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ABSTRACT 

The goal of this research project was to evaluate and compare the effect of fabric architecture on 

the processing and properties of composites made by Vacuum Assisted Resin Transfer Molding 

(VARTM).  The fabric architectures investigated included plain weave, satin weave, and warp-

knit unidirectional.  The fiber types included E-glass and standard modulus carbon fiber.  Flat 

panels were fabricated with a lab scale VARTM process using an epoxy resin system.  Fabric plies 

were cut to 45 cm x 30 cm (18 in. x 12 in.), and the number of plies used depended on the fiber 

areal weight of each fabric to produce panels of similar final thickness.  The speed of resin infusion 

was recorded by visually monitoring the flow front which was visible through the bag.  Fiber 

volume fraction was evaluated using thickness measurements, and porosity was investigated via 

optical microscopy. Mechanical testing was performed via tensile and 3-point flexure.  The results 

showed the fabric type had minimal effect on the infusion speed with the exception of the plain 

weave and satin weave fiberglass. From the mechanical testing results, there are many comparisons 

made of the modulus, strength, and strain-to-failure results, for example carbon vs. glass, 

unidirectional vs. woven, tensile vs. flexure.  The rule of mixtures was able to predict some but 

not all of these properties.  The results, which are discussed in detail herein, illustrate the main 

advantage of selecting carbon vs. glass in stiffness driven applications.  

 

1. INTRODUCTION 

Fiber reinforced composite materials have many applications in different areas of society such as  

aerospace, marine, infrastructure, automotive, energy production, and sporting goods.  When 

making new composite products, the designer is faced with an enormous number of material 

choices, including matrix composition, fiber composition, ply architecture (unidirectional, woven, 

knitted, braided, etc.), not to mention a large variety of fabrication processes.  Fortunately there 

are several good handbooks available that compile information across the various types of 

materials and processes for polymer matrix composites [1-5].   

 

There have been many studies reported in the literature over the past several decades that relate to 

VARTM processing [6-9].  Generally they can be classified in various ways, such as solid laminate 

vs. sandwich core composite, flat vs. curved geometry, room temperature vs. high temperature 

infusion, etc.  In addition, there have been many good studies conducted to develop process models 



and develop new materials for use in VARTM [10-13].   It is often difficult to make direct 

comparisons between the many published studies due to differences in processing parameters. 

 

The project reported on herein was undertaken as a summer internship to provide undergraduate 

engineering students with a well-rounded immersion into composite material fabrication and 

testing.  The primary technical goal of this project was to evaluate the effect of different fabric 

architectures on the processing and properties of flat composite laminates fabricated specifically 

through resin infusion.  Three different fiber architectures were selected for each of fiberglass and 

carbon fiber materials, and flat panels were fabricated by Vacuum Assisted Resin Transfer 

Molding (VARTM).  Process measurements included infusion speeds via visual monitoring.  The 

quality of the panels was characterized through fiber volume fraction, microscopy, flexure testing, 

and tensile testing. 

 

2. EXPERIMENTATION 

2.1 Materials 

The first step was to identify different fabric materials and characterize them to evaluate the effect 

of fabric architecture on molding results and resulting properties. Six different fabric materials 

available in our lab were identified for use, as summarized in Table 1.  It was not possible to 

control every aspect of the experiment, for example the tow size and fiber composition of each 

fabric was not necessarily the same.  However, the fiberglass materials were all E-glass type 

(modulus approximately 69-83 GPa, 10-12 MSI), and the carbon fabrics were standard modulus 

(227 GPa, 33 MSI) carbon fibers.  Also, the processing parameters, operators, resin system, test 

methods and apparatuses were the same for all panels produced and tested.   

 

First, the fiber areal weight (FAW) of each fabric was verified by cutting out and weighing a square 

of known area of each ply.  Because there was a wide variation in FAW across all six fabrics, the 

number of fabric layers used for each panel was adjusted to yield the same total mass of fiber in 

each panel (about 370 g for fiberglass panels and 250 g for carbon panels).  Photos of some of the 

fabrics are shown in Figure 1. 

