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ABSTRACT 

Cascade Control systems are composed of inner and outer control loops. Compared to the 

traditional single feedback controls, the structure of cascade controls is more complex. As a 

result, the implementation of these control methods is costly because extra sensors are needed to 

measure the inner process states. On the other side, cascade control algorithms can significantly 

improve the controlled system performance if they are designed properly. For instance, cascade 

control strategies can act faster than single feedback methods to prevent undesired disturbances, 

which can drive the controlled system’s output away from its target value, from spreading 

through the process. As a result, cascade control techniques have received much attention 

recently. In this thesis, we present a multi-objective optimal design of linear cascade control 

systems using a multi-objective algorithm called the non-dominated sorting genetic algorithm 

(NSGA-II), which is one of the widely used algorithms in solving multi-objective optimization 

problems (MOPs). Two case studies have been considered. In the first case, a multi-objective 

optimal design of a cascade control system for an underactuated mechanical system consisting of 

a rotary servo motor, and a ball and beam is introduced. The setup parameters of the inner and 

outer control loops are tuned by the NSGA-II to achieve four objectives: 1) the closed-loop 

system should be robust against inevitable internal and outer disturbances, 2) the controlled 

system is insensitive to inescapable measurement noise affecting the feedback sensors, 3) the 

control signal driving the mechanical system is optimum, and 4) the dynamics of the inner 

closed-loop system has to be faster than that of the outer feedback system.  By using the NSGA-

II algorithm, four design parameters and four conflicting objective functions are obtained. The 

second case study investigates a multi-objective optimal design of an aeroelastic cascade 

controller applied to an aircraft wing with a leading and trailing control surface. The dynamics of 
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the actuators driving the control surfaces are considered in the design. Similarly, the NSGA-II is 

used to optimally adjust the parameters of the control algorithm. Ten design parameters and three 

conflicting objectives are considered in the design: the controlled system’s tracking error to an 

external gust load should be minimal, the actuators should be driven by minimum energy, and 

the dynamics of the closed-loop comprising the actuators and inner control algorithm should be 

faster than that of the aeroelastic structure and the outer control loop. Computer simulations 

show that the presented case studies may become the basis for multi-objective optimal design of 

multi-loop control systems.  
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CHAPTER 1: INTRODUCTION  

1.1 Literature Review   

Cascade control techniques can improve significantly the performance of feedback 

controllers. Unlike single feedback control loops, cascade control strategies can act quickly to 

prevent external excitations from propagating through the process and making the controlled 

variable deviate from its desired level (Smith & Corripio, 1985). This important benefit has made 

these control methods very attractive to many applications such as chemical process industries 

and mechanical systems. However, the performance of the cascade control systems largely relies 

on tuning of the setup parameters of both inner and outer loops (Lee et al., 1998). Moreover, the 

tuning process should often satisfy multiple and conflicting objectives. One of the main 

objectives in designing cascade controllers is to make the inner loop fast and responsive in order 

to minimize the effect of upsets on the primary controlled variable (Smith & Corripio, 1985). 

Other objectives such as robustness against unavoidable measurements’ noise and energy saving 

are also of high importance. 

Cascade controllers have been in focus for a long time. They were first introduced by 

Franks and Worley in 1956 (Franks & Worley, 1956). After that, they have gained significant 

attention from control system researchers. For instance, Maffezzoni and his co-authors 

(Maffezzoni et al., 1990) proposed a new design concept for cascade control that aimed to attain 

four goals: 1) decoupling the design of inner from the outer control loop, (2) the outer loop 

stability should not be affected by the possible parameter variations in the inner loop, (3) 

elimination of the windup problems in the cascade structure; and (4) robustness of the overall 

closed-loop system. The proposed method was applied to steam temperature control application 

and it was shown that it can be used to handle any number of nested cascaded control loops. PID 
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(Proportional-Integral-Derivative)-based inner and outer control loops were designed and tuned 

by Maclaurin series and compared with those obtained by frequency and ITAE (integral-time-

absolute error) methods (Lee et al., 1998). Also, a two-degree-of-freedom PID controller was 

designed to ensure the stability of cascade control (Alfaro et al., 2008). The outer loop gains 

were designed to automatically adjust their values when the inner loop controller changes. 

Another application can be found by Kaya et al. (2007). In the outer loop, a PI-PD Smith 

predictor scheme was used, while an internal model control was chosen for the inner loop of the 

cascade control. The outer and inner control parameters were obtained by minimizing one of the 

standard forms (different versions of the closed-loop system tracking error). Both first-order and 

second-order plants with time delay were used in the computer simulations. The results showed 

that the proposed technique is superior to single feedback methods. A PI controller for flux 

regulation was designed first to achieve fast direct flux control. After that, cascade schemes of PI 

torque and speed controllers were introduced to achieve high performance speed control of a 

permanent magnet synchronous motor (Chen et al., 2009). The performance of the proposed 

control scheme was tested in the presence of both load disturbance and parameter variations. A 

Hybrid PID cascade control was investigated (Homod et al., 2010) and implemented on HVAC 

(Heating, Ventilation, and Air Conditioning) systems in order to enhance the performance of the 

central air-conditioning system. The cascade control was tested and compared with the 

traditional PID that was tuned by Ziegler-Nichols tuning method. Using a mathematical model of 

the air-conditioning space, the simulations showed that the proposed hybrid PID-cascade 

controller has the capability of self-adapting to system variations and results in quicker response 

and better performance. A high-order differential feedback cascade controller was implemented 

instead of the conventional PID cascade control to regulate steam temperature of a power plant 
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boiler (Wei et al., 2010). The findings showed that the proposed control method has good static 

and dynamic performance, robustness, and disturbance rejection ability. A cascade structure that 

implements a PI (proportional-integral) controller for the speed regulation in the outer loop and a 

P (proportional) controller for controlling a DC motor armature current in the inner loop was 

investigated by Bhavina et al. (2013). Both simulation and experimental results demonstrated 

that the cascade PID control performs better than single PID control. Likewise, Abdalla and his 

colleagues proposed a cascade control system for current and speed control of a DC motor 

(Abdalla et al., 2016). Two PI controllers were implemented in the primary and secondary 

control algorithm. 

Nonlinear cascade controllers have been also found in the literature. For instance, an 

inner static and dynamic sliding-mode controls were designed by (Almutairi & Zribi, 2010) and 

then tested on a ball-beam system using both simplified and complete mathematical models of 

the system. Therein, the authors indicated that an outer controller can be implemented to further 

improve the stability of the system, whilst by Chen et al. (2010), a hybrid nonlinear and linear 

cascade control was designed and analyzed for a boost converter. The inner current loop is a 

sliding-mode control and the outer voltage loop employs a PI control. Computer simulations 

showed that the reference output voltage can be tracked well with fast response even in the 

presence of parametric changes, system uncertainties, or external disturbances. While by 

Tunyasrirut and Wangnipparnto (2007), a Fuzzy–PID cascade controller to control the level of 

horizontal tank was developed. The cascade control structure was made of a PID controller in the 

inner loop for regulating the flow rate of the system and a Fuzzy logic controller in the outer loop 

for controlling the liquid level. The results showed that the effect of load disturbance is minimal, 

and the controlled system response does not overshoot when the cascade controller is applied. 
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Another nonlinear cascade loop based on type 2 fuzzy PD controller was used by Hamza et al. 

(2015) to balance the pendulum of a rotary inverted pendulum system about its upright unstable 

equilibrium position. The parameters of the master and slave controllers were optimized by using 

genetic algorithm and particle swarm optimization. A single cost function that consists of the 

steady state error, settling time, rise time, maximum overshoot, and control energy was 

formulated. Experimental and simulation results manifested that the proposed control system is 

robust against load disturbances, parameter variations, and measurement noises.  

Multi-objective optimization of cascade controllers has been rarely discussed in the 

literature. Only a few studies can be found in this regard. For instance, Kumar and his colleagues 

(Kumar et al., 2012a) developed a multi-objective optimal control of a multi-loop controller 

consiting of a PI controller in its inner and outer loop. The control algorithm was used to regulate 

the liquid level in a cylindrical tank. Two algorithms, NSGA - II and NSPSO (Non-dominated 

Sorting Particle Swarm Optimization), were used to tune the control gains via minimizing 

tracking error and maximizing disturbance rejection. The solution of the MOP in terms of the 

Pareto set and Pareto front were obtained. The results showed the competing nature between the 

selected design objectives. Similarly, an optimal cascade controller comprising two PI 

controllers, one used in the primary and the other in the secondary loop, were presented by 

Agees Kumar and Kesavan Nair (2012) to control the level in a cylindrical tank. Both NSGA - II 

and NSPSO were utilized to fine tune the controller parameters of both control loops and achieve 

two objectives: minimum overshoot and settling time. Another study that concerns the 

optimization of cascade controllers was introduced by Fu et al. (2017). Therein, the cascade 

controller was used to improve the performance of a superheated steam temperature system and 

the optimization process was broken in two stages. In the first stage, the gains of a PI controller 
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in the inner loop were optimized by considering the tracking error and disturbance rejection as 

fitness functions. Also, the robustness of the closed-loop system in terms of the sensitivity 

function was imposed as a constraint during the optimization process. In the second stage, the 

outer PI controller was fine-tuned by maximizing the robustness and disturbance rejection of the 

controlled system at the same time. The computer simulations showed a promising future of the 

proposed controller in industrial applications.    

Although a couple of studies have addressed the design of cascade controllers in multi-

objective scope, the main purposes of these controllers have not been considered. There are two 

main goals that have to be achieved in the design of cascade controllers: 1) the salve closed-loop 

control system must be faster than the master, 2) the secondary loop should fast reject any 

disturbance and prevent it from propagating to the primary loop. Other objectives such as 

robustness against measurement noise, optimum energy consumption, small overshoot, fast 

transient response, and minimum tracking or steady-state error are legitimate and traditional 

requirements in control systems’ design. Thus far, most of the studies have focused on the 

disturbance rejection capability of cascade algorithms and used that as one of the objectives 

during the optimization process, see for example the works by Kumar et al. (2012b) and Fu et al. 

(2017). The fact that the inner closed-loop system has to be faster than the outer closed-loop one 

has been ignoned during the optimization and the authors sufficed to show that it is satisfied only 

on the simulation or exprimental results; that is, it was not considered as one of the design 

objectives. On the other hand, some studies considerd completely different objctives in the 

design of cascade control systems. For example, Kumar and Nair (2012) designed an optimal 

multi-loop system by optimizing the overshoot and settling time of the closed-loop system. 

Although these are important objectives, the two main goals the cascade loops were introduced 
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for should be also included. On the other side, attaining the prime properties of cascade schemes 

come at the cost of control energy consumption; particularly, a large control signal is required for 

better disturbance rejection. In other words, the objective of minimizing the control energy is 

conflicting with maximizing the ability of closed-loop system to reject external upsets. For this 

reason and since energy saving is important nowadays, the control energy should be considered 

as one of the cost functions in the design of nested loop controllers. However, this objective has 

been ignored by almost all the recent studies in this context. Furthermore, other design targets 

such as improving the insensitivity of the closed-loop cascade system to measurement noise is 

also important for two reasons: 1) most measurement devices are susceptible to noise, and 2) the 

goal of maximizing the measurement noise rejection is competing with that of maximizing the 

power of the controlled system to repudiate external disturbances.  

In the forthcoming sections, we introduce the concept of multi-objective optimization, 

delineate the working principle of NSGA-II, elaborate on the structure of cascade control 

systems, and outline the thesis.  

