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Abstract 

Aquatic ecosystems located near urban landscapes are often contaminated by a 

complex mixture of contaminants of emerging concern (CECs). These landscapes are 

defined by an abundance of impervious surfaces that act as conduits during 

precipitation events moving contaminants into aquatic ecosystems. Prior research on 

the introduction of CECs into surface waters frequently focused on municipal 

wastewater treatment plants and agricultural runoff. This study investigates the effects 

of urban stormwater runoff on fathead minnows. In addition, I examined the mitigating 

potential of retention ponds and iron-enhanced sand filtration (IESF) as best 

management practices. I collected inflow and outflow water samples following 

precipitation events during snow melt, spring flush, and summer rains from seven 

stormwater ponds across the greater metropolitan area of St. Paul, MN, USA. CECs 

were commonly detected in stormwater runoff with greater concentrations in inflows 

when compared to pond outflows. In some instances, CEC concentrations rivaled those 

reported for treated wastewater effluent. Endpoints measured include survival, growth, 

foraging efficiency, and predator avoidance performance. Results indicated that 

seasonality had a significant effect on all biological outcomes (p<0.01) Moreover, 

stormwater from summer was the most detrimental to fathead minnows (declining 

survival and foraging efficiency,). Results for treatment were inconclusive with non-

significant improvement for biological outcomes following exposure to stormwater 

treated with standard retention ponds, and the addition of IESF revealed varied and 

unexpected results. IESF treatment appeared to have an adverse effect on survival, with 

fathead minnows exposed to IESF treated stormwater surviving significantly less than 

those exposed to reference well water (p<0.01). IESF treatment also increased total 

escape response, with fathead minnows exposed to IESF treated stormwater having a 

quicker response than those exposed to untreated stormwater inflow (p=0.03). This 

study suggests that best management practices provide some benefit in reducing 

biological effects from exposure to urban stormwater although the biological benefits 

are seasonally limited. Furthermore, the addition of IESF has constrained and 

potentially adverse effects on biological outcomes. 
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Chapter 1. Literature Review 

1.1 Introduction 

As the human population increases, the impacts of our existence on the 

environment are becoming progressively evident. Numerous anthropogenic chemicals 

routinely find their way into freshwater systems. Personal care and cleaning products 

are rinsed down the drain, pharmaceuticals are excreted into sewer systems, and lawn 

care treatments such as fertilizers and pesticides are washed away with stormwater 

runoff. Consequently, it is well established that freshwater systems around the globe 

contain a diverse and complex mixtures of contaminants (Kolpin et al. 2002; Ellis 2006; 

Zgheib et al. 2011; Meffe & de Bustamante 2014; Sorensen et al. 2015; Conley et al. 2017; 

Edwards et al. 2017; Jorgenson et al. 2018).  

Urban development will increase in conjunction with the population, and this 

expansion will likely result in an increase of impervious surfaces such as roadways, 

parking lots, sidewalks, and rooftops (Shuster et al. 2005) impervious surfaces prevent 

precipitation from infiltrating into soil which increases the amount of runoff (Konrad 

2003). It is to be expected that urban stormwater runoff will eventually in one form, or 

another become contaminated (Arnold & Gibbons 1996). Thus, stormwater 

management and treatment methods are of worldwide interest (Gromaire-Mertz et al. 
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1999; Lee & Bang 2000; Mireri et al. 2007; Erickson et al. 2012; Dodder et al. 2014; Hobbie 

et al. 2017).  

1.2 Urban Stormwater Runoff   

Urban stormwater runoff originates when precipitation does not infiltrate and 

therefore flows downgradient to a receiving water. Large volumes of stormwater runoff 

can be generated in a short period of time, predominantly due to the increase in 

impervious surfaces which are signature to urban areas (Leopold 1968). The primary 

means of controlling these large influxes of water is to discharge it, untreated, into 

streams, rivers, and lakes. Furthermore, when the infrastructure designed to manage 

stormwater runoff becomes overwhelmed, flash flooding can occur.  

The results of flooding can be costly to a city not only from the damage to 

property but also from the resulting environmental harm. Flooding causes an increase 

in the erosion of soil and shorelines (Konrad 2003). This erosion also causes an increase 

in the amount of total suspended solids in the surface water. More suspended solids 

cause an increase in the turbidity of the water resulting in less available sunlight for 

aquatic plants. Solids will also settle out of suspension when the water slows down 

causing sedimentation of the waterways which decreases the available habitat for 

aquatic organisms (MN PCA). In addition to erosion and sedimentation, runoff from 

urban areas can also increase the temperature of receiving surface waters via 
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conductive heat transfer from impervious surfaces and solar energy heating unshaded 

stormwater ponds and channels (Kieser & Spoelstra 2003).  

Another complication with urban stormwater runoff lies not with the water 

itself, but with what is carried along with it. As stormwater crosses the impervious 

surfaces it combines with contaminants and transports them to surface waters.   

1.3 Urban Stormwater Contamination     

Traditionally, the contaminants of interest for stormwater have been excess 

nutrients (nitrogen and phosphorous) (Wang et al. 2001; Wendling et al. 2013), 

sediments (Sansalone et. al. 2004; Osouli et al. 2017), metals (Brown & Peake 2006), and 

polycyclic aromatic hydrocarbons (PAHs) (Brown & Peake 2006). However, stormwater 

runoff from urban areas is additionally often contaminated with complex mixtures of 

chemicals including pharmaceuticals and personal care products, industrial products, 

insecticides, and lawn / garden chemicals (Boyd et al. 2004; Ritchie et al. 2007; Zgheib et 

al. 2011; Page et al. 2014; Burant et al. 2018; Fairbairn et al. 2018). This can result in the 

contamination load of urban stormwater runoff being comparative to those found in the 

effluent of wastewater treatment plants (Buerge et al., 2006; Fairbairn et al., 2016; Vogel 

& Moore, 2016). 

A study of stormwater pollution in Paris, France found 55 chemical substances 

including pesticides (diuron, isoproturon, metaldehyde, aminotriazole, glyphosate, 
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AMPA), metals (Pb, Cu, Zn), PAHs, polychlorinated biphenyls, and alkylphenols 

(nonylphenol, para-tert-octylphenol, 4-ter-butylphenol) (Zgheib et al. 2011). Similarly, a 

Minnesota (USA) urban stormwater study (Fairbairn et al. 2018) detected 123 

contaminants including industrial-commercial compounds, pharmaceuticals, pesticides, 

and lifestyle-personal care compounds. In addition to a complex mixture of 

contaminants, there is also a seasonality to the variation of contaminates found in urban 

stormwater runoff. Generally, runoff from fall and winter contains higher 

concentrations of flame retardants and alkylphenols, while spring and summer runoff 

shows higher concentrations of pesticides and industrial contaminates (Fairbairn et al. 

2018, Westerhoff et al. 2018). Likewise, Anderson and colleagues (2016) also showed a 

variability in the concentration of contaminants with different rainfall events. 

Many of the contaminants found in urban stormwater runoff are referred to as 

contaminants of emerging concern (CEC) (Ritchie et al. 2007; Dodder et al. 2014; Bhadra 

and Jhung 2017; Edwards et al. 2017). Contaminants of emerging concern include 

synthetic or naturally occurring chemicals that have not previously been detected in 

surface waters, or that are being detected at concentrations different than expected and 

may pose risks to humans and the environment (Ritchie et al. 2007).  

Examples of chemical classes considered CECs include: antibiotics (tetracycline), 

solvents (ethanol, kerosene), flame retardants (polybrominated diphenyl ethers), 



12 

pesticides and insecticides (permethrin, DEET), herbicides (atrazine, metolachlor), 

pharmaceuticals (opiates, antibiotics, contraceptives - ethinylestradiol and 17α-

ethynylestradiol), personal care products (para-hydroxybenzoate), plasticizers 

(bisphenol A (BPA), phthalates, tributoxyethyl phosphate), lifestyle chemicals (caffeine, 

nicotine) and endogenous hormones (estrone, estradiol, and estriol).  

1.4 Sources of Contamination     

Stormwater contamination can originate from a variety of potential sources. 

Some pharmaceuticals are not entirely removed with standard wastewater treatment 

(Ternes et al. 1998). Pharmaceuticals are bioactive by design and intended to accomplish 

a biological effect on a target species such as humans or livestock (Henschel et al. 1997). 

These compounds are often not entirely eliminated by the body and can be excreted 

unchanged (Heberer 2002). Once in the environment pharmaceuticals are indifferent to 

their intended objective and can effect non-target organisms (Fent et al. 2006). 

Additionally, sanitary sewer overflows and combined sewer overflows are 

potential sources for the introduction of untreated wastewater into stormwater and 

surface waters (Balmforth 1990; EPA 2004). Sewer system are commonly designed to 

transport and retain wastewater and stormwater through separate conveyers. However, 

wastewater and stormwater can be unintentionally combined during a sewer overflow 
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which happens when untreated wastewater from a collection system is released before 

it reaches a treatment facility (Novotny 1996; EPA 2014). 

Potential causes of sewer overflows include blocked pipes, line breaks, 

mechanical/power failures, and improper designs or other defects which allow 

excessive infiltration and inflow of stormwater (EPA 2014). The EPA estimated that the 

sanitary sewer overflows and combined sewer overflows release a collective total of 

around 850-860 billion gallons of untreated wastewater and stormwater yearly (EPA 

2004).  This release of untreated wastewater into surface waters has contributed to 

beach closures, shellfish bed closures, contaminated drinking water supplies, and other 

public health concerns (EPA 2004). 

Additional sources of stormwater contamination include runoff from streets 

(Bannerman et al 1993); roofs, including those with artificial stormwater infiltration 

(Bucheli et al. 1998) residential, and commercial or park areas (Huang et al. 2007). 

