean)) #residuals 

    return(c(t_dif, m_rmse)) 

} 

getSvm <- function(frm, df, naip, total, ors) { 

    t_mdl <- ksvm(frm, data = df, kernel = 'rbfdot') #svm model 

    prs <- predict(naip, t_mdl) #predicted raster surface 

    m_t <- cellStats(prs, sum) #modeled total 

    t_dif <- total - m_t #modeled total difference         

    m_rmse <- sqrt(cellStats(((ors - prs) ^ 2), mean)) #residuals 

    return(c(t_dif, m_rmse)) 

} 

getNn <- function(frm, df, naip, total, ors) { 

    s <- nrow(df) / 2 

    d <- s * 0.1 

    t_mdl <- nnet(frm, data = df, size = s, decay = d, linout = T) #nnet model 

    prs <- predict(naip, t_mdl) #predicted raster surface 

    m_t <- cellStats(prs, sum) #modeled total 

    t_dif <- total - m_t #modeled total difference         

    m_rmse <- sqrt(cellStats(((ors - prs) ^ 2), mean)) #residuals 

    return(c(t_dif, m_rmse)) 

} 

getRf <- function(frm, df, naip, total, ors) { 

    t_mdl <- randomForest(frm, data = df, ntree = 20, mtry = 1) #random forest 

    prs <- predict(naip, t_mdl) #predicted raster surface 

    m_t <- cellStats(prs, sum) #modeled total 

    t_dif <- total - m_t #modeled total difference         

    m_rmse <- sqrt(cellStats(((ors - prs) ^ 2), mean)) #residuals 

    return(c(t_dif, m_rmse)) 

} 

 

predict.getClosestPoint <- function(centers, newdata, iCvar, maxn=10000) { 

    #newdata = rsDf 

    #cvar = cvar 

    #centers = centers 
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    #maxn = 10000 

 

    n = nrow(newdata) 

    nc = nrow(centers) 

    if (n > maxn) { 

        n2 = nc * 1000 

        if (n2 > maxn) { 

            n2 = maxn 

        } 

        newdata[sample(n, n2),] 

        n=n2 

    } 

    lblv = vector(mode = "integer", length = n) 

    d2v = vector(mode = "numeric",length = n) 

    for (i in 1:n) { 

        #i=1 

        x = as.matrix(newdata[i,]) 

        if (sum(is.na(x)) > 0) next 

        lbl = -1 

        sdist = .Machine$double.xmax 

        for (j in 1:nc) { 

            #j=1 

            c = as.matrix(centers[j,]) 

            if(sum(is.na(c)) > 0) next 

            xdif = x - c 

            d2 = (xdif%*%iCvar%*%t(xdif))[1] 

            #d2 = mahalanobis(x,c, cvar) 

            if (d2 < sdist) { 

                lbl = j 

                sdist = d2 

            } 

        } 

        lblv[i] = lbl 

        d2v[i] = sdist 

    } 

    return(cbind(lblv,d2v)) 

} 

 

createClosestPointRaster <- function(Pred, centers, cvar) { 

    beginCluster(detectCores()-1) 

    closestRs = clusterR(Pred, predict, args = list(centers = centers, cvar = cvar, 

fun = predict.getClosestPoint, index = 1:2), progress = 'text') 

    endCluster() 
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    return(closestRs) 

} 

 

getBstat = function(lbls,sampleSize) { 

    tb = as.data.frame(table(lbls))[, 2] 

    totaln = sum(tb) 

    equalSize = totaln/sampleSize 

    tbCnt = length(tb) 

    vi = tb/equalSize 

    dif = sampleSize - tbCnt 

    b = (sum((vi-1)^2) + dif*1) / sampleSize 

    return(b) 

} 

 

grtsSampleDataFrame<- function(df, sampleSize) { 

    tdf = df 

    pca <- princomp(tdf, cor = TRUE) 

    tdf$uid <- 1:nrow(tdf) 

    sc <- pca$scores 

    tdf$Comp.1 = sc[, 1] 

    tdf$Comp.2 = sc[,2] 

    Equaldsgn <- list(None = list(panel = c(PanelOne = sampleSize), seltype = 

"Equal")) 

    outvl <- grts(design = Equaldsgn, type.frame = "finite", src.frame = 

'att.frame', att.frame = tdf, xcoord = "Comp.1", ycoord = "Comp.2", shapefile = F) 

    outdf <- outvl@data #merge(outvl@data, , by = c('Comp.1', 'Comp.2')) 

    return(outdf) 

} 

 

wsPath <- 

"C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Papers\\Dis

sertation\\chapter2\\data" 

setwd(wsPath) 

source("C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Pape

rs\\Dissertation\\Rscripts\\Dissertation\\Dissertation\\jhLib.R") 

rasterOptions(tmpdir = paste(getwd(), "tmp", sep = "/")) 

tmpDir(create = TRUE) 

roadsPath = roadsPath <- 

"C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Classes\\SamplingMet

hods\\FinalProject\\roads.shp" 

 

#raster 

rsB <- brick("test.tif") 
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#roads 

flNm <- strsplit(basename(roadsPath), ".shp")[[1]] 

dirPath <- dirname(roadsPath) 

roadLayer <- readOGR(dsn = dirPath, layer = flNm) 

crs(rsB)=crs(roadLayer) 

rdBuff <- gBuffer(roadLayer, width = 50) 

rsm <- mask(rsB, rdBuff) 

 

covValue = layerStats(rsB, 'cov', na.rm = TRUE) 

cvar = covValue$covariance 

iCvar = solve(cvar) 

ss = 50 

 

#test B stat 

sys = sampleRegular(rsB, 50, sp = T) #sampRaster(rsB, 45, 'sys') 

ndf = data.frame(x = runif(10000, xmin(rsB), xmax(rsB)), y = runif(10000, ymin(rsB), 

ymax(rsB))) 

lbl = predict.getClosestPoint(as.data.frame(sys@coords), ndf, matrix(c(1, 0, 0, 1), 

nrow = 2, ncol = 2)) 

Btest = getBstat(lbl[, 1], nrow(sys)) 

 

#get sample locations, B, and D2 statistics 

niter = 100 

valueMatrix = matrix(nrow = niter * 4, ncol = 3) #sType, B, D2 

sampleLst = list(length=niter*4) 

rCnt = 1 

for (i in 1:niter) { 

    print(paste("Getting sample ",as.character(i),sep = "")) 

    srs = sampRaster(rsB, ss, 'srs') #rsDf[sample(1:nrow(rsDf), ss),] 

    sampleLst[rCnt]=srs 

    sys = sampRaster(rsB, ss, 'sys') 

    sampleLst[rCnt+1] = sys 

    gs = sampRaster(rsB, ss, 'grts_b', prs = rsB) #grtsSampleDataFrame(rsDf,ss) 

    sampleLst[rCnt+2] = gs 

    nr = sampRaster(rsm, ss, 'srs') 

    sampleLst[rCnt+3] = nr 

 

    rsSubset = sampRaster(rsB, 10000) 

    rsDf = rsSubset@data 

    for (j in 1:4) { 

        cnt = srs@data 

        if (j == 2) cnt = sys@data 
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        if (j == 3) cnt = gs@data 

        if (j== 4) cnt = nr@data 

        lbls = predict.getClosestPoint(centers = cnt, newdata = rsDf, iCvar = iCvar, 

maxn = 10000) 

        valueMatrix[rCnt,] = c(j,getBstat(lbls[, 1], ss), mean(lbls[, 2])) 

        rCnt = rCnt + 1 

    } 

} 

 

saveRDS(valueMatrix, "BS_D2_stats_100.vls") 

saveRDS(sampleLst, "samples_50.smp") 

 

#histograms 

valueMatrix = readRDS("BS_D2_stats_50.vls") 

par(mfrow = c(4, 2)) 

df = as.data.frame(valueMatrix) 

names(df)=c("stype","BS","D2") #srs, sys, gs, nr 

for (i in 1:4) { 

    tdf = df[which(df$stype == i),] 

    print(summary(tdf)) 

    print(paste(sd(tdf$BS), " --- ",sd(tdf$D2),sep = "")) 

    hist(tdf$BS) 

    hist(tdf$D2) 

} 

 

#sample size for spread statistic 

cnt = 10000 

mvl = 99.48 

pmvl = 0.001 

sdvl = 1.30 

ss = 10 

alpha = 0.05 

(tse = sqrt(((cnt - ss) / cnt) * sdvl ^ 2 / ss)) 

(n = qt((1 - (alpha / 2)), ss) * tse ^ 2 / (pmvl * mvl)) 

 

#simulations 

sampleLst = readRDS("samples_50_100000.smp") 

rlstNm <- c('linearL0.tif', 'linearL1.tif', 'linearL2.tif', 'linearL3.tif', 

'squaredL0.tif', 'squaredL1.tif', 'squaredL2.tif', 'squaredL3.tif', 

'nonlinearL0.tif', 'nonlinearL1.tif', 'nonlinearL2.tif', 'nonlinearL3.tif') 

outDf = sampSim(rlstNm, rsB, sampleLst) 

saveRDS(outDf, "outDf.sim") 
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outDf = readRDS("outDf_100000.sim") 

rmseDesign = subset(outDf, stat == "total") 

sumTblM = aggregate(rmseDesign, by = list(rmseDesign$dtrel, rmseDesign$design, 

rmseDesign$mdl), FUN = "mean") 

sumTblS = aggregate(rmseDesign, by = list(rmseDesign$dtrel, rmseDesign$design, 

rmseDesign$mdl), FUN = "sd") 

 

###################################### 

#Figures 

###################################### 

buildDf <- function(smpLst, rspNmVec, ndf=NULL, subsetPred=F) { 

    outDf <- data.frame() 

    useInput = F 

    if (is.null(ndf)) { 

        useInput = T 

    } 

    for (smp in smpLst) { 

        #smp = smpLst[[1]] 

        smpdf = smp@data 

        for (rsp in rspNmVec) { 

            #rsp = rspNmVec[1] 

            rspRs = raster(rsp) 

            rsNm = names(rspRs) 

            crs(rspRs) = crs(smp) 

            train <- cbind(smpdf, resp = extract(rspRs, smp@coords)) 

            train.df <- na.omit(train) 

            if (useInput) { 

                ndf = train.df 

            } 

            n = nrow(ndf) 

            fldNm <- names(train.df) 

            resp <- fldNm[length(fldNm)] 

            pred <- fldNm[1:(length(fldNm) - 1)] 

            if (subsetPred) pred = fldNm[1:(length(fldNm) - 2)] 

            (frm <- formula(paste(resp, "~", paste(pred, collapse = "+"), sep = 

""))) 

            #mean 

            meanVl <- mean(train.df[match(resp, fldNm)][[1]]) 

            tdf <- ndf 

            tdf$sc1 = rsNm 

            tdf$pred = rep(meanVl, n) 

            tdf$mdl = rep("design", n) #data.frame(value = tvl, pred = rep(meanVl, 

n), test.4 = train.df$test.4, test.3=train.df$test.3, mdl = rep("design", n)) 
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            outDf <- rbind(outDf, tdf) 

            #gam  

            frm2 <- formula(paste(resp, '~', paste('s(', pred, ')', collapse = "+"), 

sep = "")) 

            md1 <- gam(frm2, data = train.df) 

            prd1 <- predict(md1, newdata = ndf) 

            tdf <- ndf 

            tdf$sc1 = rsNm 

            tdf$pred = prd1 

            tdf$mdl = rep("gam", n) # data.frame(value = tvl, pred = prd1, test.4 = 

b4, test.3 = b3, mdl = rep("gam", length(prd1))) 

            outDf <- rbind(outDf, tdf) 

            #linear 

            md1 <- lm(frm, data = train.df) 

            prd1 <- predict(md1, newdata = ndf) 

            tdf <- ndf 

            tdf$sc1 = rsNm 

            tdf$pred = prd1 

            tdf$mdl = rep("linear", n) #data.frame(value = tvl, pred = prd1, test.4 

= b4, test.3 = b3, mdl = rep("linear", length(prd1))) 

            outDf <- rbind(outDf, tdf) 

            #n-net 

            s <- nrow(train.df) / 2 

            d <- s * 0.1 

            md1 <- nnet(frm, data = train.df, size = s, decay = d, linout = T) 

            prd1 <- predict(md1, newdata = ndf) 

            tdf <- ndf 

            tdf$sc1 = rsNm 

            tdf$pred = prd1 

            tdf$mdl = rep("nn", n) # data.frame(value = tvl, pred = prd1, test.4 = 

b4, test.3 = b3, mdl = rep("nn", length(prd1))) 

            outDf <- rbind(outDf, tdf) 

            #rf 

            md1 <- randomForest(frm, data = train.df, ntree = 20, mtry = 1) 

            prd1 <- predict(md1, newdata = ndf) 

            tdf <- ndf 

            tdf$sc1 = rsNm 

            tdf$pred = prd1 

            tdf$mdl = rep("rf", n) # data.frame(value = tvl, pred = prd1, test.4 = 

b4, test.3 = b3, mdl = rep("rf", length(prd1))) 

            outDf <- rbind(outDf, tdf) 

            #svm 

            md1 <- ksvm(frm, data = train.df, kernel = 'rbfdot') 
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            prd1 <- predict(md1, newdata = ndf) 

            tdf <- ndf 

            tdf$sc1 = rsNm 

            tdf$pred = prd1 

            tdf$mdl = rep("svm", n) # data.frame(value = tvl, pred = prd1, test.4 = 

b4, test.3 = b3, mdl = rep("svm", length(prd1))) 

            outDf <- rbind(outDf, tdf) 

        } 

    } 

    return(outDf) 

} 

 

library(raster) 

library(mgcv) 

library(randomForest) 

library(nnet) 

library(kernlab) 

library(ggplot2) 

library(grid) 

library(gridExtra) 

library(ggExtra) 

 

wsPath <- 

"C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Papers\\Dis

sertation\\chapter2\\data" 

setwd(wsPath) 

rasterOptions(tmpdir = paste(getwd(), "tmp", sep = "/")) 

tmpDir(create = TRUE) 

 

valueMatrix = readRDS("BS_D2_stats_50_100000.vls") 

sampleLst = readRDS("samples_50_100000.smp") 

outDf = readRDS("outDf_100000.sim") 

 

#Figure 5 

#Balance in feature and geographic space 

cbPalette <- c("black", "blue", "green", "red") 

rsB <- brick("test.tif") 

rsStats = cellStats(rsB, mean) 

ext = extent(rsB) 

xc = (xmax(ext) - xmin(ext))/2  

yc = (ymax(ext) - ymin(ext))/2 

ftrDf = data.frame() 

cnt = 1 
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for (s in sampleLst) { 

    tdf = s@data 

    crd = s@coords 

    tdf$x = (crd[, 1]-xmin(ext)) 

    tdf$y = (crd[, 2]-ymin(ext)) 

    vls = as.data.frame(t(apply(tdf, 2, mean))) 

    txt = "SRS" 

    if (cnt == 2) txt = "SYS" 

    if (cnt == 3) txt = "GRTS" 

    if (cnt == 4) txt = "RSNR" 

    vls$lbl = txt 

    ftrDf = rbind(ftrDf, vls) 

    cnt = cnt + 1 

    if(cnt>4) cnt = 1 

} 

png("fig_Bias_50_naip.png", width = 800, height = 300, res = 100) 

p1 = ggplot(data = ftrDf, aes(x = test.4, y = test.1, col = lbl)) + 

    geom_point() + 

    geom_hline(yintercept = rsStats[1], col = "darkgrey", linetype = "dashed") + 

    geom_vline(xintercept = rsStats[4], col = "darkgrey", linetype = "dashed") + 

    theme_bw() + 

    theme(legend.position = "none", axis.title.y = element_blank(), axis.title.x = 

element_blank(), axis.text = element_text(size = 15), axis.title = element_text(size 

= 20)) + 

    scale_colour_manual(values = cbPalette) 

 

p2 = ggplot(data = ftrDf, aes(x = x, y = y, col = lbl)) + 

    geom_point() + 

    geom_hline(yintercept = yc, col = "darkgrey", linetype = "dashed") + 

    geom_vline(xintercept = xc, col = "darkgrey", linetype = "dashed") + 

    theme_bw() + 

    theme(legend.position = "none",axis.title.y = element_blank(), axis.title.x = 

element_blank(), axis.text = element_text(size = 15), axis.title = element_text(size 

= 20)) + 

    scale_colour_manual(values = cbPalette) 

 

grid.arrange(p1, p2, nrow = 1) 

dev.off() 

plot.new() 

 

#Figure 6 

#Average model trend for linear, quadratic, and nonlinear SC1 surface from 100 

iterations (SRS; n=50; error = 40%) 
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rsB <- brick("test.tif") 

rsStats = cellStats(rsB, mean) 

rsB4Min = minValue(rsB)[4] 

rsB4Max = maxValue(rsB)[4] 

rsB4 = seq(rsB4Min, rsB4Max, 1) 

ndf = data.frame(test.1=rsStats[1],test.2=rsStats[2],test.3=rsStats[3],test.4=rsB4) 

rspNms <- c("linearL1.tif", "squaredL1.tif", "nonLinearL1.tif") 

#SRS 

sdf <- buildDf(sampleLst[seq(1, length(sampleLst), 4)], rspNms, ndf) 

 

cbPalette <- c("#000000", "#E69F00", "#999999", "#009E73", "red", "#56B4E9") 

 

#image 

png("fig_Average_50_model_normal.png", width = 1200, height = 300, res = 100) 

 

#nonlinear 

sdfSub = subset(sdf,sc1=="nonLinearL1") 

tvl = apply(sdfSub[,1:4],1,sum) / 4 

tvl2 = sdfSub$test.4 > 170 & sdfSub$test.4 < 210 

tvl = tvl * tvl2 

sdfSub$value = tvl 

p3 <- ggplot(sdfSub, aes(x = test.4, y = pred, col = mdl)) + 

    theme_bw() + 

    geom_line(aes(x = test.4, y = value), col = "blue", size = 0.75) + 

    geom_smooth(aes(x = test.4, y = pred), level = 0.99, size = 1, linetype = 

"dotdash") + 

    theme( legend.position="none",legend.title = element_text(size = 17), 

axis.title.y = element_blank(), axis.title.x = element_blank(), axis.text = 

element_text(size = 15), axis.title = element_text(size = 20)) + 

    labs(title = "Nonlinear", cex.main = 2.2) + 

    scale_colour_manual(values = cbPalette) + 

    coord_cartesian(ylim = c(-50, 170)) 

#linear 

sdfSub = subset(sdf, sc1 == "linearL1") 

tvl = apply(sdfSub[, 1:4], 1, sum) / 4 

sdfSub$value = tvl 

p1 <- ggplot(sdfSub, aes(x = test.4, y = pred, col = mdl)) + 

    theme_bw() + 

    geom_line(aes(x = test.4, y = value), col = "blue", size = 0.75) + 

    geom_smooth(aes(x = test.4, y = pred), level = 0.99, size = 1, linetype = 

"dotdash") + 
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    theme(legend.position = "none", legend.title = element_text(size = 17), 

axis.title.y = element_blank(), axis.title.x = element_blank(), axis.text = 

element_text(size = 15), axis.title = element_text(size = 20)) + 

    labs(title = "Linear", cex.main = 2.2) + 

    scale_colour_manual(values = cbPalette) + 

    coord_cartesian(ylim = c(100, 170)) 

#squared 

sdfSub = subset(sdf, sc1 == "squaredL1") 

tvl = apply(sdfSub[, 1:4], 1, sum) / 4 

sdfSub$value = tvl^2 

p2 <- ggplot(sdfSub, aes(x = test.4, y = pred, col = mdl)) + 

    theme_bw() + 

    geom_line(aes(x = test.4, y = value), col = "blue", size = 0.75) + 

    geom_smooth(aes(x = test.4, y = pred), level = 0.99, size = 1, linetype = 

"dotdash") + 

    theme(legend.position = "none", legend.title = element_text(size = 17), 

axis.title.y = element_blank(), axis.title.x = element_blank(), axis.text = 

element_text(size = 15), axis.title = element_text(size = 20)) + 

    labs(title = "Squared", cex.main = 2.2) + 

    scale_colour_manual(values = cbPalette) 

 

grid.arrange(p1,p2,p3,nrow=1) 

dev.off() 

plot.new() 

 

#Figure 7 & 8 

pc <- c("20%", "40%", "60%", "80%") 

rnm <- c("linear","nonlinear","squared") 

totalVls <- c() 

sdVls <- c() 

for (nm in rnm) { 

    rs <- raster(paste(nm, ".tif", sep = "")) 

    tv <- cellStats(rs, stat = 'sum') 

    totalVls <- c(totalVls, tv) 

    sv <- cellStats(rs, stat = 'sd') 

    sdVls <- c(sdVls, sv) 

} 

 

n = 50 

dfcmb <- outDf 

t <- dfcmb$dtrel 

tlen <- nchar(as.character(t)) 

t1 <- substr(t, 1, tlen - 2) 
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t2 <- substr(t, tlen, tlen) 

dfcmb$error <- t2 

dfcmb$dtrel <- t1 

 

dtypes <- as.factor(unique(dfcmb$design)) 

rtypes <- as.factor(unique(dfcmb$dtrel)) 

stypes <- as.factor(unique(dfcmb$stat)) 

etypes <- as.factor(unique(dfcmb$error)) 

 

cbPalette <- c("#000000", "#999999", "#E69F00", "#56B4E9", "#009E73", "red") 

for (s in levels(stypes)) { 

    for (r in levels(rtypes)) { 

        #make picture 

        png(paste("fig_100_", as.character(n), "_", s, "_", r, ".png", sep = ""), 

width = 1200, height = 1200, res = 100) 

        gv <- vector("list", 16) 

        gCnt <- 1 

        tvl <- subset(dfcmb, stat == s & dtrel == r)$value 

        mavl = sdVls[match(r, rnm)] 

        if (s == "total") mavl = totalVls[match(r, rnm)] 

        lvl <- min(tvl) / mavl * 100 

        uvl <- max(tvl) / mavl * 100 

        if (s == "rmse") uvl = 150 

        e = "L" 

        eNm = "NORMAL" 

        for (p in rev(1:length(pc))) { 

            for (d in levels(dtypes)) { 

                dNm <- toupper(d) 

                tdf <- subset(dfcmb, stat == s & dtrel == r & design == d & error == 

as.character(p-1)) 

                tdf$vl2 <- tdf$value / mavl * 100 

                if (gCnt == 1 | gCnt == 5 | gCnt == 9) { 

                    pl <- ggplot(tdf, aes(x = mdl, y = vl2, col = mdl)) + 

geom_boxplot() + theme_light() + theme(axis.title.x = element_blank(), axis.title = 

element_text(size = 17), axis.text = element_text(size = 15), axis.text.x = 

element_blank(), axis.ticks.x = element_blank(), axis.title.y = element_blank()) + 

scale_colour_manual(values = cbPalette) + coord_cartesian(ylim = c(lvl, uvl)) 

                } 

                if (gCnt == 13) { 

                    pl <- ggplot(tdf, aes(x = mdl, y = vl2, col = mdl)) + 

geom_boxplot() + theme_light() + theme(legend.position = "none", axis.title = 

element_text(size = 17), axis.text = element_text(size = 15), axis.text.x = 

element_blank(), axis.ticks.x = element_blank(), axis.title.y = element_blank()) + 
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xlab(dNm) + scale_colour_manual(values = cbPalette) + coord_cartesian(ylim = c(lvl, 

uvl)) 

                } 

                if (gCnt == 14 | gCnt == 15 | gCnt == 16) { 

                    pl <- ggplot(tdf, aes(x = mdl, y = vl2, col = mdl)) + 

geom_boxplot() + theme_light() + theme(legend.position = "none", axis.title = 

element_text(size = 17), axis.text = element_text(size = 15), axis.text.x = 

element_blank(), axis.text.y = element_blank(), axis.ticks.x = element_blank(), 

axis.title.y = element_blank()) + xlab(dNm) + scale_colour_manual(values = 

cbPalette) + coord_cartesian(ylim = c(lvl, uvl)) 

                } 

                if (gCnt != 1 & gCnt != 5 & gCnt != 9 & gCnt != 13 & gCnt != 14 & 

gCnt != 15 & gCnt != 16) { 

                    pl <- ggplot(tdf, aes(x = mdl, y = vl2, col = mdl)) + 

geom_boxplot() + theme_light() + theme(legend.position = "none", axis.title.x = 

element_blank(), axis.text = element_text(size = 15), axis.text.x = element_blank(), 

axis.text.y = element_blank(), axis.ticks.x = element_blank(), axis.title.y = 

element_blank()) + scale_colour_manual(values = cbPalette) + coord_cartesian(ylim = 

c(lvl, uvl)) 