 

The resin system used in this study was EPON 862 (diglycidyl ether of Bisphenol F) and Epikure 

3274 (comprised of about 80% polyoxypropylene diamine), both received from Resolution 

Performance Products LLC.  They were mixed in stoichiometric proportions of 69 wt% EPON 

862 and 31 wt% Epikure 3274.  This resin system is commonly used for VARTM because of its 

low viscosity (approximately 0.1 Pa-sec) and ability to reach gelation at room temperature in about 

6 hours.  The cured resin modulus was approximated as 3 GPa for rule of mixture calculations. 

 

 

 

 

 

 



Table 1. Fabric characteristics 

Fiber 

Composition 
Weave style 

Designation in 

this study 
FAW (g/m2) 

(for one layer) 

# layers 

in panel1 

Total fiber 

weight (g) 1 

Fiberglass  

(E-glass) 

Plain weave2 “Glass PW” 327 8 365 

8HS3 “Glass 8HS” 295 9 370 

Warp knit uni4 “Glass Uni” 440 6 368 

Carbon 

(Std. Modulus) 

Crowfoot 

(4HS) 

“Carbon 

Crowfoot” 
193 9 242 

5HS5 “Carbon 5HS” 370 5 258 

Warp knit uni6 “Carbon Uni” 227 8 253 

 
1 for panel of dimensions 45 cm x 30 cm (18 in. x 12 in.) 
2 style 7500, BGF Industries 
3 style 7781, Fibre Glast Developments Corp.  
4 Uni hotmelt yarn, Fiberglass Supply C72-5208   
5 5HS  BGF Industries 94900, 6k tow, modulus 227 GPa (33 MSI)    
6 Uni hotmelt yarn, Fiberglass Supply GAO60  C72-4825 

 

 

 

 
Figure 1: close up photograph of some of the fabrics, showing differences in fabric architecture -  

Carbon Uni (upper left), Glass Uni (upper right), Carbon 5HS (lower left), Glass 8HS (lower right). 

 



2.2 Processing 

All fabric layers for a given panel were cut to 45 cm x 30 cm (18 in. x 12 in.) dimensions, stacked 

on a metal VARTM table with the warp direction aligned in the same direction.  Vacuum bag 

sealants was applied around the perimeter of the table, and a 5-cm-wide breather strip was placed 

just inside that (Figure 2A).  Then a peel-ply was placed over the table including the perimeter 

breather strip, ending at vacuum bag sealant (Figure 2B).  Next the resin infusion mat, vacuum 

bag, and resin feed port were installed (Figure 2C).  The feed port was connected to a feed cup 

through a PVC tube (Figure 2D).  Full details of the VARTM set-up can be found in a recent 

publication [14].  The infusion typically lasted 30 minutes or until the flow front was observed to 

reach the edge of the panel.  During this time, the location of the flow front was marked on the bag 

with a black ink marker at 1-5 minute intervals.  After the infusion was complete, the distance of 

the flow front at various times was measured and used to calculate resin flow front velocity.  Each 

panel was left on the table under vacuum overnight. The next day it was removed from the table 

and post-cured in an oven at 100°C for 1 hour.  

 

   
                A                                     B                                  C                                  D                                     

 

Figure 2: Assembled vacuum bag and feed system. 

2.3 Characterization 

A wet saw with diamond blade was used to cut the panels into the various coupons needed for 

testing, as well as to remove the section immediately below the feed port (which was then 

discarded).  Also, at least 1 small sample was cut out and potted in epoxy resin, polished with a 

Buehler AutoMet 250, and examined with an optical microscope to view the cross section for 

porosity and fiber uniformity.  The uniformity of each panel’s thickness was evaluated by using a 

digital calipers to measure the thickness of the tensile coupons (3 each) and flexure coupons (3 

each).  These six values were averaged and divided by the number of layers to calculate the average 

cured-ply-thickness (CPT).  The average fiber volume fraction (Vf) was then calculated with 

Equation 1.  The fiber density (f) was taken to be 2.54 g/cm3 for fiberglass and 1.79 g/cm3 for 

carbon.  Note that Equation 1 relies on the assumption that there are no voids in the laminate.   

