
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Student Work

12-1992

An Object Based Approach Towards the Automation of Office An Object Based Approach Towards the Automation of Office

Procedures Using Intelligent Messages Procedures Using Intelligent Messages

Robert L. Palumbo

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Palumbo, Robert L., "An Object Based Approach Towards the Automation of Office Procedures Using
Intelligent Messages" (1992). Student Work. 3074.
https://digitalcommons.unomaha.edu/studentwork/3074

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for
inclusion in Student Work by an authorized administrator
of DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/studentwork
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3074&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/3074?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F3074&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

An Object Based Approach Towards the
Automation of Office Procedures

Using Intelligent Messages

A T H E SIS

P resen ted to th e
D ep a rtm en t o f C om p u ter S cien ce

and th e
F acu lty o f th e G rad u ate C ollege

U n iv ersity o f N ebraska

In P artia l Fulfillm ent
of th e R eq u irem en ts for th e D eg ree

M A S T E R O F A R T S

University of Nebraska
O m aha, N ebraska

by

R o b ert L. P alum bo

D ecem b er 1992

UMI Number: EP73447

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI EP73447

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest*
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

THESIS

ACCEPTANCE

Acceptance for the Graduate College, University of Nebraska, in partial
fulfillment of the requirements for the degree, M A ST E R OF ARTS,
University of Nebraska at Omaha.

Committee

Name Department

KJmjcs
XS'&fX
fd̂ bU/cs

Safedi'cun
Chairman

11- 30 - 99,
Date

Acknowledgements
The author would like to acknowledge the assistance of those individuals whose support

and contributions made this thesis possible. A very special thank you is extended to Dr.
Hossein Saiedian for his guidance, support, and generosity during this study. A sincere
thanks is also extended to committee members: Mr. Stanley Wileman, Dr. Zhenqxin
Chen, and Dr. Justin Stolen.

The author would also like to acknowledge the faculty and staff of the Computer Science
Department and the Graduate Studies Department for their valued assistance and support.

Finally, the author would like to thank his daughter Sarah who may have been to young
to understand the meaning of this undertaking but nevertheless, provided the motivation
and incentive to complete the work. My deepest and most loving thanks are extended to
my wife Ann whose undenying love, understanding, and support have contributed in ways
that words cannot express. The long nights have finally paid off.

Abstract
Office support systems are used to automate routine office tasks. Since office tasks

often require the cooperation of several office workers who may be physically dispersed, it is
important to develop advanced communication systems that better facilitate collaborative
and cooperative office work among office workers.

In this thesis, we propose an approach to the construction of advanced communication
systems in which messages are represented as objects that are “intelligent” and “active” and
can therefore perform certain activities (such as interacting with various entities to collect
data) and decisions (such as dynamically deciding which user to go to next) on their own.
The system is called Intelligent Message System IM S. The major components of IM S are
as follows:

1. Intelligent Message Objects (IMO). These objects represent the actual intelligent ob
jects of the system.

2. System Mail Manager (SMM) which provides the users an interface to create, send,
receive, and maintain IMOs.

3. Intelligent Message Script Language (IMSL) is a language used to program IMOs.

Office workers can delegate the responsibility for certain routine office tasks to an IMO
and can therefore spend their time on more important activities. Thus, in addition to
its theoretical contributions, this thesis provides a framework for building an advanced
computer-based message system that increases productivity in an office environment.

Each component of the IM S is explained in detail in the thesis. A variation of BNF
formalism is used to define the syntax of IMSL while VDM is used to formally define the
semantics of major functions of intelligent message objects. A number of examples are
provided to illustrate the effectiveness of the IM S in automation of certain office tasks.

C o n ten ts

T able o f C on ten ts .. ii

L ist o f F igu res .. v

L ist o f T ables .. v i

1 Introduction 1
1.1 B ackground... 1
1.2 Office P rocedures... 2
1.3 Office Automation and Communication .. 3
1.4 Computer-Based Message Systems (C B M S)... 4

1.4.1 Information M anagem en t.. 5
1.4.2 Office Task M anagement.. 5
1.4.3 Time M anagem ent... 6
1.4.4 Discussion... 6

1.5 Limitations of CBM S... 6
1.6 Problem D efinition.. 7
1.7 Organization of T h e s is .. 9

2 Literature Survey 10
2.1 F o u n d a tio n ... 10

2.1.1 O bject-O rientation.. 10
2.1.2 Active O b je c ts 11

2.2 R2D2 - Research-To-Development-Tool... 12
2.3 Im a il ... 14

2.3.1 Imail Prototype S y s te m ... 15
2.3.2 Imessage R outing .. 17

2.4 M M S..................................... 19
2.4.1 Routing M o d e l... 20
2.4.2 Routing Specification Language... 20

2.5 K N O S .. 23
2.5.1 KNO Environment .. 24
2.5.2 KNO S tru c tu re .. 24

2.6 C onclusions... 26

ii

3 IM S - In te lligen t M essage S ystem & O pera tio n a l S em antics 28
3.1 I M S .. 28
3.2 IMO - Intelligent Message O b je c t... 29

3.2.1 Global Data Object ... 31
3.3 Route Control Object (R C O) .. 32

3.3.1 RCO Data S p ac e .. 33
3.3.2 RCO Route Event T ab le .. 35
3.3.3 RCO M a n a g e r .. 38
3.3.4 S u m m ary .. 38

3.4 Message Control Object (M C O)... 38
3.4.1 MCO Data Space... 39
3.4.2 MCO Methods T ab le... 41
3.4.3 MCO Message S crip t.. 41
3.4.4 MCO M a n a g e r .. 42
3.4.5 S u m m ary .. 42

3.5 IMSL ... 43
3.5.1 IMSL V ariables... 43
3.5.2 IMSL Command S e t .. 43

3.6 System Mail Manager ... 46
3.6.1 Interprocess Communication .. 47

3.7 IMO Administration E n v iro n m en t.. 47
3.8 IMO Creation Environment 49
3.9 IMO Transfer E n v iro n m en t.. 50
3.10 Operational Sem antics.. 51
3.11 IMO C reation .. 51
3.12 IMO R o u tin g .. 53
3.13 IMO Receipt .. 54
3.14 System Configuration F i l e .. 54
3.15 S u m m a ry ... 55

4 F orm al D efinition 57
4.1 VDM ... 57

4.1.1 Data T y p e s ... 58
4.1.2 Set T y p e s ... 58
4.1.3 List T ypes... 59
4.1.4 Record T y p e s .. 60
4.1.5 M ap p in g s ... 61
4.1.6 Operations and F unctions.. 61

4.2 IM S S pecifica tion ... 63
4.2.1 IN IT -IM S ... 65
4.2.2 CREAT-MCO .. 66
4.2.3 CREAT-RCO.. 66
4.2.4 CREA T-IM O .. 67
4.2.5 ARCHIVE-IMO .. 68
4.2.6 PU RG E-IM O .. 70
4.2.7 SEN D -IM O ... 70

iii

4.2.8 RECV-IM O... 71
4.2.9 ADD-RDEST.. 74
4.2.10 DEL-RDEST .. 74
4.2.11 PR O C ESS-SC R IPT ... 76
4.2.12 EVT-PROCESS ... 76
4.2.13 IMO-INITIATE ... 80

4.3 Formal Definition of IM SL ... 81
4.3.1 BNF O verv iew .. 81
4.3.2 BNF Specification of I M S L ... 81

5 IM S Applications 86
5.1 A Weekly Status Report Example ... 86

5.1.1 Task D escrip tion ... 86
5.1.2 Automating Status Report P rocessing ... 88
5.1.3 Event Table Specification ... 90
5.1.4 Message Script Specification.. 91
5.1.5 IMO E xecution .. 91
5.1.6 IMO Message S c r ip t .. 93

5.2 Scheduling a M eeting................... 94
5.2.1 Task D escrip tion ... 95
5.2.2 Automating the Scheduling Process .. 95
5.2.3 IMO Message Script D efin ition .. 96
5.2.4 IMO Message Script D escrip tio n ... 100

5.3 S u m m a ry ... 101

6 Conclusions and Further Research 102
6.1 C ontributions.. 102
6.2 IM S O verv iew 103
6.3 Relation to Other M o d e ls .. 104
6.4 Future Research .. 104

iv

L ist o f F ig u res

2-1 Example imessage script.. 18
2-2 Route Specification Language S yntax .. 21
2-3 General Kno class form.. 25
2-4 KNO Production Rule.. 25

3-1 Intelligent Message Object Internal Structure... 31
3-2 Route Control Object Internal Structure... 33
3-3 Message Control Object Internal Structure.. 39
3-4 System Mail Manager Functional Representation... 48
3-5 IMS System Configuration File.. 56

4-1 IMO Record Type Specification... 64
4-2 VDM Schema for IMS-INIT()... 66
4-3 VDM Schema for CREAT-MCO()... 67
4-4 VDM Schema for CREAT-RCO().. 68
4-5 VDM Schema for CREAT-IMO()... 69
4-6 VDM Schema for ARCHIVE-RCO()... 69
4-7 VDM Schema for PURGE-IMO()... 70
4-8 VDM Schema for SEND-IM0().. 72
4-9 VDM Schema for RECV-IM0().. 73
4-10 VDM Schema for ADD-RDEST().. 75
4-11 VDM Schema for DEL-RDESTQ... 77
4-12 VDM Schema for PROCESS-SCRIPT... 78
4-13 VDM Schema for SEND-IM0().. 79
4-14 VDM Schema for IMO-INITATEQ.. 80

v

L ist o f T ab les

2.1 KNO Actions by Type... 26

3.1 Global Data Object Internal Structure... 32
3.2 RCO Data Space Internal Structure... 34
3.3 RCO Route Event Table.. 36
3.4 RCO Event Specifications.. 37
3.5 RCO Route Event Table Actions... 37
3.6 MCO Data Space Internal Structure... 40
3.7 IMSL Predefined Variables.. 44
3.8 IMSL Command S e t . .. 44
3.9 IMSL Relational, Arithmetic, and Logical Operators.. 46

4.1 VDM Set Operations.. 59
4.2 VDM List Operations... 60
4.3 VDM Mapping Operations.. 61
4.4 VDM Predicate Operations... 62

5.1 Telecom Software Development Team .. 88
5.2 Thesis Committee M em bers.. 96

vi

Chapter 1

In tro d u ctio n

Office support systems are developed to automate office tasks. Office tasks are generally

communication intensive and involve a large volume of document exchange between of

fice entities. Thus, office communication tools, and in particular, computer-based message

systems have a major impact on office automation. In this chapter, we describe the role

and limitations of computer-based message systems in the automation of office tasks and

propose an intelligent message system that allows office task automation to become more

simplified and natural.

1.1 B ack grou nd

An office can be described as the central knowledge and information base within an orga

nization. Information is received, stored, processed, and generated from within the office.

The resulting knowledge that has been accumulated from this information is disseminated

among the entities that interact with the office. The functional organization within an office

is directed by a complex set of office procedures. These procedures define a relationship

between how information is represented and ultimately processed. Office procedures can be

grouped together to form an office task.1 Collectively, these procedures and tasks encap

sulate the fundamental office function of information processing. In any environment that

supports information processing as a primary function, a mechanism must exist that al

lows information to be reliably and effectively communicated throughout the environment.

1 Procedures and tasks will be used interchangeably in this discussion.

1

This is particularly important in an office environment where task execution can require

dissimilar input from multiple entities.

Most organizations function within a distributed processing environment. In such an

environment, the ability to execute an office task can quickly evolve into a time-consuming

and inefficient effort. Such a situation can arise when an office task requires input from

several office workers. Each worker may be responsible for a specific procedure within the

task. The organizational structure of the task may require that some procedures be executed

sequentially while others can be executed in parallel. This necessitates a cooperative group

effort among the office workers to ensure that information is exchanged in an efficient and

cost effective manner with respect to the completion of the task.

The ability to provide support for cooperative office work environments has come to

the forefront of research in office automation. Technological advancements have given rise

to more sophisticated and powerful computer systems. As a result, applications that run

on these systems are expected to provide a more open system architecture with increased

functionality and flexibility. This trend has created a demand for intelligent office tools

that can provide support for distributive communication and procedural processing. Tools

such as traditional computer-based message systems, which function as a primary source

for office communication, only provide for simple message transfers. We believe that these

systems can be expanded to provide advanced capabilities which would serve to promote a

more cooperative work environment.

1.2 O ffice P ro ced u res

Woo (Woo & Lochovsky 1986) defined office tasks in terms of structured and unstructured

tasks. Structured tasks are described as routine tasks that can be solved using a predefined

step-by-step procedure. In other words, the task can be defined as a sequence of actions

that can be expected to remain constant over time. Typically these are viewed as routine

tasks and can usually be replaced using an automated tool.

Unstructured tasks are those tasks for which no step-by-step solution exists and as

such, cannot be easily automated. With these tasks, there is a logical sequence of actions

that do not remain constant over time. These tasks, by definition, are harder to solve than

2

structured tasks (Woo & Lochovsky 1986, Woo Sz Lochovsky 1987). This can be illustrated

by the fact that since a predefined solution to a task does not exist, an individual may not

have all the information required nor be aware of the necessary information to perform the

task. Furthermore, information tends to be dynamic in nature and thus the content, as well

as, the location of the information can change from one moment to the next. Unstructured

tasks typically require a cooperative group effort on the part of office workers to complete

the task. Therefore, communication plays an important role in the exchange of knowledge

and information within the office environment.

As an example of structured and unstructured tasks, consider the process of applying

for a bank loan. The tasks of performing credit checks and calculation of payments and

interest can be automated, and as such, are considered structured tasks. On the other

hand, determining whether an applicant is granted the loan is considered an unstructured

task because an applicant may not satisfy all requirements pertaining to the loan. Thus,

loan officer will have to decide whether the loan should be awarded. Clearly, this type of

decision is based on other intuitive factors that introduce a level of complexity that can not

be easily automated.

1.3 O ffice A u to m a tio n and C om m u n ica tion

Guiliano (Giuliano 1982) defined office mechanization as the process of replacing struc

tured office tasks by automated tools. In the most strict sense, this phrase defines the

concept of office automation. In the past, the focal point of this automation has been

the automation of routine business applications exemplified by accounting, inventory, word

processing. However, office automation has encompassed a much broader spectrum than

the automation of routine applications. With the advances in telecommunications, office

workers can communicate world-wide using a wide range of communication mediums such

as video-conferencing, cellular telephones, and voice and fax systems.

The ability to easily communicate office knowledge and information has led to an increase

in a more distributive and cooperative work environment. In the context of this type of

environment, the office infrastructure can be described as a message driven environment.

Each task that takes place within the office can be defined as a series of messages which

3

are exchanged between the entities executing the task. Given the fact that an office is a

communication intensive environment, a primary attribute for any automated office tool

should be the ability to provide support for communication between office entities.

Traditionally, office workers deliver messages through the use of communication systems

known as computer-based message systems (CBMS). The importance of these systems and

their role in managing office tasks cannot be overstated. However, in many ways these

systems are limited in their capabilities and do not offer the kind of flexibility that is

required in a dynamic office environment. We elaborate on the role of the CBMS and its

limitations and provide a perspective of the goal of this thesis in the next sections.

1.4 C o m p u ter -B a sed M essage S y stem s (C B M S)

Office workers carry out local and distributive communication primarily through the use

of computer-based message systems or electronic mail systems. These systems provide the

conduit that allows two entities to communicate electronically without regard to geographic

locality. With such systems, users can deliver and collect information with minimal effort.

They can create, send, read, route, and delete messages with the actual transmission of the

message handled explicitly by the system and the underlying communication subsystem.

The Advanced Research Project Agency (Robert 1970) is credited with sponsoring the

research effort that led to the development of this type of message system. MSG (Vittal

1976) is noted as being one of the first successful CBMS that resulted from this research

effort. The advantages of CBMS are summarized as follows (Bruder et al. 1981):

• Fast, reliable transportation of messages.

• Asynchronous communication between parties.

• Removal of geographic restrictions.

• Optimal use of sender’s and receiver’s time.

A CBMS can be viewed as a third party which acts as an intermediary between the

originator and recipient of a message. The originator creates a message for delivery and

passes it to the CBMS. Once the control of the message is transferred to the CBMS, the

CBMS becomes solely responsible for maintaining the integrity and delivery of the message

4

to the recipient. Each user of the system maintains a logical mailbox where messages can be

placed upon delivery. As messages are placed in the mailbox, the recipient must periodically

check for any newly arrived messages2. When a message arrives in a mailbox, the recipient

is then allowed to take possession of the message. It is important to note that actual

ownership of the message shifts between the entities involved as the message is transferred

through the system.

Within an office, a CBMS provides several key functions which are enumerated as follows

(Mackay 1988):

• Information Management.

• Office Task Management.

• Time Management.

An overview of each of these functions is provided below.

1.4 .1 In form ation M an agem en t

One of the keys to success within an organization is the ability to effectively manage large

amounts of information. As the information flows through the organization it must be pro

cessed in an effective and reliable way. A CBMS can provide the facilities to allow an office
/

worker to perform administrative functions such as information analysis, data collection,

filing, and retrieval in a very efficient and productive manner. Since the information is trans

ferred in the form of messages, a process of information categorization can be performed

by the receiving node. This process allows the information to be automatically organized

based on factors such as the source and priority of the information.

1 .4 .2 O ffice Task M an agem en t

Since many office procedures require the cooperative effort among a group of office workers

within a distributed environment, a CBMS is a logical extension for the management of

the task. This type of effort requires effective communication between those involved in

2 More recent CBMSs can indicate arrival of new mail by displaying an icon on the display terminal when
a new message arrives.

5

the task. Each member of the group performs certain tasks based on the requests of other

members in the group. It is much more convenient and efficient to utilize the resources of a

CBMS to transfer the request to the recipient office worker. In this manner, each member

can continue execution of other subtasks while the request is being carried out.

1 .4 .3 T im e M an agem en t

Office workers are required to perform a considerable number of tasks each day. Since

many of these tasks arrive in the form of messages, the office worker must be able to make

some assemblence as to which tasks are more important. This is necessary to minimize the

amount of time spent performing a single task and to ensure that a critical task is processed

before a non-critical task. Thus, a CBMS can be used in the form of a time management

tool by allowing this prioritization of tasks. Also, from a strictly physical standpoint, it

is by far more time and cost effective for an office worker to send or reply to a message

by using an electronic message as opposed to other methods such as the telephone, regular

mail, or to just physically carry out the request or task manually.

1 .4 .4 D iscu ssio n

Based on the office functions enumerated above, it is clear that CBMSs have become an

integral component in the office environment. The functions provided by the systems serve

to increase and enhance the efficiency and management with which daily office activities

are carried out. Therefore, development of new forms of CBMSs must preserve this level

of functionality, while at the same time providing additional capabilities that will further

extend the system’s usefulness. Our model extends the functionality of the CBMS by

allowing messages to have a more active role in the execution of certain office activities.

