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Data Warehouse
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Access to Unstructured Data

The patient has lost appetite for a month anorexic :
gradually and she cannot tolerate meat she lost :> BHECE NI ET 08
weight about 6-7 pounds for the past 2 months

nonintentional

Family history: Grandmother with colon cancer and B

daughter with lung cancer and metastasis mmmm)  Family history Cancer
Hypertension and diabetes from other side they

called regarding the patient she is

OB/GYN: Hysterectomy at age of XX she is a mother : '
of X kids X boys and X girls denies any bleeding and |:> Mother with large family
discharge

Social history: She lives with her daughter and

granddaughter, ... 4 dogs and 1 cat, the patient |:> Pet Owner
reported HIV testing and she was negative



Data Extraction



SELECT DISTINCT * FROM

(SELECT A.[DIM_EMPI_VALUE],
DATEDIFF (MONTH, C.[DOB], C.ADMITDATE) AS AGEATADMIT,
[SEX].

How do we ez ) 8 7163,

FROM DevelopmentSource.dbo.  AffinityDiagnosis A

JOIN DevelopmentSource.dbo.DIM _NAMES B
eX ra C a a ON A.DIM_EMPI_VALUE = B.DIM EMPI_VALUE

JOIN DevelopmentSource.dbo. ATTinityPROCEDURE C
oM B.DIM _EMPI_VALUE = C.DIM_EMPI_VALUE
SQL AND CAST(A.ADMITDATE AS DATE) = CAST(C.ADMITDATE AS DATE)
WHERE (ICDCode LIKE '466.1%' OR ICDCode LIKE '"J21%")
AND (DeptName IN ('5 SOUTH - PEDIATRICS', 'CHH/MH PEDS','CFMC PED AFTER HOURS','PICU')))D
WHERE AGEATADMIT <= 24
| AND CAST(ADMITDATE AS DATE) BETWEEN CAST('2815-87-81' AS DATE) AND CAST('2817-86-38° AS DATE)
a0

Description: “Children 24 months or younger who had a diagnosis of Acute bronchiolitis and were admitted between the
1 July 2015 and 30 June 2017 in the specified departments.”

AGEATADMIT SEX ZIP3 ADMITDATE

23 F 255  2015-11-28 00:00:00.000
24 M 411  2015-12-30 00:00:00.000
23 M 412 2016-01-04 00:00:00.000
21 F 257 2015-12-17 00:00:00.000
22 F 255  2016-01-18 00:00:00.000
17 F 411 2015-09-29 00:00:00.000




saruncient.c = > I
S CLR1 | %z UserDefinedFunctions
1 Slusing System;
O I I I I I |O n 2 using System.Data
3 using System.Data.SqlClient;
- using System.Data.5qlTypes;
5 using System.Text.RegularExpressions;
a n g u a ge = using Microsoft.SqlServer.Server;
g Ipublic partial class UserDefinedFuncticons
: 0o [¢

1@

% u nt | I I | e U S e r 11 [Micresoft.SglServer.Server.SqlFunction]
12 = public static Sgql5tring OutsideWords(string theposition, string mystring, string theword)
13 I

e 14 string ecutputstring = "";

D e I n e 15 mystring = "aaa " + mystring.Trim() + " aaa";
17 string pattern = @"(?<before>\w+) " + theword + @" (?<after>\w+)";

=2 ° 18 MatchCollection matches = Regex.Matches(mystring, pattern);
.

o u n Ct I O n S 28 = for (int i = @; 1 < matches.Count; i++)
21 {
22 = if (theposition == "before™)
23 {
24 outputstring = outputstring + matches[i].Groups["before™].To5tring();
25 - if (outputstring.Trim(} == "aaa")
26 {
27 outputstring = "";
28 1
29 - } else
30 {
31 outputstring = cutputstring + matches[i].Groups["after”].ToString();
32 = if (outputstring.Trim(} == "aaa")
23 {
34 outputstring = "";
35 1
36 }
37
38
39
48 b
42 return new Sglstring(outputstring);
43 }
45 +
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Real Time Graphics

Select other chart types by clicking Select Chart type
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Machine Learning



Why Machine Learning

Machine Learning (ML) can accurately classify and
accurately predict disease as well as other medical
events.

» Classifier models: Used for differential

diagnosis, outcome prediction, etc.

» Regression models: patient survival,
length of stay, laboratory values, etc.