1.2 Multi-Objective Optimization 

Multi-objective optimization problems (MOPs) have received much attention recently 

because of their enormous applications. A MOP can be stated as follows: 

min
𝑘∈𝐷

{𝐅(𝐤)},                                                                              (1)                                    

where F is the map that consists of the objective functions 𝑓𝑖: D → 𝑅1 under consideration. 

F: D→ 𝐑k, 𝐅(𝐤) = [𝑓1(𝒌), … , 𝑓𝑘(𝒌)].                                                       (2) 

k∈  𝑫  is a d-dimensional vector of design parameters. The domain D⊂ 𝐑𝒅 can in general be 

expressed by inequality and equality constraints: 

𝐷 = {𝐤 ∈ 𝐑𝑑| 𝑔𝑖(𝐤) ≤ 0, 𝑖 = 1,… , 𝑙, 𝑎𝑛𝑑  ℎ𝑗(𝐤) = 0, 𝑗 = 1,… ,𝑚 }.                               (3)  
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Where there are l inequality and m equality constraints. The solution of MOPs forms a set known 

as the Pareto set and the corresponding set of the objective values is called the Pareto front. The 

dominancy concept (Marler & Arora, 2004) is used to find the optimal solution. The MOPs are 

solved using multi-objective optimization algorithms. These methods can be classified into 

scalarization, Pareto, and non-scalarization non-Pareto methods (Sardahi, 2016). 

The scalarization methods such as the weighted sum, goal attainment, and lexicographic 

approach require transformation of the MOP into a single optimization problem (SOP) (Pareto, 

1971), normally by using coefficients, exponents, constraint limits, etc.; and then methods for 

single objective optimization are utilized to search for a single solution. Computationally, these 

methods find a unique solution efficiently and converge quickly. However, these methods cannot 

discover the global Pareto solution for non-convex problems. Also, it is not always obvious for 

the designer to know how to choose the weighting factors for the scalarization (Hernández, et al., 

2013). 

Unlike the scalarization methods, the Pareto methods do not aggregate the elements of 

the objectives into a single fitness function. They keep the objectives separate all the time during 

the optimization process. Therefore, they can handle all conflicting design criteria independently, 

and compromise them simultaneously. The Pareto methods provide the decision-maker with a set 

of solutions such that every solution in the set expresses a different trade-off among the functions 

in the objective space. Then, the decision-maker can select any point from this set. Compared to 

the scalarization approaches, the Pareto methods can successfully find the optimal or near 

optimal solution set, but they are computationally more expensive. Examples of algorithms that 

fall under this category are the MOGA (Multiple Objective Genetic Algorithm), PSO (Particle 

Swarm Optimization), NSGA-II (Non-dominated Sorting Genetic Algorithm), SPEA2 (Strength 
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Pareto Evolutionary Algorithm), and NPGA-II (Niched Pareto Genetic Algorithm). Mainstream 

evolutionary algorithms for MOPs include NSGA-II, multi-objective particle swarm 

optimization (MOPSO) and strength Pareto evolutionary algorithm (SPEA). Deterministic 

methods such as set oriented methods with subdivision techniques, and multi-objective 

algorithms based on the simple cell mapping (SCM) can be also used to find the solution set 

(Sardahi, 2016). 

The 𝜖−constraint method and the VEGA (Vector Evaluated Genetic Algorithm) approach 

are examples of the non-scalarization non-Pareto methods. In the 𝜖−constraint method, one of 

the cost functions is selected to be optimized and the rest of the functions in the objective space 

are converted into constraints by setting an upper bound to each of them. The VEGA works 

almost in the same way as the single objective genetic algorithm, but with a modified selection 

process. A comprehensive survey of the methods used for solving MOPs can be found in the 

work of Jones et al. (2002), Marler and Arora (2004), and Tian et al. (2017). 

Cascade control systems can be optimally designed by using any one of these techniques. 

Control systems’ design problems are complex and nonconvex, therefore evolutionary 

algorithms are the methods of choice (Woźniak, 2010). They outperform classical direct and 

gradient based methods which suffer from the following problems when dealing with non-linear, 

non-convex, and complex problems: 1) the convergence to an optimal solution depends on the 

initial solution supplied by the user, and 2) most algorithms tend to get stuck at a local or sub-

optimal solution. On the other side, evolutionary algorithms are computationally expensive (Hu 

et al., 2003). However, this cost can be justified if a more accurate solution is desired and the 

optimization is conducted offline. The most widely used multi-objective optimization algorithm 

is the NSGA-II (Sardahi & Boker, 2018; Xu et al., 2018). It yields a better Pareto front as 



9 

compared to SPEA2 and PESA-II (Pareto Envelope based Selection Algorithm) (Gadhvi et al., 

2016). Therefore, in this thesis, we use the NSGA-II to solve the multi-objective control 

problem. 

1.3 NSGA-II 

NSGA (Srinivas & Deb, 1994) is a non-domination based genetic algorithm. Even though 

it performs well in solving MOPs, its high computational effort, lack of elitism, and the 

implementation of what is called sharing parameter had necessitated improvements. As a result, 

a modified version of the algorithm named NSGA-II was presented by Deb et al. (2002). The 

new version has a better sorting algorithm, includes elitism, eliminates the need for the sharing 

parameter, and has less computational burden. As shown in Figure 1, the algorithm incorporates 

eight basic operations: Initialization, fitness evaluation, non-domination ranking, crowding 

distance calculation, tournament selection, crossover, mutation, and combination (Deb et al., 

2002). 

The algorithm starts with the initialization process in which a random population, Npop, 

that satisfies the lower and upper bound constraints is generated. Once the population is 

initialized, fitness function evaluations, F(Pop), takes place in the second stage. Using these 

function values, the candidate solutions are sorted based on their non-domination and placed into 

different fronts. The solutions in the first front dominate all the other individuals while those in 

the second front are dominated only by the members in the first front. Similarly, the solutions in 

the third front are dominated by individuals in both the first and second fronts, and so on. Each 

candidate solution is given a rank number, rnk, of the front where it resides. For instance, 

members in first front are ranked 1 and those in second are given a rank of 2 and so on. 
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Figure 1: NSGA-II algorithm flowchart 

 

To improve the diversity of the solution, a parameter called the crowding distance is 

computed for each solution. This parameter measures how close an individual is to its neighbors. 

The crowding distance is calculated front wise since comparing the crowding distance between 

two individuals from two different fronts is meaningless. The larger the average crowding 

distance, the better the diversity of the population. After that, the parents for the next generation 

are selected. One of the popular algorithms used for this purpose is the binary tournament 

selection method. At each iteration 𝑖 =  1 ∶  𝑛𝑐, where 𝑛𝑐  =  𝑟𝑜𝑢𝑛𝑑(𝑁𝑝𝑜𝑝 = 2) and 𝑛𝑐 is the 

number of parents, two random integer numbers are uniformly generated between 1 and 𝑁𝑝𝑜𝑝. 

These values are used to fetch two candidate parents from 𝑃𝑜𝑝. A candidate solution is selected 

if its rank is smaller than the other or if its diversity measure is bigger than the other. Then, a 

crossover algorithm such as the arithmetic crossover method (Beyer & Deb, 2001; Deb & 

Agrawal, 1995) and a mutation algorithm such as the simple mutation approach (Kakde, 2004) 
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are applied on the selected parents to produce new children. These two operations are repeated nc 

times which result in a new offspring of size 𝑁𝑝𝑜𝑝. Elaborated details about crossover and 

mutation methods can be found in the work of Haupt and Haupt (2004). After that, the new 

children are merged with the current population. This combination guarantees the elitism of the 

best individuals. Finally, individuals are sorted based on their crowding distance and rank values. 

First, the sorting is performed with respect to the crowding distance in a descending order. Then, 

an ascending order of the population is followed based on the rank values. The new generation is 

produced from the sorted population until the size reaches 𝑁𝑝𝑜𝑝. If the number of generations, 

gen, is not equal to the maximum number of iterations, Ngens, the selection, crossover, mutation, 

merging, ranking and sorting process are repeated. 

NSAG-II works well on two-objective and three-objective problems. For many-objective 

optimization problems (with more than three objectives), large populations are used to enhance 

the searchability of the algorithm but at the expense of the computation time (Shibuchi et al., 

2009). A study on the effect of size of the decision variable space on the performance of NSGA-

II and other evolutionary algorithms showed that NSGA-II converges to the true Pareto front on 

all the test problems when the number of design parameters is less than or equal to 128 (Durillo 

et al., 2008; Durillo et al., 2010). In this thesis, the size of the objective space is four at 

maximum and that of decision variable space is between four and ten. Therefore, NSGA-II is 

expected to perform well in solving the problems at hand. 

1.4 Outline of the Thesis 

This thesis is based on the author’s research publications on multi-objective optimal design 

of multi-loop control systems in the past year. Chapter 2 proposes multi-objective optimal design 

of a cascade control system for a class of underactuated mechanical systems. Chapter 3 discusses 
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the multi-objective optimal design of an active and aeroelastic cascade control system applied to 

an aircraft’s wing having a leading and trailing control surface. Chapter 4 summarizes the thesis 

and suggests the future directions. 
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CHAPTER 2: MULTI-OBJECTIVE OPTIMAL DESIGN OF A CASCADE CONTROL 

SYSTEM FOR A CLASS OF UNDERACTUATED MECHANICAL SYSTEMS 

2.1 Cascade control systems 

Consider the general representation of a two-level cascade control system shown in 

Figure 2. The plant under control is comprised of two subsystems with transfer functions 𝐺1(𝑠) 

and 𝐺2(𝑠). An inner 𝐶𝐼(𝑠) and outer 𝐶𝑂(𝑠) control loops are used to drive the systems to their 

desired states. Here 𝑋𝑑(𝑠) and 𝑋𝑜(𝑠) are the desired and the actual output of the outer 

subsystem, respectively, while, 𝑋𝐼𝑑(𝑠), computed by the outer control algorithm to attain 𝑋𝑑(𝑠), 

and 𝑋𝐼(𝑠) are respectively the desired and the actual output of the inner subsystem. The inner 

and outer load disturbances are denoted by 𝐷𝐼(𝑠) and 𝐷𝑂(𝑠), respectively. The measurement 

noises affecting the inner and outer feedback sensors are denoted by 𝑁𝐼(𝑠) and 𝑁𝑂(𝑠), 

respectively. The control system design aims to alleviate the impacts of these unwanted signals, 

minimize the tracking error for both control loops, make the speed of response of the inner 

closed-loop system faster than that of the outer one, and reduce the amount of consumed control 

energy. To this end, these objectives should be quantitatively described. 

 

Figure 2: Block diagram of two-level cascade control system 

 



14 

When deriving the design objectives, we will assume that the inner and outer closed-loop 

subsystems control the desired signals perfectly. This simplifies the control design and the 

mathematical expressions of the fitness functions that will be used later in the multi-objective 

optimization. Using this assumption, understanding that the design is carried out in the frequency 

domain, and dropping s from the inputs and outputs, the relationship between the controlled 

variable, 𝑋𝐼 and the load disturbance is denoted 𝐷𝐼; the tracking error of the inner closed-loop 

system 𝐸2 and 𝑋𝐼𝑑 ; and 𝑋𝐼 and inner stochastic noise 𝑁𝐼 read 

𝑋𝐼 ∕ 𝐷𝐼 = 𝐺1 ∕(1 + 𝐶𝐼𝐺1),                                                         (4) 

𝐸2 ∕ 𝑋𝐼𝑑  = 1∕(1 + 𝐶𝐼𝐺1),                                                                   (5) 

𝑋𝐼 ∕ 𝑁𝐼 = (−𝐶𝐼𝐺1) ∕ (1 + 𝐶𝐼𝐺1),                                                   (6) 

from these equations, we notice that for better tracking, and disturbance and noise attenuation, 

the ∞−norm of the following objectives should be minimized 

𝑓1 = sup
𝜔1<𝜔<𝜔2

𝜎(‖𝐸2 ∕ 𝑋𝐼𝑑 ‖∞),                                                        (7) 

𝑓2 = sup
𝜔3<𝜔<𝜔4

𝜎(‖𝑋𝐼 ∕ 𝑁𝐼‖∞).                                                     (8) 

where 𝜎 is the largest singular value among the transfer functions. The symbol sup indicates the 

largest gain among the gain vector elements is minimized to account for the worst-case scenario. 

