

Vision-Based Autonomous Aircraft Payload

Delivery System

Masters Research Dissertation

For the qualification towards

MEng (Mechatronics)

Department of Mechatronics

Faculty of Engineering, the Built Environment and Information Technology

Nelson Mandela University

By

James Alderton Sewell

Student Number: 214085996

-

April 2019

Supervisor: Professor T. van Niekerk (Nelson Mandela University)

Co-Supervisor: Professor R. Phillips (Nelson Mandela University)

Co-Supervisor: Professor R. Stopforth (University of KwaZulu-Natal)

Page | i

DECLARATION BY CANDIDATE

NAME: JAMES ALDERTON SEWELL

STUDENT NUMBER: 214085996

QUALIFICATION: MENG (MECHATRONICS)

TITLE OF PROJECT: VISION-BASED AUTONOMOUS AIRCRAFT PAYLOAD
DELIVERY SYSTEM

DECLARATION:
In accordance with Rule G5.6.3, I hereby declare that the above-mentioned treatise/
dissertation/ thesis is my own work and that it has not previously been submitted for
assessment to another University or for another qualification.

SIGNATURE: ___

DATE: ___

Declaration

Page | ii

Dedication

I would like to dedicate this dissertation to my grandfather, Barry Crawford Sewell,

who passed away during the completion of this research. Thank you for always

promoting and encouraging my passion for engineering.

Page | iii

Acknowledgements

I would like to thank the following people, without their contributions, this research

would have not been possible.

I would like to show my gratitude towards the South African Department of Science

and Technology’s ROSSA programme, the Eskom TESP programme, Nation Research

Foundation, MerSETA and Karl du Preez, for providing the necessary funding, which

enabled the acquisition of the necessary tools and equipment required for this

research.

Professor Theo van Niekerk, for your supervision and guidance throughout my

mechatronics career. Thank you for your unrelenting commitment towards the

furthering of my academic career and for ensuring that I always remained on course

of the final goal.

Professor Russell Phillips, for your guidance throughout my masters and for

providing me with your years’ worth of experience and expertise. Thank you for your

drive and dedication to the furtherment of engineering.

Professor Riaan Stopforth, for your insightful knowledge into new developments in

mechatronic technology, which proved invaluable in the development of this research

and for providing the necessary academic funding to have allowed me to undertake

this research.

Damian Mooney, your knowledge and expertise in drone technology proved

invaluable throughout this research. Thank you for your many hours of patience and

guidance.

Brogan McArthur, for your years of endless love, support and encouragement,

without which I would have never undertaken this research or become the person I

am today.

My parents, Mike and Michelle Sewell, for your support and encouragement

throughout all of my endeavours.

Page | iv

Abstract

This research sought to design and develop an autonomous aircraft payload delivery

system which utilised an onboard computer vision system for drop-zone

identification. The research was tasked at achieving a modular system which could

be used in the delivery of a given payload within a 5 m radius of designated drop-zone

identifier. An integrated system was developed, where an autonomous flight

controller, an onboard companion computer and computer vision system formed the

physical hardware utilised to achieve the desired objectives. A Linux-based Robotic

Operating System software architecture was used to develop the control algorithms

which governed the autonomous flight control, object recognition and tracking

through image processing, and payload release trajectory modelling of the system.

The hardware and software architectures were integrated into a remote control fixed-

wing aircraft for testing. Implementation of the system through simulation and

physical testing proved successful and payload delivery was achieved at an altitude

of 75 m, within an average displacement of 1.82 m from the true drop-zone location,

where drop-zone detection and location were determined through autonomous

survey over the approximate drop-zone’s location. This research furthered the

development of autonomous aircraft delivery systems by introducing computer vision

as a means of drop-zone location confirmation and authentication, allowing for

greater payload delivery security and efficiency. The results gathered in this research

illustrated the possible applications of modular airborne payload delivery systems

into Industry 4.0 through the use of such a system in the service delivery sector.