How do Computers Learn

Supervised learning
e Prediction
e Classification (discrete labels),
e Regression (real values)

Unsupervised learning
e Clustering
e Probability distribution estimation
e Finding association (in features)
 Dimension reduction

UNSUPERVISED MACHINE LEARNING

SUPERVESED MACHINE LEARNING




Maive Bayes
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Linear Regression

Flexible Discriminant Analysis (FDA)

1
\ O\ ', Linear Discriminant Analysis (LDA)
~ .".I I': I"
Ordinary Least Squares Regression (OLSR) ".I f

k-Nearest Neighbour (KNN)
1 Y e
i ) y / Voo I Learning Vector Quantization (LVQ)
Stepwise Regression | ] J ! —
o ) i - Regression ,/ . . Self-Organizing Map (50M)
Multivariate Adaptive Regression Splines (MARS) |
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Brownlee (2018). Welcome to MachinenLearning Mastery: https://machinelearningmastery.cdm/




Machine Learning Pipeline
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Embed
Machine
Learning

in SQL

SCRIPT USE THIS ge..\cecchetti-a (84))* = X

G0
--([@xmodel varbinary(max) OUTPUT)
create procedure dbo.generate_lung cancer_modell

AS
BEGIN
EXECUTE sp_execute_external_script
@language = N'R’
S@script = N’
library(RevoScaleR)
library(caret) # show me all the packages in caret # names(getModelInfa())
Llibrary (RANN)
library(randomForest)
library(RODBEC)
library (doSNOW)
library(quanteda)
library(parallel)

ge()

sms_rawlTYPE <- toupper(as.factor(sms_rawiTYPE))
sms_rawdTEXT <- as.character(sms_raw3TEXT)  ## use it all

train.tokens <- tokens(sms_raw$TEXT , what = "word”,
remaove_numbers = TRUE, remove_punct = TRUE,
remove_symbols = TRUE, remove hyphens = TRUE,
remove_url = TRUE)

train.tokens <- tokens_tolower(train.tokens)

#E get multiword

multiword <- c(“you are","yellow”,"without
## have multiword

train.tokens <- tokens_compound(train.tokens, pattern = phrase(multiword))
train.tokens <- tokens_select(train.tokens, stopwords(),selection = "remove™)

oy

train.tokens <- tokens_wordstem(train.tokens, language = “english

» without™, "wheezing”, "went away”,

weight loss™,"weight™,"weakness™,"weak”,"warm”, "want to","vomit

train.tokens.dfm <- dfm(train.tokens) # bag of words model- create a document feature matrix

train.tokens.dfm <- dfm_trim(train.tokens.dfm, min_docfreq = 48)

trained_model <- data.frame(payload = as.raw(serialize(train.tokens.dfm , connection=NULL

oy



Programming



Why Programming

Device Programming, especially smartphone applications, can provide
new ways to acquire, transport, store, process, and secure personalized
patient data to deliver meaningful results.



An Example



Extraction of Baseline Data From Hospital Notes

Patient says he is feeling fatigue for the last 3-4 Fatigue

months

He has lower abdominal cramping 3 x weekly Abdominal cramping

Patient states episodes of nausea Nausea

Patient denies heartburn Heartburn
Patient denies fever Fever

Patient denies chills chills



Text mining
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Patient at Baseline

manageable little extreme pain committing suicide sore hurts number date

Patient 1 |manageable pain hurts 5|21-May-18 > @

Patient 2 little pain sore |hurts 4| 21-May-18 4 @




Next Day

manageable little extreme pain committing suicide sore hurts number date

Patient 1

extreme

pain

suicide

hurts

9

22-May-18

Patient 2

little

pain

s0re

hurts

5

22-May-18
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What Happens During An Intervention

Select other chart types by clicking Select Chart tyvpe
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Analyze the Intervention

Select other chart types by clicking Select Chart tyvpe

nausea ¥

<5elect Symptom: ” ——

chest I F
Level by Day and Time T s RN |-

numb =

pain ;

sick

|5
It

T

.h;.ll.'

[l-sirsa .II

|

HEE .-n.II.'
Hida

HEE
HELE .

Lenval

4
g
7
G
5
4
3
2
1

Automatic ReadOUt % goodnessol_Flit o
o square 88
= Syx 0.1674

Is slope significantly non-zero?

GeRs 0L PEOLGL0E
Sk8201 ka0 LG 102

F 176.3
DFn,DFd 1.2

P Value 0.0056
Deviation from horizontal? Significant

Date and Time




Develop Novel Medical Technologies for Specific
Chronic Diseases or Events

Sentto a
machine
learning

Unstructured and algorithm
Structured data is
gathered

a data model to
predict trends is
created

Trends are
interpreted as a

simplified
readout




How Can Novel Medical Technologies Benefit
The Appalachian Community

e Remote individuals can now participate in the health care value
matrix with minimal costs in ways not possible in the past.

e Algorithms, developed by Appalachian medical experts, can provide
standardized guidance for specific chronic conditions at little or no
cost.
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