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Abstract 

The urban forest provides various ecosystem services. Urban tree canopy cover 

measurement is the most basic quantification of ecosystem services. There have been few 

studies focused on long-term high-resolution urban forest change analysis. Further, few if 

any of these studies have compared object based image analysis (OBIA) and random point 

based assessment for determination of urban forest cover. The research objective is to 

define the urban forest canopy area, location, and height within the City of St Peter, MN 

boundary between 1938 and 2019 using both the OBIA and random point based methods 

with high spatial-resolution aerial photographic images and Light Detection and Ranging 

(LiDAR) data. One facet of this project is to examine the impact of natural disasters, such 

as the 1998 tornado, and tree diseases on the urban canopy cover area. LiDAR data was 

used to determine the height and canopy cover density of the urban forest canopy. The 

results were used to compare and contrast the methods, with verification via ground 

truthing. Results show that both methods gave comparable accurate results. The total 

canopy cover area remained consistent until 1995, then increased post-tornado. The 

location of canopy cover areas has changed throughout St Peter over time due to the 



 

 

 

tornado, the increase in size of the City of St Peter, and land use change within the City of 

St Peter. The canopy change due to diseases was not detectable. 
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1. Introduction 

1.1 Project Overview 

Urban tree canopy cover measurement is the most basic quantification of potential 

ecosystem services provided by the urban forest, such as regulating (air purification, 

water filtration). Historically, there have been relatively few studies that have been 

focused on long-term high-resolution urban forest change analysis. Further, few if any of 

these studies have compared and contrasted object based image analysis (OBIA) and 

random point based assessment for determination of urban forest cover utilizing freely 

available remote sensing data.  

The City of St Peter is situated within the Minnesota valley with the Minnesota 

River on the east boundary and a bluff to the west, approximately 60 miles south of the 

Twin Cities (Figure 1) in south central Minnesota. The total area covered by the City is 

5.7 square miles and the population is approximately 11,400 (City of Saint Peter 2017). 

The majority of the street tree population consists of ash (Fraxinus spp.) and maple (Acer 

spp.), with other species present such as basswood (Tilia spp) and hackberry (Celtis spp.) 

(City of Saint Peter 2018). The objective of the research is to define the urban forest 

canopy area, location, density, and height within the City of St Peter boundary between 

1938 and 2019 utilizing high spatial-resolution aerial photographic images as well as 

Light Detection and Ranging data (LiDAR). One facet of this project is to examine the 

impact of natural disasters, such as the 1998 tornado, and tree diseases, e.g., Dutch Elm 

Disease (DED) and Butternut Canker, on the urban canopy cover area.  
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Figure 1. Location of research area 
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1.2 The Urban Forest 

The term Urban Forest has different meanings dependent on your native language 

and the country that you live in (Konijnendijk et al. 2005; Konijnendijk et al. 2006). The 

research into the origins of the term have focused primarily on the United States of 

America (USA) and Europe (Konijnendijk et al. 2006; Gerhold 2007). Homo sapiens 

have been living with and utilizing trees since before the written word; the earliest 

recorded use of the word “tree” was in 5800 B.C. (Campana 1999). Arboricultural praxis, 

generally defined as the traditions, customs, and procedures used to care for perennial 

woody plants (trees and vines) in the landscape (Harris 1983; Campana 1999; Lilly 

2010), has also been utilized in conjunction with individual tree use for millennia 

(Campana 1999).  

In Europe, the concept of trees within an urban environment has been 

acknowledged since the 1600s (Konijnendijk et al. 2006; Gerhold 2007) and in the USA 

since the 1900s (Ricard 2005). Prof. Erik Jorgensen, a Professor from the University of 

Toronto, first applied the term urban forest in 1965 (Konijnendijk et al. 2006; Gerhold 

2007; Jonnes 2016).  

There are a variety of definitions for the term urban forest (Konijnendijk et al. 

2006; Gerhold 2007); the most applicable definition is from the Society of American 

Foresters as quoted in Konijnendijk et al. (2006), “the art, science and technology of 

managing trees and forest resources in and around urban community ecosystems for the 

physiological, sociological, economic and aesthetic benefits trees provide society.” 

Hence, the urban forest provides a variety of benefits to urban communities; these 
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potential benefits and costs are collectively called ecosystem services (Nowak and Dwyer 

2007; Roy, Byrne, and Pickering 2012; Delshammar, Östberg, and Öxell 2015). 

1.3 Arbor Day and Tree City USA  

The urban forest as a concept and reality has been with us for some historical 

time. In the next section, I will be discussing the importance of the urban forest regarding 

its benefits to the urban landscape (ecosystem services). Before we move on, there are 

two important events worth mentioning in the formation, amalgamation, and 

consolidation of the concept of the urban forest within the USA.  

The first is Arbor Day. The concept of Arbor Day was presented to the Nebraska 

State Board as a resolution in 1872 by J. Sterling Morton. It was initially only celebrated 

in Nebraska, then within ten years in Kansas and Minnesota, but now 147 years later is 

celebrated in all 50 states, some states even observing a week or a month of tree planting 

celebrations (Miller 1988; Campana 1999; Jonnes 2016). Morton, quoted in Miller 

(1988), stated that it is a day “especially set apart and consecrated to tree planting in the 

State of Nebraska and the State Board of Agriculture hereby name it Arbor Day.”  

The second event is the creation of Tree City USA. In 1972 the Arbor Day 

Foundation (ADF) was created with the incorporation of Arbor Day; subsequently it 

became known as the National Arbor Day Foundation (Campana 1999; Jonnes 2016). 

One of the remits for the foundation was to create programs to highlight arboriculture; 

Tree City USA was one such program, created in 1976 by John Rosenow (Rosenow and 

Yager 2007; Jonnes 2016), initiated due to the concern regarding the lack of management 

of trees within cities (Campana 1999). The program was backed by the U.S. Forest 
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Service, National Association of State Foresters, the U.S. Conference of Mayors, and the 

National League of Cities (Campana 1999; Jonnes 2016). The concept was simple: to 

become a Tree City certain criteria had to be met, including the city having a tree board 

or city forester, spending a minimum of $2 per citizen on urban forestry projects, and 

having an ordinance specifically related to tree care.  

The yearly Arbor Day planting celebration and Tree City status has played a 

pivotal role in keeping trees within the public perception and creating an education 

platform for helping to understand, plant, and grow the urban forest we know today 

(Miller 1988; Campana 1999; Rosenow and Yager 2007). It should be noted, however, 

that there are differences between Tree City USA participant cites as well as between 

non-participants. Even though it was a small sample size, Galvin and Bleil (2004) in 

Maryland surmised the bigger the populace total, the more likely to participate. Tree City 

USA participants had a larger quantity of canopy cover per population than non-

participating cites but non-participating cities had a larger quantity of canopy cover for a 

given area, suggesting that Tree City USA in Maryland is achieving its goal of promoting 

urban forestry in areas with high populations and small urban forests and populations of 

trees (Galvin and Bleil 2004). A 2016 paper researching the national participation 

assessment of Tree City USA, Berland, Herrmann, and Hopton (2016) concurred that a 

higher population meant more likely participation. However, for populations of 

minorities or the uneducated there is not equal distribution of Tree City USA 

participation (Berland, Herrmann, and Hopton 2016).  
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1.4 Ecosystem Services 

Ecosystem services are benefits that the urban forest provides to humans and have 

a direct relationship to humans in the urban setting (Table 1); conversely, the urban forest 

is valued through ecosystem services. Ecosystem services can be broken down into four 

categories: supporting (biodiversity, habitat, and soil ecosystems), regulating (air quality, 

climate regulation), cultural (health and physical activity), and provisioning (fresh water, 

material, and energy) (Grant 2015).  

Dr. Kathleen Wolf, a research social scientist at the University of Washington, 

WA, in her presentation at the Minnesota Shade Tree Short Course (Bethel College, MN, 

2019) gave examples of cultural ecosystem services that have spanned nearly 40 years of 

research. She recommended attendees to go to the University of Washington website, 

Green Cities: Good Health (University of Washington 2018), where research topics are 

divided into themes, including Mental Health & Function, Crime & Public Safety, and 

Livable Cities. These cultural ecosystem service topics along with the other types of 

ecosystem services will be discussed at greater length in the literature review. 
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Table 1. Ecological service benefits associated with trees (Grant 2015) 

Benefits  Description  

Saving Energy  Trees can modify climate and conserve building 

energy by shading (reduces energy absorption), 

evapotranspiration (the process uses solar energy 

which subsequently cools the air), and by reducing 

wind speed (mitigates infiltration and heat loss) 

(Akbari et al., 2001)  

Reducing CO₂  Trees directly sequester CO₂ in stems and leaves 

while they grow. Trees near buildings reduce 

heating and cooling costs subsequently lowering 

emissions associated with power production 

(McHale et al., 2007)  

Improving air quality  Trees absorb gaseous pollutants (e.g., O₃, NO₂ and 

SO₂) through leaf surfaces. Trees intercept PM₁₀ 
(e.g., dust ash, pollen, smoke) and release oxygen 

through photosynthesis. Transpiration of water and 

shading of surfaces subsequently lowers air 

temperatures thereby reducing O₃ levels. Trees 

reduce energy use which reduces emissions of 

pollutants from power plants including NO₂, SO₂, 

PM₁₀ and BVOCs. Trees reduce evaporative 

hydrocarbon emissions and O₃ formation by shading 

paved surfaces and parked cars (Nowak et al., 2006)  

Reducing storm water runoff  Leaves and branch surfaces intercept and store 

rainfall thereby reducing runoff volumes and 

delaying peak flows. Roots increase the rate at 

which rainfall infiltrates soil as well as the soil's 

storage capacity. Trees reduce soil erosion by 

reducing the impact of the raindrops on barren 

surfaces. Transpiration through leaves reduces soil 

moisture content thereby increasing the soil's 

capacity to store rainfall (McPherson et al., 2007)  

Aesthetics and other benefits  Urban trees improve the aesthetic aspects of urban 

environments (Smardon, 1988) promote physical 

activity (Kaczynski and Henderson, 2007) and 

nearness to natural settings can reduce crime rates 

(Kuo and Sullivan, 2001b) and aggressive behaviors 

(Kuo and Sullivan, 2001a}  
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1.5 Urban Forest Assessment 

Ecosystems services are affected by the size, composition, and health of the urban 

forest. Assessment of the urban forest is therefore crucial to determine the above factors. 

The most accurate way to collect tree attribute data is by trained personnel going to 

individual trees within an urban forest. However, tree inventories can be resource 

intensive, being both time and financially consuming. In addition, it is often not 

physically possible or legal to get access to every tree within an urban environment. 

The use of remote sensing (remote assessment) such as satellite images, 

photographic images, LiDAR, etc. (Lillesand, Kiefer, and Chipman 2015), to assess the 

urban forest offers the potential to collect data for the majority of trees within an urban 

forest in a timely and cost effective manner. Remote sensing can show how the urban 

forest has changed over time or in response to natural disasters, e.g., species structure, 

canopy cover, canopy height, etc. (Nowak et al. 1996). One important aspect when 

looking at the urban forest is to view and review its historical context. It is important to 

know the size and location of the urban forest in the past and to see if it has increased or 

decreased. It can also show how events such as the 1998 tornado in the City of St Peter, 

and past tree diseases, e.g., DED and Butternut Canker, have affected the urban forest.  

For the City of St Peter, this information will prove indispensable for the 

management of locations for tree species to be planted, what species to plant, and policies 

to maintain the health of the urban forest. The evaluation of ecosystem services will help 

define the benefits and costs of the urban forest to the City administration and City 

council. Evaluation of the urban forest with knowledge of past urban forest management 
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practices can determine how future practices are performed and changed, e.g., how best 

to manage the current threat to the urban forest from the Emerald Ash Borer based on 

knowledge of the effect of DED. Furthermore, the methodology used in this study 

including the use of freely available data will be beneficial to other urban foresters and 

communities as they determine the value of the urban ecosystem services and impacts of 

natural disasters. 
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2. Literature Review 

2.1 Introduction 

This literature review considers the literature present on the urban forest, 

ecosystem services, remote sensing, Global Positioning Systems (GPS), Geographical 

Information Systems (GIS), Land Use/Land Class extraction (LULC), and the 

relationship between the urban forest and natural disasters. The review will create insight 

into and define the intersection of the topics. Ultimately, this will allow the 

comprehension of how the urban forest interacts with and benefits urban communities via 

ecosystem services, and how to determine and examine tree attributes and variables that 

combine to become the urban forest. In addition, natural disasters like the tornado that 

affected the City of St Peter, Minnesota (MN), USA in 1998 have a profound effect on 

the urban forest age, species, and canopy structure and size, etc.; utilizing remote sensing 

will help to quantify changes over time.  

The review is based on over 110 books, thesis, and articles published between 

1971 and 2019 (Table 2 & 3). The papers cited have a global geographic range 

encompassing Europe, East Asia, China, USA, and Canada. This review defines the 

urban forest and ecosystem services, examines ground and remote assessment of the 

urban forest, extraction of variables, and briefly describes the literature found on natural 

disasters, e.g., tornadoes and tree diseases within the urban forest. 
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Table 2. Literature review summary table, the urban forest, urban forest ecosystem services, 

urban forest assessment 
Literature 

Review 

Chapter 

Section # 

Topic Citations 

2.2 The Urban Forest  

2.2.1 History of Urban 

Forestry 

Konijnendijk et al. 2005; Ricard 2005; Konijnedijk et al. 

