
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Student Work

12-2004

ebXML: Global Standard for Electronic Business ebXML: Global Standard for Electronic Business

Sujatha Babu

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

 Part of the Business Commons

Recommended Citation Recommended Citation
Babu, Sujatha, "ebXML: Global Standard for Electronic Business" (2004). Student Work. 3075.
https://digitalcommons.unomaha.edu/studentwork/3075

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3075?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3075&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

ebXML: Global Standard for Electronic

Business

A Thesis-Equivalent Project

Presented to the

Department of Computer Science

and the

Faculty of the Graduate College

University of Nebraska

in Partial Fulfillment

of the Requirements for the Degree

Master of Science

University of Nebraska at Omaha

by

Sujatha Babu

December, 2004

UMI Number: EP73449

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
Oisaertai&rit Publishing

UMI EP73449
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest'
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

Thesis-Equivalent Project Acceptance

Acceptance for the faculty of the Graduate College, University of Nebraska, in

partial fulfillment of the requirements for the degree (name the degree),

University of Nebraska at Omaha.

Committee

Name Signature

Chairperson L. ,

Date

ebXML: Global Standard for Electronic Business

Sujatha Babu, MS

University of Nebraska, 2004

Advisor: Ken Dick, Ph.D.

Business-to-business integration is transforming the market and has already

begun to increase the efficiency of those companies involved. EDI (Electronic

Document Interchange) became very popular during 1970’s; Today EDI

transactions total about $750 billion year. EDI is being used by 90% of Fortune

1000 companies. It has indeed become a dominant technology for the largest

companies, on the other hand it has been adopted by less than 5% of small and

medium sized companies in general and, of these, many use EDI only because

their larger customers require it. The reason behind is that EDI is a difficult,

complex technology to implement usually comes with high transactional cost.

Hence it is suitable for large companies with large volume of transactions. EDI

uses fixed, rigid and compressed data format that is difficult to decipher and

debug. The data exchange in EDI happens in proprietary VAN (value added

network) which is an expensive solution.

EbXML (Electronic Business XML) envisioned creating a single global electronic

marketplace where enterprises of any size and in any geographic location can

meet and conduct business with each other through exchange of xml based

messages. The XML (the Extensible Markup Language) has rapidly imposed

itself as a popular format for exchange of information on the web. The very

nature of XML is that it is a structured document format, in that it represents not

only the information to be exchanged, but the metadata encapsulating its

meaning. XML technology has potential to solve the existing problems in current

EDI systems. Using ebXML, companies have a standard method to exchange

business messages, conduct trading relationships, communicate data in common

terms and define and register business processes. EbXML is designed to provide

a simple way for companies to find one another and conduct business over the

Web, allowing those with different platforms to speak a common language.

EbXML targets to provide low cost solutions for small and medium enterprises as

well as complex solution for large enterprises. This project attempts to implement

a prototype of ebXML messaging service as per ebXML specification to obtain

the insight look of feasibility and suitability of XML solution for EDI.

I

Table of Contents

C H A P T E R 1 IN T R O D U C T IO N A N D P R O B L E M D E F IN IT IO N .. 1

1.1 In t r o d u c t io n ... 1
1.2 Ba c k g r o u n d .. l

1.2.1 E lectron ic Document Interchange .. 1
1.2.2 E lectron ic Business X M L ... 6

1.3 PURPOSE OF THE PROJECT..9
1.4 S c o p e o f th e p r o je c t 9
1.5 R ela te d W o r k ...10
1.6 S t r u c t u r e o f t h e p r o j e c t ... 10

C H A P T E R 2 O V E R V IE W O F E B X M L ..12

2.1 O v e r v ie w o f X M L ... 12
2 .2 O v e r v ie w o f ebX M L 14
2 .3 ebX M L S c e n a r io ..15

C H A P T E R 3 T H E E B X M L F R A M E W O R K ..17

3.1 In t r o d u c t io n ...17
3 .2 ebX M L R e g is tr y /R e p o s it o r y .. 18
3 .3 B u s in e s s P r o c e s s e s s p e c if ic a t io n S c h e m a ..22
3 .4 Bu s in e s s T r a n s a c tio n s ... 24
3 .5 Bu s in e s s D o c u m e n t F l o w s ... 24
3 .6 Bu s in e s s C o l l a b o r a t io n ..25
3 .7 C o lla b o r a tio n P r o to c o l P r o f il e ... 29

3.7.1 Structure o f C P P ... 31
3.8 C o lla b o r a tio n -P r o to c o l A g r e e m e n t (C P A)... 40

3.8.1 O vera ll structure o f a CPA .. 41
3 .9 O v e r v ie w o f S im ple O bject A c c e s s P r o to c o l (S O A P)...49

3.9.1 Structure o f SO AP ... 51
3.9.2 H TTP H eader...52
3.9.3 SOAP Envelope .. 53
3.9.4 SOAP H eader...54
3.9.5 SOAP Body ..55
3.9.6 Encoding Rules...56
3.9.7 Example SOAP request..57
3.9.8 SOAP transport architecture ...57

3.10 O v e r v ie w o f e b MS (ebXM L M e s s a g in g S e r v ic e) .. 60
3.10.1 EbXM L message service h a n d le r ..63
3.10.2 EbXM L Message S tructure ..66
3.10.3 Header C ontainer... 67
3.10.4 Payload con ta ine r.. 68
3.10.5 ebXML SOAP Header...69
3.10.6 ebXML SOAP B o d y .. 73
3.10.7 Reliable M essaging .. 74
3.10.8 E rro r handling ... 75
3.10.9 Security ..75

C H A P T E R 4 IM P L E M E N T A T IO N O F E B M S P R O T O T Y P E ... 77

4.1 T he ebX M L m e s s a g in g p r o t o t y p e IMPLEMENTATION..77

I I

4 .2 U s e r in t e r f a c e O v e r v ie w .. 77
4 .3 T e c h n ic a l O v e r v ie w .. 82
4 .4 ebXM L H e a d e r C o n t a in e r ... 84
4 .5 ebXM L Pa y lo a d c o n t a in e r ..88

CHAPTER 5 CONCLUSION.. 91

5.1 C o n c l u s io n ...91

BIBLIOGRAPHY..94

Ill

List of Figures

F ig u r e 1-1 E D I T r a n s a c t io n [So u r c e : h t t p ://w w w .f r it o l a y .c o m / e d i/ pa g e s / e d i] 4
F ig u r e 2-1 O v e r v ie w o f t h e in t e r a c t io n o f t w o c o m p a n ie s c o n d u c t in g e -B u s in e s s u s in g

e b X M L . (So u r c e : e b x m l .o r g) .. 15
F ig u r e 3-1 ebX M L f iv e k e y c o m p o n e n t s .. 17
F ig u r e 3-2 C o m p a n ie s In t e r a c t io n w it h ebX M L r e g is t r y ...19
F ig u r e 3-3 Sa m p l e F il t e r Q u e r y o f R e g is t r y o b j e c t ... 21
F ig u r e 3-4 Sa m p l e B u s in e s s Pro cess Sp e c if ic a t io n ..23
F ig u r e 3-5 B u s in es s T r a n s a c t io n s ..24
F ig u r e 3-6 Sa m p l e B in a r y C o l l a b o r a t io n ... 27
F ig u r e 3-7 Sa m p l e B u s in e s s T r a n s a c t io n w it h t w o d o c u m e n t fl o w s a n d t h r e e bu sin e ss

SIGNALS ... 28
F ig u r e 3-8 St r u c t u r e o f C o l l a b o r a t io n Pr o t o c o l Pr o f il e (s o u r c e : I m p l e m e n t in g B 2b E-

COMMERCE WITH E B X M L)..31
F ig u r e 3-9 Sa m p l e s t r u c t u r e o f C P P ... 34
F ig u r e 3-10 Sa m p l e C PP ... 39
F ig u r e 3-11 St r u c t u r e o f C P A 41
F ig u r e 3-12 Sa m p l e s t r u c t u r e o f C P A .. 42
F ig u r e 3-13 Sa m p l e C P A ..49
F ig u r e 3-14 B a s ic St r u c t u r e o f SOAP (So u r c e : t e c h m e t r ix .c o m) ... 51
F ig u r e 3-15 H T T P h e a d e r SOAP Po s t m e t h o d ...52
F ig u r e 3 -16 H T T P h e a d e r t a r g e t h o s t 52
F ig u r e 3-17 H T T P h e a d e r M IM E f o r m a t ..53
F ig u r e 3-18 H T T P h e a d e r SOAP A c t io n ...53
F ig u r e 3-19 SOAP En v e l o p e ..54
F ig u r e 3 -20 SOAP H e a d e r .. 55
F ig u r e 3-21 SOAP B o d y ... 55
F ig u r e 3-22 SOAP m e s s a g e r e q u e s t c o d e ...57
F ig u r e 3-23 SOAP t r a n s p o r t A r c h it e c t u r e (s o u r c e : t e c h m e t r ix .c o m) 58
F ig u r e 3 -24 ebX M L M essa g e Se r v ic e H a n d l e r C o m p o n e n t s .. 64
F ig u r e 3-25 E b X M L m e s s a g in g s e r v ic e s t r u c t u r e ...67
F ig u r e 3 -26 A s im p l e SO A P En v e l o p e e x a m p l e ... 68
F ig u r e 3-27 A s im p l e Pa y l o a d c o n t a in e r e x a m p l e ...69
F ig u r e 4-1 Sc r e e n s h o t o f Ja v a Pr o t o t y p e - M a il s e r v e r s e t t in g s ...78
F ig u r e 4-2 Sc r e e n s h o t o f Ja v a Pr o t o t y p e - Pr o d u c t In f o ..79
F ig u r e 4-3 Sc r e e n s h o t o f Ja v a Pr o t o t y p e - B u y e r In f o ... 80
F ig u r e 4-4 Sc r e e n s h o t o f Ja v a Pr o t o t y p e - M e s s a g e s ..81
F ig u r e 4-5 e bX M L m e s s a g in g p r o t o t y p e S M TP t r a n s a c t io n ... 83
F ig u r e 4 -6 C r e a t io n o f F r o m , T o , Se r v ic e a n d A c t io n e l e m e n t s ..84
F ig u r e 4-7 C r e a t io n o f M essa g eD a t a e l e m e n t s ..85
F ig u r e 4-8 C r e a t io n o f M a n if e s t e l e m e n t s ..86
F ig u r e 4 -9 e bX M L m e s s a g e h e a d e r g e n e r a t e d b y t h e p r o t o t y p e .. 87
F ig u r e 4 -10 e bX M L p a y l o a d g e n e r a t e d b y t h e p r o t o t y p e ..89
F ig u r e 4-11 Em a il m e s s a g e pr o p e r ty c o n t a in in g c o n t e n t id f r o m SOAP m a n if e s t

REFERENCE ELEMENT...90

1

Chapter 1 Introduction and Problem Definition

1.1 Introduction
With the revolution of computers business has adopted the usage of new

technologies to advance. Today companies and organizations are heavily

depended on software infrastructure to make fast and successful business

transactions in order to withstand the pressure and competition in the market.

The key aspects for any two companies who want to conduct a business are the

communication and the exchange of business documents. The exchange of

business information between enterprises became the focus and standards like

Electronic Document Interchange emerged.

1.2 Background

1.2.1 Electronic Document Interchange

Electronic Document Interchange (EDI) was developed in the 1970's to

enable computer to computer exchange of information between companies,

using an industry standard format. Two major standards: American National

Standards Institute X12 (ANSI X12) and United nations/Electronic Data

Interchange for Administration Commerce and Transport (UN/EDIFACT). ANSI

X12 standard is primarily North American Standard. UN/EDIFACT is followed by

rest of the globe. Industry specific EDI standard was followed by all major

2

industries today. EDI transactions total about $750 billion year and it is being

used by 90% of Fortune 1000 companies.

EDI has been very successful; there are some major drawbacks to this

system. First of all, an EDI system is expensive, not affordable by small or

medium sized companies. Money is saved during the transactions, so EDI is only

interesting if a company does a lot of transactions. For an EDI system

specialized middleware is needed and a company that implements EDI has to

agree upon a message format with each of its trading partners that it wants to

use EDI with. The system offers no flexibility towards the message: the format is

fixed. Finally, EDI only offers the possibility of sending messages and receiving.

Other information, like business profiles or business processes or binary data

cannot be exchanged.

EDI trading partners exchange business data between their respective

computer systems provided fast and accurate data that was otherwise subject to

processing and handling delays inherent in surface mail, faxes and data entry.

