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Abstract: The growing number of studies on mathematics teacher educator knowledge have 
consistently argued that mathematics teacher educators require specialized knowledge in their 
work with prospective teachers (beyond the knowledge needed for teaching students), what 
researchers refer to as mathematical knowledge for teaching teachers. Drawing from existing 
research and aspects of our own work as mathematics teacher educators, we offer our own 
conceptualization of mathematical knowledge for teaching teachers and illustrate ways in which 
we as mathematics teacher educators use our own knowledge in teaching mathematics content to 
prospective teachers. We are particularly concerned with the knowledge mathematics teacher 
educators use to support prospective teachers’ relearning of mathematics, which involves 
prospective teachers ultimately reconstructing their previously developed knowledge of 
mathematics. We will illustrate ways in which we use various aspects of mathematical knowledge 
for teaching teachers to support prospective teachers’ relearning of mathematics through the 
lens of three different tasks of teaching. We conclude with a discussion of the implications of our 
analysis for informing the growing knowledge base for mathematics teacher educators. 
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Introduction 

While there is an established research base on the knowledge K-12 teachers use in their 

work with students (Da Ponte & Chapman, 2006; Sullivan & Wood, 2008), research on the 

knowledge mathematics teacher educators (MTE) use in their work with elementary teachers or 

prospective teachers (PTs) is still in its infancy (Jaworski & Huang, 2014). Developing a 

research base on MTE knowledge is critically important as MTEs play a central role in the 

mathematical preparation of teachers. The growing number of studies on MTE knowledge have 

consistently argued that MTEs require specialized knowledge in their work with PTs (above and 

beyond the knowledge needed for teaching students), what researchers refer to as mathematical 

knowledge for teaching teachers (MKTT; e.g., Zopf, 2010).  

Building on existing models of MKTT, our aim in this article is to contribute to the 

growing research base on MKTT in order to elaborate on, or “unpack,” aspects of MKTT and 

consider how such knowledge is different from the knowledge required of K-12 teachers of 

mathematics. We are particularly concerned with the knowledge MTEs use to support PTs’ 

relearning of mathematics, which involves PTs ultimately reconstructing their previously 

developed knowledge of mathematics (Zazkis, 2011). Drawing from existing research and 

aspects of our own work as MTEs, we offer our own conceptualization of MKTT and illustrate 

ways in which we as MTEs use our own knowledge in teaching mathematics content to PTs who 

are studying to obtain certification to teach students of ages 2-14, who we will refer to as 

elementary PTs. We conclude with a discussion of the implications of our analysis for informing 

the growing knowledge base for MTEs.  
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Theoretical Framework 

Mathematics Content Courses for Prospective Elementary Teachers 

Recent research on the nature of the mathematical knowledge teachers need to be 

effective has informed our understanding of what mathematics should be taught in content 

courses for PTs. Specifically, Ball, Thames and Phelps (2008) have reconceptualized 

mathematics content knowledge, arguing that teachers need to know mathematics in ways 

required exclusively for teaching, or mathematical knowledge for teaching (MKT), which 

includes both common content knowledge (e.g., knowing how to solve multi-digit subtraction 

problems) and specialized content knowledge (e.g., knowing how to connect representations to 

underlying mathematical ideas). The current purview of university-based mathematics content 

courses for PTs is to develop PTs’ knowledge of mathematics in ways needed for teaching, 

including the development of both common and specialized content knowledge. In fact, in the 

U.S., recent reports released from the Conference Board of the Mathematical Sciences (2012) 

and the Council for the Accreditation of Educator Preparation (2013) recommend that 

mathematics teacher preparation coursework include a focus on the development of MKT as 

defined by Ball and her colleagues (2008). Yet, despite such recommendations, research on 

mathematics courses for PTs in the U.S. illustrates that such courses often focus solely on the 

learning of common mathematical content with limited attention given to the development of 

specialized content knowledge (Hart & Swars, 2009; Hart, Oesterle, & Swars, 2013). 

Furthermore, researchers have shown that it is often challenging for PTs to develop their 

knowledge of mathematics in ways needed for teaching. For example, researchers have found 

that while PTs have shown proficiency in performing mathematical procedures, they often lack 

deeper conceptual understanding (e.g., Thanheiser et al., 2014). Given such challenges, 
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developing knowledge of mathematics in ways needed for teaching requires PTs to relearn 

mathematics (Zazkis, 2011). Zazkis (2011) proposes the idea of relearning to describe how PTs 

learn mathematics by reassessing familiar concepts, reconsidering previously held ideas, and 

ultimately reconstructing their knowledge. For PTs, now as adult learners, relearning 

mathematics (in ways needed for teaching) involves revisiting procedurally understood content 

and revising their understanding in more conceptually-oriented ways. Expanding Zazkis’ (2011) 

notion of relearning, we argue that relearning for PTs also involves learning new content for the 

first time and enhancing their understanding of previously learned content in ways needed 

exclusively for teaching. Thus, the work for MTEs in teaching mathematics content courses for 

PTs is supporting PTs’ relearning of mathematics in ways needed for effectively teaching 

mathematics. Yet, little is known about the nature of the knowledge that MTEs need or use in 

their work supporting PTs’ relearning.  

