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Abstract: Prospective Teachers often enter their mathematics content courses believing that they 
know enough mathematics to teach elementary school. However, research has shown that much 
of PTs’ knowledge is procedurally based and lacks depth and conceptual understanding. One job 
of Mathematics Teacher Educators (MTEs) in mathematics content courses is to help PTs 
become more mathematically proficient, by relearning the mathematics that they believe they 
already know in deeper, more connected ways. We suggest that one way for MTEs to do this is to 
incorporate Transformative Learning Theory (TLT) into their mathematics content courses. TLT 
is an application of andragogy, which are the methods or techniques used to teach adults. 
Through TLT, learners participate in a process where they are presented with a disorienting 
dilemma that perturbs their prior understandings. Learners work through the dilemma by 
critically reflecting on their prior understandings and participating in rational discourse with 
others. Ultimately, learners are tasked with making connections between their prior 
understandings and their new knowledge. In this paper, we describe a cycle of transformative 
learning theory and give examples of incorporating TLT into mathematics content courses for 
PTs through lessons on proportional reasoning and whole number concepts. We conclude by 
discussing general considerations and resources for incorporating TLT into mathematics content 
courses and how this helps PTs develop the five strands of mathematical proficiency (National 
Research Council, 2001).  
 
Keywords: transformative learning theory, andragogy, preservice teacher education, mathematics 
teacher educators, mathematical proficiency 
 
 
 

Introduction 

Research (e.g. Thanheiser, Browning, Edson, Lo, Whitacre, Olanoff, & Morton, 2014) 

has shown that prospective elementary teachers (PTs) enter their mathematics content courses 

with predominantly procedural understandings of mathematics. However, in their work as 

mathematics teachers, PTs will be required to know and understand more than just how to solve 

mathematics problems (AMTE, 2017). They should possess a “robust knowledge of the 
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mathematical and statistical concepts that underlie what they encounter in teaching” (AMTE, 

2017, p. 6). However, PTs often believe that they already know the elementary mathematics that 

they will need to teach (Thanheiser, 2018). Therefore, it is the job of Mathematics Teacher 

Educators (MTEs) to help PTs see the need for and develop the specialized mathematics content 

knowledge that they will need to use in their work as teachers. Transformative learning theory 

(TLT) (Mezirow, 1991) provides a model through which MTEs can help PTs move from shallow 

perceptions of “knowing mathematics” to conceptual understandings with deeper procedural 

understandings of the mathematics they will teach. In transformative learning theory, the learner 

is presented with a disorienting dilemma where their preconceived ideas are challenged and 

perturbed. These disorienting dilemmas provide experiences where known procedures are not 

enough to solve the problem and they allow any lack of depth in PTs’ understanding to surface. 

Learners are asked to work through the dilemma by reflecting on their prior assumptions through 

rational discourse. Discourse is rational when it seeks to create understanding with another, it is 

driven by objectivity, actions and statements are open to question and discussion, and 

understanding is arrived through the weighing of evidence and measuring the insight and 

strength of supporting arguments (Mezirow, 1991). Rational discourse involves learners 

justifying their solutions to peers in order to ultimately transform and deepen their knowledge. 

Finally, their new knowledge is put into action by making connections to why and how their 

previous assumptions were not enough to solve the problem. 

In mathematics content courses, students (PTs) are asked to revisit mathematics that they 

learned in grades K-12. Although they have had prior experiences with the content, they often 

have underlying misconceptions about elementary mathematics concepts or lack the depth of 

understanding necessary to teach the content (Thanheiser et al., 2014). If these “gaps” in 
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understanding are not addressed in teacher preparation courses they will have to be confronted 

when PTs become inservice teachers. Through our research, (Johnson, 2013), we have evidence 

of PTs being able to transform their misconceptions with an intervention during individual, task-

based interviews. Because of our success using TLT with individual PTs, we propose that 

transformative learning theory should be incorporated into mathematics content courses in order 

to help groups of PTs to transform their learning.  

In this paper we describe how using TLT in mathematics content courses can enhance 

PTs’ learning. We do so by first discussing the potential goals of mathematics content courses. 

Then we consider how adults learn differently from children and describe a cycle of 

transformative learning theory as it relates to mathematics content courses. We also give specific 

examples of how we incorporate TLT into our mathematics content courses through lessons on 

place value and proportional reasoning and offer implications for using TLT (by other MTEs) in 

mathematics content courses. We conclude with specific suggestions and resources for MTEs to 

help better incorporate TLT into their courses for PTs. 

Theoretical Framework 

Prospective Teachers and Mathematics Content Courses: The Need for Transformed and 
Reformed Learning to Develop Mathematical Proficiency 

Although they are called mathematics content courses, we assume that PTs enter these 

courses already familiar with the majority of the content of the elementary curriculum. However, 

this familiarity is generally based on procedures with shallow understandings. Additionally, 

many PTs hold beliefs about what mathematics is that are based predominantly on these 

procedural understandings (Ball, 1990; Brady & Bowd, 2005; Johnson, 2019; Thanheiser, 2018). 

Therefore, we believe that a major goal for mathematics content courses is to help PTs become 

more “mathematically proficient” (National Research Council, 2001). In their 2001 book, Adding 
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it Up: Helping Children Learn Mathematics, the National Research Council (NRC) defines five 

interconnected strands of mathematical proficiency: conceptual understanding, procedural 

fluency, strategic competence, adaptive reasoning, and productive disposition. While the main 

intent of the book is to help children become mathematically proficient, the NRC contends that 

mathematical proficiency is also important for teachers: “If their students are to develop 

mathematical proficiency, teachers must have a clear vision of the goals of instruction and what 

proficiency means for the specific mathematical content they are teaching” (NRC, 2001, p. 369). 

The need for teachers to be mathematically proficient is echoed in policy documents regarding 

teacher knowledge and preparation (e.g., AMTE, 2017; Conference Board of Mathematical 

Sciences, 2012). Research suggests, however, that many practicing and prospective teachers still 

need to develop proficiency in each of the five strands (NRC, 2001). In this section, we will 

briefly discuss the five strands and what we know from research about PTs’ abilities in each of 

these areas. In the following sections, we will examine ways to help PTs develop their 

mathematical proficiency using TLT. 