1.5 L im ita tion s o f C B M S

Although technological innovations have resulted in the development of computer-based

message systems that offer greater flexibility and functionality than those of the past, there

are several key limitations to these systems within the office environment (Tsichritzis 1985).

The fundamental limitation of these systems is their passive nature whereby users are

6

required to initiate all the actions. The system defines a static relationship between the

users. That is, the scope of user communications is very much limited by the underlying

functionality inherent within the system itself.

Furthermore, messages in these systems are considered passive entities. That is, mes

sages are composed strictly of data and possess no processing capabilities. Users are required

to know all of the intended recipients and must specify the full routing path of the message.

Once a message is sent to a destination, the originator of the message loses jurisdiction over

the message. When the message arrives at the destination, the recipient is free to act on

the message. The recipient can modify the message and forward it to another destination

without approval or knowledge of the originator. Users are also required to perform all

message management functions as necessary.

In general, these systems only provide a framework for simple point-to-point communi

cation between entities. They do not provide the enhanced functionality required to support

a cooperative and distributive work environment. For example, since a message is a passive

entity it cannot locate a piece of information and then return back to the originator with

the results of the search. Nor can a message be programmed to perform a manual office

procedure, thus allowing an office worker to concentrate on more important tasks. Ideally,

a CBMS should support a more dynamic environment which would allow the creation of

intelligent messages that could be delegated the authority to perform a task or set of tasks

on behalf of the office worker. In the next section we present the problem definition and

introduce the requirements for an intelligent message system.

1.6 P ro b lem D efin itio n

The office environment has been characterized as a knowledge and information based center

of activity. Given the fact that these entities have become communication intensive envi

ronments, the role of the computer-based message system has increased to the point where

these system have become an integral part of the organization. However, we argue that

these systems do not fully serve the dynamic requirements that exist within an office.

As an example, consider the problem of locating a piece of information within a large

organization (Woo & Lochovsky 1986). As information continually flows from one location

7

to the next, it is not possible to guarantee that the information in question can be found even

after visiting each location within the organization. Also, as the organization grows, the

complexity of locating the same information increases to the point where productivity can

diminish past a reasonable level of tolerance. The success of the organization is very much

dependent on the organization’s ability to manage the flow of information in an efficient

and effective manner.

We believe that the evolution of CBMSs should encompass a role that parallels the

dynamic nature of the office. By this we mean that a CBMS should serve a far more

important role in the office than just a system for editing and transporting of messages. It

should comprise a system that supports a more dynamic entity relationship more closely

related to a real world environment.

W hat we envision is an advanced message facility in which messages are viewed as

active and intelligent objects3. By active we mean that a message exists as a functioning

entity capable of performing its own tasks. The intelligence within a message reflects the

capabilities that a message can interact with a recipient and make dynamic routing decisions

to facilitate the execution of the task assigned to the message. This is in direct contrast

to messages in traditional CBMSs. Thus, we are proposing the conceptual framework for a

message system in which messages encapsulate the following properties:

• Can perform a sequence of actions at a recipient location based on a message script.

• Can collect responses from their recipients.

• Can make dynamic routing decisions based on external events.

• Can return to the originator if required.

• Allows the originator to maintain jurisdiction over the message.

A system such as this would allow messages to be programmed to carry out a task

that would normally require manual intervention on the part of the both the originator and

recipient. Although our model is predicated towards automation of routine office procedures,

in general, this system provides the framework for modeling any routine task in which a

logical sequence of actions are required to complete the task.

3The concepts of active and intelligent objects will be discussed in Chapter 2.

8

We philosophize that the object-oriented4 (Nierstrasz 1989, Shriver & Wegner 1987, Kim

Sz Lochovsky 1989) paradigm provides the theoretical foundation for which we base our

model. Our view of active message objects follows from this paradigm and is a natural

mechanism for modeling an advanced message system of this type.

This thesis is dedicated towards proposing a conceptual model for such an advanced

intelligent message system. Our model is called IM S, for Intelligent Message System. This

model is primarily based on the object-oriented paradigm, and active messages (Vittal

1980).

1.7 O rgan ization o f T h esis

The organization of this thesis as follows:

• Chapter 2 provides an overview of the concepts and applications of CBMSs with
respect to the automation of office tasks. Specifically we research the areas of object-
orientation and active objects. The chapter ends with a study of several related models
and their application of these concepts.

• In Chapter 3 we define the components of IM S. The structure of each component
and its function within the system is described. We also define the syntax of a high
level script language which is used for programming message scripts.

• In Chapter 4 we continue with our description of IM S. We define the major functions
of the system and specify a formal definition for each using a formal specification
language. We then provide a formal grammar for our script language.

• Chapter 5 offers two examples which illustrate the concepts and functionality of the
system defined in Chapters 3 and 4.

• In Chapter 6, the results of this research effort are summarized and areas for future
research are identified.

4A brief overview of the object oriented paradigm is provided in Chapter 2.

9

Chapter 2

L itera tu re S u rvey

Throughout the evolution of Message Management Systems (MMS), many models have been

proposed and developed. This chapter presents a survey of the MMSs which are related to

the areas of active objects and active messages. The chapter begins with an overview of the

foundation on which these models have been based. We then present a survey of several

models based on these concepts.

2.1 F ou n d ation

2 .1 .1 O b jec t-O rien ta tio n

The current trend in software development has been a gradual shift towards a methodology

known as object-orientation. In the object-oriented paradigm, systems are viewed as a

collection of objects. Each object is considered a self-contained, autonomous entity that can

represent either a physical or abstract entity. Objects are defined in terms of class and sub

class. An object class contains the set of attributes that uniquely define the characteristics

of an object. The ability to define object-classes allows for a hierarchial structure in which a

sub-class definitions can inherit the attributes of a super-class. This single characteristic is

a fundamental property for which objects can be used to model real-world entities. Objects

communicate through message passing. If one object needs information from a second

object, it can only request the information via a message to the second object.

The object-oriented paradigm provides a mechanism for developing computer systems

that maintain a relationship between the objects in the system and the real-world entities

10

represented by the objects. Much literature has been written in recent years with respect to

this topic (Kim & Lochovsky 1989, Shriver & Wegner 1987, Nierstrasz 1989). A summary

of the fundamental concepts that this paradigm promotes is enumerated below (Nierstrasz

1989):

1. Object-class: the set of attributes (i.e. data and operations) that
define the characteristics of a specific object.

2. Inheritance: the ability to define object-class structures whereby an
object can inherit attributes of a similar object.

3. Reusability: the ability to re-use objects without modification to
solve new problems.

4. Polym orphism : the ability to define a generic operation that can be
applied uniformly across a range of objects.

5. Rapid-Prototyping: the ability to quickly generate systems by com
bining and reusing previously defined objects and classes.

The object-oriented approach has been applied across a wide range of applications such

as compilers, databases, and graphical-user-interfaces (GUI). As the acceptance of this

paradigm increases over time, more creative and innovative applications of these concepts

will evolve that will enhance the usefulness of the paradigm. Message systems based on

objects are a natural extension to which the object-oriented paradigm can be applied.

2 .1 .2 A ctiv e O b jects

As alluded to in the previous section, active objects are an extension of the object-oriented

paradigm. Many definitions of an active object have been given due to the fact that many

authors interpret the idea of active objects in different ways. In this study an active object

must possess the capabilities for autonomous behavior. An active object is defined by Ellis

& Gibbs (1985) as:

An object in which a high degree of autonomous responsibility and control is
vested. The active object is considered as an independent agent and frequently
a source of knowledge and activity.

With this definition, active objects have the ability to initiate asynchronous actions

without having first received a message from another object. These objects facilitate a

11

modularization that encapsulates both control and data within the object. In this manner,

a more distributive level of processing can be achieved by delegating a certain level of

responsibility to an object.

Hewitt (Hewitt & Baker 1977) provided the earliest theoretical work in the area of active

objects. Hewitt characterized the behavior of an active object system in his actor model.

The actor model emphasizes message passing communication between entities involved in

distributive computations. In this model, Hewitt defined two fundamental concepts: actors

and events. Actors are designated as the computational agents within the system while

events are used to indicate the arrival of a message at an actor. Actors communicate

with each other via message passing. The sender and receiver can proceed in both an

asynchronous and parallel manner during and after the message transfer process. In this

model, a message itself was considered an actor or active object. Agha (Agha 1986) provided

a formal definition for the actor model in which an actor consisted of a mail address and a

behavior. The behavior was used to specify the set of message types an actor could receive,

as well as, the operations to perform on receipt of a message. The actor model is considered

one of the forerunners of active object systems because of its ability to encapsulate both

control and data into a functioning entity.

2 .2 R 2 D 2 - R esea rch -T o -D ev e lo p m en t-T o o l

Vittal (Vittal 1980) is credited with performing the initial work in the area of active message

systems. Vittal characterized active messages as:

Messages with a mission that the message knows about.

The mission can be described by the intent for which the message was originally created,

such as to display a message or collect some information from a recipient. The mission of

the message is in the form of a procedure or set of instructions that are executed when the

message arrives at a destination. The execution of the mission can take place before or after

delivery to a recipient. In general, a message must be aware of the types of valid processing

that can be performed on it and not allow unknown actions to be performed. A message

must also be able to alter itself at intermediate locations during its’ mission to account for

changes in its environment.

12

Vittal developed an experimental message system called the Research-To-Development-

Tool (R2D2) which utilizes active messages for office communication. His goal was to

develop a message system that was more dynamic and flexible than the traditional message

systems. The objectives of the R2D2 system are summarized below:

• Messages are active, executable objects.

• Senders can specify actions that both the message and a recipient can perform on the
message after it has been sent.

• Users can customize system functionality, adding new functionality if required.

• Users can tailor the user-interaction style of the system.

The R2D2 system is comprised of the following three major components:

1. M essages: Messages are considered to be those that have been re
ceived or are in the process of being sent.

2. Instructions: These make up the message processing language used
to implement the active messages.

• Selectors which are instructions for selecting subsets of messages.
• PInstrs which are instructions for transcribing messages.
• CInstrs which are instructions for composing messages.

3. User-interface: This defines the presentation mechanism and the
set of commands utilized by a user to perform operations within the
system.

In the R2D2 system, all messages are viewed in a strictly textual manner. The fundamental

property of this system is that messages are capable of performing certain actions on their

own. Messages can also alter their interactions with a user depending upon the responses

received by the user. Each message is viewed as a messenger with its routing specification

stated in the form of a distribution list within the message. The instruction, Circulate-Next,

is used to determine the message’s destinations.

As indicated above, PInstrs are the instructions for transcribing (i.e. printing) a mes

sage. PInstrs include operations for output formats, control structures, testing for the

existence of a specific field or the contents of a field, and the ability to invoke a CInstr.

These instructions also allow the ability to obtain the contents of a field or other information

13

that is not explicitly stated within the message itself. Transcription of a message can occur

in one of two ways. When a message arrives at a recipient site a default PInstr instruction

is invoked. This instruction searches the message for the existence of an Instructions field.

If this field is located, the contents of the field will be used to transcribe the message.

Otherwise, the instructions within the recipients environment will be used.

CInstrs are the instruction for composing (i.e. creating) a message. These instructions

allow users to specify prompting information, such as the text and placement of each prompt

on the display screen, and placement of input data, and data types such as text, date, and

numeric.

Also as previously indicated, the user-interface to the R2D2 system is comprised of a

user-level command set and a presentation style. The command set defines the way that a

user can direct system operation. Presentation style includes how commands are invoked,

but also the way in which data appears on the display.

V ittal’s system is very important in that it provided validation that the active message

concept could be envisioned. Although the system achieved its intended goals, the simplistic

nature of the system limits its usefulness in a real-world office environment. The system

provides for only a simple routing specification and makes no provisions for decision making

or dynamic routing criteria. In the next section, we survey another system that expands

on the capabilities of the R2D2 system

2 .3 Im ail

The Imail system of John Hogg (Hogg 1985) addressed the issues of decision making and

dynamic routing. In the Imail system, a message can interact with its recipient, and based

on the recipient responses, can decide whether it should route itself to other recipients or

terminate itself.

In Hogg’s Imail system, a message is referred to as an imessage. An imessage is essen

tially a program. The imessage is composed of a list of questions in the form of a script. In

this system, the imessage script is translated into C shell source and it is this source which

actually gets executed at the recipient site. An interaction is defined to be the running of

the script at a single recipient site. During an interaction, information may be collected and

14

used to determine the next recipient to receive the message. The lifetime of an imessage

is called its execution. Thus, the execution of the imessage may require many interactions.

After an interaction, an imessage is shipped to other recipients. Upon termination, the

imessage will return to its sender with any information collected during its execution.

As indicated above, the imessage script is composed of a series of questions. Execution

of the script is in the form of a query-response-process sequence. Each question is printed

in the form of a query on the recipient’s display terminal. A response is then collected from

the recipient after which a list of commands is displayed. This command set provides the

capabilities for:

• Processing the responses.

• Modifying the content of the imessage script itself.

• Shipping the imessage to another destination.

• Terminating the imessage.

The notion of intelligence within an imessage is encapsulated in what is termed the imessage

state. The initial state is set by the originator of the imessage but may be altered at any

time during an interaction. The state of an imessage affects the execution, interaction, and

shipping of the imessage. That is, during an interaction, questions in the script may be

skipped or repeated and afterwards, depending on the input collected, the imessage may be

shipped to other destinations or terminated. This is a dynamic form of routing since the

imessage can determine its next destination either directly or indirectly from the responses

of the recipient.

2 .3 .1 Im ail P r o to ty p e S y stem

A prototype Imail system was implemented within a UNIX1 environment. An imessage is

created by creating an imessage script using a special Imail language. The command set

for this language is defined as follows:

1UNIX is a trademark of AT&T

15

• > is used to indicate a question

• get is used to obtain a recipient response

• ship is used to add a login to the list of imessage destinations
provided that the imessage has not already been to the desti
nation.

• reship will send the imessage back to a destination regardless
of whether it has already been there or not.

• term inate immediately terminates an imessage.

• next takes a number or question label as an argument and
transfer control of script execution to that location.

• if is used to conditionally perform commands, if commands
may also be nested.

• print is used to print a message.

• set is used to set the values of variables.

Each question in the script begins with a “> ” and may contain a one word label which

allows for loop control if a question needs to be repeated. The text of the query follows

and begins in the leftmost column. Each question line, except the last, must be followed

by a response collection hue. The last line may or may not have a response collection. This

response collection line is of the form:

get <number> <type>

<number> specifies an upper and/or lower bound on the number of items in the reply and

<type> indicates the type of reply which may be numbers, words, text, or logins2. Examples

of this format would be “get 2 numbers” and “get 1 login” .

As indicated above, the set command is used for setting variables. There are three types

of variables utilized in the Imail system: response, locaf and global. A single response

variable is associated with each question in the script and is used to hold the response to

that question. These variables are indicated by a “# ” followed by the number or label

of the question to which it is assigned. As examples, “# 1 ” refers to the response for

question 1, “# -2 ” refers to the response for the question preceding the previous question

and “#getnam e” to the response for question labelled “getname”.

2 UNIX user-ids

16

Local variables are indicated by words prefixed with “!” and global variables are indi

cated by words prefixed with “?”. Both sets of variables can be initialized at the beginning

of an imessage script. However, local variables are reset to their initial value at the be

ginning of each interaction while global variables retain their values between interactions.

Variables appear in the set commands, but may also appear in i f ship, reship, and print

commands, as well as, in the text of queries.

Figure 2.3.1 is an example of an imessage script as specified in Hogg’s paper Intelligent

Message Systems (Hogg 1985). This script will ask a list of recipients to predict the inflation

rate for the following year. After it has collected forty responses, it calculates the average

and variance of the responses. If the variance is less than 0.1, the imessage will terminate.

Otherwise, it will reroute itself to each of the recipients and repeat the process.

2 .3 .2 Im essa g e R o u tin g

To send an imessage to a destination, the originator simply sends the imessage as input

to the Imail system along with a list of initial recipients. An optional subject line may

be included as part of the imessage. This line appears in a recipient’s header line when

the message is received. A timeout value can be specified to indicate a time at which the

imessage should automatically terminate. Termination of an imessage may also occur if the

list of destinations is exhausted or by explicit termination after executing some task. In

any termination, the imessage will return any collected information to the sender .

Notification of imessage arrivals are placed in a recipient’s mailbox. To receive an

imessage, the recipient is presented a list of imessage headers. Each header indicates the

imessage number, sender, sending date, and subject. An imessage is selected by number and

execution of the imessage script can then take place. At this point an interaction with the

recipient occurs. When the interaction terminates, the imessage remains in the recipients

mailbox. An imessage is only deleted when explicitly requested by a user.

The Imail system provides capabilities that allow a message to interact with a user

and to collect information. At each destination, the user is allowed to alter the recipient

list which allows for dynamic routing. The system can also perform computations and

make routing decisions based on the results of these computations. However, the usefulness

of this system over traditional mail system is very much limited. Since an imessage is a

17

number ?n=0
number ?sum = 0
number ?sqsum = 0
number ?maxvar = 0.1
number ?itreps = 40
number ?avg = 4 . 0
number ?var = 0
>
What do you think the inflation rate for next year will be?
The last average prediction was ?avg.

get 1 number
set ?sum = ?sum + #1
set ?sqsum = ?sqsum + #1 x #1
set ?n = ?n + 1
if ?n = ?itresps

set ?avg = ?sum / ?n
set !var = ?sqsum / ?n - ?avg x ?avg
set ?n = 0
set ?sum = 0
set ?sqsum = 0
if !var > ?maxver

reship
next last

print Thanks. Goodbye!
terminate

>last
Thanks!

Figure 2-1: Example imessage script.

18

program, it has to wait to be executed at each recipient site. An imessage can not initiate

its own execution. Because of this shortcoming, timely processing of information can not

be guaranteed. With this system, the responsibility of message management remains with

the users.

2 .4 M M S

The Message Management System (MMS) presented by Mazer Sz Lochovsky (1984) inte

grates the facilities of a computer-based message system with those of a database manage

ment system to create an office information system for managing structured messages. A

structured message is associated a specific message type. Each message type incorporates a

logical routing specification that allows the system itself to determine the next destination

to forward the message to based on both the contents (fields) of the message and the cur

rent system state. This mechanism allows conditional routing as opposed to a predefined,

static form of routing and frees the user from having to explicitly defining each route in

the path of the message. A routing specification language is used to describe the routing

specifications for a specific message type.