                } 

                gv[[gCnt]] <- pl 

                gCnt <- gCnt + 1 

            } 

        } 

        grid.arrange(gv[[1]], gv[[2]], gv[[3]], gv[[4]], gv[[5]], gv[[6]], gv[[7]], 

gv[[8]], gv[[9]], gv[[10]], gv[[11]], gv[[12]], gv[[13]], gv[[14]], gv[[15]], 

gv[[16]], nrow = 4, ncol = 4, top = textGrob(paste(toupper(s), " - ", toupper(r), " 

box plots for 100 iterations (n = ", as.character(n), ")", sep = ""), gp = 

gpar(fontsize = 20, font = 3))) 

        dev.off() 

        plot.new() 

    } 

} 

 

#Figure 9 observed vs predicted for 40%, nonlinear, GRTS, 3 and 4 band predictions 

for each of the models 

rspNms = c("NonlinearL1.tif") 

resRs = raster(rspNms) 

crs(resRs) = crs(smpLst[[1]]) 

newDf = data.frame() 

smpLst = sampleLst[seq(4, length(sampleLst), 4)] 

for (smp in smpLst) { 

    pnts = smp[sample(1:(length(smp)), 1),] 
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    respVls = extract(resRs, pnts) 

    vls = pnts@data 

    vls$resp = respVls 

    newDf = rbind(newDf,vls) 

} 

cbPalette <- c("#000000",  "#E69F00","#999999",  "#009E73", "red","#56B4E9") 

newDf = na.omit(newDf) 

sdf = buildDf(sampleLst[seq(4, length(sampleLst), 4)], rspNms,ndf=newDf) 

sdf2 = buildDf(sampleLst[seq(4, length(sampleLst), 4)], rspNms,ndf = newDf, 

subsetPred = T) 

p1 <- ggplot(sdf, aes(x = resp, y = pred, col = mdl)) + 

            theme_bw() + 

            geom_smooth(size = 1, linetype = "solid", se = F) + 

            geom_abline(slope = 1, intercept = 0, color = "gray", size = 0.5, 

linetype="dashed") + 

            theme( legend.position="none", legend.title = element_blank(), axis.text 

= element_text(size = 15), axis.title = element_text(size = 17), axis.title.x = 

element_blank(), axis.title.y=element_blank()) + 

            scale_colour_manual(values = cbPalette) + 

            coord_cartesian(ylim = c(0, 150), xlim = c(0, 150)) 

            

p2 <- ggplot(sdf2, aes(x = resp, y = pred, col = mdl)) + 

            theme_bw() + 

            geom_smooth(size = 1, linetype = "solid", se = F) + 

            geom_abline(slope = 1, intercept = 0, color = "gray", size = 0.5, 

linetype = "dashed") + 

            theme(legend.position = "none", legend.title = element_blank(), 

axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text = 

element_text(size = 15), axis.title = element_text(size = 17), axis.title.x = 

element_blank(), axis.title.y = element_blank()) + 

            scale_colour_manual(values = cbPalette) + 

            coord_cartesian(ylim = c(0, 150), xlim = c(0, 150)) 

 

p3 <- ggplot(newDf, aes(x = resp, stat(density))) + 

            theme_bw() + 

            geom_density(col = "black",linetype="dashed")+ 

            theme(axis.ticks.x = element_blank(), axis.ticks.y = element_blank(), 

panel.border = element_blank(), panel.grid.major = element_blank(),panel.grid.minor 

= 

element_blank(),axis.text.x=element_blank(),axis.text.y=element_blank(),axis.title.x 

= element_blank(),axis.title.y = element_blank()) 

 

png("predictedV_Observed_100_GRTS.png", width = 800, height = 300, res = 100) 



  

119 

 

grid.arrange(p1, p2, nrow = 1) 

dev.off() 

plot.new() 

 

#Figure 10 Spread vs RMSE by Estimator 

rspNms = c("NonlinearL1.tif") 

 

mdls = c("gam", "rf", "svm") 

gv <- vector("list", 3) 

gCnt=1 

for (m in mdls) { 

    outDfsub = subset(outDf, dtrel == "nonlinearL1" & stat == "rmse" & mdl == m ) 

 

    outDfsub$B = valueMatrix[,2] 

    outDfsub$D2 = valueMatrix[, 3] 

    tmd = lm(value ~ design, data = outDfsub) 

    summary(tmd) 

    outDfsub2 = subset(outDfsub,value>=45 & value<=85 & B> 0.1 & B < 0.6) 

    cbPalette <- c("green", "red", "black", "blue") 

    p = ggplot(outDfsub2, aes(x = B, y = value, col = design)) + 

        geom_point() + 

        theme_bw() + 

        theme(legend.position = "none", legend.title = element_blank(), axis.text = 

element_text(size = 15), axis.text.x = element_blank(),axis.ticks.x = 

element_blank(),axis.title = element_text(size = 17), 

axis.text.y=element_blank(),axis.ticks.y=element_blank(),axis.title.x = 

element_blank(), axis.title.y = element_blank()) + 

        scale_colour_manual(values = cbPalette) + 

        coord_cartesian(xlim = c(0.1, 0.6), ylim=c(45,85)) 

     

    p1 = ggMarginal(p, outDfsub2, x = B, y = value, type = c("density"), groupColour 

= T) 

    gv[[gCnt]] = p1 

    gCnt=gCnt+1 

} 

 

png("fig_spread_vs_rmse.png", width = 600, height = 200, res = 100) 

grid.arrange(gv[[1]], gv[[2]], gv[[3]],nrow=1,ncol=3) 

dev.off() 

plot.new() 

 

#Table top fitting design 

mdls = c("gam", "rf", "svm", "nn","linear","design") 
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for (m in mdls) { 

    outDfsub = subset(outDf, dtrel == "linearL2" & stat == "rmse" & mdl == m) 

 

    outDfsub$B = valueMatrix[, 2] 

    outDfsub$D2 = valueMatrix[, 3] 

    tmd = lm(value ~ design, data = outDfsub) 

    print(paste("Model = ",m,sep="")) 

    print(summary(tmd)) 

} 

 

#Table Moran's I 

sc1 = c("linearL", "squaredL", "nonlinearL") 

pc = c("0.tif", "1.tif", "2.tif", "3.tif") 

for (sc in sc1) { 

    for (p in pc) { 

        nm = paste(sc, p, sep = "") 

        rs = raster(nm) 

        mi = Moran(rs, matrix(c(0, 1, 0, 1, 0, 1, 0, 1, 0), 3, 3)) 

        print(paste(nm, " = ", as.character(mi), sep = "")) 

    } 

} 
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Chapter 4 
#BAH and TPH estimation for ANF 

#John Hogland 9/10/2019 

 

library(mgcv) 

library(ggplot2) 

library(rgdal) 

library(sp) 

library(spdep) 

baseDir <- 

"C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Papers\\Dis

sertation\\chapter3\\data" 

setwd(baseDir) 

source("C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Pape

rs\\Dissertation\\Rscripts\\Dissertation\\Dissertation\\jhLib.R") 

 

#' Title createEnsembledGam 

#' 

#' @param frm = formula 

#' @param df = data frame 

#' @param fam = family default = gaussian() 

#' @param nmdl = number of models default = 50 

#' @param ptrain = percent of data used to train the model default = 0.75 

#' @param kfact = keep factor for models: used to select models that have a similar 

RMSE training and testing datasets (default 1.25 * training RMSE)  

#' 

#' @return vector of gam models and oob and training rmse 

#' @export 

#' 

#' @examples 

createEnsembleGam <- function(frm, df, fam = gaussian(), nmdl = 50, ptrain = 0.75, 

kfact = 20) { 

    mdlV = list(length = nmdl) 

    rmseV = vector(mode = "double", length = nmdl) 

    rmseT = vector(mode = "double", length = nmdl) 

    n = round(ptrain * nrow(df)) 

    mdlCnt = 0 

    while (mdlCnt < nmdl) { 

        sIndex = sample(nrow(df), n) 

        tdf = df[sIndex,] 

        vdf = df[-sIndex,] 

        try({ 

            mdl = gam(frm, family = fam, data = tdf) 
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            pvlV = getPredictedValues(mdl, vdf) #predict(mdl, newdata = vdf)#add 

multinom estimates 

            ovlV = getResponseValues(vdf, mdl) #vdf[all.vars(frm)[1]][[1]]#adjust 

for multinom estimates 

            t_rmseV = getErrorEstimate(pvlV, ovlV, mdl) #sqrt(mean((pvlV - ovlV) ^ 

2)) 

 

            pvlT = getPredictedValues(mdl, tdf) #predict(mdl, newdata = tdf) 

            ovlT = getResponseValues(tdf, mdl) #tdf[all.vars(frm)[1]][[1]] 

            t_rmseT = getErrorEstimate(pvlT, ovlT, mdl) #sqrt(mean((pvlT - ovlT) ^ 

2)) 

 

                if (t_rmseV <= (t_rmseT * kfact)) { 

                    mdlCnt = mdlCnt + 1 

                    mdlV[[mdlCnt]] = mdl 

                    rmseV[mdlCnt] = t_rmseV 

                    rmseT[mdlCnt] = t_rmseT 

                    print(paste("Found model ", mdlCnt, sep = "")) 

            } 

        }, silent = TRUE) 

    } 

    return(list(mdlV,rmseV,rmseT)) 

} 

getTrainOBBAIC <- function(EGAM) { 

    n = length(EGAM[[1]]) 

    svl = 0 

    svl2 = 0 

    for (m in 1:n) { 

        mdl = EGAM[[1]][[m]] 

        svl = svl + mdl$aic 

        svl2 = svl2+ mdl$null.deviance 

    } 

    return(c(mean(EGAM[[3]]), mean(EGAM[[2]]), svl / n, svl2/n)) 

} 

getPredictedValues <- function(md, df, t = "response") { 

     

    pVls = predict(md, newdata = df, type = t) 

    fm = md$family 

    if (fm$family == "multinom") { 

        pVls <- apply(pVls, 1, function(x) which(max(x) == x)[1]) - 1 

    } 

    if (fm$family == "binomial") { 
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        pVls <- as.integer(pVls>0.5) 

    } 

    return (pVls) 

} 

getResponseValues <- function(df, md) { 

    fm = md$family 

    f = md$formula 

    if (fm$family == "multinom") { 

        f = f[[1]] 

    } 

    return(df[all.vars(f)[1]][[1]]) 

} 

getErrorEstimate <- function(p, o, md) { 

    fm = md$family 

    outVl = NULL 

    if (fm$family == "multinom" | fm$family == "binomial") { 

        outVl = 1-sum(p==o)/length(p) 

    } 

    else { 

        outVl = sqrt(mean((p - o) ^ 2)) 

    } 

    return(outVl) 

} 

#' Transform data 

#'Transforms data using pca cor 

#' @param df =  data frame 

#' @param response = response variable 

#' @param pred = vector of predictor variables 

#' 

#' @return list (data frame, pca 

#' @export 

#' 

#' @examples 

transformData <- function(df, response, pred) { 

    frm = formula(paste("~", paste(pred, collapse = "+"), sep = "")) 

    pca = princomp(frm,data=df,cor=TRUE) 

    return(list(data.frame(resp=df[response][[1]],pca$scores),pca)) 

} 

#' Predict Bagged Gam model values 

#' 

#' @param bGamMdl = list of models 

#' @param df = new data data frame 

#' 
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#' @return = data frame of mean predictions and standard errors 

#' @export 

#' 

#' @examples 

predictEnsembleGam <- function(bGamMdl, df, trunc = 0) { 

    fm = bGamMdl[[1]]$family 

    m = NULL 

    s = NULL 

    mdls = length(bGamMdl) 

    n = nrow(df) 

    if (fm$family == "multinom") { 

        nlp = fm$nlp 

        sm = matrix(rep(0,n*(nlp+1)),nrow = n, ncol = nlp +1) 

        s2m = sm 

        for (i in seq(mdls)) { 

            mdl = bGamMdl[[i]] 

            p = predict(mdl, df, type = "response") 

            sm = sm + p 

            s2m = s2m + p ^ 2 

        } 

        m = sm / mdls 

        s = sqrt((s2m - ((sm ^ 2) / mdls)) / (mdls - 1)) 

        return(list(m, s)) 

 

    } 

    else { 

        sV = vector(mode = "double", length = n) 

        s2V = vector(mode = "double", length = n) 

        for (i in seq(mdls)) { 

            mdl = bGamMdl[[i]] 

            p = predict(mdl, df, type = "response") 

            if (fm$family != "binomial") {  

                p = p ^ 2 

            } 

            sV = sV + p 

            s2V = s2V + p ^ 2 

        } 

        m = sV / mdls 

        s = sqrt((s2V - ((sV ^ 2) / mdls)) / (mdls - 1)) 

        return(list(m,s)) 

    } 

     

} 
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runSim <- function(resp, pred, df, nmdl = 10, ptrain = 0.75, kfact = 10, fam = 

gaussian(), outMdl = "") { 

 

    respVl = df[resp][[1]] 

    nlp = 1 

    if (fam$family == "multinom") { 

        nlp = fam$nlp 

    } 

    fm <- getFormula(resp, pred, nlp) #as.formula(paste(resp, " ~ ", paste("s(", 

pred, ")", collapse = " + "))) 

    mdls = createEnsembleGam(fm, df, nmdl = nmdl, ptrain = ptrain, kfact = kfact, 

fam = fam) 

    if (outMdl != "") { 

        saveRDS(mdls, outMdl) 

    } 

    p = predictEnsembleGam(mdls[[1]], df) 

    est = p[[1]] 

    lest = (est - p[[2]] * 1.96) 

    uest = (est + p[[2]] * 1.96) 

 

    if (fam$family == "multinom" | fam$family == "binomial") { 

        pca = princomp(formula(paste("~", paste(pred, collapse = "+"), sep = "")), 

data = df, cor = TRUE) 

        p1 = pca$scores[,1] 

        if (fam$family == "multinom") { 

            for (i in 1:ncol(est)) { 

                fts = createGraph(p1, est[,i], resp, categorical = TRUE, pcol = 

respVl + 3) 

            } 

        } 

        else { 

            fts = createGraph(p1, est, resp, categorical = TRUE, pcol = respVl+3) 

        } 

    } 

    else { 

        fts = createGraph(respVl, est, resp) 

    } 

     

 

    #(rmse = sqrt(mean(res ^ 2))) 

    #(r2 = 1 - ((mean(res ^ 2)) / var(respVl))) 
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    return(list(mdls[[1]], data.frame(TotRMSE = fts[2], TotR2 = fts[1] ^ 2, oobError 

= mean(mdls[[2]]), trainError = mean(mdls[[3]])))) 

} 

 

createGraph <- function(obs, est, graphName, axisTitleBlank = TRUE, 

categorical=FALSE,pcol="blue") { 

    xTitle = "Observed" 

    if (categorical==TRUE) { 

        xTitle = "Comp_1" 

    } 

    yTitle = "Predicted" 

    if (axisTitleBlank == FALSE) { 

        xTitle = "" 

        yTitle = "" 

    } 

 

    cr = cor(est, obs) 

    rmse = sqrt(mean((obs - est) ^ 2)) 

    sbt = paste("Correlation = ",round(cr,digits=2),": RMSE = ", 

round(rmse,digits=2),sep = "") 

    p4 = ggplot(data.frame(Observed = obs, Predicted = est), aes(x = Observed, y = 

Predicted)) + 

        theme_bw() + 

        geom_smooth(size = 1, linetype = "dotdash", col = "black") + 

        geom_point(col = pcol, pch = 1) + 

        geom_abline(slope = 1, intercept = 0, col = "red", size = 0.5) +  

        theme(legend.position = "none", plot.subtitle = element_text(size = 15), 

plot.title = element_text(size = 18), axis.text = element_text(size = 15), 

axis.title = element_text(size = 17)) + 

        #coord_cartesian(ylim = c(0, 45), xlim = c(0, 45)) + 

         

        xlab(xTitle) + 

        ylab(yTitle) + 

         

    labs(title = graphName,subtitle = sbt) 

    print(p4) 

    return(c(cr,rmse)) 

} 

 

#get dataset and predictor names 

plts = readOGR("PlotsShifted244.shp") 

AnfDf = plts@data 

knn = knearneigh(plts@coords, k = 1) 
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nb = knn2nb(knn) 

AnfDf$DFT = 2 

AnfDf[(AnfDf$Pine1BAH + AnfDf$Other1BAH) < 2, "DFT"] = 0 

AnfDf[AnfDf$Other1BAH > AnfDf$Pine1BAH & AnfDf$DFT != 0, "DFT"] = 1 

AnfDf$LPP = 0 

AnfDf[AnfDf$LP1BAH >= 2, "LPP"] = 1 

crd = plts@coords 

AnfDf$X = crd[,1] 

AnfDf$Y = crd[, 2] 

AnfDf$XY = AnfDf$X * AnfDf$Y 

(predLs <- names(AnfDf)[17:52]) 

(predSn <- names(AnfDf)[55:78]) 

(predNp <- names(AnfDf)[79:86]) 

(predXY <- names(AnfDf)[92:94]) 

(allPred <- c(predLs, predSn, predNp, predXY)) 

(allImagePred <- c(predLs, predSn, predNp)) 

tdf = transformData(AnfDf, "Pine1BAH", allImagePred) 

pcaImage = tdf[[2]] 

pcaDf = tdf[[1]] 

(pcaPred = names(pcaDf)[2:length(names(pcaDf))]) 

 

#get dataset and predictor names for raw 

AnfDfRaw = read.csv("ANFplotsRaw3.csv") 

AnfDfRaw = subset(AnfDfRaw, !(OBJECTID == 189 | OBJECTID == 197 | OBJECTID == 204 | 

OBJECTID == 207)) 

#AnfVRaw = subset(AnfDfAllRaw, sample == 0) 

AnfDfRaw$DFT = AnfDf$DFT 

AnfDfRaw$LPP = AnfDf$LPP 

AnfDfRaw$X = AnfDf$X 

AnfDfRaw$Y = AnfDf$Y 

AnfDfRaw$XY = AnfDf$XY 

(predLsRaw <- names(AnfDfRaw)[22:57]) 

(predSnRaw <- names(AnfDfRaw)[58:81]) 

(predNpRaw <- names(AnfDfRaw)[82:89]) 

(predXYRaw <-  names(AnfDfRaw)[92:94]) 

(allPredRaw <- c(predLsRaw, predSnRaw, predNpRaw, predXYRaw)) 

(allImagePredRaw <- c(predLsRaw, predSnRaw, predNpRaw)) 

tdfRaw = transformData(AnfDfRaw, "Pine1BAH", allImagePredRaw) 

pcaImageRaw = tdfRaw[[2]] 

pcaDfRaw = tdfRaw[[1]] 

(pcaPredRaw = names(pcaDfRaw)[2:length(names(pcaDfRaw))]) 

 

#getDFTModels 
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(resp = "DFT") 

bmdl = getGamSigFldNames(AnfDf, resp, allImagePred, 0.05, fam = multinom(K = 2)) 

(pred = bmdl[[1]]) 

summary(bmdl[[2]]) 

DftStats = runSim(resp, pred, AnfDf, 50, ptrain = 0.75, kfact = 

100,fam=multinom(K=2), outMdl = "Dft244.egm") 

DftStats[[2]] 

DftStats = readRDS("Dft244.egm") 

getTrainOBBAIC(DftStats) 

pDFT = predictEnsembleGam(DftStats[[1]], AnfDf) 

AnfDf$r_pDFT0 = as.integer(AnfDf$DFT == 0) - pDFT[[1]][, 1] 

AnfDf$r_pDFT1 = as.integer(AnfDf$DFT == 1) - pDFT[[1]][, 2] 

AnfDf$r_pDFT2 = as.integer(AnfDf$DFT == 2) - pDFT[[1]][, 3] 

(mt = moran.test(AnfDf$r_pDFT0, nb2listw(nb))) 

(mt = moran.test(AnfDf$r_pDFT1, nb2listw(nb))) 

(mt = moran.test(AnfDf$r_pDFT2, nb2listw(nb))) 

 

(resp = "DFT") 

bmdlRaw = getGamSigFldNames(AnfDfRaw, resp, allImagePredRaw, 0.05, fam = multinom(K 

= 2)) 

(predRaw = bmdlRaw[[1]]) 

summary(bmdlRaw[[2]]) 

DftStatsRaw = runSim(resp, predRaw, AnfDfRaw, 50, ptrain = 0.75, kfact = 100, 

fam=multinom(K=2),outMdl = "DftRaw244.egm") 

DftStatsRaw[[2]] 

DftStatsRaw = readRDS("DftRaw244.egm") 

getTrainOBBAIC(DftStatsRaw) 

pDFTRaw = predictEnsembleGam(DftStatsRaw[[1]], AnfDfRaw) 

AnfDf$r_pDFT0 = as.integer(AnfDfRaw$DFT == 0) - pDFTRaw[[1]][, 1] 

AnfDf$r_pDFT1 = as.integer(AnfDfRaw$DFT == 1) - pDFTRaw[[1]][, 2] 

AnfDf$r_pDFT2 = as.integer(AnfDfRaw$DFT == 2) - pDFTRaw[[1]][, 3] 

(mt = moran.test(AnfDfRaw$r_pDFT0, nb2listw(nb))) 

(mt = moran.test(AnfDfRaw$r_pDFT1, nb2listw(nb))) 

(mt = moran.test(AnfDfRaw$r_pDFT2, nb2listw(nb))) 

 

 

#getLPPModels 

(resp = "LPP") 

bmdl = getGamSigFldNames(AnfDf, resp, allImagePred, 0.05, fam = binomial()) 

(pred = bmdl[[1]]) 

summary(bmdl[[2]]) 

LppStats = runSim(resp, pred, AnfDf, 50, ptrain = 0.75, kfact = 100, fam = 

binomial(), outMdl = "LPP244.egm") 



  

129 

 

LppStats = readRDS("LPP244.egm") 

getTrainOBBAIC(LppStats) 

pLPP = predictEnsembleGam(LppStats[[1]], AnfDf)[[1]] 

AnfDf$r_pLPP0 = as.vector((1 - pLPP) - as.integer(AnfDf$LPP == 0)) 

AnfDf$r_pLPP1 = as.vector(pLPP - as.integer(AnfDf$LPP == 1)) 

(mt = moran.test(AnfDf$r_pLPP0, nb2listw(nb))) 

(mt = moran.test(AnfDf$r_pLPP1, nb2listw(nb))) 

 

(resp = "LPP") 

bmdl = getGamSigFldNames(AnfDfRaw, resp, allImagePredRaw, 0.05, fam = binomial()) 

(predRaw = bmdl[[1]]) 

summary(bmdl[[2]]) 

LppStatsRaw = runSim(resp, predRaw, AnfDfRaw, 50, ptrain = 0.75, kfact = 10, 

fam=binomial(), outMdl = "LppRaw244.egm") 

LppStatsRaw = readRDS("LppRaw244.egm") 

getTrainOBBAIC(LppStatsRaw) 

pLPPRaw = predictEnsembleGam(LppStatsRaw[[1]], AnfDfRaw)[[1]] 

AnfDfRaw$r_pLPP0 = as.vector((1 - pLPPRaw) - as.integer(AnfDfRaw$LPP == 0)) 

AnfDfRaw$r_pLPP1 = as.vector(pLPPRaw - as.integer(AnfDfRaw$LPP == 1)) 

(mt = moran.test(AnfDfRaw$r_pLPP0, nb2listw(nb))) 

(mt = moran.test(AnfDfRaw$r_pLPP1, nb2listw(nb))) 

 

 

#getPineModels 

#PineBAH 

AnfDf$sqrt_Pine1BAH = sqrt(AnfDf$Pine1BAH) 

(resp = "sqrt_Pine1BAH") 

bmdl = getGamSigFldNames(AnfDf, resp, allImagePred, 0.05, fam = gaussian()) 

(pred = bmdl[[1]]) 

summary(bmdl[[2]]) 

PineBahStats = runSim(resp,pred,AnfDf,50,ptrain = 0.75,kfact = 10,outMdl = 

"PineBah244_n.egm") 

PineBahStats = readRDS("PineBah244_n.egm") 

getTrainOBBAIC(PineBahStats) 

pBAH = predictEnsembleGam(PineBahStats[[1]],AnfDf) 

AnfDf$r_pBAH = as.vector(pBAH[[1]]^2 - AnfDf$Pine1BAH) 

(mt = moran.test(AnfDf$r_pBAH, nb2listw(nb))) 

 

AnfDfRaw$sqrt_Pine1BAH = sqrt(AnfDfRaw$Pine1BAH) 

(resp = "sqrt_Pine1BAH") 

predRaw = getGamSigFldNames(AnfDfRaw, resp, allImagePredRaw, 0.05, fam = gaussian()) 

PineBahStatsRaw = runSim(resp, predRaw[[1]], AnfDfRaw, 50, ptrain = 0.75, kfact = 

10, outMdl = "PineBah244Raw_n.egm") 
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PineBahStatsRaw = readRDS("PineBah244Raw_n.egm") 

getTrainOBBAIC(PineBahStatsRaw) 

pBAHRaw = predictEnsembleGam(PineBahStatsRaw[[1]], AnfDfRaw) 