Conceptual understanding refers to “comprehension of mathematical concepts, 

operations, and relations” (NRC, 2001, p. 5), whereas procedural fluency is defined as the “skill 

in carrying out procedures flexibly, accurately, efficiently, and appropriately” (NRC, p. 5). 

Research has shown that many PTs enter their teacher preparation programs with only shallow 

procedural fluency, and little conceptual understanding (Thanheiser et al., 2014). One reason for 

this could be based on the experiences that PTs have before they enter their preparation 

programs. The first author of this article conducted a survey of more than 300 PTs enrolled in 

their first mathematics content course (Johnson, 2019). In regards to their prior education 

experiences, 73% of the PTs said that they had been taught mathematics with a focus on 
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procedures, and 61% said that they were taught with an emphasis on memorizing a sequence of 

steps to solve problems, while only 38% reported being taught with an emphasis on 

understanding underlying concepts. It is essential that mathematics content courses help PTs 

move beyond memorizing procedures and develop both conceptual understanding and what Star 

(2005) calls deep procedural knowledge, which he defines as knowledge “associated with 

comprehension, flexibility, and critical judgement” (p. 408) in regards to choosing and using 

procedures to solve mathematical problems.  

While much emphasis in the past has been placed on the importance of developing 

conceptual understanding and procedural fluency (e.g., Hiebert, 1986; Star, 2005), the NRC 

contends that the other three strands are equally important in the development of mathematical 

proficiency. These strands are newer ideas based on research in mathematics education, 

cognitive psychology, and the researchers’ personal experiences in teaching and learning 

mathematics (NRC, 2001). Strategic competence is defined as the “ability to formulate, 

represent, and solve mathematical problems” (NRC, 2001, p. 5). The AMTE (2017) and NRC 

(2001) emphasize that students need experience not only with solving problems but also with 

posing problems to deal with real life situations. Other research has shown that success in 

problem posing can lead to better problem-solving skills (e.g., Abu Elwan, 2016; Silver, 1994). 

PTs will need to know how to pose problems as part of their work as teachers. However, 

research has shown that PTs often struggle to pose problems, (Işık, Kar, Yalçin, & Zehir, 2001), 

but that this skill can be improved upon with opportunities to explore what makes a good 

problem and practice with both posing and solving problems (Crespo, 2003; Crespo & Sinclair 

2008). Mathematics content courses for PTs must provide them with opportunities to develop 
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their strategic competence by posing, representing, and solving mathematical problems (AMTE, 

2017). 

Adaptive reasoning is the “capacity for logical thought, reflection, explanation, and 

justification” (NRC, 2001, p. 5). This involves being able to think through a problem and 

understand whether or not one’s solution is valid based on using valid reasoning. Adaptive 

reasoning also involves being able to explain one’s solution to others, another important task for 

teachers. The AMTE (2017) recommends that PTs be given opportunities to develop their skills 

in reasoning, explaining and justifying. Research has shown that throughout their teacher 

education programs, PTs often struggle with reasoning and justification (Courtney-Clarke & 

Wessels, 2014; Son & Lee, 2016; Thanheiser et al., 2014). Therefore, it is important that PTs 

have opportunities to develop their adaptive reasoning skills in their mathematics content 

courses. 

Productive disposition fits in with other research that looks at beliefs, orientations, or 

mindsets towards mathematics (e.g., Boaler, 2013, 2016; Fennema & Franke, 1992; Grossman, 

1990, 1991) and is defined as the “habitual inclination to see mathematics as sensible, useful, and 

worthwhile, coupled with a belief in diligence and one’s own efficacy” (NRC, 2001, p. 5). Thus, 

part of being knowledgeable in mathematics means finding the topic worthwhile and also 

believing that one is capable of learning and doing mathematics. Boaler’s (2013, 2016) work on 

fostering a “growth mindset,” where one believes that one’s intelligence can be learned and can 

grow, coincides with believing that one is capable of learning and doing mathematics or 

fostering a productive disposition. 

Despite the fact that many PTs believe that they know enough mathematics to teach it 

effectively (Thanheiser, 2018), many PTs have been found to hold negative beliefs towards 
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mathematics (Barrantes & Blanco, 2006; Brady & Bowd, 2005; Johnson, 2019; Jong & Hodges, 

2015; Uusimaki & Nason, 2004). Additional research suggests that teachers’ productive 

dispositions will influence their students’ dispositions towards mathematics (e.g. Boaler, 2013; 

Philipp & Siegfried, 2015). We believe that helping PTs develop a productive disposition toward 

mathematics, while simultaneously helping them to discover that they need to understand 

mathematics content in deeper, more meaningful ways should be one of the goals for MTEs of 

mathematics content courses.  

An important note about the NRC’s five strands of mathematical proficiency is that the 

researchers look at these strands as “interwoven and interdependent” (NRC, 2001, p. 5). They 

depict the strands as being intertwined and emphasize that each of the strands works together to 

support one another. Thus, the five strands must all combine for true mathematical proficiency to 

exist. PTs enter mathematics content courses with varying degrees of proficiency of each of 

these strands; however, we believe that our jobs, as MTEs, is to help PTs develop each of the 

five strands in order to help them become mathematically proficient and pedagogically 

competent to teach mathematics to children. In the next section, we will discuss how 

incorporating TLT into mathematics content courses may help MTEs to meet these goals. 

Prospective Teachers as Adult Learners: The Importance of Andragogy 

Prospective teachers are adults and, therefore, learn differently than children. Malcom 

Knowles researched this idea in the 1980s and proposed a model of adult learning called 

andragogy. (Andragogy, the methods of teaching adults contrasts with pedagogy, the methods of 

teaching children.) Knowles’ definition of andragogy involves four interconnected assumptions 

about adult learners: changes in self-concept, the role of experience, the readiness to learn and 
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their orientation to learning (Knowles, 1984). Below, we discuss each of the four assumptions, 

and the implications that they involve for MTEs and mathematics content courses. 