As previously indicated, each message is defined in terms of a message type. The

message type specifies the basic structure of the message and includes both structured

(formatted records) and unstructured data (text, video, etc). An instance of a message is

stored in a communication base which provides the medium for end-user communication. A

communication base administrator (CBA) is responsible for managing and maintaining the

communication base.

A message instance is routed according to the specifications associated with the mes

sage type. The routing specification is considered the basic property of the message type.

Therefore, if two messages differ only by their respective routing specifications, then they

are considered separate types. Recipient destinations of a message are referred to as sites.

Each site is represented by an agent that has been assigned a role within the system. A

role can refer to either an individual user or a specific function.

19

2 .4 .1 R o u tin g M o d el

The routing of a message is specified in terms of the sites through which the message may

pass. Three types of sites may be specified in the routing:

1. Origin site a. This refers to the source of the message which must be created by a
role using either manual or automatic procedures.

2. Processing sites <7t- (2 < i < m — 1). These refer to intermediate sites where roles
process a message and then forward it.

3. Terminal site uj. This refers to the site where automatic routing of a message termi
nates.

Each site has an in-tray, where messages are placed upon arrival, and an out-tray, where

messages are placed for automatic routing.

Three forms of routing exists:

1. Type Routing. This type of routing is specified by the CBA during message type
design. It becomes part of the message type and thus, applies to all message instances
of that type.

2. Instance Routing. This type of routing is specified by the user at message instance
creation time and only applies to that message instance.

3. Override Routing. This type of routing is applied when the normal routing specifica
tion must be suspended and replaced by manual routing.

Routing can be both conditional and unconditional based upon various criteria such as the

values in the fields of the message, the current state of the system, and time constraints.

Actions that can be performed include sequential or concurrent routing to other destina

tions, routing termination, alerting, and rerouting. In sequential routing, the message is

sent from recipient to recipient in the order specified. In concurrent routing, the message

is sent to all recipients at the same time.

2 .4 .2 R o u tin g S p ecifica tion L anguage

A routing specification for a message type is created using the Routing Specification Lan

guage. Figure 2-2 shows the general format for the language (Mazer &: Lochovsky 1984):

20

SITE <site name> <source/nosource>
TIME-CASE <condition>:<time constraints>:<actions>

TIME-CASE <condition>:<time constraints>:<actions>
CREATION {valid only if SOURCE specified in SITE line}

TIME-CASE <condition>:<time constraints>:<actions>

TIME-CASE <condition>:<time constraints>:<actions>
ROUTE-CASE <conditions> TO <next site>

ROUTE-CASE <conditions> TO <next site>
FIRST {to be checked upon first visit to this site}

SECOND {to be checked upon second visit to this site}

[THIRD,FOURTH,etc]
OTHER {optional default case}

ERROR {exception handling}

END-SITE

[more sites]

Figure 2-2: Route Specification Language Syntax

21

The language allows users to describe message routing specifications that the system can

use to route the message. Keywords are presented in all uppercase, while nonkeywords

are in lowercase. Meta-symbols are enclosed in “< > ” . A specification consists of a set of

subspecifications, one for each possible site in the routing. For each site, a set of possible

destinations is defined and may include specific decision criteria for selecting a destination.

<source/nosource> indicates whether the current site is allowed to create other instance of

the message type. If the site is defined to be “source” , then it is allowed to create a message

of that type.

Zero or more TIME-CASE entries may be specified. These constructs are used for

specifying time constraints such as time limits on message processing at a site. Each entry

specifies a specific time constraint and actions to be performed if the constraint is met. For

example,

TIME-CASE TIME-LIMIT 7 DAYS.ALERT

indicates that the user of the station should be alerted if no action has been taken after 7

days.

The keywords (CREATION,FIRST,SECOND,...) are visit keywords and apply to each

visit of a message instance at a site. These must appear in ascending order. These keywords

are used in association with the ROUTE-CASE keyword for specifying routing conditions.

Zero or more ROUTE-CASE entries can be specified. These constructs specify the condi

tions that must hold true in order for the message to be forwarded to the next site. For

example,

FIRST
ROUTE-CASE? status=‘‘rejected** TO rejection-file
ROUTE-CASE? status=((accepted** TO accepted-file

SECOND
ROUTE-CASE? status=‘‘accepted** TO accepted-file

ERROR
ALERT **Illegal message instance; Contact CBA**

specifies that on the first visit to a site, if the value of the status field of the message is

“rejected” , then route the message to the “rejection-file” . If the value is “accepted”, then

route the message to the “accepted-file” . If on the second visit the value is “accepted” , then

22

route the message to the “accepted-file” , otherwise an error condition has resulted and the

CBA will be notified. To indicate sequential routing to a site, a “> ” is placed in front of

the agent name to receive the message (e.g. >committee-members). Concurrent routing is

indicated with a (e.g &committee-members).

A selection list may be used with the “TO” keyword which allows the message to select

a qualifying site from the list of potential sites. The general format is:

TO < system qualifier> < selection list >

The system qualifier must be one of (MOST-MESSAGES,FEWEST-MESSAGES,LEAST-

LOADED,MOST-LOADED) where the LOADED conditions refer to the CPU load of a

site. As an example,

TO LEAST-LOAD <site-l> OR <site-2> <site-3>

indicates that the message should route to the next site, either site-1, site-2, or site-3, that

has the lowest CPU load.

Mazer’s MMS system provides the framework for the logical routing of messages. The

system is based on structured messages in which a routing specification can be associated

with the message type. A route specification language is utilized for creating the routing

specifications.

2.5 K N O S

In D. Tsichritzis’ KNO model (Tsichritzis & Gibbs 1987), an object-oriented environment

is proposed in which active objects, called iCVowledge Objects, are utilized to acquire and

disseminate knowledge. In this model, KNOs are highly intelligent objects that migrate to

different environments and learn from their surroundings. The goal of the KNO model is

provide the facilities for defining an advanced tool for the office environment that can auto

mate certain office tasks that involve cooperation, negotiation, and apprenticeship learning.

Tasks that have these characteristics are typically very difficult to model. However, the

concept of KNOs and the KNO environment provides the facilities to effectively model such

tasks. The next section describes the KNO environment.

23

2 .5 .1 K N O E n viron m en t

Each KNO exists as a self-contained and highly autonomous entity that maintains complete

control over its own behavior. KNOs exist within the framework of a context. A context

in the KNO environment is defined to be a set of cooperating KNOs. Physically however,

a context is usually associated with a workstation. Communication within a context is

facilitated through a blackboard. A blackboard is a shared construct that exists within each

context. If a KNO wishes to communicate with another KNO, it simply posts a message to

the blackboard with the information for the KNO to read and awaits a response. This type

of indirect communication allows a KNO to maintain its autonomy as it moves between

contexts. KNOs are capable of spawning other KNOs called limbs. Limbs must always stay

in contact with the parent KNO or head KNO. This is achieved through the use of agent

objects described below. A head KNO combined with all its limbs defines a complex KNO.

A complex KNO can execute a distributive task.

Each context is administered by an object-manager. The role of the object manager

is to manage the use of the bulletin board and to oversee the migration of KNOs to and

from the context. It is also the responsibility of the object-manager to decide if it should

acquaint itself with object-managers from other neighboring contexts.

Two special forms of KNOs exist: user and agent. A user KNO is one whose behavior

can be controlled or manipulated by an external user. For example, a user KNO could be

directed to monitor and report the activity within the KNO environment. An agent KNO

functions as a representative for the object-manager of a particular context. The behavior

of an agent KNO can be indirectly controlled by KNOs from other contexts. Agent KNOs

are responsible for managing the migration of KNOs and forwarding messages to other

environments, such as messages from a limb KNO to its head KNO.

2 .5 .2 K N O S tru ctu re

The structure of a KNO is defined in terms of class. A KNO class defines both the behavior

and structure of a KNO. The behavior of a KNO is defined by the set of operations that

the KNO is allowed to perform while its structure defines the set of instance variables (data

structures) utilized by the KNO. Figure 2-3 represents the general form of a KNO class.

The class basic-kno is a predefined KNO class from which all KNOs are derived. This

24

(kno-def (Kno class name)
((instance variable list))

((inheritance list))
((kno-operations

(Kno class name) (Kno operation name))
((parameter list))
((body))

)

Figure 2-3: General Kno class form.

(rule (rule-name)
(trigger (trigger condition))
(action (action series)))

Figure 2-4: KNO Production Rule.

class defines the basic structure and behavior that is common to all KNOs. When defining

a new KNO class, the structure and behavior of a previously defined class can be inherited

by the new class. Thus, the new class will contain all the instance variables and operations

of the base class, inherited class, and those defined within the new class.

Each KNO class definition defines a specific set of operations. Each operation defines

sequences which messages are communicated between KNOs through the local bulletin

board of a context. Operations in the KNO model are specified in the form of production

rules (Patterson 1990) as shown in Figure 2-4.

Each production rule is specified by a rule-name. The trigger condition, also known

as the antecedent, specifies a simple boolean expression. The action series, or conclusion,

specifies a list of actions to be executed. When a trigger condition for a rule evaluates to

true, all action in the action series list are executed. Table 2.1 lists the set of allowable

25

Action Type Actions
Local Put, Get
Communication Import, Export
Existential Spawn, Die, Move, Freeze, Unfreeze
Learning Act, Learn, Unlearn
Limb Grow, Kill, Ship, Teach, Unteach

Table 2.1: KNO Actions by Type,

actions according to the type of action.

• Local actions allow modification or inspection of instance variables.

• Communication actions allow KNOs to interact with each other via the local bulletin
board.

• Existential actions allow KNOs to migrate, create other KNOs, terminate, and to
change to and from a static representation during migration.

• Learning actions allow KNOs to teach, learn, and unlearn operations to and from
other KNOs.

• Limb actions allow a KNO to create and manage representative KNOs when attem pt
ing to gather information that is distributed throughout multiple environments.

The KNO model is a very important in that it provides a powerful framework for

modeling tasks that are often non-repetitive or require negotiation and cooperation. In

the next section we begin our discussion of several messages systems that are based on the

concepts of active objects. In particular, we will focus on message management systems

that employ the use of active messages to carry out certain office tasks.

2.6 C on clu sion s

Each of the models presented above share many similar characteristics but at the same

time are quite different in terms of providing a functional mechanism for utilizing active

messages to perform routine and non-routine tasks. However, the fundamental characteristic

26

that each model has in common is the use of an electronic message as a functional entity

that can actively participate in the execution of a task. Our model can be characterized in

a similar manner, however, we enumerate two important distinguishing characteristics with

respect to our proposed model.

First, a message is as a collection of independent and autonomous objects that cooperate

together to perform the task assigned to the message. Each component object is responsible

for performing a specific task during the lifetime of the message. This task is referred to

as the function of the object and is defined by the creator of the message. Objects can

communicate with other objects, as well as, external entities such recipients of the message.

Second, each message object exists as a intelligent functional entity. A message can react to

external events during the routing process and take appropriate actions as specified by the

creator of the message. Further, a formal language is defined which provides a flexible set

of commands which are be used for programming message tasks. This language provides a

wide array of options for modeling office tasks. In the next chapter we introduce our model

for an advanced computer-based message system which we call IM S for Intelligent Message

System.

27

Chapter 3

IM S - In te llig en t M essa g e S y ste m

&: O p era tio n a l S em a n tics

In this chapter we present our model which we have called IM S for intelligent Message

•System. We begin with a brief overview of the components which define the IM S system.

We then provide a detailed description of the structure of each individual component along

with its function within the system.

3.1 IM S

The goal of the IM S system is to extend the domain of the computer based message system

by providing the resources and facilities which allow a user to program a message to execute

certain tasks that would normally be manually performed. The system is predicated on

several constructs that allow timely and efficient flow of information through the system.

We begin our presentation of IM S with an overview of the system components.

IM S is an object-oriented based model in which messages, called intelligent message

objectsobjects1, can be programmed to perform certain tasks. Structurally, each component

within IM S is viewed as an object, and thus, possess the structural abstraction provided

by the object-oriented paradigm. IM S is designed to operate within a networked-based

environment that consists of one or more processing sites. This environment must support a

1 Intelligent message object and message object will be used interchangeably.

28

communication subsystem that allows individual sites to communicate and provides reliable

and efficient transmission of messages. Each individual site must also provide the facilities

for concurrent execution of multiple processes. The fundamental components of IM S are

listed below:

• IMO - Intelligent Message Object defined in section 3.2.

• IMSL - Intelligent Message Script Language defined in section 3.5.

• SMM - System Mail Manager defined in section 3.6.

The System Mail Manager defines the physical environment for the system. Each site

that wishes to utilize IM S must have a SMM executing within its domain. The SMM

provides the facilities for managing intelligent message objects, as well as, establishing an

end-point of the system which allow users to communicate. SMM allows for the creation

of intelligent message objects. Each IMO logically exists as a functioning entity within the

system through which the SMM provides the conduit that allows the IMO to carry out

its assigned task. Each IMO is a composition of objects which consists primarily of the

RCO and MCO. The RCO is responsible for routing the IMO through the system while the

MCO is responsible for carrying out the assigned task at each recipient site. The IMSL is

a high-level interpretive language which allows a user to program a task that an IMO can

execute. The IMSL command set provides a basic set of constructs for simple logic flow

and user interaction. Interpretation of an IMO script is a function of the SMM at a specific

site.

3.2 IM O - In te llig en t M essage O b ject

As previously defined, an IMO is the end product of the SMM and exists in the form of

a multi-object entity. An IMO is essentially an abstract data type (Guttag 1977) with

instructions to route a message, process a message, and user interactions embedded in the

message object’s script (i.e., the executable part of message). As a result, an IMO can

perform a role analogous to a processor executing instructions of a program and thus it

can directly execute the actions which are needed to perform the task assigned to it by its

creator2. For example, when a message object arrives at a given station, it can execute

the code associated with that recipient station. The actions may also have time-dependent

constraints, for example, if there is specific time difference between the creation time of the

message and the current time, the message object would terminate its mission and archive

itself in the originator’s station. Also, since a message object may have routing information

in itself, it can deliver itself to a next station if the current station doesn’t interact with it

after some period of time. This approach would provide a better user interface since the

users are released from burden of details for routing procedures.

An IMO is defined in terms of having two distinct responsibilities. The first, referred to

as the IMO primary function is to carry out the task that the message has been assigned (i.e.

programmed) when it arrives at each of the intended destinations. The IMO script dictates

what the task entails. This could be as simple as displaying a textual message or retrieving

data from the recipient. The task of an IMO will be referred to as the IMO mission.

The second responsibility, referred to as the IMO secondary function, is to successfully

route itself to a set of intended destinations performing any tasks necessary to achieve the

routing requirements.

The internal structure of an IMO is shown in Figure 3-1. It defines three internal objects

that collectively form the IMO space which represents an instance of an IMO. The three

objects are defined as follows:

• Message Control Object (MCO)

• Route Control Object (RCO)

• Global Data Object (GDO)

Each of these objects function as an independent and autonomous entity. The Message

Control Object maintains the activities associated with the primary IMO function while the

Route Control Object maintains the activities associated with the secondary IMO function.

The Global Data Object maintains a shared data structure which allows data that is global

2The Intelligent Message Script Language (see Section 3.5) is used for programming IMOs

30

Global Data Object

Message
Control
Object

Route
Control
Object

Figure 3-1: Intelligent Message Object Internal Structure.

within the IMO to be processed and stored. It also serves as a medium which allows the

RCO and MCO to communicate. Each object is governed by an object manager. The

object manager is responsible for managing the activities within the object, as well as, any

external interactions with other entities. Each of these objects will be defined in detail in

the following sections.

3 .2 .1 G lobal D a ta O b ject

The internal structure of the Global Data Object (GDO) is shown in Table 3.1. The GDO

is a shared static structure that is used for maintaining specific global data with respect

to the IMO. Access to data in this structure is accomplished via the GDO Object Manager

(OM). The GDO OM is responsible for managing access and modification of the data in

this structure. The OM will determine if the request is valid and will either accept or reject

the request. No other object can directly access this data. The function of each field is as

follows:

• IMOId is a system generated identifier that uniquely defines the message with respect
to the originator.

• C reateTstm p is the creation time of the message.

31

G lo b a l D a ta O b je c t
Field Name Field Type Configured
IMOId Int System
CreateTstmp Time System
Orgld Char System
OrgAddr AlphaNum System
CurrDest AlphaNum System
CurrDestAddr AlphaNum System
NextDest AlphaNum System
MsgBlkPtr Pointer System

Table 3.1: Global Data Object Internal Structure.

• Orgld identifies the originator of the message.

• OrgAddr identifies the network address of the originator.

• CurrDest indicates the current recipient identifier.

• C urrDestA ddr indicates the current recipient network address.

• N extD est identifies the next destination of the message.

• M sgB lkPtr pointer to the internal data store.

As an IMO arrives at a recipient site, interactions with the user, SMM, and other objects

will require that fields within this structure be updated. The OM will ensure that the

updates are performed atomically to preserve integrity of the data. In Section 3.5 we show

how these fields can be accessed during IMO script processing through constructs specified

within the Intelligent Message Script Language (IMSL).

3.3 R o u te C on tro l O b ject (R C O)

The RCO is an independent and autonomous object within the IMO. It encapsulates all

the data and functionality for determining the logical routing path for the IMO which is

referred to as the secondary IMO function. This object can be configured either statically

by the user upon creation of an IMO or dynamically during the actual routing of the IMO

32

Data
Space

Route
Event
Table

Figure 3-2: Route Control Object Internal Structure.

through the system. The internal structure of the RCO, shown in Figure 3-2, contains the

following internal structures:

• Data Space

• Route Event Table

Each of these structures will be described in following sections.

3 .3 .1 R C O D a ta Space

Table 3.2 defines the internal structure of the RCO Data Space. This region is composed of

a set of data structures which are used for maintaining routing context as the IMO moves

to each destination. The function of each field within this structure is defined below:

• Priority indicates the priority of the message. Valid priorities are:

— N O R M A L (default)
— U R G E N T

• D estL ist indicates the intended recipient(s) of the IMO.

• D estL istT ype indicates type corresponding to the DestList field. Valid list types
are:

— U S E R (single entry)

33

RCO Data Space Fields
Field Name Field Type Configured
Priority Enum User/System
DestList Char User
DestListType Enum User
DlvConfirm Boolean User/System
AccessConfirm Boolean User/System
RetToOrg Boolean User/System
Spawn Boolean User/System
ITV Int User/System
ArriveTstmp Time System
DLAccess Enum User/ System

Table 3.2: RCO Data Space Internal Structure.