The variables 𝜔1 , 𝜔2, 𝜔3, and 𝜔4 define the frequency ranges at which the noise and 

disturbance occur. 

Assuming the dynamics of the inner loop which includes 𝐶𝐼(𝑠) and 𝐺𝐼(𝑠) is negligible 

(inner control loop is perfect), similar relationships between 𝑋𝑂 and 𝐷𝑂; the tracking error of the 

outer closed-loop system 𝐸1 and 𝑋𝑑; and 𝑋𝑜 and inner stochastic noise 𝑁𝑜 can be found as 

follows 

𝑋𝑜 ∕ 𝐷𝑂 = 𝐺2 ∕ (1 + 𝐶𝑜𝐺2),                                                            (9) 
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𝐸1 ∕ 𝑋𝑑  = 1∕ (1 + 𝐶𝑜𝐺2),                                                                    (10) 

𝑋𝑜 ∕ 𝑁𝑜 = (−𝐶𝑜𝐺2) ∕ (1 + 𝐶𝑜𝐺2),                                                      (11) 

Similarly, we note that for better outer loop tracking, and disturbance and noise attenuation, the 

norm of the following functions should be minimized 

𝑓3 = sup
𝜔1<𝜔<𝜔2

𝜎(‖𝐸1 ∕ 𝑋𝑑 ‖∞),                                                 (12) 

𝑓4 = sup
𝜔3<𝜔<𝜔4

𝜎(‖𝑋𝑜 ∕ 𝑁𝑜‖∞).                                                 (13) 

To ensure that the dynamics of the inner loop is faster than that of the outer loop, the closed-loop 

poles of the inner closed loop system must be placed on the s-plane to the left of those of outer 

closed subsystem. This can be achieved by defining two variables 𝜆𝐼 and 𝜆𝑜 as follows: 

𝜆𝐼 = 𝑚𝑎𝑥(𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(1 + 𝐶𝐼𝐺1))),                                                 (14) 

𝜆𝑜 = 𝑚𝑎𝑥(𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(1 + 𝐶𝑜𝐺2))),                                            (15) 

Here, eig denotes the mathematical operation that result in the eigenvalues of the corresponding 

equation, real extracts the real part from the poles, and max returns the maximum pole. That is, 

these two equations will return the locations of the inner and outer closed-loop dominate poles, 

which dictate the system response. Therefore, 𝜆𝐼 has to be less than 𝜆𝑜 or the ratio 𝜆𝑜/𝜆𝐼 must be 

less than 1 to guarantee that the inner closed-loop reacts faster than the outer one. 

To save the amount of control energy, we minimize the Frobenius norm, ‖. ‖𝐹, of the 

outer and inner control gains 

  𝑓5 = ‖𝐤‖𝐹,                                                                           (16) 

where, k is a vector containing the setup parameters of the control algorithms. 
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2.2 Underactuated Ball and Beam System 

Consider the ball and beam system shown in Figure 3. The system is comprised of two 

plants: the rotary servo motor and the ball and beam. The DC (Direct-Current) servo motor 

described by the following transfer function 

𝐺1(𝑠) =
Θ𝑙(𝑠)

𝑈(𝑠)
=

𝐾

𝑠(𝜏𝑠+1)
 ,                                                             (17) 

 

 

Figure 3: Ball and beam system 

Where 𝛩𝑙(𝑠) is the Laplace transform of the load shaft position θ(t), U(s) is the Laplace 

transform of the motor input voltage u(t), K = 1.53 rad/ (V.s) is the steady-state gain, and τ = 

0.0253 s is the time constant. A linearized model that describes the position of the ball, X(s), 

relative to the angle of the servo load gear reads: 

𝐺2(𝑠) =
X(𝑠)

Θ𝑙(𝑠)
=
𝐾𝑏

𝑠2
 .                                                        (18) 

Here, 𝐾𝑏 = 0.419 m/(rad.𝑠2). 

Now consider the general cascade control shown in Figure 2 with 𝐺1(𝑠) and 𝐺2(𝑠) 

represent the dynamics of the DC motor and the ball-beam system, respectively. The output of 

the outer system, 𝑋𝑜, is the actual position of the ball and the output of the inner one, 𝑋𝐼, is the 
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actual position of the load shaft, 𝛩𝑙(𝑠). The desired position of the ball is denoted by 𝑋𝑑 and 

desired shaft angle is represented by 𝑋𝐼𝑑. 𝑁𝑂(s) is a random noise affecting the reading of the 

sensor that measures the ball position, while 𝑁𝐼(s) is the measurement noise in the DC motor 

angle estimation. An external excitation that alters the position of the motor’s shaft is denoted by 

𝐷𝐼(s) while the affects of the position of the ball on the beam is denoted by 𝐷𝑂(s). The inner loop 

implements an ideal PD ( Proportional-derivative ) controller to manage the position of the servo 

motor shaft. The controller dynamics can be described by the following transfer function 

𝐶𝐼(𝑆) =  
𝑈(𝑠)

𝐸2(𝑠)
= 𝐾𝑝𝑖 + 𝐾𝑑𝑖𝑠,                                                          (19) 

where, 𝐾𝑝𝑖 and 𝐾𝑑𝑖 are the proportional and the derivative gains, respectively. The characteristic 

equation of the inner loop system, 𝐴𝐼(s), is given by 

𝐴𝐼(s) = 𝑠2 + 
1+𝐾𝐾𝑑𝑖

𝜏
𝑠 +

𝐾𝐾𝑝𝑖

𝜏
,                                                                                                     (20) 

the dominant pole of the inner closed-loop system can be found from 

𝜆𝐼 = 𝑚𝑎𝑥(𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝐴𝐼(s) = 0 ))),                                                     (21) 

Stability analysis suggests that 𝐾𝑝𝑖> 0 and 𝐾𝑑𝑖>−1/K for the closed-loop system to be stable. We 

assume that the inner loop controller can perfectly track the desired shaft angle. With that in 

mind, we choose a dynamic PD controller for the outer loop 

 𝐶𝑂(𝑆) =  
𝑋𝐼𝑑(𝑠)

𝐸1(𝑠)
= 𝐾𝑑𝑜(𝐾𝑝𝑜 + 𝑠),                                                                                               (22) 

here, 𝐾𝑝𝑜 and 𝐾𝑑𝑜 are the setup parameters of the control system. As stated above, if we assume 

that the inner loop can manage the dynamics of the servo motor and move the shaft to the desired 

position, 𝑋𝐼𝑑(𝑠), that will bring the ball to its desired location 𝑋𝑑(𝑠). Using this assumption, we 

set the closed-loop transfer function of the inner system (servo motor under PD controller) to 

unity. Then, the closed-loop characteristic equation of the outer loop system, 𝐴𝑜(s), is given by 
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𝐴𝑜(s) =𝑠2 + 𝐾𝑏𝐾𝑑𝑜𝑠 + 𝐾𝑏𝐾𝑑𝑜𝐾𝑝𝑜.                                                                                           (23) 

as a result, the pole that dominates the dynamics of the outer control loop is given by 

𝜆𝑜 = 𝑚𝑎𝑥(𝑟𝑒𝑎𝑙(𝑒𝑖𝑔(𝐴𝑜(s) = 0 ))).                                                                                       (24) 

For the outer loop to be stable, 𝐾𝑝𝑜 and 𝐾𝑑𝑜 must be greater than zero. These tunable gains 

in addition to those of the inner controller will be tuned and the optima trade-offs among the 

design requirements will be found. 

2.3 Multi-Objective Optimal Design 

In the multi-objective optimal design, we take the elements of the inner and outer 

control algorithms as the design parameters. That is k of Eq. (1) and Eq. (16) is given by k 

= [𝐾𝑝𝑖,𝐾𝑑𝑖,𝐾𝑝𝑜,𝐾𝑑𝑜]. The design space for the parameters is chosen as follows, 

 𝑄 = {𝑘 ∈ [0.1,50] × [−0.6,1] × [0, 5] × [0.1,19] ⊏ 𝐑4}.                                       (25) 

We notice that these ranges satisfy the stability requirements stated in Eqs. (20) and (23). The 

MOP is stated as 

min
𝐾∈𝑄

{𝐹1, 𝐹2, ‖𝐤‖𝐹 , 𝑟 },                                                     (26) 

Where, 𝐹1  = (𝑓1 +𝑓3)/2 is the objective that aims to enhance the tracking error and disturbance 

attenuation of the inner and outer closed-loop subsystems as shown in Eqs. (7) and (12). The 

function 𝐹2 = (𝑓2  + 𝑓4)/2 combines the fitness functions in Eqs. (8) and (13) and represents the 

∞−norm of the transfer functions relating the output of either the inner or outer control system to 

the measurement noise. Measurement noises are typically dominated by high frequencies while 

load disturbances are dominated by low frequencies (Sardahi & Boker, 2018). Therefore, in this 

paper, we assume the frequency of the noises is in the range 𝜔∈ [100,105] rad/s, while that of 

the disturbance belong to 𝜔 ∈ [0.0001,2] rad/s. 
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Minimizing these norms ensures that the tracking error is small; the closed-loop system is 

insensitive to unavoidable measurements’ noise and disturbances; and the control energy is 

minimum. Furthermore, we need the response of the inner controlled system to be faster than the 

outer one. To this end, we minimize r given by the following equation 

𝑟 = 𝜆𝑜 𝜆𝐼⁄                                                                                   (27)   

It is obvious that small values of r indicate that the inner closed-loop system is faster than 

the outer one. Making the inner loop faster than the outer one ensures operational safety in the 

face of internal and external perturbations (Habibi et al., 2008). To solve this multi-optimization 

problem, the nondominated sorting genetic algorithm (NSGA-II) is used. The reader can refer to 

Deb, K. (2001) for more details about this algorithm. According to the MATLAB 

documentation, the population size can be set in different ways and the default population size is 

15 times the number of the design variables nvars. Also, the maximum number of generations 

should not exceed 200×nvars. In this study, the population size is set to 400, and the number of 

generations is set to 400. 

2.4  Results and discussion 

Different projections of the Pareto front and Pareto set, poles’ map of the inner and outer 

closed-loop subsystems, and the controlled system response to disturbance and measurement 

noise at different objective values are discussed here. The optimization problem at hand is 4×4. 

That is, 4 design parameters and 4 objectives. The Pareto set which contains the optimal values 

of the decision variables is shown in Figure 4 and different projections of the corresponding 

Pareto fronts are plotted in Figures 5 and 6. The color in these figures is mapped to the value of 

‖𝐤‖𝐹 where red denotes the highest value, and dark blue denotes the lowest value. This coloring 

adds a 3D projection to these figures. It also shows the corresponding design variables from the 
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Pareto set for each point on the Pareto front. The Pareto set shows that large control energy 

consumption is associated with high 𝐾𝑝𝑖 and 𝐾𝑑𝑜 × 𝐾𝑝𝑜 values. The Figure 4(b) also shows that 

most of the optimal values of 𝐾𝑝𝑜 and 𝐾𝑑𝑜 are concentrated on the right side of the graph. 