Page | v

Contents
Declaration .. i

Dedication .. ii

Acknowledgements .. iii

Abstract ... iv

List of Figures .. ix

List of Tables ... xiv

Chapter 1 Introduction ... 1

1.1 Rationale and Motivation ... 2

1.2 Aim, Objectives and Research Contributions .. 3

1.2.1 Aim.. 3

1.2.2 Objectives .. 3

1.2.3 Research Contributions ... 4

1.3 Hypothesis ... 5

1.4 Delimitation ... 5

1.5 Dissertation Outline .. 6

1.6 Chapter Conclusion ... 6

Chapter 2 Literature Study ... 7

2.1 Application-Based Background .. 7

2.1.1 Airframes ... 8

2.1.2 Airborne Delivery ... 9

2.2 Related Research ... 11

2.2.1 Academic Studies .. 11

2.2.2 Commercial Systems ... 13

2.3 Chapter Conclusion ... 15

Chapter 3 System Architecture ... 16

3.1 The Test Bench Aircraft ... 16

3.2 Hardware Architecture ... 17

3.2.1 Aircraft Flight Control .. 17

Page | vi

3.2.2 Autonomous Flight Hardware .. 19

3.2.3 Vision System Hardware .. 26

3.2.4 Payload Release Hardware ... 31

3.2.5 Additional Hardware Considerations ... 32

3.3 Software Architecture .. 33

3.3.1 Operating System .. 33

3.3.2 Robotic Operating System ... 33

3.4 Aircraft Alterations .. 37

3.4.1 Nose Cone and Fuselage .. 37

3.4.2 New Wing .. 40

3.4.3 Additional Alterations .. 50

3.5 Chapter Conclusion ... 50

Chapter 4 Autonomous Flight ... 51

4.1 Autonomous Flight Node ... 51

4.1.1 Pre-flight Calibration and Safety Checks ... 52

4.1.2 Arming and Disarming .. 52

4.1.3 Flight Mode Selection .. 53

4.1.4 Takeoff .. 54

4.1.5 Waypoint Allocation ... 59

4.2 Chapter Conclusion ... 68

Chapter 5 Vision System... 69

5.1 Image Capture Node and Image Processing Node ... 69

5.2 Image Processing ... 70

5.2.1 Object Recognition ... 70

5.2.2 Object Tracking ... 74

5.3 Camera Mass-Balancing .. 79

5.4 Chapter Conclusion ... 80

Chapter 6 Payload Delivery ... 81

6.1 Environmental Factors .. 81

Page | vii

6.2 Mathematical Foundation .. 82

6.2.1 Ballistic Projectile Motion in a Vacuum ... 82

6.2.2 Ballistic Projectile Motion with Drag .. 83

6.2.3 Ballistic Projectile Motion with Quadratic Drag and Headwind 86

6.3 Payload Design .. 91

6.3.1 Design Concepts .. 91

6.3.2 Final Design and Design Refinement ... 93

6.4 Payload Release Node .. 96

6.4.1 Determination of the Environmental Parameters 96

6.4.2 Lookup Tables ... 97

6.5 Chapter Conclusion ... 99

Chapter 7 Integrated System .. 100

7.1 Integrated Communication .. 100

7.1.1 Communication with the ODroid and ROS .. 100

7.2 Chapter Conclusion ... 104

Chapter 8 Results and Discussion .. 105

8.1 Focus Area of Research Design and Methodology 105

8.1.1 Method for Testing ... 105

8.2 Autonomous Flight Testing .. 107

8.2.1 Simulation ... 107

8.2.2 Flight Tests .. 108

8.2.3 Flight Test Results ... 109

8.3 Vision Testing .. 118

8.3.1 Offboard Testing .. 118

8.3.2 Onboard Testing .. 142

8.4 Payload Release Testing ... 150

8.4.1 Simulation ... 150

8.4.2 Physical Payload Release ... 152

8.5 System Performance .. 155

Page | viii

8.6 Chapter Conclusion ... 155

Chapter 9 Conclusion and Recommendations ... 156

10.1 Conclusion .. 156

10.2 Research Contributions ... 158

10.3 Future Recommendations .. 159

References .. 160

Appendices ... 164

Appendix A1 – Autonomous Flight Node Code ... 164

Appendix A2 – Image Capture Node Code .. 173

Appendix A3 – Image Processing Node Code .. 175

Appendix A4 – Payload Release Node Code .. 181

Appendix B – Payload Equilibrium Time MATLAB Code 193

Appendix C1 - Pixhawk Specifications ... 195

Appendix C2 – Pixhawk Port Pinouts ... 197

Appendix C3 – Pixhawk Schematic .. 199

Appendix D1 – ODroid-XU4 Specifications ... 200

Appendix D2 – ODroid-XU4 Schematic .. 201

Appendix E1 - ELP-USB500W04AF-A60 Camera Specifications 202

Appendix E2 - ELP-USB500W04AF-A60 Camera Schematic 203

Appendix F - TAROT GoPro 3D V metal 3-axis gimbal Specifications 204

Appendix G - Wing Design Calculation .. 205