Vf = FAW / (f x CPT) (1) 

 



Tensile testing was conducted via ASTM D3039.   The tensile coupons were 25.4 cm long x 2.54 

cm wide (10 in. x 1 in.), except for the panels containing unidirectional fibers which were 25.4 cm 

long x 1.27 cm wide (10 in. x 0.5 in).  Each tensile coupon was further modified by adding 5-cm 

wide (~2 in.) fiberglass tabs to each end, as well as a bonded strain gage to the middle of the 

coupon on one side.  Three coupons from each panel were tested.  The testing was conducted with 

an Instron model 5985 materials testing system, using wedge action grips and extension rate of 

2.54 mm/min (0.1 in/min).  Flexure testing was conducted via ASTM D790 with a span-to-depth 

ratio of 32:1 and crosshead speed of 5.08 mm/min (0.2 in/min). Crosshead motion was used to 

provide displacement measurements.  In previous work with similar materials, a deflectometer was 

used to verify that the crosshead motion provided an accurate measurement of deflection at the 

bottom center of the coupon.  The flexure coupons were 1.27 cm wide (0.5 in.), and three coupons 

from each panel were tested.   For both tensile and flexure testing, the modulus was calculated 

from the data between strain values of 0.1-0.3%.  

 

3. RESULTS 

3.1 Panel Fabrication 

Photographs of a panel during and after infusion are given in Figure 3.  The feed tube left an 

approximately 5-cm diameter flaw in the center of the panel.  Therefore, mechanical testing 

coupons were cut out from other sections of the panel.  All panels were fully infused, with no dry 

spots observed on the bottom. 

 

   
A                                       B                                         C                                   

Figure 3: A) Visual monitoring of infusion rate, B) end of infusion (feed tube clamped, bag 

under pressure overnight, and C) three fiberglass panels after unbagging and post cure. 

 

An example of the resin flow front results is given in Figure 4.  The resin flowed quickly through 

the highly porous green infusion mat at a nearly linear rate.  Next the resin slowed down as it 

flowed over the bare fabric due to its lower permeability, and it was observed to proceed also at a 

linear rate.  After penetrating to the perimeter of the panel, the resin then could only flow through 

the peel ply toward the vacuum perimeter.  This rate was observed to be similar to the flow through 

the fabric.    

 

 

 



 

     
 

Figure 4: (left) diagram of VARTM set-up and dimensions, and (right) example flow front result. 

 

The full results are summarized in Table 2.  The most noticeable result is how much faster the 

resin flowed through the infusion mat than over the bare fabric. This demonstrates the purpose of 

an infusion mat: it quickly distributes the resin over a large area and allows the resin time to seep 

down through the panel before it reaches the edge of the panel.  The mat usually does not extend 

to the very edge of the panel: the purpose of this is to prevent resin that might reach one side sooner 

than the other from “race-tracking” around the perimeter and cutting off dry spots.  In our set-up, 

we maintained a 5-cm gap between the edge of the mat and edge of the panel.  The edge of the 

panel was at least 15 cm from the nearest vacuum perimeter.  This gap was covered only by the 

peel ply (and vacuum bag). Thus, there were several “brakes” set in place to prevent the resin from 

reaching the vacuum source before the panel had time to fully infuse.  

 

The flow front velocity through the infusion mat was approximately 1.2 cm/min, except for the 

first two panels fabricated (glass plain weave at 3.69 cm/min, and 8HS at 3.46 cm/min).  We are 

not certain whether this result was affected by the fabric type, or some unintended process 

difference like the vacuum level (less vacuum would cause a loose bag and faster flow) or perhaps 

the feed tube details.  The fabric permeability could affect the flow velocity in the distribution mat 

above it because the flow through these two materials is coupled.  A low permeability fabric (high 

resistance to flow) would force more flow through the distribution mat (higher velocity).  A high 

permeability mat (low resistance) would allow an alternate path for flow and therefore slow down 

the flow through the mat above.  The plain weave and 8HS glass fabrics were expected to be the 

highest permeability fabrics (low resistance to flow), so these would be expected to have the lowest 

velocity in the infusion mat (counter to observed results).  In any case, this topic is of interest for 

future study.  Measuring the permeability of the fabrics and/or performing a fluid mechanics 

analysis of the flow were beyond the scope of this project. 