However, the optimal values of 𝐾𝑝𝑖 and 𝐾𝑑𝑖 spread between their specified stable ranges. This 

can be explained by examining Eqs. (19) and (22) where the proportional gain in the later 

equation is scaled by 𝐾𝑑𝑜. Empty regions indicate the non-existence of optimal solutions that 

satisfy the optimization constraints.  

The Pareto front in Figure 5 demonstrates competing relationship between 𝐹1 and ‖𝐤‖𝐹, 

and between 𝐹2 and ‖𝐤‖𝐹, meaning, large control energy is needed to achieve small tracking 

errors and better disturbance rejections (see Figure 5(a)). On the other side, better attenuation of 

the measurement noise can be only achieved when the control energy is small (see Figure 5(b)). 

That is to say, the objective of minimizing the effect of measurement noise is also conflicting 

with that of reducing the impact of external disturbance as shown in Figure 6(a). The figure also 

shows that after 𝐹1 = 0.3, 𝐹2 goes up and then decreases as 𝐹1 increases. This occurs because of 

the size of the objective space which includes 4 conflicting objectives. These conflicting 

relationships have been reported in many control books (Dorf & Bishop, 2011; Ogata & Yang, 

2010; Franklin et al., 1994). This stresses the fact that the design of control systems should be 

conducted in multi-objective settings to account for all the trade-offs among the design targets. 

Another conflicting relationship between objectives can be found in Figure 6(b). It can be 

noticed that the goal of making the dynamics of the inner closed-loop system faster than that of 

the outer closed-loop system is in non-agreement with that of energy consumption. The pole 

maps of the inner and outer controlled systems are shown in Figure 7. As indicated by the color 

code and the scale of the Re(s)-axis, the poles of inner closed-loop system are located to the left 
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of those of the outer controlled system. In other words, the objective to make the dynamics of the 

outer loop dominates that of the inner closed-loop was successfully achieved by the MOP 

algorithm.  

The responses of the inner and outer closed-loop systems at different values of r are 

shown in Figures 8 and 9 when 𝑑𝑖(t) = 𝑑𝑜(t) = 0.5sin(t). Here, 𝑑𝑖(t) and 𝑑𝑜(t) are the inverse 

Laplace of 𝐷𝐼(𝑠) and 𝐷𝑂(𝑠) labeled in Figure 2. We assume that external disturbances on the 

inner and outer loop are low frequency signals with period T = 2π seconds which agrees with 

frequency range selected in Chapter 2.3. In Figure 8, although the response of the inner closed-

loop system is almost two times that of the outer system, the tracking error is bad since the inner 

loop is not fast enough to prevent the propagation of the disturbance to the outer loop. While in 

Figure 9, the dynamics of the inner subsystem is approximately 14 times faster than that of the 

outer subsystem and the result is better tracking error since the inner controlled system is fast 

enough to reduce the effect of the upsets on the system response. It is worth mentioning that the 

later response occurs at the expense of the controlled energy.  

To get more insight into the ability of the system to reject unwanted signals, the time 

response of the controlled system 𝑋𝑜(𝑡), which denotes the inverse Laplace of 𝑋𝑂(𝑠) shown in 

Figure 2, is graphed at the minimum and maximum value of the first design objective, 𝐹1. Here, 

the load disturbances are modeled by harmonic signal, 𝑑𝑖(t) = 𝑑𝑜(t) = 0.5sin(t). As expected and 

evident from Figure 10, the best and worst disturbance rejection occur respectively at min (𝐹1) 

and max (𝐹1). It should be indicated here that high control energy is required to achieve small 

tracking error and better disturbance rejection. This can be readily observed from Figure 11 

where the large values of ‖𝐤‖𝐹 result in small steady-state errors and better repudiation of 

external disturbances. On other side, small values of ‖𝐤‖𝐹 are appealing for better rejection of 
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measurement noise as shown in Figure 12. In Figure 12(a), 𝐹2 = 0.0260 and ‖𝐤‖𝐹 = 8.1890, 

while 𝐹2 = 0.3129 and ‖𝐤‖𝐹 = 52.5521 in Figure 12(b). The outer and inner measurement noise 

are assumed to be white noise WN signals with 0.1 variance and zero mean; that is 𝑛𝑖(t) = 𝑛𝑜(t)= 

WN. White noise covers wide spectrum of frequencies and is used frequently in testing 

controlled system behavior against sensor noises (Sardahi & Sun, 2017; Sardahi & Boker, 2018). 

 

Figure 4: Projections of the Pareto set: (a) 𝑲𝒅𝒊 versus 𝑲𝒑𝒊, (b) 𝑲𝒅𝒐  versus 𝑲𝒑𝒐. The color 

code indicates the level of ‖𝒌‖𝑭, where red denotes the highest value, and dark blue denotes 

the smallest. 
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Figure 5: Projections of the Pareto front: (a) 𝑭𝟏 versus ‖𝒌‖𝑭, (b) 𝑭𝟐 versus‖𝒌‖𝑭. The color 

code indicates the level of ‖𝒌‖𝑭, where red denotes the highest value, and dark blue denotes 

the smallest. 

 

Figure 6: Projections of the Pareto front: (a) r versus‖𝒌‖𝑭, (b) 𝑭𝟐 versus 𝑭𝟏. The color code 

indicates the level of ‖𝒌‖𝑭, where red denotes the highest value, and dark blue denotes the 

smallest. 
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Figure 7: Pole maps, on the y-axis is the imaginary part of the pole, Im(s), and the x-axis is 

the real part of the pole, Re(s): (a) Pole map of the inner closed-loop system, (b) Pole map 

of the outer closed-loop system. The color code indicates the level of ‖𝒌‖𝑭, where red 

denotes the highest. 

 

 

Figure 8: Outer and inner controlled systems’ responses when r = 0.5 (a) Response of the 

outer closed-loop system 𝒙𝒐(𝒕)versus time, (b) Response of the inner closed-loop system 

𝒙𝒐(𝒕)versus time. Red solid line: reference signal, Black solid line: actual system, response 

with 𝒅𝒊(t) = 𝒅𝒐(t) = 0.5sin(t). 
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Figure 9: Outer and inner controlled systems’ responses when r = 0.07 (a) Response of the 

outer closed-loop system 𝒙𝒐(𝒕)versus time, (b) Response of the inner closed-loop 

system𝒙𝒐(𝒕)versus time. Red solid line: reference signal, Black solid line: actual system 

response with 𝒅𝒊(t) = 𝒅𝒐(t) = 0.5sin(t). 

 

Figure 10: Ball position versus time. (a) Controlled system response at min (𝑭𝟏), (b) 

Controlled system response at max (𝑭𝟏). Red solid line: reference signal 𝒙𝒅(𝒕), black solid 

line: system response with 𝒅𝒊(t) = 𝒅𝒐(t) = 0, blue dotted line: system response with 𝒅𝒊(t) = 

𝒅𝒐(t) = 0.5sin(t). 
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Figure 11: Ball position versus time. (a) Controlled system response at min (‖𝒌‖𝑭), (b) 

controlled system response at max (‖𝒌‖𝑭). Red solid line: reference signal 𝒙𝒅(𝒕), black solid 

line: system response with 𝒅𝒊(t) = 𝒅𝒐(t)= 0, blue dotted line: system response with 𝒅𝒊(t) = 

𝒅𝒐(t)= 0.5sin(t). 

 

Figure 12: Ball position versus time. (a) Controlled system response at min (𝑭𝟐), (b) 

Controlled system response at max (𝑭𝟐). Red solid line: reference signal 𝒙𝒅(𝒕), black solid 

line: system response with 𝒏𝒊(t) = 𝒏𝒐(t) = 0, blue dotted line: system response with 𝒏𝒊(t) 
= 𝒏𝒐(t) = WN. 
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CHAPTER 3: MULTI-OBJECTIVE OPTIMAL DESIGN OF AN ACTIVE 

AEROELASTIC CASCADE CONTROL SYSTEM FOR AN AIRCRAFT WING WITH A 

LEADING AND TRAILING CONTROL SURFACE  

3.1  Introduction     

One of the important components of an aircraft is its flexible wing. Its design is very 

complex since it involves both structural, aerodynamic, and active control design. The active 

aeroelastic controls are necessary in order to achieve three goals: aircraft stability, flutter 

suppression, and gust load alleviation. Stability is the number one concern in the design of any 

control system, and control designers should make sure it is satisfied before they embark on 

improving the controlled system performance. Extending the airspeed flutter boundaries and 

ensuring the flexible structure is stable at higher airspeeds is also one of the important goals. 

Commonly, a 15% flutter-free margin is imposed above the design envelope in both civil and 

military aircrafts (Singh et al., 2016). Aerodynamic or gust loading is inevitable and reducing its 

effect is a must. Aeroelastic structures such as wings are driven by several control surfaces that 

have embedded actuators which are instructed by open loop or closed-loop control algorithms.   

Active aerostatic controls of flexible structures such as aircrafts’ wings have received 

much attention lately. State feedback controllers were discussed in a few works (Liebeck, 2004; 

Lucia, 2005; Gaspari et al., 2009; Zhao, 2009). Receptance-based active control systems for 

wings with single or multiple control surfaces were introduced in the works of (Singh et al., 

2010; McDonough et al., 2011; Singh et al., 2014; Kumar et al., 2012b). In the design of the 

active control system, it is usually assumed that the actuator driving the control surface is perfect 

and can provide the desired control surface rotation in order to stabilize the wing and reduce the 

effect of gust loadings. This assumption simplifies the design of the control system and marks 
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the first step in the right direction toward understanding and building active aeroelastic controls 

for wings with multiple ailerons.  

However, implementing an active aeroelastic control on a given wing needs actuators. 

The dynamics of the actuators has great influence on the overall system performance. The first 

attempt toward including actuators’ dynamics in the control system design was in 2016 (Singh et 

al., 2016). Therein, a receptance-based controller was designed for a wing with a leading and 

trailing control surface and the control gains required to place the closed-loop poles at prescribed 

locations were computed by solving a set of nonlinear equations in the least-square sense. 

However, an optimal design of cascade active aerostatic controls for the wing and ailerons and 

actuators in multi-objective settings has not been investigated yet. The main goal in this chapter 

is to develop an optimal cascade control system for an aircraft wing with a leading and trailing 

aileron driven by two electromagnetic actuators. The dynamics of the wing, control surfaces, and 

actuators are considered in the design. The cascade control system shown in Figure 13 consists 

of two control loops: outer and inner control loop. The outer control loop is applied to the wing 

and ailerons dynamics. The control surface rotation 𝛽𝑑(𝑠) is the output and the difference 

between the desired bending deformation of the wing at a certain point, 𝑞𝑑(𝑠) = 0, and actual 

deformation, 𝑞(𝑠), is the input. The required aileron’s deflection 𝛽𝑑(𝑠) is converted into the 

required rack-pinion movement 𝑋𝑑(𝑠). The inner control system which accepts 𝑋𝑑(𝑠) as its 

reference input, calculates the amount of control energy required to drive the actuator having 

transfer function 𝑇(𝑠), and brings the actual actuator output 𝑋(𝑠) to its desired value 𝑋𝑑(𝑠).  The 

actual displacement of the rack-pinion gear is then transformed into the actual flab’s deflection 

β(𝑠). In the following sections, the aeroelastic mathematical model of a wing having a leading 

and trailing control surface is explained, the dynamic model of an electromagnetic actuator is 
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introduced, a slider-crank mechanism used to transform the linear displacement from the 

actuator’s gearbox to a rotation angle is introduced and the concern equations are derived, 

description of the inner and outer control system is delineated, multi-objective design of the 

multi-loop control system with three objectives:1) minimization of energy consumption, 2) the 

inner closed-loop control must be faster than the outer one to prevent the propagation of the 

actuator disturbance, 𝐷𝑎(𝑠), to the system, and 3) the outer closed-loop should fast reject 

external gust loadings 𝑤𝑔(𝑠), is formulated. The selected design Objectives target three of the 

most important requirements in active aeroelastic controls that are related to the closed-loop 

system speed of response, energy saving, and robustness against external disturbances. Discssion 

of the results concludes this chaper.  