- G R O U P (list of entries)
- A LIA S (resolves to USER or GROUP)

• D lvConfirm indicates if the sender should be notified when a message arrives at a
destination. Valid entries are:

- Y (Yes)
- N (No - Default)

• AccessConfirm indicates if the sender should be notified when a message has been
accessed by a recipient. Valid entries are:

- Y (Yes)
- N (No - Default)

• RetToOrg indicates if the message should return to the sender. Valid entries are:

- Y (Yes)
- N (No - Default)

• Spawn indicates if the message can create a copy of itself. Valid entries are:

- Y (Yes)
- N (No - Default)

• ITV (interrupt-timeout value) specifies the amount of time the message will wait for
a recipient response before proceeding with its next action. Values must be numeric
and greater than or equal to zero.

34

• A rriveTstm p indicates the arrival time of the message at each destination.

• DLAccess indicates if a recipient is allowed to modify the DestList entries. Valid
values are:

- N O N E - cannot access the list.
- D E L E T E - can delete entries from the list.
- A D D - can add entries to the list.

These fields describe the attributes which the RCO OM utilizes during,the IMO routing

process. In order to increase the efficiency of route configuration creation, routing tem

plates can be utilized. A routing template is a predefined routing configuration that can

be retrieved from a template database and used for the current routing requirements. If

needed, the configuration can be modified as needs dictate. An example would be a routing

template that is used for sending stock information out to company stockholders. Any route

configuration can be archived for later re-use. Default values can be specified in the IMS

system configuration file.

As indicated above, the DLAccess field defines the access priviledges that a recipient

has with respect to the destination list. Since the originator maintains jurisdiction over the

IMO, permission must be given to the recipients to allow modification to this list. It may

be the case that a recipient knows another individual that might be interested in the IMO

or there may be a recipient specified in the list that should not receive the message. This

provides a mechanism for allowing dynamic modifications to the destination list.

3 .3 .2 R C O R o u te E v e n t T a b le

The RCO Route Event Table, as shown in contains the “routing intelligence” within the

RCO. The structure of this table is shown in Figure 3.3. Each row in the table contains an

event and action entry. An event corresponds to a particular state that may occur during

message routing such as destination not available. The action associated with that event is

the function that is to be taken should that event occur. For example, if a destination is

unavailable then an event will be signaled to the OM indicating the condition. If that event

is specified in the table then the associated action will be performed. The action could,

for instance, specify that the OM route the IMO to its next destination and update its

destination list to return to the unavailable node at a later time. An event can be entered

35

Event Table
Event Action
Ex Ax
e 2 a 2

\
En An
E a Aa

Table 3.3: RCO Route Event Table.

without an associated action, however, it is illegal to enter an action without an associated

event. The event E a and action Aa are special case entries that must be included in the

table. These entries will be derived based on the following rules:

1. If an event E{ is entered without an associated action, then Aa will be derived as the

action for any occurrence of that event.

2. For all other events Ej not entered in the table, E a and Aa will be derived as the

default event and action respectively.

Events can correspond to either standard events or non-standard events. Standard events

are those events that arise as a result of normal IM S processing. Non-standard events are

those events that are common to network routing. Table 3.4 indicates the valid events

defined in the IM S system.

If a specific event is not entered in the event table then E a and A a will be derived as

defined above. As a specific event occurs during routing, the routing table is scanned to

determine how to handle the event. When a match to an entry in the event column is found,

the action will be carried out. The set of valid actions that can be specified are defined

in Table 3.5. Upon creation of an IMO, the user must specify one of the valid actions for

each event that is defined within the system. For example, the sender may specify the

action RETURN to be performed for the event ITVTimeout which indicates that the IMO

should return to its sender if a timeout occurs while the IMO is awaiting a response from

a recipient.

36

R C O E ven ts
Event ID Type Indication
ITVTimout Std ITV timer expiration
Accesslnit Std IMO access initiated
NoDest Std SMM no destination
RecvDeny Std SMM receive denial
NoResource Std SMM no resources

DestUnavl NonStd Dest. not available
DestNoExist NonStd Dest. does not exist
NetwUnavl NonStd Network unavailable
NetwErr NonStd Network error

Table 3.4: RCO Event Specifications.

RC O E ven t A ctions
Action ID Function
NOTIFY Send notification to sender
DELETE Delete current destination
FORWARD Proceed to next destination
TERMINATE Terminate mission
RETURN Return to sender

Table 3.5: RCO Route Event Table Actions.

37

3 .3 .3 R C O M an ager

Each RCO is governed by an Route Control Object Manager (RCOM) which serves as the

administrator of and interface to the RCO. All communication to the RCO is directed

through the RCOM. The main functions of the RCOM are listed as follows:

• Manages access to its internal data structures.

• Coordinates dynamic modification of the internal event table.

• Communicates with the local SMM.

• Monitors event status within a recipient message queue.

• Relinquishes control to the SMM after arrival at a destination

The RCOM institutes the routing mechanisms within the message. It is called upon to

route the message to the specified recipients in accordance with the event table specifica

tions. When an IMO arrives at a recipient destination, the SMM will place the IMO on

a receive queue and the recipient will be notified of a new message arrival. If an ITV was

specified, a timer will be started and the RCOM will be notified if the timer expires. If a

timeout occurs, the event table action for the event will be performed. Once the recipient

takes action upon the message (i.e. to read the message), control will be transferred to the

MCO whereby the message mission can then be executed.

3 .3 .4 S u m m ary

The RCO exists as an active object within an IMO. It is responsible for logically routing the

IMO to each destination specified in its destination list. A route event table is maintained

within the RCO which specifies an event/action 2-tuple. Events are signaled to the RCOM

when an activity takes place that can potentially interrupt the mission of the IMO. The

action specifies how to handle the event if this should occur.

3 .4 M essa g e C on tro l O b ject (M C O)

Like the RCO, the MCO is an independent and autonomous object within the IMO. It

encapsulates all the data and functionality for executing the primary IMO function or

~ 38

r A
Data Space

M
C Methods Table0
M

Message Script

V J

Figure 3-3: Message Control Object Internal Structure.

message mission that has been assigned to the IMO. This object is configured statically by

the user upon creation of an IMO. The internal structure of the MCO, shown in Figure 3-3,

contains the following internal structures:

• Data Space

• Methods Table

• Message Script

Each of these structures is defined in the following sections.

3 .4 .1 M C O D a ta Space

Table 3.6 defines the internal structure of the MCO Data Space. The region is composed of a

set of data structures which are used for maintaining context associated with the execution

of the mission of the message at a recipient site. The function of each field within this

structure is defined below:

• Subject specifies a short description of the content of the message which is displayed
to the recipient.

• A ccessA ttr indicates the access attributes that a recipient has with respect to the
message. Valid attributes are:

39

M C O D a ta S pace F ie lds
Field Name Field Type Configured
Subject Char User
AccessAttr Enum User/System
AccessTstmp Time System
M TPtr Pointer System
RspStore Pointer System
MScriptPtr Pointer System

Table 3.6: MCO Data Space Internal Structure.

- ARCHIVE
- FORWARD
- MODIFY
- VIEW
- PURGE
- PRINT

• A ccessT stm p indicates when the message was accessed by a recipient.

• M T P tr pointer to a table of user-defined methods that can be invoked through
message script processing.

• R spStore data store for managing recipient response information.

• M ScriptPtr pointer to the message script that defines the IMO message mission.

These fields define the context which allows the message mission to be executed at the

recipient site. The data section is composed of private and public data regions. The private

data region contains data that cannot be accessed by any recipient of the message other

than the originator while the public data region is accessible by any recipient of the message.

The purpose of the private data region is to provide a means to store system generated data,

such as access timestamps, and user supplied responses to any queries that the originator

might provide.

As indicated above, the AccessAttr field defines the access attribute that a recipient

has with respect to a message. These attributes define the set of standard operations that

40

the user can apply on the message. Standard operations are made available by the SMM

and exist at each recipient site. With this approach these methods do not need to be

encapsulated within the message thus reducing the size of the message. As an example, if

an IMO has the A R C H IV E attribute enabled then the standard operation for archiving

messages will be available when the user accesses the message. If this field is left blank,

then all operations will be made available. This strategy allows the originator to maintain

jurisdiction over the message throughout its lifetime.

3 .4 .2 M C O M eth o d s T able

The MCO Methods Table consists of a set of user-defined support functions, called meth

ods, that can be called from the MCO message script during script processing. These are

typically generic routines that provide a particular function such as retrieving a name and

address from a recipient. Each routine is written using IMSL. Access to these routines is

via the MThlPtr entry in the MCO Data Space. Each entry in this table points to either

a single method or a set of methods that have been combined into a method library. A

master index is maintained for each table entry that maps the method(s) that are located

within each entry. During message script processing, a method in this table can be invoked

by accessing the appropriate index into the table for the desired method.

3 .4 .3 M C O M essa g e S crip t

The MCO Message Script contains the “intelligence” within the MCO. The message script

is a set of user-defined instructions that defines the actual mission of the message. The

script itself is composed utilizing the Intelligent Message Script Language (IMSL). IMSL is

a high-level language that provides a simple command set which can be used to program

an IMO task. The command set allows for user I/O , simple logic flow, and manipulation of

data fields within the GDO. Section 3.5 defines the constructs of this language in greater

detail. The message script is interpreted as a function of the SMM at the recipient site. Each

instruction is carried out in turn with user-defined operations accessed as described above.

Since the potential exists for a script to become quite large in size, an interpretive language

is used as opposed to an actual executable script image. This significantly reduces the size

of the message which in turn increases the efficiency of message processing throughout the

41

system.

3 .4 .4 M C O M an ager

Each MCO is governed by a Message Control Object Manager (MCOM) which serves as

the administrator and interface to the MCO. All communication to the MCO is directed

through the MCOM. The main functions of the MCOM are listed below:

• Manages access to its internal data structures.

• Communicates with the SMM.

• Provides access to the message script and response store for script execution.

• Manages recipient supplied input.

• Relinquishes control to the SMM upon completion of the message mission.

The MCOM is called upon to carry out the mission of the message once a target desti

nation is reached and the recipient selects an IMO for processing. When an IMO is selected,

the MCOM passes pointers to the message script and response store to the script processor

within SMM. The script processor will then interpret and carry out the associated script in

structions. The script itself may vary in complexity ranging from simply displaying textual

message to stepping the recipient though an automated survey of some topic while collect

ing and storing responses to the questions. When the mission of the message is completed,

the MCOM returns control back to the SMM which in turn allows the RCO to evaluate its

destination list to select the next destination to transfer to.

3 .4 .5 S u m m ary

The MCO exists as an active object within an IMO. It is responsible for carrying out the

mission that the active message has been assigned. The MCOM provides the interface to the

MCO and is responsible for managing its internal processing. The message script provides

the intelligence within the MCO. User defined functions can be created and included in the

methods table of the MCO. These functions can be accessed through the message script

processor.

42

3.5 IM SL

In this section we define the Intelligent Message Script Language, IMSL. As indicated in

previous sections, IMSL is a high-level interpretive script language that is used for pro

gramming IMO tasks. The language consists of a relatively simple command set but allows

for the creation of very powerful scripts that can perform complex tasks. The language

allows for user-definable functions, simple logic flow, variable assignments, and access to

data within the GDO. No explicit declaration of variables is required. A variable is in

stantiated at the time of its use during the execution of the script. Its type is determined

by the context in which it is used. The script is interpreted from top to bottom with the

first command in the script being the entry point. After a script has been generated an

optimization is performed to reduce the size of the script. This is necessary to reduce the

overall size of the IMO to improve the efficiency of IMO throughput.

3 .5 .1 IM SL V ariab les

Variables by default are initialized to an “empty” value. The value of a variable can be

determined by prefixing a “$” to the variable name as in “$<variable>”. For example, if

COUNT is a variable that has been set to the value 10, then %COUNT represents its value.

Global variables are specified by prefixing the variable name with as in “@<variable>” .

The values assigned to global variables are persistent throughout the lifetime of the IMO.

For example, “@LASTDEST” represents a global variable that maintains the value of the

last recipient of the IMO.

A set of predefined variables exists that can be used within a script to access certain

attributes with respect to the IMO. Table 3.7 shows these variables and the function of

each. These variables are accessed in the same manner as described above.

3 .5 .2 IM SL C om m an d S et

The IMSL command set is shown is Table 3.8. The syntax of each command is defined as

follows:

• SE T (variable) (value)
This command sets (variable) equal to (value). If a value is not specified the variable

43

Predefined Variables
Variable Name Output
IMOID IMO Identifier
DESTS Destination List
DEST Current destination
NEXTDEST Next destination
SUBJECT MCO subject line
SENDNAME Name of the sender
RECNAME Name of the recipient
DATE Current date
TIME Current time

Table 3.7: IMSL Predefined Variables.

IM SL C om m ands
Command Function
SET Assign a value to a variable
INPUT Accept input from a recipient
DISPLAY Display a message or variable
STORE Store a value
PROMPT Prompt a query and receive input
CASE Selective control flow mechanism
IF Evaluate an expression
GOTO Control flow mechanism
FUNCTION Define a new method
CALL Call a user defined method
RETURN Return from user defined method
EXIT Terminate script processing

Table 3.8: IMSL Command Set.

44

is initialized to “NIL” .

• IN P U T (variable) (type)
This command accepts and stores recipient input into the specified variable. If a
variable is not specified, an internal variable is used which is referenced by “$0” . The
type of input corresponds to C H A R | L IN E | P A R A | N U M | D T where CHAR
is a single character, LINE (default) is a single line, and PARA is multi-lined input,
NUM is numeric, and DT is Date and Time (mm-dd-yy:hh:mm).

• D IS P L A Y [(variable) | [text]]
This command displays the contents of the specified variable or all text and variables
enclosed between the opening and closing brackets.

• S T O R E (variable)
This command allows the value of a variable to be stored in the response store of the
current recipient.

• P R O M P T (query text) (response options)
This command will prompt the recipient with the specified query text and then wait
for a response. If the response is one that is listed in the (response options) the input
will be accepted, otherwise the query will be prompted over. An internal variable
referenced by “$$” holds the index into the response options that corresponds to the
accepted value. The query text must be enclosed in quotes.

• C A SE (evaluator) (id : commands) E N D C
This command works in conjunction with the PROMPT command. The value of “$$”
is used to select the id and commands to perform. An indirect jump is then made to
the id corresponding to “$$” .

• IF (expression) T H E N command [ELSE command]
This command allows conditional execution of commands. ELSE is optional.

• G O T O (label)
This command allows direct branching within the message script.

• F U N C T IO N (function identifier) (args) (body) E N D F
This command allows for the creation of a user-defined function.
A set of related functions can be combined into a single unit that can be included in
an IMO. These functions can be referenced through the methods table in the MCO.

• CA LL (user-defined function)
This command allows a user-defined function to be executed.

• R E T U R N
This command allows a return from a call to a user-defined function.

• E X IT
This command allows immediate termination of message script processing.

45

IMSL Operators
R elational A rithm etic Logical

= = Equal + Addition AND
<> Not Equal - Subtraction OR
< Less Than ★ Multiply NOT
> Greater Than \ Division
< Less or Equal
> Greater or Equal

Table 3.9: IMSL Relational, Arithmetic, and Logical Operators.

Each command may be preceded by a label identifier which can be used for branching using

the GOTO and CASE statements. Labels can be up to eight alpha-numeric characters in

length and must be preceded with a semi-colon (:). For example, “:LABEL” and “:LA-

BEL001” are valid labels. In addition to the above command set, IMSL supports the use

of the standard arithmetic operators and relational operators as shown in Table 3.9.

D ata for each recipient site is maintained within the MCO RspStore. This structure

maintains responses by destination identifier so the when the IMO returns to the originator,

that data can be processed and interpreted as required. Termination of message script

processing is done directly through the EXIT command or indirectly after the last command

in the script, the script to interpret. As with route specifications, IMSL scripts can be

archived in a IMSL database for re-use at a later time. This expedites the setup of IMOs

which share similar characteristics.

3.6 S y stem M ail M an ager

Each end-user node within the message system has associated with it a System Mail Manager

(SMM). The SMM is the interface to IMS and provides the user with the capabilities

for creating, sending and receiving, and administration of messages within the system.

Another function of the SMM is to instantiate resource objects that carry out other tasks

on a periodic basis. For example, the SMM will instantiate a cleanup object to purge all

46

messages that have been marked for deletion by the user. The SMM is also responsible for

providing communication channels for the various objects.

3 .6 .1 In terp ro cess C om m u n ica tion

The SMM maintains a shared memory block, called the message center at each site. The

purpose of this region is to provide a mechanism for IMOs to communicate with each other.

This region is maintained as passive structure. It is the responsibility of each object that

accesses the region to be considerate and respectful of other objects that are currently

utilizing the region. IMOs may read any of the posted notifications from other IMOs as

there are no security measures in this region. For example, a message may notify other

messages of its arrival at a destination by posting its message ID to the block for other

IMOs to read.

The SMM is associated with three support environments that provide all the necessary

facilities for end-user operation of the message system. Within each environment, the SMM

will create an instance of a resource object that will be responsible for performing the

function of that environment. Figure 3-4 represents the architecture of the SMM whose

components will be described next.

3 .7 IM O A d m in istra tio n E n v iron m en t

The IMO Administration Environment provides a collection of support routines that allow

a user to maintain those messages that are currently stored in the users IMO folder3. The

IMO folder is simply a storage facility that provides the recipient a location to save messages.

This environment provides the following support facilities for IMO folder entries:

• V iew execute message script processor.

• P r in t allows printing of selected entries.

• P u rg e allows purging (i.e. deleting) of selected entries.

• C ancel cancel pending action.

3The only messages that can be stored in the message folder are those that were received with the
ARCHIVE MCO access attribute enabled.

47

M O
Administration]

Environment,

View
Print

Cancel

System
Mail

Manager

IMO
Creation

Environment,

IMO
Transfer

Environment.

RCO Setup
MCO Setup

Select
Cancel

Exit

Send
Receive

Add Dest
Del Dest
Cancel

Exit

Figure 3-4: System Mail Manager Functional Representation.

48

• Exit exit environment.

In this environment, the user first selects and marks those messages in which processing

is desired. Once selected, the user may perform any of the valid operations as indicated

through the MCO access attribute. The MCOM is instantiated for each selected message

one at a time and the message script is executed for the current MCOM. Processing in this

manner is analogous to a newly arrived message.

3.8 IM O C rea tion E n v iron m en t

The IMO Creation Environment provides the capabilities for creating intelligent message

objects. When the user enters the this environment, all the facilities necessary to create a

new IMO (or modify an existing IMO) are accessible. The following support facilities for

the creation of IMOs:

• RCO Setup Setup the RCO specifications.

• M CO Setup Setup the MCO specifications.

• Select Select an existing IMO for re-use.

• Cancel cancel pending action.

• Exit exit environment.