Runoff from the aforementioned surfaces can be contaminated by a multitude of 

sources including pets and other animals (Ram et al. 2007), seal coating pavements 

(Watts et al. 2010), pesticides (Weston et al. 2009), and automotive sources including 

residue from tires and brakes (McKenzie et al 2009). 
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1.5 Effects of exposure to contaminates 

The effects of exposure to contaminants commonly found in urban stormwater 

can be as diverse as the contaminants themselves. For instance, excess nutrients can 

cause toxic algal blooms, oxygen deficiency, shifts in the food web, loss of habitat, and 

decreased biodiversity (Rabalais 2002). Suspended sediment, while natural and to be 

expected in aquatic environments, can be problematic in higher concentration. 

Suspended solids in excess of 9000 mg/l have been shown to decrease the fertilization 

success of coho and sockeye salmon (Galbraith et al. 2006). 

Metals and PAHs are the most frequently detected contaminant found in road 

runoff (Douben 2003). Metals have been found to affect the foraging efficiency of 

fathead minnows, with those exposed to lead acetate showing an increase in the time 

spent feeding and in the number of missed attempts (Weber et al. 1991). Biological 

effects of exposure to PAHs are well documented and include decreased growth, 

developmental disorders, cancer, and alterations in genetic - immune functions 

(Delistraty 1997; Grung et al. 2016). 

In addition to the aforementioned contaminates, there is also a known presence 

of CECs in urban stormwater. Many of these CECs including BPA, dioxins, 

polybrominated diphenyl ethers, polychlorinated biphenyls, and estrogens have 

endocrine disrupting potential (Davies 2017). The endocrine system is a complex 
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network of glands and organs that secrete and regulate hormones within the body. 

These hormones then regulate functions of the body including growth, metabolism, and 

reproduction. A challenge with endocrine disrupting chemicals is they are bioactive and 

can then interfere with the system by mimicking naturally occurring hormones (Tyler et 

al. 1998). This imitation can alter the natural hormonal system of an organism, 

hindering its responses to environmental changes (Diamanti-Kandarakis et al. 2009). 

Additionally, the interference from endocrine disrupting chemicals can alter the natural 

production of hormones or their receptors, negatively effecting growth and 

reproduction (Bergman et al. 2012). For instance, it is well established that 17α-

ethynylestradiol and other estrogens can cause feminization of male fish in wild 

populations (Jobling et al. 1998; Thorpe et al. 2003; Matthiessen et al. 2018)  

Exposure to CECs can have detrimental effects on the morphology and 

physiology of organisms. The degree to which an organism is affected is dependent 

upon various factors including the type of organism, the contaminant, and the exposure 

level. Recurrently exposure to CEC’s has been shown to alter aspects of an organism’s 

development (Henry et al 1997; Lefebvre et al. 2004; Zhang et al. 2017), survival (Rearick 

et al. 2014), and reproduction (Thrupp et al. 2018). Aquatic organisms can often be 

continuously exposed to contamination throughout their lifecycle. Continuous exposure 

to CECs from the point of fertilization can have detrimental teratogenic effects. When 
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exposed to caffeine, ibuprofen, carbamazepine, and novobiocin the sea urchin 

Paracentrotus lividus showed a significant decrease in normally developed pluteus-

larvae (Aguirre-Martínez et al. 2015).  

An organism’s ability to obtain food is critical to its survival. Piscivorous fish 

have the additional challenges of encountering, detecting, subduing, and consuming 

prey. These demands can be further taxed by the introduction of environmental 

stressors (Heugens et al. 2001; Sokolova et al. 2013). CECs have been shown to affect 

different aspects of fish foraging efficiency such as rate of consumption, feeding 

attempts, and capture success. Perch (Perca fluviatilis) exposed to a selective serotonin 

reuptake inhibitor showed a decrease in feeding (Hedgespeth et al. 2014). The overall 

reported effect is ultimately a reduction in the amount of food a fish is able to acquire 

(Brown et al. 1985; Beitinger 1990; Weber et al. 1991; Atchison et al. 1996). Exposure to 

CECs can also affect an organism’s ability to avoid predation. The predator avoidance 

performance of Larval fathead minnows (Pimephales promelas) were adversely affected 

following exposure to the hormone estrone (McGee et al. 2009), and the antidepressants 

fluoxetine and venlafaxine (Painter et al. 2009).  

Exposure to CECs results in a variety of reproductive effects. For instance, male 

fathead minnows showed less aggressive nest defense behavior following exposure to 

opioids (hydrocodone, methadone, oxycodone), antidepressants (fluoxetine, paroxetine, 
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venlafaxine), and a sleep aid (temazepam) (Schoenfuss et al. 2016). Also, larval fathead 

minnows exposed to wastewater effluent which contained those same pharmaceuticals 

resulted in a significant decrease in body length (Schoenfuss et al. 2016). Furthermore, 

exposure to the anti-diabetic medication metformin was found to cause intersex of male 

fish as well as a reduction in size and fecundity (Niemuth & Klaper 2015). Additionally, 

female bluegill sunfish exposed to the estrogen 17β-estradiol produced significantly less 

eggs than control females (Elliott et al. 2014). 

Adverse population level effects have also been attributed to CECs. Rearick et al. 

(2018) found that larval fathead minnows exposed to 17β-estradiol were more 

vulnerable to predation due to delayed response times and slower speeds. A population 

model established that an increase in predation mortality during early life stages could 

result in a decline of the population (Rearick et al. 2018). Similarly, a lake exposed to the 

synthetic estrogen 17α-ethynylestradiol experienced two years of consecutive 

reproduction failures for fathead minnows and ultimately the collapse of the entire 

population (Kidd et al. 2007). Additionally, male fathead minnows were found to have 

an increase in vitellogenin production (Kidd et al. 2007). Vitellogenin is a precursor 

protein for egg-yolk and is a sign of estrogenic exposure when expressed in males 

(Purdom et al. 1994; Harries et al. 1997)  
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1.6 Toxicological Stormwater Studies 

Despite the documented presence of CECs in urban stormwater and their known 

biological effects, few toxicological experiments using stormwater runoff have been 

conducted. When studied, the demonstrated effects of urban stormwater runoff are 

varied. For example, Waara and Färm (2008) reported that highway runoff had no 

apparent toxicity. In contrast, Schiff and colleagues (2002) showed organism dependent 

toxicity with the purple sea urchin being sensitive to stormwater, while mysid shrimp 

were not at all sensitive. Similarly, urban stormwater runoff to a stream in Denmark 

were toxic to the algae Pseudokirchneriella subcapitata, but not toxic to Daphnia magna 

(Christensen et al. 2006). Furthermore, untreated stormwater samples from California 

(USA) were found to be toxic to amphipods and midges but not to daphnids or fathead 

minnows (Anderson et al. 2016). 

Also demonstrating the variability in stormwater effects, Westerhoff et al. (2018) 

reported that the responses of Daphnia magna and fathead minnows were often subtle, 

inconsistent, or unexpected, and that larval fathead minnows exposed to both iron 

enhanced sand filter (IESF) un-treated and IESF treated stormwater fed less than fish in 

reference water. Additionally, zebrafish embryos exposed to urban stormwater runoff 

showed a range of developmental abnormalities such as delayed hatching, reduced 
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growth, pericardial edema, reduced eye size, reduced swim bladder inflation, and acute 

lethality (McIntyre et al. 2014). 

1.7 Stormwater Best Management Practices 

The Clean Water Act 33 U.S.C. §1251 et seq. established the basic structure for 

regulating the discharging of pollutants, including stormwater runoff, into United 

States waters. Section 402 of the Clean Water Act 40 C.F.R. §122.1. authorized the 

creation of the National Pollutant Discharge Elimination System (NPDES). The NPDES 

permit program addresses water pollution by regulating three main potential point 

sources that discharge pollutants into waters of the United States. In 1990 the NPDES 

program required cities with populations of 100,000 or greater to obtain a permit and 

develop stormwater management programs in order to control pollution. Many of those 

programs incorporate best management practices (BMP) in order to limit or filter out 

pollutants. 

Best management practices are the first line of defense between the contaminants 

of stormwater runoff and the aquatic organisms living downgradient. Current BMPs for 

stormwater include structures that are designed to store, treat, and infiltrate stormwater 

onsite before it is able to reach surface waters. These practices include flow-through dry 

ponds, wet retention ponds, constructed wetlands, buffer strips, rain gardens, and 

porous pavements (Anderson et al. 2016).  
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Biofiltration or bioretention is a BMP which promotes the filtering of stormwater 

runoff through plants and soil to reduce contaminants before they reach waterways, 

examples include raingardens and bioswales (Zhang et al. 2014). The addition of plants 

also makes the BMPs more aesthetically pleasing to inhabitants (Davis 2005). Most 

people living near these forms of green infrastructure cannot differentiate between a 

treatment area and a conventional garden (Suyeon & Kyungjin 2017). Yang and 

colleagues (2010) found that raingardens had exceptional removal efficiency for 

phosphate (89–100%) and atrazine (84–100%). Similarly, bioswales have been found to 

reduce the toxicity of stormwater and the concentrations of suspended solids (81%), 

metals (81%), hydrocarbons (82%), and pyrethroid pesticides (74%) (Anderson et al. 

2016).  

Treatment of stormwater is critical to aid in the reduction of adverse biological 

effects, and the potential removal of CECs. Most stormwater treatment methods rely on 

filtration or settling to remove solid particles, and few have the capability to capture 

pollutants once dissolved (Erickson et al. 2012). Sand filtration is a BMP used to treat 

suspended solids by filtering the stormwater using an aggregate media. Different types 

of sand filtration include the “Austin” sand filter which is similar to a dry retention 

basin but includes a sand filled area that filters water before releasing it. Additionally, 

the “Delaware” sand filter is designed to treat runoff underground in a concrete 
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channel before discharging it (Weiss et. al. 2007). In an effort to improve the 

performance of sand filters, a recently developed BMP approach mixes iron (typically 

5%) into the sand filtering portion of a stormwater pond creating an IESF (Erickson et 

al. 2012). The IESF filter can also be referred to as the “Minnesota” sand filter (MN PCA 

2015). The main purpose of this addition is the ability of the IESF to mitigate excess 

dissolved phosphorous. Dissolved phosphorous in stormwater binds with the oxidized 

iron within the filter and is removed at an average of 80-90% (Erickson et al. 2012).  