3

Sample ANSI X12 EDI transaction of a medical claim:

ISA*00* *00* *ZZ*0079
*ZZ*ENCOUNTER*030101*1220*U*00401 *000000001 *0*T*:~GS*HC*0079*ENCOUNTER*2
0040712*1220*11122233*X*004010X098A1 ~ST*837*100001 ~BHT*0019*00*EP190*20030
101*1220*RP~REF*87*004010X098A1 ~NM1 *41 *2*SUBMITTOR CLEARINGHOUSE
CORP*****46*0079~PER*IC*SALLY SMITH*TE*2484890000~NM1 *40*2*MDCH
MEDICAID*****46*D00111 ~HL*1 **20*1 ~NM1 *85*2*PROFESSIONAL
PROVIDER*****24*123456789~N3*145 PLYMOUTH RD~N4*ANN
ARBOR*MI*48105~REF*1 D*771234567~PER*IC*RUBY ORTHOPEDIC
GROUP*TE*7346669990~HL*2*1 *22*0~SBR*S*18*******MC~NM1 *IL*1 *DOE*JOHN*JAY***MI
*12345678~N3*123 MY STREET~N4*MT
CLEMENS*MI*48043~DMG*D8*19900101 *M~REF*SY*123456789-NM1 *PR*2*MDCH
M ED IC AID*****P l*D 0 0111~CLM*98MH1001*175***11 ::1*Y*A*Y*Y*B*EM~DTP*304*D8*20020
905~CN1*05~REF*D9*98MH1001~REF*EA*MREC~NTE*ADD*CONSULTATION~HI*BK:805
4-NM1 *82*1 *KYLE*PHYSICIAN*JONATHON***34*756334111 ~PRV*PE*ZZ*207RS0010X~R
EF*1 D*908321456~SBR*P*18*PG 10010*MEDICAID*HM****HM~AMT*D*80~AMT*B6*80~DM
G*D8*19900101 *M~0l***N*P**Y~NM 1 *IL*1 *DOE*JOHN*JAY***MI*12345678901 ~N3*123 MY
STREET~N4*MT CLEMENS*MI*48043~NM1*PR*2*MEDICAID HEALTH
PLAN*****PI*171111112~REF*F8*98MH1001 ~LX*1 ~SV1 *HC:99244*175*UN*1 ***1 **Y~DTP*
472*D8*20040701 ~
REF*6R*98MH100101 ~SVD*171111112*80*HC:99244**1~CAS*CO*42*95*1~DTP*573*D8*
20040701~SE*48*100001~GE*1*111222333~IEA*1 *000000001-

EDI works by encoding data in a very specific, standard format. EDI

communication consists of one or more messages, each conforming to a subset

of the standard format. Within each message, delimiters define a series of

segments, the first three characters of which contains the code for the type of the

segment. Within each segment, a series of codes and numbers (separated by

another delimiter) define the data being transmitted. EDI messages are highly

compressed and based on codes as seen in the example above. Due to the

extensive use of very compact codes and concise data structures, EDI messages

are almost impossible to humanly create and interpret without extensive

documentation.

4

Sender Receiver

... wmto....

Business
App lication

System
A

EDI
Translation

System
B

Direct
Transmission _

or

Third
Party

Network
C

'̂■3

EDI
Translation

System
D

Business
App lication

System

Figure 1-1 EDI Transaction [Source: http://www.fritoiav.com/edi/pages/edil

The above figure explains how an EDI transaction takes place between

two business applications belongs to the different trading partners.

A. The sender assembles the data using its own business application system.

B. This data is translated into an EDI standard format (i.e. transaction set)

C. The transaction set is transmitted either through a Value Added Network

(VAN) or directly to the receiver's EDI translation system.

D. The transaction set, in EDI standard format, is translated into files that are

usable by the receiver's business application system.

E. The files are processed using the receiver's business application system.

EDI messages are never used "as is" in EDI practice. Because the

standard messages have evolved through accretion of optional data elements to

handle the information requirements of every conceivable business relationship,

http://www.fritoiav.com/edi/pages/edil

5

they contain vastly more information than is typically necessary in any particular

case. As a result, the messages that are exchanged between trading partners

are always substantially reduced subsets that are heavily customized to that

relationship.

EDI has a self-fulfilling bias against the kind of spontaneous commerce to

be enabled in open trading communities; because of the historically high cost of

EDI integration, companies don't use it unless they have entered into a long term,

high volume or high value business arrangement.

EDI standards are large, complex, difficult to implement, and often have

high price tags attached for software, networks, and consultants. Traditional EDI

refers to the use of rigid transaction sets with business rules embedded in them.

This model simply does not work in today's rapidly changing business

environment.

This problem is compounded by the fact that companies have chosen to

interpret these transaction set standards in ways that suit their unique business

requirements. As a result, vendors who engage in EDI with multiple customers

typically must create a unique solution to handle the transaction sets for each

company. This makes the implementation of EDI far too expensive and took too

long to implement, especially for Small and Medium size Enterprises [1].

While North America may have its X12 standard, the rest of the world

uses the UN/EDIFACT standard for EDI. UN/EDIFACT resembles X12 in many

ways but still has many differences that require companies doing business

internationally to carry at least two sets of electronic formats for each transaction.

6

To make matters worse, each industry defines its implementation

guidelines for the X12 standard differently. In many respects, one cannot avoid

this situation since each industry has its own set of business rules and practices.

In addition to different EDI standards around the world and in different

industries, the X12 standards change every year. The most basic change is the

addition of new transaction sets. Every company using EDI in the industry had to

change their code tables as a result.

Using EDI day-to-day gets pricey. Translator software that takes data

from legacy systems and formats them in the X12 syntax and back again needs

to change with the growing and ever changing X12 standard. Therefore it often

has a high initial price tag and maintenance costs.

EDI has indeed become a dominant technology for the largest

companies, on the other hand it has been adopted by less than 5% of small and

medium sized companies in general and, of these, many use EDI only because

their larger customers require it. It may seem clear that EDI had failed to serve

Small to Medium Sized enterprises (SME) over the preceding 25 years.

1.2.2 Electronic Business XML

Electronic Business XML (ebXML) can be viewed as a next generation of

EDI. The ebXML began to emerge during 1999 as an effort by United Nations

Center for Trade Facilitation and Electronic Business (CEFACT) and

Organization for the Advancement of Structured Information Standards (OASIS).

EbXML vision is to create a single global electronic marketplace where

enterprises of any size and in any geographic location can meet and conduct

business with each other through exchange of xml based messages.

7

The ebXML aims to lower the initial costs so that SME's can also

participate in the process of electronic business. EbXML has some advantages

over EDI. First of all, information is stored and exchanged in the XML format.

Secondly, the internet is used to exchange documents. Since nowadays most

companies are connected to the internet, a large infrastructure is available [3].

Companies can use protocols like http, ftp, SMTP etc for the exchange.

Communication consists of exchanging XML document. XML is basically a

metadata language - it contains the information about the data being relayed.

XML is a language for the description of structured documents and data.

Information coded in XML is easy to read and understand, plus it can be

processed easily by computers.

In XML, there is no fixed set of tags; new tags can be created based on

need. Information publishers have the ability to create and define new tags and

attribute names at will. In XML one can work with Document Type Definitions

(DTD) and Schema to define any number of documents that form a language of

their own. To meet specific needs of various industries - financial, legal,

publishing, etc., vast resource of specific document vocabularies have already

been created using XML. Since there is no processing specification or limitation

(XML does not specify how the data should be processed) with XML, its

documents can be exchanged across multiple platforms, database and

applications. The only condition is that the subscriber data stores and

applications should be XML-aware.

8

XML messages include embedded metadata. The metadata provides

business context, which cryptic EDI messages lack. Therefore, XML messages

are less prone to errors in interpretation. XML is potentially more flexible and is

truly an Internet format, so it requires no special kind of network infrastructure. In

the long run, XML will prove to be easier for small and midsize businesses to use

for Business-to-Business (B2B) [2].

It will be easier to incorporate components such as digital signature,

smartcard authorization, routing instructions, spreadsheet, graph into an XML

message, thus making use of the intrinsic flexibility and extensibility of XML.

The major benefit of XML is that virtually all software and service

suppliers are committed to providing XML support for their products. Increasingly,

XML is being used within companies as the way to provide inter-process

communication. Inadequacies within XML are being overcome by the huge

investment in XML-based tools, many of which are available at no charge.

XML documents can contain any possible data type - from multimedia

data (image, sound and video) to active components (Java applets, ActiveX).

Mapping existing data structures like file systems or relational databases to XML

is simple. XML supports multiple data formats and can cover all existing data

structures. It would be clear from the benefits of XML; it would quickly and easily

overcome the problems with EDI transactions.

EbXML is targeting to provide low cost solutions for small and medium

enterprises as well as complex solution for large enterprises. Eventually ebXML

will become dominant technology and may replace EDI.

9

1.3 Purpose of the project

The objective of this master’s project is to study how ebXML standard can

be used between two companies for electronic business transactions. The

objective would be achieved by developing a prototype for a business scenario.

This project will have a detailed discussion about framework, various concepts in

the ebXML proposed architecture. Main concepts include: Registry, Business

Processes, Collaboration protocol profile and Messaging.

To summarize the following aspects will be covered in this project:

• To identify problems, limitations of existing EDI technology.

• To investigate the emerging ebXML framework and it’s potential to solve

these problems.

• To analyze the EBXML messaging specifications to build a prototype of

exchanging messages between two trading partners.

• To identify the impact and future trends in the development of ebXML.

1.4 Scope of the project

The main scope of this project is to create a prototype of ebXML

messaging process between two trading partners. The transactions will be

implemented as per messaging standards of ebXML specifications.

Implementation involves use of client side programming language with extensive

use of Simple Object Access Protocol (SOAP) based XML messages.

10

Because the ebXML is such a recent development in electronic commerce,

by studying ebXML implementation, the results of this project can be beneficial

for companies considering implementation of ebXML.

1.5 Related Work

In general, ebXML is an evolving technology. There are many business

high level ideas how this specification works but there are not enough concrete

implementations which demonstrate the advantage of ebXML. Therefore there

are limited resources available in the context of real project environment.

1.6 Structure of the project

The project paper is organized as follows:

Chapter 1: This chapter provides the introduction, background, purpose and

scope of the project and related work.

Chapter 2: This chapter provides an introduction and background information

about XML, ebXML and ebXML scenario.

Chapter 3: This chapter provides detailed information about ebXML framework

such as Registry/repository, Business Process Specification Schema,

Collaboration Protocol Profile, Collaboration Protocol Agreement and ebXML

messaging services.

11

Chapter 4: This chapter provides details of implementation of ebXML messaging

service prototype.

Chapter 5: This chapter provides future trends and the conclusion we achieved.

12

Chapter 2 Overview of ebXML

2.1 Overview of XM L

XML (extensible Markup Language) is a markup language for documents

containing structured information. XML is a standard from the World Wide Web

consortium. A markup language is a mechanism to identify structures in a

document. The XML specification defines a standard way to add markup to

documents.

XML has basically two parts: the definition of a structure and one or many

instances of it. First the structure is defined. XML Schema provides data type

definition and inheritance. Structured information can contain words, pictures,

etc. XML specifies neither semantics nor a tag set. In fact XML is really a meta­

language for describing markup languages. In other words, XML provides a

facility to define tags and the structural relationships between them. Since there's

no predefined tag set, there can't be any preconceived semantics. All of the

semantics of an XML document will either be defined by the applications that

process them or by style sheets.

XML is platform-independent and well-supported open standard. Because

of its nature to define data structure it is platform and programming language

independent. The XML language is a flexible data formatting language for the

messages. Both the client and the server have to use a standard messaging

format. XML solves a common problem in data interchange, which is defining

13

how to write and use data and documents as flat files in a standard format. With

XML, we have a common language in a flat file format that is both human and

machine-readable for communicating between systems. A DTD or schema sets

the semantic rules for the elements and attributes in an XML document. The

language has flexibility to adapt to system requirements by allowing different

vocabularies and semantics in each business context. The parties using or

exchanging an XML document can validate using a DTD that their copies of XML

documents follow the same common rules.

The true power of XML to improve business processes is evident when

multiple documents all use the same public data format. A single software

application can process the set of a document. If the format is publicly available,

anyone can generate a document that can be processed by the software. The

flexibility in the basic structure of XML application that adapts to different

requirement and business scenarios is perfect for exchanging data between

heterogeneous systems.

ebXML.org says “ebXML is an evolutionary change from EDI to XML

technologies. It opens a migration path from EDI and developing XML standards,

while providing support for multi-lingual, national, and international trade

requirements. As a pragmatic compromise between XML-centric and EDI-centric

worldviews, it combines ideas from both into an open integration framework.

Within this cross-industry framework, EDI investments in business processes can

be preserved in an architecture that leverages the technical capability of XML”.

14

2.2 Overview of ebXML

In contrast to EDI which is only a messaging standard, ebXML is a

framework that contains a number of elements that can be used for doing e-

business. It is not required that organizations utilize all of the ebXML

specifications. Organizations can pick and choose the specifications that best

serve their business needs. The ebXML framework is a set of building blocks.

The ebXML technical architecture document has been written as a general

guideline for describing at a high level how the ebXML components or building

blocks fit together.

EbXML is designed on three basic concepts:

• Provide an infrastructure that ensures data communication

interoperability. It is provided through standard message transport

mechanism with a well defined interface, packaging rules and a

predictable delivery and security model. A business service interface that

handles incoming and outgoing messages at either end of the transport.

• Provide a semantic framework that ensures business interoperability. It is

provided through a meta-model for defining business process and

information models. A set of re-usable core components that reflect

common business semantics and xml vocabularies.

• Provide a discovery mechanism that allows enterprises to find each other,

agree to become trading partners and conduct business with each other.

Shared repository network where enterprises can register and discover

15

each other’s business services via partner profile information. Process for

defining and agreeing to a formal Collaboration Protocol Agreement

(CPA), if desired, which can be based on the intersection of individual

business Collaboration Protocol Profile (CPP). Shared repository for

company profiles, business process models and related message

structures.

2.3 ebXML Scenario

Company A

X npl

Compan y B ,

■pi L a it

Figure 2-1 Overview of the interaction of two companies conducting e-Business using
ebXML. (Source: ebxml.org)

(1) Company A decides to conduct electronic business based on ebXML.

They consult the registry on the internet to check to see any pre-determined

common business process that match their core business process, that way

they can re-use the existing business processes. In case of un-availability,

Company A develops a new business processes according to the ebXML

business process specification schema.

16

(2) Company A implements a Collaboration protocol profile (CPP, their

business profile information) and submits to an ebXML registry. CPP contains

business process capabilities, constraints and technical ebXML information.

This information is used by other companies to discover new trading partners

from registry listing.

(3) Company A submits its own business profile information to the ebXML

registry. The business profile submitted to the ebXML registry describes the

company’s ebXML capabilities and constraints, as well as its supported

business scenarios.

(4) ebXML compliant Company B discovers company A, who is also

ebXML compliant and also identifies the business scenario supported by

company A.