Conceptualizing Mathematical Knowledge for Teaching Teachers 

There is general consensus within the teacher education community that MKTT is the 

knowledge MTEs use in their work with PTs and that the domains of MKTT include not only 

knowledge that teachers must have, but also elaborations of that knowledge that extend beyond 

that which teachers must know. However, the precise nature of the different domains of MKTT 

has been discussed by researchers with varying degrees of specificity (e.g., Goodwin & Kosnik, 

2013; Zaslavsky & Leikin, 2004). Much of the existing research conceptualizes domains of MTE 

knowledge as connected to and extending from domains of teacher knowledge, such as 

knowledge of how to support PTs in developing specialized content knowledge. Chauvot (2009), 

for example, conceptualized MTE knowledge as consisting of a number of different knowledge 

domains based on a self-study of her work as an MTE. Specifically, she constructed a knowledge 
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map for MTEs consisting of three main categories—subject matter content knowledge, 

pedagogical content knowledge, and curricular knowledge (extending the categories put forth by 

Shulman’s (1987) work on teacher knowledge). She also extends several of Ball and colleagues’ 

(2008) domains of MKT to make them more specific to MTEs, including knowledge of how to 

develop PTs’ specialized content knowledge and pedagogical content knowledge and	knowledge 

of how to engage PTs with content in ways that are connected to teaching students. Notably, 

Chauvot’s knowledge map (2009) also includes considerations of the context (Grossman, 1990) 

in which MTEs work, including school standards for mathematics and curriculum programs, 

which has implications for what MTEs have to know.  

Perks and Prestage (2008) conceptualize domains of MTE knowledge as including ways 

of supporting PTs’ content learning. They describe the domains of MTE knowledge as the 

connections among learner knowledge (i.e., knowledge developed from being teachers), practical 

wisdom (i.e., activities used during instruction), and professional traditions (i.e., ways of 

working with PTs, research on teaching and learning). Most notably, in their conceptualization, 

Perks and Prestage (2008) particularly highlight interactions among ways of working with PTs 

and activities for developing knowledge needed for teaching as part of the knowledge required 

by MTEs. Zaslavsky and Leikin (2004) similarly conceptualize MKTT as including ways of 

supporting PTs’ content learning. Specifically, they include knowledge of ways of managing 

PTs’ learning, as well as knowledge of the content that PTs must learn. Zaslavsky and Leikin go 

further and argue that MKTT also includes knowledge of how to be sensitive to PTs and how to 

assess PTs’ mathematical understanding. 

Building on the aforementioned studies, we conceptualize MKTT as connected to and 

extending from domains of mathematical knowledge for teaching (Ball et al., 2008). Specifically, 
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we conceptualize MKTT as comprised of the following domains: (a) MTE subject matter 

knowledge (MTE-SMK), and (b) MTE pedagogical content knowledge (MTE-PCK) as 

displayed in Figure 1. Following Ball et al. (2008), we assume that MTEs need to be 

knowledgeable of mathematical content (MTE-SMK) as well as ways of facilitating PTs’ 

learning and relearning of content, which we conceptualize as MTE’s pedagogical content 

knowledge (MTE-PCK). We include MKT (for classroom teachers) as a subdomain of MTE-

SMK, which we refer to as MTE-Knowledge of MKT. We elaborate on these domains, and their 

related sub-domains, in the paragraphs that follow.  

 

Figure 1. Potential conceptualization of mathematical knowledge for teaching teachers. 
 

We conceptualize MTE-subject matter knowledge (MTE-SMK) as comprised of three 

sub-domains: MTE knowledge of MKT, MTE specialized content knowledge (mathematical 
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content knowledge that is specific to teaching MKT to PTs), and knowledge at the mathematical 

horizon for PTs. Following researchers who have outlined new ways of understanding 

knowledge needed for teaching (e.g., Ball, et al., 2008; Shulman, 1987), we assert that PTs need 

to learn content in ways specific to teaching (i.e., mathematical knowledge for teaching as 

defined by Ball et al., 2008). Thus, MTEs need to be knowledgeable of the content PTs need to 

know (MKT), which we refer to as MTE-Knowledge of MKT. For example, PTs are required to 

understand multiple models of multiplication and division, including scaling, equal groups, and 

areas/arrays, as well as the representations, algorithms, and pedagogical considerations involved 

in teaching these models. Since MTEs are tasked with helping PTs develop this knowledge, 

MTEs must also possess knowledge of multiplication and division in such ways.  

Furthermore, we assert that MTEs have specialized content knowledge that is unique to 

teaching MKT to PTs and includes understanding the mathematical purposes underlying the 

specialized content that PTs learn. This is what we are referring to as MTE specialized content 

knowledge (MTE-SCK). For instance, MTEs use this knowledge to modify tasks for PTs in ways 

that uncover PTs’ procedural knowledge or misconceptions in order to facilitate relearning. 

MTEs also understand the mathematical ideas underlying different multiplication algorithms, for 

example, and use their MTE-SCK to articulate to PTs the mathematical purposes and 

consequences of using these algorithms with students. Finally, we assert that MTEs have 

knowledge at the mathematical horizon for PTs, which includes knowledge of the content PTs 

will encounter in their subsequent coursework as part of a teacher education program. Thus, 

MTE-SMK is comprised of MTE content knowledge (i.e., the entirety of MKT as defined by 

Ball et al., 2008), as well as other sub-domains of content knowledge that are unique to teaching 
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mathematics content to PTs, including knowledge at the mathematical horizon for PTs and MTE-

SCK that is unique to teaching MKT to PTs.  

In addition to subject matter knowledge (MTE-SMK), we assert that MTEs also need 

pedagogical knowledge of how to facilitate PTs’ learning and relearning of mathematics, which 

we conceptualize as MTE-pedagogical content knowledge (MTE-PCK). It is comprised of three 

sub-domains: knowledge of content and PTs (MTE-KCS), knowledge of content and teaching 

PTs (MTE-KCT), and knowledge of curriculum (MTE-KC). We hypothesize that MTE-PCK 

includes knowledge of content and students, where the students are now PTs (and thus, adult 

learners) and the content to be learned is now MKT, and knowledge of curriculum where 

curricular materials are those designed for PTs. It also involves knowledge of content and 

teaching, which translates to how MTEs facilitate PTs’ learning of MKT and relate it to teaching 

mathematics to students (Zopf, 2010). This means that MTEs not only need to understand the 

specialized content knowledge needed for teaching students (SCK), they must also understand 

the intricacies of how such knowledge develops in adults (MTE-KCT). And, MTEs must 

understand how to use or develop curricular materials (MTE-KC) to create learning 

environments that provide opportunities for PTs to unpack and relearn mathematical content.  