Apart from phosphorous, treatment of stormwater runoff with IESF can also 

reduce concentrations of CECs, metals, and nutrients (Westerhoff et al. 2018). Iron and 

manganese treatments have been shown to remove pharmaceuticals from water via 

physico-chemical, chemical, and biological process (Liu et al. 2016). Following IESF 

treatment, the concentrations of 17 organic contaminants were significantly reduced 

including PAHs and their derivates (89%-100%), lifestyle and pharmaceutical 

compounds such as caffeine (72%), nicotine, and acetaminophen (89%-100% removal), 

as well as commercial contaminates  including BPA, phenol, and DEET (36%) (Fairbairn 

et al. 2018). 

1.8 Fathead Minnow Uses in Aquatic Toxicology 

The fathead minnow is a small-bodied, ray-finned, omnivorous fish with a full-

grown weight between 2-5g, and a full-grown length ranging from 2.5-7.5 cm (Paetz, 
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1992). They live on average for 3-4 years, although environmental factors can limit this 

to approximately 2 years in wild populations (Kidd et al., 2007). Both males and females 

are deep bodied with a blunt rounded head, slightly forked caudal fin, and a single soft 

rayed dorsal fin (Paetz, 1992), however males are larger than females (Becker, 1983). 

They belong to the Cyprinidae family and have a broad distribution across most of 

North America (Ankley & Villeneuve 2006). In natural settings, fathead minnow 

reproduction begins May when waters reach 15°C and an appropriate 16:8 light:dark 

cycle is achieved (Prather, 1957; Duda, 1989; Danylchuk & Tom, 2001). 

Fathead minnows were chosen for this experiment because they have historically 

been used as a model species for aquatic toxicology (Parrot & Wood 2002; Kidd et al. 

2007; McGee et al. 2009; Anderson et al. 2016; Schoenfuss et al. 2016; Westerhoff et al. 

2018), they are native to the area of study, and they are readily accessible. In addition, 

fathead minnows can continuously reproduce in a laboratory setting once they reach 

sexual maturity (Brungs 1971; Jensen et al. 2001), which makes them a useful species for 

laboratory studies which assess embryonic development. Fathead minnows are also a 

suitable choice for laboratory use because they have a well-defined reproductive and 

developmental cycle, as well as being tolerant to a broad range of water quality 

parameters including pH, alkalinity, hardness, turbidity, and temperature (Ankley & 

Villeneuve 2006).  
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The rapid increase of urbanization combined with the contemporary use and 

presence of CECs has resulted in the know contamination of stormwater. Additionally, 

these contaminates are also known to have adverse biological effects. What is unknown 

is the extent of the effects exposure to CECs may have on organisms or the mitigation 

potential of current BMPs. To answer those questions, the objective of this study is to 

determine if urban stormwater runoff has adverse biological effects on fathead 

minnows, and to assess the effectiveness of current BMP in mitigating those effects.  
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Chapter 2. Characterization and Biological Effects of Urban Stormwater Runoff from 

the Metropolitan area of Saint Paul, Minnesota 

2.1 Introduction 

Urbanization of the United States has been steadily increasing over the last 200 

years with currently just over 80% of the United States population living in an urban 

area (US census 2010). Furthermore, this transition from a primarily rural to urban 

population in not unique to the United States. Currently 55% of the world population 

lives in an urban area, with an expected increase to 68% by 2050, and a majority of that 

growth occurring in Asia and Africa (UN 2018). This urbanization is not only 

characterized by an increase in population density, but also by an increase in the 

percentage of impervious surface cover. Impervious surfaces act as conduits during 

precipitation events to move contaminants into storm sewers and on to aquatic 

ecosystems. This allocates to the percentage of the impervious surfaces effectively 

indicating the impacts of urban development on aquatic ecosystems (Arnold et al. 1996; 

Finkenbine et al. 2000; Ladson et al. 2006). The threshold at which water quality begins 

to suffer from this urban input is debated, with most studies suggesting that adverse 

effects are detectable at an impervious surface percentage of 10 to 20 (Klein 1979; 

Schueler 1994; Holland et al. 2004; Kim 2016). 
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In addition to increased population density and impervious surfaces, urban areas 

are also characterized by the presence of CECs (Bai et al., 2018; Fairbairn et al. 2018). 

Traditionally, the contaminants of interest for stormwater have included superfluous 

nutrients (Wang et al. 2001; Wendling et al., 2013), suspended sediments (Sansalone el 

al. 2004; Osouli et al. 2017), metals (Brown & Peake 2006), and polycyclic aromatic 

hydrocarbons (PAHs) (Brown & Peake 2006). In addition, stormwater runoff from 

urban areas is often contaminated with complex mixtures of CECs (Boyd et al. 2004; 

Ritchie et al. 2007; Zgheib et al. 2012; Page et al. 2014; Burant et al. 2018; Fairbairn et al. 

2018). In some instances, the contamination load of urban stormwater runoff can be 

comparable to those found in the effluent of wastewater treatment plants (Buerge et al., 

2006; Fairbairn et al., 2016; Vogel & Moore, 2016). The combination of contamination 

present and impervious surfaces makes urban stormwater runoff a substantial 

contributor to water quality impairment (Li 2009, O’Driscoll 2010). In order to treat and 

regulate influxes of stormwater runoff during precipitation events, most cities install 

BMP infrastructure that includes retention ponds, constructed wetlands, buffer strips, 

porous pavements, and bioretention (Anderson et al. 2016; Zhang et al. 2014).  

Unfortunately, little is known about CECs in stormwater and few toxicological 

studies have been conducted to assess their effect on biota in urban aquatic ecosystems. 

In the few available studies, the effects of exposure to CECs in urban stormwater runoff 
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are often varied. Most research shows a level of organismal dependent toxicity and a 

range of developmental abnormalities (Schiff el al. 2002; Christensen et al. 2006; 

McIntyre et al. 2014; Anderson et al. 2016; Westerhoff et al. 2018). Fewer still are studies 

which examine the seasonality of CECs, or the potential of BMPs to mitigate effects or 

total numbers and/or concentrations of CECs.  

Previous studies have demonstrated that treatment of stormwater runoff can 

reduce contaminant loads. Raingardens have been shown to remove phosphate and 

atrazine from urban stormwater (Yang et al. 2010). Additionally, bioswales reduce the 

toxicity of stormwater and the concentrations of suspended solids, metals, 

hydrocarbons, and pesticides (Anderson et al. 2016). Installation of IESF has been 

shown to diminish the concentrations of CECs, metals, and nutrients in the filtered 

runoff (Westerhoff et al. 2018). Despite these indicators of the positive impact of BMPs 

on CEC loads in stormwater, many questions remain regarding the biological effects of 

urban stormwater runoff and the mitigating potential of BMPs. 

The question regarding CEC contamination of urban stormwater runoff is no 

longer of its existence. But rather one of concentrations of CECs, their biological effects, 

and the mitigating potential of BMPs. In an effort to answer these questions the 

objectives of this study are trifold: (i) to determine the seasonality of the biological 

effects to fathead minnows following exposure to urban stormwater runoff; (ii) to 
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examine the effectiveness of stormwater BMP in mitigating biological effects of runoff 

on fathead minnows; and (iii) to assess the efficiency of the addition of IESF in 

mitigating adverse biologic effects. I hypothesize that (i) adverse biological effects will 

be greatest in summer and winter, with decreased adverse effects in the transition 

seasons. (ii) urban stormwater runoff treated with standard retention pond “outflow” 

will have fewer adverse biological effects than untreated stormwater “inflow”; (iii) 

Treatment of urban stormwater outflow with IESF will further reduce adverse 

biological effects over standard retention pond outflow and untreated inflow. 

2.2 Materials and Methods 

Over the course of two years (2018-19), I assessed the biologic effects of urban 

stormwater runoff and remedial potential of BMPs across the metropolitan area of St. 

Paul (Minnesota, USA). This was accomplished by the concurrent sampling of 

stormwater pond inflows and outflows, some of which included the addition of IESF 

filtration. In an attempt to demonstrate the variability of stormwater pollution, five 

seasonal sampling events took place (Table 1). Larval fathead minnows (1-22 days old) 

were then exposed to aide in understanding the biologic effects of exposure to urban 

stormwater. 



28 

Table 1. Seasonal stormwater collection attributes including date of collection, seasonal 

representation, geographic area (refer to figure 1 for location) and 24-hour precipitation 

amounts from https://www.ncdc.noaa.gov. 

Sample  

Collection Date 

Seasonal 

Representation 
Area 

24 Hour 

Precipitation 

(cm) 

June 26, 2018 Summer 

North 2.72 

Central 2.21 

South 2.79 

September 4, 2018 Fall 

North 1.73 

Central 4.09 

South 3.25 

March 24, 2019 Winter 

North Snow Melt 

Central Snow Melt 

South Snow Melt 

May 19, 2019 Spring 

North 4.45 

Central 1.12 

South 1.12 

August 14, 2019 Summer 

North 0.13 

Central 0.00 

South 1.22 

2.2.1 Study Sites 

Potential sampling sites were reconnoitered across the metropolitan area of St. 