(5) Company B receives the CPP of company A. Company B has then

two CPP's: Company A's CPP and company B's CPP. ebXML then derives a

third document from the intersection of the two CPP's called Collaboration

Protocol Agreement (CPA). The two companies negotiate technical details and

functionality overrides and outlines the mutually agreed upon business

scenarios and specific agreements in the form of a CPA.

(6) Company A and B are now ready to engage in e-business using

ebXML. The two companies (software) can send and receive ebXML

messages containing ebXML business documents, over the secure and reliable

ebXML Messaging Service.

17

Chapter 3 The ebXML Framework

3.1 Introduction

ebXML can be viewed as a comprehensive treatment for out-standing

technical challenges in b2b electronic commerce evolution. ebXML is comprised

of five components that provide all the functionality to carry out existing electronic

commerce as well as to automate the process which are manually done today.

Five components are: Messaging Service, Registry and Repository, Core

components, Collaboration protocol profile (CPP) and Business process

specification schema.

ebXML: Five Key Components

Business Process P||
Define Implement

Collaboration Protocol Profile ill
i

Registry end Repository

a

Figure 3-1 ebXML five key components

18

3.2 ebXML Registry/Repository

A registry is an open directory where companies list a very detailed

description of their electronic capabilities. The registry can be viewed as a

database of items that support doing business electronically. Technically

speaking, a registry stores information about items that actually reside in a

repository. Registry act as an interface to access the information of ebXML

registry/repository, repository is a storage mechanism where the objects are

stored, managed by ebXML registry services. The ebXML registry may be

thought of as warehouse (repository) and a catalog (registry) for this warehouse.

Similar to a catalog (which contains meta-information about contents in the

warehouse), the registry contains information on objects in the repository. Items

in the repository are created, updated, or deleted through requests made to the

registry. An original goal of the ebXML registry was to support a fully distributed,

networked set of interacting registries that would provide transparent interaction

to any ebXML compliant registry by interfacing with only one of them. In other

words, an interface for accessing and discovering company profiles, business

semantics, core components, trading partner specifications and other objects

shared by companies. It is important to note that ebXML registry stores metadata

about specification not the actual documents.

The ebXML Registry architecture is based on client-server architecture.

The communication can be based on ebXML Messaging Service or by HTTP.

Client can be designed in any platform but the communication between server

19

and registry should follow the ebXML registry interface. As per ebXML

specification, registry/repository is an optional component that can be used to

support public sharing of b2b artifacts.

Query fo r
Company X /

Downtoad I
/ t Company Info |

Do
gjyssif̂ ssl-.©usiiess pi

Arrangement

Company X registers ;
Implementation Details •
and Company Profiles

Figure 3-2 Companies Interaction with ebXML registry

Two main objects of registry are: the RegistryEntry and the

ClassificationNode. the RegistryEntry may consists of ebXML object, such as a

Collaboration Protocol Profile (CPP), a Collaboration Protocol Agreement, core

components etc., ClassificationNodes are meant for creating an hierarchical tree

structure to define the classification of objects. New ClassificationNodes can be

created, queried and updated.

20

There are two interfaces available in ebXML registry specification:

ObjectManager and the ObjectQueryManager.

ObjectQueryManager interface provides the way to search the registry

and retrieve objects based on the query. ObjectManager interface creates new

object and change the state on the existing objects. ebXML objects undergo four

different states. When the object is newly created in the registry the initially it will

be “submitted state”. Once an object was transitioned to “approved state”, it can

be accessed and updated by the business parties. After a while, the object may

get retired and reach “deprecated state”. In this state object is accessible but

can’t be updated any more. Eventually it will be moved to “removed state”, the

object will be removed from registry and no longer will be accessible by the

business parties.

ObjectQueryManager supports various methods for accessing the

objects. Three basic methods are: the Browse and drill down Query, the Filter

query and SQL query. Browse and drill down Query has three methods to locate

a particular service. getRootClassificationNodes method returns all

ClasssificationNodes in the registry that don’t have a parent.

getClassificationTree drills down into one of these nodes by retrieving all of its

children. getClassifiedObjects looks at the RegistryEntries associated with that

ClassificationNode.

Filter Query supports more difficult queries such as XML syntax

describing a set of class filters. Each of these class filters is a predicate clause

intended to restrict the result set, so that you can specify various class filters to

restrict the result set.

21

<AdhocQueryRequest>
<ResponseOption retumType = "RegistryObject7>
<FilterQuery>

<RegistryObjectQuery>
<C lass ified By Branch>

<ClassificationNodeQuery>
<DescriptionBranch>

<LocalizedStringFilter>
<Clause>

<SimpleGlause leftArgument = "value">
<StringClausestringPredicate= "Equar'>transistor</StringClause>

</SimpleClause>
</Clause>

</LocalizedStringFilter>
</DescriptionBranch>

</ClassificationNodeQuery>
</ClassifiedByBranch>

</FilterQuery>
</AdhocQueryRequest>

Figure 3-3 Sample Filter Query of Registry object

SQL Query interface supports a basic subset of the SELECT statement. It

is also been extended to allow for the calling of stored procedures. The

specification defines a binding between the RIM and a set of fictional database

tables that are used in SQL Query. When querying ClassificationNodes, the

primary identifier is a unique ID created by the registry, and using this ID, you

can query other nodes by parents and so on. Methods discussed above don’t

return actual data rather a unique identifier of the Repository-Entries returns. In

order to get the real data getContent method is used.

The ebXML registry defines measures for ensuring the integrity of

information stored in it. To allow access to authorized users only, it also allows

specification of access-control policies. Every object registered and stored in the

22

registry has a Universal unique ID (UUID). The UUID may be assigned by the

registry or provided while submitting an object to the registry [5].

Several companies are working to provide commercial implementations of

the ebXML Registry. It is expected that ebXML registry will be available free of

cost in near future.

3.3 Business Processes specification Schema

The process used to do business among business partners involves many

steps. The process to issue a purchase orders is an example of such a process.

Business Processes Specification Schema provides the definition in the form of

an XML DTD that describes how an organization conducts its business. The

advantage of an XML-specific business process specification is that it can be

processed easily by the computers.

It is roughly a business scenario about what happens, who the trading

partners are, what the roles of the trading partners are, which documents the

trading partners exchange, in what order the documents are exchanged and

what information is in the documents (structure of the documents). The

specification for business process definition enables an organization to express

its business processes in a specific scenario so that they are understandable by

other organizations. This enables the integration of business processes within a

company or between companies.

While the CPA/CPP deals with the technical aspects of how to conduct

business electronically, the Specification Schema deals with the actual business

23

process. It identifies such things as the overall business process, the roles,

transactions, identification of the business documents used (the DTDs or

schemas), document flow, legal aspects, security aspects, business level

acknowledgments, and status. A Specification Schema can be used by a

software application to configure the business details of conducting business

electronically with another organization.

<BusinessTransaction name-'Create Order">

<RequestingBusinessActivity
name-'"

is Non Repud iation Requ ired-'true"
timeToAcknowledgeReceipt="P2D"
timeToAcknowledgeAcceptance="P3D">

<DocumentFlow
isSuccess-'true"
documentType-'Purchase Order" />

</RequestingBusinessActivity>
<RespondingBusinessActivity
name-'"

isNonRepudiationRequired-'true"
timeT oAcknowledgeReceipt="P5D" >

<DocumentFlow
isSuccess-'true"
documentType="PO Acknowledgement" />

</RespondingBusinessActivity>
</BusinessT ransaction>

Figure 3-4 Sample Business Process Specification

24

3.4 Business Transactions

Business transactions can be defined as the actual transfer of documents

between trading partners. There are exactly two roles: requestor and responder.

The requestor may send a request; in that case responder will sends back the

information. Or it can be one way notification. Choreography defines the

sequence of business transactions. It is expressed in terms of states and the

transition of business transactions.

'SCtJfpt
QLmorM I men:!

Figure 3-5 Business Transactions

3.5 Business Document Flows

Each Business Transaction consists of one or two predefined Business

document flows.

25

Business documents are composed of business information objects, or

smaller chunks of information that have previously been identified. These

components are merely structures such as XML schema or DTD that define the

presentation of information in the document. These business documents are not

defined within the business-process specification; rather they are referenced.

The process described in the ebXML core components specification is used to

create these business documents. EDI, XML, or any other type of document can

be directly used in the business transactions.

A Business Transaction may be additionally supported by one or more

Business Signals. Each business transaction has one requesting (incoming)

document and an optional responding (outgoing) document. BPSS also supports

business signals, or application-level documents that signal a business

transaction’s current state—for example, an acknowledgment document.

3.6 Business Collaboration

The Business Process Specification Schema defines “business

collaboration” as follows: Business collaboration is a choreographed set of

business transaction activities in which two trading partners exchange

documents. Two or more business partners participate in the business

collaboration through roles. The roles interact with each other through Business

Transactions.

26

A Business Collaboration consists of choreographed Business

Transactions. That choreography is expressed in terms of states and the

transitions between them. In fact, a Business Activity is known as an abstract

state, with Business Collaborations and Business Transaction Activities known

as concrete states. Auxiliary states include start, fork, synchronization, and

completion (which take the form of either success or failure).

As the collaboration proceeds, it transitions from one state to the next. In

some cases in which a particular requirement exists (such as document receipt

or validation), a guard gates the transition to control whether or not it takes place

Business collaboration is a set of Business Transactions between business

partners. Each partner plays one or more roles in the collaboration [6]. Two

common variation of business collaborations are: Binary collaboration and multi­

party collaboration. Binary collaboration consists of a number of transactions

between two trading partners. Binary business collaboration binds a set of

business transactions to two roles. For example, the process of issuing a

purchase order requires the business partners to play a set of roles, such as

customer and supplier. Each activity in a binary collaboration is either a business

transaction or a nested binary collaboration. A business activity may consist of a

business transaction or a collaboration activity that can define another binary

collaboration. Thus, recursive composition of business collaborations is permitted

within BPSS.

27

The sample XML source code explains the Binary collaboration. This code

has one transaction activity “Create Order”. There are two authorized roles:

buyer and Seller.

<BinaryCollaboration name="Company Order" timeToPerform="P5D">
<Documentation>

timeToPerform = Period: 5 days from start of transaction
</Documentation>

< InitiatingRole name="buyer"/>
<RespondingRole name="seller"/>

<BusinessTransactionActivity name-'Create Order"
businessT ransaction="Create Order"
fromAuthorizedRole-'buyer"
toAuthorizedRole="seller7>

</BinaryCollaboration>

Figure 3-6 Sample Binary Collaboration

A multi-party collaboration describes collaboration between multiple

companies. A multiparty collaboration is constructed by combining multiple binary

collaborations, in other words same information flowing between two parties at all

time.

The difference between business processes and business collaborations

is that business processes describe the activities from the point of the view of

only one company.

A business process consists of a set of steps that need to be executed in

specified order. The choreography of the steps to carry out a business process is

expressed as a state machine in BPSS. A state is represented by a business

28

transaction. When a business process transition into a state, an action

corresponding to the business-transactions specification has to be carried out.

For example: while in a check credit business transaction a credit request

document is delivered to a responding business activity.

<BusinessTransaction name="Create Order">
<RequestingBusinessActivity

name=""
isNonRepudiationRequired="true"
timeToAcknowledgeReceipt="P2D"
timeToAcknowledgeAeceptance="P3D"

>

<DocumentFlow
isSuccess-'true"
documentType="Purchase Order"

/>
</RequestingBusinessActivity>
< Res pondingBus ines s Activity
name=""
isNonRepudiationRequired="true"
timeToAeknowledgeReceipt="P5D"

>

<DocumentFlow
isSuccess="true"
doc u m entTy pe="PO Ac know ledgem ent"

/>
</RespondingBusinessActivity>

</BusinessT ransaction>

Figure 3-7 Sample Business Transaction with two document flows and three business signals

A business transaction is atomic in the sense that there is no partially

successful execution: it either succeeds or fails completely. If failed its effects

must be reversed. A set of such states (business transactions) and the transition

rules from the states are described in business collaboration [5].

29

The above business transaction requests acknowledgement receipt in the

period of 2 days (P2D) and acknowledgement acceptance in the period of 3 days

(P3D). The receiving party must make sure that a requesting document is not

garbled [isNonRepudiationRequired-'true"] before sending acknowledgement of

receipt.

3.7 Collaboration Protocol Profile

The Collaboration Protocol Profile (CPP) is a formal description file that

lists capabilities of company in terms of ebXML operations, which will engage in

electronic business with other companies. It will identify capabilities such as

transport protocol (e.g. http, SMTP), delivery channel, security constraints (e.g.

digital signature, certificates) and bindings to a business process that an

organization supports. Depending on the level of security desired, this document

can be digitally signed. CPP is stored in an ebXML registry with a unique id

called globally unique Identifier (GUID) so that it can be queried by other

potential trading partners. Then company calculates the intersection of the

retrieved CPP with its own CPP that results in a CPA.

CPP includes:

• Process-specification layer

• Delivery-channel specification layer

• Document Exchange layer

• Transport layer.

30

The process-specification layer - It is the heart of business agreement

between companies. It provides the information about a party, the services

(business transactions) and transition rules that defines the order of

communication. It also defines the role of the party is going to play in the

business process.

The delivery-channel layer - It provides the specification of the messaging

channels available for message delivery so that the services described in the

business-process specification can be invoked. The delivery channel layer also

defines whether an acknowledgement is required for the message delivered. It

also defines the security characteristics. Many delivery channels can be defined

in same CPP.

Document-exchange layer - It defines the way the business documents will be

processed. The document exchange represents the messaging protocol, such as

ebMS. It also defines security and reliability properties for messages that include

encryption, digital signature and reliable messaging specifications.

Transport layer - It defines the details of underlying transport protocol used for

sending messages. It contains end point addresses in the network also various

other properties of the protocol.

31

3.7.1 Structure of CPP

The root element of CPP is the Collaboration Protocol Profile element that

contains one or more party info elements, Packaging and Simple part. Also have

optional elements: Signature and comment elements. The contents of CPP can

be protected using an optional “signature” element.