For example, MTEs discussing quadrilateral hierarchy with PTs must engage deeply held 

preconceptions of the relevant definitions, such as “a square is a quadrilateral with four 

congruent sides.” PTs may not only struggle with (re)conceptualizing a square as simultaneously 

a special type of rectangle and a special type of rhombus, but also with why this is true and the 

mathematical consequences of not considering a square as a rectangle. Thus, MTEs must engage 

in the work of uncovering and addressing such preconceptions, which means they must also be 

aware of the likely preconceptions PTs have. Thus, MTE-PCK not only includes knowledge of 
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how to represent and explain mathematical concepts to PTs, but also knowledge of the 

conceptions and preconceptions that PTs bring to content courses (Shulman, 1987), and 

knowledge of how to leverage those conceptions and preconceptions in ways that will promote 

PTs’ relearning of mathematics in ways needed for teaching. 

Taken together, we conceptualize MKTT as comprised of knowledge of not only the 

content that PTs need to know, but also specialized knowledge of content that is unique to 

teaching PTs, and knowledge of how to facilitate PTs’ relearning. Moreover, like Beswick and 

Chapman (2013), we consider MKTT to be not only an elaborated extension of teacher 

knowledge, but also to include domains of knowledge that are characteristically different from 

teacher knowledge. We argue that the ways in which MKTT is different from teacher knowledge 

stems from MTEs’ work in supporting PTs’ relearning of mathematics.  

Mathematics Teacher Educators’ Examples for Supporting Prospective 
Teachers’ Relearning 

Drawing from our own work as MTEs, in the following sections we illustrate ways in 

which we use various aspects of MKTT in our practice as instructors of content courses for 

elementary PTs. Specifically, we illustrate our work in supporting PTs’ relearning of 

mathematics through the lens of three different tasks of teaching content to PTs, data from which 

come from multiple research projects which included one or more of the authors. The first 

example involves a task for PTs that models asking questions to probe students’ thinking when it 

is unclear and provides examples of students’ thinking that do not align with a traditional 

subtraction algorithm; such tasks support PTs’ relearning of content by encouraging them to 

revise procedural understandings as they reflect on the conceptual underpinnings of an 

unconventional algorithm. The second example describes designing and facilitating tasks in such 

a way as to encourage PTs to move beyond their procedural understandings of fractions and 
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develop conceptually based fraction comparison strategies, which also reflects Zazkis’ (2011) 

notion of relearning. The third example describes revising tasks for PTs so that they are able to 

develop not only common content knowledge but also specialized content knowledge; although 

PTs may be learning new content, such tasks help MTEs ensure that PTs’ understanding of that 

content is being enhanced in ways needed exclusively for teaching. Our aim is to contribute to 

the practices of MTEs who teach content to elementary PTs by sharing examples from our work 

in which we supported PTs' relearning and then reflecting on the domains of MKTT that we 

drew from in doing so.  

Example I: Using MTE-SCK and MTE-PCK to Support Prospective Teachers in 
Relearning Subtraction 

As noted above, MTE-PCK includes knowledge of the conceptions and preconceptions 

that PTs bring with them to content courses (MTE-KCS) and knowledge of how to leverage 

these conceptions and preconceptions in ways that will promote PTs’ relearning of mathematics 

(MTE-KCT). Since PTs often feel confident in their understanding and ability to teach lower-

level mathematical content (Thanheiser, 2018), an important aspect of the work of MTEs 

becomes creating opportunities for PTs to question the basis of their current knowledge and see 

an authentic need to restructure their understanding of seemingly “simple” content. The 

following example will highlight the roles of MTE-SMK and MTE-PCK in MTEs’ development 

and implementation of tasks that have the potential to help PTs unpack their knowledge and 

facilitate the relearning of content at a deeper, more conceptual level.  

In this example, PTs complete a task in which they review a written artifact of a young 

student’s unconventional, yet natural	thinking, analyze his understanding of the content based on 

this artifact, and then listen (and respond) to an audio recording of an interview conducted by 

one author with the student (see Welder,	2012) for an excerpt from the interview and reflection 
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on the student’s strategy). At the beginning of the task, PTs are shown a small piece of the 

student’s written work, recreated for clarity in Figure 2. The PTs are informed that the work 

came from a first-grader, Dylan, who had not yet been exposed to any strategies for subtracting 

multi-digit numbers that would require the traditional regrouping algorithm. At the time of the 

interview, Dylan was not quite 7-years-old and his class was working on subtracting single-digit 

numbers from double-digit numbers less than 20 (e.g., 13 – 6) using counting back strategies 

(starting at 13 and counting backwards 6 numbers on their fingers) (Welder, 2012). 

  

Figure 2. Written artifact of Dylan’s work (showing 54 – 28 = 26; 8 – 4 = 4). 
 