AnfDfRaw$r_pBAH = as.vector(pBAHRaw[[1]] ^ 2 - AnfDfRaw$Pine1BAH) 

(mt = moran.test(AnfDfRaw$r_pBAH, nb2listw(nb))) 

 

#PineTPH 

AnfDf$sqrt_Pine1TPH = sqrt(AnfDf$Pine1TPH) 

(resp = "sqrt_Pine1TPH") 

predTph = getGamSigFldNames(AnfDf, resp, allImagePred, 0.05, fam = gaussian()) 

PineTphStats = runSim(resp, predTph[[1]], AnfDf, 50, ptrain = 0.75, kfact = 10, 

outMdl = "PineTph244_n.egm") 

PineTphStats = readRDS("PineTPH244.egm") 

getTrainOBBAIC(PineTphStats) 

pTPH = predictEnsembleGam(PineTphStats[[1]], AnfDf) 

AnfDf$r_pTPH = as.vector(pTPH[[1]] ^ 2 - AnfDf$Pine1TPH) 

(mt = moran.test(AnfDf$r_pTPH, nb2listw(nb))) 

 

AnfDfRaw$sqrt_Pine1TPH = sqrt(AnfDfRaw$Pine1TPH) 

(resp = "sqrt_Pine1TPH") 

predRaw = getGamSigFldNames(AnfDfRaw, resp, allImagePredRaw, 0.05, fam = gaussian()) 

PineTphStatsRaw = runSim(resp, predRaw[[1]], AnfDfRaw, 50, ptrain = 0.75, kfact = 

10, outMdl = "PineTph244Raw_n.egm") 

PineTphStatsRaw = readRDS("PineTPH244Raw_n.egm") 

getTrainOBBAIC(PineTphStatsRaw) 

pTPHRaw = predictEnsembleGam(PineTphStatsRaw[[1]], AnfDfRaw) 

AnfDfRaw$r_pTPH = as.vector(pTPHRaw[[1]] ^ 2 - AnfDfRaw$Pine1TPH) 

(mt = moran.test(AnfDfRaw$r_pTPH, nb2listw(nb))) 

 

 

#getOtherModels 

#OthereBAH 

AnfDf$sqrt_Other1BAH = sqrt(AnfDf$Other1BAH) 

(resp = "sqrt_Other1BAH") 

pred = getGamSigFldNames(AnfDf, resp, allImagePred, 0.05, fam = gaussian()) 

OtherBahStats = runSim(resp, pred[[1]], AnfDf, 50, ptrain = 0.75, kfact = 10, outMdl 

= "OtherBah244_n.egm") 

OtherBahStats = readRDS("OtherBah244_n.egm") 

getTrainOBBAIC(OtherBahStats) 

oBAH = predictEnsembleGam(OtherBahStats[[1]], AnfDf) 

AnfDf$r_oBAH = as.vector(oBAH[[1]] ^ 2 - AnfDf$Other1BAH) 

(mt = moran.test(AnfDf$r_oBAH, nb2listw(nb))) 
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AnfDfRaw$sqrt_Other1BAH = sqrt(AnfDfRaw$Other1BAH) 

(resp = "sqrt_Other1BAH") 

predRaw = getGamSigFldNames(AnfDfRaw, resp, allImagePredRaw, 0.05, fam = 

gaussian())[[1]] 

OtherBahStatsRaw = runSim(resp, predRaw, AnfDfRaw, 50, ptrain = 0.75, kfact = 10, 

outMdl = "OtherBahRaw244_n.egm") 

OtherBahStatsRaw = readRDS("OtherBahRaw244_n.egm") 

getTrainOBBAIC(OtherBahStatsRaw) 

oBAHRaw = predictEnsembleGam(OtherBahStatsRaw[[1]], AnfDfRaw) 

AnfDfRaw$r_oBAH = as.vector(oBAHRaw[[1]] ^ 2 - AnfDfRaw$Other1BAH) 

(mt = moran.test(AnfDfRaw$r_oBAH, nb2listw(nb))) 

 

#OtherTPH 

AnfDf$sqrt_Other1TPH = sqrt(AnfDf$Other1TPH) 

(resp = "sqrt_Other1TPH") 

pred = getGamSigFldNames(AnfDf, resp, allImagePred, 0.05, fam = gaussian())[[1]] 

OtherTphStats = runSim(resp, pred, AnfDf, 50, ptrain = 0.75, kfact = 10, outMdl = 

"OtherTph244_n.egm") 

OtherTphStats = readRDS("OtherTph244_n.egm") 

getTrainOBBAIC(OtherTphStats) 

oTPH = predictEnsembleGam(OtherTphStats[[1]], AnfDf) 

AnfDf$r_oTPH = as.vector(oTPH[[1]] ^ 2 - AnfDf$Other1TPH) 

(mt = moran.test(AnfDf$r_oTPH, nb2listw(nb))) 

 

AnfDfRaw$sqrt_Other1TPH = sqrt(AnfDfRaw$Other1TPH) 

(resp = "sqrt_Other1TPH") 

predRaw = getGamSigFldNames(AnfDfRaw, resp, allImagePredRaw, 0.05, fam = 

gaussian())[[1]] 

OtherTphStatsRaw = runSim(resp, predRaw, AnfDfRaw, 50, ptrain = 0.75, kfact = 10, 

outMdl = "OtherTphRaw244_n.egm") 

OtherTphStatsRaw = readRDS("OtherTphRaw244_n.egm") 

getTrainOBBAIC(OtherTphStatsRaw) 

oTPHRaw = predictEnsembleGam(OtherTphStatsRaw[[1]], AnfDfRaw) 

AnfDfRaw$r_oTPH = as.vector(oTPHRaw[[1]] ^ 2 - AnfDfRaw$Other1TPH) 

(mt = moran.test(AnfDfRaw$r_oTPH, nb2listw(nb))) 

library(rgdal) 

library(raster) 

library(mgcv) 

 

createDomain <- function(Pred, rndDf, plotDf, outName, k = 100) { 

    rndLocSub = subset(rndDf, select = names(Pred)) 

    AnfDfSub = subset(plotDf, select = names(Pred)) 
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    km = kmeans(rndLocSub, k) 

    ucls = unique(km$cluster) 

    vl = predict(km, AnfDfSub) 

    uvl = unique(vl) 

    msvl = ucls[!(ucls %in% uvl)] 

    msdf = data.frame(id = msvl, v = rep(1, length(msvl))) 

    beginCluster(8) 

    krs = clusterR(Pred, predict, args = list(model = km, fun = predict.kmeans), 

progress = 'text') 

    drs = clusterR(krs, subs, args = list(msdf), filename = outName, format = 

"GTiff", datatype = "INT1U", NAFlag = 255, progress = 'text', overwrite = TRUE) 

    endCluster() 

    return(drs) 

} 

 

predict.kmeans <- function(x, newdata) { 

    return(apply(newdata, 1, function(r) which.min(colSums((t(x$centers) - r) ^ 

2)))) 

} 

 

predictEnsembleGam <- function(bGamMdl, data, trunc = 0) { 

    fm = bGamMdl[[1]]$family 

    m = NULL 

    s = NULL 

    mdls = length(bGamMdl) 

    n = nrow(data) 

    if (fm$family == "multinom") { 

        nlp = fm$nlp 

        sm = matrix(rep(0, n * (nlp + 1)), nrow = n, ncol = nlp + 1) 

        s2m = sm 

        for (i in seq(mdls)) { 

            mdl = bGamMdl[[i]] 

            p = predict(mdl, data, type = "response") 

            sm = sm + p 

            s2m = s2m + p ^ 2 

        } 

        m = sm / mdls 

        s = sqrt((s2m - ((sm ^ 2) / mdls)) / (mdls - 1)) 

        return(cbind(m,s)) 

 

    } 

    else { 

        sV = vector(mode = "double", length = n) 
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        s2V = vector(mode = "double", length = n) 

        for (i in seq(mdls)) { 

            mdl = bGamMdl[[i]] 

            p = (predict(mdl, data, type = "response")) 

            if (fm$family != "binomial") { 

                p = p ^ 2 

            } 

            p[p < trunc] = trunc 

            sV = sV + p 

            s2V = s2V + p ^ 2 

        } 

        m = sV / mdls 

        s = sqrt((s2V - ((sV ^ 2) / mdls)) / (mdls - 1)) 

        return(cbind(m,s)) 

    } 

 

} 

 

baseDir <- "C:\\Users\\jshogland\\Documents\\John\\projects\\RESTORE\\Outputs3" 

setwd(baseDir) 

rasterOptions(tmpdir = paste(getwd(), "tmp", sep = "/")) 

tmpDir(create = TRUE) 

 

# read rasters 

rndLoc = readOGR("RndLoc10000.shp", "RndLoc10000") 

rndDf = rndLoc@data 

plotLoc = readOGR("PlotsShifted244.shp", "PlotsShifted_244") 

AnfDf = plotLoc@data 

AOI = shapefile("AOI.shp") 

ext = extent(AOI) 

LSP = 

brick("C:\\Users\\jshogland\\Documents\\John\\projects\\RESTORE\\Predictors\\LS.tif"

) 

xmin = 882300 

xmax = xmin + 30 * ncol(LSP) 

ymin = 731820 

ymax = ymin + 30 * nrow(LSP) 

newExt = extent(c(xmin, xmax, ymin, ymax)) 

LSP2 = crop(setExtent(LSP, newExt), ext) 

SNP = 

crop(brick("C:\\Users\\jshogland\\Documents\\John\\projects\\RESTORE\\Predictors\\SN

.tif"),ext) 
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ARP = 

crop(brick("C:\\Users\\jshogland\\Documents\\John\\projects\\RESTORE\\Predictors\\Ae

rial.tif"),ext) 

 

 

#subset and combine layers 

 

#DFT 

#beginCluster(8) 

#DftStats = readRDS("Dft244.egm") 

P1 = LSP2[[c(9)]] 

P2 = SNP[[c(1, 4, 6, 10)]] 

P3 = LSP2[[c(2, 10)]] 

P4 = ARP[[c(1)]] 

Pred = stack(P1,P2,P3,P4) 

names(Pred) <- c("LS_Band16", "SN_Band2", "SN_Band5", "SN_Band7", "SN_Band21", 

"LS_Band3", "LS_Band17", "NP_Band1") 

#Dft = clusterR(Pred, predict, args = list(model = DftStats[[1]], fun = 

predictEnsembleGam, index = 1:6), filename = "DFT.tif", format = "GTiff", verbose = 

TRUE, datatype = "FLT4S",NAFlag=-9999, progress='text') 

#endCluster() 

DFT_D = createDomain(Pred,rndDf = rndDf,plotDf=AnfDf,"DFT_D.tif") 

 

#LPP 

#beginCluster(8) 

#LppStats = readRDS("LPP244.egm") 

P1 = LSP2[[c(1)]] 

P2 = SNP[[c(2,3)]] 

P3 = LSP2[[c(10)]] 

P4 = ARP[[c(2,3)]] 

Pred = stack(P1, P2, P3,P4) 

names(Pred) <- c("LS_Band2", "SN_Band3", "SN_Band4", "LS_Band17", "NP_Band2", 

"NP_Band5") 

#LPP = clusterR(Pred, predict, args = list(model = LppStats[[1]], fun = 

predictEnsembleGam, index = 1:2), filename = "LPP.tif", format = "GTiff", verbose = 

TRUE, datatype = "FLT4S", NAFlag = -9999, progress = 'text') 

#endCluster() 

LPP_D = createDomain(Pred, rndDf = rndDf, plotDf = AnfDf, "LPP_D.tif") 

 

#baseDir <- "E:\\Projects\\RESTORE\\Outputs2" 

#setwd(baseDir) 

#rasterOptions(tmpdir = paste(getwd(), "tmp", sep = "/")) 

#tmpDir(create = TRUE) 
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#PBAH 

#beginCluster(8) 

(P1 = LSP2[[c(1, 4, 6, 7, 9, 10, 11, 12)]]) 

(P2 = ARP[[c(2, 4)]]) 

(Pred = stack(P1, P2)) 

names(Pred)=c("LS_Band2","LS_Band8","LS_Band10","LS_Band11","LS_Band16","LS_Band17",

"LS_Band18","LS_Band22","NP_Band2","NP_Band8") 

#PineBahStats = readRDS("PineBah244_n.egm") 

#PBAH = clusterR(Pred, predict, args = list(model = PineBahStats[[1]], fun = 

predictEnsembleGam, index = 1:2),filename = 

"pBAH.tif",format="GTiff",verbose=TRUE,datatype="FLT4S", NAFlag = -9999, progress = 

'text') 

#endCluster() 

PBAH_D = createDomain(Pred, rndDf = rndDf, plotDf = AnfDf, "PBAH_D.tif") 

 

#PTPH 

#beginCluster(8) 

#PineTphStats = readRDS("PineTph244.egm") 

(P1 = LSP2[[c(2,3,4,6,7,10,13)]]) 

(P2 = SNP[[c(3, 8)]]) 

(P3 = ARP[[c(2,3)]]) 

(Pred = stack(P1, P2, P3)) 

names(Pred) = c("LS_Band3", "LS_Band5", "LS_Band8", "LS_Band10", "LS_Band11", 

"LS_Band17", "LS_Band28", "SN_Band4", "SN_Band11", "NP_Band2", "NP_Band5") 

#PTPH = clusterR(Pred, predict, args = list(model = PineTphStats[[1]], fun = 

predictEnsembleGam, index = 1:2), filename = "pTPH.tif", format = "GTiff", verbose = 

TRUE, datatype = "FLT4S", NAFlag = -9999, progress = 'text') 

#endCluster() 

PTPH_D = createDomain(Pred, rndDf = rndDf, plotDf = AnfDf, "PTPH_D.tif") 

 

 

#OBAH 

#beginCluster(8) 

#OtherBahStats = readRDS("OtherBah244_n.egm") 

(P1 = LSP2[[c(2, 3, 7)]]) 

(P2 = SNP[[c(6,7,10,11)]]) 

(P3 = ARP[[c(2, 3)]]) 

(Pred = stack(P1, P2, P3)) 

names(Pred) = c("LS_Band3", "LS_Band5", "LS_Band11", "SN_Band7", "SN_Band9", 

"SN_Band21", "SN_Band23", "NP_Band2", "NP_Band5") 
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#OBAH = clusterR(Pred, predict, args = list(model = OtherBahStats[[1]], fun = 

predictEnsembleGam, index = 1:2), filename = "oBAH.tif", format = "GTiff", verbose = 

TRUE, datatype = "FLT4S", NAFlag = -9999, progress = 'text') 

#endCluster() 

OBAH_D=createDomain(Pred, rndDf = rndDf, plotDf = AnfDf, "OBAH_D.tif") 

 

 

#OTPH 

#beginCluster(8) 

#OtherTphStats = readRDS("OtherTph244_n.egm") 

(P1 = LSP2[[c(5,8)]]) 

(P2 = SNP[[c(1,5,6,9)]]) 

(P3 = ARP[[c(1)]]) 

(Pred = stack(P1, P2, P3)) 

names(Pred) = c("LS_Band9", "LS_Band13", "SN_Band2", "SN_Band6", "SN_Band7", 

"SN_Band20", "NP_Band1") 

#OTPH = clusterR(Pred, predict, args = list(model = OtherTphStats[[1]], fun = 

predictEnsembleGam, index = 1:2), filename = "oTPH.tif", format = "GTiff", verbose = 

TRUE, datatype = "FLT4S", NAFlag = -9999, progress = 'text') 

#endCluster() 

OTPH_D=createDomain(Pred, rndDf = rndDf, plotDf = AnfDf, "OTPH_D.tif") 

 

#Create feature domain mask 

 

removeTmpFiles(h = 0) 

library(ggplot2) 

library(grid) 

library(gridExtra) 

library(mgcv) 

 

MeanSeAA <- function(df,resp, egam) { 

    #df = df244 

    #resp = "LPP" 

    #egam = LppStats[[1]] 

    dfb = df 

    unqClss = unique(dfb[resp][[1]]) 

    clsCnt = length(unqClss) 

    fm = egam[[1]]$family$family 

    mldCnt = length(egam) 

    porMat = matrix(ncol = clsCnt ^ 2, nrow = mldCnt) 

    for (m in 1:mldCnt) { 

        mdl = egam[[m]] 

        tp = predict(mdl, df, type="response") 
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        if (fm == "multinom") { 

            dfb$pred = apply(tp, 1, function(x) which(max(x) == x)) - 1 

        } 

        else { 

            dfb$pred = as.integer(tp > 0.5) 

        } 

        rvect = vector(mode = "numeric", length = clsCnt ^ 2) 

        cCnt = 1 

        for (l in unqClss) { 

            clTot = sum(as.character(dfb[resp][[1]]) == l) 

            for (l2 in unqClss) { 

                rvect[cCnt] = sum(as.character(dfb[resp][[1]]) == l & 

as.character(dfb$pred) == l2)/clTot 

                cCnt = cCnt + 1 

            } 

        } 

        porMat[m,] <- rvect 

    } 

    return(porMat) 

} 

 

getBootMeanCL <- function(x, alpha = 0.05) { 

    k = length(x) 

    vs = sort(x) 

    a = alpha / 2 

    ab = round(a * k) 

    ae = round((1 - a) * k) 

    return(c(mean(vs), vs[ab], vs[ae])) 

} 

 

predictEnsembleGam <- function(bGamMdl, df, trunc = 0) { 

    fm = bGamMdl[[1]]$family 

    m = NULL 

    s = NULL 

    mdls = length(bGamMdl) 

    n = nrow(df) 

    if (fm$family == "multinom") { 

        nlp = fm$nlp 

        sm = matrix(rep(0, n * (nlp + 1)), nrow = n, ncol = nlp + 1) 

        s2m = sm 

        for (i in seq(mdls)) { 

            mdl = bGamMdl[[i]] 

            p = predict(mdl, df, type = "response") 
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            sm = sm + p 

            s2m = s2m + p ^ 2 

        } 

        m = sm / mdls 

        s = sqrt((s2m - ((sm ^ 2) / mdls)) / (mdls - 1)) 

        return(list(m, s)) 

 

    } 

    else { 

        sV = vector(mode = "double", length = n) 

        s2V = vector(mode = "double", length = n) 

        for (i in seq(mdls)) { 

            mdl = bGamMdl[[i]] 

            p = predict(mdl, df, type = "response") 

            p[p < trunc] = trunc 

            sV = sV + p 

            s2V = s2V + p ^ 2 

        } 

        m = sV / mdls 

        s = sqrt((s2V - ((sV ^ 2) / mdls)) / (mdls - 1)) 

        return(list(m, s)) 

    } 

 

} 

createGraph <- function(obs, est, graphName, axisTitleBlank = TRUE, categorical = 

FALSE, pcol = "blue") { 

    xTitle = "Observed" 

    if (categorical == TRUE) { 

        xTitle = "Comp_1" 

    } 

    yTitle = "Predicted" 

    if (axisTitleBlank == TRUE) { 

        xTitle = "" 

        yTitle = "" 

    } 

    uVal = max(est) 

    cr = cor(est, obs) 

    rmse = sqrt(mean((obs - est) ^ 2)) 

    sbt = paste("Correlation = ", round(cr, digits = 2), ": RMSE = ", round(rmse, 

digits = 2), sep = "") 

    p4 = ggplot(data.frame(Observed = obs, Predicted = est), aes(x = Observed, y = 

Predicted)) + 

        theme_bw() + 
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        geom_smooth(size = 1, linetype = "dotdash", col = "black") + 

        geom_point(col = pcol, pch = 1) + 

        geom_abline(slope = 1, intercept = 0, col = "red", size = 0.5) + 

        theme(legend.position = "none", plot.subtitle = element_text(size = 15), 

plot.title = element_text(size = 18), axis.text = element_text(size = 15), 

axis.title = element_text(size = 17)) + 

        coord_cartesian(ylim = c(0, uVal), xlim = c(0, uVal)) + 

        xlab(xTitle) + 

        ylab(yTitle) + 

 

        labs(title = graphName, subtitle = sbt) 

    return(p4) 

} 

 

getTrainOBBAIC <- function(EGAM) { 

    n = length(EGAM[[1]]) 

    svl = 0 

    svl2 = 0 

    for (m in 1:n) { 

        mdl = EGAM[[1]][[m]] 

        svl = svl + mdl$aic 

        svl2 = svl2 + mdl$null.deviance 

    } 

    return(c(mean(EGAM[[3]]), mean(EGAM[[2]]), svl / n, svl2 / n)) 

} 

 

#KS test results 

baseDir <- 

"C:\\Users\\jshogland\\Documents\\John\\projects\\UMGradSchool\\Project\\Papers\\Dis

sertation\\chapter3\\data" 

setwd(baseDir) 

 

 

#Figure 6 

createTable <- function(df) { 

    mAg <- aggregate(df[, 2:3], list(df$GRP), mean) 

    sAg <- aggregate(df[, 2:3], list(df$GRP), sd) 

    minAg <- aggregate(df[, 2:3], list(df$GRP), min) 

    maxAg <- aggregate(df[, 2:3], list(df$GRP), max) 

    outTbl <- merge(mAg, sAg, by = "Group.1") 

    outTbl <- merge(outTbl, minAg, by = "Group.1") 

    outTbl <- merge(outTbl, maxAg, by = "Group.1") 
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    names(outTbl) <- c("Group", "Mean BAH", "Mean TPH", "SD BAH", "SD TPH", "Min 

BAH", "Min TPH", "Max BAH", "Max TPH") 

    return(outTbl) 

} 

 

df244 = read.csv("ANFplots244.csv") 

dfVis <- data.frame(GRP = rep("Pine", nrow(df244)), BAH = df244$Pine1BAH, TPH = 

df244$Pine1TPH) 

dfVis <- rbind(dfVis, data.frame(GRP = rep("Other", nrow(df244)), BAH = 

df244$Other1BAH, TPH = df244$Other1TPH)) 

cbPalette <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442") 

 

tbl <- createTable(dfVis) 

p1 <- ggplot(data = dfVis, aes(x = BAH, fill = GRP)) + 

    geom_histogram(aes(), color = "gray", position = "dodge", alpha = 0.90) + 

    theme_bw() + 

    theme(legend.position = "none", axis.text = element_text(size = 15), axis.title 

= element_text(size = 17), axis.title.y = element_blank()) + 

    coord_cartesian(ylim = c(0, 120), xlim = c(0, 80)) + 

    xlab("BAH") + 

    ylab("Frequency") + 

    annotation_custom(tableGrob(format(subset(tbl, select = c(1, 2, 4, 6, 8)), 

digits = 2, nsmall = 1), rows = NULL), xmin = 10, ymin = 10) + 

    scale_fill_manual(values = cbPalette) 

 

 

p2 <- ggplot(data = dfVis, aes(x = TPH, fill = GRP)) + 

    geom_histogram(aes(), color = "gray", position = "dodge", alpha = 0.90) + 

    theme_bw() + 

    theme(legend.position = "none", axis.text = element_text(size = 15), axis.title 

= element_text(size = 17), axis.title.y = element_blank()) + 

    coord_cartesian(ylim = c(0, 120), xlim = c(0, 6000)) + 

    xlab("TPH") + 

    ylab("Frequency") + 

    annotation_custom(tableGrob(format(subset(tbl, select = c(1, 3, 5, 7, 9)), 

digits = 2, nsmall = 1), rows = NULL), xmin = 750, ymin = 10) + 

    scale_fill_manual(values = cbPalette) 

 

 

png("fig_plotDistBAH_TPH.png", width = 1200, height = 250, res = 100) 

grid.arrange(p1, p2,ncol=2,nrow=1) 

dev.off() 

plot.new() 
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df244$DFT = 2 

df244[(df244$Pine1BAH + df244$Other1BAH) < 2,"DFT"] = 0 

df244[df244$Other1BAH > df244$Pine1BAH & df244$DFT != 0, "DFT"] = 1 

df244$LPP = 0 

df244[df244$LP1BAH >= 2,"LPP"] = 1 

 

sum(df244$DFT == 0) / nrow(df244) 

sum(df244$DFT == 1) / nrow(df244) 

sum(df244$DFT == 2) / nrow(df244) 

sum(df244$LPP) / nrow(df244) 

 

#Figure 7 

eanr = read.csv("EANR_summary.csv") 

cbPalette <- c("#56B4E9", "#009E73", "#E69F00") 

pl <- ggplot(eanr, aes(x = Source, y = R2, col = as.factor(Source))) + 

geom_boxplot() + 

theme_light() + 

theme(legend.position = "bottom", legend.text = element_text(size = 17, margin = 

margin(0, 5, 0, 5)), legend.title = element_blank(), axis.title.x = element_blank(), 

axis.title.y = element_blank(), axis.title = element_text(size = 17), axis.text = 

element_text(size = 15), axis.text.x = element_blank(), axis.ticks.x = 

element_blank()) + 

scale_colour_manual(values = cbPalette) + 

facet_grid(cols = vars(Season)) 

png("fig_EANR_boxplot.png", width = 600, height = 250, res = 100) 

plot(pl) 

dev.off() 

plot.new() 