 

Figure 13: Cascade control system of aeroelastic structure and actuators 
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3.2  Airfoil wing model with two control surfaces 

An aircraft wing model with a leading and trailing control surface is shown in Figure 14 

(Singh et al., 2016). The system’s dynamics reads 

 

Figure 14: Airfoil wing model with two control surfaces (Singh et al., 2016). 

 

𝑴𝒒̈(𝑡) + 𝑪(𝑉)𝒒̇(𝑡) + 𝑲(𝑉)𝒒(𝑡) = 𝑩𝑐𝑠𝜷𝑑(𝑡) + 𝑩𝑎𝑑𝒘𝑔(𝑡).                             (28)          

Among them, M, C, and K ∈ ℜ𝑛×𝑛 are respectively the inertia, equivalent damping (structural 

and velocity dependent aerodynamic damping), and equivalent stiffness (structural and velocity 

dependent aerodynamic stiffness) matrices. The vector  𝒒(𝑡) = [ℎ   𝛼]𝑇 represents the degree of 

freedom of the structure where h is the plunging displacement (positive downward) and α is the 

pitching angle (positive nose up).  𝜷𝑑(𝑡)∈ ℜ𝑚×1 is the desired control deflection supplied by the 
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m number of control surfaces; 𝑩𝑐𝑠 ∈ ℜ𝑛×𝑚is the control distribution matrix representing the 

location and aerodynamic loading of control surfaces; and 𝑩𝑎𝑑 ∈ ℜ𝑛×𝑚 is the matrix describing 

the influence of the aerodynamic load, 𝒘𝑔 (t), on the system. The term 𝑩𝑎𝑑𝒘𝑔(𝒕) was added to 

investigate the impact of the aerodynamic loads on the closed-loop and open-loop system 

performance. The values of 𝑩𝑎𝑑 were found by comparing the elements of the control 

distribution matrix 𝑩𝑐𝑠 and the aerodynamic load distribution matrix 𝑩𝑎𝑑 for the system 

proposed in (Kumar et al., 2012b) with those of the model at hand. A detailed description of the 

model with parameters’ definitions and values used in the computer simulations can be found in 

Appendix B.  

The system in Eq. (28) can be written as  

𝒒̈(𝑡) = −𝑴−𝟏𝑪(𝑉)𝒒̇(𝑡) − 𝑴−𝟏𝑲(𝑉)𝒒(𝑡) +𝑴−𝟏𝑩𝑐𝑠𝜷𝑑(𝑡) +𝑴
−𝟏𝑩𝑎𝑑𝒘𝑔(𝑡).            (29)          

The state equation of Eq. (29) in a matrix form reads 

                 

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝜷𝑑(𝑡) + 𝑩𝑔𝒘𝒈(𝑡),                        (30) 

 

𝒚(𝑡) = 𝑪𝒐𝒙(𝒕),                           (31) 

The state vector, 𝒙(𝑡), the state-space dynamic matrix A, the input matrices B and 𝑩𝑔, and the 

output matrix 𝑪𝑜 are given by, 

𝒙(𝑡) = [

ℎ
𝛼
ℎ̇
𝛼̇

] ,                                                                                                                                (32) 

 

𝐀 = [
𝟎2×2 𝑰2×2

−𝑴2×2
−1 𝑲(𝑉) −𝑴2×2

−1 𝑪(𝑉)
],                                                                                           (33)                                                                                                                        
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𝐁 = [
𝟎2×2

−𝑴2×2
−1 𝑩𝑐𝑠

],                                                                                                                       (34) 

𝑩𝑔 = [
𝟎2×2

−𝑴2×2
−1 𝑩𝑎𝑑

],                                                                                                                    (35) 

𝑪𝑜 = [𝑰2×2 𝟎2×2],                                                                                                                    (36) 

here, I and 0 denote the identity and zero matrices, respectively. This realization of the wing’s 

dynamics and its leading and trailing ailerons is very useful in the control design of the outer 

control loop. The state-space model is used in the next section to design an optimal outer control 

algorithm.  

3.3  LQR-based Outer Control Loop 

A MIMO full-state feedback control law that calculates the desired deflection for the 

trailing and leading ailerons for the aircraft’s wing represented by the state-space system given in 

Eq. (30) can be written as 

𝜷𝒅(𝑡) = −𝐊C𝐱(𝑡),                                                                                                                    (37) 

The state feedback gain matrix KC can be designed in different ways. One of the popular 

methods in classical optimal control is the Linear Quadratic Regulator (LQR). The optimal state 

feedback control gain matrix KC can be obtained by minimizing the following performance 

index: 

J = ∫ [𝐱𝑇(𝑡)𝐐𝐱(𝑡) + u𝑇(𝑡)𝐑u(𝑡)]
∞

0
𝑑𝑡,                                                                            (38) 

where Q = QT is a positive semidefinite matrix that penalizes the departure of system states from 

the equilibrium, and R = RT is a positive definite matrix that penalizes the control input. Using 

Lagrange multiplier-based optimization method, the optimal KC is given by 

𝐊C = 𝐑
−𝟏𝑩𝑷                                                                                                                         (39) 
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The matrix 𝑷 ∈  ℜ4×2 can be calculated by solving the following Algebraic Riccati Equation 

(ARE): 

𝐀T𝐏 + 𝐏𝐀 − 𝐐 − 𝐏𝐁𝐑−1𝐁T𝐏 = 𝟎          (40) 

By examining Eqs. (39) and (40), we can notice that the weighting matrices Q and R play an 

important role in the LQR optimization process. That is, the elements of the Q and R matrices 

affect greatly the performance of a closed-loop system. Thus, the most important step in the 

design of an optimal controller using LQR is the choice of Q and R matrices. Conventionally, 

these matrices are elected based on the designer’s experience and adjusted iteratively to obtain 

the desired performance. Arbitrary selection of Q and R will result in a certain system response 

which is not optimal in true sense. Many efforts have been directed toward developing 

systematic methods for selecting the weighting matrices. For instance, Bryson presented an 

approach for choosing the starting values of Q and R matrices, but this method only suggests the 

initial values and later the coefficients are to be tuned iteratively for optimal performance 

(Bryson, 2018). Hence, an optimization algorithm is needed to tune the elements of these 

matrices such that the desired response is achieved. Analytical ways of selecting the Q and R 

matrices for a second order crane system were developed by Oral et al. (2010). Another 

analytical method of calculating the Q and R matrices for a third order system represented in the 

control canonical form was proposed by El Hajjaji and Ouladsine (2001). Developing an 

analytical technique to find Q and R for high order systems such as the system at hand is very 

tedious, if it is not possible because of the dimension of the system and the number of design 

objectives that need to be achieved simultaneously. Therefore, we suggest a numerical approach 

through using an optimization algorithm to tune these matrices such that the design goals are 

optimized simultaneously.  
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The LQR does not only guarantee the system stability but also the stability margins 

(Chen, 2015). This feature is very valuable for high-order dynamic systems such as the 

mathematical model at hand where finding the feasible regions of the control gains is very 

difficult. On the other side, LQR requires that you have a good model of the system, and all the 

states in the system are available for feedback. If not all the states are available, an observer 

should be used to estimate the unavailable ones. As a result, stability margins may get arbitrarily 

small. Furthermore, LQR is based on state-space model of the system which doubles the system 

dimension as shown in Eq. (29). 

In this work, LQR is used to calculate the feedback matrix 𝐊C through optimally 

adjusting Q and R. One of the objectives that were considered in the optimization is the 

alleviation of the gust loading and minimization of the required control energy. To quantitively 

describe these objectives, the control law in Eq. (37) is first substituted in Eq. (30) 

𝒙̇(𝑡) = 𝑨𝒙(𝑡) + 𝑩[−𝐊C𝒙(𝑡)] + 𝑩𝑔𝒘𝒈(𝑡),                       (41) 

which can be simplified into  

𝒙̇(𝑡) = (𝑨 − 𝑩𝑲𝑪)𝒙(𝑡) + 𝑩𝑔𝒘𝑔(𝑡),                        (42) 

Taking the Laplace of Eq. (42) and simplifying, we obtain 

𝐱(s) = (𝑠𝑰 − 𝑨 + 𝑩𝑲𝑪)
−𝟏𝑩𝑔𝒘𝑔(𝑡),                        (43) 

Taking the Laplace of Eq. (31) and substituting with Eq. (43), we get 

𝐲(s) = 𝑪𝒐(𝑠𝑰 − 𝑨 + 𝑩𝑲𝑪)
−𝟏𝑩𝑔𝒘𝑔(𝑡),                        (44) 

From this equation, the transfer function matrix 𝑮𝑻𝑭(𝒔) from the gust loads to the system’s 

outputs is provided by 

𝑮𝑻𝑭(𝒔) =
𝐲(s)

𝒘𝑔(𝑡)
= 𝑪𝒐(𝑠𝑰 − 𝑨 + 𝑩𝑲𝑪)

−𝟏𝑩𝑔𝒘𝑔(𝑡),                    (45) 
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Eq. (45) describes the effect of measurement noise and external gust loads on the system 

performance. This is a very important objective in the control system design of aeroelastic 

structures. It is obvious from this equation that large 𝑲𝑪 values are required in order to reduce 

the effect of aerodynamic loadings. In the same time, large 𝑲𝑪 values mean high energy 

consumption. Since the controlled system is optimized for zero initial conditions, the control 

energy 𝑬𝒔 cannot be included directly in the objective function and its Frobenius norm is used 

instead. By minimizing this norm, the control energy is also minimized (Singh & McDonough, 

2014). In mathematical terms, the Frobenius norm of the control matrix is given by 

𝐸𝑠 = ∑ ∑ 𝑘𝑖𝑗
4
𝑗=1

2
𝑖=1 ,                                    (46) 

where 𝑘𝑖𝑗are the elements of feedback gain matrix, 𝑲𝑪 calculated from Eq (39).  

In real applications, actuators are used to derive the control surfaces and deliver the 

desired deflection, 𝜷𝑑(𝑡). The structure of these actuators is usually complicated and involves a 

control system, amplifier circuit, motor, gear train, and slider-crank mechanism. In the next 

section, we describe these components and pay more attention to the control system design.  