2006; Gerhold 2007; Jonnes 2016 

2.2.2 Definition of the Urban 

Forest & Canopy Cover 

Miller 1988; Jennings, Brown, and Sheil 1999; Rautiainen, 

Stenberg, and Nilson 2005; Konijnedijk et al. 2006; Gerhold 

2007; Nowak et al. 2013; Korhonen and Morsdorf 2014; 

Nowak et al. 2015; Berland, Herrmann, and Hopton 2016; 

Knight, Host, and Rampi 2016; Melaas et al. 2016; Plowright 

et al. 2016; Cowett and Bassuk 2017 

2.3 Urban Forest 

Ecosystem Services 

Nowak and Dwyer 2007; Roy, Byrne, and Pickering 2012; 

Delshammar, Östberg, and Öxell 2015; Grant 2015 

2.3.1 Ecosystem Benefits Harris 1983; Ulrich 1984; Miller 1988; Nowak and Dwyer 

2007; Jiang, Chang, and Sullivan 2014; Jiang et al. 2014; 

Grant 2015; Edmondson et al. 2016; Melaas et al. 2016; 

Dadea et al. 2017; Kondo et al. 2017 

2.3.2 Ecosystem Costs or 

Disservices 

Nowak and Dwyer 2007; Roy, Byrne, and Pickering 2012; 

Delshammar, Östberg, and Öxell 2015; Vogt, Hauer, and 

Fischer 2015; Conway and Yip 2016; 

2.3.3 Cost-Benefit Analysis Nowak and Dwyer 2007; Nowak et al. 2013; Grant 2015; 

Bodnaruk et al. 2017; USDA 2018a, b 

2.4 Urban Forest 

Assessment 

Wood 1999; Wolowicz and Gera 2007; Nowak 2008 

2.4.1 Ground Assessment Wolowicz and Gera 2007; Ward and Johnson 2007; Nowak 

2008; Mekik and Arslanoglu 2009; Ahmadzadeh et al. 2015; 

Hawthorne et al. 2015; Nowak et al. 2015; Olokeogun, 

Akintola, and Abodunrin 2016 

2.4.2 Remote Data Collection Lillesand, Kiefer, and Chipman 2015 

2.4.2.1 Photographic Images 

and Optical Satellites 

Nowak et al. 1996; Wulder 1998; Voss and Sugumaran 2008; 

Morgan and Gergel 2010; Morgan, Gergel, and Coops 2010; 

Nowak and Greenfield 2010; Moskal, Styers, and Halabisky 

2011; Lillesand, Kiefer, and Chipman 2015; Knight, Host, 

and Rampi 2016; Thenkabail, Lyon and Huete 2011; Ucar et 

al. 2016; Chen et al. 2017; Ma, Su, and Guo 2017; 

2.4.2.2 Light Detecting and 

Ranging (LiDAR) 

Lefsky et al. 2002; Lim et al. 2003; Chen et al. 2006; Omasa 

et al. 2007; Secord and Zakhor 2007; Voss and Sugumaran 

2008; Zhang and Qiu 2011; Li et al. 2012; Yao, Krzystek, and 

Heurich 2012; Shrestha and Wynne 2012; Tang, Dong, and 

Buckles 2013; Roberts 2014; Zhang, Zhou, and Qiu 2015; 

Hovi et al. 2016; Knight, Host, and Rampi 2016; Parmehr, 

Amati, and Fraser 2016; Plowright et al. 2016; Song et al. 

2016; Sumnall, Hill, and Hinsley 2016; Zhen, Quackenbush, 

and Zhang 2016; Birdal, Avdan, and Türk 2017; Lindberg and 

Holmgren 2017 
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Table 3. Literature review summary, urban forest analysis, uncertainty, error assessment and 

validation of land cover/land use classes, natural disasters and the urban forest 
Literature 

Review 

Chapter 

Section # 

Topic Citations 

2.5 Urban Forest Analysis  

2.5.1 Object Based Image 

Analysis 

Wulder 1998; Yu et al. 2006; Walker and Briggs 2007; Hay et 

al. 2008; Zhou and Troy 2008; Blaschke 2010; Morgan, 

Gergel, and Coops 2010; Myint et al. 2011; Moskal, Styers, 

and Halabisky 2011; Hussain et al. 2013; Meneguzzo, Liknes, 

and Nelson 2013; Morgan and Gergel 2013; Li and Shao 

2014; Wang and Weng 2014; Lillesand, Kiefer, and Chipman 

2015; Tewkesbury et al. 2015; Pu, Landry, and Yu 2018;  

2.5.2 i-Tree Software Walton, Nowak, and Greenfield 2008; Nowak et al. 2013; 

Grant 2015; Strunk et al. 2016; Bodnaruk et al. 2017 

2.6 Uncertainty, Error 

Assessment and 

Validation of Land 

Cover/Land Use Classes 

Hoffman and Markman 2001; Walton, Nowak, and 

Greenfield 2008; Richardson and Moskal 2014; Wang and 

Weng 2014; Lillesand, Kiefer, and Chipman 2015; Chen et al. 

2017; Congalton and Green 2019 

2.7 Natural Disaster and 

the Urban Forest 

 

2.7.1 Tornados Fujita 1971; Holland, Riordan, and Franklin 2006; Beck and 

Dotzek 2010; Bloniarz and Brooks 2011; Karstens et al. 2013; 

Micozzi, and Magsig 2002; Burgess et al. 2014; Gokaraju et 

al. 2015; Kingfield and de Beurs 2017 

2.7.2 Tree Diseases Townsend, Bentz, and Douglass 2005 

2.7.2.1 Emerald Ash Borer BenDor and Metcalf 2006; Muirhead et al. 2006; Mercader et 

al. 2009; Prasad et al. 2010; Siegert et al. 2011; McCullough 

and Mercader 2012; Anderson and Dragićević 2015; 

Davidson and Rieske 2016; Fahrner et al. 2017; Hauer and 

Peterson 2017; Spei and Kashian 2017; Fahrner et al. 2017; 

Cuddington et al. 2018 

2.7.2.2 Dutch Elm Disease Strobel and Lanier 1981; Brasier and Buck 2001; Giblin and 

Gillman 2009 

2.7.2.3 Butternut Canker Ostry and Woeste 2004; Broders et al. 2015; Morin et al. 

2018 
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2.2 The Urban Forest  

2.2.1 History of Urban Forestry 

The concept of the urban forest, if not the term, has been with us since at least the 

1600s in Europe (Konijnendijk et al. 2006; Gerhold 2007). In the USA during the early 

1900s, the precursor to the legal and conceptual definition of urban forestry occurred in 

New England. This was due to the threat of damage to trees within the urban environment 

due to urbanization and industrialization, e.g., road expansion, trenching, etc. (Ricard 

2005). The expression urban forestry is first known to have been used by Prof. Erik 

Jorgensen at University of Toronto in 1965, who needed a title for a student’s graduate 

thesis (Konijnendijk et al. 2006; Gerhold 2007; Jonnes 2016). However, Ricard (2005) 

stated that it may have been conceivably defined first by George R. Cook who was the 

Superintendent of Parks in Cambridge Massachusetts during the late 1800s. It 

subsequently became a popular term to use in the USA during the 1970s and reached the 

shores of Europe in the 1980s (Konijnendijk et al. 2005). 

2.2.2 Definition of the Urban Forest & Canopy Cover 

Prof. Erik Jorgensen wrote in 1970 the following urban forest description, quoted 

in (Konijnendijk et al. 2006; Gerhold 2007): 

Urban forestry is a specialized branch of forestry and has as its objectives 

the cultivation and management of trees for their present and potential 

contribution to the physiological, sociological and economic well being of 

urban society. These contributions include the overall ameliorating effect 
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of trees on their environment, as well as their recreational and general 

amenity value. 

Some other definitions of urban forestry were described in Konijnendijk et al. 

(2006) for the federal Cooperative Forestry Act of 1978, “… the planning, establishment, 

protection and management of trees and associated plants, individually, in small groups, 

or under forest conditions within cities, their suburbs and towns.” One final quote of 

interest is from the Society of American Foresters in the 1970s as quoted in Konijnendijk 

et al. (2006), “the art, science and technology of managing trees and forest resources in 

and around urban community ecosystems for the physiological, sociological, economic 

and aesthetic benefits tree provide society.” 

Urban forestry can be divided into sub-disciplines dependent on your specialist 

interest, e.g., municipal forestry manages public land, utility forestry manages trees near 

powerlines, etc. In addition, another aspect of urban forestry is silviculture. Urban 

silviculture is the practice of growing a sustainable urban forest. This practice usually 

refers to stands or grouping of trees within a naturalized or seeded area, e.g., riparian 

area, but there is a cross over with respect to individual trees and arboriculture (Miller 

1988). 

What is the definition of “urban” and “forest” within the term urban forest? The 

definition of urban changes through time, dependent on the concentration of humans 

within a given area (Nowak et al. 2001) and human perception and definition of what is 

rural and urban (Miller 1988; Konijnendijk et al. 2006). It is also important to 

acknowledge that there is not a defined line between urban and rural, particularly as you 
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pass temporally through landscape change in part due to the changing structure of 

communities (Miller 1988; Konijnendijk et al. 2006). The most frequently used solution 

to the question of what is urban for scholars and urban foresters is to define urban within 

the context of their work. When assessing urban forests in the conterminous USA, 

Nowak et al. (1996) used three types of census data to define the urban setting; at the 

other end of the spectrum, artificial boundaries can be used to define urban area, e.g., 

municipal city boundary. 

How is the forest in the term urban forest defined? Again, in a similar fashion to 

the term urban, forest has no clear definitions. In its most expansive form it is any type of 

vegetation within the defined urban environment, sometimes referred to as urban 

greenspace (Roy, Byrne, and Pickering 2012; Edmondson et al. 2016). Within this wide-

ranging definition, there is often a focus on all trees within the defined urban 

environment, excluding shrubs or vines (Nowak et al. 2013; Knight, Host, and Rampi 

2016; Melaas et al. 2016; Plowright et al. 2016). A subset focuses only on municipal 

street trees due to their public ownership (Nowak et al. 2015; Berland, Herrmann, and 

Hopton 2016; Cowett and Bassuk 2017).  

Canopy cover is defined in various ways; the most common definition comes 

from Jennings, Brown, and Sheil (1999): “Canopy cover refers to the proportion of the 

forest floor covered by the vertical projection of the tree crowns.” Further, Rautiainen, 

Stenberg, and Nilson (2005) refine the definition: “effective canopy cover takes into 

account both gaps between crowns and within crowns.” Korhonen and Morsdorf (2014) 

also use this definition, as does this research project. 
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2.3 Urban Forest Ecosystem Services 

 

The urban forest is valued through a process known as ecosystem services. 

Ecosystem services offer benefits as well as a cost/potential disservice to the population 

(Nowak and Dwyer 2007; Roy, Byrne, and Pickering 2012; Delshammar, Östberg, and 

Öxell 2015). To determine the ecosystem services, the urban forest needs to be assessed 

to quantify the health, species diversity, and the size and location of the urban forest. 

Ecosystem services are divided into four categories: one, regulating, e.g., air purification, 

water filtration; two, supporting, e.g., ecological services, soil management; three, 

cultural, e.g., physical, recreational, and mental health benefits; and four, provisioning, 

e.g., food, resources, and fuel (Delshammar, Östberg, and Öxell 2015; Grant 2015).  

2.3.1 Ecosystem Benefits  

All four of the ecosystem services will be discussed briefly within this literature 

review. Provisioning, however, has not been cited in the papers but from the author’s 

personal experience employed as an urban forester, timber utilization in its many forms is 

a very important generation of revenue and a valuable resource for a community. 

Examples of wood use within the community are as an energy resource, e.g., wood used 

in fires either as household heat or mulched and sold to wood burning power plants; 

timber is also utilized by sawmills both commercial and private to make furniture, e.g., 

black walnut (Juglans nigra). 

Some examples of the importance of regulating ecosystem services, discussed in 

the literature, are mitigating the urban heat island effect and air pollution. The urban heat 

island effect is the temperature increase linked to the urban environment as contrasted to 
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the surrounding land. The increase in heat is related to impermeable surfaces that 

decrease evaporation, absorb shortwave radiation, and decrease longwave energy loss 

back into the atmosphere. The raised temperature elevations have impacts on human 

health and ecosystems (Edmondson et al. 2016; Melaas et al. 2016). Edmondson et al. 

(2016) and Melaas et al. (2016) both inferred the urban forest moderates and reduces the 

heat island effect. 

The improvement in air quality via air purification takes place in trees in multiple 

ways; one example is the interception of particulate matter (PM10), e.g., dust, pollen, ash, 

etc. This is accomplished in three ways: one, gravity: reduction in air movement causes 

heavy particles to fall to surface; two, absorption: trees, particularly conifers, trap 

particulate matter within their leaves/needles; and three, precipitation: removal of PM10 

from surface of trees during precipitation events. The second example is the removal of 

gases potentially detrimental to human health, e.g., O3, SO2, and NO2 through absorption 

into plant tissue (Harris 1983; Miller 1988; Grant 2015; Dadea et al. 2017). 

Cultural ecosystem services have been discussed at least since Ulrich (1984) in 

his seminal paper “View through a window may influence recovery from surgery”. One 

aspect of cultural ecosystem services discussed within the literature research was how the 

urban forest influences crime rates and human stress levels and well-being (Nowak and 

Dwyer 2007; Jiang, Chang, and Sullivan 2014; Jiang et al. 2014; Kondo et al. 2017). 