1. Self-concept. This assumption is that as a person grows and matures, their self-concept 

moves from one of total dependency (as is the reality of the infant) to one of increasing 

self-directedness. Adults may be more likely to resist or resent instances when others 

impose their will upon them (Merriam & Bierema, 2014). In a mathematics content 

course this can mean giving students opportunities to direct and be responsible for their 

own learning (Springer, Stanne, & Donovan, 1999). An example of how this would work 

in a mathematics content course is by providing time for PTs to critically reflect on their 

own misconceptions and assumptions and discuss and debate with others’ pathways to 

resolve their misconceptions.  

2. Role of experience. Adults enter a learning situation with a wealth of experience. This 

may serve as a resource to make learning meaningful. As MTEs we should take 

advantage of students’ prior knowledge about mathematical topics because they can act 

as building blocks for the development of new knowledge (Whitacre, 2013). However, 

we must also be aware of how prior assumptions can act as barriers to this development 

(Kagan, 1992; Slotta, Chi, & Joram, 1995), and determine ways to challenge the 

assumptions that are providing the barriers. It is additionally important for MTEs to 

honor PTs’ prior experiences with mathematics because, unlike children, adults tend to 

identify themselves based on their previous experiences, and rejecting those experiences 

usually means rejecting the person (Harkness, Ambrosio, & Morrone, 2007).  

3. Readiness to learn. Unlike many children, adults need to know the utility and value of 

the content they are learning and how it applies to them and their future careers 
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(Knowles, Swanson & Holton, 2005). Tough (1979) argues that the first task of a teacher 

of adult learners is to help them become aware of the need to know. An example in a 

mathematics content course would be helping PTs gain perspectives of how children 

view mathematics and how their own understandings of mathematics will directly affect 

their future students (Karp, 1991). For PTs this means that they need to see the 

application of the mathematics content they will be learning. Therefore, MTEs should be 

explicit with PTs about the importance and rationale of knowing more than procedures. 

MTEs should help PTs to become motivated to learn by emphasizing this necessity of the 

knowledge in their future careers. 

4. Orientation to learning. Adults are life-centered and/or problem-centered in their desire 

to learn. Thus, adults learn best and are motivated more when knowledge skills and 

attitude are presented in the context of real-life problem solving. (Knowles, et al, 2005). 

MTEs can build upon this motivation by focusing mathematics content courses around 

presenting problems that emphasize learning mathematics in deeper, more conceptual 

ways than they may have previously understood it. For example, research has shown that 

PTs struggle to justify (Courtney-Clarke & Wessels, 2014; Son & Lee, 2016; Thanheiser 

et al., 2014). Asking PTs to explain their thinking orients them to the difficulties they 

face when explaining their thinking to future students. 

In her dissertation, Deborah Zopf (2010) also discussed andragogy, although she did not 

name it as such. She discussed three main differences between the work of mathematics teachers 

and the work of mathematics teacher educators: “First the mathematical content is different” 

(p. 5). While the job of teachers is to teach students mathematics, the job of the MTE is to teach 

mathematical knowledge for teaching teachers. “Second, the learners are different” (p. 5). Zopf 
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points out the difference between teaching children and adults. Each group brings different 

experiences and prior knowledge to the classroom and it is the job of their teacher to work with 

these experiences and help their students to construct new knowledge. “Third, the purposes of 

instruction are different. Children learn mathematics for their own use; teachers learn 

mathematical knowledge for teaching to teach mathematics to students” (p. 6). Helping 

teachers unpack mathematics in a way that will help them make sense of it to present it 

to students requires different work than helping students make sense of mathematics; thus the 

role of the MTE is to provide opportunities for PTs to experience such activities. 

Transformative Learning Theory 

Transformative learning theory (TLT) is a model of andragogy that attempts to reveal and 

clarify a learner’s prior assumptions and then transform these assumptions into new 

understandings (Mezirow, 1991, 2012). TLT was developed by Jack Mezirow in the mid to late 

1980s and early 1990s. He based his initial theory on a study of 83 women returning to college in 

12 different reentry programs in 1975. Mezirow’s initial transformation process included ten 

phases: 

1. Experiencing a disorienting dilemma; 

2. Undergoing self-examination; 

3. Conducting critical assessment of internal assumptions and feeling alienation from 

traditional social expectations; 

4. Relating discontent to the similar experiences of others. In other words recognizing the 

that problem is shared; 

5. Exploring options for new ways of acting; 

6. Building competence and self-confidence in new roles; 
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7. Planning a course of action; 

8. Acquiring the knowledge and skills for implementing the new action; 

9. Trying new roles and assessing them; 

10. Reintegrating into society with the new perspective (Cranton, 2006, p. 20). 

Mezirow wrote about and amended his theory of adult learning and development in 

articles beginning in the mid-1980s and continuing for over 30 years. While the initial theory 

included the ten phases above, later versions used by Mezirow (e.g., Mezirow, 1991; 2000) and 

others (e.g., Dirkx & Smith, 2009; van Halen-Farber, 1997) included a subset of these phases.  

Key ideas in TLT include the notions that “we transform our frame of reference through 

critical reflection on assumptions” (Mezirow, 1997, p. 7), and that “rational discourse through 

communicative learning” is a key concept in understanding (Mezirow, 1991, p. 78). Mezirow 

says that this reflection and discourse often take place within the context of problem solving 

(Mezirow, 1994). His theory claims that only after learners are aware of their assumptions can 

they develop strategies to transform these assumptions (Mezirow, 2012). This suggests that in 

order for PTs to make shifts in their understanding and become proficient at the mathematics 

content, they need to have their reasoning challenged in ways that encourage reflection on their 

prior assumptions about mathematics. 

Since the introduction of TLT, it has been utilized and studied in a variety of contexts 

ranging from individuals to classrooms to whole communities. Publications have included 

descriptions of interventions in disciplines such as teacher education for environmental studies 

(Burns, 2009; Caldarelli, 2004; Hashimoto, 2007), and professional preparation for teacher 

education (van Halen-Faber, 1997). Other key professional education curricular interventions 

have focused on medical and nursing education (Hanson, 2010; Morris & Faulk, 2007), school 
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administration (Brown, 2006; Donaldson, 2009), and social work (Lee & Greene, 2004). The 

First International Transformative Learning Conference was held in 1998 at Teachers College, 

Columbia University, with the purpose of inviting those interested in transformative learning to 

share their research and also to provide learning activities and conversations around TLT with 

participants. This conference has been held annually or bi-annually since then. “Each conference 

has contributed to Mezirow’s initiating vision of transformative learning theory as a ‘theory in 

progress’ by developing diverse perspectives on transformation learning theory, research and 

practice” (Kasl, 2014, p. 20). 