 

#Figure 8 

rnd10000 = read.csv("RndLoc10000.csv") 

allPred = names(rnd10000)[3:70] 

frm = formula(paste("~", paste(allPred, collapse = "+"), sep = "")) 

pca = princomp(frm, data = rnd10000, cor = TRUE) 

png("fig_pca.png", width = 600, height = 250, res = 100) 

plot(pca) 

dev.off() 

plot.new() 

 

#Figure 9 

ksRnd244 = read.csv("KSfplot_244_10000_2.csv") 

cbPalette <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442") 
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png("fig_KS_244.png", width = 600, height = 400, res = 100) 

(p1 = ggplot(subset(ksRnd244, Series == "Sample" | Series == "Population"), aes(x = 

XValues, y = YValues, fill = Series, col = Series)) + 

    geom_col(position = position_dodge2(preserve = "total")) + 

    theme_bw() + 

    theme(legend.position = c(0.1, 0.9), legend.title = element_blank(), 

plot.subtitle = element_text(size = 15), plot.title = element_text(size = 18), 

axis.text = element_text(size = 15), axis.title = element_text(size = 17)) + 

    scale_colour_manual(values = cbPalette) + 

    scale_fill_manual(values = alpha(cbPalette, 1)) + 

    xlab("Bin") + 

    ylab("Proportion") 

) 

dev.off() 

plot.new() 

 

#Table 3 

DftStats = readRDS("Dft244.egm") 

getTrainOBBAIC(DftStats) 

LppStats = readRDS("LPP244.egm") 

getTrainOBBAIC(LppStats) 

PineBahStats = readRDS("PineBah244_n.egm") 

getTrainOBBAIC(PineBahStats) 

PineTphStats = readRDS("PineTph244.egm") 

getTrainOBBAIC(PineTphStats) 

OtherBahStats = readRDS("OtherBah244_n.egm") 

getTrainOBBAIC(OtherBahStats) 

OtherTphStats = readRDS("OtherTph244_n.egm") 

getTrainOBBAIC(OtherTphStats) 

 

DftStatsRaw = readRDS("DftRaw244.egm") 

getTrainOBBAIC(DftStatsRaw) 

LppStatsRaw = readRDS("LPPRaw244.egm") 

getTrainOBBAIC(LppStatsRaw) 

PineBahStatsRaw = readRDS("PineBah244raw_n.egm") 

getTrainOBBAIC(PineBahStatsRaw) 

PineTphStatsRaw = readRDS("PineTph244raw.egm") 

getTrainOBBAIC(PineTphStatsRaw) 

OtherBahStatsRaw = readRDS("OtherBahRaw244_n.egm") 

getTrainOBBAIC(OtherBahStatsRaw) 

OtherTphStatsRaw = readRDS("OtherTphRaw244_n.egm") 

getTrainOBBAIC(OtherTphStatsRaw) 
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#Figure 10 

df244 = read.csv("ANFplots244.csv") 

df244$DFT = 2 

df244[(df244$Pine1BAH + df244$Other1BAH) < 2, "DFT"] = 0 

df244[df244$Other1BAH > df244$Pine1BAH & df244$DFT != 0, "DFT"] = 1 

df244$LPP = 0 

df244[df244$LP1BAH >= 2, "LPP"] = 1 

 

DftStats = readRDS("Dft244.egm") 

dftBootVls = MeanSeAA(df244, "DFT", DftStats[[1]]) 

(aa = getBootMeanCL(dftBootVls[, 1], 0.05)) #11 

(ab = getBootMeanCL(dftBootVls[, 2], 0.05)) #10 

(ac = getBootMeanCL(dftBootVls[, 3], 0.05)) #12 

(ba = getBootMeanCL(dftBootVls[, 4], 0.05)) #01 

(bb = getBootMeanCL(dftBootVls[, 5], 0.05)) #00 

(bc = getBootMeanCL(dftBootVls[, 6], 0.05)) #02 

(ca = getBootMeanCL(dftBootVls[, 7], 0.05)) #21 

(cb = getBootMeanCL(dftBootVls[, 8], 0.05)) #20 

(cc = getBootMeanCL(dftBootVls[, 9], 0.05)) #22 

 

sum(df244$DFT == 1) 

 

 

LppStats = readRDS("LPP244.egm") 

lppBootVls = MeanSeAA(df244, "LPP", LppStats[[1]]) 

(aa = getBootMeanCL(lppBootVls[, 1], 0.05)) #00 

(ab = getBootMeanCL(lppBootVls[, 2], 0.05)) #01 

(ba = getBootMeanCL(lppBootVls[, 3], 0.05)) #11 

(bb = getBootMeanCL(lppBootVls[, 4], 0.05)) #10 

 

sum(df244$LPP) 

 

#Figure 11 

AnfDf = read.csv("ANFplots244.csv") 

PineBahStats = readRDS("PineBah244_n.egm") 

pineBAH = predictEnsembleGam(PineBahStats[[1]], AnfDf) 

p1 = createGraph(AnfDf$Pine1BAH, pineBAH[[1]] ^ 2, "Pine BAH") 

 

PineTphStats = readRDS("PineTph244.egm") 

pineTPH = predictEnsembleGam(PineTphStats[[1]], AnfDf) 

p3=createGraph(AnfDf$Pine1TPH, pineTPH[[1]] ^ 2, "Pine TPH") 
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otherBahStats = readRDS("OtherBah244_n.egm") 

otherBAH = predictEnsembleGam(otherBahStats[[1]], AnfDf) 

p2=createGraph(AnfDf$Other1BAH, otherBAH[[1]] ^ 2, "Other BAH") 

 

otherTphStats = readRDS("OtherTph244_n.egm") 

otherTPH = predictEnsembleGam(otherTphStats[[1]], AnfDf) 

p4 = createGraph(AnfDf$Other1TPH, otherTPH[[1]] ^ 2, "Other TPH") 

 

png("fig_PredvsObs.png", width = 900, height = 900, res = 100) 

grid.arrange(p1, p2, p3, p4, nrow = 2, ncol = 2) 

dev.off() 

plot.new() 

 

pTph1000 = data.frame(obsTPH = AnfDf$Pine1TPH, obsBAH = AnfDf$Pine1BAH, predTPH = 

pineTPH[[1]] ^ 2, predBAH = pineBAH[[1]]) 

pTph1000sub = subset(pTph1000, obsTPH < 1000) 

(p5 = createGraph(pTph1000sub$obsTPH, pTph1000sub$predTPH, "Pine TPH (TPH < 1000)")) 

(p6 = createGraph(pTph1000sub$obsBAH, pTph1000sub$predBAH, "Pine BAH (TPH < 1000)")) 

 

oTph1000 = data.frame(obsTPH = AnfDf$Other1TPH, obsBAH = AnfDf$Other1BAH, predTPH = 

otherTPH[[1]] ^ 2, predBAH = otherBAH[[1]]^2) 

oTph1000sub = subset(oTph1000, obsTPH < 1000) 

(o5 = createGraph(oTph1000sub$obsTPH, oTph1000sub$predTPH, "Other TPH (TPH < 

1000)")) 

(o6 = createGraph(oTph1000sub$obsBAH, oTph1000sub$predBAH, "Other BAH (TPH < 1000")) 

 

#Table 4 

library(rgdal) 

library(sp) 

library(spdep) 

plts = readOGR("PlotsShifted244.shp") 

knn = knearneigh(plts@coords, k = 1) 

nb = knn2nb(knn) 

AnfDf = plts@data 

AnfDf$DFT = 2 

AnfDf[(AnfDf$Pine1BAH + AnfDf$Other1BAH) < 2, "DFT"] = 0 

AnfDf[AnfDf$Other1BAH > AnfDf$Pine1BAH & AnfDf$DFT != 0, "DFT"] = 1 

AnfDf$LPP = 0 

AnfDf[AnfDf$LP1BAH >= 2, "LPP"] = 1 

crd = plts@coords 

AnfDf$X = crd[, 1] 

AnfDf$Y = crd[, 2] 

DftStats = readRDS("Dft244.egm") 
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pDFT = predictEnsembleGam(DftStats[[1]], AnfDf) 

AnfDf$r_pDFT0 = as.integer(AnfDf$DFT == 0) - pDFT[[1]][, 1] 

AnfDf$r_pDFT1 = as.integer(AnfDf$DFT == 1) - pDFT[[1]][, 2] 

AnfDf$r_pDFT2 = as.integer(AnfDf$DFT == 2) - pDFT[[1]][, 3] 

plts@data = AnfDf 

(mt = moran.test(AnfDf$r_pDFT0, nb2listw(nb))) 

(mt = moran.test(AnfDf$r_pDFT1, nb2listw(nb))) 

(mt = moran.test(AnfDf$r_pDFT2, nb2listw(nb))) 

 

LppStats = readRDS("LPP244.egm") 

pLPP = predictEnsembleGam(LppStats[[1]], AnfDf)[[1]] 

AnfDf$r_pLPP0 = as.vector((1 - pLPP) - as.integer(AnfDf$LPP == 0)) 

AnfDf$r_pLPP1 = as.vector(pLPP - as.integer(AnfDf$LPP == 1)) 

plts@data = AnfDf 

(mt = moran.test(AnfDf$r_pLPP0, nb2listw(nb))) 

(mt = moran.test(AnfDf$r_pLPP1, nb2listw(nb))) 

 

PineBahStats = readRDS("PineBah244_n.egm") 

pBAH = predictEnsembleGam(PineBahStats[[1]], AnfDf) 

AnfDf$r_pBAH = as.vector(pBAH[[1]]^2 - AnfDf$Pine1BAH) 

plts@data = AnfDf 

(mt = moran.test(AnfDf$r_pBAH, nb2listw(nb))) 

 

 

PineTphStats = readRDS("PineTph244.egm") 

pTPH = predictEnsembleGam(PineTphStats[[1]], AnfDf) 

AnfDf$r_pTPH = as.vector(pTPH[[1]]^2 - AnfDf$Pine1TPH) 

plts@data = AnfDf 

(mt = moran.test(AnfDf$r_pTPH, nb2listw(nb))) 

 

OtherBahStats = readRDS("OtherBah244_n.egm") 

oBAH = predictEnsembleGam(OtherBahStats[[1]], AnfDf) 

AnfDf$r_oBAH = as.vector(oBAH[[1]]^2 - AnfDf$Other1BAH) 

plts@data = AnfDf 

(mt = moran.test(AnfDf$r_oBAH, nb2listw(nb))) 

 

OtherTphStats = readRDS("OtherTph244_n.egm") 

oTPH = predictEnsembleGam(OtherTphStats[[1]], AnfDf) 

AnfDf$r_oTPH = as.vector(oTPH[[1]]^2-AnfDf$Other1TPH) 

plts@data = AnfDf 

(mt = moran.test(AnfDf$r_oTPH, nb2listw(nb))) 

 

writeOGR(plts, "testing", layer="testing", driver = "ESRI Shapefile") 
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Centering Plot Locations (Python) 
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import os, requests, urlparse 

 

def downloadFile(url,outPath): 

    success = True 

    uName = 'jshogalnd' 

    pWord = 'Sentinelhoggs1!'  

    r = requests.get(url,auth=(uName,pWord)) 

    if (r.status_code == 200): 

        try: 

            with open(outPath,'wb') as out: 

                for bits in r.iter_content(): 

                    out.write(bits) 

        except exc: 

            print(str(exc)) 

            success = False 

    return success 

 

fl = open(mPath,'r') 

lns = fl.readlines(); 

urlDic = {} 

for l in lns: 

    larr = l.split('<') 

    for p in larr: 

        parr = p.split('/>') 

        nm = '' 

        url = '' 

        eInd = 0 

        for e in parr: 

            if e == "name": nm = parr[eInd + 1] 

            if e == "url" : uls = parr[eInd + 1] 

            eInd = eInd+1 

        urlDic[nm]=url 

 

import arcpy, os, math 

wksPath=r'C:\Users\jshogland\Documents\John\projects\UMGradSchool\Project\Papers\Dis

sertation\chapter4\data' 

rsDbPath=r'C:\Users\jshogland\Documents\John\projects\RESTORE\RESTORE.gdb' 

pltPath = rsDbPath+"\\Plots" 

gpsPath = rsDbPath+"\\GPS" 

subPath = rsDbPath+"\\Subplots" 

treesPath= rsDbPath+"\\Trees" 

grpPath=wksPath+"\\spGrpPath.grp" 

arcpy.env.workspace = wksPath 
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arcpy.env.scratchWorkspace = wksPath + "\\tmp" 

arcpy.env.overwriteOutput = True 

 

###functions 

def getSpeciesGroup(path="all"): 

    outDic = {} 

    if(path.lower()!="all"): 

        fl = open(path,'r') 

        lns = fl.readlines() 

        for l in lns: 

            llst=l.split(":") 

            l2lst=llst[1].split(",") 

            for l2 in l2lst: 

                outDic[l2] = llst[0] 

    return outDic 

     

 

 

###update GPS coordinates 

pltShift = arcpy.CopyFeatures_management(pltPath,"PlotsShift") 

gpsDic={} 

 

with arcpy.da.SearchCursor(gpsPath,["plotUid","x","y"]) as scur: 

    for rw in scur: 

        id = rw[0] 

        x = rw[1] 

        y = rw[2] 

        if(gpsDic.has_key(id)): 

            lsVl=gpsDic[id] 

            x= x+lsVl[0] 

            y= y+lsVl[1] 

            cnt = 1+lsVl[2] 

        else:  

            cnt = 1 

        gpsDic[id]=[x,y,cnt] 

     

with arcpy.da.UpdateCursor(pltShift,["SHAPE@","UID"]) as ucur: 

    for rw in ucur: 

        geo = rw[0] 

        id = rw[1] 

        for pnt in geo: 

            if(gpsDic.has_key(id)): 

                gpsVlLst = gpsDic[id] 
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                pnt.X=gpsVlLst[0]/gpsVlLst[2]-9 

                pnt.Y=9+gpsVlLst[1]/gpsVlLst[2] 

            else: 

                pnt.X = pnt.X -9 

                pnt.Y = pnt.Y + 9 

            rw[0]=pnt 

        ucur.updateRow(rw) 

 

###create group field and populate 

gpDic = getSpeciesGroup() 

arcpy.AddField_management(treesPath,"grp","TEXT") 

arcpy.AddField_management(treesPath,"sDBH","FLOAT") 

arcpy.AddField_management(treesPath,"sBA","FLOAT") 

weStart = True 

ed=arcpy.da.Editor(rsDbPath) 

if(not ed.isEditing): 

    ed.startEditing(False, False) 

    weStart=False 

ed.startOperation() 

with arcpy.da.UpdateCursor(treesPath,["uid","sp","cnt","dbh","grp","sDBH","sBA"]) as 

scur: 

    for rw in scur: 

        id = rw[0] 

        sp = rw[1] 

        grp = "all" 

        if(gpDic.has_key(sp)): 

            grp = gpDic[sp] 

        cnt = rw[2] 

        dbh = rw[3] 

        dbhm = dbh*0.0254 #inches to meters 

        bam = (dbhm/2)**2 * math.pi #ba in meters 

        rw[4] = grp 

        rw[5] = dbhm*cnt 

        rw[6] = bam*cnt 

        scur.updateRow(rw) 

ed.stopOperation() 

if(weStart): 

    ed.stopEditing(True) 
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Enhanced Aggregate No-Change Regression Library 

(C#) 
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using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using ESRI.ArcGIS.esriSystem; 

using ESRI.ArcGIS.DataSourcesRaster; 

using ESRI.ArcGIS.Geodatabase; 

using ESRI.ArcGIS.Geometry; 

using esriUtil; 

using Accord.Statistics.Analysis; 

 

namespace esriUtil 

{ 

    public class sampleANR 

    { 

        public sampleANR(IFunctionRasterDataset referenceRs, IFunctionRasterDataset 

transformRs, string mdlPath=null, int percentChange=20, IFeatureClass mask=null,int 

sampleSize= 1000, int blockSize = 50,  rasterUtil rasterUtility = null, string 

storeXY=null) 

        { 

            refRs = referenceRs; 

            transRs = transformRs; 

            pct = percentChange/200d; 

            mskFtrCls = mask; 

            rsUtil = rasterUtility; 

            n = sampleSize; 

            rndPnts = new IPoint[sampleSize]; 

            refArray = new double[refRs.RasterInfo.BandCount][][]; 

            tranArray = new double[transRs.RasterInfo.BandCount][][]; 

            useArray = new bool[transRs.RasterInfo.BandCount][][]; 

            minArrayRef = new double[tranArray.Length]; 

            maxArrayRef = new double[tranArray.Length]; 

            minArrayTran = new double[tranArray.Length]; 

            maxArrayTran = new double[tranArray.Length]; 

            setArrayValues(); 

            outPth = mdlPath; 

            bSize = blockSize; 

            stXY = storeXY;  

        } 
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        private void setArrayValues() 

        { 

            for (int i = 0; i < minArrayRef.Length; i++) 

            { 

                minArrayRef[i] = double.MaxValue; 

                minArrayTran[i] = double.MaxValue; 

                maxArrayRef[i] = double.MinValue; 

                maxArrayTran[i] = double.MinValue; 

            } 

        } 

 

        private rasterUtil rsUtil = null; 

        private IFunctionRasterDataset refRs = null; 

        private IFunctionRasterDataset transRs = null; 

        private double pct = 0.1; 

        private IFeatureClass mskFtrCls = null; 

        private IGeometry geo = null; 

        private int n = 1000; 

        private IPoint[] rndPnts = null; 

        private double[] minArrayRef = null; 

        private double[] maxArrayRef = null; 

        private double[] minArrayTran = null; 

        private double[] maxArrayTran = null; 

        private double[][] coef = null; 

        private string outPth = null; 

        private string stXY = null; 

 

        public IFunctionRasterDataset normalize() 

        { 

            //Console.WriteLine("creating points"); 

            checkSR(); 

            if(stXY!=null) 

            { 

                writeXY(); 

            } 

            //Console.WriteLine("extracting array values"); 

            getValues(); 

            //Console.WriteLine("scaling and getting unchanged pixels"); 

            getUnchangedCells(); 

            //Console.WriteLine("getting coefficients"); 

            coef = getCoef();//intercept, slope, sse, r2 by band 

            if (outPth != null) 
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            { 

                writeCoef(); 

            } 

            //Console.WriteLine("transforming values"); 

            IFunctionRasterDataset outRs = transform(); 

             

            return outRs; 

        } 

 

        private void writeXY() 

        { 

            IRaster2 rs2 = (IRaster2)rsUtil.createRaster(transRs); 

            double conv = (refRs.RasterInfo.CellSize.X / 

transRs.RasterInfo.CellSize.X); 

            int offSetCells = System.Convert.ToInt32(conv * bSize / 2); 

            using (System.IO.StreamWriter sw = new System.IO.StreamWriter(stXY)) 

            { 

                sw.WriteLine("X,Y"); 

                foreach (IPoint p in rndPnts) 

                { 

                    sw.WriteLine(p.X.ToString() + "," + p.Y.ToString()); 

                    int c, r; 

                    rs2.MapToPixel(p.X, p.Y, out c, out r); 

                    double nx, ny; 

                    IPnt tl = new PntClass(); 

                    tl.X = c - offSetCells; 

                    tl.Y = r - offSetCells; 

                    rs2.PixelToMap(System.Convert.ToInt32(tl.X), 

System.Convert.ToInt32(tl.Y), out nx, out ny); 

                    sw.WriteLine(nx.ToString() + "," + ny.ToString()); 

                    IPnt br = new PntClass(); 

                    br.X = c + offSetCells; 

                    br.Y = r + offSetCells; 

                    rs2.PixelToMap(System.Convert.ToInt32(br.X), 

System.Convert.ToInt32(br.Y), out nx, out ny); 

                    sw.WriteLine(nx.ToString() + "," + ny.ToString()); 

                    IPnt tr = new PntClass(); 

                    tr.X = c - offSetCells; 

                    tr.Y = r + offSetCells; 

                    rs2.PixelToMap(System.Convert.ToInt32(tr.X), 

System.Convert.ToInt32(tr.Y), out nx, out ny); 

                    sw.WriteLine(nx.ToString() + "," + ny.ToString()); 

                    IPnt bl = new PntClass(); 
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                    bl.X = c + offSetCells; 

                    bl.Y = r - offSetCells; 

                    rs2.PixelToMap(System.Convert.ToInt32(bl.X), 

System.Convert.ToInt32(bl.Y), out nx, out ny); 

                    sw.WriteLine(nx.ToString() + "," + ny.ToString()); 

                } 

                sw.Close(); 

            } 

        } 

 

        private void writeCoef() 

        { 

            using (System.IO.StreamWriter sw = new System.IO.StreamWriter(outPth)) 

            { 

                sw.WriteLine("Normalize"); 

                sw.WriteLine(pct.ToString()); 

                sw.WriteLine(refRs.RasterInfo.PixelType.ToString()); 

                sw.WriteLine(coef.Length.ToString()); 

                for (int i = 0; i < coef.Length; i++) 

                { 

                    sw.WriteLine(String.Join(",", (from double d in coef[i] select 

d.ToString()).ToArray())); 

                } 

                sw.Close(); 

            } 

        } 

 

        public IFunctionRasterDataset normalize(string mdlPath) 

        { 

            readCoef(mdlPath); 

            IFunctionRasterDataset outRs = transform(); 

            return outRs; 

        } 

 

        private void readCoef(string mdlPath) 

        { 

            using (System.IO.StreamReader sr = new System.IO.StreamReader(outPth)) 

            { 

                sr.ReadLine(); 

                double pct  = System.Convert.ToSingle(sr.ReadLine()); 

                sr.ReadLine(); 

                int bnds = System.Convert.ToInt32(sr.ReadLine()); 

                coef = new double[bnds][]; 
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                for (int i = 0; i < coef.Length; i++) 

                { 

                    string[] cArr = sr.ReadLine().Split(new char[',']); 

                    coef[i] = (from string s in cArr select 

System.Convert.ToDouble(s)).ToArray();  

                } 

                sr.Close(); 

            } 

        } 

 

        private IFunctionRasterDataset transform() 

        { 

            IFunctionRasterDataset outRs = null; 

            IRasterBandCollection rsBc = new RasterClass(); 

            for (int i = 0; i < coef.Length; i++) 

            { 

                double[] c = coef[i]; 

                double intercept = c[0]; 

                double slope = c[1]; 

                IFunctionRasterDataset tRs = rsUtil.getBand(transRs, i); 

                IFunctionRasterDataset pRs = rsUtil.calcArithmaticFunction(tRs, 

slope, esriRasterArithmeticOperation.esriRasterMultiply); 

                IFunctionRasterDataset fRs = rsUtil.calcArithmaticFunction(pRs, 

intercept, esriRasterArithmeticOperation.esriRasterPlus); 

                IFunctionRasterDataset bRs = rsUtil.convertToDifFormatFunction(fRs, 

refRs.RasterInfo.PixelType); 

                rsBc.AppendBand(((IRasterBandCollection)bRs).Item(0)); 

            } 

            outRs = rsUtil.compositeBandFunction(rsBc); 

            return outRs; 

        } 

 

        private double[][] getCoef() 

        { 

            double[][] outCoef = new double[useArray.Length][]; 

            int cellCntCheck = bSize * bSize / 4; 

            for (int b = 0; b < useArray.Length; b++) 

            { 

 

                double[] xVls = new double[rndPnts.Length]; 

                double[] yVls = new double[rndPnts.Length]; 

                int[] cntVls = new int[rndPnts.Length]; 

                for (int r = 0; r < useArray[b].Length; r++) 
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                { 

                    for (int c = 0; c < useArray[b][r].Length; c++) 

                    { 

 

                        if (useArray[b][r][c]) 

                        { 

                            xVls[r] = xVls[r] + tranArray[b][r][c]; 

                            yVls[r] = yVls[r] + refArray[b][r][c]; 

                            cntVls[r] = cntVls[r] + 1; 

                        } 

 

                    } 

                } 

                List<double> xVlsLst = new List<double>(); 

                List<double> yVlsLst = new List<double>(); 

                List<int> cntVlsLst = new List<int>(); 

                for (int v = 0; v < xVls.Length; v++) 

                { 

                    //Console.WriteLine(cntVls[v].ToString()); 

                    //Console.WriteLine(xVls[v].ToString()); 

                    //Console.WriteLine(yVls[v].ToString()); 

                    int cnt = cntVls[v]; 

                    if (cnt > cellCntCheck) 

                    { 

                        xVlsLst.Add(xVls[v] / cnt); 

                        yVlsLst.Add(yVls[v] / cnt); 

                        cntVlsLst.Add(cnt); 

                    } 

                } 

                xVls = xVlsLst.ToArray(); 

                yVls = yVlsLst.ToArray(); 

                cntVls = cntVlsLst.ToArray(); 