Kondo et al. (2017) asked in what way the Emerald Ash Borer (EAB) has influenced 

urban forest deforestation and if this deforestation has had any effect on the crime rate in 

Cincinnati. The results of the paper conclude that a decrease in the urban forest due to 
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EAB can be associated with an upsurge in rates of crime in Cincinnati (Kondo et al. 

2017).  

Jiang et al. (2014) determined in their paper “A dose-response curve describing 

the relationship between urban tree cover density and self-reported stress recovery” that 

stress recovery can be “significantly” greater with a high density of trees. Further, Nowak 

and Dwyer (2007) stated that “reduced stress and improved physical health for urban 

residents have been associated with the presence of urban trees and forests in a number of 

environments.” (36). An interesting aside regarding stress and gender: in their paper, 

Jiang, Chang, and Sullivan (2014), determined that for women there was no relationship 

between changes in the density of the tree canopy and reduction of stress levels; however 

for men, for maximum stress level reduction, tree density ideally was between 1.7% and 

24% (Jiang, Chang, and Sullivan 2014). 

Finally, the urban forest can be viewed as a supporting asset that contributes to 

urban wildlife biodiversity and in turn a decline in biodiversity can be an indicator of 

decline in the health of the urban ecosystem (Nowak and Dwyer 2007). Urban wildlife 

contributes to the comfort and welfare of the populace (Miller 1988) but can also be 

reservoirs for wildlife species that are at risk (Nowak and Dwyer 2007). 

2.3.2 Ecosystem Costs or Disservices 

In the previous section some ecosystem benefits of the urban forest were 

analyzed. More emphasis on research for benefits has been done than on costs/disservices 

of the urban forest as highlighted in Roy, Byrne, and Pickering (2012), Conway and Yip 

(2016), and discussed in Vogt, Hauer, and Fischer (2015) where only 18 of the 115 
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(15.6%) papers reviewed in Roy, Byrne, and Pickering (2012) contained reference to the 

issue of cost/disservice. Some urban forest costs/disservices include:  

A. Tree maintenance, e.g., tree removal, planting, pruning, watering, and 

management of tree risks (Nowak and Dwyer 2007; Roy, Byrne, and 

Pickering 2012) 

B. Reduction in light, e.g., reduction in street lighting intensity due to canopy 

cover (Roy, Byrne, and Pickering 2012) 

C. Human health, e.g., pollen and Volatile Organic Compounds (VOC) 

production by trees (Nowak and Dwyer 2007) 

D. Damage to infrastructure, e.g., sidewalk damage due to roots (Roy, Byrne, 

and Pickering 2012) 

In addition, other less easily quantifiable costs/disservices are fears or risk (either real or 

perceived), e.g., fear of a crime happening in an area heavily populated by trees 

(Delshammar, Östberg, and Öxell 2015). 

2.3.3 Cost-Benefit Analysis 

Ecosystem services can be assessed using specific software, e.g., i-Tree, which 

can evaluate the urban forest using a cost-benefit ratio (Nowak et al. 2013; Grant 2015; 

Bodnaruk et al. 2017). The i-Tree suite of tools was developed by the U.S. Forestry 

Service and other collaborators to evaluate urban forest ecosystem services (USDA 

2018b, a). There are, however, limits to the current software as it is not able to put a 

monetary value to some benefits, e.g., aesthetic beauty of a tree or the improvements in 

mental health associated with trees. In addition, the urban forest is not isolated and 
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interacts with many other facets that make cost-benefit analysis difficult (Nowak and 

Dwyer 2007).  

2.4 Urban Forest Assessment  

Ecosystems services, as previously described, are affected by the dimension, 

structure, and health of the urban forest. To determine the ecosystem services and cost-

benefit ratio of the urban forest, it therefore needs to be evaluated. A tree inventory is a 

record of assets (Wolowicz and Gera 2007) and a practical way of recording the 

individual tree attributes within an urban forest; it can also be an essential tool for urban 

forest management (Wood 1999; Wolowicz and Gera 2007). When assessing the urban 

forest four key questions need to be asked: (1) what is the area of study (street, park, City, 

etc.)? (2) are all the trees in the area to be studied (sample survey or exhaustive/complete 

survey)? (3) is only ground data, remote data, or a combination of both to be used for 

attribute/variable collection? and (4) what attributes/variables will be quantified? (Nowak 

2008) 

The following section will discuss the literature reviewed pertaining to the uses of 

GIS, remote sensing, and GPS technologies on urban forestry monitoring and 

management; it is divided into ground assessment and remote data assessment of the 

urban forest. Then I will specifically discuss urban forest analysis, then natural disaster 

and the urban forest. 

2.4.1 Ground Assessment  

Ground assessment is a survey of the tree population within an urban 

environment, which can range from a sample survey to a comprehensive tree survey 
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(Nowak et al. 2015). However, the practicalities of an urban environment mean that even 

a survey termed “comprehensive” will not be exhaustive as it is not always possible to 

evaluate trees on private land, if budgets are restricted, or practical to evaluate all trees 

within a given area.  

Ground based urban forest attribute collection is the simplest way to get 

information, e.g., number of trees, species, diameter at breast height (DBH), condition, 

etc. Ground based surveys can be either based on sampling or a complete inventory 

(Wolowicz and Gera 2007; Nowak 2008) and can either collect in its basic form only tree 

numbers, e.g., windshield survey (Wolowicz and Gera 2007), or more attribute 

information. Nowak et al. (2015) in their paper “Simple street tree sampling” suggested 

that ideally a complete survey should be carried out as this provides data that is critical 

for management. If this is not possible, there are a variety of sampling procedures that 

can give generalized information regarding the urban forest; they also argued that the use 

of any tree sampling technique is better than not sampling the urban forest. However, 

there can be error with the survey if it is not complete. The size of the error depends on 

how many samples you undertake and can affect your ecosystem service evaluation. 

GPS, in conjunction with GIS, has proved an invaluable tool when undertaking 

ground assessment of the trees within an urban forest (Ward and Johnson 2007; 

Hawthorne et al. 2015). The literature examined for the use of GPS/GIS in urban forest 

assessment is focused on three topics: the reasoning and specific methods for the use of 

GPS, the application of GPS, and the justification for the use of GPS for urban forest 

assessment and of ecosystem service determination. 
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For the reasoning and methods of using GPS, one paper detailed the difference in 

accuracy between Real Time Kinematic GPS (RTK GPS) and a Static GPS survey; the 

paper showed that not only are the accuracies comparable but that the work can be done 

in half the time using RTK GPS (Mekik and Arslanoglu 2009). In the second paper, 

Ward and Johnson (2007) looked at how GPS and GIS are used to manage urban forests 

by providing complex information in a format that is easily accessible.  

Three papers reviewed the applications of GPS with GIS in three international 

locations. Two papers detailed the use and advantages of using GPS to locate boulevard 

trees in New Delhi, India (Ahmadzadeh et al. 2015) and Ibadan, Nigeria (Olokeogun, 

Akintola, and Abodunrin 2016) and one paper used GPS to map non-native invasive 

species in an urban forest in Atlanta, Georgia (Hawthorne et al. 2015). Of interest in this 

particular paper was the use of polygons to encapsulate large areas of invasive species 

rather than using points only (Hawthorne et al. 2015). Of note is the use of GPS and GIS 

in the global south (Ahmadzadeh et al. 2015; Olokeogun, Akintola, and Abodunrin 

2016). 

2.4.2 Remote Data Collection 

Remote data collection or remote assessment, i.e., the use of remote sensing 

equipment, e.g., LiDAR, aerial photographic images, satellite data, etc., (Lillesand, 

Kiefer, and Chipman 2015) to collect tree attributes offers the potential for urban 

foresters and communities a way to collect data on a greater number of trees and hence 

generate a more comprehensive evaluation of the urban forest. This is particularly true 



23 

 

 

with the reduction in cost of unmanned aerial vehicles and remote sensing equipment 

used with them.  

2.4.2.1 Photographic Images and Optical Satellites 

Aerial photography is the eldest, longest used, and temporally consistent form of 

remote sensing having initially been started by a photographer Gaspard-Félix who 

attached a camera to a tethered balloon taking a picture of Mal de Bievre an area close to 

Paris, France in the 1850s (Wulder 1998; Lillesand, Kiefer, and Chipman 2015). It has 

been used to determine landscape change in the USA since the 1930s (Morgan and 

Gergel 2010; Morgan, Gergel, and Coops 2010) and aerial photographic technology has 

subsequently changed over time with changes in radiometric properties, i.e., tone 

(greyscale) and color (Hue). 

The literature reviewed on using photographic images to determine urban tree 

canopy assessment focuses on three topics: (1) comparison of aerial photographic image 

and remote sensing sampling methods to determine canopy cover; (2) different sampling 

approaches using aerial photographic images for canopy cover assessment; and (3) using 

aerial imagery to view historical canopy cover. 

Five papers discussed comparisons between using aerial photography images and 

LiDAR and satellite imagery to assess canopy cover. In particular, three of these papers 

specifically compared aerial images to LiDAR. One paper created LULC classifications 

using OBIA; the last paper compared derived canopy cover assessment from the National 

Land Cover Database (NLCD) and photo images. Chen et al. (2017) showed that both 

LiDAR and aerial images had specific flaws and that the use of either technique was 
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dependent on what questions were asked. Knight, Host, and Rampi (2016) used National 

Agriculture Imagery Program (NAIP) and LiDAR data to evaluate the canopy cover in 

the Twin Cities, MN; they showed that using OBIA for both images and LiDAR 

increases accuracy. However, there were challenges due to the large volumes of data. 

When using LiDAR, satellite and aerial photograph images, Ma, Su, and Guo (2017) 

found that all three were comparable for determination of canopy cover at a forest stand 

resolution; however, LiDAR proved more accurate for sparse or dense forest. Moskal, 

Styers, and Halabisky (2011) used hyperspectral resolution satellite images and 

photographic images with a resolution below 1m in conjunction with OBIA to create 

LULC classifications. They showed that the spectral content was more important than 

spatial content and, using OBIA, repeatable results were achieved. Nowak and Greenfield 

(2010) compared NLCD tree canopy cover estimates with photo interpreted estimates and 

showed that the NLCD derived data severely underestimates estimation of tree canopy 

cover compared to photo interpretation. Hyperspectral images have also been used to 

assess individual tree species and forest health (Voss and Sugumaran 2008; Thenkabail, 

Lyon, and Huete 2011). Further, the reducing cost of using unmanned aerial vehicles 

(UAVs) increases options for local data collection (Bahe 2018; Li et al. 2019). 

Two papers detailed methods to analyze and deduce canopy cover extent from 

only aerial photographs. Nowak et al. (1996) detailed various methods to analyze aerial 

photographs, e.g., crown cover scale, dot method, and indicates their strengths and 

weaknesses, Ucar et al. (2016) compared two different sampling approaches (cluster 

sampling and random point based) to assess two different imagery sources (Google Earth 
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and NAIP), for two similar sized US cities. The results showed that using both sampling 

approaches yielded similar statistical results as did using the different imagery sources.  

2.4.2.2 Light Detecting and Ranging (LiDAR) 

The literature on LiDAR, the urban forest canopy, and crown detection for 

individual trees concentrates on a select number of topics, focused on airborne discrete-

return and waveform LiDAR. Discrete return LiDAR quantifies the time taken for either 

singular or multiple (2-5) laser pulse returns from a struck surface. In contrast, waveform 

LiDAR measures the complete variation in return time for each individual returned laser 

pulse (Lefsky et al. 2002; Sumnall, Hill, and Hinsley 2016). The literature concurred that 

both types of LiDAR or LiDAR in combination with other types of remote sensing data, 

e.g., hyperspectral images, etc., are becoming progressively significant in the evaluation 

of individual tree attributes and the urban forest structure.  

Some papers focused on areas with no or limited structures, e.g., buildings, etc., 

such as forests, parks, or non-urban environments where the lack of structures allowed 

the researchers to concentrate only on the extraction of tree variable data (Lim et al. 

2003; Chen et al. 2006; Omasa et al. 2007; Secord and Zakhor 2007; Tang, Dong, and 

Buckles 2013; Birdal, Avdan, and Türk 2017). Most papers reviewed concentrated on 

trees or urban forest within the urban environment. In contrast, the 3 papers on waveform 

LiDAR discuss forest variables, e.g., tree species classification within a forest 

environment not an urban forest (Yao, Krzystek, and Heurich 2012; Hovi et al. 2016; 

Sumnall, Hill, and Hinsley 2016)  
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Four papers referred specifically to the use of discrete return LiDAR to determine 

urban forest health within the urban environment (Shrestha and Wynne 2012; Zhang, 

Zhou, and Qiu 2015; Plowright et al. 2016; Song et al. 2016). Due to the restrictions of 

using discrete return LiDAR independently to determine the structure of the urban forest 

canopy, e.g., the complexity of isolating geometrically analogous trees and buildings 

from LiDAR data (Parmehr, Amati, and Fraser 2016), other papers discussed using 

LiDAR with different forms of remote sensing, e.g., hyperspectral data using algorithms 

to integrate the data (Voss and Sugumaran 2008; Zhang and Qiu 2011; Alonzo, 

Bookhagen, and Roberts 2014; Knight, Host, and Rampi 2016; Parmehr, Amati, and 

Fraser 2016).   