Kasworm and Bowles (2012) reviewed 250 published reports on TLT in higher education 

settings including faculty development (Gravett and Peterson, 2009), mentoring settings 

(Mandell & Herman, 2009), and experiential learning (Deeley, 2010). They note that success in 

higher education is a natural site for transformative learning theory to occur because “ideally, 

higher education offers an invitation to think, to be, and to act in new and enhanced ways. . . 

These learning environments sometimes challenge individuals to move beyond their comfort 

zone of the known, of self and others” (Kasworm & Bowles, 2012, p. 389). 

Dirkx and Smith (2009) explored the use of TLT in adult, online classrooms. They 

identified the following six design and instructional strategies that appeared to foster “deep” or 

transformative learning: “(1) use of messy, ill-structured practice-based problems as the central 

pedagogical focus; (2) interactive and collaborative learning; (3) use of consensus group writing 

teams; (4) individual and team debriefings; (5) reflective activities; and (6) journal writing”  

(p. 60). 

Van Halen-Farber (1997) designed transformative learning experiences for PTs to get 

them to become “reflective practitioners” (Schön, 1987). The basis for these experiences 
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revolved around critical reflection, which “occurs when patterns of a person’s beliefs, goals, or 

expectations are put to the test by means of thoughtful questioning” (van Halen-Farber, 1997, p. 

51-52). In a four-step process, prospective teachers listened to experienced teachers’ stories, 

reflected on these stories, wrote about significant incidents in their own practice, and then wrote 

a personal reflective essay where they were asked to “summarize and synthesize their thoughts 

on what it means to describe one’s own learning journey in becoming an intentionally thoughtful 

teacher” (p. 55). Van Helen-Farber noted that through the process, the PTs were able to increase 

awareness of their own learning processes and also their self-confidence and ability to become 

more self-directed learners. Additionally, the researcher, who was also the teacher educator, was 

able to transform her own learning about how to help PTs become reflective practitioners. 

   Chapman and Guerra (2016) used TLT in college-level developmental mathematics 

courses to help their students transform how they saw themselves as learners and doers of 

mathematics. They noted that many students who take developmental mathematics “associate 

math with feelings of anxiety or shame, and see themselves as not only ‘bad at math’ but also 

‘bad at learning’ or intellectually deficient” (p. 694). If students believe that they are not capable 

of learning mathematics, this becomes a self-fulfilling prophecy, so it is imperative for 

instructors of developmental mathematics courses to work to transform their students’ negative 

self-identities. In order to facilitate this transformation, Chapman and Guerra work to develop a 

safe classroom environment where the teacher plays a role of “learning companion,” who shares 

the transformative learning experiences with her students. In order to develop trust, instructors 

share personal experiences about their own mistakes and how they were able to learn from them. 

Then the instructors provide students with activities that focus on problem solving rather than 

computational ability. “These problem solving activities often invite vigorous debate, creative 
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solutions, and teamwork...All of this serves to create an atmosphere of safety where risk-taking is 

encouraged and creativity is valued” (p. 696-697).  

While mathematics content courses for PTs are not generally categorized as remedial or 

developmental, a significant percentage of PTs do report experiencing math anxiety or negative 

experiences with mathematics (Brady & Bowd, 2005; Johnson, 2019; Karunakaran, 2020; 

Rayner, Pitsolantis, & Osana 2009). Therefore, our work as MTEs involves helping PTs’ 

develop productive dispositions by transforming their understandings of their own abilities to 

learn and do mathematics. Additionally, we must help PTs transform their ideas about what 

mathematics is, in order to move from procedurally-based understandings to deeper 

understandings based on a knowledge of concepts. 

Using Transformative Learning Theory in Mathematical Situations with Prospective 
Elementary Teachers 
 
   While there are numerous examples of using TLT in university settings and with PTs (see 

above), there has yet to be published literature on using TLT with PTs in mathematics. In her 

dissertation study, the first author interviewed PTs in individual settings in relation to solving 

proportional reasoning problems (Johnson, 2013). The interview questions were designed to 

disorient PTs’ thinking about proportions and cause them to question their prior assumptions 

about the topic. The interviews also provided the PTs an opportunity to engage in rational 

discourse with the interviewer as well as to critically reflect on their prior assumptions which led 

them to revise these assumptions. That is, the process of participating in the interviews helped 

PTs to transform their understandings of proportions. 

 As a result of her dissertation work, and based on the TLT literature, Johnson (2016) 

designed a model to illustrate the TLT cycle as it relates to transforming PTs’ knowledge. In 

Figure 1 below, we include the cycle and then we describe the four stages in the cycle. 
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Figure 1. The cycle of transformative learning theory. 
 
 

The cycle begins with a disorienting dilemma, such as a mathematical task that makes 

PTs aware of and challenges their prior assumptions. This task could be one where their 

procedural knowledge is not enough to solve a problem or where their conceptual understanding 

is challenged. The role of experience in andragogy directly correlates with the disorienting 

dilemma since the purpose of the dilemma is to bring PTs’ prior assumptions to the surface. 

Work on the disorienting task sets up the second part of the cycle, critical reflection. Critical 

reflection involves PTs becoming aware of their previous assumptions and then challenging the 

validity of this prior knowledge. The critical reflection phase correlates with PTs’ readiness to 

learn and orientation to learning, as they realize that their prior knowledge often is not enough 

for them to be able to explain mathematics in ways necessary to teach it to others, which should 

be the ultimate goal for PTs. The third part of the cycle provides PTs with time to engage in 

rational discourse with their peers as they resolve the dilemma. This phase of the cycle is where 

PTs seek to create understanding through their discussions with each other. The rational 
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discourse part of the cycle gives an opportunity for the PTs to justify their reasoning about a 

misconception or discuss how the task is challenging their conceptual understanding of the topic. 