                Accord.Statistics.Models.Regression.Linear.SimpleLinearRegression 

slr = new Accord.Statistics.Models.Regression.Linear.SimpleLinearRegression(); 

                double sse = slr.Regress(xVls, yVls); 

                double r2 = slr.CoefficientOfDetermination(xVls, yVls); 

                outCoef[b] = new double[4]{ slr.Intercept, slr.Slope, sse,r2}; 

                if (stXY != null) 

                { 

                    string pCoef = stXY.Replace(".csv", "_" + b.ToString() + 

".txt"); 

                    using (System.IO.StreamWriter sw = new 

System.IO.StreamWriter(pCoef)) 



  

157 

 

                    { 

                        sw.WriteLine("X,Y,CNT"); 

                        for (int v = 0; v < xVls.Length; v++) 

                        { 

                            sw.WriteLine(xVls[v].ToString() + "," + 

yVls[v].ToString() + "," + cntVls[v].ToString()); 

 

                        } 

                        sw.Close(); 

                    } 

 

                } 

            } 

             

            return (outCoef); 

        } 

 

        private void getUnchangedCells() 

        { 

            Random rnd = new Random(); 

            double[][][] difArr = new double[refArray.Length][][]; 

            for (int b = 0; b < refArray.Length; b++) 

            { 

                List<double> difLst = new List<double>(); 

                difArr[b] = new double[refArray[b].Length][]; 

                double minVal = minArrayRef[b]; 

                double maxVal = maxArrayRef[b]; 

                double dif = maxVal - minVal; 

                double tMinVal = minArrayTran[b]; 

                double tMaxVal = maxArrayTran[b]; 

                double tdif = tMaxVal - tMinVal; 

                for (int r = 0; r < refArray[b].Length; r++) 

                { 

                    difArr[b][r] = new double[refArray[b][r].Length]; 

                    for (int c = 0; c < refArray[b][r].Length; c++) 

                    { 

                        double refOldVl = refArray[b][r][c]; 

                        double tranOldVl = tranArray[b][r][c]; 

                        if (!(refOldVl == -9999 || tranOldVl == -9999)) 

                        { 

                            double refNewVl = (refOldVl - minVal) / dif; 

                            double tranNewVl = (tranOldVl - minVal) / tdif; 

                            double sdif = refNewVl - tranNewVl; 
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                            difArr[b][r][c] = sdif; 

                            if (rnd.NextDouble() <= 0.1) 

                            { 

                                difLst.Add(sdif); 

                            } 

                        } 

                        else 

                        { 

                            difArr[b][r][c] = -9999; 

                        } 

                    } 

                } 

                difLst.Sort(); 

                int vlIndex = System.Convert.ToInt32(difLst.Count*pct); 

                double smallValue = difLst[vlIndex]; 

                double largeValue = difLst[difLst.Count-vlIndex]; 

                for (int r = 0; r < difArr[b].Length; r++) 

                { 

                    for (int c = 0; c < difArr[b][r].Length; c++) 

                    { 

                        double vl = difArr[b][r][c]; 

                        if(vl<largeValue&&vl>smallValue) 

                        { 

                            useArray[b][r][c] = true; 

                        } 

                    } 

                } 

 

            } 

        } 

 

        private int bSize = 50; 

        private double[][][] refArray = null; 

        private double[][][] tranArray = null; 

        private bool[][][] useArray = null; 

        private void getValues() 

        { 

            int bSizeCnt = bSize * bSize; 

            for (int i = 0; i < refArray.Length; i++) 

            { 

                refArray[i] = new double[n][]; 

                tranArray[i] = new double[n][]; 

                useArray[i] = new bool[n][]; 
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                for (int j = 0; j < n; j++) 

                { 

                    refArray[i][j] = new double[bSizeCnt]; 

                    tranArray[i][j] = new double[bSizeCnt]; 

                    useArray[i][j] = new bool[bSizeCnt]; 

                } 

            } 

            int offSetCells = bSize / 2;  

            IRaster2 rs2 = (IRaster2)rsUtil.createRaster(refRs); 

            IRaster rs = (IRaster)rs2; 

            int nIndex = 0; 

            foreach(IPoint pnt in rndPnts) 

            { 

                fillTransValues(pnt,nIndex); 

                IPnt tlPnt = new PntClass(); 

                IPnt pbSize = new PntClass(); 

                pbSize.X = bSize; 

                pbSize.Y = bSize; 

                int c, r; 

                rs2.MapToPixel(pnt.X, pnt.Y, out c, out r); 

                c = c - offSetCells; 

                r = r - offSetCells; 

                tlPnt.X = c; 

                tlPnt.Y = r; 

                IPixelBlock pb = rs.CreatePixelBlock(pbSize); 

                rs.Read(tlPnt, pb); 

                for (int b = 0; b < pb.Planes; b++) 

                { 

                    System.Array vlArr = 

(System.Array)((IPixelBlock3)pb).get_PixelData(b); 

                    int vIndex = 0; 

                    for (int rw = 0; rw < pb.Height; rw++) 

                    { 

                        for (int cl = 0; cl < pb.Width; cl++) 

                        { 

                            object vlObj = vlArr.GetValue(rw, cl); 

                            double vlf = -9999; 

                            if(vlObj!=null) 

                            { 

                                vlf = System.Convert.ToDouble(vlObj); 

                                if (vlf < minArrayRef[b]) minArrayRef[b] = vlf; 

                                if (vlf > maxArrayRef[b]) maxArrayRef[b] = vlf; 

                            } 
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                            refArray[b][nIndex][vIndex] = vlf; 

                            vIndex = vIndex + 1; 

                        } 

                    } 

                } 

                nIndex = nIndex + 1; 

            } 

        } 

 

        private void fillTransValues(IPoint pnt, int nIndex) 

        { 

            IRaster rs = rsUtil.createRaster(transRs); 

            IRaster2 rs2 = (IRaster2)rs; 

            double conv = (refRs.RasterInfo.CellSize.X / 

transRs.RasterInfo.CellSize.X); 

            int offSetCells = System.Convert.ToInt32(conv*bSize/2); 

            IPnt tlPnt = new PntClass(); 

            IPnt pbSize = new PntClass(); 

            pbSize.X = System.Convert.ToInt32(bSize*conv); 

            pbSize.Y = System.Convert.ToInt32(bSize*conv); 

            int c, r; 

            rs2.MapToPixel(pnt.X, pnt.Y, out c, out r); 

            c = c - offSetCells; 

            r = r - offSetCells; 

            tlPnt.X = c; 

            tlPnt.Y = r; 

            IPixelBlock pb = rs.CreatePixelBlock(pbSize); 

            rs.Read(tlPnt, pb); 

            for (int b = 0; b < pb.Planes; b++) 

            { 

                System.Array vlArr = 

(System.Array)((IPixelBlock3)pb).get_PixelData(b); 

                int vIndex = 0; 

                double[] cellCnt = new double[bSize*bSize]; 

                for (int rw = 0; rw < pb.Height; rw++) 

                { 

                    for (int cl = 0; cl < pb.Width; cl++) 

                    { 

                        object vlObj = vlArr.GetValue(rw, cl); 

                        if (vlObj != null) 

                        { 

                            int bIndex = (int)(rw/conv) * bSize + (int)(cl / conv); 

                            double vlf = System.Convert.ToSingle(vlObj); 
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                            tranArray[b][nIndex][bIndex] = vlf + 

tranArray[b][nIndex][bIndex]; 

                            cellCnt[bIndex] = cellCnt[bIndex] + 1; 

                        } 

                        vIndex = vIndex + 1; 

                    } 

                } 

                for(int i=0; i < cellCnt.Length;i++) 

                { 

                    double cellCntVl = cellCnt[i]; 

                    if (cellCntVl > 0) 

                    { 

                        double meanValue = tranArray[b][nIndex][i] / cellCnt[i]; 

                        tranArray[b][nIndex][i] = meanValue; 

                        if (meanValue < minArrayTran[b]) minArrayTran[b] = 

meanValue; 

                        if (meanValue > maxArrayTran[b]) maxArrayTran[b] = 

meanValue; 

 

                    } 

                    else 

                    { 

                        tranArray[b][nIndex][i] = -9999; 

                    } 

                } 

            } 

        } 

 

 

        private void checkSR() 

        { 

            ISpatialReference srRef = refRs.RasterInfo.SpatialReference; 

            ISpatialReference srTrans = transRs.RasterInfo.SpatialReference; 

            ISpatialReference srFtrCls = null; 

            ITopologicalOperator tp; 

            if (mskFtrCls != null) 

            { 

                srFtrCls = ((IGeoDataset)mskFtrCls).SpatialReference; 

                IGeometryCollection geoColl = new PolygonClass(); 

                object obj = Type.Missing; 

                IFeatureCursor ftrCur = mskFtrCls.Search(null, true); 

                IFeature ftr = ftrCur.NextFeature(); 

                geo = ftr.ShapeCopy; 
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                tp = (ITopologicalOperator)geo; 

                ftr = ftrCur.NextFeature(); 

                while (ftr != null) 

                { 

                    IGeometry geo2 = ftr.ShapeCopy; 

                    geo = tp.Union(geo2); 

                    tp = (ITopologicalOperator)geo; 

                    ftr = ftrCur.NextFeature(); 

                } 

                System.Runtime.InteropServices.Marshal.ReleaseComObject(ftrCur); 

                if(srRef.FactoryCode != srFtrCls.FactoryCode) 

                { 

                    geo.Project(srRef); 

                } 

                tp = (ITopologicalOperator)geo; 

                geo = tp.Intersect((IGeometry)refRs.RasterInfo.Extent, 

esriGeometryDimension.esriGeometry2Dimension); 

            } 

            else 

            { 

                IEnvelope env = refRs.RasterInfo.Extent; 

                IGeometryBridge2 geoBr = new GeometryEnvironmentClass(); 

                IPointCollection4 pntCol = new PolygonClass(); 

                ((IGeometry)pntCol).SpatialReference = 

refRs.RasterInfo.SpatialReference; 

                object mis = Type.Missing; 

                pntCol.AddPoint(env.UpperLeft); 

                pntCol.AddPoint(env.UpperRight); 

                pntCol.AddPoint(env.LowerRight); 

                pntCol.AddPoint(env.LowerLeft); 

                ((IPolygon)pntCol).Close(); 

                geo = (IGeometry)pntCol; 

                //Console.WriteLine("Area = " + ((IArea)geo).Area.ToString()); 

            } 

            if(srRef.FactoryCode!=srTrans.FactoryCode) 

            { 

                transRs = rsUtil.reprojectRasterFunction(transRs, srRef); 

            } 

 

           

            //intersect with boundary of Trans Raster 

            tp = (ITopologicalOperator)geo; 
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            geo = tp.Intersect((IGeometry)transRs.RasterInfo.Extent, 

esriGeometryDimension.esriGeometry2Dimension); 

            //buffer inside raster half block size 

            tp = (ITopologicalOperator)geo; 

            geo = tp.Buffer(-1 * bSize * refRs.RasterInfo.CellSize.X / 2); 

            IRaster2 rs2 = (IRaster2)rsUtil.createRaster(refRs); 

            IPoint ulPnt = geo.Envelope.UpperLeft; 

            IPoint lrPnt = geo.Envelope.LowerRight; 

            int rStartClm, rStartRw; 

            rs2.MapToPixel(ulPnt.X, ulPnt.Y, out rStartClm, out rStartRw); 

            int endClm, endRw; 

            rs2.MapToPixel(lrPnt.X, lrPnt.Y, out endClm, out endRw); 

            int tCells = (endClm - rStartClm) * (endRw - rStartRw); 

            double px, py; 

            if(n>=(tCells*0.5)) //get all cells from ref Raster 

            { 

                int iCnt = 0; 

                rndPnts = new IPoint[tCells]; 

                for (int c = rStartClm; c <= endClm; c++) 

                { 

                    for (int r = rStartRw; r <= endRw ; r++) 

                    { 

                        rs2.PixelToMap(c, r, out px, out py); 

                        IPoint pnt = new PointClass(); 

                        pnt.PutCoords(px, py); 

                        rndPnts[iCnt] = pnt; 

                    } 

                    iCnt = iCnt + 1; 

                } 

            } 

            else //randomly chose cells from ref Raster up to n  

            { 

                Random rnd = new Random(); 

                HashSet<string> sCheck = new HashSet<string>(); 

                int iCnt = 0; 

                rndPnts = new IPoint[n]; 

                while (sCheck.Count < n) 

                { 

                    int clm = rnd.Next(rStartClm, endClm); 

                    int rw = rnd.Next(rStartRw, endRw); 

                    string rwclm = rw.ToString() + "_" + clm.ToString(); 

                    if (!sCheck.Contains(rwclm)) 

                    { 



  

164 

 

                        rs2.PixelToMap(clm, rw, out px, out py); 

                        IPoint pnt = new PointClass(); 

                        pnt.PutCoords(px, py); 

                        IRelationalOperator ro = (IRelationalOperator)pnt; 

                        if (ro.Within(geo)) 

                        { 

                            rndPnts[iCnt] = pnt; 

                            iCnt = iCnt + 1; 

                            sCheck.Add(rwclm); 

                        } 

                    } 

                } 

            } 

            n = rndPnts.Length; 

 

        } 

    } 

} 
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ArcPad Library (Mobile Data Collection) 
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DataTable Library (VB Script) 

Option Explicit 

Class Table 

 dim rows(), columns(), rwsCnt, clmCnt, columnTypes() 

 Public Property Get RowCount() 

  RowCount = rwsCnt + 1 

 End Property 

 Public Property Get ColumnCount() 

  ColumnCount = clmCnt + 1 

 End Property 

 Public Sub createTable(rws,clms) 

  Dim rw, i 

  rwsCnt = rws - 1 

  clmCnt = clms - 1 

  redim rows(rwsCnt) 

  redim columns(clmCnt) 

  For i = 0 To (rwsCnt) 

   Set rw = New Row 

   rw.createRow(clms) 

   Set rows(i) = rw 

  Next   

 End Sub 

 Public Sub addRows(numRows) 

  Dim rw, i 

  rwsCnt = rwsCnt + numRows 

  ReDim Preserve rows(rwsCnt) 

  For i = (RowCount-numRows) To rwsCnt 

   Set rw = New Row 

   rw.createRow ColumnCount 

   Set rows(i) = rw 

  Next 

 End Sub 

 Public Sub subtractRow(rwInd) 

  Dim trows(), tcnt, i 

  If rwInd>rwsCnt Then 

   MsgBox "rw Index must be between 0 and " & CStr(rwsCnt) 

   Exit Sub 

  End If 

  If rwInd<0 Then 

   MsgBox "rw Index must be between 0 and " & CStr(rwsCnt) 

   Exit Sub 

  End If 
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  ReDim trows(rwsCnt-1) 

  tcnt=0 

  For i = 0 To rwsCnt 

   If i <> rwInd Then 

    Set trows(tcnt) = rows(i) 

    tcnt = tcnt+1 

   End if 

  Next 

  ReDim rows(tcnt-1) 

  rwsCnt = tcnt-1 

  For i = 0 To rwsCnt 

   Set rows(i) = trows(i) 

  Next 

  Erase trows 

 End Sub 

 Public Function getRow(index) 

  Set getRow = rows(index) 

 End Function  

 Public Property Get Records() 

  Records = rows 

 End Property 

 Public Property Get FieldTypes() 

  FieldTypes = columnTypes 

 End Property 

 Public Property Let FieldTypes(valueArr) 

  Dim i 

  ReDim columnTypes(UBound(valueArr)) 

  For i=0 To UBound(valueArr) 

   columnTypes(i) = valueArr(i) 

  Next 

 End Property 

 Public Property Get Fields() 

  Fields = columns 

 End Property 

 Public Property Let Fields(valueArr) 

  Dim i 

  ReDim columns(UBound(valueArr)) 

  For i=0 To UBound(valueArr) 

   columns(i) = valueArr(i) 

  Next 

 End Property 

 Public Function findField(fldName) 

  Dim outVl, tvl1, tvl2, i 
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  outVl = -1 

  tvl1 = LCase(CStr(fldName)) 

  For i = 0 To clmCnt 

   tvl2 = LCase(CStr(columns(i))) 

   If tvl1 = tvl2 Then 

    outVl = i 

    Exit For 

   End If  

  Next 

  findField = outVl 

 End Function 

 Public Sub setCellValue(rw,clm,value) 

  Dim ind,r,c 

  If(Not IsNumeric(clm)) Then 

   ind = findField(clm) 

  Else 

   ind = clm 

  End If 

  If ind=-1 Then 

   MsgBox "Field " & clm & " does not exist" 

   Exit Sub 

  End if 

  value = getCorrectValue(ind,value) 

  Set r = getRow(rw) 

  r.setCellValue ind, value 

  Set r = nothing 

 End Sub 

 Public Function getCorrectValue(clm,value) 

  Dim outvl,clmTyp 

  outvl = value 

  If(Not IsEmpty(columnTypes)) Then 

   clmTyp = CInt(columnTypes(clm)) 

   Select Case clmTyp 

    Case 129 

     outvl = CStr(value) 

    Case 5 

     If IsNumeric(value) then 

      outvl = CDbl(value) 

     Else 

      outvl = 0 

     End if 

    Case 7 

     If IsDate(value) Then 
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      outvl = CDate(value) 

     Else 

      outvl = Now 

     End if 

    Case 11 

     outvl = CBool(value) 

   End select 

  End if 

  getCorrectValue = outvl 

 End Function 

 Public Function getCellValue(rw,clm) 

  Dim ind,r,outvl 

  If(Not IsNumeric(clm)) Then 

   ind = findField(clm) 

  Else 

   ind = clm 

  End If 

  Set r = getRow(rw) 

  outvl = r.getCellValue(ind)  

  getCellValue = outvl 

  Set r = Nothing 

 End Function 

 Public Function createGuid 

  dim TypeLib, guid 

  Set TypeLib = CreateObject("Scriptlet.TypeLib") 

  guid = TypeLib.Guid 

  guid = Left(guid,Len(guid)-2) 

  createGuid = guid 

  Set TypeLib = Nothing 

 End Function 

 Public Function findRowIndex(uidName,uidValue) 

  Dim r, ind, outvl, vl2 

  outvl = -1 

  ind = findField(uidName) 

  For r=0 to rwsCnt 

   vl2 = getCellValue(r,ind) 

   If vl2 = uidValue Then 

    outvl = r 

    Exit For 

   End If 

  Next 

  findRowIndex = outvl 

 End Function 
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 Public Sub moveRecord(fromRow, toRow) 

  Dim cnt, r, cr, nr 

  cnt = 0 

  ReDim tArr(rwsCnt) 

  Set cr = rows(r) 

  For r=0 To rwsCnt 

   If(r=toRow) Then 

    Set rows(cnt) = rows(fromRow) 

    cnt = cnt + 1 

   End If 

   If(r=fromRow) Then 

   Else 

    Set nr = rows(cnt) 

    Set rows(cnt) = cr 

    Set cr = nr 

    cnt = cnt + 1 

   End if 

  Next 

  Set nr = Nothing 

  Set cr = Nothing 

 End Sub 

 Private Sub Class_Terminate() 

  Erase rows 

  Erase columns 

 End Sub 

End Class 

 

Class Dictionary 

 Dim k(),v(), rc, ri 

 Public Property Get Count() 

  Count = rc 

 End Property 

 Public Property Get Keys() 

  Keys = k 

 End Property 

 Public Property Get Values() 

  Values = v 

 End Property 

 Public sub Add(key,value) 

  rc = rc + 1 

  ReDim Preserve k(rc-1) 

  ReDim Preserve v(rc-1) 

  k(rc-1) = key 



  

171 

 

  v(rc-1) = value  

 End sub 

 Public sub Remove(key) 

  Dim ind, tk(), tv(), i, tcnt 

  If(IsNumeric(key)) Then 

   ind = CInt(key) 

  Else 

   ind = FindIndex(key) 

  End If 

  If ind = -1 Or ind > rc-1 Or rc = 0 Then 

  Else 

   ReDim tk(rc-2) 

   ReDim tv(rc-2) 

   tcnt = 0 

   For i=0 To rc-1 

    If(i=ind) then 

    Else 

     tk(tcnt) = k(i) 

     tv(tcnt) = v(i) 

     tcnt = tcnt+1 

    End if 

   Next 

   ReDim k(tcnt-1) 

   ReDim v(tcnt-1) 

   rc = tcnt 

   For i=0 To rc-1 

    k(i)=tk(i) 

    v(i)=tv(i) 

   Next 

   Erase tk 

   Erase tv 

  End if 

 End sub 

 Public Function FindValueIndex(value) 

  Dim i, outVl 

  outVl = -1 

  For i=0 To rc-1 

   If(v(i)=value)Then 

    outVl = i 

    Exit For 

   End if 

  Next 

  FindValueIndex = outVl 
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 End Function 

 Public Function FindIndex(key) 

  Dim i, outVl 

  outVl = -1 

  key = LCase(key) 

  For i=0 To rc-1 

   If(LCase(k(i))=key)Then 

    outVl = i 

    Exit For 

   End if 

  Next 

  FindIndex = outVl 

 End Function 

 Public Function GetValue(key) 

  Dim ind,outVl 

  outVl = -1 

  ind = FindIndex(key) 

  If(ind>-1)Then 

   outVl = v(ind) 

  End if 

  GetValue = outVl 

 End Function 

 Public Function GetKey(value) 

  Dim ind,outVl 

  outVl = -1 

  ind = FindValueIndex(value) 

  If(ind>-1)Then 

   outVl = k(ind) 

  End if 

  GetKey = outVl 

 End Function 

 Private Sub Class_Terminate() 

  Erase k 

  Erase v 

 End Sub 

End Class 

 

Class Row 

 Dim rw(),clms() 

 Public Property Get Cells() 

  Cells = rw 

 End Property 

 Public Property Get Fields() 
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  Fields = clms 

 End Property 

 Public Property Let Fields(valueArr) 

  ReDim clms(UBound(valueArr)) 

  For i=0 To UBound(valueArr) 

   clms(i) = valueArr(i) 

  Next 

 End Property 

 Public Sub createRow(numCells) 

  Dim r 

  ReDim rw(numCells-1) 

  For r=0 To (numCells-1) 

   Set rw(r) = New Cell 

  Next 

 End Sub 

 Public Function getCellValue(index) 

  getCellValue = rw(index).Value  

 End Function 

 Public Sub setCellValue(index,value) 

  rw(index).Value = value 

 End Sub 

 Public Sub addCells(numCells) 

  Dim r 

  ReDim Preserve rw(UBound(rw)+numCells) 

  For r=(UBound(rw)- numCells) To UBound(rw) 

   Set rw(r)= New Cell 

  Next 

 End Sub 

 Public Sub Class_Terminate() 

  Erase rw 

  Erase clms 

 End Sub 

End Class 

 

Class Cell 

 Public Value  

End Class 

 

Plots Library  

(XML forms) 

<?xml version="1.0" encoding="UTF-8"?> 
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<ArcPad> 

 <LAYER name="Plots" transparency="1"> 

  <SYMBOLOGY> 

   <SIMPLELABELRENDERER visible="true" field="OBJECTID"> 

    <TEXTSYMBOL angle="0" fontcolor="255,0,0" font="Arial" 

fontsize="8.25" horzalignment="left" vertalignment="center" rtl="false" 

fontstyle="bold"/> 

   </SIMPLELABELRENDERER> 

   <VALUEMAPRENDERER lookupfield="VISITED"> 

    <EXACT value="0" label="NO"> 

     <SIMPLEMARKERSYMBOL color="Yellow" width="7" 

outlinewidth="1"/> 

    </EXACT> 

    <OTHER label="YES"> 

     <SIMPLEMARKERSYMBOL color="Red" width="7" 

outlinewidth="1"/> 

    </OTHER> 

   </VALUEMAPRENDERER> 

  </SYMBOLOGY> 

  <FORMS> 

   <FORM name="frmtrees" caption="TREES" width="130" height="130" 

onok="Call updateDbfValues(&quot;frmtrees&quot;, dtTree)"> 

    <PAGE name="pgtrees" caption="TREE" sip="false" 

onload="Call setTreeCombobox 

Set dtTree = fillDataTable(&quot;frmtrees&quot;) 

Call updateFormValues(&quot;frmtrees&quot;, dtTree)"> 

     <BUTTON name="btnprevious" x="3" width="13" 

height="12" onclick="Call move_record(-1) 

CommonDialog.ShowSIP(False)" caption="&lt;" tooltip="" tabstop="true" border="false" 

alignment="center"/> 

     <LABEL name="lbltree" x="17" width="17" height="9" 

caption="1" tooltip="" group="true" border="false" alignment="center"/> 

     <BUTTON name="btnnext" x="36" width="13" 

height="12" onclick="Call move_record(1) 