Collaboration Protocol Profile

Partylnfo

Packagin

Simple Pai

Signature

Comment

Figure 3-8 Structure o f Collaboration Protocol Profile (source: Implementing B2b E-
commerce with ebXML)

• Partylnfo element identifies the business and technical capabilities

described in the CPP. CPP can contain one or more Partylnfo.

The Partylnfo element includes:

32

> One or more Partyld elements. These elements provide a logical

identifier for the organization, such as a DUNS number.

> One PartyRef element. This element points to an external

resource with more information about the organization.

> One or more Collaboration Role elements. These elements are

the heart of the CPP, providing information on the Business

Processes in which the party engages, and the roles it plays within

those processes. The CollaborationRole element directly

references a Business Process Specification stored in the registry.

> One or more Certificate elements. These elements identify the

party's security certificates.

> One or more DeliveryChannel elements. These elements define

the ways in which the party can receive messages, including

references to both a document exchange, or message protocol,

and a transport protocol layer described below.

> One or more Transport elements. These elements provide

specifics for the transport layers referenced in the

DeliveryChannel elements. Transport layers may include HTTP,

SMTP, or other transport protocols.

> One or more DocExchange elements. These elements provide

specifics for the document exchanges referenced in the

DeliveryChannel elements. The document exchange represents

the messaging protocol, such as ebMS.

Each of these elements has its own child elements.

33

• The Packaging element provides information about the way in which

messages are actually constructed. Messages are processed as SOAP

Messages with Attachments and the Packaging element provides

information on how these messages are organized. The payload may

consist of multiple documents with different content structure such as

XML, text or binary. CPP can contain one or more Packaging element.

The Packaging element has three potential child elements:

> The ProcessingCapabilities element is an empty element with two

required attributes, generate and parse, which indicate whether the

system is capable of creating or reading messages.

> The SimplePart element defines message pieces that consist of a

certain Multipurpose Internet Mail Extensions (MIME) type. Pieces are

identified so that they can be referenced within the CompositeList

element. SimplePart describes the composition of a single document,

which may be referred from multiple locations in Packaging. CPP can

contain one or more SimplePart.

> The CompositeList element provides information about composites or

encapsulations of SimpleParts. This element is optional, and will not

appear if parts are sent individually.

• Signature element provides the security for the contents of CPP by

incorporating the digital signature feature. It is an optional element.

34

• CPP can have zero or more comment element.

<CollaborationProtocolProfile

xm Ins - ' http://www.ebxm I .org/nam es paces/tradePartner"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.1">

<Partylnfo>

<!--REQUlRED, Repeatable~>

</Partylnfo>

< Packaging id="ID">

<!--REQUIRED-->

<Packaging>

<ds:Signature>

<!--OPTIONAL—>

</ds:Signature>

<Comment>

< !- OPTIONAL ->

</Comment>

</CollaborationProtocolProfile>

Figure 3-9 Sample structure of CPP

The above sample structure of a CPP consists of a root element:

CollaborationProtocolProfile that requires three namespace declarations:

http://www.ebxm
http://www.w3.org/2000/09/xmldsig%23
http://www.w3.org/1999/xlink

35

http://www.ebxml.org/namespaces/tradePartner is the default namespace.

http://www.w3.Org/2000/09/xmldsig#, is the namespace for XML Digital

Signature, and is included to allow signing of CPPs.. http://www.w3.org/1999/xlink

is the XLink namespace, which allows the CPP to reference external information.

Other elements present in the structure are: Partylnfo, Packaging, Signature, and

Comment elements.

http://www.ebxml.org/namespaces/tradePartner
http://www.w3.Org/2000/09/xmldsig%23
http://www.w3.org/1999/xlink

36

<?xml version="1.0" encoding="UTF-8" ?>
<tp:CollaborationProtocolProfile
xm Ins :tp= "http://www.ebxm I .org/nam es paces/tradePartner"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xmlns :xlink="http://www.w3.org/1999/xlink"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xsi:schemaLocation="http://www.ebxml.org/names paces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd"
tp:version="1.1">
<tp:Partylnfo>
<tp:Partyld tp:type="DUNS">123456789</tp:Partyld>
<tp:PartyRef tp:href="http://example.com/about.htmr />
<tp:CollaborationRole tp:id="NOO">
<tp:ProcessSpecification tp:version="1.0" tp:name="buySeN"
xlink:type="simple"
xlink:href="http://www.ebxml.org/processes/buySell.xml7>
<tp:Role tp:name="buyer" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#buyer"/>
<tp:CertificateRef tp:certld="N03" />
<tp:ServiceBinding tp:channelld="N04" tp:packageld="N0402">
<tp:Service tp:type="uriReference"
>uri:example.com/services/buyerService</tp:Service>
<tp:Override tp:action="orderConfirm" tp:channelld="N07"
tp : pac kageld=" N0402" xl in k: ty pe="s i m pie"
xlink:href="http.7/ebxml.org/processes/buySell.xml#orderConfirm"/>
</tp:ServiceBinding>
</tp:CollaborationRole>

http://www.ebxm
http://www.w3.org/2000/10/XMLSchema-instance
http://www.w3.org/1999/xlink
http://www.w3.org/2000/09/xmldsig%23
http://www.ebxml.org/names
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd
http://example.com/about.htmr
http://www.ebxml.org/processes/buySell.xml7
http://ebxml.org/processes/buySell.xml%23buyer%22/

37

<tp:Certificate tp:certld="N03">
<ds: Key Info/>
</tp:Certificate>
<tp: DeliveryChannel tp:channelld="N04" tp:transportld="N05"
tp:docExchangeld="N06">
<tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true"
tp:nonrepudiationOfReceipt="false"
tp.secureT ransport="true" tp:confidentiality="true"
tp:authenticated="true" tp:authorized="false" />
</tp:DeliveryChannel>
<tp:DeliveryChannel tp:channelld="N07" tp:transportld="N08"
tp:docExchangeld="N06">
<tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true" tp:confidentiality="true"
tp:nonrepudiationOfReceipt="false"
tp:secureT ransport-'false" tp:authenticated="true"
tp:authorized="false" />
</tp:DeliveryChannel>
<tp:T ransport tp:transportld="N05">
<tp:SendingProtocol tp:version="1.1 ">HTTP</tp:SendingProtocol>
<tp: ReceivingProtocol tp: vers ion=" 1.1 "> HTTP</tp: ReceivingProtocol>
<tp:Endpoint tp:uri="https://www.exam ple.com/servlets/ebxmlhandler"
tp:type="allPurpose" />
<tp:T ransportSecurity>
<tp:Protocol tp:version="3.0">SSL</tp:Protocol>
<tp:CertificateRef tp:certld="N03" />
</tp:T ransportSecurity>
</tp:Transport>

https://www.exam

38

<tp:T ransport tp:transportld="N08">
<tp:SendingProtocol tp:version="1.1">HTTP</tp:SendingProtocol>
<tp: Receiving Protocol tp:version="1.1 ">SMTP</tp:ReceivingProtocol>
<tp:Endpoint tp:uri="mailto:ebxm lhandler@example.com"
tp:type="allPurpose" />
</tp:Transport>
<tp:DocExchange tp:docExchangeld="N06">
<tp:ebXMLBinding tp:version="0.98b">
<tp:ReliableMessaging tp:deliverySemantics="OnceAndOnlyOnce"
tp: idem potency="true"
tp:messageOrderSemantics="Guaranteed">
<tp:Retries>5</tp:Retries>
<tp:Retrylnterval>30</tp:Retrylnterval>
<tp:PersistDuration>P1D</tp:PersistDuration>
</tp:ReliableMessaging>
<tp:NonRepudiation>
<tp: Protocol
> http://vwvw.w3.org/2000/09/xm Ids ig#</tp: Protocol >
<tp:HashFunction
> http://www. w 3. org/2000/09/xm Ids ig#s ha 1 </tp: Has h Fu nction>
<tp:SignatureAlgorithm
>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>
<tp:CertificateRef tp:certld="N03" />
</tp:NonRepudiation>
<tp:DigitalEnvelope>
<tp: Protocol tp:version="2.0">S/MIME</tp:Protocol>
<tp: Enc ryption Algorithm> D ES-C BC</tp: Encryption Algorithm >
<tp:CertificateRef tp:certld="N03" />
</tp:DigitalEnvelope>
</tp:ebXMLBinding>
</tp:DocExchange>
</tp:Partylnfo>

mailto:ebxm
mailto:lhandler@example.com
http://vwvw.w3.org/2000/09/xm
http://www
http://www.w3.org/2000/09/xmldsig%23dsa-sha1%3c/tp:SignatureAlgorithm

39

<tp: Packaging tp:id="N0402">
<tp:ProcessingCapabilities tp:parse="true" tp:generate="true" />
<tp:SimplePart tp:id="N40" tp:mimetype=,,text/xml">
<tp: Nam es paceS upported
tp:location=
"http://ebxml.org/project_teams/transport/messageService.xsd"
tp:version="0.98b"
>http://www.ebxml.org/namespaces/messageService</tp:NamespaceSupported>
<tp: Names paceS upported tp: location=
"http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd"
tp:version="1.0"
>http://www.w3.org/2000/09/xmldsig</tp:NamespaceSupported>
</tp:SimplePart>
<tp:SimplePart tp:id="N41" tp:mimetype="text/xmr>
<tp:NamespaceSupported tp:version="1.0"
tp: location="http://ebxm I .org/proces s es/buys ell .xs d"
> http://ebxm I .org/proces s es/buys ell .xs d</tp: Nam es paceS upported >
</tp:SimplePart>
<tp:Com pos iteList>
<tp:Composite tp:id="N42" tp:mimetype="multipart/related"
tp: m im eparam eters-’type=text/xm I ;">
<tp:Constituent tp:idref="N40" />
<tp:Constituent tp:idref="N41" />
</tp:Composite>
</tp:Com pos iteList>
</tp:Packaging>
<tp:Comment tp:xml_lang="en-us">buy/sell agreement between example.com and
contrived-example.com</tp:Comment>
</tp:CollaborationProtocolProfile>

Figure 3-10 Sample CPP

http://ebxml.org/project_teams/transport/messageService.xsd
http://www.ebxml.org/namespaces/messageService%3c/tp:NamespaceSupported
http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd
http://www.w3.org/2000/09/xmldsig%3c/tp:NamespaceSupported
http://ebxm
http://ebxm

40

3.8 Collaboration-Protocol Agreement (CPA)

A Collaboration-Protocol Agreement (CPA) describes the capabilities that

two Partners agree to use in doing electronic business with each other. In other

words, CPA is a trading partner agreement. CPA is used to configure the

systems of both trading partners. CPA can also be added to the registry for

reference. CPA is essentially XML documents that encode parties’ e-business

agreements. It is simply an intersection of matching capabilities of two CPPs,

usually it is followed by a series of negotiations among the parties. Once an

agreement was made, each party will take an electronic copy of the same CPA

and configure their systems.

41

3.8.1 Overall structure of a CPA

The structure of the CPA is similar to that of the CPP.

Collaboration Protocol Agreement

Status

Start

IBM

ConversationConstraints

Partylnfo(l)

Partylnfo(2)

Packaging

SimplePart

Signature

Figure 3-11 Structure o f CPA

CPA defines namespaces on its root element:

CollaborationProtocolAgreement element and a version to distinguish any

subsequent changes. The CPA also includes a cpaid attribute that both parties

42

use. CPA contains almost all the elements and attributes of CPP. In addition, the

CPA has some additional elements and attributes.

<CollaborationProtocolAgreement
xmlns="http://www.ebxml.org/namespaces/tradePartner"
xmlns:ds = "http://www.w3.Org/2000/09/xmldsig#"
xmlns:xlink = "http://www.w3.org/1999/xlink"
cpa id=" h tt p ://www. exa mpl e . co m/cpas/cl i pC PA"
version="1.7">

<Status value = "proposed"/>
<Start> 1988-04-07T18:39:09 </Start>
<End> 1990-04-07T18:40:00 </End>
<ConversationConstraints invocationLimit = "250"
concurrentConversations = "57>
<Partylnfo>

<!~REQUIRED, repeatable-->

</Partylnfo>
<Partylnfo>

<!--REQUIRED, repeatable~>

</Partyinfo>
<Packaging id="N20">

<!--REQUIRED, repeatable~>

</Packaging>
<ds:Signature> <!--OPTIONAL--> </ds:Signature>
<Comment xml:lang="en-gb"> <!--OPTIONAL--></Comment>
</CollaborationProtocolAgreement>

Figure 3-12 Sample structure of CPA

Partylnfo - CPA always between two parties, which are mentioned in two

Partylnfo elements. The elements and value reflect the agreement between the

each party.

http://www.ebxml.org/namespaces/tradePartner
http://www.w3.Org/2000/09/xmldsig%23
http://www.w3.org/1999/xlink

43

Status - The Status element records the state of the

composition/negotiation process that creates the CPA. Typically, one party

generates a CPA and offers it to the other party for approval, so the Status

element shows where the document is in this process. The possible values are

proposed, agreed, and signed.

The lifetime of the CPA is given by the Start and End elements. The Start

element specifies the starting date and time of the CPA. The End element

specifies the ending date and time of the CPA. The Start and End elements

represent, in Coordinated Universal Time, the beginning and end of the period

during which this CPA is active.

Finally, the optional CoversationConstraints element defines the finite

number of conversations that may be held under this CPA, and the number that

may be held concurrently. In other words, ConversationConstraints element

places limits on the number of conversations under the CPA.

The Packaging, Signature, and Comment elements have the same

meaning they have for a CPP. CPA can be digitally signed to ensure the integrity

of these documents, which imply that once signed these documents, must not be

changed during processing or while being stored in ebXML registry.