Paul, Minnesota (USA). Sites examined included stormwater ponds outfitted with IESF 

and standard stormwater retention ponds with no additional filtration. Site selection 

was based on land use, acres of watershed treated, accessibility, sample-ability (having 

both inflow and outflow), as well as proximity to other sites.  After visiting and 

surveying the locations, seven stormwater ponds were found to be suitable for the 

https://www.ncdc.noaa.gov-/
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current study (Table 2). Five ponds fitted with iron enhanced sand filters were chosen: 

Golden Lake Pond (GOL; Blain, MN), William Street Pond (WIL; Roseville, MN), Trout 

Brook Nature Sanctuary ponds-Maryland, Magnolia, and Jenks (MAR, MAG, JEN; St. 

Paul, MN). In addition to a pair of standard retention ponds: Southview Blvd (SOU; 

South St. Paul, MN), and Birchwood Acres (BIR; Lino Lakes, MN) (Figure 1).  

Stormwater runoff from five seasonal precipitation events was collected. 

Sampling coincided with a summer rain (2018), a fall rain, snowmelt, a spring rain, and 

a second (2019) summer rain event.  The snowmelt collection was timed with the 

thawing of the ground to allow for operation of the IESFs. Snow melt sampling took 

place during the first consecutive days with an air temperature above freezing. The 

spring, summer, and fall rainfall events were collected when there is a forecast of over 

2.5 cm of rain. All collection bottles were cleansed using first Alconox® detergent 

(Alconox, Inc., White Plains, NY, USA) followed by rinsing with 99% isopropal alcohol. 

Thirty 1-L water samples for bioassays were collected from inflows and outflows of 

each site using established USGS protocols (Appendix A). Stormwater samples were 

collected from manholes, with catch poles, weighted buckets, or by hand and then 

stored at -20 °C before being used for bioassays. Water quality parameters of 

temperature, dissolved oxygen, conductivity, pH, total dissolved solids, and salinity 
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were recorded at the time of sampling using a YSI model 556MPS (YSI Inc., Yellow 

Springs, OH, USA) (Table 3).  

A consequence of the variability in hydrology of the IESF sites occasionally 

resulted in the inability to isolate the IESF treated outflow (Table 4). Increased amounts 

of precipitation would elevate the water level of the pond causing outflow to bypass the 

IESF in order to prevent flooding.  
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Table 2. Characteristics of stormwater field collection sites including both iron enhanced sand filtration sites and standard 

stormwater pond sites. Characteristics include site name with abbreviation, location, pond area, filter area, watershed 

area, land usage, and percent impervious surfaces. 

Iron Enhanced 

Sand Filter Site 
Location (latitude, longitude) 

Pond 

Area 

(m2) 

Filter 

Area 

(m2) 

Watershed 

Area (km2) 

Land Use (%) 
Impervious 

Surface (%)Residential Industrial 

Golden Lake 

(GOL) 
45° 9' 7.36" N, 93° 10' 4.31" W 7288 439 0.82 100 0 - 

William Street 

(WIL) 
45° 0' 7.20" N, 93° 6' 36.76" W 3196 46 0.68 - - - 

Maryland (MAR) 44° 58' 34.37" N, 93° 5' 35.89" W 1885 418 0.14 - - 47 

Magnolia (MAG) 44° 58' 26.19" N, 93° 5' 35.30" W 610 130 0.17 - - 24 

Jenks (JEN) 44° 58' 15.55" N, 93° 5' 32.69" W 756 223 0.27 - - 17 

Standard 

Stormwater Pond 

Sites 

Southview Blvd 

(SOU) 
44° 53' 13.78" N, 93° 3' 39.42" W 7689 n/a 0.68 - - - 

Birchwood Acres 

(BIR) 
45° 8' 13.81" N, 93° 6' 52.79" W 10165 n/a 0.15 100 0 -

31
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Figure 1. Map of sampling sites located around the greater St. Paul (Minnesota, USA) 

metropolitan area. Sites include five stormwater ponds fitted with iron enhanced sand 

filters: Golden Lake Pond (GOL) in Blain, William Street Pond (WIL) in Roseville, and 

Trout Brook Nature Sanctuary ponds: Maryland (MAR), Magnolia (MAG), and Jenks 

(JEN) in St. Paul. Also included are two standard retention ponds Southview 

Blvd/Anderson Pond (SOU) in South St. Paul, and Birchwood Acres (BIR) in Lino 

Lakes. 

32



33 

Table 3. Seasonal Water quality parameters of dissolved oxygen, conductivity, pH, total 

dissolved solids, salinity, and nitrate as measured at time of sampling for each site. 

Site Season 
Dissolved 

O2 (mg/l) 

Conductivity 

(μs/cm) 
pH 

Total 

Dissolved 

Solids 

Salinity 
Nitrate 

(mg/l) 

GOL 

IN 

Summer 8.12 95 8.76 0.061 0.04 0.9 

Fall 3.75 231 7.98 0.150 0.11 4.8 

winter 13.36 188 9.88 0.122 0.09 20.5 

Spring 12.10 174 7.59 0.110 0.08 35.2 

Summer 3.65 208 7.13 0.135 0.10 6.4 

GOL 

OUT 

Summer 3.09 396 7.11 0.257 0.19 0.7 

Fall 1.91 416 7.49 0.270 0.20 5.7 

winter 9.03 198 9.32 0.129 0.09 19.1 

Spring 7.83 730 7.55 0.475 0.30 12.3 

Summer 3.35 452 7.29 0.294 0.22 4.0 

BIR 

IN 

Summer 8.63 467 7.34 0.303 0.23 3.5 

Fall 4.88 94 8.06 0.061 0.04 11.9 

winter 13.36 240 9.03 0.156 0.11 61.1 

Spring 9.58 350 7.84 0.228 0.17 33.1 

Summer 4.18 714 7.26 0.464 0.35 8.7 

BIR 

OUT 

Summer 6.09 463 7.00 0.301 0.22 0.8 

Fall 4.37 159 7.88 0.103 0.07 7.0 

winter 9.07 169 8.83 0.110 0.08 25.2 

Spring 7.69 374 8.06 0.243 0.18 26.5 

Summer 4.41 398 7.36 0.259 0.19 8.2 

WIL 

IN 

Summer 3.40 354 7.08 0.230 0.17 1.0 

Fall 5.60 67 8.20 0.044 0.03 2.4 

winter 12.66 217 8.42 0.141 0.10 11.9 

Spring 3.73 534 7.93 0.347 0.26 15.1 

Summer 0.65 362 6.74 0.235 0.17 8.4 

WIL 

OUT 

Summer 1.80 458 7.06 0.298 0.22 0.8 

Fall 3.18 360 7.69 0.234 0.17 1.8 

winter 5.31 333 8.45 0.217 0.16 6.3 

Spring 3.70 554 7.75 0.360 0.27 24.2 

Summer 1.74 409 7.15 0.266 0.20 5.1 

MAR 

IN 

Summer 1.93 1074 6.87 0.698 0.53 1.6 

Fall 4.94 97 7.99 0.063 0.04 13.4 

winter 14.96 1006 8.26 0.653 0.50 26.1 

Spring 10.40 203 8.26 0.132 0.10 28.3 

Summer 4.52 206 7.04 0.134 0.10 9.9 
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Site Season 
Dissolved 

O2 (mg/l) 

Conductivity 

(μs/cm) 
pH 

Total 

Dissolved 

Solids 

Salinity 
Nitrate 

(mg/l) 

MAR 

OUT 

Summer 2.56 1159 6.88 0.753 0.58 1.6 

Fall 3.01 406 7.32 0.264 0.19 2.1 

winter 8.01 799 8.46 0.518 0.39 20.1 

Spring 6.42 1042 7.86 0.678 0.52 38.9 

Summer 2.68 277 7.38 0.180 0.13 7.6 

MAG 

IN 

Summer 3.53 115 7.66 0.075 0.05 2.5 

Fall 5.31 34 7.66 0.022 0.01 2.8 

winter 12.98 236 8.55 0.153 0.11 14.4 

Spring 10.40 203 8.26 0.132 0.10 24.6 

Summer n/a n/a n/a n/a n/a n/a 

MAG 

OUT 

Summer 2.26 355 7.34 0.231 0.17 0.9 

Fall 4.14 195 7.26 0.127 0.09 9.0 

winter 7.12 302 8.21 0.196 0.14 13.8 

Spring 2.95 240 7.82 0.156 0.11 62.4 

Summer n/a n/a n/a n/a n/a n/a 

JEN 

IN 

Summer 3.19 174 7.29 0.113 0.08 1.1 

Fall 5.34 30 7.57 0.019 0.01 5.5 

winter 12.47 170 8.27 0.111 0.08 31.3 

Spring 8.20 13 7.99 0.086 0.06 21.6 

Summer 2.58 145 6.89 0.094 0.07 12.4 

JEN 

OUT 

Summer 1.92 283 7.27 0.184 0.13 0.8 

Fall 3.77 232 7.29 0.151 0.11 4.5 

winter 7.23 290 8.29 0.188 0.14 21.2 

Spring 7.61 415 7.81 0.270 0.20 36.8 

Summer 3.88 402 7.34 0.261 0.19 5.0 

SOU 

IN 

Summer 5.46 490 7.22 0.318 0.24 3.8 

Fall 5.83 435 7.27 0.283 0.21 3.8 

winter 15.10 774 8.09 0.503 0.38 12.5 

Spring 8.96 518 7.95 0.337 0.25 43.7 

Summer 6.14 724 7.94 0.471 0.35 20.6 

SOU 

OUT 

Summer 4.40 581 7.21 0.378 0.28 1.3 

Fall 5.39 180 7.49 0.117 0.08 5.9 

winter 10.70 890 8.11 0.579 0.44 12.3 

Spring 15.73 887 7.90 0.577 0.44 19.4 

Summer 4.40 807 7.67 0.525 0.40 5.7 
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Table 4. Differences in treatment level of stormwater runoff by season. All sites had 

representative inflows, with differences occurring at the outflow. Changes in treatment 

level of IESF ponds resulted from increased amounts of precipitation overwhelming 

and bypassing the filter. Refer to table 2 for site abbreviations.  