 

 



     Table 2: flow front velocity results 

 

Fabric Type 
Flow front velocity (cm/min) 

Infusion mat fabric 

Glass PW 3.69 0.09 

Glass 8HS 3.46 0.08 

Glass Uni 1.29 0.08 

Carbon Crowfoot 1.03 0.09 

Carbon 5HS 1.35 0.09 

Carbon Uni 1.23 0.10 

 

3.2 Physical Properties & Microscopy 

Thickness and fiber volume fraction (Vf) results are summarized in Table 3 and Figure 5.  The Vf 

of the fiberglass panels was between 0.4-0.5, which is typical for fiberglass / VARTM.  The plain 

weave fiberglass panel had the lowest Vf of the glass panels, and the unidirectional panel had the 

highest. This trend was expected due to layer packing efficiency: the plain weave architecture 

(each tow goes over 1 / under 1 tow) is very “bumpy” and include a lot of open space, while 

unidirectional lays flat and has less open space.  Also, any possible vacuum bag issue, as raised by 

the flow front results, may have reduced Vf.  The trend was similar with the carbon panels, with 

the “flattest” fabric (unidirectional) having the highest Vf, and the most “bumpy” (crowfoot) 

having the lowest Vf.  However, Vf of the carbon panels were all very close. Overall the carbon 

panels had significantly higher Vf than fiberglass due to the small size of carbon fibers and ability 

to pack efficiently.  The Vf results for carbon were considered to be pretty good for the simple 

VARTM process used.  To obtain higher values often required in aerospace, such as 0.60-0.65, an 

autoclave or press could be used. 

 

 

     Table 3: Thickness and fiber volume fraction results for cured panels. 

Fabric Type Panel Thickness1 

(mm) / COV2 
CPT (mm) Vf 

Glass PW   2.476 / 0.6% 0.310 0.416 

Glass 8HS  2.430 / 5.9% 0.270 0.430 

Glass Uni  2.177 / 4.8% 0.363 0.478 

Carbon Crowfoot 1.780 / 2.2% 0.198 0.545 

Carbon 5HS 1.810 / 0.9% 0.362 0.571 

Carbon Uni 1.755 / 2.2% 0.219 0.578 
                          1 this value is the average of three tensile coupons and three flexure coupons 
                          2 Coefficient of Variation (COV) = standard deviation / mean 

 



 
 

Figure 5: Vf results calculated from thickness values of the six mechanical test coupons (3 

tensile, 3 flexure).  The error bars represent ±1 standard deviation. 

 

 

Example photomicrographs of some panels are given in Figure 6. In general, there was little or no 

porosity in all panels. However, there were resin rich areas in the fabric panels where tows cross 

each other and in between plies, which helps explain the Vf results. 

 

    
                A                                                               B                                             C 
Figure 6: Photomicrographs of polished cross section at 50X magnification: A) Glass 8HS, B) 

Carbon Crowfoot, and C) Carbon 5HS.  The open spaces between tows is filled with resin. 

3.3 Mechanical Properties 

The tensile coupons generally failed in the gage section, although some failed simultaneously in 

the gage and near the tab.  The flexure coupons failed by axial compression on the top face.  The 

stress-strain curves were linear up to at least 1% strain with both tests (see Figure 7).  Any non-

linearity occurred near the failure point.  Only the unidirectional glass flexure coupons exhibited 

significant stair-stepping after the initial load-drop.  Although not shown here, one of each of the 

carbon tensile coupons exhibited a “wiggly” stress-strain curve, which was traced to noise in the 

strain gage response (load smoothly increased).  We did not resolve if this was a mechanical effect 



(foil strain gage bonding problems) or an electronic signal issue.  None of the fiberglass tensile 

coupons had this problem. 

 

 

 
 

 
Figure 7: example stress-strain curves for tensile coupons (top) and flexure coupons (bottom).  

These curves have NOT been normalized for fiber volume fraction, but they are shown here to 

demonstrate overall shape and relative linearity.  

 

 



The effective fiber volume fraction of each coupon was calculated with Equation 1 using its 

measured thickness.  This Vf value was used to normalize the modulus and strength value of each 

coupon to an equivalent coupon with 50% fiber volume fraction (for example, EVf,50% = Emeasured x 

0.5 / Vf,measured).  This normalization is commonly done to make better comparisons between 

composite material systems with different degrees of compaction.  For tensile coupons, this 

practice actually removes the uncertainty in the measured thickness because this value cancels out 

in the calculation (i.e. thickness is a linear factor in the denominator of Emeasured and Vf,measured).  