 

Since there is no clear evidence of Dylan applying any particular algorithm, most PTs 

find themselves unable to interpret his thinking and initially conclude that he had either (a) found 

the answer through the use of a calculator (or some other external means), or (b) erroneously 

subtracted the smallest digit from the largest in each place value column, regardless of their 

position in the problem (as suggested by the writing of “8 – 4 = 4”, see Ashlock’s (2010) Error 

Pattern S-W-1). Many PTs are able to recognize that applying such a procedure should have led 

Dylan to the incorrect answer of 34; but, unable to consolidate their understanding with his 

provided solution, they hypothesize that his arrival at the correct answer must have been 
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independent of this calculation. “The only explanation that came to mind was that subtracting 4 

from 8 (8 – 4) would be his initial thought to solving, but then corrected himself,” suggested one 

PT. Another speculated, “he must have figured out that his computations would make the answer 

incorrect, but maybe he forgot to scribble out his work (scratch work--not supposed to mean 

anything to the teacher). I think that he reached the answer by counting backward on his fingers 

from 54 down to 28.” 

After analyzing Dylan’s written work, PTs are then prompted to listen to an audio 

recording of the author asking him a series of probing questions about his thinking and 

prompting him to record calculations he was performing mentally. Figure 3 shows how Dylan 

was thinking about the problem 62 – 49. By decomposing the ones digit of the subtrahend into 

two parts, using the ones digit of the minuend as one part (e.g., 9 can be decomposed into 2 and 

7), he could first subtract the known part from the minuend (shown as 62 – 2 = 60) and then the 

remaining part (7) from this new total (shown as 60 – 7 = 53).  

 
 
Figure 3. A written record of the mental computations Dylan performed in solving the problem 

62 – 49 (showing 9 – 2 = 7; 62 – 2 = 60; 60 – 7 = 53; 53 – 40 = 13). 
 

The interview is diagnostic in nature and models the type of investigative approach 

MTEs would want PTs to use in similar situations with their future students. By listening to the 
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student explain his reasoning and correctly apply his unique strategy to additional problems, the 

majority of PTs are able to eventually realize that through strong conceptual understanding of 

numbers, place value, and operations, Dylan is able to reason through complex computations 

with surprising skill for such a young student. However, some PTs finish the interview without 

being able to make sense of Dylan’s strategy or provide a conclusion about its validity and are 

thus left unsure about his understanding of the content. 

PT responses suggested that this task was successful in helping them recognize the need, 

as future teachers, to unpack, reorganize, and at times relearn mathematics content to be better 

prepared to make sense of young students' thinking (part of their development of SCK). The task 

encouraged many PTs to reflect on their own learning of the content and consider the limitations 

of their current understanding: “I found this activity was a great challenge to my own thinking 

about the process of subtraction and especially challenging to my ideas about teaching it to 

young children.” Another added, “I have only learned one way to subtract... I have never 

perceived math problems with the possibility of having patterns and multiple ways of solving. I 

am feeling challenged to expose myself more to new ways of doing math, so that I can best 

support my future students as they explore and try new problem-solving skills.” Others 

specifically alluded to a need to change the way they think about this content or acquire 

additional knowledge to best meet the needs of their students: “I know that in a classroom 

environment I might need to bring in other resources to understand a child's methods of problem 

solving…” Another noted gaining insight into, “how each student won't learn the way I did and 

that I might have to change my problem solving to help them.”  

In this example, multiple domains of MKTT were utilized to design and implement a task 

to help PTs not only see an authentic need to relearn content, but to also help PTs connect that 
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learning to teaching students. Recall that MKTT includes an understanding of the common 

dissonance between the depth of conceptual knowledge teachers need for teaching mathematics 

(MTE knowledge of MKT) and the typical procedural-based understanding that PTs bring with 

them to content courses (MTE-KCS). Specifically, MTEs assume that, as high-school graduates, 

incoming PTs have successfully mastered whole-number operations. Based on research with 

PTs, we also know that their knowledge will be primarily, if not exclusively, procedural 

(Thanheiser et al., 2014). Furthermore, MTEs’ knowledge of how students learn mathematics 

helps us recognize the limitations of PTs’ knowledge, as it pertains to helping students develop 

conceptual understanding. Thus, the motivation for developing a task around such a seemingly 

“simple” problem was based on an understanding of the need for MTEs to create learning 

opportunities that can support PTs in developing their SCK (MTE-KCT). Furthermore, 

knowledge of PTs, as adult learners, guides our understanding of the need for PTs to unpack 

their incoming common content knowledge, as a first step towards relearning content and 

developing SCK (MTE-KCS). 

However, the specific way in which we approached the development of the task in this 

example was based on more than our knowledge of subject matter (MTE-SMK) – it evolved 

from our knowledge of PTs’ preconceptions about their content knowledge (MTE-KCS). Most 

PTs find comfort and confidence in the familiarity of procedures they have learned to master and 

do not see a need to reconsider a problem that they can successfully solve (such as 54 – 28). PTs’ 

preconceptions about what it means to know and do mathematics are initially tied to their 

abilities to perform algorithmic procedures, and most enter content courses believing that they 

will be successful teachers by showing students how to perform the same calculations 

(Thanheiser, 2018). Therefore, in addition to knowing that PTs with solely procedural 
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knowledge would struggle to make sense of a student conceptualizing subtraction in an 

unfamiliar way (MTE-KCS), we also knew that PTs would need a genuine experience to 

convince them of the need to think differently (MTE-KCT). Listening to and trying to make 

sense of a young student as he explains his thinking provides an authentic opportunity for PTs to 

move beyond how they would solve the problem or even teach a student to solve the problem. 

We argue these data suggest that a critical shift in PTs’ mindsets can take place when they are 

put in the role of the teacher and are able to see firsthand the limitations of their knowledge and 

the need to relearn content to better support the learning of their future students. 