<?xml version="1.0" ?>
<tp:CollaborationProtocolAgreement
xmlns:tp="http://www.ebxml.org/namespaces/tradePartner"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd"
xmlns:xlink="http://www. w3.org/1999/xlink"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
tp:cpaid="http://www.example.com/cpas/clipCPA"
tp:version="1.2">
<tp:Status tp:value="proposed" />
<tp: Sta rt>2001 -05-2OT 07:21: OOZ</tp: Sta rt>
<tp: End >2002-05-20T 07:21 :OOZ</tp: End >
<tp:ConversationConstraints tp:invocationLimit="100"
tp:concurrentConversations="1007>
<tp:Partylnfo>
<tp:Partyld tp:type="DUNS">123456789</tp:Partyld>
<tp:PartyRefxlink:href="http://exa mple.com/about.html7>
<tp:CollaborationRole tp:id="NOO">
<tp: ProcessSpecification tp:version="1.0" tp:name="buySeH"
xlink:type="simple"
xlink:href="http://www.ebxml.org/processes/buySell.xmr7>
<tp:Role tp:name="buyer" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#buyer7>
<tp: Ce rtif ica te Ref tp:cert!d="N03" />
<tp:ServiceBinding tp:channelld="N04" tp:packageld="N0402">
<tp:Service tp:type="uriReference"
>uri:example.com/services/buyerService</tp:Service>
<tp:Override tp:action="orderConfirm" tp:channelld="N08"
tp: package Id ="N0402" xlink:type="simple" xlink:href=
"http://ebxml.Org/processes/buySell.xml#orderConfirm7>
</tp:ServiceBinding>
</tp:CollaborationRole>
<tp Certificate tp:certld="N03">
<ds:Keylnfo />
</tp:Certificate>

http://www.ebxml.org/namespaces/tradePartner
http://www.w3.org/2000/10/XMLSchema-instance
http://www.ebxml.org/namespaces/tradePartner
http://ebxml.org/project_teams/trade_partner/cpp-cpa-v1_0.xsd
http://www
http://www.w3.org/2000/09/xmldsig%23
http://www.example.com/cpas/clipCPA
http://exa
http://www.ebxml.org/processes/buySell.xmr7
http://ebxml.org/processes/buySell.xml%23buyer7
http://ebxml.Org/processes/buySell.xml%23orderConfirm7

45

<tp:DeliveryChannel tp:channelld="N04" tp:transportld="N05"
tp:docExchangeld="N06">
<tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true"
tp:nonrepudiationOfReceipt="false" tp:secureTransport="true"
tp:confidentiality="true" tp:authenticated="true"
tp:authorized="false" />
</tp:DeliveryChannel>
<tp:DeliveryChannel tp:channelld="N07" tp:transportld=,,N08"
tp:docExchangeld="N06">
<tp:Characteristics tp:syncReplyMode="none"
tp:nonrepudiationOfOrigin="true" tp:secureTransport="false"
tp:nonrepudiationOfReceipt="false" tp:confidentiality="true"
tp:authenticated="true" tp:authorized="false" />
</tp:DeliveryChannel>
<tp:T ransport tp:transportld="N05">
<tp:SendingProtocol
tp:vers ion="1.1 ">HTTP</tp:SendingProtocol>
<tp: ReceivingProtocol
tp:version="1.1 ">HTTP</tp:ReceivingProtocol>
<tp: Endpoint tp:ty pe="allPurpose"
tp:uri="https://www.example.com/servlets/ebxmlhandler7>
<tp:T ransportSecurity>
<tp:Protocol tp:version=,,3.0">SSL</tp:Protpcol>
<tp:CertificateRef tp:certld="N03" />
</tp:T ransportSecurity>
</tp:Transport>
<tp:T ransport tp:transportld="N18">
<tp:SendingProtocol
tp:version="1.1">HTTP</tp:SendingProtocol>
<tp: ReceivingProtocol
tp:version="1.1 ">SlvrrP</tp: Receiving Protocol>
<tp:Endpoint tp:uri=,,mailto:ebxmlhandler@example.com,,
tp:type="allPurpose" />
</tp:Transport>

https://www.example.com/servlets/ebxmlhandler7
mailto:ebxmlhandler@example.com

46

<tp:DocExchange tp:docExchangeld="N06">
<tp:ebXMLBinding tp:version="0.98b">
<tp:ReliableMessaging tp:deliverySemantics="OnceAndOnlyOnce"
tp:idempotency="true”
tp:messageOrderSemantics="Guaranteed">
<tp: Retries>5</tp: Retries>
<tp: Retry Interval >30</tp: Retry lnterval>
<tp:PersistDuration>P1D</tp:PersistDuration>
</tp:ReliableMessaging>
<tp:NonRepudiation>
<tp: Protocol
>http://www.w3.org/2000/09/xmldsig#</tp:Protocol>
<tp:HashFunction
>http://www.w3.org/2000/09/xmldsig#sha 1 </tp: Hash Fu notion >
<tp:SignatureAlgorithm
>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>
<tp:CertificateRef tp:certld=”N03" />
</tp:NonRepudiation>
<tp:DigitalEnvelope>
<tp:Protocol tp:version="2.0">S/MIME</tp:Protocol>
<tp: EncryptionAlgorithm>DES-CBC</tp: Encryption Algorithm>
<tp:CertificateRef tp:certld=”N03" />
</tp:DigitalEnvelope>
</tp:ebXMLBinding>
</tp:DocExchange>
</tp:Partylnfo>
<tp: Party lnfo>
<tp: Party Id tp:type="DUNS,,>987654321 </tp:Partyld>
<tp: Party Ref xl in k:ty pe="simp le”
xlink:href=”http://contrived-example.com/about.html" />
<tp:CollaborationRole tp:id="N30">
<tp:ProcessSpecification tp:version="1.0" tp:name-'buySeH'1
xlink:type="simple"
xlink:href=,,http://www.ebxml.org/processes/buySell.xmr7>
<tp:Role tp:name="seller" xlink:type="simple"
xlink:href="http://ebxml.org/processes/buySell.xml#seller" />
<tp:CertificateRef tp:certld="N33" />
<tp:ServiceBinding tp:channelld="N3411 tp:packageld="N0402">
<tp:Service tp:type=,,uriReference,,>uri:example.com/services/sellerService</tp:Service>
</tp:ServiceBinding>
</tp :Collaboration Role>

http://www.w3.org/2000/09/xmldsig%23%3c/tp:Protocol
http://www.w3.org/2000/09/xmldsig%23sha
http://www.w3.org/2000/09/xmldsig%23dsa-sha1%3c/tp:SignatureAlgorithm
http://contrived-example.com/about.html
http://www.ebxml.org/processes/buySell.xmr7
http://ebxml.org/processes/buySell.xml%23seller

47

<tp:Certificate tp:certld="N33">
<ds:Keylnfo />
</tp:Certificate>
<tp:DeliveryChannel tp:channelld="N34" tp:transportld="N35"
tp:docExchangeld="N36">
<tp:Characteristics tp:nonrepudiationOfOrigin="true"
tp:nonrepudiationOfReceipt="false"
tp:secureT ransport="true" tp:confidentiality="true"
tp:authenticated="true"
tp:authorized="false7>
</tp:DeliveryChannel>
<tp:T ransport tp:transportld="N35">
<tp:SendingProtocol tp:version=,,1.1">HTTP</tp:SendingProtocol>
<tp: ReceivingProtocol tp:version="1.1 ">HTTP</tp:ReceivingProtocol>
<tp: Endpoint
tp:uri="https://www.contrived-exann ple.com/servlets/ebxmlhandler"
tp:type="allPurpose" />
<tp:T ransportSecurity>
<tp: Protocol tp: vers ion="3.0">SSL</tp: Protocol>
<tp:CertificateRef tp:certld="N33" />
</tp:T ransportSecurity>
</tp:Transport>
<tp:DocExchange tp:docExchangeld="N36">
<tp:ebXMLBinding tp:version="0.98b">
<tp:ReliableMessaging tp:deliverySemantics="OnceAndOnlyOnce"
tp:idempotency="true"
tp:messageOrderSemantics="Guaranteed">
<tp:Retries>5</tp:Retries>
<tp: Retrylnterval>30</tp: Retrylnterval>
<tp:PersistDuration>P1D</tp:PersistDuration>
</tp:ReliableMessaging>

https://www.contrived-exann

48

<tp: NonRepudiation>
<tp:Protocol> http://www.w3.org/2000/09/xm Ids ig#</tp:Protocol>
<tp:HashFunctlon
>http://www.w3.org/2000/09/xmldsig#sha1</tp:HashFunction>
<tp:SignatureAlgorithm
>http://www.w3.org/2000/09/xmldsig#dsa-sha1</tp:SignatureAlgorithm>
<tp:CertificateRef tp:certld="N33" />
</tp:NonRepudiation>
<tp:DigitalEnvelope>
<tp: Protocol tp:version="2.0">S/MIME</tp:Protocol>
<tp:EncryptionAlgorithm>DES-CBC</tp:EncryptionAlgorithm>
<tp:CertificateRef tp:certld="N33" />
</tp:DigitalEnvelope>
</tp:ebXMLBinding>
</tp:DocExchange>
</tp:Partylnfo>
<tp:Packaging tp:id="N0402">
<tp:ProcessingCapabilities tp:parse="true" tp:generate="true" />
<tp:SimplePart tp:id="N40" tp:mimetype="text/xml">
<tp: Na m es paceS upported
tp:location=
"http://ebxml.org/project_teams/transport/messageService.xsd"
tp:version="0.98b"
>http://www.ebxml.org/namespaces/messageService</tp:NamespaceSupported>
<tp: Names paceS upported tp: vers ion-'1.0"
tp:location=
"http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd"
> http://www.w3.org/2000/09/xm ldsig</tp: Nam espaceSupported>
</tp:SimplePart>

http://www.w3.org/2000/09/xm
http://www.w3.org/2000/09/xmldsig%23sha1%3c/tp:HashFunction
http://www.w3.org/2000/09/xmldsig%23dsa-sha1%3c/tp:SignatureAlgorithm
http://ebxml.org/project_teams/transport/messageService.xsd
http://www.ebxml.org/namespaces/messageService%3c/tp:NamespaceSupported
http://ebxml.org/project_teams/transport/xmldsig-core-schema.xsd
http://www.w3.org/2000/09/xm

49

<tp:Simplepart tp:id="N41" tp:mimetype="text/xml">
<tp:NamespaceSupported tp:version="1.0"
tp:location="http://ebxml.org/processes/buysell.xsd"
>http://ebxml.org/processes/buysell.xsd</tp:NamespaceSupported>
</tp:SimplePart>
<tp:Com pos iteList>
<tp:Composite tp:id="N42" tp:mimetype="multipart/related"
tp:mimeparameters="type=text/xml;">
<tp:Constituent tp:idref="N40" />
<tp:Constituent tp:idref="N41" />
</tp:Composite>
</tp:Com pos iteList>
</tp:Packaging>
<tp:Comment xml:lang="en-us">buy/sell agreement between example.com and
contrived-example.com</tp:Comment>
</tp:CollaborationProtocolAgreement>

Figure 3-13 Sample CPA

3.9 Overview of Simple Object Access Protocol (SOAP)

The ebXML Message Service is defined as a set of layered extensions to

the Simple Object Access Protocol (SOAP) and SOAP Messages with

Attachments - which is itself an extension of SOAP. ebXML infrastructure can be

used for the secure, reliable exchange of information. It is independent of

transaction vocabulary, encoding and the choice of vendor solution.

Simple Object Access Protocol (SOAP) is a lightweight specification

protocol used to access methods on servers, components and objects in a

platform independent manner so as to exchange information in a decentralized,

distributed environment. It is a protocol that acts as the glue between

heterogeneous software components by facilitating interoperability. In other

http://ebxml.org/processes/buysell.xsd
http://ebxml.org/processes/buysell.xsd%3c/tp:NamespaceSupported

50

words, SOAP is a lightweight mechanism for exchanging XML over the World

Wide Web.

SOAP does not itself define any application semantics such as a

programming model or implementation specific semantics; rather it defines a

simple mechanism for expressing application semantics by providing a modular

packaging model and encoding mechanisms for encoding data within modules.

This allows SOAP to be used in a large variety of systems ranging from

messaging systems to RPC. The advantages of SOAP: simplicity, extensibility

and its ability to pass through firewalls.

According to the specification, the SOAP 1.1 protocol consists of three parts:

• The SOAP envelope describes an overall structure for expressing the

content; processing party and whether it is optional or mandatory.

• The SOAP encoding rules defines a serialization mechanism that can be

used to exchange instances of application-defined data types.

• Soap's Remote Protocol Call defines a convention, which can be used to

represent remote procedure calls and their responses.

The XML part of every SOAP message contains particular tags and

attributes. It consists of:

• The SOAP envelope: this is the first element in the XML document

representing the message. It identifies the XML as being a SOAP

message and must be the root element of the message

• The (optional) SOAP header: this is a generic mechanism that adds

characteristics to the SOAP message. SOAP defines several attributes

51

that can be used to indicate who must process the characteristics, and

whether this process is optional or mandatory.

• The SOAP body: this contains message payload for the mandatory

information being sent to the message endpoint.

3.9.1 Structure of SOAP

SOAP message structure consists of HTTP header, the SOAP envelope,

SOAP header and the SOAP body.

HTTP Header
PO ST .'ObjectUR! HTTPM .1:
Host (processing party)

■ C ontent-Type fM IM E type)
C ontent-Length bytes)
SOAP Act! on (w hat to do.)

S O
:

-

A P E n v e lo p e T
tJ f V » e i

SO AP H eader
. : 1'. : • . * „■ ' -J •• . : f i o

-i.i-jr}

E lem ent co n ten t

SO AP B ody

Element Content:
Parameter Data

Figure 3-14 Basic Structure o f SOAP (Source: techmetrix.com)

52

3.9.2 HTTP Header

The HTTP header is at the beginning of the message and used by the

HTTP server software to handle the SOAP message. Post method is for sending

the request via the network.