The tensile and flexure results are shown graphically in Figures 8-10 and in tabular form in the 

Appendix.  

 

The modulus results are given in Figure 8.  First the tensile results will be discussed.  Perhaps the 

best result to initially focus on is the tensile modulus of the unidirectional panels.  These should 

be the “best behaved” property since the fibers are oriented in only one direction, and modulus is 

not very sensitive to defects such as porosity or non-uniform resin distribution.  The tensile 

modulus of the carbon panel was close to that predicted by Rule of Mixtures “ROM” (122±7 GPa 

measured, compared to 227 GPa x 0.5 + 3 GPa x 0.5 = 115 Pa predicted by ROM).  However, the 

modulus of the unidirectional glass panel was significantly higher than expected (50 GPa 

measured, compared to approximately 75 GPa x 0.5 + 3 GPa x 0.5  = 39 GPa predicted by ROM).  

This trend was also seen for the fabric panels, with the carbon fabric panels having only 2X higher 

modulus than glass fabric panels rather than 3X.  On the other hand, the modulus values of the 

glass fabric panels in this study (26 GPa) are near those given in established handbooks, such as 

[2] which documents values of 22.7-25.6 GPa normalized for Vf =50% for three different glass / 

epoxy panels using 8HS and plain weave fabrics.  Also, lamination theory calculations (not 

included here) indicate that the crossply laminate modulus should be approximately 24 GPa. 

 

One result that was successfully predicted by ROM was that the tensile modulus of the 

unidirectional panels was about twice that of the fabric panels, since there were twice the number 

of fibers oriented in the test direction.  There was not a significant difference when comparing the 

tensile modulus of the two woven carbon panels, as well as the two woven glass panels (i.e. weave 

style had no significant effect on tensile modulus). 

 

Next, the flexure modulus results are discussed (Figure 8, orange bars), where the trends were 

similar to the tensile results. The flexure modulus of the carbon panels were only about 2X higher 

than the corresponding fiberglass panels.  The modulus of the unidirectional carbon panel was 

about 2X higher than the fabric panels as expected, but the unidirectional glass panel was a little 

lower than expected compared to the fabric panels.  The weave style did not significantly affect 

the flexure modulus results for either glass or carbon.  

 

 



 
 

Figure 8: modulus results (normalized for Vf=0.50). The error bars represent ±1 standard 

deviation. 

 

The strength results are given in Figure 9. The tensile strength of the unidirectional panels was a 

little more than 2X the corresponding fabric panels.  However, the flexure strength of the 

unidirectional panels was only about 25% higher than the woven panels.  This result was attributed 

to the nature of the flexure failure mechanism, which was axial compressive in the upper face 

sheet. This failure is expected to be sensitive to fabric architecture / flatness, as well as defects.  

When comparing carbon to glass, only the tensile strength of the unidirectional panels exhibited a 

large difference (about 2X comparing carbon uni to glass uni).  In all the other comparisons (uni 

vs. woven, tensile vs. flexure, carbon vs. glass,), there were only small differences in strength.  The 

average strength value across all panels (excluding uni carbon) and for both test methods was about 

650 MPa.  For comparison, results given in established handbooks [2] indicate a tensile strength 

of 330-520 MPa for woven glass and about 530 MPa for woven carbon laminates at 50% Vf.  These 

results imply that selecting carbon vs. glass for a given application would be driven by 

modulus/stiffness requirements rather than ultimate strength.  

 

The strain to failure results are given in Figure 10.  The glass fiber laminates generally exhibited 

about 1.5X higher strain to failure than carbon.  We expected the carbon strain-to-failure to be 

more near 2%, but there are some references in the literature for carbon fabric composites that 

report around 1% [2].  The unidirectional tensile coupons (carbon and glass) failed suddenly and 

explosively in the gage section.  This is typical for tensile testing of unidirectional laminates and 

indicates the tabs and grips were working properly.  On interesting trend was that the strain to 

failure of unidirectional panels was higher than fabric panels in tensile testing but the opposite in 

flexure.  This was attributed to the quick build-up of compressive stress in the top face of the 

unidirectional flexure specimens and eventual failure in compression (where fibers are weaker in 

compression than in tension).  