Currently, there is a debate over the limits of LiDAR data (point clouds) for 

determining biophysical variables for trees, e.g., DBH. Shrestha and Wynne (2012) 

suggested that there were few experiments that derived biophysical parameters from 

LiDAR alone and in their research experiment they undertook the evaluation of 

biophysical parameters. Other studies since 2012 continue to use LiDAR with other 

remote sensing data, e.g., aerial imagery (Knight, Host, and Rampi 2016; Parmehr, 

Amati, and Fraser 2016) to define biophysical parameters. However, research using only 

LiDAR point clouds to estimate biophysical parameters continues (Li et al. 2012; Zhang, 

Zhou, and Qiu 2015; Zhen, Quackenbush, and Zhang 2016; Lindberg and Holmgren 

2017). 
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2.5 Urban Forest Analysis 

2.5.1 Object Based Image Analysis 

From a remote sensing perspective, the urban forest canopy can be viewed as just 

one type of land cover category. Information from remote sensing systems can be stored 

either in an analog or digital form (Wang and Weng 2014) and the basic unit of a digital 

image that is a representation of a category, e.g., urban forest canopy, is a pixel (Wulder 

1998; Lillesand, Kiefer, and Chipman 2015; Tewkesbury et al. 2015). The literature 

states that, historically, the major method to extract LULC data from remote sensing 

digital imagery, i.e., satellite or digital/scanned aerial photography, is through the 

utilization of per-pixel based classification methods (Moskal, Styers, and Halabisky 

2011; Hussain et al. 2013; Li and Shao 2014).  

Per-pixel based methods do have limitations particularly with high resolution 

satellite and aerial photographic images. For example, Yu et al. (2006), Meneguzzo, 

Liknes, and Nelson (2013), Li and Shao (2014), and Pu, Landry, and Yu (2018) detail the 

“salt-and-pepper” effect caused by increased spectral variance within a designated LULC 

class caused by the increase in the number of pixels per unit area. This problem is 

compounded for the urban environment due to the complex nature of the spectral domain 

in this setting (Zhou and Troy 2008; Myint et al. 2011).  

OBIA is an alternative method to per-pixel based LULC extraction. Unlike per-

pixel extraction, which predominantly uses spectral variance of pixels, OBIA uses a 

potential combination dependent on algorithms of spectral, shape, spatial, textural, 

contextual, and topological attributes of a set or patch of pixels (Walker and Briggs 2007; 
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Hay et al. 2008; Blaschke 2010; Moskal, Styers, and Halabisky 2011). Due to OBIA’s 

ability to extract LULC using multiple attributes, it is ideally suited to analyze changes to 

high resolution, temporally changing photographic images (Walker and Briggs 2007; 

Morgan, Gergel, and Coops 2010; Moskal, Styers, and Halabisky 2011; Meneguzzo, 

Liknes, and Nelson 2013; Morgan and Gergel 2013). 

2.5.2 i-Tree Software 

Walton, Nowak, and Greenfield (2008) are credited for the creation of the USDA 

Forest Service’s i-Tree Canopy. In their 2008 paper, they discuss the use of random 

sampling and associated computation of standard error as a tool to photointerpret digital 

orthophotographs to determine forest canopy cover.  

Four other papers also explicitly mentioned the U.S. Forestry Service’s i-Tree as 

the preferential software system to determine ecosystem services (Nowak et al. 2013; 

Grant 2015; Strunk et al. 2016; Bodnaruk et al. 2017). Two papers used the i-Tree model 

to predict where trees need to be planted (Grant 2015; Bodnaruk et al. 2017) and Strunk 

et al. (2016) used the USDA Forest Service’s Forest Inventory and Analysis (FIA) 

program to observe urban plots, differentiate the urban forest, then used i-Tree to 

estimate the data to be added to an urban tree inventory. 

2.6 Uncertainty, Error Assessment and Validation of Land Cover/Land Use Classes 

A fundamental component for the ability to use assigned LULC is the validation 

that the assigned class is indeed correct and in the precise location (Walton, Nowak, and 

Greenfield 2008). Richardson and Moskal (2014) discussed uncertainty in urban forest 

canopy assessment by using Seattle, WA, USA as a case study and by comparing 
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historical canopy assessments methods with their own. The paper clarified the need for 

error assessment, either quantitative or qualitative, if canopy cover assessment is to be 

viewed over time.  

Congalton and Green (2019) define qualitative error assessment as does the map 

“look good” and suggest two methods: similarity analysis and an error budget to provide 

additional error criteria of the map. Quantitative error assessment can be divided into 

positional and thematic assessment. Positional accuracy determines if the defined objects 

(LULC) are in the precise location and thematic accuracy determines if the correct LULC 

has been determined for the precise location (Wang and Weng 2014; Lillesand, Kiefer, 

and Chipman 2015; Congalton and Green 2019).  

In validation assessment it is also crucial that the appropriate sampling unit, e.g., 

pixel, sets of pixels, or polygon, is used for the appropriate LULC extraction software 

(Chen et al. 2017; Congalton and Green 2019) and that human bias regarding 

interpretation also needs to be acknowledged and accounted for (Hoffman and Markman 

2001). 

2.7 Natural Disaster and the Urban Forest 

Finally, the literature with respect to the use of remote sensing and/or ground 

assessment to determine and categorize the effect of tornados and tree diseases on the 

urban forest and its effect on ecosystem services were reviewed. 

2.7.1 Tornados 

The tornado literature can be divided into four groups. First is the use of aerial 

and ground photographic images to describe and classify tornado types based on damage, 
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i.e., Fujita (EF) scale (Fujita 1971). Second is the identification of tornados (not land use 

specific); these papers use a combination of Synthetic Aperture Radar (SAR) and/or 

multispectral satellite imagery, then use per-pixel methods to extract LULC change, e.g., 

creating a normalized difference vegetation index (NDVI).(Yuan, Dickens-Micozzi, and 

Magsig 2002; Gokaraju et al. 2015; Kingfield and de Beurs 2017). Third, three articles 

specifically use aerial photographic images to assess damage associated with tornados. 

One paper analyzes photographic images to view the widespread damage that occurred 

on May 20th, 2013 tornado in Moore, Oklahoma, USA (Burgess et al. 2014). Karstens et 

al. (2013) utilize aerial photographic images to digitize the direction trees fell in the 

tornado event and compare this to computational simulations of tree falling directions 

based on the wind direction for tornado damage in Missouri and Alabama. Bloniarz and 

Brooks (2011) detail how the 2011 tornado in Springfield, MA effected the residential 

boulevard street tree canopy cover and the subsequent effect on the temperature and 

humidity in that area. Finally, two papers discussed the modeling and reconstruction of 

tornados within a forested landscape (Holland, Riordan, and Franklin 2006; Beck and 

Dotzek 2010). 

2.7.2 Tree Diseases 

2.7.2.1 Emerald Ash Borer 

Tree diseases can have a significant impact on the forest and urban forest as has 

been recently witnessed by the epidemic of the mountain pine beetle (Dendroctonus 

ponderosae) within the Black Hills, South Dakota (Mullen, Yuan, and Mitchell 2018) or 

the introduction of the non-native EAB (Agrilus planipennis; Fairmaire (Coleoptera 
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Buprestidae)) (Figure 2) throughout the eastern and mid-western states. With particular 

emphasis on the urban forest, the non-native invasive beetle, EAB was first discovered in 

Michigan and Ontario in 2002 (Mercader et al. 2009; Siegert et al. 2011; McCullough 

and Mercader 2012). Since 2002 it has spread to more than twenty states and two 

Canadian provinces (Muirhead et al. 2006; Anderson and Dragićević 2015; Fahrner et al. 

2017). EAB larvae feed on the phloem of the four main ash tree species (Fraxinus spp.) 

found in the USA: white ash (F. americana), black ash (F. nigra), green ash (F. 

pennsylvanica), and blue ash (F. quadrangulate) (BenDor and Metcalf 2006). As the 

density of the population of larvae increases, more phloem is consumed resulting in the 

eventual death of the ash tree (McCullough and Mercader 2012; Cuddington et al. 2018); 

in Michigan, death rates for ash are 99% (Spei and Kashian 2017). With the exception of 

blue ash which is showing some resistance to EAB (Davidson and Rieske 2016; Hauer 

and Peterson 2017; Spei and Kashian 2017), ash trees have no natural defenses and there 

are no native enemies to protect against EAB (Davidson and Rieske 2016). The total 

Figure 2. Emerald Ash Borer beetle identification poster (MNDNR 2019a) 
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monetary and environmental services cost across the USA associated with EAB is 

colossal with totals exceeding $300 billion (Muirhead et al. 2006; Prasad et al. 2010; 

Hauer and Peterson 2017). 

Historically within the Midwest there have been two other tree diseases that have 

affected the urban forest. The butternut (Juglans cinerea L.) and particularly the 

American elm (ulmus americana L) trees were both highly visible within the urban forest 

(Townsend, Bentz, and Douglass 2005) and naturalized areas prior to the 1980s but due 

to DED (Ophiostoma ulmi and O. nova-ulmi) and Butternut Canker (Sirococcus 

clavigigenti-juglandacearum), they have with the exception of a few disease resistant 

“survivor” trees disappeared from the landscape. 

2.7.2.2 Dutch Elm Disease 

DED is caused by the fungus Ophiostoma ulmi and O. nova-ulmi and is 

transmitted from an infected tree to a non-infected tree by the elm bark beetle (Scolytus) 

(Brasier and Buck 2001). Figure 3 illustrates the effects of the fungus on the leaves. 

There were two pandemics associated with DED; the first occurred in Europe during the 

1930s the second occurred during the mid-1970s; at this point the USA was already 

heavily infected with Minnesota’s initial infection being in 1961 (Strobel and Lanier 

1981; Brasier and Buck 2001). The number of trees lost nationally since the 1970s is 

estimated to be in the hundreds of millions and in Minnesota, the City of Minneapolis 

now has a fraction of the City’s estimated 200,000 pre-DED elm trees (Giblin and 

Gillman 2009). 
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Figure 3. An illustration (a-h) showing the progressive symptoms of Dutch Elm Disease 

on tree leaves (Strobel and Lanier 1981) 

(a) (b) 

(c) 

(e) (f) 

(h) (g) 

(d) 
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2.7.2.3 Butternut Canker 

The butternut tree unlike the American elm was not as populous within the forest 

and urban forest; however, its demise due to butternut canker is still important with 

respect to tree diversity and canopy cover. The pathogen was first reported in the USA in 

Wisconsin in 1967 (Broders et al. 2015). Like DED it is a fungal disease (Figure 4) that 

can spread using vectors such as beetles or infected seeds and rain splashes (Broders et al. 

2015). In 1992, Minnesota was the first state to actively protect the butternut tree (Ostry 

and Woeste 2004); however, since the 1980s it is estimated that the population of 

butternuts within the USA has decreased by 58% (Morin et al. 2018). 

Figure 4. Symptoms of butternut canker on trunk (a, b); stem (d) caused by 

fungus (c) (Broders et al. 2015) 
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2.8 Conclusions 

The literature has shown that the ecosystem services provided by the urban forest 

are measurable and beneficial to the urban environment. To ascertain all of the potential 

ecosystem services an accurate description of the urban forest needs to be provided. 

Ground based data (complete tree inventories) is the most accurate way to collect data on 

the urban forest, however, it is time consuming, expensive, and it is often impractical or 

illegal to collect data on all of the trees within the urban forest, e.g., getting access to 

trees in backyards or in naturalized areas. Remote sensing offers advantages for 

collecting data as it is collected remotely and on a large scale giving an urban forester 

access to previously inaccessible information.  

Ground assessments and remote sensing tools each have has pros and cons 

depending on, for example, the spatial resolution needed for a given variable. Another 

limiting factor in assessing the urban forest is cost. For example, high resolution remote 

sensing data can be expensive, as is the hardware to store the large amounts of data, but 

this needs to be weighed against the cost of a complete ground assessment. In addition, 

often ground-based data is needed in conjunction with remote sensing data because of the 

limitation of extracting individual trees from satellite data. It is also important to be 

aware of any limitations of using a survey technique or combination of techniques when 

assessing the urban forest. 

With respect to natural disasters within the urban forest, remote sensing in all its 

forms has proved instrumental in tornado classification and also in the determination of 

damage associated with tornados in a variety of land classes including the urban forest. 
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The literature review has also shown the impact that tree diseases can have on tree 

diversity and the forest/urban forest structure, e.g., canopy size. 
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3. Data and Methodology 

3.1 Data 

The data for the thesis was acquired from a variety of sources. It consists of 

digital ortho-images, unrectified aerial images, scanned images and historical maps, 

vector data, and LiDAR data. Tables 4 and 5 provide detailed information regarding the 

multi-source datasets.  