Summer 18 Fall 18 Winter 18 Spring 19 Summer 19 

GOL Standard 

outflow 
IESF 

Standard 

outflow 

Standard 

outflow 
IESF 

WIL 
IESF 

Standard 

outflow 
IESF 

Standard 

outflow 
IESF 

MAR 
IESF IESF IESF IESF IESF 

MAG 
IESF IESF IESF IESF 

Not 

Sampled 

JEN 
IESF IESF IESF IESF IESF 

SOU Standard 

outflow 

Standard 

outflow 

Standard 

outflow 

Standard 

outflow 

Standard 

outflow 

BIR Standard 

outflow 

Standard 

outflow 

Standard 

outflow 

Standard 

outflow 

Standard 

outflow 

2.2.2 Juvenile Fathead Minnow Exposures 

Juvenile fathead minnow exposures were conducted at the St. Cloud State 

University Aquatic Toxicology Laboratory (St. Cloud, MN, USA) using grab samples 

collected during precipitation events and stored at -20 °C until used.  Post-hatch fathead 

minnow larvae (<24 hours old) were shipped from Environmental Consulting & Testing 

(Superior, WI, USA) overnight to St. Cloud. For each treatment, larvae were randomly 

separated into tanks (3 liter) each containing 5 replicates, each replicate contained 15 

larvae and consisted of a 6.5 cm internal diameter x 10 cm tall glass tube with a mesh 
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bottom secured to the glass with silicone. The fish were exposed for 21 days under a 

50% daily static renewal protocol. A laboratory reference treatment used non-

chlorinated water from a dedicated well. Environmental conditions were maintained at 

a temperature of 22.7 ± 1.5 °C and a photoperiod of 16:8 hour light:dark, within a 

laminar flow hood using HEPA filtration. Fish were fed twice daily ad libitum with 

freshly hatched brine shrimp (Brine Shrimp Direct, Ogden, UT, USA). Every third day 

water quality parameters of hardness and alkalinity were recorded using HACH PRO 

Aquachek test strips (Hach Company, Loveland, CO, USA), while temperature, pH, and 

dissolved oxygen where recorded using a YSI Pro 1020 water meter. 

2.2.3 Biological Analysis 

Following exposure, juvenile fathead minnows (21 days old) were analyzed for 

survival, growth, feeding efficiency, and predator avoidance performance. Survival was 

assessed as the percent remaining in each replicate following 21 days of exposure. 

Growth was assessed as the total body length in mm after 21 days of exposure. Subjects 

were measured for growth using a digital video recorded from a Redlake MotionScope 

high-speed camera (1000 frames per second; Tucson, AZ) positioned ~25 cm vertically 

above a test arena. The arena featured a 1 mm × 1mm grid background used in 

combination with ImageJ software to determine the overall length of the fish.  
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Feeding efficiency was assessed by transferring larvae to a 6-well plate (VWR 

International, Radnor, PA) containing 10 ml of conditioned well water and allowing 

them to acclimate for 12 hours. The food source consisted of 15±1 recently hatched brine 

shrimp that where counted using a microscope. The subject was then allowed to forage 

for 1 minute on an available brine shrimp until being euthanized using a lethal 

concentration of NaCO2-buffered MS -222 (Argent Chemical Laboratories, WA, USA). 

Following the assay, remaining brine shrimp were counted using a microscope to 

determine the percent reduction on shrimp. A more detailed description of the feeding 

assay can be found in (Appendix B) 

Predator avoidance performance was assessed using four variables (latency, 

escape velocity, escape angle, and total escape response ((bodylength / distance traveled 

in 20msec)/ latency in msec)) following established protocols (McGee et al. 2009). At the 

start of each trial, a randomly selected subject was placed into a clear-bottomed testing 

arena (5-cm diameter) containing 10 mL of conditioned well water. The subject was 

allowed to acclimate for 1min before to the induction of the stimulus. The arena was 

positioned on a back-lit pad containing a speaker used to deliver a non-point source 

vibration lasting 0.6 seconds. A 1 mm × 1mm grid backdropped the arena to allow for 

quantification of the response. The entire testing area was illuminated via a Kessil A150 

fiber optic light source (Richmond, CA, USA) angled above the arena. Each response 

was recorded at 1000 frames per second using a Redlake MotionScope high-speed 
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camera (Tucson, AZ, USA) positioned ~25 cm vertically above the test arena. 

Recordings were then analyzed using ImageJ software (NIH). Trials in which the 

subject failed to respond to the stimulus after 3 attempts were deemed to have no 

response and excluded from the analysis. Additionally, trials in which the response 

latency was found to be less than six milliseconds after the induction of the stimulus 

were considered false-starts and eliminated from the analysis. After completion of the 

exposure period and bioassays, fish were euthanized following St. Cloud State 

University IACUC approved guidelines using a lethal concentration of NaCO2-buffered 

MS-222 (Argent Chemical Laboratories, WA, USA). A more detailed description of the 

predator avoidance assay and the process for digitizing the data can be found in 

(Appendix C). 

2.2.4 Statistical Analysis 

Statistical analysis for the results of treatment effectiveness by site (inflow vs. 

outflow or IESF) was completed using a paired t-test. Statistical analysis for the results 

of seasonality (summer 2018, fall 2018, winter 2018, spring 2019, summer 2019) and 

treatment (inflow, outflow, IESF, reference) were analyzed with a two-way analysis of 

variance using a least square means model. A standard least square means model was 

used due to the variation in sample sizes. Fixed independent variables included season 

and treatment. Dependent variables included survival (%), body length (mm), reduction 

in shrimp (%), latency (ms), escape velocity (Bl/ms), escape angle, and and total escape 
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response (Bl/ms). All models tested the effects of season, treatment, and the interaction 

between these two terms. All variables were analyzed using JMP pro 14 (SAS, Cary, 

NC, USA). Tukey HSD posttest was used for analysis of seasons, and the Dunnett’s 

post-test was used for treatment level effects with reference well water as the control.  

2.3 Results 

Juvenile (21-day) fathead minnow exposure experiments were conducted for 

urban stormwater runoff samples coinciding with precipitation events representing 

summer (2018), fall, winter, spring and an additional summer (2019) (independent 

variable).  Dependent variables assessed for juvenile fathead minnows included 

survival, growth, feeding efficiency, latency, escape velocity, escape angle, and total 

escape response. All dependent variables showed a significant difference between 

seasons (p<0.01) which demonstrates an inherent difference based on the variability of 

precipitation events.  
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2.3.1 Effects on Reference Fish 

Biological effects of exposure to the well water “reference” treatment varied 

between exposures, with significant differences occurring for each dependent variable. 

An exposure to stormwater collected in winter yielded the best survival, followed by 

summer19, spring, fall, and summer18 with the worst survival. To account for possible 

effects on survival resulting from laboratory practices, “relative survival” was used to 

relate the survival of reference fish to treatment fish for each seasonal exposure period. 

Relative survival was calculated as (100 / average survival of reference fish) * (average 

survival of treatment replicate). 

Growth and feeding efficiency of reference fish varied less than survival between 

exposures. Fish grew to their largest size in stormwater collected in the winter, fall, and 

summer18, while fish were smaller at the end of the 21-day exposure in stormwater 

collected in spring and summer19. Feeding efficiency of reference fish varied more than 

growth, but not as much as survival. Fish exposed to stormwater collected in the fall 

season consumed the most shrimp, followed by winter, summer18, summer19, and the 

fewest shrimp were consumed in spring.  
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Furthermore, the predator avoidance end points of latency, escape velocity, 

escape angle, and total escape response had differing amounts of variability. There was 

negligible variability regarding the latency between exposures. Escape velocity showed 

a slight variation with the fastest velocity being observed in an exposure to stormwater 

collected in summer18 and fall, and the slowest found in summer19, winter, and spring. 

Escape angle and total escape response showed increased variably over latency and 

escape velocity. The largest angle occurred in an exposure to stormwater collected in 

summer18, followed by fall, summer19, spring, and then winter with the smallest. The 

fastest total escape response occurred in an exposure to stormwater collected in 

summer18, followed by fall, summer19, winter, and then spring with the slowest.  

2.3.2 Effects of Treatment by Site 

Biological effects of exposure to urban stormwater runoff varied by site, when 

comparing mitigation potential of treatment. Reviewing first the effects on survival 

following treatment (Figure 2), as determined by relative surviving percentage (%) per 

replicate, sampling site GOL showed greater survival following treatment for fish 

exposed to summer18 non-IESF treated outflow when compared to the untreated inflow 

from summer18 (p=0.02). 
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 In contrast exposure to stormwater collected in the fall resulted in decreased 

survival following treatment with IESF when compared to untreated inflow from fall 

(p=0.03). Survival then increased for fish exposed to non-IESF treated stormwater 

collected in spring when compared to the untreated inflow from spring (p=0.05). 

Following a similar pattern, survival decreased once more for fish exposed to IESF 

treated stormwater from summer19 when compared to the untreated inflow from 

summer19 (p<0.01).  

A similar pattern was seen for the WIL site with decreased in survival of fish 

exposed to summer18 runoff treated with IESF (p<0.01). Survival of fish then increased 

in an exposure to stormwater collected in spring which was not treated with IESF 

(p<0.01). The MAR and MAG sampling sites showed no significant difference between 

treatments. Additionally, the JEN sampling site indicated that fish exposed to IESF 

treated runoff from winter also had decreased survival when compared to the inflow 

(p<0.01). Non-IESF sites SOU and BIR also showed decreased survival of fathead 

minnows exposed to stormwater from treated outflow when compared to untreated 

inflow from summer18 (p<0.01). Additionally, fish exposed to stormwater from the BIR 

site exhibited decreased survival following treatment for summer18 (p=0.03), followed 

by increased survival for fall (p=0.01), and summer19 (p<0.01). 
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 Figure 2. Relative Survival of fathead minnows exposed to stormwater runoff as 

compared to survival of reference fish. Inflow for each site is denoted as “in” and 

outflow is denoted as “out”. Refer to table 2 for site abbreviations, and table 4 for 

treatment level. An “*” indicates a significant difference of p≤0.05 for outflow when 

compared to inflow. 
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Effects on growth (Figure 3) of fathead minnows following 21-day exposure to 

pond inflows and outflows had varying results. When comparing inflow to outflow, 

exposure to stormwater collected from the GOL site caused a decrease in size following 

standard retention pond treatment for winter (p<0.01). Additionally, size was also 

decreased following exposure to IESF treated runoff from summer19 when compared to 

untreated inflow (p=0.01). The WIL site showed no significant effect by treatment for 

any season. While exposure to IESF treated outflow from the MAR site in summer18 

resulted in an increase in size for fish when compared to untreated inflow (p<0.01). 