Lastly, this example also utilized the specialized content knowledge unique to helping 

PTs develop MKT (MTE-SCK). We see the application of this specialized mathematical 

knowledge in the number choices made in the various problems we asked Dylan to solve. For 

example, since the initial problem (54 – 28) involved an 8 in the ones column of the subtrahend, 

being broken into two equal parts of 4 and 4 (because of the 4 in the ones column of the 

minuend), we predicted that this would leave some ambiguity for PTs about the significance of 

the order in which these two parts were subtracted. To clarify the fact that 8 was not just broken 

in half but instead decomposed into two parts based on one portion being the size of the ones 

digit of the minuend (4), the next problem that was posed to Dylan was 62 – 49. Here the PTs 

could listen to Dylan discuss how the 9 was decomposed into 2 and 7 (unequal parts) and how he 

thought about first subtracting the portion of size 2 (62 – 2 = 60) to make a friendlier minuend, 

from which he subtracted the remaining portion of size 7 (60 – 7 = 53).  

Furthermore, to test the strength of Dylan’s conceptual understanding, the next problem 

we posed was the similar, but significantly different problem of 69 – 42. We wanted PTs to be 

able to see how Dylan would apply his thinking to an example that did not require “regrouping.” 
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We knew that PTs would likely assume that he would view this in the more standard way of 

subtracting each column individually (9 – 2 = 7 and 6 – 4 = 2) to find the correct solution of 72. 

However, as we suspected, Dylan began this problem using the same thinking he had applied 

earlier by first stating that 2 – 2 = 0 and using this to rewrite the problem as 67 – 40. It was our 

mathematical knowledge that is specialized to helping PTs develop MKT (MTE-SCK) that drove 

the decision to pose this problem to Dylan instead of moving onto a new example that would 

require regrouping. We knew that seeing how Dylan applied his thinking to this situation and 

having to make sense of his first calculation (2 – 2 = 0) would provide an additional challenge 

for the PTs. It also provided a great opportunity for the PTs to discuss what problem they would 

have posed following the 62 – 49 problem and reflect on the purpose of our posing the problem 

we did (helping them to develop MKT). 

Example II: Using MTE-SMK and MTE-PCK to Support Prospective Teachers in 
Reconsidering Procedure-Based Knowledge 

 MTE knowledge becomes important in both designing and implementing high-level 

mathematical tasks that provide opportunities for relearning. This second example also 

challenges PTs’ previously held procedural conceptions to provide opportunities for them to 

consider the conceptual foundations of the procedures that they use. In this example, we 

developed a task with the goal of helping PTs extend their knowledge of fractions as numbers, 

specifically that !
"
 can be conceptualized as a measurement of a pieces of size #

"
, and use this 

measurement definition to reconsider strategies for comparing and ordering fractions. Based on 

prior research (e.g., Olanoff, Lo, & Tobias, 2014), we knew that PTs often hold a procedural 

view of fractions, and are generally only able to compare fractions using a “common 

denominator approach.” However, PTs often perform this procedure with little understanding of 

why what they are doing produces the correct answer, nor do they consider whether or not there 
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may be a more appropriate strategy for comparing a particular set of fractions (Bartell, Webel, 

Bowen, & Dyson, 2013; Livy, 2011; Whitacre & Nickerson, 2011; Yang, Reys, & Reys, 2009). 

Our goal in this task was thus to encourage PTs to use their understanding of fractions as 

measurements to develop a variety of sense-making strategies for comparing fractions and to be 

able to explain why those strategies work.  

 In designing this task, we drew on our knowledge of fractions as measurements (as a 

certain number of pieces of a certain size) and how this understanding could support the 

development and justification of sense-making comparison strategies (MTE-SCK). Using our 

knowledge of the multiple strategies students are asked to use (according to the Common Core 

State Standards of Mathematics (National Governors Association Center for Best Practices and 

the Council of Chief State School Officer, 2010) and U.S. elementary curricula) (MTE 

knowledge of MKT), we identified five fraction comparison strategies that we believed should 

be part of PTs’ MKT: 

1. compare fractions that have the same size pieces (the familiar common denominator 

strategy) by looking at which has more of those pieces; 

2. compare fractions that have the same number of pieces (common numerator strategy) by 

looking at which has larger pieces; 

3. compare fractions that have both more and larger pieces with fractions that have fewer 

and smaller pieces (we called this the “greater number of larger pieces” strategy); 

4. compare fractions to a benchmark value that is greater than one of the fractions and less 

than the other fraction; and 

5. compare fractions that are both greater than or less than a benchmark fraction by 

comparing the distance that each fraction is from the benchmark. 
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For a full discussion of the development and implementation of this task, see: Feldman, 

Thanheiser, Welder, Tobias, Hillen, and Olanoff, (2016); Tobias, Olanoff, Hillen, Welder, 

Feldman, and Thanheiser, (2014); and Thanheiser, Olanoff, Hillen, Feldman, Tobias, and Welder 

(2016). 

 Once we had generated a list of comparison strategies, and a definition of fractions that 

we wanted PTs to explore and relearn, we drew upon our pedagogical content knowledge to 

design a task in such a way as to facilitate this relearning (MTE-PCK). Specifically, our 

knowledge of how PTs typically interact with procedurally based tasks (MTE-KCS) suggested 

that if we gave PTs a task that merely asked them to compare fractions, they would likely draw 

upon their prior knowledge and use the common denominator procedure without necessarily 

considering each fraction as a quantity. Thus, we needed to draw upon our knowledge of content 

and teaching to find ways to encourage PTs to develop additional ways of thinking about the 

relative magnitude of fractions and to use that understanding to construct alternative comparison 

strategies (MTE-KCT). See Figure 4 for the task instructions as they were presented to the PTs 

and Figure 5 for the fifteen comparison problems. 

 
	
Figure 4. Instructions for the fraction comparison task (Taskmasters, 2014). 