3.1.1 Photographic Image Selection Criteria 

A large amount of aerial photographic images was surveyed to determine the best 

images to extract the urban forest canopy cover. As the research is based on a historic 

assessment, both panchromatic and color images were reviewed; it was important to 

maximize canopy cover extraction and to be consistent with the monthly variation in 

urban tree leaf area/canopy cover. The choice of aerial photographic images used to 

extract urban forest canopy cover was based on seven selection criteria: (1) high image 

resolution, i.e., 600 DPI or pixel resolution 3.06 ft or greater; (2) minimum map scale of 

1:20,000; (3) trees with leaf on; (4) historical photographic images preferentially taken 

during the same months; (5) images should contain the full areas within the City of St 

Peter boundary of 1928 and 2017; (6) ease of access to and availability of images; and (7) 

access to images just prior to and post 1998 tornado, to assess the impact of the tornado 

on the urban forest canopy cover. Using these criteria, multi-temporal photographic 

images were selected for 1938, 1951, 1964, 1995, 2008, and 2017 (Table 4).  
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Table 4. Photographic images & Map datasets acquired for this study 
Data Type Source Date of 

Image 

File Type Coordinate System Resolution/Scale  

Hardcopy 

Historical 

Engineering 

Map 

City of St Peter, 

Engineers Office, 

MN 

1928 .tif NAD_1983_HARN

_Adj_MN_Nicollet

_Feet 

600 DPI/1:500 

Hardcopy 

Historical Aerial 

Photograph 

City of St Peter, 

Engineers Office, 

MN 

July-

August^/ 

1995 

3-band, 

natural 

color/.tif 

NAD_1983_HARN

_Adj_MN_Nicollet

_Feet 

600 

DPI/1:600/3.06 ft 

Digital NAIP 

Vertical Aerial 

Photographs 

Minnesota 

Historical Aerial 

Photographs 

Online (MHAPO) 

July/ 

1938 

Panchromatic/

.jpg 

NAD_1983_HARN

_Adj_MN_Nicollet

_Feet 

600-1200 

DPI/1:20,000/3.0

6 ft 

July/ 

1951 

Panchromatic/

.jpg 

NAD_1983_HARN

_Adj_MN_Nicollet

_Feet 

600-1200 

DPI/1:20,000*/3.

06 ft 

July-

August/196

4 

Panchromatic/

.jpg 

NAD_1983_HARN

_Adj_MN_Nicollet

_Feet 

600-1200 

DPI/1:20,000/3.0

6 ft 

United States 

Geological 

Survey (USGS)  

July/ 

2008 

4-band; color 

near 

infrared/Geo 

Tiff 

NAD_1983_UTM_

15N 

3.06 ft 

August/ 

2017 

4-Band; color 

near 

infrared/Geo 

Tiff 

NAD_1983_ UTM_ 

15N 

3.06 ft 

i-Tree Canopy 

Aerial 

Photographs 

United 

Department of 

Agriculture 

(USDA) Farm 

Service Agency 

2008/ 2019 N/A N/A 3.06 ft 

*No Scale shown on photographic image or within metadata from MHAPO or MNDNR. 

Assumption of scale based on 1938 and 1964 images that show scale within photographic image. 

^No data shown for month image captured. Visual interpretation indicates image captured July-

August. 
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Table 5. Vector and LiDAR datasets acquired for this study 

 

 

 

 

 

 

 

 

 

 

 

 

Data Type Description Source Date  File Type  Coordinate 

System 

Resolution/

Scale  

Vector Data City of St 

Peter Roads 

Nicollet County, 

MN 

2017 .shp/Line NAD_1983_H

ARN_Adj_MN

_Nicollet_Feet 

N/A 

Nicollet 

County Tax 

Parcel data 

Nicollet County, 

MN 

2017 shp/Polygon NAD_1983_H

ARN_Adj_MN

_Nicollet_Feet 

N/A 

Nicollet 

County City 

Limits 

Nicollet County, 

MN 

2017 .shp/Polygon NAD_1983_H

ARN_Adj_MN

_Nicollet_Feet 

N/A 

Tornado 

Tracts 

National 

Oceanographic & 

Atmospheric 

Administration 

(NOAA)  

1950-

2017 

.shp/Line GCS_North_A

merican_ 1983 

N/A 

LiDAR 

Data 

LiDAR 

Point Cloud 

Minnesota 

Department of 

Natural Resources 

(MNDNR) 

2010 .laz NAD_1983_U

TM_Zone_15N 

Resolution/

Nominal 

Pulse  

Spacing      

(ft)  = 4.25 

Specific 

LiDAR 

collection 

information 

Data collected in leaf-off periods, April 8-May 5 & November 2-19, 2010, via fixed-wing aircraft 

equipped with LiDAR system (Optech Gemini) including differential GPS unit and inertial 

measurement system. Area data horizontal positional accuracy: acquired at or below 5,577.43 ft 

above mean terrain with horizontal accuracy of 1 in. Vertical Positional Accuracy values (RMSE): 

better than 3.94 in. Fundamental Vertical Accuracy of the Classified Bare Earth: 0.03 in at 95% 

confidence level in the ‘Open Terrain’ land cover category. Diminished accuracy expected in areas 

of dense vegetation due to fewer points defining bare earth in those areas (MnGeo 2010). 
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3.2 Methodology 

To aid in clarifying the methodological process, see Figure 5. Each stage of the 

methodology shown in the schematic, apart from the results, is discussed within this 

section.  

 

 

Figure 5. Methodology schematic 
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3.2.1 Photographic Image and Historical Map Analysis Preparation  

Before the analysis of the images could take place, a series of image preparation 

steps was necessary. 

First, to facilitate georeferencing and analysis, the 1938 and 1964 panchromatic 

images were cropped using .jpg lossless cropping tool, within IrfanView’s image 

manipulation software (Skilijan 2019) to remove black borders and sections of the image 

that were distorted, e.g., incorrect tone, and deemed unusable for analysis. 

Second, both the 1995 aerial photo and the 1928 engineering map were hard copy 

versions. To create soft copy versions both images were digitally scanned using Hewlett 

Packard DesignJet T2530 digital scanner. The images were scanned at 3-band, natural 

color at 600DPI and stored as .tif files. 

Third, the NAIP georeferenced imagery from 2008 and 2017 and the 1951 

(North) MHAPO were downloaded. It was not possible to ascertain if the 1938, 1951 

(South), 1964, and 1995 aerial photographic images were orthorectified and it was not 

possible to orthorectify them as there was no available data regarding camera parameters 

(Yuan 2008). In addition, the 1938, 1951, 1964, and 1995 aerial photographic images and 

the 1928 engineers map did not have exterior orientation parameters (Lillesand, Kiefer, 

and Chipman 2015) associated with the data. Therefore, the photographic images and 

map were georeferenced (Lillesand, Kiefer, and Chipman 2015) using image to map 

geometric transformations (Rees 2013; Chang 2016) within ArcGIS 10.5. Table 6 shows 

the detailed information about the georeferencing. 
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Table 6. Georeferencing information 

Image type  Year 

Of Image 

(Compass 

location) 

Reference Data: 

Aerial Photo 

2017 Roads (.shp) used for all 

Total Root 

Mean Square 

Error (RMSE) 

(ft) 

 

 

 

 

 

Aerial Photo 

1995 2017 NE, NW & SW 20.34 

1964 (SW) 2017 NE, NW & SW 36.91 

1964 (SE) 2017 NE, NW & SW 10.03 

1964 (N) 2006 NE/2017 NE, NW & SW 72.80 

1951 (N) 2006 NW & SW N/A 

1951 (S) 2006 NW& SW/1951 N  273.52 

1938 (NE) 1951 S & N 22.24 

1938 (NW) 1938 NE/1951 S & N 4.58 

1938 (S) 1938 NE & NW/1951 S 13.83 

Engineering 

Map 

1928 1951 S & N 372.70 

 

The RMSE ranges from 4.58 ft to 372.70 ft; on average 17 ground control points 

(GCPs) were used. Relatively high RMSEs were found for the 1951 and 1928 

engineering map. The 1951 (South) photographic image with an RMSE of 273.52 ft was 

georeferenced using a 1st order polynomial transformation with 30 GCPs. The 1928 

engineering map had a RMSE value of 372.70 ft; it was georeferenced with 9 GCPs with 

a 1st order polynomial transformation. The GCPs were based on a reference photograph 

from 1951, which was better suited as a reference than the 1938 photograph due to 

difficulty in determining viable GCPs in 1938. The high RMSE is likely due to the 

limited GCPs available, which were based on the road layout; it is also probable that the 

road layout has changed between 1928 and 1951. For example, the St Peter Broadway 

Bridge located on highway 99 was remodeled in 1931 (MNDOT 2006), three years after 

the 1928 engineering map was created, therefore the road layout detailed in 1951 is likely 

to have moved leading to a change in road location that cannot be verified.  
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Due to the disparity in image type, location of suitable GCPs for overlapping and 

adjacent images, limited availability of GCP sites, and temporal variation of the 

photographic images when georeferencing, the process for accuracy of individual images 

was based on a compromise between both RMSE and visual interpretation. It should be 

noted that there are a variety of methods to assess error, e.g., Mean Absolute Error 

(MAE) (Li et al. 2019). Low RMSEs do not guarantee positional accuracy (ESRI 2019).  

Once the 1928 City of St Peter Engineering map had been georeferenced, the City 

limits were digitized from the 1928 engineering map, thus creating a polygon feature 

class. The 1928 and 2017 feature class boundaries were then given a buffer of 200 ft. The 

buffer was created for two reasons. First, the City of St Peter boundary is a human 

construct but the urban forest and individual trees do not readily conform to strict linear 

form as a boundary. As the city forester for St Peter for 13 years, my personal 

observations and research dictates that it unlikely that any trees in the boundary areas will 

have a canopy width greater than 400 ft therefore the 200 ft buffer will contain those trees 

that are within the boundary of the City. Second, the 200 ft boundary and the remaining 

minimum bounding rectangle outwith the 1928 and 2017 City boundary is a large enough 

area to perform validation results on the aerial photographic images.   

The analysis to determine the urban forest canopy cover took place within the 

City of St Peter boundary of 1928 and 2017. The aerial photographic images analyzed are 

far larger than the boundary. Therefore, to reduce the processing and analyzing time, the 

aerial photographic images were clipped to the 1928 and 2017 City of St Peter polygon 
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feature classes. No options were used within the clip and the minimum bounding 

rectangle was used so as not to affect image pixel values (ESRI 2019).  

After consultation with William Veteto (Veteto 2019a) at Overwatch Systems, 

Ltd, Feature Analyst, Technical Support, it was recommended that to effectively and 

efficiently analyze the aerial photographic images using OBIA it would be prudent to 

combine the images to form a single raster dataset. To achieve this all clipped aerial 

photographic images were mosaicked. The mosaic operators used were dependent on the 

visual quality and pixel value of the overlapping sections of aerial photographic images; 

therefore the order of rasters was based on these variables (ESRI 2019).  

In order to aid discrimination between classes for the panchromatic and 1995 

three band color image, a 3 x 3 variance (2nd order) texture layer was created from the 

mosaicked photographic images within ERDAS IMAGINE 2018 (Yuan 2008). Once the 

texture layer was created, each texture layer was stacked with the applicable mosaicked 

photographic image. 

3.2.2 Creation of 1998 Tornado Boundary 

As detailed previously, the tornado that swept through the City of St Peter 

between 17:18hrs and 17:36hrs on 29 March, 1998 may have had a profound effect on 

urban forest canopy cover extent. To verify the area and direction of the tornado to 

compare with the analyzed aerial photographic images, data was acquired from NOAA 

Storm Prediction Center’s (SPC) United States severe report database (NOAA 2017). The 

data extracted was two polyline shapefiles that were buffered to a distance of 2200 yds 
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and clipped to the 1928 and 2017 boundary to reflect the geographic extent of the tornado 

for the research area as described by the SPC (NOAA 2017). 

3.2.3 Urban Forestry Canopy Extraction using Object Based Image Analysis & 

Change Detection 

There is a variety of open source, freeware, and commercially available OBIA 

software programs (Table 7) (Baisantry, Shukla, and Bansal 2017). 

Table 7. Comparison of OBIA software 

Software Developer Algorithm Availability Formats 

eCognition Definiens Imaging Multi resolution Commercial Raster, 

Vector 

Feature 

Analyst* 

Overwatch 

Systems Ltd. 

Artificial neural networks, 

Decision trees, Bayesian 

learning, K-nearest 

neighbor 

Commercial Raster, 

Vector 

Bastik Uni. Of Eidelberg Watershed Open-Source Raster 

Multispec Purdue University Clustering Freeware Raster 

SPRING 4.0 INPE, Brazil Region Growing Freeware Raster, 

Orfeo CNES Watershed Mean shift 

Edison 

Open Source Raster, 

Shape 

ILWIS ITC Clustering Open Source Raster 

(adapted from Baisantry, Shukla, and Bansal (2017)) 

*(Opitz and Blundell 2008) 

Feature Analyst was used for the OBIA analysis for a variety of reasons in 

comparison to the other OBIA software. Research has shown that for analyzing high 

resolution panchromatic aerial photographs, texture can be crucial to maximizing 

extraction of land use categories particularly forest and urban forest areas (Haralick, 

Shanmugam, and Dinstein 1973; Ryherd and Woodcock 1996; Yuan 2008). This is due 

to panchromatic photographs having low radiometric and spectral information and texture 

adds another variable to aid extraction (Yuan 2008). Unlike other OBIA software, e.g., 
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eCognition, Feature Analyst includes texture as one of their object inputs (Nagel, Cook, 

and Yuan 2014); the combination of using both the texture layer created in ERDAS 

IMAGINE 2018 as a reflectance band and that included within Feature Analyst gave the 

best results. In addition, Feature Analyst, unlike other OBIA software, is an automated 

feature extraction software program (Blundell et al. 2008; Opitz and Blundell 2008) that 

uses a contextual classifier in its segmentation process which utilizes object size, edge 

type, spatial context, and shape to produce vector files that can be edited (Opitz and 

Blundell 2008; Nagel, Cook, and Yuan 2014). The program also uses hierarchical 

learning to eliminate false positives thereby mitigating and improving the speed of clutter 

removal (Opitz and Blundell 2008; Yuan 2008). For more information regarding Feature 

Analyst analysis processes see O'Brian (2003); Opitz and Blundell (2006); Blundell et al. 