In this environment, the user can either create an entirely new IMO or modify an existing

IMO that closely represents the current user requirements. Once an IMO is created it can be

stored in the form of a IMO template. An IMO template database is utilized for maintaining

the templates. IMO templates offer the feature of being able to reuse existing information

and declarations to reduce the amount of time it takes to create and send a message. All

information that is pertinent to the message is entered and the message script is constructed.

Upon the completion of creating the message, it is placed in a message distribution queue

and assigned a unique ID that is used to identify the message for later processing.

49

3.9 IM O T ransfer E n v iron m en t

The IMO Transfer Environment provides the user the facilities for sending and receiving

active messages. Within this environment the following facilities are provided:

• Send send an IMO.

• R eceive receive a IMO.

• Add D est add a destination.

• D el D est delete a destination.

• Cancel cancel pending action.

• Exit exit environment.

In this environment, a user of the system can send and receive IMOs. Two queues

are maintained by the SMM for this purpose. The first is an IMO send queue in which

IMOs are placed when they are ready to be sent. The RCOM notifies the SMM of its

initial destination and waits for the indication of delivery. The actual delivery mechanism

is managed by the underlying communication subsystem.

For each IMO that is to be sent, the SMM instantiates a Message Transfer Object to

handle the request. This allows the SMM to perform other tasks as necessary. The MTO

inherits the identity of the RCOM which allows it to process events and determine which

action to perform.

At the receiving end, the SMM is notified by the communication subsystem of the arrival

of a message. The SMM instantiates an MTO which inherits the identity of the RCOM of

the newly arrived IMO. Each IMO is placed on a receive queue and the recipient is notified

of the new IMO arrival. The MTO then starts the ITV timer, if specified, and awaits

a response from the recipient. If a timeout occurs, the action specified for that event is

performed by the MTO. If the recipient responds to the IMO, the MTO notifies the SMM

which then instantiates a User Agent Object. The MTO relinquishes control to the UAO.

This object then inherits the identity of the MCOM for that IMO. At this point the UAO

has access to all the internal structures of the MCO and can then carry out the message

mission by executing the IMO script.

50

3 .10 O p era tio n a l S em a n tics

In this section we describe the operational semantics of IM S. The functionality of the

system can be categorized into the following distinct events:

1. IMO Creation

2. IMO Routing

3. IMO Receipt

Each of these events is discussed in the following sections.

3.11 IM O C rea tion

To create an IMO, the user would enter the IMO Creation Environment. To access this

environment, the SMM will create a resource object that will perform the functions specified

by the user. At this point the SMM can return to monitoring other tasks. All further

activities will then take place between the user and the resource object until the user is

ready to send the IMO or terminate the session.

The user can now either select a previously defined IMO from the IMO database or

create a new IMO. If a previous IMO is used, the MCO and RCO would be checked to

insure that the configurations within these object correspond to the user’s intent for the

IMO. If changes are necessitated, the user simply updates the appropriate configuration.

If a new IMO is desired then the user will have to specify a new configuration for each

object. Each IMO is given a system generated identifier that can be used to track the

message through the system. IMOs are also timestamped with the current date and time.

Many of the configuration parameters can be defaulted using the using the IM S system

configuration file. In general, the user must define the following characteristics of the IMO:4

4Although the initial setup of a new IMO requires much effort, later IMOs can use the characteristics of
an archived message thus requiring minimal effort.

51

• MCO Script and Method Entries.

• MCO Subject.

• MCO Access Attributes.

• RCO Recipient Destinations.

• RCO Events and Actions.

• RCO Attributes (ITV, Delivery Confirmation, etc.)

The MCO access attributes that are assigned to a message determine the set of opera

tions that can be performed on a message at a recipient site. These attributes effectively

limit the level of access a recipient has to a given message much like the permission settings

of files in the UNIX file system. The list of valid access attributes was listed in Section

3.4.1.

These attributes can be combined to allow multiple operations on a message. For ex

ample, if the originator requires that a recipient of the message be able to add comments

to the message (i.e. MODIFY), forward the message to other destinations, but not archive

the message, then the attributes would be set as:

MCO.AccessAttr <<= MODIFY | FORWARD | -ARCHIVE

The recipient destination(s) can be specified in one of two ways. The user can specify

the recipients individually using explicit addressing (eg. USER@NW_1) or by user alias (eg.

USR1), or the user can specify a group distribution list. The distribution list is given a name

such as USRGRP1 _DL, and corresponds to a list of individual destinations. Distribution

list are appropriate in an office environment whereby a distribution list can be created and

associated with a single department within the office. Alias and distribution lists resolution

can be achieved by storing the corresponding values in a named database and performing

a database lookup to retrieve the data. The DestListType field in the RCO D ata Space is

used to distinguish which destination specification was used.

52

3 .12 IM O R o u tin g

Once the IMO has been constructed or retrieved, the SMM is notified and a message transfer

object is instantiated (MTO). The MTO will then be responsible for delivery of the IMO

to the specified destination. The MTO inherits the identity of the RCO OM and thus has

access to the internal structures of the RCO. The initial destination is determined via the

DestList field and the communication subsystem is called upon to transfer the IMO to the

destination.

If the transfer is not successful, the MTO will utilize the event table to determine the

appropriate action for the event that caused the failure. The valid events and actions were

listed in Tables 3.4 and 3.5 respectively in Section 3.3.2. If the user desires, the message

can be put into a send queue where the MTO can retry the transmission at a later time.

In general, the default action for an unsuccessful transmission from a remote destination

would be for the message to be sent back to the originator.

When an IMO arrives at a destination, the SMM will again instantiate a MTO to process

that inherits the identity of the RCO. The IMO is then placed into a receive queue. At

this point the MTO will post the IMO and sender identifiers to the local message center

to indicate the new arrival to other IMOs. Each entry in the message center can have an

associated action. The MTO must periodically scan the message center entries to see if a

message has been posted for it. If one is found, the action specifies how the IMO should

proceed. The actions specified here are the same as those list in Table 3.5. This mechanism

allows IMOs to communicate. For example, if a user has sent an IMO but wishes to have

it terminated, another IMO can be sent to the same set of destinations in an attem pt to

locate the first IMO. It will simply post messages at each destination indicating that the

IMO should terminate itself immediately when it arrives at one of the destinations.

While in the receive queue, the MTO will monitor its environment. The ITV value

allows the MTO to take action if the user has not responded to the message within a

specified amount of time. If the ITV value has been specified, the MTO will start timing

its wait time in the queue. If the ITV time limit expires, the MTO will execute the event

table action associated with the timeout event. There must be a ITV action specified to

handle the timeout event if an ITV is to be used. The user may require the message to

53

instantiate a copy of itself with the copy staying at the recipient and the original moving

on to the next destination, or the MTO may simply modify its destination tables to skip

the current recipient and come back at a later time. In the former case, it is not necessary

for the copy message to further route itself so its destination list will be cleared.

3 .13 IM O R ec e ip t

When a recipient wishes to receive a given message, the SMM spawns a resource object

to allow the user to access the message. The user is presented a list of active messages

currently in the receive queue. The recipient may select any message at any time. Once

a message has been selected, the resource object notifies the MTO for that message and

instantiate a user agent object (UAO) to interface the IMO with the recipient. The MTO

transfers control to the UAO. The UAO then instantiates a script processor to execute the

message script (i.e. the message mission).

Once the script processor has been instantiated, it can begin interpreting and then

executing the message script. User-defined methods are accessed via the method entry

point table in the MCO Data Space. The appropriate data is collected and stored in the

response data store for the current destination.

When script processing is terminated, control is returned to the UAO. The UAO will

guarantee that the only operations allowed on the message by the recipient are those opera

tions specified by the originator using the AccessAttr field. For instance, the user will only

be allowed to store a local copy of the IMO if the message has archive capabilities. When

the mission of the message has been completed, the UAO will return control to the MTO.

The MTO will then proceed to transfer the message to the next destination . When the

destination list is exhausted the message will execute the termination event action associ

ated with the N oD est event. Typically, this action is set to RETURN, which allows the

IMO to return to the original sender of the message.

3 .14 S y ste m C on figu ration F ile

When IM S initializes, system parameters, as well as, IMO configuration parameters are

loaded with system defaults. These typically include such parameters as the maximum

54

number of queued pending messages to be read, interrupt timeout value, etc. These system

default values can be overridden through the use of the system configuration file. The

configuration file is composed of three sections:

System Declarations: these are parameters that define system
wide features unrelated to message objects.

R oute Control Declarations: these are parameters that are used
to configure the RCO.

M essage Control Declarations: these are parameters that are
used to configure the MCO.

Figure 3-5 shows the format of the system configuration file. At system initialization, the

configuration file will be parsed and error checked for invalid configuration options (i.e values

out of range, invalid parameter_id, etc). If no errors are found in the file, the configuration

values will be populated to the associated data structures for each specific system category

specified.

3 .15 S u m m ary

In this chapter we have defined the architecture and the operational semantics of IMS. The

fundamental entities in the system are the System Mail Manager (SMM) and the Intelligent

Message Object (IMO). The system provides the functionality for allowing a user to assign

a task to a message object using the IMSL language, as well as, specifying certain routing

characteristics in order to increase the efficiency with which the message carries out its task.

In the next chapter we provide a formal specification of the major functions of IMS.

55

[System Declarations]
<configuration values>

[Route Control Declarations]
<configuration values>

[Message Control Declarations]
<configuration values>

where: <configuration values> is of the form:
<parameter_id> = <paramater_value>

and: <parameter_id> is the tokenized label of
the system variable that is to be configured.

<parameter_value> is the value that will
populate the system variable.

Figure 3-5: IMS System Configuration File.

56

Chapter 4

F orm al D e fin it io n

In this chapter we continue our description of IM S from Chapter 3 by defining the functional

architecture of the system. The functions which are defined in this chapter represent the

basic set with which a user can utilize the system. Each function is defined in part by an

informal description of the internal processing followed by a more formal definition using

the Vienna Development Method (VDM) (Jones 1989). An overview of the VDM formal

specification method is given in Section 4.1.

4.1 V D M

VDM is a powerful software development tool which allows systems to be formally specified

in terms of both data structures and the operations on those structures. VDM is a model-

based approach whose foundation is based on set-theory. Each specification of a system

is given in the form of a model which represents the input, outputs, internal state, and

functions that operate on the data within the system. VDM emphasizes both functional

specification (i.e. what the system does) and design verification (i.e will it work). For the

purposes of this thesis we will address the functional aspects of IM S.

Nomenclature within VDM is straightforward. Variables, type definitions, and functions

are specified by giving the name of the object followed by a semicolon (:) and its type.

Type names start with the first letter in upper case and the following letters in lower case.

Variables and functions are specified in all upper case. Constant names are specified in all

upper case italics. Constant values are fixed and do not change.

57

4 .1 .1 D a ta T y p es

VDM supports both scalar and structured data types. Scalar types can either be built-in

or user defined types. Built-in data types can be of the form shown below:

• Character: indicating any alphabetic character.

• Int: indicating the set of integers.

• Nat: indicating the set of natural numbers.

• NatO: indicating the set of non-negative numbers.

• Real: indicating the set of real numbers.

• Bool: indicating TRUE, FALSE

New types can be created as necessary. For example, Alphanum can be defined to represent

the set of alpha-numeric character sequences. From this definition we can then define a

variable to be of this type. VDM also supports a special data type called NIL which

represents undefined values. It is unique in that the type represents both the name and

value of the type.

VDM also supports the structured types listed below which are described in the following

sections:

• Set Types

• List Types

• Record Types

• Mapping Types

4 .1 .2 S e t T y p e s

Set types are useful for grouping similar entities such that operations can be applied on the

set as a whole. The set of operations that can be applied to sets are listed in Table 4.1. Let

R = {Ui,U 2 ,U3 } and S = {T^Us}. Then the following relationships exist:

• R U S = {U1,U2,U3,U5}

58

Set Operations
Operator Function

€ Set Member
U Union
n Intersection

subset Union
— Difference

card Cardinality

Table 4.1: VDM Set Operations.

• R D S = {U2}

• R - S = {Ui,U3}

• S C R = FALSE

• U2 <E R = TRUE

• card(R) = 3

If a set name ends with the extension “-set” then that set represents the powerset of the

named base set. For example, S-set represents the powerset {{},{Ui},{U2},{Ui,U2}}.

4 .1 .3 L ist T y p es

List types are useful for defining ordered collections of values. Similar to set types, if the

extension “-list” is appended to the list name, then a powerlist is created which represents

all possible lists that can be created from the base list. Table 4.2 defines the set of operators

that can be applied to lists. Again let R = {Ui,U2,U3} and S = {U2,Us}. Then the following

relationships exist:

• hd R = {Ui}

• t l R = {U2,U3}

• R || S = {U1,U2,U3,U2,U5}

. R(3) = {U3}

59

List Operations
Operator Function

hd head of list
tl tail
ii Concatenation

l(num) List Member
elem s List Elements

Table 4.2: VDM List Operations.

• len R = 3

• elem s S = {U2 ,Us}

4 .1 .4 R ecord T y p es

VDM allows the definition of record structures which can be used to represent the internal

entities of the system being defined. Each record type is given a name with the specification

of the fields within the record following the name as in the example given below:

Employee:: NAME: String
ID: Int
POSITION: String
SSN: Int

In the above example Employee is the name of the record type with Name, ID, Position,

and SSN as fields within the record. VDM allows a special function to be called that will

create and initialize an instance of a particular record type. These functions are prefixed

with mk as in “mk-Employee(John Doe, 100, Programmer, 123-456-7890)”. If EMP is a

variable of type Employee, then the fields within EMP can be accessed as in “NAME(EMP)

= John Doe” or “SSN(EMP) = 123-456-7890”.

60

Mapping Operations
Operator Function
d o m Domain
rng Range
m(x) Element

/ Restrict to
\ Restrict by
t Overwrite

Table 4.3: VDM Mapping Operations.

4 .1 .5 M ap p in gs

In VDM, a special function exists that maps the elements of one set onto the elements of a

second set. The first set is referred to as the domain and the second set is referred to as the

range. A mapping is denoted by using the »” such as in R —» S. Table 4.3 defines the set

of mapping operators. Let R = {Ui—»Di,U2 —*D2 }. Then the following relationships exist:

• dom R = {Ui,U2}

• rng R = {Dl 5D2}

. R(U ,) = Dj

• R / {U2} = {U2->D2}

. R \ {U2} = {U i^D j}

. R f {Uj-^ZO = { U ^ D i.U s-^ Z i}

The restrict to operator (/) creates a mapping that restricts the domain to the specified set

while the restrict by operator (\) creates a mapping where the elements of the specified set

are not in the domain of the resulting set.

4 .1 .6 O p era tio n s and F u n ction s

VDM utilizes predicate logic to construct predicates which represent operations and func

tions. Table 4.4 defines the set of predicate operations within VDM.

61

Predicate Operations
Operator Function

Negation
A Conjunction (AND)
V Disjunction (OR)
V Universal Quantification.
3 Existential Quantification.

Table 4.4: VDM Predicate Operations.

VDM supports three additional constructs. The first is the l e t . . . in construct allows a

mechanism for text substitution when specifying a lengthy predicate. For example, let W

= X(Y(Z)) in A(W) is a simplification for A(X(Y(Z))) which can become confusing to read

in complicated predicates. The while . . . do construct is used for repeated predicates and

the i f . . . then . . . else construct is used for conditional predicates. Each VDM specification

is composed of the four parts listed below:

1. O peration name and param eters.
Input and output parameters may be specified. For example, in the specification
“F 0 0 (X : Int) Y : Real” , F 0 0 represents the name of the operation, with input
variable “X” and output variable “Y”.

2. ext:.
This section defines the set of external variables and their types which the operation
must have access to. Read-only variables are specified with the keyword rd while
read-write variables are specified with wr.

3. pre:
This section defines the set of preconditions that must hold true for the operation to
be applied. These conditions are applied to the input and external variables in the
form of predicate relationships.

4. post:
This section defines how the values of the output and external variables have been
changed as a result of the operation.

Having provided a brief introduction to the VDM formal method, we will now begin

our formal specification of IM S. We begin our specification by first defining the sets, data

62

elements, and data mappings that represent the system. We then proceed with the formal

specification of the major functions within IMS

4 .2 IM S S p ec ifica tio n

As previously indicated, IM S functions within a networked environment of end-user sites.

Each end-user site represents both the recipient destination and the user-id for that loca

tion. Let

Vi m s = {Ui ,U2>.. „U„}
Vi m s - {D1 .D2 .---.Dn}

correspond to the set of all valid users and recipient destinations of IM S. Then

S u ^ D = {Ua^Di,U2^ D 2...Un^ D n}

represents the set of one-to-one logical mappings of user-ids to destination-ids. Given S,

then S-set is the powerset of S which represents all possible combinations of logical routing

paths within IMS.

The following defines the fundamental data types of IM S.
1. Evt: {ITVTimeout,AccessInit,NoDest,RecvDeny,NoResource,

Dest Unavl,DestN oExist ,N etwU navi, Netw Err }

2. Act: {NOTIFY,RETURN,TERMINATE,DELETE,FORWARD}

3. Dlaccess: {NONE,DELETE,ADD}

4. Dltype: {USER,GROUP,ALIAS}

5. Priority: {NORMAL,URGENT}

6. Accessattr: {ARCHIVE,MODIFY,VIEW,PRINT,PURGE}

7. Alphanum: sequence of numeric and alphabetic characters

Having defined the previous data types, we declare the set of IMO record structures as

shown in Figure 4.2. Here we specify VDM record types for the Global D ata Object,

Message Control Object, Route Control Object, and the Intelligent Message Object.

We now define the following set of mapping types specific to the system. The map type

names will be subscripted with “M” to distinguish them as mappings.

63

Gdo: : IMOid Int
CREATETSTMP: Alphanum
ORGid: String
ORGADDR: Alphanum
CURRDEST: Alphanum
CURRDESTADDR: Alphanum
NEXTDEST: Alphanum
MSGBLKPTR: Int

Rco: : PRIORITY: Priority
DESTLIST: S-set
DESTLISTTYPE: Dltype
DLVCONFIRM: Bool
ACCESSCONFIRM: Bool
RETTOORG: Bool
SPAWN: Bool
ITV: Int
ARRIVETSTMP: Alphanum
DLACCESS: Dlaccess

Mco: : SUBJECT: String
ACCESSATTR: Accessattr
ACCESSTSTMP: Alphanum
MTPTR: Int
RSPSTORE: Int
SCRIPTPTR: Int

Imo: : GDO: Gdo
MCO: Mco
RCO: Rco

Figure 4-1: IMO Record Type Specification

64

1. EVTm ' E vt—>Act
Mapping of an event to an action such as specified in the Route Event Table. For
example, [NoDest—>RETURN].