3.4  Actuator Dynamics 

Hydraulic actuators (HA) are widely used in aircrafts such as A380 and G650 (Derrien & 

Sécurité, 2012). However, modular electro-mechanical actuators (EMAs) have been increasingly 

replacing hydraulic actuators in the aerospace sector in the past decade. Smaller weight, better 

energy efficiency, and the availability of the EMAs are the main motivations for this replacement 

(Habibi et al., 2008). For this reason, an EMA is chosen as a driver for the leading and trailing 

control surface of the wing shown in Figure 14. A pictorial depiction of a generic EMA system is 

shown in Figure 15. The EMA actuator consists of a control system (inner loop), high 

performance brushless DC motor, and ball gear, and mechanical linkage (see Figure 16). 
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Figure 15: A generic EMA system (Habibi et al., 2008) 

The model of the DC motor is well established and presented here in a summarized form 

(Habibi et al., 2008). The system parameters needed to simulate this system are listed in Table 1 

of Appendix B. The mathematical model that relates the gear-ball position X with its input 

voltage Vm reads   

Ga =
X

Vm
=

𝐾

s(τs+1)
,                                                                                (47) 

where, 𝑉𝑀 is the motor input voltage, X is the position of the ball-screw mechanism,  K =

0.0452 is the DC gain of the motor, and  τ = 0.0026 is the time constant. A detailed description 

of the EMA equations can be found in Appendix B. The linear displacement X from the ball-

screw mechanism is used as an input to the slider-crank mechanism shown in Figure 16. As 

shown in Figure 13, Given the desired control surface deflection 𝜷𝑑(𝑡),  the required movement 

𝑿𝑑(𝑡),  of the ball-screw mechanism can be calculated from Eq. (48). Also, if the actual 

displacement X of the gear-ball mechanism is measured, the actual rotational angle 𝜷(𝑡) of the 

flab can be found from Eq. (49). 

𝐗𝐝 = 𝑎 [𝑛 (1 − √1 −
sin𝜷𝒅(𝑡)

2

𝑛2
) + (1 − cos𝜷𝒅(𝑡))].                                                              (48) 
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Figure 16: Control surface driven by slider-crank mechanism 

𝜷(𝑡) =arccos
(1+𝑛−

𝑋

𝑎
)2−𝑛2+1

2（1+𝑛−
𝑋

𝑎
）
.                                                                                                      (49)  

Where, n =
𝑏

𝑎
, the length of crank a=100 mm; the length of linkage b =170 mm. In Figure 16, Φ 

is the angle between the linkage and horizontal line in pivoting. A detailed derivation of Eq. (48) 

and Eq. (49) can be found in Appendix B. 

 

3.5  PV-based Inner Control Loop 

The dynamics of the actuators has great impact on the performance of the closed-loop 

dynamics of the aeroelastic system. In the following, we assume that the trailing and leading 

flaps are driven by two identical actuators that are modeled by Eq. (47). From this equation, the 

dynamics of the actuator in form of a differential equation reads  
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𝜏𝑋̈ + 𝑋̇ = 𝐾𝑉𝑚 .                                                                       (50) 

Assuming the existence of an external load disturbance labeled 𝐷𝑎(𝑡) as shown in Figure 13, this 

equation can be modified to 

𝜏𝑋̈ + 𝑋̇ = 𝐾(𝑉𝑚(𝑡) + 𝐷𝑎(𝑡)).                                                                     (51) 

Since the system inherently has an integrator, a PV (Proportional-Velocity) controller is enough 

to stabilize the system and provide good tracking. The control law reads  

𝑉𝑚(𝑡) = 𝑘𝑝(𝑋𝑑(𝑡) − 𝑋(𝑡)) − 𝑘𝑣𝑋̇(𝑡) .                                                                 (52) 

Substituting Eq. (52) into Eq. (51), we obtain  

𝜏𝑋̈ + 𝑋̇ = 𝐾(𝑘𝑝(𝑋𝑑(𝑡) − 𝑋(𝑡)) − 𝑘𝑣𝑋̇(𝑡)  + 𝐷𝑎(𝑡))         (53)                                              

Taking Laplace transformation and simplifying, we get  

𝑋(𝑠) =
𝐾𝑘𝑝

𝜏𝑠2+(1+𝐾𝑘𝑣)𝑠+𝐾𝑘𝑝
𝑋𝑑(𝑡) +

𝐾

𝜏𝑠2+(1+𝐾𝑘𝑣)𝑠+𝐾𝑘𝑝
𝐷𝑎(𝑠)          (54)                                              

Since there are two actuators, the subscript T and L will be used respectively to describe the 

closed-loop dynamics of the trailing and leading actuators that show the relationship between the 

actual and the desired ball-screw mechanism displacement, and effect of the load disturbance on 

the controlled system performance as follows 

𝑋𝑇(𝑠) =
𝐾𝑘𝑝𝑇

𝜏𝑠2+(1+𝐾𝑘𝑣𝑇)𝑠+𝐾𝑘𝑝𝑇
𝑋𝑑𝑇(𝑡) +

𝐾

𝜏𝑠2+(1+𝐾𝑘𝑣𝑇)𝑠+𝐾𝑘𝑝𝑇
𝐷𝑎𝑇(𝑠),         (55)                                              

𝑋𝐿(𝑠) =
𝐾𝑘𝑝𝐿

𝜏𝑠2+(1+𝐾𝑘𝑣𝐿)𝑠+𝐾𝑘𝑝𝐿
𝑋𝑑𝐿(𝑡) +

𝐾

𝜏𝑠2+(1+𝐾𝑘𝑣𝐿)𝑠+𝐾𝑘𝑝𝐿
𝐷𝑎𝐿(𝑠),         (56)                                              

here, 𝑋𝑇(𝑠) and 𝑋𝐿(𝑠) are the actual displacement of ball-gear mechanism of the trailing and 

leading actuator, respectively. Similarly, 𝑋𝑑𝑇(𝑡) and 𝑋𝑑𝐿(𝑡) are used to denote the desired 

movements of these actuators. The parameters 𝑘𝑝𝑇, 𝑘𝑣𝑇 , 𝑘𝑝𝐿, and 𝑘𝑣𝐿represent the adjustable 

gains of the trailing and leading control algorithms. The external excitation at the trailing and 

leading actuators are respectively 𝐷𝑎𝑇(𝑠) and 𝐷𝑎𝐿(𝑠).  One of the main objectives in the design 
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of cascade controllers is to reduce the effect of these upsets. As a result, this effect needs to be 

quantified. Using the superposition principle, setting 𝑋𝑑𝑇(𝑡) = 0 and  𝑋𝑑𝐿(𝑡) = 0, and 

simplifying Eq. (55) and Eq. (56), we get 

𝑇𝐹𝐷𝑎𝑇
(𝑠) =

𝑋𝑇(𝑠)

𝐷𝑎𝑇(𝑠)
=

𝐾

𝜏𝑠2+(1+𝐾𝑘𝑣𝑇)𝑠+𝐾𝑘𝑝𝑇
,            (57)                                              

𝑇𝐹𝐷𝑎𝐿
(𝑠) =

𝑋𝐿(𝑠)

𝐷𝑎𝐿(𝑠)
=

𝐾

𝜏𝑠2+(1+𝐾𝑘𝑣𝐿)𝑠+𝐾𝑘𝑝𝐿
,            (58)                                              

Another important objective in the design of cascade control loops is the speed of response of the 

inner control system which can be characterized from the closed-loop character equations of both 

leading and trailing control algorithms which are given by  

𝐶𝐸𝑇 = 𝜏𝑠
2 + (1 + 𝐾𝑘𝑣𝑇)𝑠 + 𝐾𝑘𝑝𝑇             (59)                                              

𝐶𝐸𝐿 = 𝜏𝑠
2 + (1 + 𝐾𝑘𝑣𝐿)𝑠 + 𝐾𝑘𝑝𝐿             (60)        

Also, the control energy expenditure of the trailing and leading actuators can be quantified by 

using the Frobenius norm of the control parameters as follows 

𝐸𝑇 = √𝑘𝑝𝑇 + 𝑘𝑑𝑇 ,                            (61) 

𝐸𝐿 = √𝑘𝑝𝐿 + 𝑘𝑑𝐿 ,                              (62)                         

 

Having all the objectives defined and all the tuning parameters specified, the multi-objective 

optimization can be now setup. 

 

3.6 Multi-objective and Multidisciplinary Optimal Design 

The design parameter space k including tunable parameters of the outer and inner 

controller is given by, 

𝒌 = [𝑄1, 𝑄2, 𝑄3, 𝑄4, 𝑅1, 𝑅2, 𝑘𝑝𝑇 , 𝑘𝑑𝑇 , 𝑘𝑝𝐿 , 𝑘𝑑𝐿]       (63)                                             
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The parameters 𝑄1, … , 𝑄4 are the diagonal elements of the state weighting matrix (Q), and 𝑅1, 𝑅2 

are the elements on the diagonal of the control weighting matrix (R). These design knobs are 

used to indirectly tune the full-state feedback vector gain, 𝐊𝐂, while, 𝑘𝑝𝑇 , 𝑘𝑑𝑇 , 𝑘𝑝𝐿 and 𝑘𝑑𝐿 are 

the setup parameters of the inner control algorithms applied to the actuators driving the trailing 

and leading control surfaces. The control and geometrical constraints on these setup parameters 

are defined as follows: 

𝑫 =

{
 
 

 
 𝒌 ∈ 𝕽

10| 𝑄1, 𝑄2, 𝑄3, 𝑄4 ∈ [0,100],

 𝑅1and 𝑅2 ∈ [0.001,100],

𝑘𝑝𝑇and 𝑘𝑝𝐿 ∈
[0.1,100],

𝑘𝑑𝑇and 𝑘𝑑𝑇 ∈ [−22,10]. }
 
 

 
 

                    (64)          

The upper limits for all the parameters were arbitrarily chosen. The ranges for 𝑘𝑝𝑇 , 𝑘𝑑𝑇 , 𝑘𝑝𝐿 and 

𝑘𝑑𝐿 were chosen according to stability constraint required by Eq. (59) and Eq. (60). These 

parameters were optimally tuned by minimizing the following design objectives   

𝐦𝐢𝐧
𝒌∈𝑫

{−𝑟, 𝐷𝑎𝑣, 𝐸𝑎𝑣},                                               (65)   

here r defines the relative speed of the inner controlled systems with respect to the outer control 

loop and it is defined by                                       

𝑟 = 𝜆𝑎\𝜆𝑠,                                                              (66)  

where 𝜆𝑎 is the dominant closed-loop pole from the two inner control algorithms and 𝜆𝑠 is the 

dominant pole from the aeroelastic structure under the LQR- based controller and they are given 

by 

𝜆𝑎 = 𝑚𝑎𝑥[𝑚𝑎𝑥(𝑟𝑒𝑎𝑙(𝐶𝐸𝑇))  𝑚𝑎𝑥(𝑟𝑒𝑎𝑙(𝐶𝐸𝑇))]                          (67)    

𝜆𝑠 = 𝑚𝑎𝑥(𝑟𝑒𝑎𝑙(𝐀 − 𝐁𝐊𝐂))                           (68)   

The real function denotes the operation that extracts the real parts from the closed-loop 

eigenvalues while max is the math operator that returns the dominant poles. It is worth noting 
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that big values of r indicate highly responsive inner control algorithms compared to the outer 

control loop. The disturbance affecting the controller in the inner and outer paths can be 

described by        

𝐷𝑎𝑣 =
𝟏

𝟑
(‖𝑮𝑻𝑭(𝑗𝜔)‖𝜔∈[𝜔1,𝜔2] + ‖𝑇𝐹𝐷𝑎𝑇

(𝑗𝜔)‖
𝝎∈[𝝎𝟑,𝝎𝟒]

+ ‖𝑇𝐹𝐷𝑎𝐿
(𝑗𝜔)‖

𝝎∈[𝝎𝟑,𝝎𝟒]
),    (69)    

where 𝑮𝑻𝑭(𝑗𝜔), 𝑇𝐹𝐷𝑎𝑇
(𝑗𝜔), and 𝑇𝐹𝐷𝑎𝐿

(𝑗𝜔) are the functions defined in Eq. (45), Eq. (57), and 

Eq. (58), respectively, after replacing s with 𝑗𝜔. The values 𝜔1 and 𝜔2 are set to 0 and 1000, 

respectively, as suggested in (Singh et al., 2014). Finally, the total control energy from the outer 

and inner control loops is  

𝐸𝑎𝑣 =
𝟏

𝟑
(𝐸𝑠 + 𝐸𝑇 + 𝐸𝐿).              (70)      

 The definition of 𝐸𝑠, 𝐸𝑇 , and 𝐸𝐿 were introduced in Eq. (46), Eq. (61), and Eq. (62).  