 
One way we worked towards our goal of encouraging PTs to develop conceptually-based 

fraction comparison strategies was by not allowing the use of calculators, as we wanted to 	

For each set of fractions below, circle the fraction that is greater (or if the fractions are 
equivalent, write “=” in between them), and provide a “sense-making” explanation for how 
you know. You may use pictures if that is helpful to you, but your explanation cannot rely 
solely on a picture.	

• Calculators may not be used.	
• Feel free to work on these problems in any order that makes sense to you. If you find 

yourself struggling with any of the problems, skip them and revisit them later.	
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prevent PTs from converting fractions to decimals or percents and relying on their ability to 

compare the quantities in these alternative forms. Additionally, we deliberately designed 

problems in ways we believed would encourage the use of specific strategies besides common 

denominators. 

Fractions to Compare 

#1 1/2 versus 17/31 #6 13/15 versus 17/19 #11 2/7 versus 3/8 

#2 2/17 versus 2/19 #7 5/6 versus 6/5 #12 25/12 versus 31/15 

#3 4/7 versus 9/14 #8 7/10 versus 8/9 #13 11/20 versus 19/36 

#4 3/7 versus 6/11 #9 1/4 versus 25/99 #14 2/9 versus 3/8 

#5 8/9 versus 12/13 #10 24/7 versus 34/15 #15 18/25 versus 16/27 

  
Figure 5. The 15 sets of fractions compared in the fraction comparison task (Taskmasters, 2014). 

 
For example, we asked PTs to compare 2/17 and 2/19. This problem could be efficiently 

solved by thinking about the size of the pieces in each fraction but requires more work to rewrite 

the fractions with common denominators. (Note that it is important to emphasize with PTs that 

comparing fractions requires that each fraction be from the same whole. A 1/17 piece is larger 

than a 1/19 piece, as long as they are referring to the same whole.) Another example is the 

problem comparing 15/17 and 19/18. By recognizing that one fraction is less than one	and the 

other is	greater than one, it is easy to use a ‘benchmark between’ strategy to determine that the 

second fraction is larger.  

In facilitating the task, we drew upon our MTE-PCK to help PTs interact with the task. 

Using our MTE-KCS of PTs’ prior knowledge of fractions (generally part-whole based) and 

fraction comparison (generally focused on finding common denominators), we began the task 

with a launch where we asked PTs to brainstorm everything that they knew about the fraction 

7/8. We then asked them to find three fractions that were greater than and three fractions that 
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were less than 7/8 that first had the same denominator and then the same numerator. The purpose 

of this launch was to help PTs think about both the number of pieces (the numerators) and the 

size of the pieces (the denominators.) This would help them in developing a better understanding 

of the measurement definition of fractions, which was one of the goals of the task. We gave the 

PTs all fifteen comparison problems and encouraged them to engage with the problems in any 

order, in order to provide multiple entry points	(some of the later problems were potentially 

easier, so PTs who struggled with some of the earlier problems could skip them until later). As 

the PTs worked, the instructors walked around and encouraged PTs to think about what they 

knew about the fractions to be compared before attempting to use a procedure. We used our 

MTE-KCT to ask questions regarding the number and size of pieces, and we were able to get 

some PTs to naturally consider the number of pieces and size of pieces simultaneously in 

comparing 18/25 and 16/27. This problem would require extensive multiplicative computations 

without the use of a calculator, but drawing on the ‘greater number of larger pieces’ strategy 

(18/25 has more pieces of a larger size than 16/27) requires no such calculations. 

Following PTs’ work on the task, we used our MTE-KCT to facilitate a PT-led 

discussion of the different strategies they developed by asking PTs to write solutions to specific 

problems to present to the class. As a class, we named each strategy	and discussed the problems 

on which they could be used, and those on which it made sense to use them. For example, while 

common numerators or denominators could be used to compare 18/25 and 16/27, this problem 

better lends itself to the greater number of larger pieces strategy, which requires much less work.	

The full task, in a format ready to use with PTs, is available online at 

https://mathtaskmasters.com. For a detailed guide for facilitating this task, the reader is 

encouraged to see the online Facilitation Guide (Taskmasters, 2014). 
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In studying PTs’ work on the fraction comparison task, we determined that the task was 

helpful in eliciting many of the comparison strategies that we outlined above	(see Thanheiser et 

al., 2016 for more information on the results of the task). We drew upon MTE-SMK in designing 

the task: we used our knowledge of the MKT we hoped PTs would develop through the task and 

our MTE-SCK in choosing and facilitating the development of the measurement definition of 

fractions. We also drew upon MTE-PCK in designing and implementing the task, as we 

considered the procedural understandings that PTs often utilize in comparing fractions (MTE-

KCS) and attempted to challenge these understandings (MTE-KCT). Overall, data collected 

confirmed that we were able to design and implement a task that was beneficial in helping PTs 

relearn mathematical content related to fractions.  

Example III: Using MTE-PCK to Revise a Task to Deepen Prospective Teachers’ 
Exploration of Potentially New Mathematical Knowledge 

In our work as MTEs, we design and redesign tasks in order to uncover and address PTs’ 

preconceptions. This work is not only integral to facilitating PTs’ relearning (or, indeed, new 

learning) of mathematical concepts, but also to our own ongoing development of MKTT. 

Specifically, this third example discusses how the process of revising a task helped us develop 

our own knowledge of content and PTs (MTE-KCS) and knowledge of content and teaching PTs 

(MTE-KCT). We chose to implement the Continuous Improvement framework for lesson 

revision (Berk & Hiebert, 2009) as a way of investigating PTs’ knowledge about elementary 

mathematics concepts and developing and improving lessons that address their common content 

knowledge and SCK.  