2. IMSUSRM: UID-+DEST
Mapping of a user-id to a destination. For example, [100—>userl@netwl].

3. IMOID—>IMO
Each is a mapping of an IMO identifier to an IMO. RQ represents a receive queue,
SQ represents a send queue, and MF represents a message folder.

4. Em : Evt—»-Int
Mapping of an event to an integer number. For example [NoDest—>0].

5. Am - Act—>Int
Mapping of an action to an integer number. For example [NOTIFY—>0].

In the following sections we will formally define the major functions within IM S. These

functions are classified as either primary or auxiliary. The distinction is made for clari

fication purposes. Primary function are those functions that are executed through direct

intervention on the part of the user. For example, by selecting the Send option from the

IMO Transfer Environment, the SEND-IMO function will be invoked. An auxiliary function

is one that is executed indirectly as a result of the internal processing of the system. Except

where indicated, these functions will be classified as primary.

4 .2 .1 IN IT -IM S

The INIT-IM S function is invoked upon the initialization of IM S. All entities within the

system are initialized and the system configuration file is read and the values specified are

loaded into the appropriate locations. Figure 4-2 shows the VDM specification for this func

tion. The only parameter specifies a user identifier which is used as a validation mechanism

which prevents non-IM S users access to the system. The precondition specifies that the

user must be a valid user of IM S. The postcondition indicates that upon initialization, the

Send and Receive queues are cleared of any IMOs and the state of any IMO is also cleared.

The state of the IMO Message Folder is cleared only during the very first time the system

is initialized at a given site.

65

/* Function that initiates the IMO processing mechanism. */

IM S-INin U : Uid)

ext: rd IMSUSR: IMSUSRm
w r SQ: SQm
w r RQ: RQm
w r MF: MFm

pre: U £ d o m IMSUSR

post: IMO7 = []
SQ' = []
RQ' = □
MF7 = []

Figure 4-2: VDM Schema for IMS-INIT().

4 .2 .2 C R E A T -M C O

The CREAT-MCO function is invoked when the user wishes to create and initialize an

instance of a Message Control Object. The VDM specification for this function is shown in

Figure 4-3. This function utilizes several auxiliary functions which are used for obtaining

the user state specifications for the Data Space, Method Table, and Message Script. The

function accepts two parameters: the IMO identifier for which the MCO is being created

and the identifier for the MCO instance. The precondition simply checks that the IMO

identifier is valid. The postcondition indicates that the current instance space of the MCO

is overwritten with the user state specification inputs for each region of the MCO. The

identifier of the MCO instance is set and the function returns the MCO instance.

4 .2 .3 C R E A T -R C O

The CREAT-RCO function is invoked when the user wishes to create and initialize an

instance of a Route Control Object. The VDM specification for this function is shown in

Figure 4-4. This function utilizes several auxiliary functions which are used for obtaining

66

/* Auxilliary Function to create and initialize an MCO. */

CREAT-MCOi I : IMOid, M : MCOid) MCO: MCO-type

ext: w r IMO: IMOm

pre: I £ d o m N

post: MCO' (IMO (I) = MCO (IMO (I) f
[M—* mk-mco-ds(MC0ds(MC0(IM0(I)))) U
mk-mco-mtbl(MTbl(MC0(IM0(I)))) U
mk-mco-script(MScript(MC0(IM0(I))))]

T he param eters to mk-mco-ds, mk-mco-mtbl, and mk-mco-script corre
spond to the fields o f the MCO D ata Space, M ethod Table, and Script respec
tively. T hese functions in itialize each structure as specified by the user.

Figure 4-3: VDM Schema for CREAT-MCO().

the user state specifications for the Data Space, Route Event Table. The function accepts

two parameters: the IMO identifier for which the RCO is being created and the identifier

for the RCO instance. The precondition simply checks that the IMO identifier is valid.

The postcondition indicates that the current instance space of the RCO is overwritten with

the user state specification inputs for each region of the RCO. The identifier of the RCO

instance is set and the function returns the RCO instance.

4 .2 .4 C R E A T -IM O

The CREAT-IMO function is invoked indirectly whenever a user enters the IMO Creation

Environment. An IMO identifier is created upon entry and is associated with the IMO in

stance to be created. Figure 4-5 shows the VDM specification for this function. Parameters

to the function include the IMO, MCO, and RCO identifiers. The precondition validates

the integrity of the IMO identifier and checks to make sure that a unique instance of the

IMO has been created. The postcondtion simply maps the state specifications for the MCO

67

/* Auxilliary Function to create and initialize an ECO. */

CREAT-RCCK I : IMOid, R : RCOid) RCO: RCO-type

ext: w r IMO: IMOm

pre: I € dom N

post: RC0'(IM0(I) * RC0(IM0(I) f
[R— ► mk-rco-ds(RC0ds(RC0(IM0(I)))) U
mk-rco-ret(RET(RC0(IM0(I))))]

T he param eters to m k -r c o -d s and m k -r c o -r e t correspond to the fields o f the
RCO D ata Space and RCO R oute Table respectively. T hese functions in itialize
each structure as specified by the user.

Figure 4-4: VDM Schema for CREAT-RCOQ.

and RCO into the IMO.

4 .2 .5 A R C H IV E -IM O

The ARCHIVE-IM O function is invoked whenever the user wishes to archive (i.e save) an

IMO that has arrived from another destination. However, this function can only be invoked

if the IMO has the ARCHIVE attribute set in the MCO AccessAttr field. This attribute

can only be set by the creator of the message. The VDM specification for this function is

shown in Figure 4-6. The function accepts the IMO identifier as the only parameter. The

precondition checks to ensure that this identifier is a valid IMO id and that the ARCHIVE

attribute has been set for the IMO to be saved. IMOs are archived in the users IMO Message

Folder that exists at the current site. The postcondition specifies the addition of the new

IMO to this folder.

68

/* Auxilliary Function to create and initialize an IMO. */

CREAT-IMCK I : IMOid, M : MCOid, R : RCOid)

ext: w r IMO: IMOm
rd SQ: SQm

pre: I £ d o m RQ
A let sq = d o m SQ in

I € U/Gsg (IMO(I) U SQ(I))

post: IMO(I)' = IMO (I) f Cl-> mk-imo(I ,M,R)]

Figure 4-5: VDM Schema for CREAT-IMO().

/* Function to archive an IMO to the message folder. */

ARCHIVE-IMCK I : IMOid)

ext: rd IMO: IMOm
wr MF: MFm

pre: le t ACCESS = AccessAttr(MCOds(IMO(I))) in
I € dom MF
A allow(ACCESS,ARCHIVE) = TRUE

post: MF' = MF U {1}

allow: —*• B ool allow(S,E) is a function th at determ ines if E G S and returns
TRUE or FALSE based on the outcom e.

Figure 4-6: VDM Schema for ARCHIVE-RCO().

69

/* Function to purge an IMO to the message folder. */

PURGE-IMOC I : IMOid)

ext: rd IMO: IMOm
wr MF: MFm

pre: let ACCESS = AccessAttr(MCOds(IMO(I))) in
I € dom MF
A allow(ACCESS,PURGE) = TRUE

post: MF' = MF f [MF \ {I}]

allow: —► B ool allow(S,E) is a function that determ ines if E £ S and returns
TRUE or FALSE based on the outcom e.

Figure 4-7: VDM Schema for PURGE-IMO().

4 .2 .6 P U R G E -IM O

The PURGE-IMO function is invoked whenever the user wishes to purge (i.e delete) an

IMO that has been archived in the users IMO Message Folder. Like the previous function,

this function can only be invoked if the IMO has the PURGE attribute set in the MCO

AccessAttr field. This attribute can only be set by the creator of the message. The VDM

specification for this function is shown in Figure 4-7. The function accepts the IMO identifier

as the only parameter. The precondition checks to ensure that this identifier is a valid IMO

id and that the PURGE attribute has been set for the IMO to be deleted. The postcondition

specifies that the message folder is updated by the removal of the specified IMO from the

folder.

4 .2 .7 S E N D -IM O

The SEND-IMO function is invoked whenever the user wishes to send an IMO to a recipient

destination. This function directly activates the internal processing of the selected IMO.

An IMO can be sent by direct intervention of the user, or the expiration of a temporal

70

specification, or as the result of an external event which requires the IMO to move to

another destination. The VDM specification for this function is shown in Figure 4-8.

The function takes the IMO id to be sent as the only parameter. The precondition

makes several assertions before an IMO can be sent. The send queue must contain at least

one IMO and a validation is indicated to ensure that the specified IMO exists on the queue.

The precondition also specifies the conditions for an IMO to be sent due to an indirect

activity. The postcondition checks for the specification an empty destination. If this is the

case, the event “NoDest” is processed. Normally, this mechanism is utilized to terminate

IMO processing with the action for this event being “RETURN” to creator.

If a destination is indicated, the internal tables in the IMO are updated. This includes

updating the destination list in the RCO by removing the current destination from the list

and setting the next destination in the list appropriately. The CurrDest and NextDest fields

in the GDO must be updated to contain the appropriate values. The auxiliary xfer function

is then invoked which transfers the IMO to the specified destination and returns the result

of the transfer.

4 .2 .8 R E C V -IM O

The RECV-IM O function is invoked whenever the user wishes to receive an IMO that is

currently pending in the users receive queue. When an IMO is selected for receipt, it is

possible that the sender of that IMO has set the Accesslnit event to be triggered. In this

case, the IMO must initiate a reply back to its originator indicating the time that the

recipient acted upon the IMO. It may also be the case that an IMO in the queue is an

IMO that has returned from its mission and is awaiting notification to its creator. The final

possibility is that an IMO has exceeded its ITV interval while awaiting a response from the

recipient. It must then process the “ITVTimeout” event according to its route table entry

for the event.

The function accepts an IMO id as the only parameter. The precondition checks that

the receive queue has at least one entry in it and that the IMO id is a member of that

queue. It then asserts the conditions listed in the previous paragraph as possible candidate

IMOs to receive. It must be the case that either the IMO id is the one selected by the user,

an ITV has expired for an IMO and must be processed, or an IMO has returned from its

71

/* Function to transfer an IMO to another destination. */

SEND-IMOC I : IMOid)

ext: rd IMO: IMOm
w r SQ: SQm

pre: SQ / {}
A Vl' € SQ

3J: IM0id(GD0(IM0(J))) = I
V SendTime(GDO(IMO(J))) > currtimeO)

post: let RDS = RCOds(IMO(I))
and GDO = GD0(IM0(I))
and DEST = NextDest(GDO) in
if DEST = NIL then

evt-process(I,NoDest)
else let DL = DestList(RDS)

and CD = CurrDest(GDO)
and ND = NextDest(GDO) in
DL' = DL f tl DL
A CD' = CD f DEST
A ND' = ND j hd DL
A Evt' = Evt f xfer(I ,DEST)
A evt-process(I ,Evt)

xfer: —► Event xfer(I,D) is a function that sends IMO— to D estin ation —»D
and returns the outcom e event o f the transfer.

Figure 4-8: VDM Schema for SEND-IMOQ.

72

/

/* Function to receive an IMO off the receive queue. */

R E C V -IM O i I : IMOid, CD : DESTid)

ext: rd IMO: IMOm
w r RQ: RQm

pre: VI € dom RQ
/* An IMO selected by the recipient manually */
(3J: ITV(RCOds(IMO(J))) > 0

A IM0id(GD0(IM0(J))) = I
A evt-process(I,Accesslnit))

/* An IMO in which the ITV expires */
V (3J: ITV(RCOds(IMO(J))) < 0

A evt-process(J, ITVTimeout))

/* An IMO that has returned back to Creator */
V (3J: ORGAddr(GDO(IMO(J))) = CD

A evt-process(J, NOTIFY))

post: RQ' = RQ f [RQ \ {RQ CJ)}]

Figure 4-9: VDM Schema for RECV-IMOQ.

73

mission and is ready to disseminate the information collected from its mission. The VDM

specification for this function is shown in Figure 4-9. The postcondition asserts that the

selected IMO is removed from the receive queue.

4.2*9 A D D -R D E S T

The AD D-RDEST function is invoked when the user wishes to add a recipient destination

to the selected IMO. Destinations can be added manually through the A dd D est option

in the IMO Transfer Environment or through IMO script processing where the recipient is

prompted for additional destinations and the destination list of the RCO is automatically

updated. In either case, the IMO to be modified must have the ADD attribute set in the

DLAccessAttr field to allow destinations to be added. The IMO to be updated must exist

in either the users’ send or receive queue.

The function accepts two parameters: the first is the user-id of the recipient to be added

and the second is the IMO id in which to add the recipient to. The precondition asserts

several conditions. First of all, the selected IMO must exist in either the send or receive

queue. Further, the destination to be added must be valid within IM S. Finally, that the

destination to be added must not already exist in the destination list and the user must

have the appropriate permission to add the destination. The postcondition specifies that

the destination is mapped from the user-id to be added and that the destination list of the

IMO is properly updated by adding the new destination to the end of the destination list.

The VDM specification for this function is shown in Figure 4-10.

4 .2 .1 0 D E L -R D E S T

The DEL-RDEST function is invoked when the user wishes to delete a recipient destination

from the selected IMO. Destinations can be deleted manually through the D el D est option

in the IMO Transfer Environment or through IMO script processing where the recipient is

prompted for as to which destinations should be removed and the destination list of the

RCO. In either case, the IMO to be modified must have the DELETE attribute set in the

DLAccessAttr field to allow destinations to be deleted. The IMO to be updated must exist

in either the users’ send or receive queue.

The function accepts two parameters: the first is the destination to be deleted and the

74

/* Auxilliary Function that adds a recipient destination */
/* to the RCO destination list. */
ADD-RDESTC U : Uid, I : IMOid)

ext: rd IMSUSR: IMSUSRm
w r IMO: IMOm
rd RQ: RQm
rd SQ: SQm

pre: U € bf dom IMSUSR
A (I £ bf dom RQ V I € d o m SQ)
A let RDS = RC0_ds(IM0(I))

and DL = DestList(RDS)
and ACCESS = DLAccessAttr(RDS)
and DEST = m(IMSUSR(U)) in
DEST £ elems DL
A allow (ACCESS, ADD) = T R U E

post: let DL = DestList(RC0_ds(IMO(I))) in
DL' = DLK f [DL || m (IMSUSR(UID))]

a llo w : —*■ B ool a l lo w (S ,E) is a function that determ ines if E £ S and returns
T R U E or FALSE based on the outcom e.

Figure 4-10: VDM Schema for ADD-RDESTQ.

75

second is the IMO id in which to delete the destination from. The precondition asserts

several conditions. The first is that the selected IMO must exist in either the send or

receive queue. The second condition asserts that the destination to be deleted must exist

in the destination list of the IMO and that the user must have the appropriate permission

to delete the destination. The postcondition specifies that the destination is removed from

the destination list and updates the state of the GDO object to reflect the deletion. The

VDM specification for this function is shown in Figure 4-11.

4 .2 .1 1 P R O C E S S -S C R IP T

The PROCESS-SCRIPT function is an auxiliary function that is automatically invoked

when control of an IMO is transferred to the user agent object representing the IMO. The

message script of the MCO is interpreted and executed at each recipient site. Information

that may be collected at a given destination is stored in the response store for that destina

tion in the GDO. The function accepts an IMO id as its only parameter. The precondition

checks that the id is valid and that there is a message script associated with the IMO. The

postcondtion asserts that the script will be executed until either the recipient terminates

the script manually or the there are no more lines in the script to carry out. If any user

input was collected, the information is stored in the appropriate location in the response

store of the GDO. The VDM specification for this function is shown in Figure 4-12.

4 .2 .1 2 E V T -P R O C E S S

The EVT-PRO CESS function is utilized for accepting and processing events that arise as

the IMO moves between destinations. Figure 4-13 shows the VDM specification for this

function. The function accepts an IMO id and an event id as parameters. If the event

exists in the route table for the IMO then the creator has indicated that the event should

be handled according to the action that has been mapped to that event. If the event has

not been specified then the default event/action 2-tuple will be utilized. This 2-tuple exists

for any IMO with the default action specifying that the IMO return to the creator.

The precondition specifies that the event must be a valid event and that the IMO exists

within the users receive queue. The postcondition asserts that for all of the events specified

within the route table, if the input event exists in the table then the corresponding action

76

/* Auxilliary Function that deletes a recipient */
/* destination from the RCO destination list. */

DEL-RDESTC D : DESTid, I : IMOid)

ext: w r IMO: IMOm
rd RQ: RQm
rd SQ: SQm

pre: (I G bf dom RQ V I G d o m SQ)
A let RDS = RC0_ds(IM0(I))

and DL = DestList(RDS)
and ACCESS = DLAccessAttr(RDS)
elems DL > 0
A D G elems DL
A allow (ACCESS, D ELED = T R U E

post: let DL = DestList(RC0_ds(IMO(I)))
and CD = CurrDest(GDO(IMO(I)))
and ND = CurrDest(GDO(IMO(I))) in
DL' = DL f [DL - D]
A if D = CD then

CD' = CD f hd DL
A if CD* ^ NIL bf then

ND' = ND f hd tl DL

allow: —► Bool allow(S,E) is a function that determines if E G S and returns
T R U E or FALSE based on the outcome.

Figure 4-11: VDM Schema for DEL-RDESTQ.

77

/* Function to transfer an IMO to another destination. */

PROCESS-SCRIPT(I : IMOid)

ext: w r IMO: IMOm

pre: I € d o m IMO
A MScript(MCO(IMO(I))) / NIL

post: let GDO = GDO (IMO (I)
and DEST = CurrDest(GDO)
and RS = RspStore(GDO)(DEST)
and SC = MScript(MCO(IMO(I))) in
while -iterminateO do

L inputLine(SC)
A L interpret(L)
A R <— execute(L;)
A if R = TRUE then

RS' = RS f [RS || (DEST || R)]

terminate: —*■ B ool terminate is a function that returns TRUE when the
script is finished executing either by m anual or autom atic intervention.
inputLine: —* IMSL com and line
inputLine(SC): is a function that reads and returns a line o f input from an
IM SL script,
intepret: —>• String
interpret(L) is a function th at interprets in IMSL input line and o u tp u ts a
alternate line to be executed,
execute: —*■ B ool
execute(L) is a function executes a IMSL input line form atted by

Figure 4-12: VDM Schema for PROCESS-SCRIPT.