 



 
 

Figure 9: strength results (normalized for Vf=0.50). The error bars represent ±1 standard 

deviation. 

 

 

Figure 10: strain-to-failure results. The error bars represent ±1 standard deviation. 

 

 



4. SUMMARY & CONCLUSIONS 

This study constituted a fairly well controlled experiment to compare the processing and properties 

of six different fabric materials.  Three fiberglass and three carbon panels of various fabric 

architectures were successfully molded using a vacuum resin infusion process.  The fabric 

architecture had no significant effect on the infusion speed, except for the woven fiberglass panels.  

The fiber volume fraction of those two panels was lower than expected, possibly indicating there 

was a problem with the vacuum level or bagging material for those runs.  This warrants further 

study to determine if the result is repeatable or a processing artifact.  Microscopy results indicated 

that all the panels were well infused with little or no porosity.  The fiber volume results were in a 

typical range for VARTM: 40-50% for glass and 50-60% for carbon.  The unidirectional panels 

had higher volume fraction than the woven panels as expected due to more efficient packing of 

fibers.   

 

The modulus results were in the range of that published in handbooks for comparable commercial 

systems, except the unidirectional glass tensile modulus which was about 25% higher than 

expected.  The rule of mixtures was able to predict some of the modulus results successfully but 

not others.  For example, based on the modulus values of the fibers, one would expect the carbon 

panels to be three times stiffer than the E-glass panels in tension and flexure.  However, the results 

measured in this study, which are consistent with other published results, is that the modulus of 

the carbon panels is only about two times as high as the E-glass panels.  

 

The strength of the panels were in the typical range for carbon and glass for both tensile and 

flexure.  One interesting result was related to the comparison of unidirectional vs. woven panels.  

For tensile testing, the strength of uni panels was about twice that of fabric panels as expected by 

rule of mixtures.  However, for flexure testing the unidirectional panels were only about 25% 

stronger.  Furthermore, the strain-to-failure results for unidirectional panels was higher than fabric 

panels in tension testing but lower in flexure testing. These results were attributed to the failure 

mode in flexure which was compressive failure in the top face.   

 

Overall this study provided a nice body of experimental data for highlighting differences in 

mechanical properties and fiber volume fraction in VARTM-molded carbon and glass laminates. 

The results illustrate the main advantage of selecting carbon over glass: the laminate modulus will 

be approximately twice, as well as have a lower density.  The strength value is also improved, 

although not as dramatically as modulus.  Thus, for applications requiring high specific strength 

and stiffness, the choice of carbon over glass is clearly illustrated.  
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APPENDIX 
 

 

Tensile Results 

Fabric Type 
Modulus1 / stdev2 

(GPa) 

Strength1 / stdev2 

(MPa) 

Failure strain / stdev 2 

(%) 

Glass PW 26.1 / 0.6 332/ 4 1.43 / 0.03 

Glass 8HS 26.1 / 2.1 437 / 36 2.05 / 0.07 

Glass Uni 50.1 / 3.4 966 / 53 2.23 / 0.12 

Carbon 

Crowfoot 
64.8 / 5.2 707 / 26 1.10 / 0.03 

Carbon 5HS 52.9 / 7.8 761/ 23 1.41 / 0.14 

Carbon Uni 122.2 / 7.2 1686 / 51 1.46 / 0.26 

 

3-Point Flexure Results 

Fabric Type 
Modulus1 / stdev2 

(GPa) 

Strength1 / stdev2 

(MPa) 

Failure strain / stdev 2 

(%) 

Glass PW 24.5 / 0.9 437 / 3.6 2.16 / 0.27 

Glass 8HS 25.3 / 0.4 631 / 13.3 3.15 / 0.04 

Glass Uni 40.5 / 3.4 748 / 47.3 1.88 / 0.14 

Carbon 

Crowfoot 
45.6 / 0.8 688 / 3.0 1.62 / 0.07 

Carbon 5HS 44.5 / 2.4 677 / 41.2 1.53 / 0.01 

Carbon Uni 92.4 / 4.6 918 / 86 0.96 / 0.07 

 

1 average result for three coupons.  The result for each coupon was normalized for Vf=0.5 using 

its thickness to calculate Vf. 
2 standard deviation 
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