Often, time must be spent moving back and forth between the second and third phases of the 

cycle, allowing PTs to engage in discourse and then critically reflect on the discussion. As the 

PTs become aware of different aspects of the mathematics and their prior assumptions are 

challenged, they will need to reflect on and participate in more discourse in order to help them 

resolve their disequilibrium. Both the second and third phases are critical in helping PTs develop 

their strategic competence and adaptive reasoning (NRC, 2001), as they work to solve the 

problems and reflect, explain, and justify their solutions. 

The fourth and final part of the cycle is taking action on the previous assumptions. It 

involves providing time for PTs to discuss how their prior assumptions fit with their transformed 

understanding. Explicitly making the connections between the prior knowledge and the deeper 

concepts allows the PTs to become more mathematically proficient. It is important that this final 

step not be skipped or overlooked in teaching mathematics where the temptation could be to 

move on once one gets a correct answer. Without explicit discussion on the connections between 

concepts, PTs’ equilibrium may not be reached. Working through the cycle may also help to 

improve PTs’ self-concepts, as they can come to realize that they are capable of thinking 

mathematically and solving problems on their own. Figure 2 helps to illustrate the connections 

between TLT and the four assumptions of andragogy and five strands of mathematical 

proficiency. 
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Figure 2. Model connecting TLT cycle to assumptions of andragogy and five strands of 

mathematical proficiency. 
 
 

Applying Theory into Practice 

The first challenge of incorporating TLT into mathematics content courses involves 

finding tasks that will create disorienting dilemmas. In this section, we outline three ways to 

provide disorientation, and then discuss in-depth examples of that use TLT with PTs. One way to 

cause disorientation for PTs is to ask them to solve tasks with which they may be familiar, but 

restrict their use of familiar procedures. This will encourage their development of conceptual 

understanding, as they must make sense of other ways to solve the problems. A second way of 

causing disorientation is to change aspects of a familiar situation to take away PTs’ automaticity. 

Many early topics in elementary mathematics like counting and adding, are things that adults, 

including PTs, do without much thought about what they are doing. MTEs can cause 

disorientation by removing this automaticity and asking PTs to look at something familiar in an 
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unfamiliar way. A third way to cause disorientation is to introduce PTs to an unfamiliar way to 

do a familiar thing. This could include asking PTs to interpret non-standard algorithms that are 

either used in other countries or other contexts or invented by children. In the examples below, 

we detail two examples of how we use disorienting dilemmas to help PTs transform their 

learning of proportional reasoning and whole number concepts. 

Classroom Example: Transformative Learning Theory and Proportional Reasoning 

We present a specific example of incorporating TLT into mathematics content courses 

that disorients PTs by restricting their use of familiar procedures. This task involves proportional 

reasoning. We chose this topic because proportional reasoning is an area where PTs often have 

significant difficulty but feel that their understanding is sufficient in order to teach. For example, 

research shows that PTs’ understanding of proportions is often based on the use of procedures 

without understanding (Hillen, 2005; Johnson, 2013; Simon & Blume, 1994; Smith, Stein, 

Silver, Hillen, & Heffernan, 2001). It is essential that we as MTEs help PTs recognize their prior 

assumptions about their understandings in order to help them transform and develop a deeper 

knowledge of proportional reasoning. We begin with a task that provides a disorienting dilemma. 

See Figure 3 below. As mentioned above, this task is disorienting for PTs because it asks them to 

solve the problem without using the procedures with which they are familiar. Our experience has 

Figure 3. The lemon/lime problem. 
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shown that most PTs can solve this problem quantitatively by changing the ratios to decimals or 

percentages, but by removing these procedures as an option, we disorient them and require them 

to reason qualitatively. Qualitative reasoning is defined as the ability to express conceptual 

knowledge using models as a means to externalize the context of a problem (Liem, Beek, & 

Bredeweg, 2010). In this problem, we provide PTs with yellow and green cubes to use to stand 

for the cups of lemon and lime juice. Qualitative reasoning is utilized when PTs interpret the 

manipulatives in the context of cups of lemon and lime juice and then explain how to compare 

the mixtures (Heller, Post, Behr, & Lesh, 1990). By not allowing PTs to use procedures (such as 

setting up a proportion to compare the mixtures), we disorient their thinking and require them to 

build on their conceptual understanding of the meaning of ratios and proportions. This task also 

can help them develop their strategic competence and adaptive reasoning, as they must discover 

new ways to represent the situation and justify their reasoning. Figure 4 shows pictures of some 

PTs’ cubes. It is interesting to note that while the PTs on the left separated the yellow and green 

cubes, the PTs on the right put them together in one line.  

 
Figure 4. PTs’ work with unifix cubes on the lemon-lime problem. 

 
As PTs move into the second phase (critical reflection) of the TLT cycle with this task, 

they reflect on how they need to explain and justify their solutions (adaptive reasoning). At this 

point, most students have created the models seen in figure 3, and either concluded that the 
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mixtures are the same or that one of the mixtures is “more lemony” but cannot explain why. We 

help motivate PTs to determine a justification for their solution by reminding them that when 

they are teachers, explaining will be part of their job (i.e., we are encouraging their readiness and 

orientation to learn). Despite the motivating factor, many PTs continue to struggle to understand 

why their solution is true or have difficulty putting their understandings into words, which is 

essential in the rational discourse step and in developing their adaptive reasoning.  

While PTs engage in critical reflection, they begin rational discourse with their peers. 

Often misconceptions are brought to the surface as they discuss their ideas with others. For 

example, it is common for some PTs to initially believe that the mixtures are the same because 

they each have one more lemon than lime (Johnson, 2013). This is an example of using additive 

reasoning: the difference is one in each, versus multiplicative reasoning: the first mixture has 1 ½ 

times as much lemon as lime, while the second has 1 ⅓ times as much. As students debate why 

the first mixture is more lemony than the second mixture, a deeper understanding of the problem 

involving these proportional reasoning ideas emerges. Those who had focused on additive 

reasoning begin to see why it is not appropriate in this situation. Through their discussions, PTs 

start to gain conceptual understanding and expand their adaptive reasoning skills through logical 

thought, explanation and engaging in justification, as well as develop the necessary vocabulary 

to talk about proportions The discussions also help them recognize how difficult it is to explain 

their reasoning despite this being something that they will need to do in their work as teachers. 