78

/* Function to process an IMO event/action. */

EVT-P RO CESS(I : IMOid, E : Event, D : DESTid)

ext: rd IMO: IMOm
rd EVT: Em
w r RQ: RQm
w r SQ: SQm

pre: E € d o m EVT
A I € d o m RQ

post: let RET = RET(IMO(I)) and GDO = GDO(IMO(I))
and RDS = RD0ds(IM0(I)) in
/* Process default event/action */
if E £ d o m RET D ACTION <- Action (RET (a))

A if E € d o m RET D ACTION ♦- m(RET(E))
A let CD = CurrDest(GDO)

and ND = NextDest(GDO) and DL = DestList(RDS) in
/* Handle NOTIFY Action */
V (if ACTION -»■ NOTIFY then

if ORGADDR(GDO) = D then
DL' = DL f ORGADDR(GDO)

A SQ' = SQ f CSQ / {I}]
A SEND-IMO(I))

/* Handle TERMINATE Action */
V (if ACTION TERMINATE then

RQ7 = RQ f [RQ \ {I}])
/* Handle RETURN Action */
V (if ACTION RETURN then

DL' = DL f ORGADDR(GDO)
A SEND-IMO(I))

/* Handle DELETE Action */
V (if ACTION DELETE then

DL' = DL f [DL - D]
A CD' = CD | hd DL'
A if CD7 7 ̂NIL then

ND' = ND f hd tl DL)
/* Handle FORWARD Action */
V (if ACTION -»■ FORWARD then

DL' = DL f [tl DL || hd DL]
A SQ' = SQ t [SQ / {I}]
A SEND-IMO(I))

Figure 4-13: VDM Schema for SEND-IMO0.
79

/* Function that initiates the IMO processing mechanism. */

IMO-IN ITIA TE(I : IMOid)

rd IMO: I M O m

successful arrival at NextDest.

process-script(I)
A let DL = DestList(RCOds(IMO(I)))

and Dest = hd DL
and CD = CurrDest(GDO(IMO(I)))
and ND = NextDest (GDO (IMO (I))) in
if Dest 7 ̂N I L then

DL' = DL f tl DL
A CD' = CD j hd DL
A if CD* 7 ̂N I L then

ND* = ND j hd tl DL
A R1 = R f xfer(I,Dest)
A R = R | evt-process(R)

Figure 4-14: VDM Schema for IMO-INITATEQ.

will be carried out. If the action is to notify or return to the creator, the IMO is placed

on the send queue for delivery. If the action is to terminate, the IMO is removed from

the receive queue. If the action is to delete the current destination, then the destination

is removed from the destination list and the state of the GDO is updated. If the action is

to forward to the next destination, then the current destination is placed at the end of the

destination list and the IMO is forwarded to the next destination.

4.2.13 IMO-INITI ATE

The IM O-INITIATE function is an auxiliary function that represents the logical pro

cessing of the IMO. After arrival at a destination the execution of the message script takes

places and information is collected from the recipient. The IMO then attem pts to move to

the next destination with the resulting event processed according to the route table entries.

Figure 4-14 shows the VDM specification for this function.

ext:

pre:

post:

80

The function accepts an IMO id as its only parameter which is validated in the precondi

tion. The postcondition asserts that the message script is executed and for each destination

in the destination list, the IMO is transferred to that location and the internal state of the

GDO is updated to reflect the transfer.

4 .3 F orm al D efin itio n o f IM SL

In this section we formally define the Intelligent Message Script Language using the Backus-

Naur Format. Section 4.3.1 summarizes the notation that will be used to represent the IMSL

grammar.

4 .3 .1 B N F O verview

The notation used to define the IMSL grammar in Section 4.3.2 is based on an extended

form of Backus-Naur Format (BNF). (Lewis h Papadimitriou 1981). A short summary of

the notation is provided below.

1. A grammar consists of a series of rules which define the syntax
of the language to be represented.

2. The left hand side of the rule is separated from the right hand
side by a

3. Alternatives within a rule are separated by a “||“.

4. Member of the same alternative are separated by a

5. An empty alternative is represented by “0”.

6. Each rule end with a “a” .

7. Keywords are written in “bold” type.

8. Literals are enclosed in single quotes (*’).

The formal definition of IMSL is presented next.

4 .3 .2 B N F S p ec ifica tio n o f IM SL

IMS L-Syntax:: =>•
IMSL-Statement-Block ■

81

IMSL-Statement-Block::=>-
IMSL-Stmts |
‘[’, IMSL-Stmts, ’]’ ■

IMSL-Stmts::=^
SET-Stmt |
INPUT-Stmt |
DISPLAY-Stmt |
PROMPT-Stmt |
STORE-Stmt |
CASE-Stmt |
IF-Stmt |
GOTO-Stmt |
CALL-Stmt |
FUNCTION-Stmt |
RETURN-Stmt |
EXIT-Stmt ■

SET-Stmt ::=*►
SET, Variable, Value ■

INPUT-Stmt::=>>
IN P U T , InputVar, InputType ■

DISPLAY-Stmt::=^
DISPLA Y , ’[’, DispSeq, ’]’ ■

PROMPT-Stmt::=^
PR O M PT , PromptText, ResponseList ■

IF-Stmt::=^ ::=>
IF, Expression, TH EN , Statement |
IF, Expression, TH EN , Statement, ELSE, Statement ■

CASE-Stmt::=^
CASE, $$, CaseList, EN D C ■

STORE-Stmt ::=>
STORE, Variable ■

GOTO-Stmt ::=$►
GOTO, Label ■

CALL-Stmt ::=>>
CALL, FunctionName, OptParamList ■

82

FUNCTION-Stm t::^
FU N C T IO N , FunctionName, OptParamList,

FunctionBody,
E N D F ■

RETURN-Stmt::=^
R E T U R N ■

EXIT-Stmt::=> EX IT ■

Statement::=> IMSL-Statement-Block ■

CaseList::=^
Response, :, IMSL-Statement-Block ■

Response::^
AlphaChar ■

Expression:: =4-
SimpleExpression |
SimpleExpression, RelOp, SimpleExpression ■

Simple Expression:: =>
Term |
Sign, Term |
SimpleExpression, TermOp, Term ■

Term::=^ Factor |
Term, FactorOp, Factor ■

Factor::=4>- Variable | Number | NO T, Factor ■

FactorOp::=> * \ / \ A N D ■

TermOp::=^ + | - | OR ■

FunctionBody::=^ IMSL-Statement-Block ■

FunctionName::=^ < function identifier> ■

OptParamsList::=> ’(’, OptParams, ’)’ | 0 ■

OptParams::=^ Params | 0 ■

Params ::=*► Param, Params | Param ■

83

Param: :=>
<variable identifier> ■

Prompt Text ::=> CharSeq ■

ResponseList::=^ Response, ResponseList | Response ■

Response: :=4> AlphaChar ■

DispSeq::=^ DispValue, DispSeq | DispValue ■

DispValue::=4> DispVar | AlphaChar ■

DispVar::=^ $VariableType ■

i
InputVar::=> UserVar ■

InputType::=>
CHAR |
LINE |
PARA |
NUM |
D T i

Label::=4» :LabelD ■

LabelID::=>- clabel identifier> ■

SystemVarType::=^ $SystemVars ■

SystemVars::=^
IMOID |
DESTS |
DEST |
NEXTDEST |
SUBJECT |
SENDNAM E |
RECNAM E |
DATE |
TIME |
NIL |
$$ |
$0 ■

UserVar Type UserVar | @ UserVar | ■

84

UserVar::=^ Cvariable identifier> ■

VariableType::=>- UserVarType | SystemVarType ■

Variable: :=> VariableType | $VariableType ■

C onstant::^ CharSeq | Number | Date ■

Date::=^ DT ■

Number::=>- Integer | Real ■

Integer::=> Digit | Digit, Integer ■

Real::=>- Integer.Integer
Digit ::=>• 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 «

RelOp::=> = | < > | < | > | < | > | i n «

Sign::=^ + | - | ■

CharSeq: :=>•
AlphaChar, CharSeq | AlphaChar ■

AlphaChar: :=>-
<ascii character> ■

85

Chapter 5

IM S A p p lica tio n s

In this chapter we provide two examples of how IM S can be used to automate routine

office tasks. The first example describes how the manager of a team of software developers

can utilize an IMO to obtain the weekly activity status reports from each member of the

team. In the second example, an IMO is used to coordinate the scheduling of a meeting

so that the time and date of the meeting is acceptable to all attendees. Selected routing

scenarios will be utilized to show the typical events that can occur and how they are handled.

General functionality of the system is described in the first example while emphasis of the

functionality of the IMSL language is presented in the second example.

5.1 A W eek ly S ta tu s R ep o rt E xam p le

In this example we provide a description of how IM S can be utilized to automate the task

of collecting weekly activity status reports. The goal is to show the process that is required

to create an IMO to perform its task and the general processing that takes place during the

execution of the task. We begin with a description of the task which we intend to model.

5 .1 .1 Task D escr ip tio n

In this example, a large telecommunications software development company will serve as

the operating platform for the IM S. The company employs approximately 500 software

developers and design engineers. Each department in the organization is divided into in

dividual teams with each team managed by a team leader. The team leader is responsible

86

for providing upper management with monthly status reports pertaining to the individual

members of the team, as well as, the team as a whole. This is primarily accomplished

through the use of status reports which comprise the following information:

• Employee name

• Employee number

• Current date and time

• Status of tasks assigned to employee

• Description of delays and issues related to assigned tasks

• General Comments.

The current procedure for obtaining team member status information is for the team

leader to route a memo to the team members reminding them to submit their status reports

by the end of the week so the monthly report can be updated in a timely manner. Each

team member then creates a status report document detailing the current week’s activities

and milestones and submits the report to the inter-office mail department for delivery. Mail

is scheduled for pickup and delivery twice a day: once in the morning and once in the

afternoon. When the mail has been picked up it is brought to a sorting station where it

can be sorted for later delivery. The turnaround time for this process is approximately one

day.

There are several problems that arise in such a scenario. First, in the typical office

environment, manually routing memos and other mail can be a slow process in and of itself.

A team member may complete and submit a status report on time but actual delivery to a

destination can easily be delayed due to priorities of other office activities. Second, a team

member may misplace the report and fail to submit it on time resulting in a disgruntled

team leader. Third, the method increases both the flow of paper through the office and the

amount of paper work that must be attended to by the team members.

The solution to the problem is to automate the procedure so that:

1. It requires minimal effort by each member to perform the task.

2. It can be performed in a timely manner.

87

TD S Team
User Job Title Location Alias
Userl Team Leader Userl@TDST_wsl U1
User2 Sr. Design Engineer User2@TDST_ws2 U2
User3 Design Engineer User3@TDST_ws3 U3
User4 Sr. Software Engineer User4@TDST_ws4 U4
User5 Software Engineer User5@TDST_ws5 U5
User6 Software Engineer User6@TDST_ws6 U6

Table 5.1: Telecom Software Development Team

3. It reduces paper flow through the organization.

The next section will detail how the IM S can be used to automate this process making

it more efficient and reliable. The example will utilize the Telecom Software Development

Team (TDST) as the users of the system. An IMO will be given the task of collecting status

report information from each team member and returning to the team leader so that the

information can be processed and submitted to management.

5 .1 .2 A u to m a tin g S ta tu s R ep o rt P ro cess in g

The TDST is a five member development team whose team leader is responsible for de

veloping micro-computer telecommunications applications. Relevant information for each

team member is listed in Table 5.1 for convenience.

Each member of the team utilizes the IM S at his workstation and is a registered user of

the system. A remote name server database, N S l has been configured that maintains user

aliases for ease of destination specifications. The team leader has also created a destination

list alias, called TD TS_D L, in which each member of the team has been included.

The team leader wishes to create an IMO that can route itself to each team member,

collect that members’ status report input, and return back when the task has been com

pleted. To accomplish this task, the SMM is accessed to create an IMO instance which will

88

be referred to as IM. 1 Upon creation time, the system automatically populates reserved

and user-definable message fields with system and default values respectively. The global

data space fields are populated first and have been given the following values:

IM.GDO.MsgID = 0 0 0 0 0 1

IM.GDO.CreateTstmp = 921012:0830
IM.GDO.OrgID = U1
IM.GDO.OrgAddr = Userl@TSDT_ws0
IM.GDO.CurrDest = User2
IM.GDO.CurrDestAddr = User2@TSDT_wsO
IM.GDO.NextDest = User3

As shown above, the message is given a message identifier used for tracking the message

through the system. It is also timestamped with the current date and the originators’

identification and return address are included.

The user-defined message fields are populated with defaults values as specified in the

system configuration file. For this example, the following RCO fields have been populated

with values from the team leaders’ configuration file:

IM.RCO.Priority = NORMAL
IM.RCO.DlvConf irm = N
IM.RCO.RetToOrg = Y
IM.RCO.ITV = 500
IM.RCO.SPAWN = N
IM.RCO.DLAccess * NONE

Thus, the default routing parameters for this message indicate:

1 Messages can be reused at any time to minimize creation effort.

89

• Normal delivery priority.

• No delivery confirmation.

• The message should return to the originator.

• An interrupt timeout value of 500 seconds.

• The message can not duplicate itself.

• The recipient can not perform operations on the routing tables.

\

The team leader manually sets the destination list type, DestListType to G R O U P

and the destination list, DestList, to TDST_DL. Based on this information the system will

retrieve the actual values for the specified group list from the name server database, NS1.

Thus, DestList will resolve to the following list of recipient destinations:

IM.RCO .DestList = {User2@TSDT_ws2,User3@TSDT_ws3,
User4@TSDT_ws4 ,User5@TSDT_ws5,
User6 @TSDT_ws6 }

The only MCO Data Space field that has a default value is:

IM.MCO.AccessAttr = ARCHIVE | PURGE

This indicates that a recipient is only allowed to archive (save) and/or delete the IMO.

Any other user-defined message fields that have not been populated with defaults must be

defined manually. In this example, the team leader defines the S U B JE C T field to “Weekly

Status Report” .

5 .1 .3 E ven t T able S p ecifica tio n

Having created an IMO instance, the event table must be defined. As with the definitions

of the other message fields, the event table can also be configured with default values again

supplied through the system configuration file. Through the configuration file the following

event table defaults have been specified:

90

let RET = IM.RCO.RET in
Event [0] = NIL (default)
Action [0] = RETURN
Event i—iT-l 1 __1 = DestUnavl
Action [1] = FORWARD
Event [2] s DestNoExist
Action [2] s RETURN
Event [3] = ITVTimout
Action [3] = FORWARD
Event [4] = NetwUnavl
Action [4] = NOTIFY

As shown above, the default configuration for the event table specifies that the IMO

should perform the following actions:

• Forward itself to the next destination if the current destination is unavailable or the
ITV expires.

• Return to the originator if a destination does not exist

• Notify the current user if the network is unavailable when the network is reestablished.

• For all other unspecified events, return to the originator

5 .1 .4 M essa g e S crip t S p ecifica tio n

As described earlier, the message script is used to define the events that will take place

once the message reaches an intended destination. Since the team leader is interested in

retrieving status reports from each member of the group, he creates a script that will route

itself to each team member and interactively collect the week’s status report activity from

each member of the team. The message will return to the team leader when the information

has been obtained. The following section outlines the execution of the message through the

system.

5 .1 .5 IM O E x ecu tio n

When the team leader has finished creation of the message, the SMM is notified that a

message is ready for delivery. A MTO is instantiated and the message is put on the send

91

queue. The first destination as determined from the D estL ist is Userl, so the MTO submits

the message to the communication sub-system for delivery.

In this example, Userl is active on the network so the message successfully arrives at

the destination. The SMM at the location receives the message and instantiates a MTO to

process the incoming IMO. The IMO is placed on the receive queue and the ITV is started.

Userl is then notified that a message has arrived and is awaiting processing. Userl accesses

the awaiting message through the MTO. At this point, a UAO is instantiated and control

is relinquished to the UAO.

The UAO then begins executing the message script for the current recipient destination.

The actual script is shown is Section 5.1.6. The script first automatically stores the recipient

name, current date, and time to the response store for the current destination. The subject

of the message is displayed which indicates the message is requesting the weekly activity

report of the recipient. The script then prompts the recipient to enter their employee

number and the weeks activities status. The contents of the input variable “task-stat” are

checked to make sure the recipient responded to the question. If not, the question is asked

again until the user responds. The next question is a yes or no response question that asks

the recipient if there are any concerns that should be made known. If the answer is “YES”

the input is collect and stored. Any final comments are collected in the last question. The

script thanks the recipient and terminates processing at that point. The SMM is notified

that processing has completed and that the MTO should now forward the message to the

next destination.

At this point, control is given back to the MTO and the next destination, User2, is

selected and Userl is removed from the list. Again the SMM is notified that the message is

ready for delivery. User2 is also active on the network so the message is delivered to that

destination. Message receipt at User2, is handled the in the same manner as Userl, however

in this case, User2 is in a meeting and does not respond to the message. A response timeout

occurs in this case. The MTO consults its event tables and determines that the message

should forward itself to the next destination. Thus, the message places User2 at the end of

its destination list and selects the next destination.

User3 is selected but is on vacation and thus this destination is not active on the network.

When the MTO attempts to send this message, it will be notified that the destination is not

92

available. The MTO will be notified of the event and according to the event table action,

the message will be forwarded to the next destination. Since the current destination is not

available, the entry is removed from the destination list and the MTO will log an internal

message in the response store for this destination indicating the condition.

User4 and User5 are the final unvisited destinations. Both users are active on the

network and the message successfully routes itself to each user and collects the desired

information. The destination list still contains the User2 destination. User2 has since

returned from the meeting. The message routes itself back to User2. User2 accepts the

message and enters the requested information.

The MTO updates its destination list by removing User2. Since all destinations have

been visited the destination list is empty. However, the R e tT o O rg flag has been turned

on which indicates that upon completion of the message mission the message should route

itself back to the originator. The MTO determines this destination by accessing the GDO

to obtain the return address of the originator. The message is then routed back to the

originator following the same procedures for the other destinations.

When the message arrives back to the originating destination, the team leader is notified.

Like any other message that arrives, this message is accessed in the same manner. The team

leader retrieves the message. In this case however, since the message originated from this

destination, the team leader is not prompted to enter the status report information but is

allowed to retrieve the information gathered by the message. The team leader extracts the

information and begins preparing his report for management.

5 .1 .6 IM O M essa g e Scrip t

The IMSL message script created for the example described above is provided.

STORE $RECNAME
STORE $DATE

DISPLAY $SUBJECT

DISPLAY [$RECNAME, Please answer the following questions for this
weeks status report. Thanks.]

93

DISPLAY "Enter employee number:"
INPUT emp-num
STORE emp-num

:Q1
DISPLAY "Enter the status of the tasks to which you have been assigned:"
INPUT task-stat PARA

IF $task-stat = $NIL THEN
GOTO Q1

STORE task-stat

PROMPT "Do you have concerns or issues that you would like to express?" yn
CASE $$

y : DISPLAY "Go ahead."
INPUT concerns PARA
STORE concerns
GOTO :comments

n : GOTO :comments
ENDC

•.comments

DISPLAY "Enter any additional comments you wish to make."
INPUT comments PARA

IF $comment = $NIL THEN
SET comments "No Comments"

STORE comments

DISPLAY "Thanks, $RECNAME"
EXIT

5.2 S ch ed u lin g a M e e tin g

In this example, we focus on the functionality of the IMSL language and how an advanced

message script can be created to perform a somewhat more complex and time consuming

task. The task that we will model is that of determining the time of a meeting such that

all attendees agree on the scheduled time. We begin the example with a more formal

description of the task.