One task focused on growing visual patterns. This topic became an interest to us because 

we noticed that PTs have difficulty using a variable to represent the index when constructing an 

algebraic expression that describes a growing visual pattern, which reflects the findings of 
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Warren and Cooper (2008) in regards to students’ thinking about visual patterns. Our learning 

goal for developing this task was that PTs would be able to use a variable to represent an index 

in a sequence of visual patterns and build an expression in terms of the variable to represent an 

arbitrary step in the sequence. After selecting a task from Boaler (2015) (see Figure 6) involving 

a linearly growing visual pattern and pre-assessing PTs’ knowledge, we implemented this task in 

two sections of a content course. 

 
 

In	groups:		
a. Draw	the	next	three	steps	of	the	pattern.		
b. Draw	the	10th	step	of	the	pattern.		
c. Express	in	words	a	general	rule	describing	how	to	create	any	step	in	the	pattern,	given	the	step	

number.		
d. Using	a	variable,	write	a	general	expression	that	tells	how	many	tiles	are	in	a	step	of	the	pattern,	

given	the	step	number. 

  
Figure 6. Original growing visual patterns task adapted from Boaler (2015). 

 
During the discussions motivated by this task, we noticed that the first iteration of the 

task uncovered, but did not explicitly address, two different procedural understandings. First, 

PTs used their previous knowledge of the formula for an arithmetic sequence (𝑎& + (𝑛 − 1) × 𝑑)	

and fit the numbers derived from the growing pattern into that formula (see Figure 7). It should 
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be noted that although these PTs recognized that they could describe the numerical pattern as an 

arithmetic sequence, most of them did not remember the formula but looked it up online before 

proceeding through the rest of the task. 

 

Figure 7. PTs fitting the numbers derived from the growing pattern into the formula for an 
arithmetic sequence. 

 

Second, PTs approached the task by numerically building a linear expression from a 

table, disregarding the growing visual pattern once the numerical table was built (see Figure 8). 

Once PTs had remembered a procedure that would produce an answer, they immediately applied 

it to all of the other given visual patterns. Since all of the given patterns grew linearly, the 

original task only reinforced PTs’ use of their procedural approaches (i.e., applying the formula 

for an arithmetic sequence or extracting the information about the pattern’s growth into tabular 

form and finding a way to relate the numerical quantities). 
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Figure 8. PTs in this group did not connect the development of their expression in part (d) with 
the visual attributes of the pattern expressed in part (c). 

 

 Based on our classroom observations and the post-assessment responses, we concluded 

that the design of the task successfully guided most PTs toward developing an algebraic 

expression for a given linearly growing visual pattern. However, many PTs found ways to 

proceduralize this task in ways we did not expect, based on their previous knowledge of linear 

relationships and arithmetic sequences, resulting in knowledge that reflected, at its deepest, the 

common content knowledge that Warren and Cooper (2008) documented with third grade 

students.  

PTs’ tendency towards procedure prevented them from developing SCK related to 

variables that we aim to develop in the course. As written, the task provides opportunities for 

PTs to fully exercise their mathematical authority by explaining their reasoning, assessing their 

expressions, and justifying their conjectures (Prasad & Barron, In-Press). However, during our 

class observations, we noticed that the first iteration of the task did not encourage PTs to justify 
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their expressions by connecting the visual representation of the pattern to each term of their 

expression. We determined that this understanding was an integral part of their MKT for this 

concept for a variety of reasons: (1) to create or assess tasks about visual patterns for students, 

teachers need to understand the visual growth of patterns, (2) teachers need opportunities to 

create, assess, and justify their own algebraic conjectures to support their students in doing the 

same, and (3) to support students’ learning of algebraic reasoning, teachers must be able to attach 

meaning to variables and terms in expressions arising from contextual problems.  

This directly affected the development of our own MTE-PCK; we now better understood 

the nature of the prior knowledge and preconceptions that PTs brought into this course 

(MTE-KCS), as well as the task’s ability to encourage the development of PTs’ MKT 

(MTE-KCT). In order to deepen PTs’ knowledge beyond common content knowledge and into 

SCK, we concluded that the word “represent” in the learning goal meant not only that PTs 

should understand that the variable represented the index of any particular term of the pattern, 

but also that the index is represented visually in the pattern; and, an algebraic expression can be 

built by identifying the parts of the pattern that grow with the index and the parts that remain 

constant. Therefore, we revised the task to encourage PTs to reflect on the relationship between 

the algebraic expression and the visual representation of the pattern. Being able to extend and 

(eventually) create a growing visual pattern may not be a necessary skill for young students, but 

it is for their future teachers.  

 We used the data we collected along with our observations in the classroom to redesign 

the task to address both the newly uncovered preconceptions and our more complete 

understanding of the learning goal. To help PTs establish the connection between the algebraic 

expression that describes the pattern and its visual representation, we redesigned the task to 
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create four subtasks (borrowing some components from Beckmann, 2013). Part I asks PTs to 

attend to the visual attributes of the terms in a pattern by asking them to identify which of four 

given visual patterns (that follow the same linear relationship, 3n + 5) fit a given verbal 

description of a pattern’s growth. Part II presents a linearly growing pattern, which is visually 

growing with respect to the index, and asks PTs to extend the pattern with drawings, describe the 

visual aspects of the growth in general, and write a general expression for the growth 

algebraically using variables. Part III repeats Part II, but PTs are now asked to investigate a 

pattern that grows quadratically to challenge them to move beyond their reliance on previous 

conceptions of linear relationships.  Lastly, Part IV asks PTs to draw a visual pattern following a 

given linear expression (2n + 3). The fully revised task can be found in the Appendix. 