These realizations provide extra motivation to learn the material in this way, provoking PTs’ 

orientations to learning. 

Lastly, we enter the most important part of the cycle, taking action. This involves making 

connections and subsequently help PTs arrive at equilibrium in their thinking. At this stage, we 
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encourage the PTs to use procedures or complete any calculations they wish to determine which 

mixture is lemonier. For those students who are still not convinced by the arguments with the 

cubes, the numbers seem to have an important impact. However, it is essential to have the 

students not just “check” their qualitative reasoning with procedures but connect these 

calculations to the arguments made with the cubes as well as to the discussions about 

proportional reasoning.  

For example, one way PTs solve this problem using calculations is by creating fractions 

with “common denominators” to compare the mixtures. In this example, the denominator could 

represent the amount of lime, so the “common denominator method” equates to making the 

amount of lime in each mixture equal. PTs would say, Jen’s mixture, 3/2, becomes 9 lemons /6 

limes, while Alice’s mixture, 4/3, becomes 8 lemons/6 limes. Since 9/6 is greater than 8/6, then 

the first mixture is more lemony. Connecting back to the problem, this means that when there are 

6 cups of lime in both mixtures Jen’s mixture will have 9 cups of lemon and Alice’s mixture will 

only have 8 cups of lemon. Nine cups of lemon is more than 8 cups of lemon, so Jen’s mixture is 

more lemony. We can model this situation with the cubes by making three batches of the first 

mixture and two batches of the second mixture. See Figure 5 for an illustration of this example. 

  
Figure 5. Three copies of mixture 1 and two copies of mixture 2. each have 6 green cubes, but 

mixture 1 has 9 yellow cubes, while mixture 2 only has 8. 
 

It is by closing the loop of the cycle that the PTs are able to arrive at some form of 

equilibrium, where they can build connections between their new knowledge and their prior 
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understandings to deepen their proportional reasoning. It is also where the connections between 

the various strands of the mathematical proficiency become explicit. As the PTs were involved in 

activities of problems solving, they were able to use logical thought to reflect and justify their 

thinking (adaptive reasoning) as well as to explain their representation of the situation using 

blocks (strategic competence). They also illustrated their comprehension of the mathematical 

relationship between the two proportions (conceptual understanding) through the explicit 

justifications made to determine the lemonier mixture. As the loop is closed, they reflect back to 

their use of calculations to justify (procedural fluency) the concept and hopefully recognize the 

beauty and usefulness of mathematics in the world (productive disposition). They have gone 

from disorientation and disequilibrium to discussion and debate and finally to equilibrium, 

transforming their previous assumptions about proportional reasoning in the process (Johnson, 

2013). Though the PTs may have initially been able to solve the problem with a procedure, most 

were not able to explain how or why the procedure worked in the context of the situation. 

Keeping the focus on the practical need for their knowledge of this topic in their future teaching, 

and stressing how it is necessary for them to develop a deeper understanding so that they can 

help to develop their future students’ aptitude in proportional reasoning provides the necessary 

motivation and readiness to learn for adult learners. 

Classroom Example: Transformative Learning Theory and Whole Number Concepts 

 Our second example focuses on disorienting PTs by taking away their automaticity in 

terms of counting in a positional number system. While research has shown that PTs have 

struggled with proportional reasoning and multiplicative thinking (Simon & Blume, 1994; Smith 

et al., 2001), we assume that all PTs enter their teacher preparation programs already knowing 

how to count, add, and subtract. However, for most PTs, these processes are so automatized that 
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they apply them without considering why our number system works the way that it does. 

Additionally, Thanheiser (2009; 2010; 2018) found that the majority of PTs that she studied had 

difficulty with place value concepts and the meaning of regrouped digits. Of more concern, 

Thanheiser (2018) found that in surveys of 97 PTs enrolled in mathematics content and/or 

methods courses, 67% believed that they had sufficient knowledge to teach mathematics to 

students in grades K-3, including 64% of the 81 PTs whose conceptions of place value were 

categorized as incorrect. If these difficulties and beliefs are not addressed during their teacher 

preparation, PTs will continue to hold these views as teachers. It becomes important for MTEs to 

help PTs become aware of their prior assumptions about counting and whole number operations 

that they may not be conscious of so that they are able to teach these topics to children.  

 McClain (2003) and Yackel, Underwood and Elias (2007) describe success in helping 

PTs develop conceptual understandings of place value by working in bases other than base-10. 

(In the case of these examples, both groups of researchers used base-8.) We describe another 

TLT activity that uses a base-5 place value system called Alphabitian1.  

 We begin the Alphabitian activities with the disorienting dilemma of introducing a new 

numeration system. This system is disorienting, because PTs must not only use a different base 

system than they are used to, but also, the digits in the new system are 0, A, B, C, and D, rather 

than 0, 1, 2, 3, 4, as would be used in a traditional base-5 system. After being introduced to the 

new system, PTs are asked to count using Alphabitian numbers. We ask PTs to count in 

Alphabitian to help them become aware of how their future elementary students will learn to 

count in base 10. Changing the base system and digits forces PTs to critically reflect on the 

meaning of place values and why we move to a new column when we run out of digits in one 

 
1 Note that these activities were adapted from Bassarear, 2005, Section 2.3. 
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column. The rational discourse stage comes when PTs work together to figure out how to count 

in the new number system. The first four numbers are relatively straightforward, but the 

discourse revolves around what happens when you have D in one place value column and you 

add A more. PTs must figure out that you need to write an A in the next place value column and 

put a 0 in the original place value column. The MTEs ask PTs additional questions at this point, 

such as, “What number comes directly after DDD? What number comes directly before A0?” 

During their work on the activities, we introduce PTs to different manipulatives that will be 

helpful in their work as they learn this new number system, such as base-5 blocks and 5-frames 

(illustrated below figure 6). Finally, PTs are provided with an activity where they must estimate 

and count multiple bags full of large numbers of cubes. This forces them to unitize the sets of 5, 

25, 125 in order to determine the total number of cubes rather than attempt to write out all the 

Alphabitian numbers between one and the total. The connections can be made to how we group 

by 10s in our base system but in Alphabitian we group by 5s. 