To solve this multi-objective optimization problem having the cost functions defined in 

Eq. (65) and the setup parameters listed in Eq. (63) subjected to the constraints of Eq. (64), the 

nondominated sorting genetic algorithm (NSGA-II) is used. Readers are encouraged to refer to 

chapter 1.3 of this thesis or consult Deb’s book titled “Multi-Objective Optimization Using 

Evolutionary Algorithms” (Deb, K., 2001) for more details about this algorithm. There is no 

specific guide on how to set up the number of populations and generations for this algorithm. 

However, according to the Matlab documentation, the population size can be set in different 

ways and the default population size is 15 times the number of the design variables n. Also, the 

maximum number of generations should not be greater than 200 × 𝑛. In this study, the 

population size is set to 50 × 10, and the number of generations is set to 500. The solution of 

this problem results in a set of solutions called Pareto set and the set of the corresponding 
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function evaluation is called Pareto front. The next section sheds more light on the optimization 

results.   

 

3.7 Results and Discussion 

The Pareto front, Pareto set, and dynamics of the controlled system states versus time are 

discussed here. 

3.7.1   Pareto Frontier and Set  

The Pareto Front representing the objective space is shown in Figure 17. The top portion 

of this figure shows the change of 𝐸𝑎𝑣 versus 𝐷𝑎𝑣 and the varying of the color portrays the level 

of 𝐸𝑎𝑣, where the blue and red colors correspond to the lowest and highest values, respectively. 

As is evident from this plot, there is non-agreement relationship between the objective of 

maximizing the capacity of the controlled system to reject external upsets and that of minimizing 

the amount of control energy. For example, when 𝐷𝑎𝑣 = 0.1157 (best disturbance rejection), the 

average control energy is 31.8497, while, 𝐸𝑎𝑣 is only 14.1641 at 𝐷𝑎𝑣 = 0.3926 (worst 

disturbance rejection). That is, the objective of minimizing the energy expenditure is conflicting 

with that of improving the disturbance repudiation of the closed-loop system. 

The bottom subplot of Figure 17 shows another conflicting relationship between 𝐸𝑎𝑣 and 

r (the ratio of the dominant actuators’ pole under the inner control algorithms to the dominant 

eigenvalue of the aeroelastic structure under the outer control system). High Energy levels are 

required in order to ensure that the slave controlled systems are faster than the master controlled 

loop. For instance, when the secondary controlled system is almost 50 times faster than the 

primarily closed-loop system (𝑟 = 49.9382), 𝐸𝑎𝑣 is 30.5979. On the other side at 𝑟 = 1.2403, 

𝐸𝑎𝑣 reads only 12.93. Many other design options can be found between these two extreme points 
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as shown in the figure. For instance, increasing the 𝐸𝑎𝑣 from 12.93 to 14.1641, 𝑟 goes up from 

1.2403 to 11.3589. That is, a small sacrifice in the control energy can significantly speed up the 

response of the inner controlled system compared to the outer one.  

Different projections from the Pareto set are shown in Figures 18, 19, and 20. To show 

the corresponding design parameters for each point in the Pareto front, the color in these figures 

were also mapped to the value of 𝐸𝑎𝑣. It is evident from the color code in Figure 18 that a large 

control energy is associated with big control gains. Also, small values of 𝑅1 and 𝑅2 result in 

large control force because we put less weight on the importance of the control energy. On other 

side, large values of 𝑅1 and 𝑅2 result in small control force because we put more emphasis on the 

minimization of the control energy as shown in Figure 20.  

The effect of the state weighting parameters, 𝑄1, … . , 𝑄4, on the value of the control 

signal is shown in Figure 19. The figure confirms the importance of tuning these knobs and their 

noticeable impact on the energy required to derive the system. Different energy levels can be 

obtained by changing these gains as shown in the figure. 

 

3.7.2   Closed-Loop Eigenvalues    

One of the important objectives in the design of cascade controller is to make the 

response of the inner control loop faster than that of the outer. To this end, the dominant pole of 

the subsystem controlled by the slave control algorithm should be placed to the left of that of the 

plant driven by the master control loop. This was represented in the objective space by the cost 

function r. Figure 21 shows the closed-loop poles’ locations of the aeroelastic structure under the 

outer controller, trailing actuator controlled by an inner PV-based controller, and leading actuator 

driven also by another PV-based control. The color code in this figure is also mapped to the 
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value of the average control energy. By inspecting this figure, we can notice that the dynamics of 

the aeroelastic structure dominates that of the trailing and leading actuators.  This can be also 

confirmed by inspecting Figure 22 which focuses only on the real part of the dominant poles. 

Here, 𝜆𝑎  is the dominant pole from the two actuators. Comparing the values on the x-axis of 

Figure 22-a with that of Figure 22-b, we notice that actuators will always act faster than the 

aeroelastic structure to prevent the propagation of external disturbance to the aircraft’s wing.   

3.7.3   Gust Loading Impact  

For the velocity, V=11.4 m/s (onset of flutter), the closed loop response of the aeroelastic 

structure, trailing actuator, and leading actuator were computed when they are excited by a 

discrete “1-cosine” gust loading, which is given by 

𝑤𝑔(𝑡) =
𝑤𝑔̅̅ ̅̅  

2
(1 − 𝑐𝑜𝑠

2𝜋𝑡

𝐿𝑔
)  𝑓𝑜𝑟  0 < 𝑡 < 𝐿𝑔.                       (71)      

Among them, 𝑤𝑔̅̅̅̅  is the maximum gust velocity, and 𝐿𝑔 is the total length of gust bump. 

Following the work proposed by Haghighat et al. (2012), we set, 𝑤𝑔̅̅̅̅  and Lg respectively to 

4.575 𝑚/𝑠, and 0.5 𝑠. The profile of the gust load over time is shown in Figure 23. The profile 

shows a sudden spike in the first half second.  

The closed-loop system response shows very small tracking error (TE) as labelled on the 

figure when the disturbance rejection is high (see Figure 24), the control energy is large (see 

Figure 26), and the secondary control algorithms are way faster than primary one (see Figure 

28). This behavior is expected since small 𝐷𝑎𝑣, high 𝐸𝑎𝑣, or large r are required for better 

tracking. On other side, large values of 𝐷𝑎𝑣, small levels of 𝐸𝑎𝑣, or small r values will result in 

large tracking error as shown in Figure 25, 27, and 29, respectively. In fact, when 𝐸𝑎𝑣  is at lowest 

level, the tracking is very bad and the system tends to continuously oscillate over time as 
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depicted in Figure 27. Furthermore, if the inner loops do not act quickly to eliminate the impact 

of the gust loading, the controlled system will be also oscillatory as shown in Figure 29.   

 

Figure 17:  Projections of the Pareto front: (a) 𝑬𝒂𝒗 versus 𝑫𝒂𝒗, (b) 𝑬𝒂𝒗 versus r. The color 

code indicates the level of 𝑬𝒂𝒗, where red denotes the highest value, and dark blue denotes 

the smallest. 

 

 

Figure 18: Projections of the Pareto set: (a) 𝒌𝒑𝑻 versus 𝒌𝒅𝑻 (b) 𝒌𝒑𝑳 versus 𝒌𝒅𝑳. The color 

code indicates the level of 𝑬𝒂𝒗, where red denotes the highest value, and dark blue denotes 

the smallest. 
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Figure 19: Projections of the Pareto set: (a) 𝑸𝟏 versus 𝑸𝟑 (b) 𝑸𝟐 versus 𝑸𝟒. The color code 

indicates the level of 𝑬𝒂𝒗, where red denotes the highest value, and dark blue denotes the 

smallest. 

 

Figure 20: A Projection of the Pareto set: 𝑹𝟏 versus 𝑹𝟐. The color code indicates the level 

of 𝑬𝒂𝒗, where red denotes the highest value, and dark blue denotes the smallest. 
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Figure 21: Pole maps, on the y-axis is the imaginary part of the pole, imag(𝝀), and the x-

axis is the real part of the pole, real(𝝀): (a) Pole map of the outer controlled system: outer 

control loop and aeroelastic structure, (b) Pole map of the inner controller applied to the 

trailing actuator, and (c) Pole map of the inner controller applied to the leading actuator.  

 

Figure 22: Dominant pole maps, the x-axis is the location of pole closer to the imaginary 

axis, max(real(λ)) the y-axis is unlabeled, and: (a) Dominant pole map of the outer 

controlled system: outer control loop and aeroelastic structure, (b) Dominant pole map of 

the trailing and leading inner controllers, (c) Dominant pole map of the inner controller 

applied to the trailing actuator, and (d) Dominant pole map of the inner controller applied 

to the leading actuator. 
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Figure 23:Gust load 𝒘𝒈(𝒕) profile versus time.  

 

Figure 24: Controlled systems’ responses when the disturbance rejection is the best min 

(𝑫𝒂𝒗). Top left: time versus the plunging displacement (h). Top right: time versus the 

plunging the pitching angle α. Bottom left: time versus the actual 𝑿𝑻 and desired 𝑿𝒅𝑻 ball-

screw mechanism displacement of the actuator at the trailing aileron. Bottom Right: time 

versus the actual  𝑿𝑳 and desired 𝑿𝒅𝑳 ball-screw mechanism displacement of the actuator 

at the leading aileron. 
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Figure 25: Controlled systems’ responses when the disturbance rejection is the worst max 

(𝑫𝒂𝒗). Top left: time versus the plunging displacement (h). Top right: time versus the 

plunging the pitching angle α. Bottom left: time versus the actual 𝑿𝑻 and desired 𝑿𝒅𝑻 ball-

screw mechanism displacement of the actuator at the trailing aileron. Bottom Right: time 

versus the actual 𝑿𝑳 and desired 𝑿𝒅𝑳 ball-screw mechanism displacement of the actuator at 

the leading aileron. 

 

 

Figure 26: Controlled systems’ responses when the control energy is the maximum max 

(𝑬𝒂𝒗). Top left: time versus the plunging displacement (h). Top right: time versus the 

plunging the pitching angle α. Bottom left: time versus the actual XT and desired 𝑿𝒅𝑻 ball-

screw mechanism displacement of the actuator at the trailing aileron. Bottom Right: time 
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versus the actual 𝑿𝑳 and desired 𝑿𝒅𝑳 ball-screw mechanism displacement of the actuator at 

the leading aileron. 