CommonDialog.ShowSIP(False)" caption="&gt;" tooltip="" tabstop="true" border="false" 

alignment="center"/> 

     <LABEL name="lblcount" x="50" width="43" 

height="9" caption="of 10" tooltip="" group="true" border="false"/> 

     <BUTTON name="btnadd" x="93" width="13" 

height="12" onclick="Call addTreeRow 

CommonDialog.ShowSIP(False)" caption="+" tooltip="" tabstop="true" border="false" 

fontsize="9" fontstyle="bolditalic" alignment="center"/> 
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     <BUTTON name="btndelete" x="107" width="13" 

height="12" onclick="Call subtractTreeRow 

CommonDialog.ShowSIP(False)" caption="-" tooltip="" tabstop="true" border="false" 

fontsize="9" fontstyle="bolditalic" alignment="center"/> 

     <COMBOBOX name="cmbsp" x="14" y="40" width="111" 

height="13" defaultvalue="" listtable="" listvaluefield="" listtextfield="" 

tooltip="" tabstop="true" border="false" sip="false" limittolist="false" 

sort="false"/> 

     <LABEL name="lblspecies" y="42" width="10" 

height="9" x="1" caption="SP" tooltip="" group="true" border="false" 

alignment="right"/> 

     <EDIT name="txtdbh" x="36" y="58" width="87" 

height="12" defaultvalue="0" tooltip="" tabstop="true" border="true" sip="true" 

minvalue="0" maxvalue="100"/> 

     <LABEL name="lbldbh" x="15" y="59" width="17" 

height="9" caption="DBH" tooltip="" group="true" border="false" alignment="right"/> 

     <LABEL name="lblstatus" x="13" y="79" width="23" 

height="9" caption="Status" tooltip="" group="true" border="false"/> 

     <COMBOBOX name="cmbstatus" x="37" y="77" 

width="87" height="13" defaultvalue="" listtable="" listvaluefield="" 

listtextfield="" tooltip="" tabstop="true" border="false" sip="false" 

limittolist="false" sort="false"> 

     </COMBOBOX> 

     <LABEL name="lblCnt" x="11" y="95" width="24" 

height="9" caption="Count" tooltip="" group="true" border="false"/> 

     <EDIT name="txtcnt" x="37" y="95" width="86" 

height="12" defaultvalue="1" tooltip="" tabstop="true" border="true" sip="true" 

minvalue="0" maxvalue="100"/> 

     <LABEL name="lblsubplot" x="3" y="18" width="103" 

height="12" caption="Plot/Subplot" tooltip="" group="true" border="false"/> 

     <EDIT name="txtcomment" x="36" y="112" width="88" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="false"/> 

     <LABEL name="lblcomment" x="1" y="114" width="35" 

height="10" caption="Comment" tooltip="" group="true" border="false"/> 

    </PAGE> 

    <PAGE name="pgtreesview" caption="TREES VIEW" sip="false" 

onsetactive="Call update_list_view"> 

     <LISTBOX name="lsttreesview" width="130" 

height="120" defaultvalue="" listtable="" listvaluefield="" listtextfield="" y="9" 

onselchange="Call view_select" tooltip="" tabstop="true" border="true" sort="false" 

font="Courier New" fontsize="9"/> 

     <LABEL name="lblsubplot" width="127" height="9" 

caption="subplot" tooltip="" group="true" border="false"/> 
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    </PAGE> 

   </FORM> 

   <EDITFORM name="EDITFORM" caption="Plot" width="130" 

height="130" picturepagevisible="false" attributespagevisible="false" 

symbologypagevisible="false" geographypagevisible="false" required="false" 

onload="Call LoadFormStartup 

Call update_labels(&quot;EDITFORM&quot;) 

Layer.Forms(&quot;EDITFORM&quot;).Pages(&quot;pgEDITFORM&quot;).Controls(&quot;txtut

ype&quot;).Value = 2 

Layer.Forms(&quot;EDITFORM&quot;).Pages(&quot;pgEDITFORM&quot;).Controls(&quot;txtvi

sited&quot;).Value = 1 

Layer.Forms(&quot;EDITFORM&quot;).Pages(&quot;pgEDITFORM&quot;).Controls(&quot;txtut

ype&quot;).Enabled = False 

Layer.Forms(&quot;EDITFORM&quot;).Pages(&quot;pgEDITFORM&quot;).Controls(&quot;txtvi

sited&quot;).Enabled = False 

Layer.Forms(&quot;EDITFORM&quot;).Pages(&quot;pgEDITFORM&quot;).Controls(&quot;txtut

ype&quot;).Visible = False 

Layer.Forms(&quot;EDITFORM&quot;).Pages(&quot;pgEDITFORM&quot;).Controls(&quot;txtvi

sited&quot;).Visible = False" sip="false" onok="Map.Refresh" onunload="Call 

plotCheck"> 

    <PAGE name="pgEDITFORM" caption="Subplot" sip="false"> 

     <BUTTON name="btn1" x="63" y="57" width="50" 

height="34" onclick="Call setSubPlotUid(1) 

Layer.Forms(&quot;frmSubplot&quot;).Show" caption="Subplot 1" tooltip="" 

tabstop="true" border="false" alignment="center"/> 

     <BUTTON name="btn2" x="63" y="22" width="50" 

height="33" onclick="Call setSubPlotUid(2) 

Layer.Forms(&quot;frmSubplot&quot;).Show" caption="Subplot 2" tooltip="" 

tabstop="true" border="false" alignment="center"/> 

     <BUTTON name="btn3" x="9" y="22" width="50" 

height="33" onclick="Call setSubPlotUid(3) 

Layer.Forms(&quot;frmSubplot&quot;).Show" caption="Subplot 3" tooltip="" 

tabstop="true" border="false" alignment="center"/> 

     <BUTTON name="btn4" x="9" y="58" width="50" 

height="32" onclick="Call setSubPlotUid(4) 

Layer.Forms(&quot;frmSubplot&quot;).Show" caption="Subplot 4" tooltip="" 

tabstop="true" border="false" alignment="center"/> 

     <BUTTON name="btnGPS" x="93" y="3" width="20" 

height="15" onclick="Call collectGPS" caption="GPS" tooltip="" tabstop="true" 

border="false" alignment="center"/> 

     <BUTTON name="btnPicture" x="63" y="3" width="27" 

height="15" onclick="Call takePicture" caption="Picture" tooltip="" tabstop="true" 

border="false" alignment="center"/> 
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     <BUTTON name="btnSetup" x="9" y="3" width="30" 

height="15" onclick="Layer.Forms(&quot;frmSetup&quot;).Show" caption="Setup" 

tooltip="" tabstop="true" border="false" alignment="center"/> 

     <EDIT name="txtutype" x="118" y="118" width="10" 

height="10" defaultvalue="" tooltip="" tabstop="false" border="false" sip="false" 

field="UTYPE"/> 

     <EDIT name="txtvisited" x="117" y="102" width="10" 

height="10" defaultvalue="" tooltip="" tabstop="false" border="false" sip="false" 

field="VISITED"/> 

     <COMBOBOX name="cmbnatc" x="27" y="95" width="100" 

height="13" defaultvalue="" listtable="nccd.dbf" listvaluefield="CODE" 

listtextfield="TEXT" tooltip="" tabstop="true" border="false" sip="false" 

sort="false" field="NATC"/> 

     <LABEL name="lblNatCom" x="11" y="97" width="10" 

height="10" caption="NC" tooltip="" group="true" border="false"/> 

     <LABEL name="lblcomment" x="1" y="112" width="33" 

height="10" caption="Comment" tooltip="" group="true" border="false"/> 

     <EDIT name="txtcomment" x="35" y="110" width="91" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="false" 

field="COMMENT"/> 

    </PAGE> 

   </EDITFORM> 

   <IDENTIFYFORM name="IDENTIFYFORM" caption="IDENTIFY" 

width="130" height="130" picturepagevisible="false" attributespagevisible="false" 

symbologypagevisible="false" geographypagevisible="false" required="false"> 

    <PAGE name="pgidentify" caption="IDENTIFY" sip="false"> 

     <EDIT name="Edit1" x="47" y="12" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" readonly="true" 

sip="false" field="OBJECTID"/> 

     <EDIT name="Edit2" x="47" y="29" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" readonly="true" 

sip="false" field="VISITED"/> 

     <LABEL name="lblPlotId" x="28" y="14" width="18" 

height="9" caption="Plot" tooltip="" group="true" border="false"/> 

     <LABEL name="lblVisited" x="22" y="30" width="25" 

height="9" caption="Visited" tooltip="" group="true" border="false"/> 

     <EDIT name="Edit3" tooltip="" x="48" y="46" 

width="80" height="12" tabstop="true" border="true" readonly="true" sip="false" 

defaultvalue="" field="UID"/> 

     <LABEL name="lbluid" caption="UID" tooltip="" 

x="28" y="47" width="19" height="10" group="true" border="false"/> 

    </PAGE> 

   </IDENTIFYFORM> 
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   <FORM name="frmSetup" caption="Setup" width="130" height="130" 

onok="Call updateDbfValues(&quot;frmSetup&quot;, dtSetup)" onload="Set dtSetup = 

fillDataTable(&quot;frmSetup&quot;) 

Call setCruiseCombobox 

Call updateFormValues(&quot;frmSetup&quot;, dtSetup)"> 

    <PAGE name="pgSetup" caption="Setup" sip="false"> 

     <COMBOBOX name="cmbctype" x="45" y="25" width="82" 

height="13" defaultvalue="" listtable="" listvaluefield="" listtextfield="" 

tooltip="" tabstop="true" border="false" sip="false" limittolist="false" 

sort="false"> 

     </COMBOBOX> 

     <LABEL name="lblcruiseType" x="5" y="27" 

width="40" height="9" caption="Cruise Type" tooltip="" group="true" border="false"/> 

     <LABEL name="lblValue" x="22" y="42" width="23" 

height="9" caption="Value" tooltip="" group="true" border="false"/> 

     <EDIT name="txtValue" x="46" y="42" width="80" 

height="12" defaultvalue="4" tooltip="" tabstop="true" border="true" sip="true" 

minvalue="1" maxvalue="100"/> 

     <LABEL name="lblplot" x="7" y="3" width="53" 

height="9" caption="Plot" tooltip="" group="true" border="false"/> 

     <BUTTON 

onclick="Layer.Forms(&quot;frmAddTree&quot;).Show" name="btnUTree" x="45" y="75" 

width="81" height="14" caption="Update Tree List" tooltip="" tabstop="true" 

border="false" alignment="center"/> 

     <EDIT name="txtsubplots" x="46" y="57" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="true"/> 

     <LABEL name="lblsubplots" x="12" y="58" width="34" 

height="10" caption="Sub Plots" tooltip="" group="true" border="false"/> 

     <BUTTON 

onclick="Application.ExecuteCommand(&quot;gpsoptions&quot;) 

'Layer.Forms(&quot;frmgpssetup&quot;).Show" name="btnGpsSetup" x="45" y="90" 

width="82" height="14" caption="Update GPS Setup" tooltip="" tabstop="true" 

border="false" alignment="center"/> 

    </PAGE> 

   </FORM> 

   <FORM name="frmSubplot" caption="Subplot" width="130" 

height="130" onload="Set dtSubplot = fillDataTable(&quot;frmSubplot&quot;) 

Call SetSubplotComboboxes 

Call updateFormValues(&quot;frmSubplot&quot;, dtSubplot)" onok="Call 

updateDbfValues(&quot;frmSubplot&quot;, dtSubplot)"> 

    <PAGE name="pgSubplot" caption="Subplot" sip="false"> 

     <LABEL name="lblpine" x="7" y="114" width="33" 

height="9" caption="% Pine" tooltip="" group="true" border="false"/> 
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     <LABEL name="lblbare" x="7" y="101" width="33" 

height="9" caption="% Bare" tooltip="" group="true" border="false"/> 

     <LABEL name="lblbroad" x="7" y="87" width="33" 

height="9" caption="% Broad" tooltip="" group="true" border="false"/> 

     <LABEL name="lblsaw" x="7" y="71" width="33" 

height="9" caption="% Saw" tooltip="" group="true" border="false"/> 

     <LABEL name="lblherb" x="7" y="58" width="33" 

height="9" caption="% Herb" tooltip="" group="true" border="false"/> 

     <LABEL name="lblpctcwd" x="7" y="42" width="33" 

height="9" caption="% CWD" tooltip="" group="true" border="false"/> 

     <LABEL name="lblburn" x="7" y="27" width="33" 

height="9" caption="Last Burn" tooltip="" group="true" border="false"/> 

     <LABEL name="lblsubplot" x="3" width="120" 

height="9" caption="Plot/Subplot:" tooltip="" group="true" border="false"/> 

     <BUTTON 

onclick="Layer.Forms(&quot;frmtrees&quot;).Show" name="btnTree" x="3" y="9" 

width="37" height="15" caption="Trees" tooltip="" tabstop="true" border="false" 

alignment="center"/> 

     <COMBOBOX name="cmbburn" x="47" y="26" width="80" 

height="100" defaultvalue="" listtable="" listvaluefield="" listtextfield="" 

tooltip="" tabstop="true" border="false" sip="false" limittolist="false" 

sort="false"/> 

     <COMBOBOX name="cmbpctcwd" x="47" y="41" 

width="80" height="100" defaultvalue="" listtable="" listvaluefield="" 

listtextfield="" tooltip="" tabstop="true" border="false" sip="false" 

limittolist="false" sort="false"/> 

     <COMBOBOX name="cmbpctherb" x="47" y="55" 

width="80" height="100" defaultvalue="" listtable="" listvaluefield="" 

listtextfield="" tooltip="" tabstop="true" border="false" sip="false" 

limittolist="false" sort="false"/> 

     <COMBOBOX name="cmbpctsaw" x="47" y="70" 

width="80" height="100" defaultvalue="" listtable="" listvaluefield="" 

listtextfield="" tooltip="" tabstop="true" border="false" sip="false" 

limittolist="false" sort="false"/> 

     <COMBOBOX name="cmbpctbroad" x="47" y="84" 

width="80" height="100" defaultvalue="" listtable="" listvaluefield="" 

listtextfield="" tooltip="" tabstop="true" border="false" sip="false" 

limittolist="false" sort="false"/> 

     <COMBOBOX name="cmbpctbare" x="47" y="98" 

width="80" height="100" defaultvalue="" listtable="" listvaluefield="" 

listtextfield="" tooltip="" tabstop="true" border="false" sip="false" 

limittolist="false" sort="false"/> 
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     <COMBOBOX name="cmbpctpine" x="47" y="112" 

width="80" height="100" defaultvalue="" listtable="" listvaluefield="" 

listtextfield="" tooltip="" tabstop="true" border="false" sip="false" 

limittolist="false" sort="false"/> 

    </PAGE> 

   </FORM> 

   <FORM name="frmAddTree" caption="Tree List" width="130" 

height="130" onunload="Set luSpcd = 

fillDictionary(species,&quot;SPCD&quot;,&quot;COMMON_NAM&quot;)"> 

    <PAGE name="pgAddTree" caption="TreeList" sip="false" 

onload="Call fillListViewAddTree"> 

     <LISTBOX name="lstTree" y="17" width="127" 

height="110" defaultvalue="" listtable="" listvaluefield="" listtextfield="" x="1" 

tooltip="" tabstop="true" border="true" sort="false" font="Courier New" 

fontsize="9"/> 

     <LABEL name="lblTreeList" x="1" width="59" 

height="12" y="3" caption="Select to update" tooltip="" group="true" 

border="false"/> 

     <BUTTON onclick="spUid = &quot;&quot; 

Layer.Forms(&quot;frmSpecies&quot;).Show" name="btnAdd" x="101" width="12" 

height="12" y="1" caption="+" tooltip="" tabstop="true" border="false" 

alignment="center"/> 

     <BUTTON name="btnminus" x="115" y="1" width="12" 

height="12" onclick="Call removeAddTree" caption="-" tooltip="" tabstop="true" 

border="false" alignment="center"/> 

     <BUTTON onclick="Call selectAddTree" 

name="btnswitch" x="88" y="1" width="12" height="12" caption="%" tooltip="" 

tabstop="true" border="false" alignment="center"/> 

    </PAGE> 

   </FORM> 

   <FORM name="frmSpecies" caption="Species" width="130" 

height="130" onok="Call updateDbfValues(&quot;frmSpecies&quot;,dtSpecies)" 

onunload="Call fillListViewAddTree"> 

    <PAGE name="pgSpecies" caption="Species" sip="false" 

onload="Set dtSpecies = fillDataTable(&quot;frmSpecies&quot;) 

Call updateFormValues(&quot;frmSpecies&quot;,dtSpecies)"> 

     <EDIT name="txtSPCD" x="41" y="6" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="true"/> 

     <LABEL name="lblSPCD" x="19" y="6" width="20" 

height="10" caption="Code" tooltip="" group="true" border="false"/> 

     <EDIT name="txtCOMMON_NAM" x="41" y="20" 

width="80" height="12" defaultvalue="" tooltip="" tabstop="true" border="true" 

sip="true"/> 
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     <LABEL name="lblCommon" x="9" y="22" width="30" 

height="10" caption="Common" tooltip="" group="true" border="false"/> 

     <EDIT name="txtGenus" x="41" y="35" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="true"/> 

     <LABEL name="lblGenus" x="15" y="36" width="24" 

height="10" caption="Genus" tooltip="" group="true" border="false"/> 

     <EDIT name="txtSPECIES" x="41" y="49" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="true"/> 

     <EDIT name="txtVARIETY" x="41" y="64" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="true"/> 

     <EDIT name="txtSUBSPECIES" x="41" y="79" 

width="80" height="12" defaultvalue="" tooltip="" tabstop="true" border="true" 

sip="true"/> 

     <LABEL name="lblSpecies" x="11" y="50" width="29" 

height="10" caption="Species" tooltip="" group="true" border="false"/> 

     <LABEL name="lblvariety" x="15" y="65" width="24" 

height="10" caption="Variety" tooltip="" group="true" border="false"/> 

     <LABEL name="lblSub" y="80" width="40" height="10" 

x="1" caption="Subspecies" tooltip="" group="true" border="false"/> 

     <EDIT name="txtsort" x="41" y="94" width="80" 

height="12" defaultvalue="" tooltip="" tabstop="true" border="true" sip="false"/> 

     <LABEL name="lblsort" x="21" y="95" width="17" 

height="9" caption="Sort" tooltip="" group="true" border="false"/> 

    </PAGE> 

   </FORM> 

  </FORMS> 

  <SCRIPT src="Plots.vbs" language="VBScript"/> 

  <SYSTEMOBJECTS> 

   <GPS onposition="Call updateGpsTable 

" onaveragestop="collectData=False" onaveragestart="Call updateGpsTable"/> 

  </SYSTEMOBJECTS> 

  <FIND> 

   <QUERYBUILDER> 

    <QUERYFRAGMENT field="OBJECTID" operator="=" value="249" 

fragmentoperator="AND"/> 

   </QUERYBUILDER> 

  </FIND> 

 </LAYER> 

</ArcPad> 
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(VB Script) 

option explicit 

 

'Global Variables 

Dim subPlotUid, plotUid, setupUid, projectUid, treeUid, spUid 'values used to link 

plots with subplots, and trees tables 

Dim subplots, trees, setup, species, gps 'path to setup, subplot, and tree 

relational dbf tables 

Dim dtProject, dtSetup, dtPlot, dtSubplot, dtTree, dtSpecies, dtGPS, dtGPSsetup 

'data tables used to update values 

Dim luSpcd, luStcd, luCtype, luBrcd, luPct 'lookup dictionary used for comboboxes 

Dim check, rcd, cruiseType, cruiseValue, plt, subplt, collectData, gpsPositionNumber 

 

Sub Include(sInstFile) 

    Dim s, oFSO 

    Set oFSO = Application.CreateAppObject("file") 

    On Error Resume Next 

    If oFSO.Exists(sInstFile) Then 

  'Application.MessageBox "file DataTable exists" 

        oFSO.Open(sInstFile) 

  do while not oFSO.EOF 

   s = s & oFSO.ReadLine & vbCrLf 

  loop 

  oFSO.Close 

        ExecuteGlobal s 

    End If 

    On Error Goto 0 

    Set oFSO = Nothing 

End Sub 

 

function fillDictionary(path,cd,txt) 

 Dim rcds, outDic, trcd, sql 

 set outDic = new Dictionary 

 set rcds = Application.CreateAppObject("RecordSet") 

 sql = "[use] = 1 and [utype] < 3" 

 rcds.Open path, 1 

 trcd = rcds.Find(sql) 

 do while trcd > 0 

  outDic.Add rcds.Fields(cd).Value, rcds.Fields(txt).Value 

  trcd = rcds.Find(sql,,trcd) 

 loop 

 rcds.Close 
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 set fillDictionary = outDic 

 set rcds = nothing 

 set outDic  = nothing 

End function 

 

Function createGuid() 

 createGuid = System.CreateGuid 

End Function 

 

'Application.MessageBox Application.Path & "\Applets\DataTable.vbs" 

Include(Application.Path & "\Applets\DataTable.vbs") 

'Application.MessageBox "Included DataTable" 

set luSpcd = fillDictionary(Application.Path & 

"\Applets\Tree_Data_Collection\spcd.dbf","SPCD","COMMON_NAM") 

'Application.MessageBox "filled Dictionary Spcd" 

set luStcd = fillDictionary(Application.Path & 

"\Applets\Tree_Data_Collection\stcd.dbf","CODE","TEXT") 

'Application.MessageBox "filled Dictionary Stcd" 

set luCtype = fillDictionary(Application.Path & 

"\Applets\Tree_Data_Collection\crcd.dbf","CODE","TEXT") 

'Application.MessageBox "filled Dictionary crcd" 

set luBrcd = fillDictionary(Application.Path & 

"\Applets\Tree_Data_Collection\brcd.dbf","CODE","TEXT") 

'Application.MessageBox "filled Dictionary Spcd" 

set luPct = fillDictionary(Application.Path & 

"\Applets\Tree_Data_Collection\pctcd.dbf","CODE","TEXT") 

 

 

collectData=false 

gpsPositionNumber = 0 

 

Sub LoadFormStartup 

'Called when edit form is openned 'If there are no shapefile layers in the map, then 

exit 

 call check_plot_layers 'sets the plotuid, setupuid, and projectuid 

 if check = 3 then 

  call setup_exists 

  if check = 1 or plotUid = "" then 

   if plotUid="" then 

    Layer.Forms("EDITFORM").Close False 

   end if 

  else 

   Layer.Forms("frmSetup").Show 
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  end if 

 else 

 end if 

End Sub 

 

Function fillDataTable(frmName) 

'Fills the data table based on uids. New values are created in the dbf file and 

values are set in the data table  

 Dim rcds, path, sql, outTbl, fcnt, fldArr, rcnt, fldName, fld, fldTypeArr, 

guid 

 sql = "[uid] = " 

 set rcds = Application.CreateAppObject("recordset") 

 Select Case frmName 

  Case "frmSetup" 

   path = setup 

   rcds.Open path, 1 

   sql = sql & """" & CStr(setupUid) & """"   

  Case "frmSubplot" 

   path = subplots 

   rcds.Open path, 1 

   sql = "[uid] = """ & subPlotUid & """" 

  Case "frmtrees" 

   path = trees 

   rcds.Open path, 1 

   sql = "[subplotUid] = """ & subPlotUid & """ AND [utype] < 3" 

  Case "frmGPS" 

   path = gps 

   rcds.Open path, 1 

   sql = "[plotUid] = """ & CStr(plotUid) & """ AND [utype] < 3" 

  Case "frmSpecies" 

   path = species 

   rcds.Open path, 1 

   sql = sql & """" & CStr(spUid) & """" 

  Case else 

 End Select 

 set outTbl = new Table 

 fcnt = rcds.Fields.Count 

 outTbl.createTable 1, fcnt 

 redim fldArr(fcnt-1) 

 redim fldTypeArr(fcnt-1) 

 fcnt = 0 

 for each fld in rcds.Fields 

  fldName = fld.Name 
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  fldArr(fcnt) = fldName 

  fldTypeArr(fcnt) = fld.Type 

  fcnt = fcnt + 1 

 Next 

 outTbl.Fields = fldArr 

 outTbl.FieldTypes = fldTypeArr 

 rcd = rcds.Find(sql) 

 if rcd = 0 then 

  guid = createGuid() 

  'rcds.AddNew 

  outTbl.setCellValue 0,"uid",guid 

  outTbl.setCellValue 0,"utype",1 

  select case frmName 

   Case "frmSubplot" 

    outTbl.setCellValue 0,"plotUid",plotUid 

    outTbl.setCellValue 0,"subplot",subplt 

    outTbl.setCellValue 0,"pctpine",0 

    outTbl.setCellValue 0,"pctbare",0 

    outTbl.setCellValue 0,"burn",6 

    outTbl.setCellValue 0,"pctherb",0 

    outTbl.setCellValue 0,"pctbroad",0 

    outTbl.setCellValue 0,"pctsaw",0 

    outTbl.setCellValue 0,"pctcwd",0 

    subPlotUid = guid 

   Case "frmtrees" 

    outTbl.setCellValue 0,"subplotUid",subPlotUid 

    outTbl.setCellValue 0,"status",1 

    outTbl.setCellValue 0,"sp",0 

    outTbl.setCellValue 0,"cnt",1 

    outTbl.setCellValue 0,"dbh",0 

    treeUid = guid 

   Case "frmSetup" 

    outTbl.setCellValue 0,"projectUid",projectUid 

    outTbl.setCellValue 0,"uid",setupUid 

    'setupUid = guid 

   Case "frmSpecies" 

    outTbl.setCellValue 0,"use",1  

    outTbl.setCellValue 0,"lbl","1   |0   |not set                  

|" & guid  

    spUid = guid 

   Case "frmGPS" 

    outTbl.setCellValue 0,"plotUid",plotUid  

   Case else 
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  end select 

 else 

  guid = rcds.Fields("uid").Value 

  select case frmName 

   Case "frmSubplot" 

    subPlotUid = guid     

   Case "frmtrees" 

    treeUid = guid 

   Case "frmSetup" 

    setupUid = guid 

    sql = sql & """" & CStr(setupUid) & """ AND [utype] < 3" 