In the first line, the post method, URI that is the target request and

protocol version are defined.

POST /Computer HTTP/1.1

Figure 3-15 HTTP header SOAP Post method

i
The next line gives the target host:

Host: www.example.com

Figure 3-16 HTTP header target host

The next three lines are used to define the MIME format for message

display, the HTTP coding and the length of the message.

http://www.example.com

53

Content-Type: text/xml;
charset=',utf-8"
Content-Length: 10

Figure 3-17 HTTP header MIME format

Then, methods are added such as SOAPAction (also known as

SOAPMethodName) which determines the intention of the HTTP request. The

identifier following the # sign must match the name of the first tag in the SOAP

message body.

SOAPAction="http://www.example.com#EventManager"

Figure 3-18 HTTP header SOAP Action

3.9.3 SOAP Envelope

It is mandatory and the first part of the SOAP message. It contains the

name of the element (Envelope), followed by a namespace defining the SOAP

version being used, and the optional encodingStyle attribute which points to a

link where the serialization (tree structure) and encoding rules are defined. The

SOAP envelope consists of an optional SOAP header and the SOAP body. The

envelope is presented as follows:

http://www.example.com%23EventManager

54

<SOAP-ENV:Envelope xmlns:SOAP-ENV="
http://schemas.xml.org/soap/enveloper SOAF-ENV
:encodingStyle="http://schemas.xml.org/soap/
encoding/"/> ... </SOAF:Envelope>

Figure 3-19 SOAP Envelope

Namespaces are used to provide a context and guarantee the

uniqueness of elements associated in this way.

3.9.4 SOAP Header

This is an optional part of the SOAP message encapsulated in the SOAP

envelope. It carries information to intermediaries, and is made up of one of more

entries. These bear a local name, a full name, a namespace and the two actor

attributes which designate the endpoint of the entry, and mustUnderstand, which

indicates the optional nature of the process. A SOAP application must include a

correct SOAP namespace for all the elements and attributes defined in the

message generated. This is a URI which points to a description of the message

information in order to guarantee the uniqueness of the message. DTDs are

never used. Faults occur when processing a message, and they may be caused

by an unrecognized header field, a message that cannot be authenticated, or

errors that occur when invoking a method to process a message.

http://schemas.xml.org/soap/enveloper
http://schemas.xml.org/soap/

55

<SOAP-ENV :Header>
<t:new B/entxmlns:t="http://w w w .techmetrix.com/
eventmanager"
SOAP-ENV :actor="http://schemas.xml.org/soap /actor/next/" SOAP-ENV :mustUnderstand="1">
Christmas B/ent
</t:new B/ent>
</SOA P- ENV :Header>

Figure 3-20 SOAP Header

3.9.5 SOAP Body

The information to be processed by the endpoint is found in the body of

the SOAP message. This can contain a set of entries which are all kept in the

root of the message body.

<SOAP-ENV:Body>
<m:NewCustomer xmlns:m="Some-URr>
< Nam e> D u m s er</Nam e>
<Surname>Johann</Surname>
<City>Cambridge</City>
<ZipCode>01800</ZipCode>
< State> MA</State>
< Cou ntry> US A</Cou ntry>
</m:NewCustomer>
</SOAP-ENV:Body>

Figure 3-21 SOAP Body

The Body element contains the message payload. In the case of a

request message the payload of the message is processed by the receiver of the

message and is typically a request to perform some service and, optionally, to

return some results. In the case of a response message the payload is typically

the results of some previous request or a fault.

http://w
http://schemas.xml.org/soap

56

3.9.6 Encoding Rules

SOAP can be seen as the sum of HTTP and XML. A SOAP message is

simply the HTTP request or response in which the payload data are in XML

format. SOAP defines a serialization mechanism for the body of a SOAP

message. The resulting XML schema represents the structure of the object data

to be passed. The encoding rules describe a standard method to do this,

including using “Element Normal Form” where all values are represented as

elements. SOAP is called payload-neutral which means it does not impose any

limitations on or make any assumption about the contents [7].

57

3.9.7 Example SOAP request

Below is an example of the SOAP message request code:

POST /EventManager HTTP/1.1
Host: www.example.com
Content-Type: text/xml;
charset="utf-8"

Content-Length: 60 SOAPAction="http://www.example.com/Event
#New Customer"

<SOAP-ENV:Envelope xmlns:SOAP-ENV=" http://schemas.xml.org/soap/enveloper
SOAP-ENV :encodingStyle="http://schemas.xml.org/soap/
encoding/"/> <SOAP-ENV:Header>
<t:Name
xm Ins :t=" www. exam ple.com/EventManager"
SOAP-ENV :actor="http://schemas.xml.org/soap/actor/next/" SOAP-ENV
:mustUnderstand="1"> Dumser
</t:Name >
</S0 AP-ENV: Header>
<SOAP:Body> <m:NewCustomer xmlns:m="www.example.com/Event">
<Entreprise>SQLI</Entreprise>
<Address>Paris</Address> </m:NewCustomer> </SOAP:Body>
</SOAP:Envelope>

Figure 3-22 SOAP message request code

3.9.8 SOAP transport architecture

The SOAP transport architecture and mechanism is based on a Web

Service application, but it is also applicable for data and document interchange.

http://www.example.com
http://www.example.com/Event
http://schemas.xml.org/soap/enveloper
http://schemas.xml.org/soap/
http://schemas.xml.org/soap/actor/next/
http://www.example.com/Event

58

application
Server]

iplication
Server

SOAP
Request

4̂ . V D n

® ■„
Javars

SOAP
Response

(display, actions,
database access,...)

Figure 3-23 SOAP transport Architecture (source: techmetrix.com)

1) Stationl executes a command which creates an action on the

associated application server. For example, suppose a customer wants to use a

purchase order Web service that is exposed on the application server of another

company. It issues a command which is passed to the API that provides access

to the SOAP processor. API serializes the call using a schema provided by the

other party and sends the result as an XML document to the XML parser in the

SOAP processor. After the document is checked to see that is well formed, the

order document is packaged as a SOAP request and sent over HTTP to the

other party.

2) This command generates a process within the application and the

result arrives in the application interface. After smoothly passing any firewalls

between the two companies, the request arrives at the receiving party’s SOAP

processor.

59

3) The message is translated into XML format by the implementation and

is then sent to the Web server.

4) The XML parser checks the coherence of the XML document and

sends the SOAP message via HTTP. The message is parsed and checked to

ensure it is well formed and valid. The SOAP application does additional

verifications, including identifying the message parts that are addressed to it.

5) The XML parser checks the validity of the message using the HTTP

and XML headers, and accepts or rejects it.

6) The message is then routed to the relevant application server and

translated by the implementation so that the task is meaningful for the

application. The SOAP application which receives the SOAP message must

proceed as follows to translate the message:

• Identify the parts of the SOAP message which correspond to the

application

• Check that all the mandatory parts of are supported by the application or

discard the message. The application must check if all mandatory parts

with mustUnderstand = “1” are supported, or it must respond with a fault

message.

• Remove all the parts before transferring he message if the application is

not the endpoint

7) The application then executes the task. A result is produced.

60

8) The return is done in the same way: implementation and then sending

by HTTP.

9) The result of the action may be different: display in a browser, actions,

access to a database, and so on.

3.10 Overview of ebMS (ebXML Messaging Service)

EbXML messaging service specification defines the set of services and

protocols that enables electronic business applications to exchange data. The

specification allows any application-level protocol to be used. The ebMS uses

existing technology as much as possible. It specifies SOAP 1.1 for message

structure, SOAP with attachments and multipurpose internet mail extensions

(MIME) specifications for packaging and XML signature for the digital signature.

MIME is an extension of the original Internet e-mail standard that allows users to

exchange text, audio or visual files.

The ebXML message is built using extensions to SOAP 1.1 header and

body. In the case of ebXML, the message header and body exist to deliver the

attachments. These attachments are called payloads.

Packaging the payloads, which can be any type of data (for example text,

binary, EDI or XML) with the SOAP header and body requires the use of MIME

for packaging.

The ebMS specifies binding to HTTP, SMTP, FTP protocols for carrying

the message. The message communication can be synchronous and

asynchronous, and is defined independently of the underlying transport

61

protocols. In a synchronous message communication, the requesting (sending)

party waits for the response and/or acknowledgement before making another

request to the same party. In asynchronous messaging, there are no restrictions.

While the ebXML Message Service was designed to work within the

overall context of the ebXML initiative, due to the modular nature of the ebXML

Technical Architecture, the ebXML Message Service can be used independently

of ebXML as a whole. Software vendors can easily integrate ebXML Message

Service functionality into their existing enterprise solutions.

A complete message, referred to as the Message Package, is a MIME

multipart/related object. MIME types are used throughout to describe all of the

contents of the Message Package. The Message Package contains two principal

parts: a SOAP Message container and zero or more payload containers. The

SOAP Message contains the ebXML SOAP extension elements routing

information, trading partner information, message identification, and delivery

semantics information. The payload is optional, and can contain any type of

information that is to be exchanged between parties.

The ebXML Message Service introduces a manifest along with each

message. The manifest contains references to each of the payload objects along

with schema location and version information about the payload. This versioning

of inner and outer layers permits the ebXML Message Service to be truly payload

neutral. Because the versions are separated, an older version of the ebXML

Message Service software can still route messages with newer version numbers

without having to upgrade the ebXML Message Service software. Conversely,

when the ebXML Message Service is versioned, the payload objects that it

62

carries are not affected. Other standards that have not separated the payload

from the message envelope and headers suffer from potential version problems.

This limits the flexibility of these standards in a global context where uniform

versioning is highly unrealistic.

To guarantee reliable message delivery, positive acknowledgement and

persistent storage is required. Prior to sending a message, the sending ebXML

Message Service will save the message in persistent storage. Once the message

has been correctly received, the receiving ebXML Message Service will save the

message in persistent storage and send an acknowledgement message to the

sending ebXML Message Service. After the sending ebXML Message Service

receives the acknowledgement, it may delete the message from persistent

storage if no longer needed. If the sending ebXML Message Service does not

receive acknowledgement, it can resend the message or notify the sending

application that the message was unable to be delivered. The entire messaging

operation is asynchronous, meaning that transmission of one message need not

be completed before additional messages are sent.

If the sending ebXML Message Service does not receive

acknowledgement, it will attempt a recovery sequence. The sending service will

resend the message and again wait for acknowledgement. This cycle is repeated

a number of times. The number of retries and retry interval can be defined as

needed.

The ability to exchange any type of information, including XML, binary

data, or EDI messages makes the ebXML Message Service highly flexible. This

flexibility permits new businesses to use XML messages for documents while

63

businesses with existing EDI infrastructure can continue to leverage their legacy

systems.

3.10.1 EbXML message service handler

The ebXML Messaging Service (ebXML MS) is divided into three parts:

abstract Message service interface, functions provided by the message service

handler (MSH) and the mapping to underlying transport service interface.

• Abstract Message service interface - It connects the messaging

service to ebXML application and from there to company’s information

system.

• Transport service interface — It works on the other end to connect MSH

to the internet by means of mapping to underlying transport protocol such

as HTTP, SMTP, FTP etc.

• Functional modules - these contains functions provided by the

messaging service handler (MSH)

64

MMMksMW IrtN tffe tft

ocefrstrig

Kttittoi froGL̂mu

HH $«««jr«y SenHea*

Mc« ju*3« Piciuqinn

Swyicit#

HTTP 5MTP U ! p_

Figure 3-24 ebXML Message Service Handler Components

SOAP Processing - it is not really considered as part of the Message Service,

as it provides the functionality described in the SOAP specification. Basically, it

contains an XML Parser to handle incoming and outgoing messages according to

SOAP rules.

Header Processing - deals with the outgoing messages by creating SOAP

header elements for an ebXML message, based on the application input that is

65

passed through the service interface and the rule prescribed by the CPA, and

adds some extra, message-specific information such as digital signatures.

Header Parsing - extracts the incoming messages from the SOAP header to

make it available to the other MSH modules.

Message Packaging - this component takes care of packaging the data in the

ebXML message structure. The outermost envelope consists of headers of

respective protocols such as HTTP, SMTP etc. The final ebXML message is

structured as SOAP with Attachments envelope wrapped around the SOAP

envelope itself and the ebXML payload.

Reliable Messaging Services - this component deals with all issues regarding

reliable delivery, such as persistence, acknowledgement, retry and error

notification.

Security Services - may create digital signatures, and control authentication and

authorization when requested by other components.

Error Handling - responds to errors that may be reported by several other

components. ebXML message consists of headers of respective protocols, for

example HTTP headers.

66

3.10.2 EbXML Message Structure

The Packaging Specification deals with how the data has to be organized

or packaged. An ebXML Message Package has basically a Header Container

and zero or more Payload Container. Header Container has ebXML and SOAP

specific information whereas the Payload Container has the “real” data of the

message. The ebXML specification defines a set of namespace-qualified SOAP

header and Body element extensions within the SOAP envelope. As the figure

explains, there are two MIME parts within the message package:

■ Header Container - It contains XML document message complaint with

SOAP 1.1

■ Payload Container - It may contain application level payload.

67

Communications Protocol Envelope (HTTP. SMTP. FTP. etc.)

SOAP with Attachments MIM E envelope

MIME Part

SOAP-ENV. Envelope

SOAP-ENV: Header

eb MessageHeader

eb.Er/or

ocher, etc.