 

 

Figure 27: Controlled systems’ responses when the control energy is the minimum 

min(𝑬𝒂𝒗). Top left: time versus the plunging displacement (h). Top right: time versus the 

plunging the pitching angle α. Bottom left: time versus the actual 𝑿𝑻 and desired 𝑿𝒅𝑻 ball-

screw mechanism displacement of the actuator at the trailing aileron. Bottom Right: time 

versus the actual 𝑿𝑳 and desired 𝑿𝒅𝑳 ball-screw mechanism displacement of the actuator at 

the leading aileron. 
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Figure 28: Controlled systems’ responses when the inner closed-loop algorithms are way 

faster than outer control loop max (r). Top left: time versus the plunging displacement (h). 

Top right: time versus the plunging the pitching angle α. Bottom left: time versus the 

actual 𝑿𝑻 and desired 𝑿𝒅𝑻 ball-screw mechanism displacement of the actuator at the 

trailing aileron. Bottom Right: time versus the actual 𝑿𝑳 and desired 𝑿𝒅𝑳 ball-screw 

mechanism displacement of the actuator at the leading aileron. 

 

Figure 29: Controlled systems’ responses when the inner closed-loop algorithms are way 

slower than outer control loop max (r). Top left: time versus the plunging displacement (h). 

Top right: time versus the plunging the pitching angle α. Bottom left: time versus the 

actual 𝑿𝑻 and desired 𝑿𝒅𝑻 ball-screw mechanism displacement of the actuator at the 

trailing aileron. Bottom Right: time versus the actual 𝑿𝑳 and desired 𝑿𝒅𝑳 ball-screw 

mechanism displacement of the actuator at the leading aileron. 
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CHAPTER 4: SUMMARY AND FUTURE DIRECTIONS  

4.1  Conclusions 

We have studied the multi-objective optimal design of a two cascaded controller based on 

two PD controllers. A numerical example which consists of a servo DC motor and ball-beam 

system is used. The optimization problem with four design parameters and four conflicting 

objective functions is solved with the NSGA-II algorithm. The Pareto set and front are obtained. 

The Pareto set includes multiple design options from which the decision-maker can choose to 

implement. The results show there are many optimal trade-offs among load disturbance rejection, 

measurement noise repudiation, control energy saving, tracking error reduction, and relative 

speed of response of the inner loop subsystem with respect to the outer one. Also, the pole maps 

of the control loops demonstrate that the inner closed-loop system has a faster dynamic than that 

of the outer controlled system. 

We have also investigated the multi-objective optimal design of three cascaded 

controllers, two slave algorithms applied to the actuators and a master controller for the aircraft’s 

wing. The outer algorithm is based on the optimal LQR algorithm while the inner loops are PV-

based controllers. A numerical example which consists of an aircraft’s flexible structure and two 

EMA actuators are used. The optimization problem with ten design parameters and three 

conflicting objective functions is solved with the NSGA-II algorithm. The Pareto set and front 

are obtained, and the results show inherit trade-offs among the design goals. The pole locations 

of the three subsystems clearly show that the inner closed-loop systems are faster than that of the 

outer controlled system. 
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4.2  Future Works 

Future work will include designing an optimal and multidisciplinary cascade controller 

aeroelastic structures or aircraft wings with different number of ailerons. The design will include 

the controllers’ gains as well as the geometrical parameters of the control surfaces. Also, the 

backlash effect on the ball-screw mechanism connected to the DC motor will be investigated.  

Furthermore, the dynamic of the slider-crank mechanism and its effect on the system behavior 

will be included in the future studies.   
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APPENDIX B: 

B.1  Aircraft Flexible Wing  

The detailed mathematical model of the aircraft wing shown in Figure 14 (see chapter 3) with a 

leading and trailing control surface is given by  

[
𝑚𝑇 𝑚𝑤𝑥𝛼𝑏

𝑚𝑤𝑥𝛼𝑏 𝐼𝛼
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ℎ̈

𝛼̈
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⏟
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+ ([
𝑐ℎ 0
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2
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𝑘ℎ 0
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 (B.1) 

 

The term 𝑩𝑎𝑑𝒘𝑔(𝒕) does not exist in the original model and it was added to show the effect of 

the aerodynamic loads on the system performance. The elements of 𝑩𝑎𝑑 were estimated by 

comparing the values of the control distribution matrix 𝑩𝑐𝑠 and the aerodynamic load 

distribution matrix 𝑩𝑎𝑑 proposed by Kumar et al. (2012b) with those of the model at hand. The 

2D lift-curve slope was set to 2𝜋 since the ideal lift curve slope of any 2D wing is 2𝜋. In fact, 

inspecting wind tunnel data for any airfoil shape, it can be found that the slope of the lift curve is 

very close to this value (Aerospaceweb, 2012).  Retrieved from 

http://www.aerospaceweb.org/question/aerodynamics/q0167.shtml 

Symbol Definition Value 
𝜌 air density 1.225,kg/𝑚3 

𝛼 pitching angle (positive nose up) -0.6719 

b semichord 0.1905,m 
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𝑟𝑐𝑔 distance from elastic axis to center of mass -b(0.0998+α) ,m 

𝑥𝑎 nondimensional distance from elastic axis to center of mass 𝑟𝑐𝑔/𝑏 

s semispan 0.5945, m 

𝑘ℎ  Plunge stiffness 2844,N/m 

k𝛼 pitch stiffness 12.77,Nm/rad 

𝐶𝑙𝛼 lift derivative with respect to pitch angle α 6.757 

𝐶𝑙𝛽𝑇  lift derivative with respect to trailing-edge control angles 3.774 

𝐶𝑙𝛽𝐿  lift derivative with respect to leading-edge control angles +1 

𝐶𝑚𝛼
  0 

𝑐ℎ  plunge 27.43,kg/s 

𝑐𝛼 pitch damping 0.036,kg ∙ 𝑚2/𝑠 

𝑚𝑤 mass of wing 4.340,kg 

𝑚𝑤𝑇 total wing section and mount mass 5.230,kg 

𝑚𝑇 total mass of pitch–plunge system 15.57,kg 

𝐼𝑐𝑎𝑚 pitch cam moment of inertia 0.04697,kg∙ 𝑚2 

𝐼𝑐𝑔𝑤 wing section moment of inertia about the center of gravity 0.04342, kg∙ 𝑚2 

𝐼𝑎 total pitch moment of inertia about elastic axis 𝐼𝑐𝑎𝑚 + 𝐼𝑐𝑔𝑤 +𝑚𝑤𝑟𝑐𝑔
2

 

𝐶𝑚𝛽𝐿, 𝐶𝑚𝛽𝐿𝑇  effective trailing- and leading-edge control derivatives, respectively -0.1005,-0.6719 

𝐶𝑚𝛼eff effective moment derivative (0.5+α)𝐶𝑙𝛼 + 2𝐶𝑚𝛼 

𝐶𝑚𝛽Teff effective trailing-edge control derivatives (0.5+α)𝐶𝑙𝛽𝑇 + 2C𝑚𝛽𝑇  

𝐶𝑚𝛽Leff effective leading-edge control derivatives (0.5+α)𝐶𝑙𝛽𝐿 + 2C𝑚𝛽𝐿 

𝑎𝑤 2D lift-curve slope 2𝜋 

Table 1: The model parameters (Singh et al., 2016) 

B.2 Electromagnetic Actuator  

The EMA shown in Figure 15 (see Chapter 3) is described by the following equations  

𝐺𝑒 =
1/𝑅𝑐
𝐿𝑐
𝑅𝑐𝑠

+1
=

1/𝑅𝑐

𝜏𝑒𝑠+1
,                                                                   (B.2) 
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𝜏𝑒 and 1/𝑅𝑐 are the motor’s electrical time constant and gain. Assuming that the inductance is 

very small (𝐿𝑐 = 0 → 𝜏𝑒 = 0), which is the case in many inductive loads. The motor’s dynamics 

can be reduced to the following transfer function  

𝐺𝑒=1/𝑅𝑐.                                                                   (B.3) 

The transfer function of the mechanical part of the motor (motor shaft and gearbox) is 

approximated by 𝐺𝑚𝑒𝑐ℎ such that 

𝐺𝑚𝑒𝑐ℎ =
1 𝐾𝑚𝑣⁄
𝐽𝑚
𝐾𝑚𝑣

𝑠+1
=

𝐾𝑚

𝜏𝑚𝑠+1
,                                                                   (B.4)        

         Definitions and values of some of the parameters used in the computer simulations are 

tabulated in Table 2.    

Symbol Definition Value 
𝐽𝑚 Rotor inertia 0.000391, lb 𝑖𝑛.2 

𝐾𝑐  Torque constant 2.376, in.lb/A 

𝐾𝑚𝑣 Viscous friction and damping 0.00116, in.lb s/rad 

𝐾𝜔 Back emf constant   0.1342, V s/rad 

𝑅𝑐 Winding resistance 2.12, Ω 

τm Mechanical time constant 0.3371, s 

Table 2: Motor parameters (Habibi et al., 2008). 

B.3 Slider-Crank Mechanism  

The kinematic equations of the slider-crank mechanism in Figure 16 (see chapter 3) read 

x = (𝑎 + b) − (b cosΦ + 𝑎 cos 𝛽)   

X = 𝑎 [
𝑏

𝑎
(1 − cosΦ) + (1 − β)]  

Knowing that sinΦ2 + cosΦ2 = 1, cosΦ2 = 1 − sinΦ2, cosΦ = √1 − sinΦ2 and setting 

n =
𝑏

𝑎
,  we notice that sinΦ =

sin𝛽

𝑛
 . After few steps of mathematical substitutions and 
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simplifications, the relationship between the rock-pinion displacement X and slider-crank angular 

displacement 𝛽 can be found as follows  

cosΦ = √1 − sinΦ2 = √1 −
sin 𝛽2

𝑛2
 

X = 𝑎 [𝑛 (1 − √1 −
sin𝛽2

𝑛2
) + (1 − cos𝛽)]                                                                   (B.5) 

𝑋

𝑎
= [𝑛 (1 − √1 −

sin𝛽2

𝑛2
) + (1 − cos𝛽)]  

𝑋

𝑎
=  𝑛 − 𝑛√1 −

sin𝛽2

𝑛2
+ 1 − cos 𝛽  

𝑋

𝑎
=  𝑛 − 𝑛√

𝑛2 − sin 𝛽2

𝑛2
+ 1 − cos 𝛽 

𝑋

𝑎
= n − √𝑛2 − sin𝛽2 + 1 − cos 𝛽 

𝑋

𝑎
− n − 1 = −√𝑛2 − sin 𝛽2 − cos 𝛽 

√𝑛2 − sin𝛽2 + cos 𝛽 = 1 + 𝑛 −
𝑋

𝑎
 

now, sin 𝛽2 + cos 𝛽2 = 1       sin 𝛽2 = 1 − cos 𝛽2 

√𝑛2 − 1 + cos 𝛽2 + cos 𝛽 = 1 + 𝑛 −
𝑋

𝑎
 

 

{
𝐴 = cos 𝛽

𝐵 = 1 + 𝑛 −
𝑋

𝑎

 

√𝑛2 − 1 + 𝐴2 + A = 𝐵 

𝑛2 − 1 + 𝐴2 = 𝐵2 + 𝐴2 − 2AB 
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A =
𝐵2 − 𝑛2 + 1

2𝐵
 

 

cos 𝛽 =
(1 + 𝑛 −

𝑋

𝑎
)2 − 𝑛2 + 1

2（1 + 𝑛 −
𝑋

𝑎
）

 

𝛽 =arccos
(1+𝑛−

𝑋

𝑎
)2−𝑛2+1

2（1+𝑛−
𝑋

𝑎
）

                                                       (B.6) 
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