The analysis of PTs’ work and subsequent redesign of the task is not only integral to the 

development of the curriculum for these courses, but also as a window into the MKTT used by 

the MTEs involved in this project. Tasks aimed at teaching mathematics to students can focus on 

developing their mathematical knowledge; tasks for PTs must not only develop their 

mathematical knowledge, but also uncover and address their previous conceptions. In order to 

develop PTs’ MKT, tasks for PTs, even when based on tasks for students, must facilitate 

relearning, instead of just learning. Thus, the purpose of designing tasks for PTs differs 

fundamentally from the purpose of designing tasks for students. As these processes have 

different purposes, it stands to reason that they require different knowledge bases. Moreover, the 

shift towards closer analysis of the visual attributes of the pattern and problem-posing in the 

revised task points to an awareness on the part of the MTEs of the ways in which PTs will need 

to operationalize this knowledge in their teaching careers. 
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Implications for Our Work as Mathematics Teacher Educators 

Our aim in this paper is to contribute to the growing research base on MTEs’ knowledge, 

by elaborating on domains of MKTT through the lens of our practice as MTEs, and to support 

MTEs who teach (or are preparing to teach) content courses for K-8 PTs. We are particularly 

concerned with the knowledge MTEs use to support PTs’ relearning. Relearning not only 

involves learning new content in ways needed for teaching, but also revisiting and revising 

procedurally understood content in more conceptually-oriented ways.  

As illustrated through our examples, the purposes of designing tasks for PTs differ from 

the purposes of designing tasks for students, thus illustrating differences between the knowledge 

needed to teach mathematics to students (MKT) and the knowledge needed to teach MKT to PTs 

(MKTT). Specifically, the first example highlights a task used to support PTs’ relearning of basic 

mathematical content by having them engage in a student’s unconventional thinking. The second 

example describes how MTEs designed and implemented a task that facilitated PTs’ relearning 

of fractions by encouraging them to develop sense-making strategies to use in place of familiar 

procedural strategies. And lastly,	the third example focuses	on revising tasks for PTs in ways that 

will help them develop SCK, which unexpectedly helped MTEs develop their own knowledge of 

content and PTs (MTE-KCS). Although these examples are not particularly novel, together they 

illustrate that the work of MTEs involves carefully considering mathematical tasks and 

pedagogical practices that support PTs’ learning and relearning. Therefore, MTEs’ work requires 

specialized knowledge that takes into account reshaping the knowledge of adult learners, which 

includes, but is fundamentally different from, the knowledge required to teach students. 

While these examples contribute to the small, yet growing research base on MTE knowledge, 

there is a need for more research that pays particular attention to ways in which MKTT is 
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different from MKT and how MTEs develop such knowledge. We see teachers’ use of their 

MKT to support students’ learning of mathematics as analogous to MTEs’ use of their MKTT to 

support PTs’ relearning of mathematics, as displayed in Figure 9 below. Thus, we posit that the 

research on teachers’ development of MKT may not only provide insight into ways in which 

MKT is different from MKTT, but also inform ways that researchers might conceptualize a 

research base for MTE knowledge and the ways in which this knowledge develops over time. 

 

Figure 9. Parallels between mathematical knowledge for teaching teachers (MKTT) and 
mathematical knowledge for teaching (MKT). 

 
 

Such a knowledge base could inform the design of professional learning opportunities for 

MTEs and those training to become MTEs. As the majority of content courses for elementary 

PTs are taught in mathematics departments by mathematics faculty with little or no experience 

teaching mathematics to young students (Masingila, Olanoff, & Kwaka, 2012), researchers are 

concerned with finding ways to better support the preparation and development of this group of 

MTEs (Greenberg & Walsh, 2008). MTEs would benefit from research-informed training 

offered through graduate programs, conferences, and/or professional development workshops to 

further develop all domains of their MKTT, as well as a repository of materials and resources 

designed for MTEs.  



TME, vol. 17, nos. 2&3, p. 395	

	

Our intention in presenting the examples above is to make visible the ways in which 

MTEs use domains of MKTT to support	PT learning and relearning in content courses. With 

more MTEs reflecting on their own knowledge and experience as teacher educators, researchers 

and practitioners can help to build a knowledge base and design practices necessary for 

developing effective and knowledgeable MTEs who are able to design and teach effective 

courses for PTs.  
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Appendix: Revised Growing Visual Patterns Task 
 

Activity:	Growing	Patterns	
	
Part	I		
	
Which	of	the	following	patterns	can	be	described	by	both	the	given	expression	(where	n	
represents	the	step	number)	and	the	written	description?	Explain	your	reasoning.		

Expression:	3n	+	5	

Verbal	Description:	A	column	of	five	squares	to	the	left;	immediately	to	the	right	of	that,	n	
columns	of	three	squares	each,	centered	on	the	first	column.		
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Part	II	

	
For	the	growing	pattern	shown	above:		

a. Draw	the	next	three	steps	of	the	pattern.		
b. Draw	the	15th	step	of	the	pattern.		
c. Express	in	words	a	general	rule	describing	how	to	create	any	step	in	the	pattern,	given	

the	step	number.		
d. Using	a	variable,	write	a	general	expression	that	tells	how	many	tiles	are	in	a	step	of	the	

pattern,	given	the	step	number.		

	
Part	III	
	

	
	
For	the	growing	pattern	shown	above:		

a. Draw	the	next	three	steps	of	the	pattern.		
b. Draw	the	15th	step	of	the	pattern.		
c. Express	in	words	a	general	rule	describing	how	to	create	any	step	in	the	pattern,	given	

the	step	number.	
d. Using	a	variable,	write	a	general	expression	that	tells	how	many	tiles	are	in	a	step	of	the	

pattern,	given	the	step	number.		

	
Part	IV	
Draw	a	growing	visual	pattern	that	grows	following	the	given	expression:	2n	+	3	
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