 
Figure 6. Using 5-frames to count in Alphabitian. 
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In the action phase, MTEs facilitate discussions about the connections between counting 

in Alphabitian and learning to count in base-10. We ask PTs about similarities and differences 

between the two number systems. We ask them to think about the relationship of A0 in 

Alphabitian with 10 in our number system. The discussion is mainly focused around transitional 

numbers, as these are where difficulties can arise. We also discuss how PTs’ future students will 

struggle with learning about counting, place value, and re-grouping when adding and subtracting, 

just as they found the Alphabitian system to be challenging. A firm foundation of our base-10 

positional system involves more than just rote counting and writing; it involves a rich 

understanding of what the digits mean and how these digits change based on position. Only after 

children have fully grasped these concepts can we move onto helping them develop an 

understanding of the role of place value in addition and subtraction (NCTM 2008; NRC 2009). 

The Alphabitian tasks allow PTs to move out of their comfort zone to struggle through learning a 

new counting system to explore the meaning of place value in our positional counting system. 

Work on this task allows PTs to develop in each of the strands of mathematical proficiency in a 

variety of ways. PTs are work to gain a deeper conceptual understanding of place value and 

operations using the Alphabitia activity. As the PTs use manipulatives to represent and solve 

math problems (strategic competence) they also come to justify and explain (adaptive reasoning) 

the usefulness of these tools in learning a number system. Eventually through their diligence and 

own self-efficacy (productive disposition) they are able to accurately and efficiently carry out 

procedures (procedural fluency) in this new number system. Ultimately, PTs understand that 

learning to count in a positional number system is not easy and as adults we take these ideas for 

granted, as a teacher we need to be aware of the difficulties our future students will face when 

we teach them.  
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A third way to cause disorientation is to introduce PTs to an unfamiliar way to do a 

familiar thing. This could include asking PTs to interpret traditional algorithms for subtracting 

that might be “standard” in other countries but not the same as the U.S. standard algorithm (see 

figure 7 b). For example, figure 7a shows a standard algorithm often taught in Mexico/Latin 

America. Since most PTs have not encountered this algorithm and their place value 

understanding is not sufficiently developed (Thanheiser, 2009; Thanheiser 2010; Thanheiser 

2018) this example is disorienting for students. PTs know how to subtract whole numbers (i.e. it 

is a familiar thing) and usually know how to use the US standard algorithm shown in figure 7b 

but asking PTs to explain and justify the mathematical validity of this algorithm (adaptive 

reasoning) is challenging for them. Asking PTs to compare the mathematics of the two 

algorithms and discussing the similarities and differences between them develops their strategic 

competence and conceptual understanding of the operation of subtraction. Finally asking PTs to 

solve a similar problem like 936 – 478 using the alternative standard algorithm develops their 

procedural fluency and productive disposition as they apply their knowledge to a new situation 

and discover how mathematics can be done in a variety of ways. 

 
Figure 7: Example of standard algorithm for subtraction often taught in Mexico. 

  
This type of disorienting dilemma allows PTs to make connections to something they 

already know in a new way. Asking them how the U.S. standard algorithm is related to the 
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alternative algorithm is useful in developing PTs mathematical proficiency with understanding 

subtraction and reminding them that as teachers they may have students in their classrooms that 

are from other countries and who have learned these algorithms. As such, it is essential that they 

understand how alternative algorithms work so that they can help their future students and not 

simply dismiss their work because it is different from their own thinking. 

Considerations, Suggestions, and Resources for Incorporating Transformative Learning 
Theory into Mathematics Content Courses 
 

Incorporating TLT into mathematics content courses can provide challenges for MTEs 

beyond those involved with teaching a more traditional mathematics course. The most important 

part of using these types of lessons in a mathematics content course is to start the term by 

creating an environment where students feel comfortable making mistakes and discussing 

misconceptions that they have about mathematics (Cranton, 2006). Many PTs are embarrassed 

by making mistakes in mathematics (Johnson, 2019, Harper & Daane, 1998). As MTEs, we need 

to allow PTs to feel comfortable with making mistakes as part of the learning process (Boaler, 

2016). Beginning on the first day of class, it is important to establish norms for the classroom 

that focus on discussion and respect for multiple strategies to solve problems. Reminding PTs 

that, as teachers, they will need to listen to students’ various strategies and assess the validity of 

their methods without being judgmental, is one way to motivate the process.  

TLT can be incorporated into mathematics content courses by using it as a template for 

planning lessons. This involves initially choosing tasks for PTs that will provide sufficient levels 

of disorientation with the mathematical content that is being taught. This should be done with 

knowledge of the understandings that PTs bring to their content courses, including common 

misconceptions and areas where they struggle. (See The Mathematics Enthusiast, Volume 11, 

No 2, August, 2014 for information on PTs’ knowledge of mathematics content.) The task 
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should allow PTs to become aware of their prior assumptions about the content and provide 

opportunities for them to critically reflect on their mathematical proficiency in the content area.  

As discussed above, three ways of disorienting PTs are 1) restricting their use of familiar 

procedures, 2) removing their automaticity in performing tasks, and 3) introducing unfamiliar 

methods to do familiar things. The proportional reasoning task described above is an example of 

the first way of providing disorientation. Another example of a task that provides PTs with 

disorientation by restricting the use of familiar procedures can be found in Thanheiser and 

colleagues’ fraction comparison tasks, where they designed the task in a way to discourage PTs 

from using common denominators. (see Thanheiser, Olanoff, Hillen, Feldman, Tobias, & 

Welder, 2016, and www.mathtaskmasters.com for more details of these tasks.) 

Using tasks that require PTs to work in different bases is a way to remove their 

automaticity in counting, adding, and subtracting. Most mathematics textbooks for PTs contain 

activities that involve using different bases. The task that we presented above using Alphabitian 

is adapted from Bassarear, 2005. Additional research articles such as McClain (2003); Roy and 

Safi, (2008); and Yackel, Underwood, and Elias (2007) discuss activities for PTs in base-8. In 

these activities, the idea is for PTs to develop the automaticity in base-8 in the same way that 

their students will develop this automaticity in base-10. 