Similarly, the MAG site showed fish exposed to IESF treated runoff had an increase in 

size following treatment for winter (p<0.01). On the contrary the JEN site showed a 

decrease in size of fish following IESF treatment of stormwater collected from summer19 

(p=0.03). The standard retention pond site SOU had an increase in size following 

treatment for fish exposed to winter snowmelt (p<0.01). While BIR showed no 

significant effect based on treatment by season. 
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Figure 3. Total body length of fish exposed to urban stormwater runoff. Inflow for each 

site is denoted as “in” and outflows are denoted as “out”. Refer to table 2 for site 

abbreviations, and table 4 for treatment level. An “*” indicates a significant difference of 

p≤0.05 for outflow when compared to inflow. 
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Effects of treatment on feeding efficiency (Figure 4) were measured as the 

percentage (%) of live brine shrimp consumed in a one-minute period for untreated 

inflow compared to treated outflow (standard or IESF). Results showed that fish 

exposed to IESF treated stormwater from the GOL site had a reduction in the percent 

shrimp consumed following exposure to stormwater collected in the fall (p<0.01). 

Likewise, fish exposed to IESF treated stormwater from the MAR site in summer19 also 

had a decrease in the percent shrimp consumed (p=0.03). Additionally, an increase in 

the percent reduction in shrimp was shown for fish exposed to fall runoff from the 

standard retention pond sites SOU (p=0.05), and BIR (p=0.04). While the sampling sites 

WIL, MAG, and JEN showed no significant treatment level effects for any season. 

Predator avoidance performance of fish (latency, escape velocity, escape angle, 

and total escape response) (Figure 5) showed no significant difference for any of the 

seasons based on treatment by site alone. 
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Figure 4. Percent reduction of shimp following exposure to urban stormwater runoff. 

Inflow for each site is denoted as “in” and outflow is denoted as “out”. Refer to table 2 

for site abbreviations, and table 4 for treatment level. An “*” indicates a significant 

difference of p≤0.05 for outflow when compared to inflow. 
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Figure 5. Total escape response calculated as ((bodylength / distance traveled in 

20msec)/ latency in msec). Inflow for each site is denoted as “in” and outflow is denoted 

as “out”. Refer to table 2 for site abbreviations, and table 4 for treatment level.  

2.3.3 Season – Treatment Interactions 

When independent variables of season (summer 2018, fall 2018, winter 2018, 

spring 2019, summer 2019) and treatment (inflow, outflow, IESF, and reference) are 

analyzed independent of site, survival differed between season and treatments (Figure 

6). Survival showed significant (p≤0.05) seasonal effects with the greatest survival in 

winter, summer19, and fall, followed by fall and spring, with fish exposed to summer18 
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stormwater surviving the worst. Treatment level effects were noted with the Dunnett 

posttest showing a significant decrease in survival following exposure to untreated 

inflow (p<0.01), Standard outflow (p=0.03), and IESF treated outflow (p<0.01) as 

compared to reference well water. Additionally, the survival of fish exposed to 

standard outflow was significantly (p≤0.05) greater than those exposed to IESF treated 

outflow. However, standard retention pond outflow did not show a significant 

improvement over untreated inflow. Survival was also influenced by the interaction 

between season and treatment (p<0.01) (Figure 7). 

Figure 6. Percentage of fathead minnows that survived following 21 days of exposure to 

various seasonal representations (left) and treatment levels (right) of urban stormwater 

runoff. Ordered letter report is the result of a Tukey posttest with a significance of 

(p≤0.05). 
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Figure 7. Plot showing the effect of interaction between season and treatment on 

survival of fathead minnows exposed to urban stormwater runoff.  

The growth of larval fathead minnows differed significantly (p≤0.05) between 

seasons (Figure 8) with the largest fish in summer18, followed by winter, then fall, and 

the smallest fish in spring and summer 19. However, treatment at any level did not have 

a significant effect on growth. Additionally, growth was influenced by the interaction 

between season and treatment (p<0.01) (Figure 9). 
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Figure 8. Body length in mm of fathead minnows following 21 days of exposure to 

various seasonal representations (left) and treatment levels (right) of urban stormwater 

runoff. Ordered letter report is the result of a Tukey posttest with a significance of 

(p≤0.05). 

The feeding efficiency of juvenile fathead minnows was affected by both season 

and treatment (Figure 10). Shrimp consumption was significantly greater (p≤0.05) in fall 

and winter, followed by spring and summer18, then summer18 and summer19. The 

Dunnett’s post-test indicated a significant decrease (p<0.01) in the amount of shrimp 

consumed by fish exposed to untreated inflow when compared to those exposed to 

reference well water. Furthermore, the feeding efficiency of fish did not differ 
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significantly between those exposed to untreated inflow, standard retention pond 

outflow, or IESF treated outflow. Additionally, feeding efficiency was influenced by the 

interaction between season and treatment (p<0.01) (Figure 11). 

Figure 9. Plot showing the effect of interaction between season and treatment on growth 

of fathead minnows exposed to urban stormwater runoff 

Predator avoidance performance was assessed using a combination of four 

variables (latency, escape velocity, escape angle, and total escape response) (Figure 12). 

Latency, the reaction time of a juvenile fathead minnow responding to a simulated 

predator stimulus, was significantly (p≤0.05) affected by seasons. Fish reacted the fastest 
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following exposure to stormwater collected from spring and winter, followed by winter 

and summer19, then summer19 and fall, with exposure to summer18 runoff resulting in 

the slowest reaction time. However, treatment of stormwater did not have a significant 

effect on the latency of fathead minnows. 

Figure 10. Percent reduction of shrimp for fathead minnows following 21 days of 

exposure to various seasonal representations (left) and treatment levels (right) of urban 

stormwater runoff. Ordered letter report is the result of a Tukey posttest with a 

significance of (p≤0.05). 
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Similarly, there was a significant (p≤0.05) seasonal effect for escape velocity 

(normalized to body lengths per millisecond) of juvenile fathead minnows. The greatest 

escape velocity was observed in summer18, followed by fall, and then summer19, winter, 

and spring. Again, there was no significant effect on escape velocity with any treatment 

level. However, there was a significant (p= <0.01) interaction between season and 

treatment (Figure 13).  

The escape angle of juvenile fathead minnows was significantly affected by both 

season and treatment (p≤0.05). With the largest escape angle being shown in fish 

exposed to runoff from summer18 and fall, followed by fall and summer19, then 

summer19 and spring, and finally spring and winter with the smallest. Dunnett’s post-

test did not indicated a significant difference when comparing stormwater exposed fish 

to reference fish. However, a Tukey posttest indicated there was an increased escape 

angle for fathead minnows exposed to IESF treated stormwater when compared to 

untreated inflow (p= 0.03).  
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Figure 11. Plot showing the effect of interaction between season and treatment on 

feeding efficency of fathead minnows exposed to urban stormwater runoff. 

Likewise, the total escape response, a combination of latency and escape velocity 

was also significantly altered by both season and treatment (p≤0.05). The greatest escape 

response was found in fish exposed to stormwater collected in summer18, followed by 

fall, and then summer19, winter, and spring with the slowest response. Again, the 

Dunnett’s post-test did not indicated a significant difference when comparing 

stormwater exposed fish to reference fish. Although, the Tukey posttest showed a 

significant (p≤0.05) increased in escape response of fathead minnows exposed to IESF 
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treated stormwater when compared to those exposed to untreated inflow. Additionally, 

there was a significant (p<0.01) interaction between season and treatment (Figure 14). 
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Figure 13. Plot showing the effect of interaction between season and treatment on the 

escape velocity of fathead minnows exposed to urban stormwater runoff. 

58
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Figure 14. Plot showing the effect of interaction between season and treatment on the 

total escape response of fathead minnows exposed to urban stormwater runoff. 

2.4 Discussion 

I hypothesized that (i) biological effects would be greatest in summer and winter, 

with decreased effects in the transition seasons of fall and spring; (ii) urban stormwater 

runoff outflow treated with a standard retention pond will have fewer adverse 

biological effects than untreated stormwater inflow; (iii) treatment of urban stormwater 

runoff with IESF will further reduce adverse biological effects over standard retention 

pond outflow and untreated inflow.  

Results of this experiment did not support the hypotheses. (i) Summer and 

winter did have the greatest biological effects, yet that varied from year to year, while 
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the transitional seasons also showed adverse effects similar to summer and winter. (ii) 

Results for treatment were also inconclusive with non-significant improvement for 

biological outcomes following exposure to stormwater treated with standard retention 

ponds. (iii) The addition of IESF caused varied and unexpected results with fish 

exposed to IESF treated runoff showing decreased survival and an increased total 

escape response.  

Despite indications of the positive impact BMPs could have on the CEC loads of 

stormwater, many questions remain regarding the seasonality of biological effects 

following exposure to urban stormwater runoff, and the mitigation potential of 

treatment using current BMPs.  