(2008); Yuan (2008); Olowokudejo and Piwowar (2013); Nagel, Cook, and Yuan (2014); 

Byholm (2017). Feature Analyst was also software that I had access to and familiarity 

with. 

This project is primarily concerned with the extraction of the urban forest. 

However, after preliminary investigations using Feature Analyst, it became apparent that 

the extraction classification process was most effective if supervised learning using 

multiple categories (classes) (Overwatch Systems Ltd 2013) were extracted rather than 

unsupervised or a single class approach, i.e., the created urban forest polygons were more 

accurate with less clutter. Therefore, the classes in the following table were used (Table 

8).  
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Table 8. Description of Land Class 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Large shrubs have been included within the urban forest, as it is virtually 

impossible to differentiate between trees and large shrubs in the panchromatic images due 

to the resolution and hue/tone. It also became apparent, as documented by Yuan (2008), 

that differentiation between grass and soil in the panchromatic images was challenging, 

consequently the classes were combined to one group Grass/Soil. For consistency these 

classes were kept for panchromatic, 3-band natural color, and 4-band color infrared 

images.  

All the images had some form of shadow, e.g., buildings or trees, etc., associated 

with them; Yuan (2008) resolved this issue by using stacked NAIP and Quickbird images 

to produce a seven band image with differing shadow directions for the same locations. It 

was not possible to obtain other high resolution images for the time periods used within 

this research, therefore a shadow/other class was created as detailed in Qiu, Wu, and 

Miao (2014). In addition, for the 1995 scanned image a mask using pixel values of 0 was 

used to remove shadow areas. 

Class  Description Areas 

Urban Forest Tree and shrub canopy Boulevard, Gardens, 

Naturalized areas 

Water River, Ponds, Storm 

Water basins, 

Swimming pools, etc. 

MN River, Gardens, 

City Property 

Impervious Surface Roads, Buildings, 

Parking lots, etc. 

Urban & Rural 

Grass/Soil Agriculture land, 

Gardens, Green spaces, 

Fields, Gravel roads, 

etc.  

Boulevard, Gardens, 

Naturalized areas, 

Parks 

Shadow/Other Buildings, trees, 

bridges, etc. 

Urban & Rural 
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As detailed in Qiu, Wu, and Miao (2014) and Nagel and Yuan (2016), the training 

samples were manually digitized drawing close to the edge of class features (objects) so 

as to represent the shape, size, spectral content, texture, patterns, and contextual data 

from adjacent objects. This allows the Feature Analyst template matching method to be 

its most successful. 

Due to the differences between the three types of aerial photographic images, 

different histogram stretches, learning options, and input representations were utilized, 

e.g., spatial context and Bullseye 4 (Overwatch Systems Ltd 2013), to extract each class 

from each image. For each image, multiple supervised learning operations were repeated 

until optimum class classification was reached. Once achieved, the results were 

repeatedly refined using the Removing Clutter tool (Yuan 2008; Overwatch Systems Ltd 

2013) until the final class polygon shapefile was created. 

Post-processing of the OBIA data was performed first in ArcGIS by visibly 

comparing the OBIA canopy cover class polygons to their photographic images and 

removing inaccuracies. Second, the OBIA polygon was converted to raster and imported 

into ERDAS IMAGINE 2018 where a majority function using a 3 x 3 window was used 

to isolate and remove single pixels incorrectly classified as canopy cover. 

To quantitatively determine and compare canopy cover change between the 

various research years, a post classification change detection model was created within 

ERDAS IMAGINE 2018 (Yuan et al. 2017). This was achieved by converting the 

polygon output files from Feature Analyst to rasters; once created, a change detection 

model was employed to create a thematic layer from a matrix that evaluated two 
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historical image files. The newly created thematic layer displays the unique difference in 

values of the two original images overlapping (Hexagon Geospatial 2019b).  

3.2.4 Accuracy Assessment of Urban Forest Canopy Cover Extraction using OBIA 

A site specific thematic error matrix (Congalton and Green 2019) and Kappa 

Coefficient were created for the accuracy assessment; they were generated using ERDAS 

IMAGINE 2018 (Zhou and Troy 2008). Stratified random sampling was used so that 

each class was proportionately weighted; this was necessary as there are few canopy class 

features and they are not uniformly distributed (Qiu, Wu, and Miao 2014). 

To select the reference pixels, ERDAS IMAGINE 2018 uses a square window; 

the user can define the number of pixels used within the window (Hexagon Geospatial 

2019a). To mitigate against potential positional inaccuracy, a small difference in cell size 

between photographic images of different years, and ensure a representative sample 

within a category polygon (Congalton and Green 2019), a sample unit of a 5x5 pixel 

block was created for each year. Congalton and Green (2019) state that when the research 

site is less than 1 million acres and 12 classes, a minimum of 50 samples per class is 

needed for accuracy assessment. Therefore, 150 samples were used: 50 per class (canopy, 

non-canopy) and 50 randomly distributed. As there were no higher resolution images 

available for reference data, the reference images used within ERDAS IMAGINE were 

the same aerial photographic images used to extract the classifications.  
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As this research is an historical assessment, field sample collection was only 

possible for the 2017 dataset. The area selected for field sample data was based on the 

ability to legally and practically assess areas within the 2017 St Peter boundary. The 

areas selected were the City of St Peter owned land (parcel), and the right of ways 

(ROW) of all roads within the St Peter boundary (Figure 6).   

Figure 6. Map of field sample collection area within the City of St Peter  
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Because of flooding along the Minnesota River Valley flood plain in September 

2019, the field sample map was modified and stratified random points created in those 

areas that were practical to assess. The field sampling map was created in ArcGIS by 

buffering the Nicollet County streets shapefile to reflect the correct ROW distance for 

streets within St Peter, i.e., 80 ft or 120 ft dependent on municipal code. This dataset was 

then merged with the St Peter tax parcel polygon shapefile minus those areas inaccessible 

due to flooding. The 2017 (2017 boundary) OBIA canopy change raster was clipped 

using the merged shapefile. The raster was then imported into ERDAS IMAGINE 2018 

where sample point creation was based on the protocol as described for photo-

interpretation accuracy assessment. The field sample data was collected in September 

2019, utilizing a portable laptop with ESRI ArcMap 10.6, NAIP 2017 photographic 

image, City of St Peter streets feature class and the 150 stratified random point locations 

installed. The sample sites were accurately located and delineated using verifiable and 

recognizable landmarks both on the 2017 NAIP photographic image and in the field 

(Congalton and Green 2019). Due to the researcher’s in depth knowledge and experience 

of land use and land cover change, as the City Forester for the City of St Peter, any 

difference between the 2017 photographic image and 2019 ground truthing were 

mitigated.  

3.2.5 Urban Forest Canopy Extraction using i-Tree Canopy  

 

i-Tree is a suite of urban forest ecosystem service evaluation software tools that 

are freely available. They were created and developed by the U.S. Forestry Service and 

other collaborators (USDA 2018a, b). i-Tree Canopy is one tool within i-Tree that allows 



52 

 

 

users to precisely define land cover categories (e.g., trees, water, impervious surfaces) by 

using web browser applications Google Maps and Google Earth to allow photo 

interpretation of current and historical aerial imagery using randomly selected points 

(USDA 2019). The only photographic image available in Google Maps was 2019 and the 

only historical relevant image in Google Earth was 2008. 

The following steps were used to create land cover estimates for both the 1928 

and 2017 City of St Peter boundaries using Google Maps or Google Earth Images. The 

dates of the images used are listed in the Table 9. 

Table 9. Google Earth image data 

City Boundary Date Land cover 

classification 

Google Maps and 

Google Earth 

Image Date 

Google Earth 

Image supplier 

1928 City Boundary Urban forest, Water, 

Impervious surface, 

Grass/Soil, 

Shadow/Other 

2019, 2008 United 

Department of 

Agriculture 

(USDA) Farm 

Service Agency 

2017 City Boundary Urban forest, Water, 

Impervious surface, 

Grass/Soil, 

Shadow/Other 

2019, 2008 USDA Farm 

Service Agency 

 

Both 1928 and 2017 polygon City of St Peter boundary shapefiles were imported 

into i-Tree Canopy and five classes (Urban forest, Water, Impervious Surface, Grass/Soil, 

Shadow) as per OBIA forest canopy assessment were created. Employing the 2019 Google 

photographic image in Google Maps, one thousand randomly generated survey points were 

produced and using photo-interpretation, a class was assigned to each point within the 

boundary areas as recommended by i-Tree Canopy Technical Notes (USDA 2011). For 

photo interpretation of the 2008 Google Earth image, a Keyhole Markup Language (KML) 

file that represented the randomly generated survey points produced for the 2019 images, 
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was imported into Google Earth. Using the 2008 Google Earth photographic image, each 

imported point was photo interpreted and a class assigned.  

i-Tree automatically calculates the standard error (SE) and 95% confidence 

intervals from the photo-interpreted classifications, as shown in the example in the Tables 

10 and 11 below where 1000 sample points have been classified as either tree or non-tree 

within the City. For details of confidence level calculation refer to the USDA (2011) i-

Tree Canopy Technical Notes. 

  Table 11. Estimate of SE  

(N = 1000) with varying p Table 10. SE calculation 

N = Total number of sampled points = 1000 P SE 

n = Total number of points classified as trees = 330 0.01 0.0031 

p = n/N = (330/1000 = 0.33) 0.1 0.0095 

q = 1-p = (1-0.33 = 0.67) 0.3 0.0145 

SE = √ (pq/N) = √ (0.33 x 0.67/1000) = 0.0149 0.5 0.0158 

 0.7 0.0145 

adapted from (USDA 2011) 0.9 0.0095 

 0.99 0.0031 

 

3.2.6 Urban Forest Metrics Detection using LiDAR 

 

The LiDAR point cloud data as .las files were extracted from the Minnesota 

Department of Natural Resources (MNDNR) .laz files using laszip.exe file (rapidlasso 

2017). The LiDAR data was pre-processed and analyzed using LiDAR360 software 

(GreenValley International Ltd 2019). 

3.2.6.1 Preprocessing LiDAR Data  

A mosaic of .las files was created encompassing the St Peter 2017 boundary. The 

point cloud was assigned classes by MNDNR (Table 12). 
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Table 12. LiDAR point cloud classification table 

Class ID Description  Class ID Description  

1 Unclassified 8 Model Keypoints 

2 Bare earth Ground 9 Water 

4 Vegetation 10 Ignored Ground 

6 Buildings/Structures 14 Bridges 

7 Low Point 

To improve the quality of the data, LiDAR data preprocessing included the 

reclassification of the point cloud and removal of outliers. LiDAR360 utilizes a multitude 

of options to classify or reclassify points. Initial classification was done using the 

Classify by Machine Learning module. This consisted of using a small training sample 

that was manually corrected to classify/reclassify points; LiDAR360 then used the 

random forests machine learning method in conjunction with the training sample 

(GreenValley International Ltd 2019) to edit the whole dataset in batches. After multiple 

re-runs including different training samples and changing a variety of parameters, e.g., 

building parameters, although the entire point cloud was classified, after inspection, the 

dataset was of visibly worse quality than the initial MDNR dataset. 

The following three LiDAR point classification processes ultimately proved 

successful in improving data quality. First, bare earth ground points were 

classified/reclassified using the improved progressive TIN densification filtering 

algorithm as detailed in Zhao et al. (2016); GreenValley International Ltd (2019). The 

only parameter change for the model run was to change the maximum building size from 

a default length of 65.66 ft to reflect the actual length of the largest building within the 



55 

 

 

research area which was 524.93 ft. Once bare earth ground points were classified the next 

process was to use a concoid filter to refine the bare earth ground points.  

Ground points are classified by fitting quadratic surfaces. The specific 

idea is: first, mesh the point cloud, select the lowest point of the grid 

within a certain size window to construct the quadric surface, and compare 

the distance between the point cloud and the fitting surface in the 

calculation window and the set distance threshold, which is less than this. 

Thresholds are classified as ground points; otherwise, they are classified 

as non-ground points. (GreenValley International Ltd 2019) 

Parameters were left at the default values. Finally, the point cloud was classified 

using the Interactive Editing module, paying particular attention to the vegetation points. 

This module allows the user to manually edit points or groups of points by using a profile 

tool including real-time changing TINs to examine and alter classification of the point 

cloud. The preprocessed LiDAR data was then visually compared to the 2008 NAIP 

photographic image within ArcGIS. In addition, normalization, the removal of 

topographic relief elevation effects, was done by subtracting the closest classified bare 

earth ground point elevation from other classified points’ z value (GreenValley 

International Ltd 2019). 

3.2.6.2 Urban Forest Canopy Height  

To create a canopy height model (CHM), a Digital Surface Model (DSM) and a 

Digital Elevation Model (DEM) were created. For both, as the area is urban, a Spike Free 

TIN was used as the interpolation (Zhao et al. 2016; GreenValley International Ltd 
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2019). Vegetation returns were used in place of first returns to improve accuracy by 

removing buildings, etc., which in an urban environment can be equal to or higher than 

the urban canopy. The DSM was then subtracted from the DEM creating a CHM.  

3.2.6.3 Urban Forest Canopy Density 

Canopy cover density was determined by calculating the ratio of vegetation 

returns to the total number of LiDAR first returns for a pixel (Jennings, Brown, and Sheil 

1999; Ma, Su, and Guo 2017; GreenValley International Ltd 2019). Vegetation below 6.6 

ft. was removed and the pixel size was determined by measuring the width of the largest 

individual tree canopy: 108.27 ft.  