Appendix H1 – Catapult Launcher Calculations... 210

Appendix H2 - Launcher Sled and Catapult CAD Design 212

Appendix I – CMOS Camera Mount CAD Design .. 215

Appendix J1 – Payload Release Equilibrium Time Lookup Tables 217

Appendix J2 – Payload Release Phase A Displacement Look Up Tables 223

Appendix K – Payload CAD Design ... 229

Page | ix

List of Figures

Figure 2.1: Drone aircraft classifications [26] .. 7

Figure 2.2: Free-Drop Airdrop from a DC3 Cargo Plane in South Sudan [38] 10

Figure 2.3: Zipline aircraft launching [39] ... 13

Figure 2.4: DHL Parcelcopter [16] ... 14

Figure 3.1: Test bench aircraft - Skywalker 2013 .. 16

Figure 3.2: Onboard remote control and sensory hardware configuration 18

Figure 3.3: Initial receiver configuration of the control actuators 19

Figure 3.4: The Pixhawk 1 [37] ... 19

Figure 3.5: Companion computer weighted comparison .. 21

Figure 3.6: The ODroid-XU4 [25] .. 22

Figure 3.7: Pixhawk’s peripheral devices’ configuration .. 23

Figure 3.8: FTDI cable wiring configuration for Pixhawk TELEM2 port 24

Figure 3.9: Receiver – Pixhawk configuration .. 24

Figure 3.10: Pixhawk control actuator configuration for a fixed-wing aircraft 25

Figure 3.11: Integrated autonomous flight control hardware configuration 25

Figure 3.12: Camera type weighted comparison .. 26

Figure 3.13: ELP CMOS camera weighted comparison .. 27

Figure 3.14: ELP-USB500W04AF-A60 CMOS camera [17] 28

Figure 3.15: Gimbal - Pixhawk configuration .. 29

Figure 3.16: Vision system integrated with autonomous flight control hardware

configuration .. 30

Figure 3.17: Payload release mechanism actuation diagram 31

Figure 3.18: Pixhawk configuration for the payload release servo 32

Figure 3.19: System Software Architecture ... 34

Figure 3.20: MAVLink message structure [47] ... 34

Figure 3.21: New nose and fuselage conceptual design ... 37

Figure 3.22: Comparative view of the aircraft’s old nose and new nose 38

Figure 3.23: Second tier of the new nose with the camera gimbal mounted 38

Figure 3.24: The third tier of the new nose ... 39

Figure 3.25: Fibreglass reinforcing the new nose hood .. 39

Figure 3.26: Fully assembled new nose and fuselage .. 39

Figure 3.27: Skywalker polyhedral wing structure .. 40

Figure 3.28: Clark Y (clarky-il) aerofoil .. 41

Figure 3.29: Wing division for wing loading analysis ... 41

Page | x

Figure 3.30: Elliptical loading of new wing .. 42

Figure 3.31: Total wing load area within an elliptical loading function 42

Figure 3.32: Elliptical wing loading function with Left Riemann Sum Superimposed

 ... 44

Figure 3.33: New wing bending moment curve .. 45

Figure 3.34: Spar cap cross-sections .. 46

Figure 3.35: New wing shear force curve ... 47

Figure 3.36: New wing with wireless telemetry and control surfaces included 49

Figure 3.37: New wing attached to the aircraft .. 49

Figure 4.1: Autonomous flight node computational flow diagram 51

Figure 4.2: Hand launching the aircraft during the testing phase 54

Figure 4.3: Catapult force diagram ... 55

Figure 4.4: Latex rubber extension force as a function of extension ratio 56

Figure 4.5: Catapult launch sled CAD model design ... 57

Figure 4.6: Aircraft launched from the catapult .. 58

Figure 4.7: Effective survey area and survey waypoints expanded about the drop-

zone's approximate location (waypoint 8) .. 60

Figure 4.8: Survey area waypoints with additional turn-around waypoints (waypoint

4 and waypoint 7) ... 61

Figure 4.9: Payload release approach waypoints, with the drop-zone location defined

by waypoint 15 ... 64

Figure 4.10: Fixed-wing landing waypoints ... 65

Figure 4.11: Fixed-wing flying overhead during landing .. 66

Figure 5.1: Image capture node and the image processing node computational flow

diagram .. 69

Figure 5.2: OpenCV BGR colourspace array [32] ... 71

Figure 5.3: BGR cubic colourspace (left) and HSV hexacone colourspace (right) ... 71