   Case "frmSpecies" 

    spUid = guid 

  end select 

 end if 

 rcnt = 0 

 Do while rcd <> 0 

  if rcnt = 0 then 

  else 

   'Application.MessageBox "adding Row rcd = " & Cstr(rcd) & ":" & 

sql  

   outTbl.addRows 1 

  end if 

  for each fld in rcds.Fields 

   outTbl.setCellValue rcnt,fld.Name,fld.Value 

  Next 

  rcd = rcds.Find(sql, ,rcd) 

  rcnt = rcnt + 1 

 Loop 

 set fillDataTable = outTbl 

 rcds.Close 

 set rcds = Nothing 

End Function 

 

sub setSubPlotUid(subPlotNumber) 

 subplt = subPlotNumber 

 subPlotUid = getUid(subplots,"[plotUid] = """ & plotUid & """ and [subplot] = 

" & CStr(subplt),"uid") 

end sub 

 

sub createFile(flpath) 

 dim myfile 

 set myfile = Application.CreateAppObject("File") 
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 if myfile.Exists(flpath) then 

 else 

  myfile.Copy Application.Path & "\Applets\Tree_Data_Collection\" & 

right(flpath,len(flpath)-InStrRev(flpath,"_")+1), flpath 

 end if 

 set myfile = nothing 

end sub 

 

Function getUid(path2, sql, fldName) 

 Dim rcds2, outvl, weOpen 

 set rcds2 = Application.CreateAppObject("recordset") 

 weOpen = True 

 createFile(setup) 

 if (LCase(path2) = LCase(Layer.FilePath)) then 

  weOpen = False 

  set rcds2 = Layer.Records 

 else 

  rcds2.Open path2, 1 

 end if 

 outvl = rcds2.Find(sql) 

 if outvl > 0 then 

  outvl = rcds2.Fields(fldName).Value 

 else 

  outvl = -1 

 end if 

 if weOpen then 

  rcds2.Close 

 end if 

 set rcds2 = nothing 

 getUid = outvl 

End Function 

 

sub updateDbfValues(frmName,tbl) 

'call this on ok button push 

 Dim rcds, path, sql, uidIndex, uidValue, r, weOpen, fld 

 call updateCurrentTableRecord(frmName,tbl) 

 set rcds = Application.CreateAppObject("recordset") 

 weOpen = true 

 Select Case frmName 

  Case "frmSetup" 

   path = setup 

  Case "frmSubplot" 

   path = subplots 
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  Case "frmtrees" 

   path = trees 

  Case "frmGPS" 

   path = gps 

   'Application.MessageBox "updated Current Record " & path 

  Case "frmSpecies" 

   path = species 

  Case else 

   exit sub 

 End Select 

 rcds.Open path, 2 

 uidIndex = tbl.findField("uid") 

 for r=0 to tbl.RowCount-1 

  uidValue = tbl.getCellValue(r,uidIndex) 

  sql = "[uid] = """ & uidValue & """" 

  rcd = rcds.Find(sql) 

  'Application.MessageBox Cstr(rcd) 

  if rcd = 0 then 

   'Application.MessageBox "adding record" 

   rcds.AddNew 

  end if 

  for each fld in rcds.Fields 

   'Application.MessageBox fld.Name & ": " & 

CStr(tbl.getCellValue(r,fld.Name)) 

   fld.Value = tbl.getCellValue(r,fld.Name)    

  Next 

  rcds.Update 

 Next 

 if(weOpen) then 

  rcds.Close 

 end if 

 set rcds = Nothing  

end sub 

 

sub updateCurrentTableRecord(frmName,tbl) 

 Dim path, sql, uidValue, c, theControls, pg, cntName, cntType, cntValue, 

rwIndex 

 Select Case frmName 

  Case "frmSetup" 

   pg = "pgSetup" 

   uidValue = setupUid 

  Case "frmSubplot" 

   pg = "pgSubplot" 
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   path = subplots 

   uidValue = subPlotUid 

  Case "frmtrees" 

   pg = "pgtrees" 

   uidValue = treeUid 

  Case "frmSpecies" 

   pg = "pgSpecies" 

   uidValue = spUid 

  Case else 

   'Application.MessageBox "Exit Current Record" 

   exit sub 

 End Select 

 rwIndex = tbl.findRowIndex("uid",uidValue) 

 set theControls = Layer.Forms(frmName).Pages(pg).Controls 

 for each c in theControls 

  cntName = lCase(Right(c.Name,len(c.Name)-3)) 

  cntType = LCase(c.Type) 

  cntValue = c.Value 

  if cntType = "edit" then 

   cntValue = c.Value 

   tbl.setCellValue rwIndex, cntName, cntValue  

  elseif cntType = "combobox" then 

   select case cntName 

    Case "sp" 

     cntValue = luSpcd.GetKey(c.Value) 

     'Application.MessageBox "updating rowIndex (" & 

Cstr(rwIndex) & ") sp = " & Cstr(cntValue) 

    Case "status" 

     cntValue = luStcd.GetKey(c.Value) 

    Case "ctype" 

     cntValue = luCtype.GetKey(c.Value) 

    case "burn" 

     cntValue = luBrcd.GetKey(c.Value) 

    case else 

     cntValue = luPct.GetKey(c.Value) 

   end select 

   tbl.setCellValue rwIndex, cntName, cntValue 

  end if 

 Next 

 if(frmName = "frmSpecies") then 

  Dim lblValue 

  lblValue = formatStrValue(tbl.getCellValue(rwIndex,"use"),4) & "|" & 

formatStrValue(tbl.getCellValue(rwIndex,"SPCD"),4) & "|" & 
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formatStrValue(tbl.getCellValue(rwIndex,"COMMON_NAM"),25) & "|" & 

tbl.getCellValue(rwIndex,"uid") 

  tbl.setCellValue rwIndex, "lbl", lblValue 

 elseif(frmName = "EDITFORM") then 

  tbl.setCellValue rwIndex, "visited", 1 

  'Application.MessageBox Cstr(plotUid) & "visited = 1"   

 end if 

 call updateRow(tbl,rwIndex) 

 set theControls = Nothing 

end sub 

 

sub update_labels(form) 

 'Called on load event for forms or activate event on pages. Fills controls 

with data table values 

 dim objTheForm, objTheControls, pg 

 if(form = "EDITFORM") then 

  pg = "pg" & form 

 elseif (form = "pgtreesview") then 

  pg = form 

  form = "frmtrees" 

 else 

  pg = "pg" & right(form,len(form)-3) 

 end if 

 Set objTheForm = Layer.Forms(form) 

 Set objTheControls = objTheForm.Pages(pg).Controls 

 select case pg 

  case "pgtrees" 

   objTheControls("lblsubplot").Value = "Plot " & CStr(plt) & " 

Subplot " & CStr(subplt) 

   objTheControls("lblcount").Value = " of " & 

CStr(dtTree.RowCount) 

  case "pgtreesview" 

   objTheControls("lblsubplot").Value = "Plot " & CStr(plt) & " 

Subplot " & CStr(subplt) 

  case "pgSubplot" 

   objTheControls("lblsubplot").Value = "Plot " & CStr(plt) & " 

Subplot " & CStr(subplt) 

  case "pgEDITFORM" 

   objTheForm.Pages(pg).Caption = "Plot " & CStr(plt) 

  case "pgSetup" 

   objTheControls("lblplot").Value = "Plot " & CStr(plt) 

 end select 

 set objTheForm = nothing 
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 set objTheControls = nothing 

end sub 

 

sub check_plot_layers 

'Check to see if a record within a point layer is selected and if the point layer 

has plotUid and setupUid. If so then gets the values associated with the selected 

point 

 trees = "" 

 dim l, path, visited 

 check = 0 

 visited = 0 

 dim lyr, rcds, flds, srcd  

 set lyr = Map.SelectionLayer 

 path = lyr.FilePath 

 trees = left(path,len(path)-4) & "_trees.dbf" 

 subplots = left(path,len(path)-4) & "_subplots.dbf" 

 setup = left(path,len(path)-4) & "_setup.dbf" 

 species = Application.Path & "\Applets\Tree_Data_Collection\spcd.dbf" 

 gps = left(path,len(path)-4) & "_gps.dbf" 

 set rcds = lyr.Records 

 srcd = Map.SelectionBookmark 

 rcds.Bookmark = srcd 

 set flds = rcds.Fields 

 for each l in flds 

  if Ucase(l.Name) = "UID" or Ucase(l.Name) = "SETUPUID" or 

Ucase(l.Name) = "OBJECTID" then 

   check = check + 1 

  elseif Ucase(l.Name) = "VISITED" then 

   visited = 1 

  else 

  end if 

 next 

 if check = 3 then 

  plotUid = flds.Item("uid").Value 

  setupUid = flds.Item("setupUid").Value 

  plt = flds.Item("OBJECTID").Value 

  projectUid = getUid(setup, "[uid] = """ & setupUid & """", 

"projectUid") 

 else 

  Application.MessageBox "Improperly Formated plot file. Please reload a 

properly desinged plot file!", vbExclamation, "Improperly formated" 

 end if 

 set flds = nothing 
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 set rcds = nothing 

 set lyr = nothing    

end sub 

 

sub setup_exists 

'checks to see if the related table setup exists. If so get the projectUid, cruise 

type (BAF or Fixed) and cruise value (BAF value or fixed radius) 

 dim myfile, myarray, i, setup_rcds, srcd, sql 

 set myfile = Application.CreateAppObject("file") 

 redim myarray(3) 

 myarray(0) = trees 

 myarray(1) = subplots 

 myarray(2) = setup 

 myarray(3) = gps 

 for each i in myarray 

  if myfile.Exists(i) then 

  else 

   myfile.Copy Application.Path & "\Applets\Tree_Data_Collection\" 

& right(i,len(i)-InStrRev(i,"_")+1), i 

  end if 

 next 

 set setup_rcds = Application.CreateAppObject("recordset") 

 setup_rcds.Open setup, 1 

 sql = "[uid]=""" & CStr(setupUid) & """" 

 srcd = setup_rcds.Find(sql) 

 if srcd > 0  then  

  check = 1 

  cruiseType = setup_rcds.Fields("ctype").Value 

  cruiseValue = setup_rcds.Fields("Value").Value 

  projectUid = setup_rcds.Fields("projectUid").Value 

 else 

  check = 0 

  cruiseType = "FIXED" 

  cruiseValue = 4 

 end if 

 setup_rcds.Close 

 set setup_rcds = nothing 

 set myfile = nothing 

 erase myarray  

End sub 

 

Sub setTreeCombobox  

 dim controls,i, vl, tx 
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 set controls = Layer.Forms("frmtrees").Pages("pgtrees").Controls 

 controls("cmbsp").Clear 

 controls("cmbsp").AddItemsFromTable species,"COMMON_NAM","COMMON_NAM", "[use] 

= 1 and [utype] < 3" 

 controls("cmbstatus").Clear 

 controls("cmbstatus").AddItemsFromTable Application.Path & 

"\Applets\Tree_Data_Collection\stcd.dbf","TEXT","TEXT", "[use] = 1 and [utype] < 3"' 

order [sort]" 

 set controls = nothing 

End Sub 

Sub setCruiseCombobox 

 dim cnt 

 set cnt = Layer.Forms("frmSetup").Pages("pgSetup").Controls("cmbctype") 

 cnt.Clear 

 cnt.AddItemsFromTable Application.Path & 

"\Applets\Tree_Data_Collection\crcd.dbf","TEXT","TEXT", "[use] = 1 and [utype] < 3" 

 set cnt = nothing 

End Sub 

 

Sub setSubplotComboboxes 

 dim cntrs, cnt 

 set cntrs = Layer.Forms("frmSubplot").Pages("pgSubplot").Controls 

 for each cnt in cntrs 

  if LCase(cnt.Type) = "combobox" then 

   cnt.Clear 

   'Application.Messagebox cnt.Name 

   select case cnt.Name 

    Case "cmbburn" 

     cnt.AddItemsFromTable Application.Path & 

"\Applets\Tree_Data_Collection\brcd.dbf","TEXT","TEXT", "[use] = 1 and [utype] < 3" 

    case else 

     cnt.AddItemsFromTable Application.Path & 

"\Applets\Tree_Data_Collection\pctcd.dbf","TEXT","TEXT", "[use] = 1 and [utype] < 3" 

   end select 

  end if 

 next   

 set cnt = nothing 

 set cntrs = nothing 

End Sub 

 

Sub updateFormValues(form, tbl) 

'updates the form values based on field names and control names 

 dim theControls, rwInd, c, uIndex 
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 dim cntName, fldInd, cntType, form2, nvl 

 form2 = LCase(right(form,len(form)-3)) 

 if form = "editform" then 

  form2 = form 

 end if 

 set theControls =Layer.Forms("frm" & form2).Pages("pg" & form2).Controls 

 Select Case form2 

  case "trees" 

   uIndex = treeUid 

  case "setup" 

   uIndex = setupUid 

  case "subplot" 

   uIndex = subPlotUid 

  case "project" 

   uIndex = projectUid 

  case "species" 

   uindex = spUid 

  case else 

   exit sub 

 end select 

 rwInd = tbl.findRowIndex("uid",uIndex) 

 'Application.MessageBox Cstr(rwInd) 

 if rwInd < 0 then 

  Application.MessageBox "Can't find related records. Setting to first 

record." 

  rwInd = 0 

 end if 

 for each c in theControls 

  cntName = c.Name 

  cntName = LCase(Right(cntName,len(cntName)-3)) 

  fldInd = tbl.findField(cntName) 

  cntType = LCase(c.Type) 

  if fldInd >-1 then 

   if cntType = "edit" then 

    c.Value = tbl.getCellValue(rwInd,fldInd) 

   elseif cntType = "combobox" then 

    select case cntName 

     Case "sp" 

      'Application.MessageBox "table value = " & 

Cstr(tbl.getCellValue(rwInd,fldInd)) 

      nvl = 

luSpcd.GetValue(tbl.getCellValue(rwInd,fldInd)) 

      c.Value = nvl 
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      'Application.MessageBox Cstr("List count = 

" & c.ListCount) 

      c.ListIndex = 

luSpcd.findIndex(tbl.getCellValue(rwInd,fldInd)) 

      'Application.MessageBox "lookup value = " & 

CStr(luSpcd.Count) & " " & CStr(nvl) & " " & CStr(c.ListIndex) 

     Case "status" 

      nvl = 

luStcd.GetValue(tbl.getCellValue(rwInd,fldInd)) 

      c.Value = nvl 

      c.ListIndex = 

luStcd.findIndex(tbl.getCellValue(rwInd,fldInd)) 

     Case "ctype" 

      nvl = 

luCtype.GetValue(tbl.getCellValue(rwInd,fldInd)) 

      c.Value = nvl 

      c.ListIndex = 

luCtype.findIndex(tbl.getCellValue(rwInd,fldInd)) 

     Case "burn" 

      nvl = 

luBrcd.GetValue(tbl.getCellValue(rwInd,fldInd)) 

      c.Value = nvl 

      c.ListIndex = 

luBrcd.findIndex(tbl.getCellValue(rwInd,fldInd)) 

     Case else 

      nvl = 

luPct.GetValue(tbl.getCellValue(rwInd,fldInd)) 

      c.Value = nvl 

      c.ListIndex = 

luPct.findIndex(tbl.getCellValue(rwInd,fldInd)) 

    end select 

   end if 

  end if 

 Next 

 set theControls = nothing 

 call update_labels(form) 

End Sub 

 

Sub addTreeRow 

 dim outRwInd, guid, theControl,i 

 set theControl = ThisEvent.Object 

 call updateCurrentTableRecord("frmtrees",dtTree) 

 dtTree.AddRows(1) 
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 guid = createGuid() 

 outRwInd = dtTree.RowCount - 1 

 dtTree.setCellValue outRwInd, "uid", guid 

 dtTree.setCellValue outRwInd, "utype", 1 

 dtTree.setCellValue outRwInd, "cnt", 1 

 dtTree.setCellValue outRwInd, "subplotUid",subPlotUid 

 dtTree.setCellValue outRwInd, "status", 1 

 dtTree.setCellValue outRwInd, "sp", 0 

 treeUid = guid 

 call updateFormValues("frmtrees",dtTree) 

 theControl.Parent.Controls("lbltree").Value = CStr(dtTree.RowCount) 

 theControl.Parent.Controls("lblcount").Value = " of " & CStr(dtTree.RowCount) 

 set theControl = nothing 

end Sub 

 

Sub subtractTreeRow 

 dim rcds, trcd, theControl, rwIndex 

 set theControl = ThisEvent.Object 

 rwIndex = dtTree.findRowIndex("uid",treeUid) 

 if rwIndex = 0 then 

  Application.MessageBox "Can't delete last record. If you want no tally 

set tree count = 0" 

  Exit Sub 

 end if 

 set rcds = Application.CreateAppObject("recordset") 

 rcds.Open trees, 2 

 trcd = rcds.Find("[uid] = """ & treeUid & """") 

 if trcd>0 then 

  rcds.Fields("utype").Value = 3 

  rcds.Update 

 end if 

 dtTree.subtractRow(rwIndex) 

 rcds.Close 

 set rcds = Nothing 

 treeUid = dtTree.getCellValue((rwIndex-1),"uid") 

 call updateFormValues("frmtrees",dtTree) 

 theControl.Parent.Controls("lbltree").Value = CStr(rwIndex) 

 theControl.Parent.Controls("lblcount").Value = " of " & CStr(dtTree.RowCount) 

 set theControl = Nothing 

End Sub 

 

Sub updateRow(tbl,rwIndex) 

 dim cvalue 
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 cvalue = tbl.getCellValue(rwIndex,"utype") 

 if (cvalue > 0) and (cvalue < 4) then 

 else 

  tbl.setCellValue rwIndex, "utype", 2 

 end if 

end Sub 

 

sub move_record(spaces) 

 dim theControl 

 dim treenumber, maxrecords, rwIndex 

 call updateCurrentTableRecord("frmtrees",dtTree) 

 rwIndex = dtTree.findRowIndex("uid",treeUid) 

 treenumber = rwIndex + spaces + 1 

 maxrecords = dtTree.RowCount 

 if treenumber > maxrecords then 

  Application.MessageBox "You have reached the last record!" & vbnewline 

& "If you want to add a new record press the '+' button" 

  Exit Sub 

 elseif treenumber < 1 then 

  Application.MessageBox "You have reached the first record!" & 

vbnewline & "If you want to delete a record press the '-' button" 

  Exit Sub 

 else 

  treeUid = dtTree.getCellValue(rwIndex+spaces,"uid") 

 end if 

 Layer.Forms("frmtrees").Pages("pgtrees").Controls("lbltree").Value = 

CStr(treenumber) 

 call updateFormValues("frmtrees",dtTree) 

end sub 

 

sub view_select 

 dim theViewControl 

 dim form,treenumber 

 set theViewControl = ThisEvent.Object 

 if theViewControl.ListIndex > 0 then 

  treenumber = theViewControl.ListIndex 

  treeUid = dtTree.getCellValue(treenumber-1,"uid") 

  theViewControl.Parent.Parent.Pages("pgtrees").Activate 

 

 theViewControl.Parent.Parent.Pages("pgtrees").Controls("lbltree").Value = 

treenumber 

  call updateFormValues("frmtrees", dtTree) 

  set theViewControl = nothing 
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 else 

  set theViewControl = nothing 

  Exit sub 

 end if 

end sub 

 

sub update_list_view 

 dim count, i, a, m, index_header, index_value 

 dim theViewControls, myarray 

 set theViewControls = Layer.Forms("frmtrees").Pages("pgtreesview").Controls 

 call updateCurrentTableRecord("frmtrees",dtTree) 

 index_header = "#   |  SP| DBH| STA| CNT|UTYP| UID                                  

| SUBPLOTUID                                  "  

 theViewControls ("lsttreesview").Clear 

 theViewControls ("lsttreesview").AddItem index_header,index_header 

 for i=0 to dtTree.RowCount-1 

  redim myarray(5) 

  myarray(0) = CStr(i + 1) 

  myarray(1) = CStr(dtTree.getCellValue(i,"sp")) 

  myarray(2) = CStr(dtTree.getCellValue(i,"dbh")) 

  myarray(3) = CStr(dtTree.getCellValue(i,"status")) 

  myarray(4) = CStr(dtTree.getCellValue(i,"cnt")) 

  myarray(5) = CStr(dtTree.getCellValue(i,"utype")) 

  count = 0 

  for each m in myarray 

   if len(m) < 4 then 

    for a = 1 to (4-len(m)) 

     m = m & " " 

    next 

   end if 

   myarray(count) = m 

   count = count + 1 

  next 

  index_value = join(myarray,"|") & "|" & dtTree.getCellValue(i,"uid") & 

"|" & dtTree.getCellValue(i,"subplotUid") 

  theViewControls("lsttreesview").AddItem index_value, index_value 

 next 

 Erase myarray 

 set theViewcontrols = nothing 

end sub 

 

function formatStrValue(value,lng) 

 Dim outvl,clng 
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 lng = lng + 1 

 clng = len(Cstr(value)) 

 outvl = CStr(value) 

 if clng < lng then 

  outvl = outvl & space(lng-clng) 

 elseif clng > lng then 

  outvl = left(outvl,lng)   

 end if 

 formatStrValue = outvl 

end function 

 

sub fillListViewAddTree 

 dim control,i, vl, tx 

 set control = 

Layer.Forms("frmAddTree").Pages("pgAddTree").Controls("lstTree") 

 control.Clear 

 control.AddItemsFromTable species,"lbl","lbl", "[utype] < 3" 

 set control = nothing 

end sub 

 

sub selectAddTree 

 dim rcds, theControl, ind, use, ln, ovl,ary, svl,code,common,ut 

 set theControl = ThisEvent.Object.Parent("lstTree") 

 ind = theControl.ListIndex 

 ln = theControl.Value 

 ary = split(ln,"|") 

 spUid = ary(ubound(ary)) 

 use = CInt(ary(0)) 

 code = CInt(ary(1)) 

 common = Trim(ary(2)) 

 if(use=1) then 

  ovl=0 

 else 

  ovl = 1 

 end if 

 svl = formatStrValue(ovl,len(ary(0))-1) 

 ary(0) = svl 

 ln = join(ary,"|") 

 set rcds = Application.CreateAppObject("recordset") 

 rcds.Open species, 2 

 rcds.Find "[uid] = """ & spUid & """" 

 rcds.Fields("use").Value = ovl 

 rcds.Fields("lbl").Value = ln 
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 ut = Cint(rcds.Fields("utype").Value) 

 if(ut = 1 or ut = 3) then  

 else 

  rcds.Fields("utype").Value = 2 

 end if 

 rcds.Update 

 rcds.Close 

 fillListViewAddTree 

 theControl.ListIndex = ind 

 set rcds = nothing 

 set theControl = nothing 

 Erase ary 

end sub 

 

sub removeAddTree 

 dim theControl, rcds, sql, uid, ind, ary 

 set theControl = ThisEvent.Object.Parent("lstTree") 

 set rcds = Application.CreateAppObject("recordset") 

 ind = theControl.ListIndex 

 if ind >= (theControl.ListCount - 1) then 

  ind = ind-1 

 elseif ind = 0 then 

  ind = -1 

 end if 

 ary = split(theControl.Value,"|") 

 uid = ary(3) 

 sql = "[uid] = """ & uid & """" 

 rcds.Open species, 2 

 rcds.Find sql 

 rcds.Fields("utype").Value = 3 

 rcds.Fields("use").Value = 0 

 rcds.Update 

 rcds.Close 

 fillListViewAddTree 

 theControl.ListIndex = ind 

 set rcds = nothing 

 set theControl = nothing 

 Erase ary 

end sub 

sub takePicture 

 dim path, fl, rslt 

 path = replace(Layer.FilePath,Layer.Name&".shp","") & "PlotPics" 

 set fl = Application.CreateAppObject("file") 
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 if(not fl.Exists(path)) then 

  'Application.MessageBox "creating directory" & path 

  fl.CreateDirectory(path) 

 end if 

 path = path & "\" & plotUid & ".jpg" 

 if(fl.Exists(path)) then 

  rslt = Application.MessageBox("File exist! Do you want to replace?", 

4, "File Exists") 

  if( rslt = 6) then 

   'Application.MessageBox "taking picture" 