Multiple research articles include tasks that require PTs to look at non-standard 

algorithms or student thinking. Castro Superfine, Prasad, Welder, Olanoff, and Eubanks-Turner 

(2020, this issue) provide an example of a task where PTs are asked to explain a child’s non-

standard method for subtraction. Philipp (1996) includes many different alternative algorithms 

for adding, subtracting, multiplying and dividing that are different from the U.S. standard 

algorithm.  
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Additional resources for task design include Feldman, Wickstrom, Ghosh Hajra, and 

Gupta (2020, this issue) as well as Tobias, Olanoff, Hillen, Welder, Feldman, and Thanheiser 

(2014). Some resources for finding tasks in general include: 

● NCTM illuminations https://illuminations.nctm.org/  

● http://metamorphosistlc.com offers mathematics tasks for students,  

● Dan Meyer has a math blog, where he shares mathematical tasks that help students learn 

concepts on a deeper level (blog.mrmeyer.com),  

● https://www.illustrativemathematics.org/ includes a section on tasks that are open ended 

and free. 

● https://www.youcubed.org/tasks/ includes tasks that are open ended and free for various 

levels of challenge. 

Another challenge for incorporating TLT into the mathematics content courses involves 

facilitating the task and its implementation. When implementing such tasks with PTs, it is 

acceptable to have students individually work on a task prior to discussing it with others. This 

allows them time to become aware of their own knowledge about the concepts. Many PTs 

believe that they are proficient in most elementary mathematical content, but when asked to 

elaborate on concepts, they are often confronted with information that contradicts their current 

understandings (Thanheiser, 2018). Implementing tasks that allow students to experience 

disorientation provides an opportunity for them to transform and deepen their mathematical 

proficiency by questioning their prior assumptions. During the critical reflection part of the 

cycle, students should be encouraged to represent, formulate, and solve problems in a way that 

makes sense to them. This can help them in developing their self-concept and strategic 

competence by learning the mathematics with more conceptual understanding and procedural 
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fluency (Hiebert & Wearne, 1996, Rayner, 2009). MTEs might have PTs discuss with a partner 

or small group to begin the critical reflection of the prior assumptions in the next part of the 

cycle. 

Once PTs are presented with tasks that contradict and/or challenge their previous 

assumptions, they will need time to critically reflect on the inconsistencies. This reflection is 

then followed by rational discourse. MTEs need to ask questions that allow students to discuss 

and argue their current understandings with each other. MTEs should be cautious about judging 

solutions or giving PTs too much information about the answer they might be looking for, as the 

key to the reflection is giving PTs an opportunity to work through the dilemma on their own 

(Heibert, et. al, 1996; Heibert, et. al, 1997). Conversations with their peers may support PTs in 

developing their capacity for logical thought as they justify and explain their reasoning (adaptive 

reasoning). This rational discourse is not only important for PTs to transform their 

understandings of the mathematical concepts; MTEs should also emphasize that, as teachers PTs 

will need to engage in rational discourse with their students on a regular basis. This will help 

encourage PTs’ readiness to learn. Listening to their peers and justifying their own reasoning 

can support PTs in developing the necessary vocabulary for being future teachers. If PTs are 

asked only to listen to and apply mathematics, they are missing out on opportunities to develop a 

crucial component for teaching. Namely, they need to develop the language of mathematics. The 

development of accurate mathematical language and talk helps develop PTs’ orientation to learn 

because it is a necessary condition for communicating knowledge to others (Shulman, 1986). 

Finally, the last piece of the cycle of TLT involves action, where MTEs must help PTs 

make connections between their prior knowledge and their new understandings. This is often 

accomplished through questioning. Weimer (2012) notes that questioning is transformative when 
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the questions offer learners the chance to figure things out for themselves. This action includes 

connecting the mathematical ideas to other mathematical ideas and to why this concept is 

meaningful. Facilitating this part of the cycle involves asking questions such as: “How is this 

different from how you previously thought about this concept? What is the relationship between 

these ideas? How has this discussion transformed your ideas about the mathematics?” Being able 

to think about these questions is essential for making the transformation complete. The action 

phase can help PTs with the final piece of the development of mathematical proficiency, 

productive disposition. It is essential that PTs develop a habitual inclination to see mathematics 

as sensible, useful, and worthwhile. These beliefs will be carried into their future practice and 

passed on to their future students in the classroom (Karp, 1991). Understanding the connections 

that exist between different ways of seeing and understanding a problem or mathematical 

concept is essential in developing mathematical proficiency. Closing the loop of the cycle, by 

discussing the connections that exist between PTs’ prior knowledge and this new set of 

knowledge, can allow them to deepen their understanding of the mathematics that they will 

someday be responsible to teach others.  

There are many resources on discourse and how to facilitate productive discussions in 

mathematics classes. Some of these include:  

● https://pll.asu.edu/p/system/files/lrm/attachments/Lets%20talk.pdf (this article by 

Catherine Stein focuses on levels of discourse and how to set up the environment and 

assess the discourse in your own classroom), 

● http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1033.1430&rep=rep1&type=p

df In this article Walshaw and Anthony summarize the research that has been done on 

discourse in mathematics classrooms, and 
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● http://www.edu.gov.on.ca/eng/literacynumeracy/inspire/research/CBS_AskingEffectiveQ

uestions.pdf. This article, from the Canadian government, provides tips and prompts for 

teachers to use to ask effective questions during discourse. 

● Litster, MacDonald, and Shumway (2020, in this issue). 

Conclusion 

 In this paper, we have outlined a cycle of transformative learning theory and its 

connection to andragogy, the ways in which adults learn that are different from children and 

mathematical proficiencies. Because PTs enter mathematics content courses already having 

knowledge of much of the content of the elementary curriculum, it is important for MTEs to 

provide experiences for them to build upon their existing knowledge, and to develop the five 

strands of mathematical proficiency. By challenging PTs with problems that disorient their 

thinking, and then pressing them to resolve dilemmas using critical reflection and rational 

discourse, MTEs can support PTs in enhancing their knowledge in all five of the strands. 

Although incorporating TLT into mathematics content courses provides some extra challenges 

for MTEs, we believe that the benefits for PTs’ learning outweigh the extra work required. 
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