Seasonality appeared to have the greatest effect on biological outcomes, with all 

dependent variables exhibiting a significant seasonal difference. This could be 

attributed to variations resulting from the inherent seasonality of storms. For instance, 

at the time of sampling for summer 2018 there was a combined total of 33 cm of 

precipitation from January – June, averaging to 0.18 cm/day. Whereas summer 2019 had 

considerably more precipitation with 79 cm from January – August, averaging 0.33 

cm/day. Results of the experiment reflected this pattern of variability with fish exposed 

to runoff from summer 2018 exhibiting decreased survival when compared to runoff 

from summer 2019.  
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Previous stormwater studies have shown that variability and uncertainty in 

stormwater contamination is largely dependent on the amount and precipitation 

(Tiefenthaler et al. 2001). Likewise, a study by Launay et al. (2016) on the introduction 

of organic pollutants into surface waters found that personal care products and 

industrial chemical were diluted by rain events, while biocides and PAHs levels were 

increased indicating stormwater runoff as the likely source of pollution. 

Results for growth were dependent on season, with the largest fish occurring in 

an exposure to stormwater collected in summer 18. This effect could be attributed to 

density-dependent growth were fish in replicates with increased mortality have more 

available resources when compared to those in replicates with greater survival. This 

effect was also observed in a study that found body growth of laboratory reared zebra 

fish was largely density dependent (Hazlerigg et al. 2012).  

Effects of stormwater exposure among seasons on shrimp consumption did not 

correlate with the precipitation pattern seen with survival. Fish consumed the most 

following exposure to runoff from fall (average 0.26 cm/day) and the least when 

exposed to runoff from summer19 (average 0.33 cm/day). With no apparent effect from 

the amount of precipitation, it is likely that the effect is the result of the types or 

concentration of CECs present in rainfall at that time. Numerous studies have reported 

a “first flush” effect in which concentrations of contaminants are significantly higher 



62 

during the first part of the wet season, or time of the year when most of the annual 

rainfall occurs (Lee et al. 2004; Soller et al. 2009; Schiff & Tiefenthaler 2011). In most 

cases this effect was greatest for metals (Soller et al. 2009; Schiff & Tiefenthaler 2011) as 

well as organics and minerals (Lee et al. 2004). Pollutant concentrations for initial 

storms were on average 1.2 to 20 times greater than concentrations toward the end of 

the season (Lee et al. 2004; Schiff & Tiefenthaler 2011). 

Chemistry results for this experiment are not complete, however we can 

speculate on the types and concentrations of CECs based on previous studies. A pilot 

study (Westerhoff et al. 2018) found increased concentrations of CECs in summer and 

winter, with the least amount being found in fall. Furthermore, Westerhoff et al. (2018) 

also reported a distinct seasonality for the types of CECs present with increased sterols, 

flame retardants, and alkylphenols in fall and winter; and increased pesticide use in 

spring and summer. Likewise, a seasonal stormwater study found concentrations of 

suspended solids, lead, copper and cadmium were higher for snow melt, when 

compared to rain (Westerlund & Bäckström 2003). Similarly, Helmreich et al. (2010) 

found an increase in concentrations of Cu, organic carbon, suspended solids, pH values, 

and Zn during the cold season. 

Treatment of stormwater by means of standard retention ponds did not 

significantly improve biological outcomes for juvenile fathead minnows over untreated 
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inflow into the pond. However, although the effect was not significant this study 

showed there was a consistent improvement in biological outcomes following treatment 

of stormwater using standard retention ponds. This effect was expected with multiple 

stormwater studies reporting a decrease in contamination (suspended solids, nutrients, 

and heavy metals) following treatment with standard stormwater retention ponds (Van 

Buren et al. 1997; Pettersson et al. 1999). Removal of dissolved constituents, nutrients, 

suspended solids, metals, and organic contaminants occurred primarily during rain 

events indicating that removal appears to be influenced by sedimentation (Van Buren et 

al. 1997). Additionally, increased removal efficiency of suspended solids, nutrients, and 

metals was shown for ponds with greater surface areas (Pettersson et al. 1999).  

The addition of plants has been shown to further aid in the removal of pollutants 

such as suspended solids, biological oxygen demand, total hydrocarbons, phosphorous, 

nitrogen, Cu, and PAHs (LaBarre et al. 2016; Leroy et al. 2016; Manka et al. 2016). 

Furthermore, stormwater ponds showed an increase in removal efficiency for metals, 

nutrients, and suspended solids following the establishment of aquatic vegetation 

(Kantrowitz & Woodham 1995). Additionally, constructed wetlands have been found to 

remove CECs including pesticides, pharmaceuticals, and estrogens (Gorito et al. 2017). 

However, removal efficiency varied depending on the compound with increased 

reduction for some pesticides (pentachlorophenol and endosulfan), and inefficient 
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removal for others (atrazine) (Gorito et al. 2017). Similarly, removal of pharmaceuticals 

and estrogens varied with increased removal of estrogens, and negligible removal for 

the antibiotic azithromycin (Gorito et al. 2017). 

Further treatment of runoff from retention ponds via IESF had conflicting and 

unexpected results. Survival appeared to be negatively affected with the worst 

outcomes following exposure to runoff treated with IESF. This effect could be attributed 

to iron leaching out of the filter. For instance, an iron concentration of above 1.5 mg/liter 

has been shown to cause a reduction in survival, growth, and hatchability in fathead 

minnows (Smith et al. 1973). Similarly, Dalzell & Macfarlane (1999) found that brown 

trout had physically clogged and damaged gills following exposure to iron sulfate used 

to control algae. Moreover, white suckers caged in a lake contaminated with iron ore 

tailings exhibited decreased growth when compared to those caged in a reference lake 

(Payne 2005). 

In contrast, fish exposed to runoff treated with IESF were also shown to have an 

increased total escape response compared to those exposed to untreated inflow. This 

could be the result of the IESF reducing the number or concentration of CECs, which 

might suppress total escape response. The pilot study conducted by Westerhoff et al. 

(2018) showed treatment with IESF resulted in a decrease for both the number and 

concentration of CESs. However, in addition to a reduction of CECs, Westerhoff et al. 
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(2018) also reported a reduction in D. magna reproduction following exposure to runoff 

treated with IESF. Consequently, treatment of stormwater with IESF may result in 

negative outcomes for the survival, growth, and reproduction of aquatic organisms. 

The addition of iron to IESF utilizes the process of sorption to improve the 

removal efficiency of dissolved phosphorus (Erickson et al. 2015). Phosphorus and 

metals may then have the opportunity to outcompete trace organics for IESF sorption 

sites based on electrochemical interactions (Reddy et al. 2014). Thus, the variability in 

biological outcomes following IESF treatment could also be attributed to the persistence 

of more bioavailable hydrophobic contaminants. 

2.5 Conclusion 

This study presented a unique set of challenges that need consideration. First 

sampling stormwater events from broadly distributed sites resulted in a variation in the 

amount of precipitation reported each site. Ideally the first portions of rain from the 

storm would be collected at the inflow, and then outflow would be collected following 

an appropriate retention time. However, due to the time required to collect water 

samples and the distance between sites, the collection for outflow had to occur just after 

the collection for inflow. 

An analysis of fish exposed to urban stormwater runoff from differing seasons 

and treatment levels highlights the potential for current best management practices to 
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diminish harmful biological consequences. This study represents a small fraction of 

current BMPs, including only standard retention ponds and retention ponds fitted with 

IESF installations. It is important to note that IESF relies on filtration and iron sorption 

more than on biological processes (which may take place within the pond and which 

are the focus of other BMPs including raingardens and bioswales). If IESFs are 

removing contamination as intended to improve the quality of aquatic ecosystems 

downstream, but are also causing adverse biological outcomes, then additional 

consideration is needed to determine how BMPs can be best utilized to improve the 

condition of aquatic environments.  

Additionally, results of this study may also benefit those responsible for making 

decisions regarding the treatment of urban stormwater runoff. Often financial concerns 

are an important factor to consider when stormwater ponds are being constructed. 

Treatment of stormwater with IESF has been shown to be effective at removing 

dissolved phosphorous, while this study also demonstrated an IESF duality with 

decreased survival and increased in total escape response. As a result, those responsible 

for evaluating stormwater systems must consider the level of treatment required based 

on the needs of the watershed. If phosphorous fueled algal blooms are of principle 

concern, IESF may be a good choice. However, if the goal is preserving biodiversity, 

other treatments such as biofiltration may be a better option. This study highlighted the 
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inherent variability of stormwater events, treatment outcomes of BMP, and the 

intricacies of using bioassays to assess effects of stormwater runoff which contains a 

complex mixture of pollutants. 
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Appendix A 

St. Cloud State University 

Aquatic Toxicology Laboratory 

Standard Operating Procedure  -  SOP 

Water Sampling & Labeling for Analytical Chemistry 

Introduction and aim of procedure 

This SOP details the procedure to take and label water samples for analytical chemistry. 

Supplies needed for assay:  

 Sampling vials/ bottles/ containers (usually determined by analytical

requirements)

 Labels

 Chain of Custody or Excel data sheet

Step 1 – General Considerations 

 Water samples are taken for various reasons (embryo/ larval assay; extraction;

analytical chemistry; etc.) which may require specific sampling techniques (i.e.,

larval assays)
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 When water samples are taken for analytical chemistry, the overriding

instructions are those provided by the analytical lab (for example: USGS Water

Quality Lab Denver; Wooster College; AXYS Analytical, Canada) and should

always be followed first.  However, those instructions can be further augmented

by the considerations below.

 The nature of the research of the Aquatic Toxicology Laboratory – using minute

quantities of pollutants – requires extreme attention to cross-contamination

hazards.  Always (!) wear gloves; always start with control samples; always cap

sampling containers quickly; always avoid any chance for cross-contamination!!!

Step 2 – Labeling 

 Every sample needs to be labeled. Any label needs to include (i) identification of

the Aquatic Tox Lab; (ii) a unique label code; (iii) date; and (iv) treatment code.