3.2.6.4 Tree Metrics 

Individual tree attributes, e.g., tree location, height, crown diameter, area and 

volume were determined using two different tree segmentation models: CHM 

segmentation and point cloud segmentation model.  

In CHM segmentation, watershed segmentation is used to recognize and 

demarcate individual tree crowns. The watershed segmentation algorithm is based on the 

inversion of individual tree canopy points to represent a catchment basin. At the level of 

which the water would fill the catchment basin and start to overflow, that surface 

represents the bottom of the individual tree canopy (Chen et al. 2006; GreenValley 

International Ltd 2019). From this segmentation, tree location, height, crown diameter, 

and crown area are calculated. CHM segmentation was based on the CHM created to 

determine urban forest canopy height as detailed in 3.2.6.2. 
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Point cloud segmentation is based on using the relative spacing between trees. It 

uses the concept that spacing at the top of the trees is greater than at the bottom, so 

starting from the top and working down, LiDAR points are included and excluded based 

on their relative distance to each other. To mitigate the consequences of smaller relative 

spaces at the bottom of the tree, the points are ordered in sequence and removed based on 

a spacing threshold. Using this segmentation process, tree location, height, crown 

diameter, crown area, and volume are calculated (Li et al. 2012; GreenValley 

International Ltd 2019). For extraction of tree metrics, a normalized point cloud 

consisting of vegetation points was created and due to the close proximity of trees in 

areas within the research site, the spacing threshold was set to 1.64 ft. 

 



58 

 

 

4 Results and Discussion  

4.1 Accuracy Assessment of OBIA and Stratified Random Sampling Results 

4.1.1 Accuracy Assessment of OBIA  

It is important to contextualize and assess the error associated with the extraction 

of the canopy cover. In general, for OBIA (Table 13), the overall classification accuracy is 

excellent: over 90% with the exception of 1995 (89.33%). The overall Kappa statistics 

show strong agreement (>0.8) (Congalton and Green 2019) between the years, with the 

exception of 1995 (0.78). A possible answer for the lower overall classification accuracy 

and overall kappa statistics for 1995 could be that the 1995 photographic image has 

relatively low spectral variability even though it was scanned at a high resolution. This may 

be due to the fact that the digitally scanned image is essentially a copy of the hardcopy 

photograph not the original negative and therefore may lose spectral information during 

the scanning process (Veteto 2019b). Each pixel value is a whole number not a floating 

number. Feature Analyst recommends not using a histogram stretch on scanned maps and 

when this was attempted this did not improve the classifications (Overwatch Systems Ltd 

2015). Feature Analyst also recommends the use of Discrete band within the Input Bands 

Tab, rather than Reflectance (Overwatch Systems Ltd 2015). These two features utilized 

were the only major methodological differences from the other unscanned image methods. 
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Table 13. Overall canopy cover classification accuracy & overall kappa statistics 

In general, the error matrices for the entire period 1938-2017 (Table 14-21) show 

that the producer’s accuracy (89-97%) of canopy cover and therefore the omission error 

ranges from 3% to 11%; this is slightly higher than user’s accuracy (84-94%) and therefore 

a commission error of 16% to 6%. The exception is the 2017 OBIA (1928 boundary) (Table 

19) where this phenomenon is reversed (86.76% producer’s accuracy and 92.19% user’s 

accuracy). However, different producers and user’s accuracies were obtained when the 

2017 St Peter City boundary was applied. This indicates accuracy assessment results are 

sensitive to the study site boundary.  

Overall 

Classification 

Accuracy %

Overall 

Kappa 

Statistics

Year

1938 94.00 0.87

1951 92.67 0.84

1964 94.67 0.89

1995 89.33 0.78

2008 96.00 0.92

2017 (1928) 90.67 0.81

2017 (2017) 94.67 0.89

2017 

(Ground 

Truth) 92.67 0.82
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Table 14. Error matrix for the 1938 forest canopy classification within the 1928 boundary 

 

Table 15. Error matrix for the 1951 forest canopy classification within the 1928 boundary 

 

Table 16. Error matrix for the 1964 forest canopy classification within the 1928 boundary 

 

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

1938 Non-Canopy 87 2 89 -

Canopy 7 54 61 88.52%

Total 94 56 150

Producers 

accuracy - 96.43%

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

1951 Non-Canopy 89 2 91 -

Canopy 9 50 59 84.75%

Total 98 52 150

Producers 

accuracy - 96.15%

Reference

Classified 

Land Cover

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

1964 Non-Canopy 87 2 89 -

Canopy 6 55 61 90.16%

Total 93 57 150

Producers 

accuracy - 96.49%

Reference 

Classified  

Land Cover 

Reference 

Classified  

Land Cover 
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Table 17. Error matrix for the 1995 forest canopy classification within the 1928 boundary 

 

Table 18. Error matrix for the 2008 forest canopy classification within the 1928 boundary 

 

Table 19. Error matrix for the 2017 forest canopy classification within the 1928 boundary 

 

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

1995 Non-Canopy 78 6 84 -

Canopy 10 56 66 84.85%

Total 88 62 150

Producers 

accuracy - 90.32%

Reference

Classified 

Land Cover

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

2008 Non-Canopy 78 2 80 -

Canopy 4 66 70 94.29%

Total 82 68 150

Producers 

accuracy - 97.06%

Reference

Classified 

Land Cover

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

2017 Non-Canopy 77 9 86 -

Canopy 5 59 64 92.19%

Total 82 68 150

Producers 

accuracy - 86.76%

Reference

Classified 

Land Cover
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Table 20. Error matrix for the 2017 forest canopy classification within the 2017 boundary 

 
 
Table 21. Ground truth error matrix for the 2017 forest canopy classification within the 2017 

boundary 

 
 

To enhance the OBIA accuracy assessment validation it was necessary to 

implement ground truthing. Due to only being able to access public property combined 

with local flooding, the area available to ground truth within the City of St Peter was 

approximately ¼ of the total 2017 boundary. Despite these restrictions, the error matrix is 

comparable to those used within photointerpretation (Table 21). 

4.1.2 Accuracy Assessment of Stratified Random Sampling  

i-Tree’s stratified random sampling technique’s accuracy assessment is based on 

standard error (SE). SE shows there is a 95% confidence interval for 2008 and 2019 canopy 

cover data (1928 boundary) of + or – 1.45% which equates to 31.75 % - 28.85 % canopy 

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

2017 (2017 

Boundary) Non-Canopy 83 4 87 -

Canopy 4 59 63 93.65%

Total 87 63 150

Producers 

accuracy - 93.65%

Reference

Classified 

Land Cover

Year 

Non-

Canopy Canopy Total

Users 

Accuracy

2017 (Ground 

Truth) Non-Canopy 95 5 100 95.00%

Canopy 6 44 50 88.00%

Total 101 49 150

Producers 

accuracy 96.06% 89.80%

Reference

Classified 

Land Cover
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cover and 1.53% which equates to 38.33 % -35.27% canopy cover respectively. For the 

2019 data (2017 boundary) it is + or – 1.46% which equates to 31.86% - 28.94% canopy 

cover (Table 22).  

Table 22. Standard Error of the canopy change statistics based on stratified random sampling 

method  

 
 

4.1.3 Accuracy Assessment Conclusion  

Comparing the results for both canopy extraction methods, the results are within 

5% of total canopy area. The difference in results may be partially attributed to a difference 

in photographic image quality and resolution, e.g., Google imagery compared to NAIP 

imagery (USDA 2011). Overall, the OBIA and stratified random sampling accuracy results 

indicate there is a high confidence that both analysis techniques have a high enough level 

of accuracy to compare the results.  

4.2 Urban Forestry Canopy Change, the Impacts of the 1998 Tornado, and Tree 

Diseases 

4.2.1 Trend of Urban Forestry Canopy Change  

For the 1928 City of St Peter boundary, the OBIA total canopy analytical results 

(Figures 7-15) show a general trend of canopy increase from 1938 to 2017, with a 

minimum percent area in 1938 of 20.68% to a maximum of 35.53% in 2008. During this 

time period, the data shows only two occasions when the canopy cover decreased, this 

Year (Boundary)

 Canopy 

(A) % Area +/-SE

% Area 

+SE

% Area        

-SE +SE (A) -SE (A)

2008 (1928) 704.74 30.3 1.45 31.75 28.85 738.47 671.02

2019 (1928) 855.92 36.8 1.53 38.33 35.27 891.51 820.34

2019 (2017) 1280.90 30.4 1.46 31.86 28.94 1342.42 1219.38
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was from 1938 to 1951 (20.68% to 18.00%) a decrease of 2.68%, and from 2008 to 2017 

(35.53% to 35.30%) a decrease of 0.23%. On both occasions, in the subsequent 

measuring time interval, the canopy cover increased by 2.01% (1938-1964) and 1.27% 

(2017-2019 (stratified random sampling)) respectively. It is likely, based on the very 

small percentages of cover change, that the change is within error margins associated 

with accuracy assessment for both OBIA and stratified random sampling. However, as 

will be discussed, it is also possible that these changes are due to land use change or tree 

diseases. For the 1928 boundary, total canopy area can be split into two specific time 

frames: pre 1995 and post 1995. Pre 1995, percent area ranges from 20.68 (1938) to 

25.97% (1995); post 1995, percent area ranges from 35.53% (2008) to 35.30% (2017).  

 

Figure 7. Graph of percent total forest canopy cover area from 1938 to 2017 
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Figure 8. 1938 total canopy cover 
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Figure 9. 1951 total canopy cover 
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Figure 10. 1964 total canopy cover 
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Figure 11. 1995 total canopy cover 
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Figure 12. 2008 total canopy cover 
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Figure 13. 2017 total canopy cover 
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Figure 14. 2017 total canopy cover within the 2017 City boundary 
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Figure 15. 1995 & 2008 tornado tract total canopy cover 
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i-Tree’s stratified random sampling confirms that from 2008 to 2019 the 

percentage canopy cover within the 1928 boundary is ~ 30 - 35% (Table 20 & Figure 16). 

From 1938 to 1995 (57 years), canopy cover increased as a proportion of overall City of 

St Peter area by 5%. From 1995 to 2017 (22 years), canopy cover increased by 10% of 

the total City of St Peter area. In fact, the 10% increase occurs between 1995 and 2008 

and canopy cover remains stable from 2008 to 2019. The discussion of results has 

primarily focused on the 1928 City of St Peter boundary. However, it should also be 

noted; that regardless of the use of the 1928 or 2017 St Peter City boundary, the data 

shows that the areas have comparable canopy cover of ~34% from 2008 to 2017. 

 

 

 

Figure 16. Graph of stratified random sampling total canopy cover percent area 
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With respect to canopy change detection, Table 23 details the changes between 

each time period. From 1938 to 1951, there is a small decrease in total canopy cover. The 

map (Figure 17) shows that the reduction in canopy cover is mainly along the Minnesota 

River. From 1951 to 1964, there is a ~4% increase in canopy, mainly along the 

Minnesota River flood plain and west boundary of the City of St Peter (Figure 18). From 

1964 to 1995, there is a ~3% increase. Although, there is a reduction of canopy along the 

Minnesota River edge and flood plain, there is a marked increase in canopy cover along 

the west and north City of St Peter boundary (Figure 19). From 1995 to 2008, there is 

~10% increase in canopy cover. This increase is spread throughout the City (Figure 20) 

and will be discussed in depth in the following section. From 2008 to 2017 (Figure 21), 

there is minimal 0.23% reduction in canopy cover, with canopy loss along the Minnesota 

River flood plain and an increase in cover throughout the City of St Peter city center. 

Overall, from 1938-2017 (Figure 22), the major increases in canopy cover are along the 

Minnesota River flood plain and the north and west boundaries of the City. It should be 

noted that only ~9% of total canopy area stays canopy from 1938 to 2017, predominantly 

within the City of St Peter city center and the north east Minnesota River flood plain. The 

increase in canopy area along the river flood plain is due to the change in land 

management; areas that were farmland are now naturalized areas of woodland. Canopy 

cover has also increased towards the edges of City of St Peter boundary, as new 

development has created new areas for planting trees from previous farmland.  

It should also be noted that while there has been an overall increase in canopy 

cover, there are many areas that have remained non-canopy areas, or have changed from 
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canopy to non-canopy, primarily before 1995. The change from canopy to non-canopy is 

particularly evident along the Minnesota River flood plain between 1938 and 1951 

(Figure 17) and 1964 and 1995 (Figure 19), where the change in the river’s position and 

the subsequent flooding have changed the land use. Within the St Peter City center area, 

Figures 17-19 also show areas that have changed from canopy to non-canopy; this is 

likely due to redevelopment, e.g., the division of a large parcel containing one property 

and trees into smaller parcels containing less trees. Finally, the non-canopy areas that 

have remained non-canopy are primarily along the outer edges of the City of St Peter 

(Figures 17-19); these areas continued to be primarily agricultural fields. 