SOAP-ENV. Body

ob:Manjfest

eb.otc.

other.otc. ■

c - -A .-*>■e jr.*

MIME Part(s)

Figure 3-25 EbXML messaging service structure

3.10.3 Header Container

SOAP message is an XML document which has a root element called

SOAP Envelope. The SOAP:envelope contains SOAP.header and SOAP.body

elements. The SOAP.header contains the eb.MessageHeader and other

elements. The eb namespace is defined as

xmsns:eb=http://www.oasisopen.orq/committees/ebxml-msq/schema/mso-

header-2 O.xsd.

http://www.oasisopen.orq/committees/ebxml-msq/schema/mso-

68

<SOAP-ENV:Envelope xmlns:SOAP-ENV="...">
<S0AP-ENV:Header> ... </SOAP-ENV:Header>
<SOAP-ENV:Body> ... </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 3-26 A simple SOAP Envelope example

The SOAP.body contains the eb.Manifest element, which contains a meta

description of payloads stored in eb:reference elements, where each reference

element contains meta information corresponding to one payload available in the

MIME message as a MIME body part.

The communication between MSHs (messaging service handler)

happens under the context of an agreement between the MSHs. Every ebXML

message has a required CPAId element in the eb.MessageHeader. This element

has a unique identifier that points to the CPA. The value of CPAId must be

agreed upon by the MSHs prior to starting any communications. The value of

CPAId must be unique within the namespace mutually agreed upon by the two

MSHs.

3.10.4 Payload container

Zero or more payload containers must have identified by the ebXML

message manifest element within the SOAP body. Payloads can be in any data

format. If the message package contains an application payload, then it should

be enclosed in payload container. If application payload is not used, then payload

container must not be present.

69

A simple Payload container example:

Content-ID: <domainame.example.com>
Content-type: application/xml

<invoice>
<invoicedata>

</invoicedata>
</invoice>___

Figure 3-27 A simple Payload container example

3.10.5 ebXML SOAP Header

The message header includes routing information about who is sending

the message, who the message is intended for, which CPA the message

conforms to, the message ID, a conversation ID and so on. The header also

includes the optional reliable messaging parameters, such as whether an

acknowledgement is required, how many times a message needs to be retried in

case a message is not received and so on. The header also contains optional

digital signatures to ensure its integrity.

SOAP header contains: MessageHeader, TraceHeaderList, ErrorList,

Signature, Acknowledgment and Via. The MessageHeader element contains

routing information for the message. It has child elements: From, To, CPAId,

Conversation/d, Service, Action, MessageData, QualityOfServicelnfo,

SequenceNumber, and Description.

70

Elements of SOAP Header are:

> MessageHeader

The MessageHeader element goes into the SOAP Header element and

has the following child elements: From, To, CPAId, Conversationld,

Service, Action, MessageData, QualityOfServicelnfo, SequenceNumber,

and Description. The MessageHeader element has a further two

attributes: mustilnderstand and Version. This element plays an important

role. The child elements of the MessageHeader will be described next.

o From and To:

This is a required element. In other words From element identifies

the party that originated the message. To element identifies the

party who is the recipient of the message.

The From and To element contains:

■ PartylD - This element has the Partyld which can contain

an internationally known identifier, like a DUNS number or

a simple web site address. From and To elements can

have multiple PartylD elements.

■ Role - Role element identifies the authorizing party when

sending and receiving the message.

71

o CPAId - This is a required element This element is also quite

obvious. The element references the CPA of the two trading

partners.

o Conversation Id - This is a required element. This element

represents a unique ID for the current conversation between two

trading partners. The initiating MSH creates this ID and from that

moment this ID will be used in the proceeding messages,

o Service - This is a required element. The Service element relates

back to the Business Process Specification, where authorized

roles within a business process are used. The service element

names the activity of a party for this message. For example a

service could be: “SupplierOrderProcessing”.

o Action - This is a required element. This element identifies a

process within the Service. This could be a "NewOrder" or

Acknowledgment of reliable messaging purpose,

o Messagedata - This required element is a means of uniquely

identifying an ebXML message. This element has further child

elements: Messageld, Timestamp, RefToMessageld, and

TimeToLive.

■ Messageld - It is a required element, an identifier for each

Message to uniquely identify for further referencing.

■ Timestamp - It represents the time when the message

header was created.

72

■ RefToMessageld - If the message is an Acknowledge

Message (used for reliable messaging) this element

references a previous message by its ID.

■ TimeToLive - This element is used for the functionality of

reliable messaging and sets a time frame for the delivery of

the message.

o QualityOfServicelnfo - This element deals with reliable messaging.

The QualityOfServicelnfo element has three child elements:

deliverySemantics, messageOrderSemantics and

deliveryReceiptRequested. The deliverSemantics has an example

value of OnceAndOnlyOnce which indicates the importance of this

element.

o Description - This is a simple human readable description of the

message and is optional.

> TraceHeaderList(optional) - The TraceHeaderList element consists of

one or more TraceHeaders elements. If a message is transferred to a

remote ebXML MSH via multiple MSH, each MSH adds a

TraceHeader to the TraceHeaderList It is typically used in a multi-hop

scenario.

> ErrorList (optional) - It contains a list of errors for reporting an error on

a previous message.

> Signature (optional) - It is an optional element for digital signature.

73

> Acknowledgement (optional) - it is used for sending

acknowledgement by receiving message handler to acknowledge

sending message handler.

> Via (optional) - The Via element indicates the way a message goes

from point A to point B.

3.10.6 ebXML SOAP Body

SOAP Body elements includes: Manifest, StatusRequest,

StatusResponse, and DeliveryReceipt.

• Manifest - The Manifest element is a very important element. It is an

element for pointing to any data present in the Payload container. The

Manifest element is a composite element consists of one or more

Reference elements. As mentioned above an ebXML Message has a

Header Container and zero or more Payload Container. Each Reference

element references one payload in the Payload Container. The Reference

element itself has a Schema element which can link to the schema of the

referenced payload.

• StatusRequest (optional) - The StatusRequest element is used to request

status of a message, referenced by the RefToMessageld element of the

StatusReqeust element.

74

• The StatusResponse (optional) - element is the return message to a

StatusRequest message. This element has child elements and attributes:

RefToMessageld, TimeStamp, version, messageStatus and an id. The

MessageStatus can be: UnAuthorized, NotRecognized or Received.

• DeliveryReceipt(optional): The DeliveryReceipt element is used to

indicate, that a previous message (referenced by RefToMessageld) was

received [11].

3.10.7 Reliable Messaging

Reliability is a key ebMS extension of SOAP. The reliability module of

ebMS is designed to guarantee a sending service handler can deliver a specific

message once and only once to a recipient message service handler. The

reliable messaging module consists of a number of extensions to the SOAP

message format and a reliable messaging protocol that specifies behavior of

ebMS handlers.

At the message format level, ebMS defines an optional

<eb:AckRequested> extension element for the <SOAP:Header>. If specified, the

responding message handler can send a message containing another

<eb:Acknowledgment> extension element, with an <eb:RefToMessageld>

element to specify which message is being acknowledged. The reliability module

interacts with the security module: the eb.AckRequested has a signed attribute

that can request the responding message handler to sign the acknowledgment

digitally in order to provide non-repudiation of receipt.

75

The Reliable Messaging Protocol specifies a mechanism for resending lost

messages or lost acknowledgments. The maximum number of times, or the

maximum time interval, for resending these messages or acknowledgments may

be configured differently for different business partners.

3.10.8 Error handling

Finally, the Error Handling component deals with reporting errors

detected in a message to another MSH. This component can be considered as

an “application-level handler” on top of the SOAP processor layer, which is

necessary because errors can occur anywhere in the MSH (SOAP-related,

security, reliability) or in the application. ErrorList element is used to send

information about the error(s) to the other MSH

3.10.9 Security

No technology, regardless of how advanced it might be, is an adequate

substitute to the effective application of security management policies and

practices. The ebXML Message Service is no exception. The ebXML Message

Service specification and the ebXML Technical Architecture Security

specification provide some guidance as to how security management policies

and practices can and should be used to minimize risks that are introduced when

doing business electronically via the Internet. A primary solution in ebXML is

using digital signature to verify the identity of sender and recipient. It can be used

to ensure the integrity of the message and to verify that it was sent or received.

The digital signature enables secure transactions, ensuring the integrity and

authenticity of origin for business documents. A digital signature is an electronic

76

identifier created by a computer. It is intended to have the same force and effect

as the use of a manual signature. The security features for an exchange of

business information used by ebXML requirements:

• Confidentiality: Only sender and receiver can interpret document

contents.

• Authentication of sender: the sender’s identity is verified.

• Authentication of receiver: the receiver’s identity is verified.

• Integrity: The message contents have not been altered.

• Non-repudiation of origin: The sender cannot deny having sent the

message.

• Non-repudiation of receipt: The receiver cannot deny having received the

message.

• Archiving: A document can be reconstructed for a certain time period after

its creation.

Because the ebXML Message Service has been designed to be transport

and network protocol neutral, a variety of network protocol security standards

such as SSL and IPSEC may be used to provide confidentiality, authentication

and message integrity, thus enhancing the security countermeasures that are

defined in the ebXML Message Service Specification.

77

Chapter 4 Implementation of ebMS prototype

4.1 The ebXML messaging prototype implementation

The ebXML messaging prototype has built in Java Swing. Java Swing is a

GUI Toolkit that provides many components that allow building sophisticated

Java user interfaces. Java is an object-oriented programming (OOP) language

used in web development to provide system services not available through

HTML. Java allows a single application to run on multiple platforms. Ant compiler

is used (java based build tool from Apache) for building, packaging and installing

java applications. Ant engine translates to OS specific commands. Thus, ant files

work cross platforms.

4.2 User interface Overview

This prototype involves a client-based java application. The software has

implemented with packaging and transporting features over Simple Mail transport

Protocol (SMTP) based on ebXML messaging service specification. Graphical

user Interface (GUI) captures the data from the user, transport documents

through internet.

There are three main user interface screens where the data entry by the

user was captured. “Mail Server Settings” screen have all necessary information

of sender’s mailing profile. It stores the information about outgoing server name,

78

email address, email user name etc. This information is used for ebXML

message header.

r Mail Server Settings User Information

Name: |suja

E-Mail Address: fsuja@cox net

Outgoing Server

Outgoing Server: jsmtp central cox net

1̂ 0 Ttiis Outgoing Server requires authentication

Login Name: jsuja

OK Cancel

Figure 4-1 Screen shot o f Java Prototype - Mail server settings

We use purchase order as an example for payload data. “Send

Messaging” screen consists of two tab pages. “Product” tab page has information

about the product for purchase order. “Buyer’s Info” has all the details about

delivery and payment info of the buyer.

To; lsbabu@mail.unomaha.edu

Subject; jPurchase order

■

Product ; Buyer Info
J lfi CatalogList

u Q Drug List

Product N a m e Vendor : Price Quantity
ASPR IN W algreens $10.0 2]
ALLEORA W algreens '$19 .0 A
LIPITOR W al-m art $15 .0 l ol
ADVAIR W algreens $19.0 0
CELEBREX' W algreens |$17 0 o|

i ;

Sub-Total: $ 58 i
Total: $58 1

Figure 4-2 Screen shot o f Java Prototype - Product Info

mailto:lsbabu@mail.unomaha.edu

80

To:

Subject:

J M B E U Buyerlnfo
Payment Info

Name:
Contact No.:
Email:
Payment Method:
(• > Credit Card

Card Number:

O Cheque

Cheque Number:

Delivery Info

Name:

Contact No.:

Email:

Sujatha Babu

(40 2)1 11 -1 23 4

sujathababu@ gm ail.com

1 2 34 56 788 76 543 21 Expiiy Date: 07 /2008

Bank:

Sujatha Babu Media: ; Land

!(40 2)111-1 234 Deadline: 12 /31 /2004

|su jathababu@ gm ail.com

Delivery Address: jl 234 Fake Street, O m aha, NE 68 12 4

Figure 4-3 Screen shot of Java Prototype - Buyer Info

After the data entry, when the user click “send” button. The message will

be send to the email address with attachments containing ebXML message

header and payload data. That information can be stored and viewed in the

screen.

mailto:sujathababu@gmail.com
mailto:sujathababu@gmail.com

ebXML SOAP Demonstration

Fite Message Tools

X

' t j j j A ll M e s s a g e s (0 /7)

T r a s h B o x 1,0/3)

dumber of Message: 7
7 . . . 11 3 1

1 T o /F r o m . D o c u m e n t T y . . P a r t n e r . _ . C P A ID . S e rv ic e ' .A c t io n D a t e ' U n r e a d C o n v e r s a t i S u b je c t

c a r P u r c h a s e O r... - > b a b u r a ja r a m @ g m a . . . P O P O P O S u n O c t ... □ 2 0 0 4 1 0 1 1 - . . . t e s t

c a r P u r c h a s e O r... - > s b a b u @ u n o m a h a . . . P O P O P O S a t O c t 2 ... □ 2 0 0 4 1 0 2 4 - . . . f r o m b a b u ...

E f P u r c h a s e O r... - > s u ja t h a _ b a b u @ c s g . . . P O P O P O S a t O c t 2 ... □ 2 0 0 4 1 0 2 4 - . . t e s t

c f P u r c h a s e O r... - » s b a b u @ m a i l .u n o m . . . P O P O P O S u n O c t . . . □ 2 0 0 4 1 0 2 4 - . . . t e s t m a i l fr ...

c t P u r c h a s e O r... - > s b a b u @ m a i l .u n o m . . . P O P O P O S a t O c t 3 ... □ 2 0 0 4 1 0 3 0 - . . . T e s t e b x m l.. .