94
i

5 .2 .1 Task D escr ip tio n

Many times, a meeting must be scheduled in which it is mandatory that the specified

attendees of the meeting be present. The actual time of the meeting is dependent on the

attendees agreeing on a specific time and date. The task of scheduling this type of meeting

can often be a frustrating and time consuming event. For instance, an individual must take

on the role of contacting each of the possible attendees to determine the times that the are

convenient for that individual to attend the meeting. The times that are convenient for

each attendee must then be analyzed to see if there is potential time that the meeting can

be scheduled such that everyone can attend. If there is a conflict then the process must

be repeated until a time can be arranged. The task is further complicated due to the fact

that it may be difficult to contact an individual to obtain a possible time in which case the

whole process can be significantly delayed.

One solution to the task described above is to assign the task to an individual and let

that individual consult with each attendee until a possible time can be scheduled. This

solution is acceptable if the meeting can be scheduled in a short amount of time. However,

if the task begins to take a considerable amount of time, then other tasks assigned to the

individual may start to be delayed which can lead to further delays and problems. A second

approach is to schedule a conference call with the expected attendees. In this manner, each

attendee can state the times which are convenient for them and a meeting time can quickly

be arranged. However, with this approach the scheduling problem still manifests itself in

a slightly different format. That is, when should the scheduling of the conference call take

place? If each possible attendee must be present during the conference call then the same

set of problems still exists. In the next section we will describe how the IM S provides a

solution for this problem that requires minimal effort for those involved in the task.

5 .2 .2 A u to m a tin g th e S ch ed u lin g P ro cess

We believe that this problem can be modeled using IM S to create an IMO to carry out

the task of scheduling an appropriate time for the meeting. The IMO can route itself to

each individual and request a time in which the individual can attend. If it is determined

that a conflict exists, the IMO can reroute itself back to each member and request a new

time until it determines a time which is acceptable for all the attendees. At this point the

95

T hesis C o m m ittee
Faculty Member Location

FM_1 FMl@wsl
FM_2 FM2@ws2
FM_3 FM3@ws3

Table 5.2: Thesis Committee Members

meeting can be scheduled.

We use an the following description for this example. A graduate student is preparing for

the defense of a thesis. The faculty members that have been selected to serve of the student’s

thesis committee must be contacted to arrange a time for the student’s thesis defense. Since

faculty members are often teaching classes or attending seminars, it is quite possible that

difficulties may arise while trying to arrange the meeting. The graduate student employs

the use of IM S to create an IMO that is assigned the task of contacting each member of

the committee to determine a convenient time to schedule the defense. When the time is

determined, each member of the committee and the graduate student will be notified of the

time. The faculty members and the student can then meet at this time for the defense.

Table 5.2 represents the members the thesis committee.

Again we emphasize that the message script will be the emphasis of this example so

we will assume the following configuration for the RCO and MCO. The destination list is

initialized to include each member of the thesis committee. The ITV timeout value is also

set such that if no response is obtained before the timeout, the IMO will move on to the

next member. Recipients will not be allowed to alter the destination list. The event table

specifications will remain as indicated in the previous example.

5 .2 .3 IM O M essa g e Scrip t D efin itio n

The IMO message script which is used to perform the described task is shown below with

a description of its functionality following the example:

The following is the IMSL script for the scheduling of a graduate student thesis defense

96

meeting as describe in Section 5.2 of Chapter 5.

SET Omax-retry 0

SET Qdests $$DESTS
SET Qfirst-run true

SET @fml "FM_1"
SET <3fm2 ”FM_2"
SET Ofm3 ”FM_3"

SET @fml-date time NIL
SET @fm2-datetime NIL
SET @fm3-datetime NIL

SET <9gs-datetime NIL

IF $@first-run = true THEN
C
DISPLAY [$RECNAME: I am in the process of scheduling a meeting time

between the members of my thesis committee for the defense of
my thesis. I am open for any date and time during the week of
November 23. Please let me know what day and time is convenient
for you during this time period.]

CALL get_time (RECNAME)

DISPLAY [I will check with the other members and let you know
if this time is acceptable. Thank you.]

SET $$DESTS := $$DESTS + $$DEST
IF $<9fml-datetime <> $NIL AND

$<9fm2-datetime <> $NIL AND
$@fm3-date time <> $NIL THEN
[
CALL verify_time
SET Qfirst-run false
]

EXIT
]

IF $Qagree = true THEN
[
DISPLAY [$RECNAME: The agreed upon time for the thesis defense will

be at $@gs-datetime. Thank you for your input.]

97

IF $$NEXTDEST * $NIL THEN
SET $DESTS $$ORGADDR

EXIT
]

DISPLAY [$RECNAME: Scheduling conflicts have arisen in the times specified
by the committee members. Please check the times indicated and
provide an alternate time that you can attend if appropriate.
Thank you.]

CALL display_time($fml, $fml-datetime)
CALL display_time($fm2, $fm2-datetime)
CALL display_time($fm3, $fm3-datetime)

CALL get.alttime (RECNAME)

CALL verify_time

EXIT

FUNCTION get_time (REC)
IF $@first-run = true THEN

DISPLAY "Please enter a time that is convenient for you to attend:"
ELSE

C
PROMPT "Do you want to enter an alternate time?" yn
CASE $$

y : DISPLAY "Enter a new time:"
GOTO :input

n : RETURN
ENDC
]

:input

INPUT date DT

IF ($REC = $<9fm_l) THEN
SET @fml_datetime date

ELSE
IF ($REC = $0fm_2) THEN

SET @fm2_datetime date
ELSE

SET @fm3_datetime date
ENDF

98

FUNCTION display-time (REC, DATE)

IF $DATE <> $NIL THEN
DISPLAY $REC has suggested Ofml-datetime as a possible date.

ENDF

FUNCTION verify_time
IF $<9fml-datetime <> $@fml-datetime <> $Qfm3-datetime THEN

c
SET Qmax-retry := $@max-retry + 1

IF $@max-retry = 5
SET $DESTS $$0RGADDR

ELSE
SET $DESTS $dests

EXIT
]

ELSE
C
SET $@gs-datetime $fml-datetime
SET $DESTS $dests
SET $@agreed true
EXIT
]

ENDF

In this script, several features of the IMSL language are used. Global variables are included

that maintain certain values throughout the existence of the IMO. These include the current

date and time input by a recipient, the recipient name, and control flags which are described

later. Several functions are also used which simplifies the processing of the which will be

defined as necessary.

The global variables are initialized with defaults only upon instantiation of the IMO.

The original destination list is saved in a global variable. After times have been collected

from each member, the times will be analyzed to determine if there is an agreement on the

meeting date. If so, each member will then be notified of the agreed upon time and the

IMO will return and inform the graduate student. If there is a conflict, then the destination

list will be reset, and the IMO will return to each member and allow an alternate time

to be entered by that member. This process will continue until a time is agreed upon or

99

the number of iterations of the process exceeds a predefined maximum that is set by the

graduate student. This limit is imposed so the process will terminate if it appears that a

date can not be agreed upon.

5 .2 .4 IM O M essa g e S crip t D escr ip tio n

On the first iteration of IMO processing, each committee member is consulted. The subject

of the message is displayed followed by a greeting message from the student requesting the

recipient to enter a time that is convenient during the time frame indicated by the student.

The function “get_time” is called that will request a time from the the recipient. Based on

the current recipient, the time is stored in the appropriate global variable.

Since each member must be contacted, the destination of the current recipient is added

to the end of the destination list in the RCO. This allows the current recipient to remain

active in the list of destinations in case the first iteration fails to obtain an agreed upon

time. A message is displayed indicating that the other members of the committee will be

consulted. Only after all member have submitted initial input times will the analysis take

place.

After the first iteration, each member will have input a time convenient for them. The

function “verify-time” is called that evaluates whether each member has agreed to the same

time. The flag “@first-run” is set to false to indicate in the remaining iterations, if needed,

that the processing logic should now input alternate times.

If all times are in agreement then the global variable “@gs-datetime” is set to the agreed

upon time. This variable is simply used to indicate to the graduate student the time of the

meeting. The destination list of the RCO is set back to the original list that was stored in

the global variables “@dests” . The flag, “@agreed” is set to indicate that a time has been

agreed upon by all the members. The IMO then routes back to each member and indicates

the time of the meeting to the recipient. An explicit check is then performed such that if no

more destinations exist, the destination list is set to return back to the graduate student.

If there is a conflict in times, then a check is made to see if the IMO has reached the

maximum number of iterations for determining the time of the meeting. If it has, the

destination list is reset to return to the graduate student, otherwise, the destination list is

set to the original list.

100

On the succeeding iterations the recipients are notified of a scheduling conflict and

alternate times are required. The current time input by each member are displayed using

the function “display-time”. The recipient is then prompted to enter an alternative time

if necessary. The “get-time” function is again used. However, since this is not the first

iteration a different message is displayed. The recipient can either elect to keep the time

entered previously or to enter an alternate time. In either case, the time will again be

verified using “verify-time”. If all times are agreed upon then the members will be notified

and the IMO will return to the graduate student with the time. If not, then the next

iteration will be attempted.

5.3 S u m m a ry

In the preceding examples we have demonstrated how IM S can be used to model certain

routine office tasks and then provide the mechanism for executing the tasks in the form of

a message object. We have shown how information flow can be increased while at the same

time optimizing a users time for performing other important tasks while the message object

perform tasks which can be tedious and time consuming at best. In the conclusion of this

thesis we expand upon the usefulness and the need for a system such as IM S.

101

Chapter 6

C o n clu sio n s an d F u rth er R esea rch

Since communication is a primary function of many office tasks, it is natural to envision a

system whereby messages can provide advanced capabilities which would allow the automa

tion of certain tasks. In this thesis we have presented a model for an advanced computer-

based message system (CBMS), called the Intelligent Message System (IM S), to achieve

this goal. Our system is based on concepts of objects and active messages. The goal of

this system is to expand the functionality of traditional CBMSs by allowing messages to

be programmed to perform a specific task. Using intelligent messages to automate routine

tasks can increase the productivity within the office environment by allowing office workers

to concentrate on other non-routine tasks. In the remaining sections, we will present:

1. Contributions of this research.

2. An overview of IM S.

3. Relationship of IM S to other models.

4. Future areas of research.

6,1 C o n tr ib u tio n s

• Identification of the characteristics of an office environment with respect to the au
tomation of office tasks and procedures.

• Definition of the role of traditional computer-based message systems in the automation
of office tasks and procedure.

102

• A survey of research work related to the automation of office procedures via messages.

• Specification and design of an advanced computer-based message system, called IM S,
which allows a message to be programmed for performing a specific task which make
routing decisions predicated on the occurrence of certain events.

• Formal specification of the syntax for the Intelligent Message Script Language using
an extended form of BNF.

• Formal specification of the major functions of IM S using the Vienna Development
Method specification language.

• Description of examples which illustrate the functionality offered by the system.

6 .2 IM S O verv iew

IM S is a model for an advanced computer-based message system in which messages are

viewed as active and intelligent objects that can be programmed to perform a specific task.

A message in this system is called an IMO for Intelligent Message Object. An IMO is

composed of three internal objects. The GDO, or Global Data Object, maintains global

data that is used during routing and execution of the message mission. The RCO, or Route

Control Object, is responsible for routing the message to the intended destinations. This

responsibility is referred to as the secondary message function of the message. The RCO

maintains a route event table that specifies a set of events and corresponding actions to

execute should a particular event occur during routing. The MCO, or Message Control

Object, is responsible for executing the “mission” or task which has been assigned to the

message. This responsibility is referred to as the primary message function. The MCO

maintains a methods table which allows the inclusion of IMSL methods that can be used

during execution of the message script. Each object also maintains an internal data space

for data specific to that object.

Each task is programmed into an IMO using the IMSL, Intelligent Message Script Lan

guage. IMSL is a simple interpretive language that provides a flexible command set for

programming tasks. Commands exist for performing user I/O , control flow, data storage,

and computations. Each script is interpreted at a recipient site

Each site in the IM S environment must utilize a System Mail Manager (SMM). The

SMM provides all the facilities for IMO administration, creation, and transfer. Each of these

functions exists as a separate environment within the SMM. RCO and MCO configurations

103

may be saved for reuse at a later time to minimize IMO creation time. A Message Transfer

Object is utilized for sending and receiving IMOs. A User Agent Object is utilized for

performing the message mission.

6.3 R e la tio n to O th er M o d els

Several related models were surveyed in Chapter 2. Each of these models provides a specifi

cation for using messages as a medium for automation of certain tasks. These models share

many similar characteristics while at the same time offer unique approaches with respect

to these messages. The models which were surveyed include:

• V ittal’s R2D2 system (Vittal 1980).

• Hogg’s Imail System (Hogg 1985).

• Mazer’s Message Management System (Mazer k, Lochovsky 1984).

• Tsichritzis’ KNO model (Tsichritzis & Gibbs 1987).

Our model also shares many similar characteristics with the above models. However, our

approach has introduced several distinguishing features which are enumerated below.

1. A message, called an IMO, is composed of multiple objects. Each object represents
the encapsulation of a specific function of the message.

2. A Route Control Object (RCO) manages the routing of the IMO through the system.
A route event table is utilized by the RCO to facilitate efficient routing. This process
is characterized as the “secondary function” of the message.

3. A Message Control Object (MCO) manages the execution of the message task at each
recipient site. This process is characterized as the “primary function” of the message.

4. A System Mail Manager (SMM) provides the user interface to the system at each site.
All facilities for sending, receiving, and managing IMOs are provided.

5. A message script language called IMSL was defined for programming message tasks.

6 .4 F u tu re R esearch

The research work presented in this thesis represents a detailed specification only. As is

the case with most research work, issues are raised will require further study. Clearly the

104

opportunity exists for developing a prototype of the IM S system. Implementation would

allow a more thorough understanding of the run-time issues and performance requirements

for such a system. We identify the areas which require further research below:

1. Reducing the complexity of IMO creation. Many steps are required during the process
of creating a new IMO. Attributes must be defined, the Route Table must be config
ured, and the Message Script task must be written. Allowing the reuse of previously
defined IMOs will help in this effort.

2. Minimizing the size requirements of an IMO message script. The amount of space
required for an IMO must be minimized to increase the efficiency of IMO routing
through the system. A method for tokenizing a message script would significantly
reduce the size of an IMO.

3. Message Script verification. A method for verifying a message script must exists to
ensure the integrity of the system is not violated.

4. Support for non-textual data. IM S provides supports for only textual (ASCII) data.
However, a multi-media IMO can be envisioned that would allow inclusion of other
types of data such as facsimile, audio and visual data, and graphical images.

5. Non-heterogenous environment support. This requirement would allow an IMO to
transfer to locations which support different underlying computational domains. Thus,
the constructs supported by IM S must be flexible enough to allow IMO execution
within these environments.

To fully realize a system of this type will require much effort, however, it is believed

that the benefits and/or drawbacks encountered will provide a beneficial influence on the

practical implementations of other intelligent message systems.

105

B ib lio g ra p h y

Agha, G. (1986), Actors: A Model o f Concurrent Computation in Distributed Systems, MIT
Press.

Bruder, J. et al. (1981), User experience and evolving design in a local electronic mail system,
in R. Uhlig, ed., ‘Computer Message Systems’, North-Holland Pub., pp. 69-78.

Ellis, C. h Gibbs, S. (1985), Active objects: Realities and possibilities, in D. Tsichritzis,
ed., ‘Office Automation’, Springer-Verlag.

Giuliano, V. (1982), ‘The mechanization of office work’, Scientific American pp. 149-165.

Guttag, J. (1977), ‘Abstract data types and the development of data structures’, Commu
nications of ACM 20(6), 396-404.

Hewitt, C. & Baker, H. (1977), Actors and continuous functionals, in E. Neuhold, ed.,
‘Formal Description of Programming Concepts’, North-Holland.

Hogg, J. (1985), Intelligent message systems, in D. Tsichritzis, ed., ‘Office Automation’,
S pringer- Verlag.

Jones, C. (1989), Systematic Software Development using VDM, Prentice-Hall International.

Kim, W. & Lochovsky, F., eds (1989), Object-Oriented Concepts, Databases, and Applica
tion;s, Addison-Wesley.

Lewis, H. & Papadimitriou, C. (1981), Elements of the Theory of Computation., Prentice-
Hall.

Mackay, W. (1988), ‘Diversity in the use of electronic mail: A preliminary inquiry’, ACM
Trans, on Office Information Systems 6(4), 380-397.

Mazer, M. & Lochovsky, F. (1984), ‘Logical routing specification in office information sys
tems’, ACM Transactions on Office Information System 2(4), 303-330.

Nierstrasz, 0 . (1989), A survey of object-oriented concepts, in W. Kim & F. Lochovsky,
eds, ‘Object-Oriented Concepts, Databases, and Applications’, Addison-Wesley.

Patterson, D. (1990), Artificial Intelligence and Expert Systems, Prentice-Hall.

Robert, L. (1970), Computer network development to achieve resource sharing, in ‘Proc. of
Spring Joint Computer Conference’, ACM, pp. 543-549.

106

Shriver, B. Sz Wegner, P., eds (1987), Research Directions in Object-Oriented Programming,
MIT Press.

Tsichritzis, D. & Gibbs, S. (1987), Messages, messengers, and objects, in ‘Proceedings of
the IEEE Symposium on Office Automation’, pp. 118-127.

Tsichritzis, D., ed. (1985), Office Automation, Springer-Verlag.

Vittal, J. (1976), MSG Manual, Cambridge, Mass.

Vittal, J. (1980), Active message processing: Messages as messengers, in ‘Proceedings of the
International Symposium on Computer Message Systems’, Vol. IFIP TC-6, Ottawa.

Woo, C. h Lochovsky, F. (1986), ‘Supporting distributed office problem solving in organi
zations’, AC M Trans, on Office Information Systems 4(3), 185-204.

Woo, C. h Lochovsky, F. (1987), ‘Viewing communication as a problem solving activity:
An enrichment towards supporting cooperative office work’, IEEE-CS Office Knowledge
Engineering 1(3), 18-22.

107

	An Object Based Approach Towards the Automation of Office Procedures Using Intelligent Messages
	Recommended Citation

	tmp.1585764190.pdf.tT9dJ