Additional information may include: (a) approximate sample volume; (b)

nominal concentration of chemical(s) in the sample; (c) duplicate sample; (d)

other information either requested by the analytical chemistry lab or considered

helpful for later purposes (i.e., weather conditions).
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 Unique Label Code – this is NOT the same as the treatment name and date (Mix-

Low 8.8.18 – is a treatment name that could be on the sampling container but is

NOT a unique label). Here are the requirements for unique label codes:

o Same number of characters for ALL samples (for example: three-digit

number, dash, three letter code       111-aaa)

o Brief to be easy to write, long enough to be fully unique for all samples

o Code avoids any chance for confusion be separating letters from numbers

and by underling the entire code

o  MAKE SURE THE CODE IS DESCRIBED IN YOUR LAB

NOTEBOOK!!!!

Step 3 – Sampling Considerations 

 ALWAYS sample all treatments including carrier control and blank control

 ALWAYS sample in duplicate

 ALWAYS rinse bottle at least 3 times downstream before collection

 Store sample and duplicate sample in different places (i.e., different freezers) if

possible.
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 Apply label before you sample

 Always start with least contaminated sample and work up to highest

concentrations (for example: blank > ethanol control > low > medium > high)

 Do everything to avoid cross-contamination – realize that your body is the most

likely source for cross-contamination!

 Cap sample containers as soon as they are full

 Store sample containers appropriately (i.e., fridge/ freezer) as soon as possible

 Maintain a data sheet of all samples

Step 4 – Storage Considerations 

 If possible, store duplicate samples away from main sample

 If cap was left loose for freezing, tighten as soon as sample is solidly frozen

 Ship samples to analytical lab as soon as possible (keep back duplicate sample)

 Make sure to fill out chain-of-custody forms and keep good records.
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Appendix B 

St. Cloud State University Aquatic Toxicology Laboratory 

Fathead Minnow Larval Feeding Assay SOP 

Introduction and goal of procedure:  

The purpose of this SOP is to test the effects of any given water sample on the feeding 

efficiency of larval fathead minnows.  

Necessary Supplies:  

 Recently hatched live brine shrimp

 Larval (21 day old) fathead minnows exposed to sample water

 Dissecting microscope

 6-well VWR sterile culture plate (~10mL volume wells)

 Pipette

 Microscope slides

 Stopwatch

 MS-222

Procedure 

1. Two days before the assay
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Start brine shrimp eggs (1 tsp salt, 1 tsp frozen eggs, 1 liter well water. Aerate in  

1 lt Erlenmeyer flask) 

2. The day before the assay

1. Bring larvae to behavior analysis laboratory (ensure proper light cycle)

2. Fill wells of VWR plate with 8ml of treatment water (3 wells per replicate)

3. Carefully transfer one larva to each well (3 larvae per replicate)

4. Allow time to acclimate before the assay (overnight)

3. The day of the assay

1. Obtain live brine (approximately 150ml of shrimp from flask into separation

funnel, strain/wash, and combine with ~50ml well water) 

2. Pipette single drops of shrimp mixture onto a microscope slide and count out

15±1 shrimp using a dissection microscope (record # on data sheet) 

3. Wash shrimp into well containing larva and start a 1-minute timer

4. After 1 minute immediately euthanize larva with ms-222

5. Count remaining shrimp using a dissection microscope (record on data  sheet)
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Appendix C 

St. Cloud State University Aquatic Toxicology Laboratory 

C-start SOP

Introduction and goal of procedure:  

The purpose of this SOP is to test the effects of exposure on the preditor avoidance 

performance of larval fathead minnows.  

Necessary Supplies:  

 High Speed Camera

 External Stimulus device

 Microsoft Excel

 Image J computer software

 Videos collected of C-start response

 MS-222

 Petri dish

Procedure 

1.Bring larvae to behavior analysis laboratory the day before testing to acclimate.

(ensure proper light cycle and air supply) 
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2.The day of testing position tanks and limit unnecessary light and movement to

minimize disturbance of the fish 

3.Very gently transfer the larvae to the testing arena (petri dish filled with aerated well

water) under high speed camera 

4.Give the fish approximately 1-2 minutes of acclimation time in the testing arena.

5.Arm the camera and stimulus device

6.Wait until the larvae is positioned in the center of the arena and staying still before

delivering the stimulus. 

7.If no C-start was observed try again up to 3 times before declaring it a “no response”

8.Save the video

9.Repeat the process until 3 larvae from each replicate have been tested

10.After testing euthanize larvae with MS-222

Digitizing C-Start Videos 

1. Open the provided excel spread sheet titled “Template for C-Start Data”

2.Download ImageJ from http://rsbweb.nih.gov/ij/download.html

3. Open ImageJ

4. From ImageJ, open the video from the hard drive.

5. A window called “AVI Reader” will pop up- click OK
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6. Video will load.  If the video contains too many frames a new window will pop up

saying “Out of memory.”  Click OK.  (Only have one video open at a time- the AVI 

Reader can only read so many frames in total at a time; having another video open will 

grossly limit how many frames you’ll be able to see in the next video.) 

7. In the ImageJ menu window click on the box with the 5 yellow diamonds (“Point or

multi-point selections”). Right click the red triangle and specify “point tool” That box 

should be highlighted while you work in ImageJ 

8. Use “<” and “>” to move back and forth through time in the video window.

9. Scroll forward in time until the light in the corner comes on.  Click on the center of

the light the precise frame the light comes on.  A yellow square should show up where 

you clicked. 

10. Hit “M” to mark that point.  A new window titles “Results” should show up.  It will

have an area, mean, min, max, x, y, and slice along the top.   If you take a point and 

decide that it’s wrong, highlight that row in this box and delete it. To delete the point 

from on the video push and hold Ctrl and click on point.   

11. Push the magnifying glass button in the ImageJ menu window and put the cursor

over the fish and hit the “+” sign to zoom in. After zooming, push the point selection 

button again.   
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12. Scroll forward in time (>) until the fish moves.  This is usually best seen when the tip

of the fish’s nose moves.  This decision is subjective- sometimes the fish jerks violently 

and it is easy determine when the fish moves.  Other times the fish shows a weak 

reaction or no reaction at all to the stimulus.  If there is no reaction, scroll to the end of 

the video and complete steps 1-14.  If the reaction is weak, then scroll to when the fish 

first moves.  If, at first, there is a weak reaction followed by a more prominent reaction, 

scroll to the more prominent reaction (when the fish jerks).   

13. Measure 1mm: The fish is swimming on top of a grid.  Place the cursor in a corner of

a square near the fish (the refraction of light through water distorts the grid, so a 

measurement near the fish is better).  Click on the corner and a yellow square should 

show up where you clicked. Then hold shift and click on a corner directly to the side of 

it.  There should now be two yellow squares labeled 1 & 2 that mark two corners of a 

square.  Click “m”.  These points should appear in the “Results” window at Points #2 

and #3.  In the X column, the numbers should be different.  In the Y column, these two 

points should have the same number.  If the numbers are different in the Y column, 

then your markers were not level.  Delete these rows in the results and repeat the 

process.   

14. Measure the length of the fish:  Click on tip of the nose of the fish.  Hit “m” to record

the result.  Click on the tail of the fish and then click on “m” to record the result.  Be 
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careful not to click on the shadow of the fish- it’s easier to scroll forward and back a few 

frames in order to see the tail move.   

15. In the top left-hand corner of the video is the frame count.   For instance, “257/391”

means that you are on frame 257 out of 391.  After taking the tail measurement, scroll 

forward 20 frames.  Then click on the tip of the fish’s nose.  Click “m” to record the 

result. 

16. Scroll forward another 20 frames.  Click on the tip of the nose and click “m” to

record the result. 

17. Scroll back to just before fish reacts. Click on the Angle tool, then click on the tip of

the tail and then click on the nose of the fish. A line should appear the length of the fish. 

Then scroll forward until the tail passes the across the and click on the nose again. Click 

“m” to record the result 

18. In the results window, there should now be 8 points taken:

#1- when the light first comes on 

#2 & #3- the length of 1mm based on the grid (when fish first moves) 

#4- tip of the fish’s nose when it first moves 

#5- tip of the fish’s tail taken at the same time as #4 

#6- tip of the fish’s nose after 20 frames 

#7- tip of the fish’s nose after another 20 frames 
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#8- angle of the fish (tail-nose-nose) (wait until the tail passes the line for second 

nose) 

If the video is too short or there is no reaction, then complete points #1-5. 

19. Select all the data from the Results window and copy.

20. Paste this data in the excel spreadsheet under the “original raw data” tab (make

sure the fish ID matches the video).  The data should begin in the “Point Number” 

column and should end in the column labeled “Count”.  

21. Clear the contents out of the Results window.

22. Repeat for each video.  It is advisable that you label each data set by the file name in

the hard drive. 

23. Mark any inconsistencies such as when the AVI Reader cannot read the file, the

video is too short, etc. 

24. Digitize Raw Data:  In Excel, open the tab titled “Digitized Raw Data”.

From the original Excel page, copy everything from the Treatment Fish/Point 

number/X/Y/Angle/Slice columns and paste it in the Digitized Raw Data page under the 

same headings.   

25. Analysis of Data: In Excel, open the third tab titled “Analysis.”
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Copy everything (Treatment Fish/Point number/X/Y/Angle/Slice) from the “Digitized 

Raw Data” tab and paste it in column J-Q. the data will then be transferred to the 

appropriate columns A-H. 

Make sure to enter the Treatment/Replicate (#)/Trial ID (A,B,C). 

example (5.9.19_BIR_IN_1_A) Treatment=BIR_IN, Replicate=1, Trial=A 

For the videos that had issues (i.e. no reactions, false starts, video could not be opened) 

list those in the appropriate rows.   

Highlight videos that have a latency of less than 10.  Those might be false starts and 

should be noted. 
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