 

 

Table 23. OBIA canopy change detection 

Canopy Change Years

Canopy 

to 

Canopy 

(A) % Area 

Canopy 

to Non 

Canopy 

(A) % Area 

Non 

Canopy to 

Canopy 

(A) % Area 

Non 

Canopy to 

Non 

Canopy (A) % Area 

Sum of all 

(A)

1938-1951 195.55 8.41 285.41 12.27 223.22 9.60 1621.35 69.72 2325.53

1951-1964 203.93 8.77 214.61 9.23 323.84 13.93 1583.09 68.08 2325.46

1964-1995 225.03 9.68 302.66 13.02 378.75 16.29 1418.95 61.02 2325.38

1995-2008 369.99 15.91 234.07 10.07 456.39 19.63 1264.99 54.40 2325.44

2008-2017 610.08 26.23 216.41 9.30 211.07 9.07 1288.32 55.39 2325.87

1938-2017 215.14 9.25 265.79 11.43 605.88 26.05 1238.63 53.26 2325.44

1938-1995 175.59 7.55 305.45 13.13 428.55 18.43 1416.28 60.89 2325.87

1995-2017 359.75 15.47 244.31 10.51 461.27 19.84 1260.11 54.19 2325.43

1995-2008 Tornado 203.12 14.58 165.25 11.86 181.59 13.04 843.15 60.52 1393.11
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Figure 17. 1938-1951 canopy cover change 
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Figure 18. 1951-1964 canopy cover change 
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Figure 19. 1964-1995 canopy cover change 
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Figure 20. 1995-2008 canopy cover change 
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Figure 21. 2008-2017 canopy cover change 
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Figure 22. 1938-2017 canopy cover change 
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4.2.2 The Impacts of the 1998 Tornado 

On 29 March 1998 at 5:18pm, an F3 tornado (158-206mph) swept through the 

City of St Peter, southwest to northeast, with a width of 2200 yds. (Figure 23) (NOAA 

2017). The tornado caused considerable damage to both grey and green infrastructure 

(Figure 24).  

The results of this study show that, at a minimum, 45% of the canopy cover 

within the tornado tract area was lost (Figure 7 & Table 21). After the tornado, the City 

of St Peter implemented a tree replanting program for replanting trees both on City of St 

Peter property, i.e., boulevards, parks, etc., and also allowing the public to buy trees to 

plant on private property. Forty percent of the replanting occurred within the tornado 

tract, with 60% planted in the remaining areas of St Peter. Overall, this led to the 10% 

increase in canopy cover by 2008; subsequently the canopy cover area has remained 

stable at ~35% through 2019 (Figures 7, 16 & 23, Table 21). The canopy change between 

1995 and 2008 within the tornado tract (Figure 23) shows an increase in canopy cover on 

streets and backyards, as well as along the Minnesota River flood plain. The canopy to 

non-canopy area change is primarily due to the tornado, as these areas have changed due 

to infrastructure conversion or redevelopment, e.g., houses, parking lots, or newly created 

parks with no canopy cover established. 
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Figure 23. 1995-2008 tornado tract canopy change 
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4.2.3 Impacts of Tree Diseases 

The butternut (Juglans cinerea L.) and particularly the American elm (ulmus 

americana L) trees were both highly visible within the urban forest and naturalized areas 

prior to the 1980s. However, due to DED (Ophiostoma ulmi and o. nova-ulmi) and 

butternut canker Sirococccus clavigigenti-juglandacearum) they have, with the exception 

of a few disease resistant “survivor” trees, disappeared from the landscape. Due to a 

probable combination of the resolution of the photographic images and the length of time 

between these images it was not possible to determine any meaningful correlation 

between the loss of these tree species and canopy cover. However, up until 1995 canopy 

Figure 24. Photographic image of 1998 

tornado in City St Peter 

http://www.saintpetermn.gov/sites/default/files/hotsheets/ 

HOTSHEETapril192017.pdf (last accessed 19 March 2017) 

http://www.saintpetermn.gov/sites/default/files/hotsheets/
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cover stayed relatively constant, therefore replanting using other tree species, e.g., ash 

(Fraxinus spp.), maple (Acer spp.), or natural regrowth made up for the loss. 

4.3 LiDAR Determined Urban Forest Height Assessment, Canopy Cover Density, 

and Tree Metrics  

LiDAR was used to create a CHM, canopy cover density model and determine 

specific tree metrics for 2010.  

4.3.1 Urban Forest Height Assessment  

Figure 25 presents canopy cover height in 2010. The majority of the highest 

canopy and tallest trees are located in the naturalized areas within the Minnesota River 

flood plain (>50.00 ft). This would be expected due to the environmental conditions, e.g., 

soil, nutrients, water allocation, etc., allowing for extended growth of pioneer species 

specific to that environment such as Poplar (e.g., Populus deltoides) (MNDNR 2019b). 

The LiDAR canopy height data also shows the continued impact of the tornado of 1998 

by showing the path of the tornado through the City of St Peter (Figure 20), as a function 

of the lack of height of canopy within the tornado tract (<25.00 ft) compared to the 

canopy height north and south (>50.00 ft) of the tornado boundary. The isolated areas of 

high canopy within the City center are trees that survived the tornado. The high canopy 

located on the east boundary in the flood plain area is unexpected based on the tornado 

path and the short time interval since the tornado. However, this is likely explained by the 

trees being protected from wind exposure due to the density of trees compared to more 

isolated individual trees within the urban environment, e.g., street, park, etc., and also the 

unpredictable nature of wind damage associated with tornados.  
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Figure 25. LiDAR canopy height model 
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4.3.2 Urban Forest Canopy Cover Density  

The canopy cover density model (Figure 26) shows the total canopy coverage 

within a pixel area of 108.27 ft2. Even though the resolution of canopy coverage (108.27 

ft2) is low compared to the OBIA 2008 data (3.06 ft2) as the 2010 LiDAR data was 

Figure 26. LiDAR canopy density 
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collected during leaf-off seasons, it is still possible to see how the 2010 LiDAR data 

corroborates the 2008 OBIA data and shows, as does the stratified random sampling data, 

that the OBIA data is of excellent quality.  

4.3.3 Tree Metrics  

Two separate methods (Canopy Height Model and point cloud) were used to 

determine individual tree attributes using LiDAR data. The tree attributes determined for 

both processes were tree location, tree height, crown diameter, and crown area. The point 

cloud segmentation process also provided crown volume (Table 24). However, both 

processes did not extract the same number of trees; for example, three trees were not 

extracted using the point cloud algorithm. Table 24 shows an example selection of tree 

attributes for trees located along the south west corner of Minnesota Square Park (Figure 

27). Both the x, y tree locations are within reasonable parameters of accuracy for my 

research. However, the remaining metrics each have accuracy discrepancies and cannot 

be rectified without performing regression analysis, which is not included within this 

study. Tree height for both processes based on visual assessment are within the 

reasonable parameters, however between processes tree heights vary by 3-8 ft. For crown 

diameter and crown area the differences are even greater between processes, e.g., for the 

same tree, CHM crown diameter 84.52 ft vs. point cloud crown diameter 127.88 ft.. The 

same tree had a CHM crown area of 5611 ft2 vs. point cloud crown area of 12,844.83 ft2. 
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Figure 27. Location of sample LiDAR results 
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The accuracy of these metrics are limited by several factors. Firstly, forestry 

research LiDAR is typically collected with the leaves on; the research LiDAR was 

collected with the leaves off. Secondly, the LiDAR point cloud for the research was 0.19 

points/ft2; this is approximately ten times less dense than the minimum commonly used 

within LiDAR derived forest research, 1.96 points/ft2 (Chen et al. 2006; Li et al. 2012; 

Ma, Su, and Guo 2017). Thirdly, even with improvement of the LiDAR data quality, 

there are still errors associated with the point cloud classification and therefore the 

potential to locate trees where none exist. Fourthly, the CHM segmentation is based on a 

paper that uses an algorithm where the research location is oak savannah woodland, not 

an urban forest. The only building structure was a fire lookout, which was removed from 

the data prior to the assessments (Chen et al. 2006). In addition, the point cloud 

segmentation is based on a paper that uses a segmentation algorithm where the research 

area is a mixed conifer forest, not an urban environment (Li et al. 2012). 

Figure 28 shows an example area, located at Minnesota Square Park, of the CHM 

segmentation process and the map illustrates some of the issues discussed above. For 

example, it is possible to see areas (purple circle) where, due to incorrect point cloud 

classification, tree cloud points and therefore incorrect seedpoint locations are identified. 

Further, the red polygon areas represent the areas of individual trees as calculated during 

tree segmentation. As can be seen, these generally do not outline the areas of trees shown 

within the 2008 NAIP image and represented by the tree cloud points.  
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Photographic Image = 2008 NAIP Incorrect Cloud Point & Seedpoint 

Location 

Figure 28. Minnesota Square Park; 2010 LiDAR CHM tree seedpoints, 

cloudpoints, and segmentation 
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Figures 29-31 demonstrate a 2D representation of the sample area, a 3D image, 

and a cross sectional area of individual trees detailed in Table 22 respectively. While the 

accuracy of the metrics cannot be assessed, it is important to acknowledge the benefits 

that the 3D views of the urban forest offer, e.g., visual assessment for tree planting 

programs, etc. The results from the use of LiDAR data can only be improved with 

continued data capture using higher density LiDAR point clouds collected at leaf-on 

season.  

 

 

 

 

Figure 29. Minnesota Square Park; 2D LiDAR tree classification 
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Figure 30. Minnesota Square Park; 3D LiDAR tree classification 

Figure 31. Minnesota Square Park; cross section of individual trees 
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5 Conclusions and Future Outlook 

This research was undertaken to determine if there has been temporal change in the 

canopy cover within the boundary of the City of St Peter and if so, why and how. In 

addition, two methods were used to ascertain the canopy cover area for specific years.  

The results have shown that the canopy cover extent has changed temporally both 

in size and location and that both OBIA and stratified random sampling results corroborate 

each other. The accuracy assessment results show that both OBIA and stratified random 

sampling can accurately determine urban forest canopy cover; however, it is important to 

select the appropriate photographic images and be aware that certain image types, e.g., 

scanned images, could potentially lead to lower accuracy results. 

The canopy cover has steadily increased in size from 1938 to 2019 from ~20% to 

~35% of total land cover and that change can be broken down into two distinct time zones 

pre 1995 (~20%-25%) and post 1995 (~35%). Canopy change detection showed that the 

1998 tornado had the largest impact on canopy cover. Between 1995 and 2008 at least 45% 

of the canopy cover within the tornado tract was removed. With subsequent replanting an 

additional 10% of total canopy cover was added to the City of St Peter: 40% of this in the 

tract and 60% outside, leading to a total canopy cover of ~35% which has remained stable.  

As well as the tornado tract, results show that canopy change has been dynamic 

within the City of St Peter, with only ~9% of canopy cover remaining canopy cover 

between 1938-2017 chiefly within the City of St Peter city center and the north east 

Minnesota River flood plain. New canopy has been created due to land use change in flood 

plain areas and as the City of St Peter has expanded to the north and west boundaries. It 
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was observed however, that canopy cover has also been converted to non-canopy mainly 

before 1995 predominantly along the Minnesota River floodplain due to river course 

change and within the city center due to redevelopment. 

The impact of tree disease on the canopy cover was undetectable due to the 

temporal and photographic image resolution; however, the canopy cover change results 

show consistent canopy cover coverage during the disease epidemics leading to a 

conjecture that planting or natural regeneration maintained the canopy cover size. 

The LiDAR results proved valuable in a number of ways. Firstly, using the variation 

in height of the canopy cover, the path of the tornado was still visible within the City of St 

Peter and a canopy height model was created showing that the tallest canopy (>40ft) is 

situated along the floodplain and isolated spots within the City’s center. Secondly, the 

LiDAR canopy cover density model verified the accuracy of the 2008 OBIA canopy cover 

data. Finally, tree metrics were calculated for the majority of trees within the City of St 

Peter. Whilst the validation of the individual tree metrics was not possible within the scope 

of this research project, the fact that it is possible to determine these metrics from remote 

sensing rather than ground assessment bodes well for future urban forest tree and canopy 

assessment. 

Overall, the research has shown the value of using OBIA, stratified random 

sampling, and LiDAR to determine urban forest metrics. Stratified random sampling is an 

efficient accurate method to determine urban forest canopy cover area, while OBIA offers 

the ability to ascertain temporal canopy change leading to more detailed analysis. LiDAR 

offers the potential to extract more canopy and tree metrics for historical data via regression 
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analysis, etc., but only if sample and independent variable data is present. As the current 

city forester, this research enables me to evaluate ecosystem services, plan future 

management of the urban forest, and educate the citizens of the City of St Peter on the 

present and historical forest canopy.  

Before this research began there was no information known about the City of St 

Peter’s total urban forest canopy cover. The only tree metrics known e.g., tree species and 

DBH, were limited to city boulevard trees located on the city ROW, a limited amount of 

the entire urban forest, and these were collected using ground assessment. Whilst the 

determination of the urban forest canopy is the first step, ultimately, as the city forester, 

my goal would be to have a complete tree inventory of all trees and metrics including 

individual tree species within the City of St Peter boundary.  

Using ground assessment in the collection of this information would be highly 

unlikely if not impossible based on time and finance limitations. However, the use of 

remote geospatial technologies will likely make this possible. For example, current 

research into the use of LiDAR and hyperspectral images shows the future possibilities, by 

utilizing LiDAR to determine specific location and tree structure and hyperspectral data to 

determine individual tree species. Another benefit of the hyperspectral data is the 

determination of the health of the urban forest, e.g., detection of tree stress. This 

combination could provide a complete picture of the urban forest. In addition, with the 

advent and continuing increase in use of unmanned aerial vehicles (UAV) in combination 

with geospatial technologies, data collection and processing has the potential to become 
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more local and data specific, thus leading to local agencies such as the City of St Peter 

ultimately being able to collect their own data.   
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