E ® P u r c h a s e O r... - > s u ia t h a _ b a b u @ c s g . . . P O P O P O S a t O c t 3 ... 2 0 0 4 1 0 3 0 - . . .P O

c f P u r c h a s e O r - : * s b a b u @ m a i l u n o m P O P O P O S u n O c t . 2 0 0 4 1 0 3 1 - P u r c h a s e

l l f p l p l l

Service: j j B B 8 B 8 B H m ;

Action:
From: baburajaram@cox.net

To: sbabu@maH.unomaha.eciu
Subject: Purchase order

Date: Sun Oct 31 15:45:54 CST 2004

Purchase ‘^Buymjhxfo..
.P ro d u c t N a m e ______ v e n d o r _ j ________________ j _________ Q u a n t i t y .____ _ J *

A S P R ’ lN W a lg r e e n s *$10 o ’ 2

A L L E G R A W a lg r e e n s $ 1 9 0 2 |

i j j l l B l l B l

Total: $ 58

Figure 4-4 Screen shot o f Java Prototype - Messages

mailto:baburajaram@cox.net

82

4.3 Technical Overview

This section explains how the prototype works technically. The figure below

shows the implementation of Java application interacts with MSH (message

handler) that provides the payloads and the underlying application level

communication protocol (SMTP)-which delivers the message to the other MSH. It

also depicts the interaction between two ebXML applications through a layered

SMTP handler. The solid arrow between SMTP handlers signifies the real

connection through which bytes of data are exchanged. The dotted arrow

between MSHs and the ebXML applications signify the virtual connection.

83

Sender Party R eceiver Party

ebXML m essage payload
mail transaction

ebXML m essage payload
mail transaction

ebXML M essage service
Handler

ebXML Java A pplica tion

ebXML M essage service
Handler

ebXML Java Application

SMTP Handler SMTP Handler

Figure 4-5 ebXML messaging prototype SMTP transaction

The message structure consists of an envelope and zero or more payloads

transported as attachments to the envelope. ebMS defines the required elements

in the message, this prototype will produce the message which contains only

required elements as given by ebXML specification.

84

4.4 ebXML Header Container

The ebXML Java application provides valid values of CPAId, Service,

Action elements and the payloads to be sent including all meta-data related to

each payload. In real scenario Service and Action element contents is retrieved

from the stored CPA. In this project dummy CPAId, Service and Action elements

are used because creating actual CPA is not in the scope of the project. MSH

creates the ebXML header (SOAP header with SOAP extensions) contents

based on CPA.

<eb:From>
<eb:Partyld>mailto:babu@cox.net</eb:Partyld>

</eb:From>

<eb:To>
<eb:Partyld>mailto:suja@csgsystems.com</eb:Partyld>

</eb:To>

<eb:CPAId>PO</eb:CPAld>

<eb:Conversationld>
20041030-202132031 -PO.PO.PO.1 @192.168.0.2
</eb:Conversation ld>

<eb:Service>PO</eb:Service>
<eb:Action>PO</eb:Action>

Figure 4-6 Creation o f From, To, Service and Action elements

The To and From elements are filled with information from the CPA. The

message header “From” and “To” elements must contain the SMTP compliant

email address as per ebXML SMTP specification.

mailto:babu@cox.net%3c/eb:Partyld
mailto:suja@csgsystems.com%3c/eb:Partyld

85

In real world environment, the message context should inform MSH

whether a new Conversation context is desired or an existing conversation

context is to be used. In the later case, message context provides the

Conversation Id of an existing conversation. The Conversation Id associated with

the Conversation context is inserted in this message. If the new message is

associated with a previously received or sent message, then the MSH inserts a

RefToMessageld element with the value of that MessagelD. As per the

specification Conversation Id should be unique. Our program works in such a way

it always considers a message as the first conversation.

A new messageld is created for each message. The program generates

the Messageld as combination of current date, time, service, action element

along with IP address of the network.

<eb: MessageData>
<eb:Messageld>20041030-202132031-PO.PO.PO.1@192.168.0.2</eb:Messageld>

<eb:Timestamp>2004-10-30T20:21:32</eb:Timestamp>
</eb: MessageData>

Figure 4-7 Creation o f MessageData elements

As shown above, the MSH inserts the required TimeStamp element in the

MessageData element with the current time at the Sending MSH, where the

format of the element conforms to XML schema.

The eb:Manifest element within the SOAP body element is populated with

the payload meta-information cid reference which is used to refer the payload.

XLink is a linking mechanism that is somewhat similar to HTML links. However,

86

unlike HTML links, XLink permits bidirectional links and/or one link to connect

many documents together.

<eb: Manifest
xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2
_0.xsd" eb:version="2.0">
<eb:Reference eb:id="0" xlink:type="simple" xlink:href="cid:0">

<eb:Description xml:lang="en-US">description</eb:Description>
</eb:Reference>

</eb:Manifest>

Figure 4-8 Creation of Manifest elements

http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2

87

<soap-env:Envelope xsi:schemaLocation="http://schemas.xmlsoap.org/soap/envelope/
http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd">

<soap-env:Header
xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-heade
r-2_0.xsd
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<eb:MessageHeader eb:version="2.0" soap-env:mustllnderstand="1 ">
<eb:From>

<eb:Party[d>mailto:baburajaram@cox.net</eb:Partyld>
</eb:From>

<eb:To>
<eb:Partyld>mailto:suja_babu@hotmail.com</eb:Partyld>
</eb:To>
<eb:CPAId>PO</eb:CPAId>
<eb:Conversationld>20040912-183828546-P0.P0.P0.1 @192.168.0.2</eb:Conversationt
d>
<eb:Service>PO</eb:Service>
<eb:Action>PO</eb:Action>

<eb:MessageData>
<eb:Messageld>20040912-183828546-PO.PO.PO. 1 @192.168.0.2</eb:Messageld>
<eb:Timestamp>2004-09-12T18:38:28</eb:Timestamp>
</eb:MessageData>
<eb:Description xml:lang="en-US">Test from ebXML</eb:Description>
</eb:MessageHeader>
</soap-env:Header>

<soap-env:Body
xsi:schemaLocation="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-heade
r-2_0.xsd
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<eb:Manifest eb:version="2.0">
<eb:Reference eb:id="0" xlink.type-'simple" xlink:href="cid:0">

<eb:Description xml:lang="en-US">description</eb:Description>
</eb:Reference>
</eb:Manifest>
</soap-en v: Body>
</soap-env: En velope>

Figure 4-9 ebXML message header generated by the prototype

http://schemas.xmlsoap.org/soap/envelope/
http://www.oasis-open.org/committees/ebxml-msg/schema/envelope.xsd
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-heade
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd
mailto:baburajaram@cox.net%3c/eb:Partyld
mailto:suja_babu@hotmail.com%3c/eb:Partyld
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-heade
http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd

88

4.5 ebXML Payload container

The ebXML payload contains the actual document to be sent. The ebXML

payload can be simple plain text object or a complex multipart object. The ebXML

does not define the structure or content of application payloads. The specification

of the structure and composition of payload objects are defined by the

organization that defines the business process. The ebXML message service is

payload-neutral, meaning that any kind of information can be reliably routed. This

information can include XML documents, binary data, or EDI messages.

Business can incorporate ebXML technology to leverage their existing

infrastructure. Our prototype has the capability to develop an XML message.

89

<?xml version="1.0" encoding="lTTF-8" ?>
<purchaseOrder accept-'false" orderDate-'Sun Oct 31 19:41:05 CST 2004"
is Fol I o wUp="fa I se ">
<deliverylnfo deadline=”12/31/2004" media="Land">

<receiver>Sujatha Babu</receiver>
<address>1234 Fake Street, Omaha, NE 68124</address>
<contact>(402)111-1234</contact>
<email>sujathababu@gmail.com</email>
</deliverylnfo>

<paymentlnfo>
<name>Sujatha Babu</name>
<contact>(402)111-1234</contact>
<email>sujathababu@gmail.com</email>

<paymentMethod>
<creditCard>

<cardNumber>1234567887654321 </cardNumber>
<expireDate>07/2008</expireDate>
</creditCard>
</paymentMethod>
<total>0</total>
</paymentlnfo>

<purchase orderDate-'Sun Oct 31 19:40:35 CST 2004">
<product productlD="3”>

<productName>LIPITOR</productName>
< ve n d o r > Wa I-ma rt</ve n d or >
<property name-'Net Weight">50g</property>
<price>15.0</price>
<quantity>3</quantity>
</product>

<product productlD="4">
<prod u ctNa me>ADVAIR</produ ctNa me>
<vendor>Walgreens</vendor>
<property name-'Net Weight">200g</property>
<price>19.0</price>
<quantity>3</quantity>
</product>

<product productlD="1”>
<productName>ASPRIN</productName>
<vendor>Walgreens</vendor>
<property name-'Net Weight">110g</property>
<price>10.0</price>
<quantity>1 </quantity>
</product>
</purchase>
</purchaseOrder>

Figure 4-10 ebXML payload generated by the prototype

90

Payload contains the purchase order data generated from the user entry

on “Compose message” screen. In this project, an XML payload is generated; but

it is not necessarily to have XML payload, it can be any data format. Receiver,

address, contact, delivery info, payment info, Credit card XML elements get the

appropriate data from “compose message” screen as entered by the user. Other

purchase order data gets populated and filled in the appropriate XML elements.

Content-Type: text/xml.
Content-Transfer-Encoding: foase64
Content-Id: <0>

Figure 4-11 Email message property containing content id from SOAP manifest reference
element

Email message send by the prototype has a header which has

information referenced from the <eb:Reference> element in the <eb:Manifest>

that has the eb:cid attribute set to the value 0. Content type explains the type of

data being used which is an XML file.

91

Chapter 5 Conclusion

5.1 Conclusion

The ebXML provides an open framework for global electronic business in

the form of good specifications which still actively get updated and enhanced. It

is a set of layered specifications that together enable modular electronic business

framework. It facilitates global trade by expanding electronic business to new and

existing trading partners. It is complex, it employs business process definitions

and global registries of potential business partners, and it implements a robust

messaging specification with a good security model. And ebXML is not

proprietary; it supports the Web services standards SOAP, UDDI, and Web

Services Description Language (WSDL).

Productive live ebXML systems in the real world show that ebXML gets

adopted by companies around the world and the few, very promising; ebXML

open source implementations show the growing interest to provide ebXML

technologies on an open source basis. The loosely coupled ebXML components

allow integrating ebXML into other frameworks by deploying one component by

one.

EbMS is internet friendly, has the reliability and security features that

enterprise users require, is suited for XML business payloads, and most

importantly is getting endorsements from major industry associations.

Cheaper bandwidth will allow more information to be exchanged between

companies for any given transaction. XML drives down implementation costs,

92

especially in light of the well-established commodity pricing for EDI VAN that

cannot go lower. Also, because many EDI implementations require significant

custom development, XML conversion can reduce the amount of code written to

make applications at different companies operate together seamlessly.

Because ebXML is platform and vendor neutral, provides support for

different protocols such as HTTP/S and SMTP, offers a flexible payload

independent architecture, provides security based on digital signatures, supports

attachments and high performance, many consider it a future-proof investment

and a solid foundation on which to build. Even with the progress ebXML has

achieved, the initiative is still considered to be in its infancy.

Trends suggest that EDI implementations will remain a key technology for

processing high volume transaction-based information between large

organizations. However, these organizations will add-in XML support to process

these same types of transactions with their SME suppliers. As SMEs discover the

benefits of integrating XML messages from large customers directly into their

back office systems, so they will encourage their own customers and suppliers to

communicate using XML. Some agencies have been doing EDI for a long time,

and it might be more cost-effective to stay on EDI than migrate away from EDI.

They may have trading partners who don't want to migrate away from EDI.

Industry-wide DTD will still be needed, in the same way as the different

EDIFACT subsets used now in different sectors, i.e. there cannot be an Invoice

DTD both universal and simple. There will still be the need for partners'

agreements to refer to specific repositories, sets of DTD, sets of codes (currency,

93

country, etc.). For these reasons, the market transformation from EDI to XML is

estimated to require several years.

The evolution has only just begun, and the transition from EDI to ebXML

systems will not occur overnight. Many companies will migrate systems to XML-

driven infrastructure only as standards consolidate and the technology stabilizes

as the mainstay of business computing. One of the challenges facing companies

looking to integrate EDI and XML-based systems is linking and synchronizing the

business content, including the documents, policies and procedures that form the

foundation of the two types of infrastructure.

The original specifications were immature and untried. This young

technology needs time to mature. As the specifications mature and software and

tools are developed to enable ebXML transactions organizations and industries

may adopt some or all of the ebXML specifications within their standards. There

are a lot of companies doing electronic inter enterprise business today not only

with EDI but with the availability of the Internet and it is a matter of time when

these companies embrace ebXML.

94

Bibliography
[1] Alan Kotok, XML and EDI Lessons Learned and Baggage to Leave Behind,

August 1999, www.xml.com/pub/a/1999/08/edi/

[2] John Moore, Organizations can manage both EDI and XML to get the best of

both worlds, Nov 2002, http://www.fcw.com/fcw/articles/2002/1118/tec-mixed-11-

18-02.asp

[3] Dennis Krukkert, Matching of ebXML business processes, Oct 2003

[4] Kristian Cibulskis, The ebXML Registry,

http://www.syscon.com/xml/article.cfm/ Id=315&count=15093&tot=5&page=4

[5] Brian Gibb & Suresh Damodaran, ebXML concepts and application, 2003

[6] ebXML.org, ebxml technical architecture specification v. 1.0.4.

http://www.ebxml.org/specs/ebBPSS.pdf, May 2001

[7] www.techmetrix.com. 2004

[8] Eric Chiu, Eric Chiu, ebXML Simplified:A Guide to the New Standard for

Global E Commerce, 2002

[9] Aaron E.Walsh, UDDI, SOAP and WSDL The web services specification

reference book, 2000

[10] Kennard Scribner and Mark C. Stiver, Understanding SOAP - the

authoritative solution, 2000

[11] Sacha Schlegel, ebXML (electronic business XML)

http://www.schleqel.li/ebXML/postaraduate report/www/node1 .html. 2002

http://www.xml.com/pub/a/1999/08/edi/
http://www.fcw.com/fcw/articles/2002/1118/tec-mixed-11-
http://www.syscon.com/xml/article.cfm/
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.techmetrix.com
http://www.schleqel.li/ebXML/postaraduate

	ebXML: Global Standard for Electronic Business
	Recommended Citation

	tmp.1585764674.pdf.9NBGq