   MultiMedia.CaptureStill(path) 

  else 

   'show image 

  end if 

 else 

  MultiMedia.CaptureStill(path) 

 end if 

 set fl = nothing 

end sub 

 

sub collectGPS 

 Dim mpos, i, rCnt, dif, rIndex, weOpen, ln, optArr 

 dim view 

 gpsPositionNumber = 0 

 optArr = getAveragingOptions 

 set dtGPS = fillDataTable("frmGPS") 

 mpos = optArr(0) 

 if(optArr(2)=False or mpos < 6) then 

  Application.MessageBox "You must enable averaging and have more than 5 

positions!", vbInformation, "GPS setup" 

  Application.ExecuteCommand("gpsoptions") 

  exit sub 

 end if 

 rCnt = dtGPS.RowCount 

 'Application.MessageBox "Row count = " & Cstr(rCnt) 

 dif = mpos-rCnt 

 'Application.MessageBox "Diff = " & Cstr(dif) 

 if dif > 0 then 

  call dtGPS.AddRows(dif) 

  'Application.MessageBox "Added " &  Cstr(dif) & " new row count = " & 

Cstr(dtGPS.RowCount) 

  for i = rCnt to mpos-1 

   rIndex = i 
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   dtGPS.setCellValue rIndex, "uid", createGuid() 

   dtGPS.setCellValue rIndex, "plotUid", plotUid 

   dtGPS.setCellValue rIndex, "utype", 1 

   dtGPS.setCellValue rIndex, "position", i 

   'Application.MessageBox "set value for rindex " & cStr(rIndex) 

  next 

   

  view = false 

 elseif dif < 0 then 

  if Application.MessageBox("Positions exist. Do you want to 

replace?",4,"Replace") = 6 then 

   view = false 

  else 

   view = true 

  end if 

  for i = mpos to rCnt-1 

   rIndex = i 

   'Application.MessageBox "Setting rowindex " & Cstr(rIndex) & " 

to 3" 

   dtGPS.setCellValue rIndex, "utype", 3 

  next 

 else 

  if Application.MessageBox("Positions exist. Do you want to 

replace?",4,"Replace") = 6 then 

   view = false 

  else 

   view = true 

  end if 

 end if 

 if(view) then 

 else 

  weOpen = false 

  if(Application.GPS.IsOpen) then 

  else 

   weOpen = True 

   Application.GPS.Open 

   Application.MessageBox "Activated GPS",vbInformation, 

"Activate" 

  end if 

  collectData = True 

  Application.ExecuteCommand("movepointtogps")  

  collectData = False 

  if(weOpen) then 
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   if Application.MessageBox("Do you want to deactivate the GPS?", 

vbYesNo, "Deactivate") = 6 then 

    Application.GPS.Close 

   end if 

  end if 

 end if 

 call removeGpsZeros 

 call updateDbfValues("frmGPS",dtGPS) 

end sub 

 

sub removeGpsZeros 

 Dim r, xvalue, sdel, xindex 

 xindex = dtGPS.findField("x") 

 sdel = -1 

 for r=0 to dtGPS.RowCount-1 

  xvalue = dtGPS.getCellValue(r,xindex) 

  if xvalue=0 then 

   sdel = r 

   exit for 

  end if 

 next 

 if sdel>-1 then 

  for r=dtGPS.RowCount-1 to sdel Step -1 

   dtGPS.SubtractRow(r) 

  next 

 end if 

end sub 

 

sub setupGpsForm 

 Dim theControl, theLabel, i, rCnt, ln, xp, yp, h, s, sh 

 set theControl = Layer.Forms("frmGPS").Pages("pgGPS").Controls("lstgps") 

 set theLabel = Layer.Forms("frmGPS").Pages("pgGPS").Controls("lblgps") 

 rCnt = dtGPS.RowCount 

 theControl.Clear 

 'Application.MessageBox "Row count = " & Cstr(rCnt) 

 for i = 1 to dtGPS.RowCount 

  sh = CInt(dtGPS.getCellValue(i-1,"utype")) 

  if sh < 3 then 

   xp = dtGPS.getCellValue(i-1,"x") 

   yp = dtGPS.getCellValue(i-1,"y") 

   h = dtGPS.getCellValue(i-1,"hdop") 

   s = dtGPS.getCellValue(i-1,"sat") 
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   ln = formatStrValue(i,3) & "|" & formatStrValue(xp,10) & "|" & 

formatStrValue(yp,10) & "|" & formatStrValue(h,5) & "|" & formatStrValue(s,3) 

   theControl.AddItem ln, ln 

  end if 

 next 

 theLabel.Value = "Viewing Data" 

 set theControl = nothing 

 set theLabel = nothing 

end sub 

 

function getGpsValues 

 dim myArray 

 redim myArray(3) 

 myArray(0) = CDbl(Application.GPS.Properties("HDOP")) 

 myArray(1) = CInt(Application.GPS.Satellites.Count) 

 myArray(2) = CDbl(Application.GPS.X) 

 myArray(3) = CDbl(Application.GPS.Y)   

 getGpsValues = myArray 

end function 

 

sub updateGpsTable 

 dim gpsArray, p 

 if(collectData) then 

  if gpsPositionNumber > dtGPS.RowCount-1 then 

   gpsPositionNumber = 0 

  end if 

  gpsArray = getGpsValues 

  p = gpsPositionNumber + 1 

  dtGPS.setCellValue gpsPositionNumber, "x", gpsArray(2) 

  dtGPS.setCellValue gpsPositionNumber, "y", gpsArray(3) 

  dtGPS.setCellValue gpsPositionNumber, "position", p 

  dtGPS.setCellValue gpsPositionNumber, "UTC", 

Application.GPS.Properties("UTC") 

  dtGPS.setCellValue gpsPositionNumber, "hdop", gpsArray(0) 

  dtGPS.setCellValue gpsPositionNumber, "sat", gpsArray(1) 

  gpsPositionNumber = p 

 end if 

end sub 

 

function getAveragingOptions 'returns (points,verticies,enabled) 

 dim fl, ln, pt, mArr, outArr, ar 

 Redim outArr(2) 

 outArr(0) = 0 
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 outArr(1) = 0 

 outArr(2) = false 

 pt = Application.System.Properties("PersonalFolder") & "\My 

ArcPad\ArcPadPrefs.apx" 

 'Application.MessageBox pt 

 Set fl = Application.CreateAppObject("file") 

 if fl.Exists(pt) then 

  fl.Open pt, apFileRead 

  Do while not fl.EOF 

   ln = Trim(fl.ReadLine) 

   'Application.MessageBox ln 

   if(InStr(1,ln,"<AVERAGING")>0) then 

    '<AVERAGING point="30" vertex="5" enabled="true"/> 

    mArr = Split(ln," ") 

    if ubound(mArr) > 0 then 

     for each ar in mArr 

      ar = Replace(ar,"/>","") 

      if InStr(1,ar,"point") > 0 then 

       outArr(0) = 

Cint(Replace(Split(ar,"=")(1),"""","")) 

      elseif InStr(1,ar,"vertex") > 0 then 

       outArr(1) = 

Cint(Replace(Split(ar,"=")(1),"""","")) 

      elseif InStr(1,ar,"enabled") > 0 then 

       outArr(2) = 

Cbool(Mid(Split(ar,"=")(1),2,4)) 

      end if 

     next 

    end if 

    erase mArr 

    exit do 

   end if 

  loop 

  fl.Close 

 else 

  Application.MessageBox "Can't find file" 

 end if 

 getAveragingOptions = outArr 

 set fl = nothing  

end function 

 

sub setVisitedZero 

 Dim rcds 
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 set rcds = Layer.Records 

 rcds.Bookmark = Map.SelectionBookmark 

 rcds.Fields("visited").Value = 0 

 rcds.Fields("utype").Value = 0 

 rcds.Update 

 set rcds = nothing 

end sub 

 

sub plotCheck 

 Dim rcds, rcds2, sql, trcd, cnt, suid, sql2, slst, path, fl, xvalue 

 set rcds = Application.CreateAppObject("RecordSet") 

 set rcds2 = Application.CreateAppObject("RecordSet") 

 sql = "[plotUid] = """ & plotUid & """ and [utype] < 3" 

 cnt = 0 

 rcds.Open gps, 1 

 trcd = rcds.Find(sql) 

 do while trcd>0 

  xvalue = rcds.Fields("x").Value 

  if xvalue <> 0 then 

   cnt = cnt+1 

  end if 

  trcd = rcds.Find(sql,,trcd) 

  if(cnt>5)then 

   exit do 

  end if 

 loop 

 rcds.Close 

 if(cnt < 5)then 

  Application.MessageBox "At least 5 GPS positions have not been 

collected! Setting visited to zero!", vbInformation 

  call setVisitedZero 

  exit sub 

 end if 

 cnt = 0 

 redim slst(3) 

 rcds.Open subplots, 1 

 trcd = rcds.Find(sql) 

 do while trcd>0 

  suid = rcds.Fields("uid").Value 

  sql2 = "[subplotUid] = """ & suid & """ and [utype] < 3" 

  rcds2.Open trees, 1 

  if rcds2.Find(sql2) = 0 then 
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   Application.MessageBox "Subplot = " & 

Cstr(rcds.Fields("subplot")) & " trees have not been collected! Setting visited to 

zero!", vbInformation 

   rcds.Close 

   rcds2.Close 

   call setVisitedZero 

   exit sub 

  end if 

  slst(cnt) = rcds.Fields("subplot").Value 

  cnt = cnt+1 

  trcd = rcds.Find(sql,,trcd) 

  if(cnt>=4)then 

   exit do 

  end if 

 loop 

 rcds.Close 

 if(cnt < 4)then 

  Application.MessageBox "Subplot " & getSubPlotValue(slst) & " has not 

been collected! Setting visited to zero!", vbInformation 

  call setVisitedZero 

  exit sub 

 end if 

 path = replace(Layer.FilePath,Layer.Name&".shp","") & "PlotPics\" & plotUid & 

".jpg" 

 set fl = Application.CreateAppObject("file") 

 if(not fl.Exists(path)) then 

  Application.MessageBox "Picture has not been collected! Setting 

visited to zero!", vbinformation 

  call setVisitedZero 

  exit sub 

 end if 

 set rcds = nothing 

 set rcds2 = nothing 

end sub 

 

function getSubPlotValue(mArr) 

 dim outStr, i 

 outStr = "1234" 

 for each i in mArr 

   outStr = Replace(outStr, Cstr(i),"") 

 Next 

 outStr = left(outStr,1)  

 getSubPlotValue = outStr 
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end function 
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Project summary and permission statement 

This project is trying to estimate forest structure and conditions throughout most of the 

eastern panhandle of Florida using field plots that represent the entire range of forested and non-

forested conditions. FNAI is working with the US Forest Service to collect the field data needed to 

calibrate mathematical models that will be used for estimations.  

We would like to visit location(s) on your property to record vegetation cover, tree species, 

and diameters within a small area (120 feet x 120 feet). This will probably take less than an hour 

and we will only collect observation data on forest structure. No markings (flags, etc.) will be left in 

the forest.  

Field data to collect 
Each plot is made up of 4 subplots (Figure 1). Plots should be collected in a counter 

clockwise manner starting at subplot 1. At subplot 1, GPS position and a plot photo will be taken as 

described below. Subplot percent cover will be estimated from an aerial perspective above the 

canopy as if the field technician was looking down from an airplane. All tree data should be 

measured and input into the tree data collection forms.  

Plots that fall in nonforested areas and are obviously no tally plots such as a soccer field, 

baseball diamond, and water can be filled in using remotely sensed data such as the NAIP aerial 

photography. These plots do not need updated GPS locations, and should be collected as no tally 

subplots. Note, due to not collecting a GPS location or picture, the plot will not change to a red 

color on data recorders.  

Tree combo box lists within the Tree data component can be updated within the application. 

However, this can be cumbersome and time consuming. Sorting and updating can be done more 

3 2 

1 
4 

Figure 1. Plot/subplot configuration 
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efficiently using ArcDesktop and its sorting capabilities on the spcd.dbf table (see data forms 

section for more information). 

Data managed will be an important component to collecting the field data. There are 

multiple ways to manage the data and they can vary depending on the number of technicians 

collecting data. One effective approach is to have each group using a data recording device to work 

in separate geographic areas and down load their work from the data recorder to a directory named 

for that day on a laptop computer each day after returning to the field. In this case the entire project 

directory on the mobile device is copied to the laptop and the mobile device can be used the next 

day without any changes. If the mobile device starts to become slow due to the amount of data 

collected, field crews can remove the plot_trees.dbf table and the plot_gps.dbf table from the mobile 

device after they have moved those files to the laptop. This will effectively remove all the records 

from those two tables and will reduce the number of records that the mobile device needs to sort 

through. Note all previous records need to be kept on the laptop to be merged at a later date. 

Below is a hierarchical outline of what needs to be collected at each plot. 

 Plot (collect all percent cover and tree data for each subplot) 

o At subplot 1 

 Collect GPS positons 

 Ideally 20 positions (Averaging) 

 Hdop < 5 

 3D mode 

 DGPS if possible 

 Take a Picture facing NW across the subplots 

o Subplot measurements  

 Percent cover is estimated from an aerial perspective above the tree canopy  

 Last Burn: (years since last burn, >6) 

 % CWD: (% duff {dead broad leaf and pine needles} and coarse woody 

debris cover in subplot; 0-100) 

 % Herb: (% herbaceous cover in subplot; 0-100) 

 % Saw: (% palmetto cover in subplot; 0-100) 

 % Broad: (% broad leaf cover in subplot; 0-100) 

 % Bare: (% mineral soil cover in subplot; 0-100) 

 % Pine: (% pine needle cover in subplot; 0-100) 

 Tree measurements >= 2” at dbh 

o SP: (Species; drop down)  

o DBH: (DBH in inches; 2-100)  

o Status: (Status; drop down) 

o Count: (Number of trees that meet the above condition; 1-

100) 

 Tree measurements < 2” 

o SP: (Species; drop down)  
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o DBH: (DBH in inches; 2-100)  

o Status: (Status; drop down) 

o Count: (Number of trees that meet the above condition; 1-

100) 

 Subplot no tally 

o One tree, unknown species, DHB=0, Count=0 

o Status: (Status value=No Tally) 

Plot layout (Figure 1) 

 Extent = 36m by 36m 

 4 subplots 

o Subplot radius = 9m 

Plot locations 

 Based on Hogland plot allocation technique described in chapter 4 of this dissertation 

 Navigate to each plot coordinate 

 Each plot’s coordinate represent center of subplot 1 

Data entry forms 
All coding and tools work within ArcPad. Changes made to GPS and camera preferences 

impact how GPS data and images are collected within the forms. Related tables and images are 

stored in the same directory as the plot layer. Form designs (.apl) and vbscript files (.vbs) are stored 

in the same directory as the plot layer. Within the plot’s .apl file there are 7 different forms and 3 

built in dialogs (picture, move point, and GPS preferences). All forms allow users to change data 

without instantly updating records in a given table. Tapping the green OK button will make changes 

to the underlying data tables. Tapping the red cancel button or an exit button (X) allows a user to 

back out of a given form without changing the underlying data. Below is a short description of each 

form.    

 

 Identify: used to identify plot information 
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The Identify form can be accessed using ArcPad’s Identify button and used to 

display the Plot’s ObjectID, whether the plot has been visited (1=yes, 0=no), and 

the unique identifier (UID) 
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 Plot: used to collect plot information 

 

The plot form is accessed by clicking the Edit Feature Properties button within 

ArcPad (note you must be editing and have a plot selected to use this button in 

ArcPad). This form is used to access the project setup, collect and update GPS 

position, capture a picture of the vegetative condition, and navigate between 

subplots. GPS positions and pictures should only be collected when standing at the 

center of Subplot 1 (existing plot locations identify the center of each plot’s subplot 

1). To access the project Setup form tap the Setup button. To capture a picture of 

the vegetative condition tap the Picture button. To collect GPS position tap the GPS 

button. To open a given Subplot form tap the appropriate subplot button. Tapping 

the green OK button will trigger checks to see if all the data have been collected. If 

criteria are met, the visited field within the plots layer will change from 0 to 1 and 

the plot display will change from yellow to red. If criteria are not met or the cancel 

button is tapped the plot visited value and display will not be changed.     
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 Setup: used to define cruise parameters 

 

The Setup form is accessed through the Plot form by tapping on the Setup button in 

the Plot form. This form is used to define the project type and project 

specifications. In addition, users can update which trees are available in the species 

drop down of the Tree form (Update Tree List) and set GPS preferences (Update 

GPS Setup). To store changes to the project setup, a user must tap the green OK 

button. To undo changes made in the form, users can tap the red X button.  
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 Update Tree List: used to add, subtract, and select which trees are visible in the Trees 

species dropdown 

 

The Update Tree List form is accessed through the Setup form by tapping the 

Update Tree List button and is use to add, subtract, and select which tree species 

are available in the Trees Species (SP) combo box. Tree species available were 

extracted from the USFS FIA database. There are many tree species to choose from 

and selecting common species will make finding the correct species within the 

Trees SP combo box easier and quicker. Currently the species selected (value of 1 

in the first column) were identified based on the species found within the FIA plots 

located within the Florida SGAs. When the form opens all available tree species, 

species codes, common names, unique identifiers, and whether the species is 

currently available in the Trees SP combo box (first column value of 1 or 0: yes or 

no) are shown in the form. To toggle on or off a tree species in the Trees SP combo 

box select a given species and tap the % button. This will change the first column 

of data from 0 to 1 or vice versa. Species that have a value of 1 are available in the 

Trees SP combo box. If a new species needs to be added to the potential species, 

users can click the + button which will open the Species form. If a species needs to 

be removed from the potential list, users can select that species and click the – 

button. To store changes to the potential tree species a user must tap the green OK 

button. To undo changes made in the form, users can tap the red X button. Note, to 

change the sort order of the Trees SP combo box users can use the sort field within 

the ~Applets\Tree_Data_Collection\spcd.dbf file and ArcMap’s sort function to 

replace the existing spcd.dbf file. The order of the data within the spcd.dbf file 

(determined by the row) determines the order in of the Trees SP combo box. 
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 Species: used to update potential tree species in the tree species list 

 

The Species form is accessed through the Tree List form by tapping on the + 

button. This form is used to add a new species to the potential species list. All 

species must have a Code (numeric value; 0-9999) and Common name specified 

(text). Ideally all fields would be given valid values but Code and Common name 

are the only two required fields. Be sure to use a unique code for each new tree 

species. To store changes to the potential tree species a user must tap the green OK 

button. To undo changes made in the form, users can tap the red X button. 

 

 Update GPS Setup: used to update GPS preferences 

 

The GPS Preferences dialog is accessed through ArcPad’s GPS Preferences button 

or the Update GPS Setup button in the Setup form. This dialog can be used to 

modify GPS preferences as described in ArcPad’s documentation. Make sure 

Enable Averaging is checked and that the number of positions to average is set to 



  

218 

 

20 on the Capture tab of the dialog (number of positions must be greater than 5 to 

collect GPS data). In the Quality tab of the dialog box make sure maximum HDOP 

is set to 5 and 3D Mode Only is checked (note you may want to turn off Alerts). To 

store changes to GPS Preferences a user must tap the green OK button. To undo 

changes made in the form, users can tap the red X button. Note, Arcpad and other 

software can have conflicts between one another based on comport settings. 

Similarly, external devices such as GPS receivers should be configured to always 

stay on and should be connected to Arcpad as described in Arcpad’s 

documentation.  

 

 Picture: used to capture a picture of the vegetative condition of the plot 

 
The Capture Picture dialog is accessed through the Plot form by tapping the Picture 

button. This dialog can be used to capture a picture as described in ArcPad’s 

documentation. All pictures will be stored in a subdirectory located within the same 

directory as the plots layer named PlotPics. Each image recorded will be named 

after the plot’s unique identifier (GUID).  
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 GPS: used to collect and store plot GPS positions 

 

Upon tapping the GPS button a check will be performed to see if GPS positions 

already exist for the selected plot. If postions exist you will be prompted as to 

whether you want to replace existing positions or not. If you want to replace 

existing position or position have not been collected for that plot a check will be 

performed to see it the GPS is active. If the GPS is not active, it will be activated 

and a message box will appear letting you know that it has been activated. At this 

point the Move Point dialog (Vertex) will appear and begin collecting GPS 

positions based on the speciefied GPS Preferences. After collecting GPS positions 

the dialog will close. If you activated the GPS through the form, you will be 

prompted if you want to keep the GPS active.  
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 Subplot: used to collect subplot data 

 

The Subplot form can be accessed through the Plot form by tapping on of the 

Subplot buttons. Tapping one of the buttons will open the Subplot form. Within the 

form users can select the number of years since last burn, % CWD cover, % 

Herbaceous cover, % Palmetto cover, % Broadleaf shrub cover, % Pine shrub 

cover. To store subplot data a user must tap the green OK button. To undo changes 

made in the form, users can tap the red X button. Note, tapping the red x button 

before a record has been saved will result in loosing related tree values (it is safer to 

tap the green ok button and then reopen the subplot and change the values then to 

click the red x button before the green ok button has ever been tapped).  
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 Tree: used to collect tree data 

  

The Trees form can be accessed through the subplot form by tapping on the Trees 

button. Tapping the Tress button will open the Trees form which has two tabs; 1) 

Tree and 2) Trees View. The Tree tab allow the user to add, subtract, and navigate 

through the subplot’s tree list. Required values for a given tree are species (SP), 

DBH for trees greater than 2” in diameter (less than 2” does not need a DBH 

measured), Status, and Number of trees (count). To denote a no tally subplot, 

species must be set to Unknown, DBH must be 0, Status must be No Tally, and 

count must be set to 0. Values in the SP combo box can be modified using the 

Update Tree List form. The Trees View can be used to view all trees list data for a 

subplot. Click on a given record within the tree list will navigate the user to that 

given tree. To add a tree to a subplot’s tree list use the + button. To remove a tree 

from the tree list use the – button. To move to the next tree in the tree list use the > 

button. To move to the previous tree in the tree list use the < button. To store tree 

data a user must tap the green OK button. To undo changes made in the form, users 

can tap the red X button. 

Database Schema 
The data tables in the plots tool consist of: project.dbf, plots.dbf, plots_gps.dbf, 

plots_setup.dbf, plots_subplots.dbf, and plot_trees.dbf. Supporting data tables located in 

~\Applets\Tree_Data_Collection are: _gps.dbf, _setup.dbf, _subplot.dbf, _trees.dbf, crcd.dbf, 

spcd.dbf, and stcd.dbf. All dbf tables have a unique identifier field (UID:string), an update type 

field (utype:integer;1=insert,2=update,3=delete). All children dbf tables have a link field to their 

parent named after the parent layer (e.g., subplotUID:string). UIDs are globally unique and are 

stored as strings. The hierarchical relationship between tables is described below 

o project.dbf UID 

 plots_setup.db -> projectUID 

 plots.dbf -> setupUID 
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o plots_subplots.dbf -> plotUID 

 plots_trees.dbf -> subplotUID   

o plots_gps.dbf -> plotUID 

 

 Project Table: used to store project boundaries and names 
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 Plots_setup Table: used to describe the plot collect protocol 
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 Plots Table: used to store geometry of the plot and if the plot has been visited. 
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 Plots_Subplots Table: used to store percent cover estimates 
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 Plots_Trees Table: Used to store information about each tree within a subplot 
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 Plots_Gps Table: used to store GPS information related to each plot 

 

 

 PlotPics Directory: located within the same directory as the plot and used to store picture 

taken in the field (picture name after plot UID). 

 

Coding library 
The coding library consists of three primary files: plots.vbs, DataTable.vbs, and plots.apl. 

The plots.apl file contains the design content of the plot forms (ArcPad’s xml). The plots.vbs 

contains most of the functionality within the forms (vbscript). These two files must be located in the 

same directory as the plots shape file. The DataTable.vbs file is a class library that contains the 

logic used to temporarily store table values. This file must be placed in ArcPad’s Applets directory 

along with the supporting dbf tables located in the Tree_Data_Collection directory. 



  

228 

 

Application Installation 
To install the plots data collection application, copy the project directory that contains the 

plots files to your mobile device. In addition, copy the Tree_DataCollectioin folder and the 

DataTable.vbs file to the Applets directory within ArcPad. On your mobile device this is typically 

located at \Program File\ArcPad 10.2\Applets. On your desktop this is typically located at 

C:\Program Files (x86)\ArcGIS\ArcPad10.2\Applets. Note, this application requires vbscript 

runtime library 5.8 or greater. If you are currently running an older version of the runtime library 

the application will not work. To determine which version of the vbscript runtime library is installed 

tap on About ArcPad>System Information and scroll down until you find the lilbraries section. 

Look at the vbscript runtime version. 

 

If your version is less than 5.8, you need to update the vbscript runtime library version 5.8 

R9600. 
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