Figure 5.4: Image plane quadrant view ... 74

Figure 5.5: Relative coordinate frames .. 75

Figure 5.6: Image plane quadrant bearings ... 76

Figure 5.7: Camera FOV calibration illustration .. 77

Figure 5.8: CMOS camera mount attached to the gimbal 79

Figure 6.1: Projectile motion of an object in a vacuum under various test parameters

 ... 82

Figure 6.2: Projectile motion of an object with drag under test parameters 83

Page | xi

Figure 6.3: Comparison of projectile motion in a vacuum and with drag under test

parameters ... 85

Figure 6.4: Free-body diagram of the payload during phase 1 of the final ballistic

projectile motion ... 87

Figure 6.5: Payload acceleration curve under test parameters 89

Figure 6.6: Various shapes' drag coefficients .. 91

Figure 6.7: First payload design concept ... 91

Figure 6.8: Second payload design concept ... 92

Figure 6.9: Third payload design concept .. 92

Figure 6.10: Determination of centre of pressure .. 94

Figure 6.11: CFD drag coefficient calculation simulation 94

Figure 6.12: Drag coefficient plot from SolidWorks CFD simulation 95

Figure 6.13: Final payload design ... 95

Figure 6.14: Payload release node computational flow diagram 96

Figure 6.15: Equilibrium times for different headwind velocities at fixed aircraft

speeds at 50m .. 97

Figure 6.16: Equilibrium times for different aircraft speeds at fixed headwind

velocities at 50m ... 97

Figure 7.1: SSH protocol ... 101

Figure 7.2: PuTTY SSH protocol client interface during ROS node execution 102

Figure 7.3: ROS node development configuration of the ODroid onboard the aircraft

 ... 104

Figure 8.1: SITL simulation of the autonomous flight node 108

Figure 8.2: Autonomous flight control loiter with theoretical loiter circle overlaid 110

Figure 8.3: Aircraft altitude control during loiter flight test 110

Figure 8.4: Aircraft airspeed control during loiter flight test 111

Figure 8.5: Instantaneous power consumption comparison during takeoff.......... 112

Figure 8.6: Instantaneous power consumption comparison during flight 113

Figure 8.7: Simulated flight control and autonomous flight control flight path

comparison ... 115

Figure 8.8: Simulated flight control and autonomous flight control altitude control

comparison ... 116

Figure 8.9: Vision system test scenario 1 - Red circle detection amongst other circles

of differing colours .. 119

Figure 8.10: Vision system test scenario 2 - Red circle detection of varying size .. 119

Page | xii

Figure 8.11: Vision system test scenario 3 - Red circle detection of varying red hue

 ... 120

Figure 8.12: Vision system test scenario 4 - Red circle detection of varying circle

proportion ... 121

Figure 8.13: Vision system test scenario 5 - Red circle detection of varying wall

thickness .. 121

Figure 8.14: Vision system test 6 - Red circle detection amongst various shapes of

differing shape geometry and colour ... 123

Figure 8.15: Flight test footage captured from a DJI Phantom 4 124

Figure 8.16: Vision system test 7 – Drop-zone identification with the use of simulated

footage recorder on a DJI Phantom 4 .. 124

Figure 8.17: Flight test footage captured from onboard the aircraft with the USB

camera.. 126

Figure 8.18: Vision system test 8 – Drop-zone identification from onboard the aircraft

(Left – Resulting image overlay, Right – Upper red hue result) 126

Figure 8.19: Vision system accuracy and repeatability testing screenshot 128

Figure 8.20: Accuracy and repeatability testing template 129

Figure 8.21: Vision system accuracy and repeatability results on testing template

 ... 130

Figure 8.22: Linear extrapolation of the vision system's precision intervals 136

Figure 8.23: Vision system design-stage uncertainty at various altitudes 137

Figure 8.24: Vision system test 9 – Live video feed of red circle with low lighting 138

Figure 8.25: Vision system test 10 – Live video feed of red circle with lighting from a

single side ... 139

Figure 8.26: Vision system test 11 – Live video feed of red circle with full lighting

 ... 139

Figure 8.27: Vision system test 12 – Live video feed testing of the location allocation

of the drop-zone identifier ... 141

Figure 8.28: GCS mission map view of the first onboard integrated testing of the

vision system and autonomous flight control system .. 142

Figure 8.29: GCS mission map view of the second onboard integrated testing of the

vision system and autonomous flight control system .. 144

Figure 8.30: Vision system defined drop-zone identifier locations relative to the true

drop-zone location .. 146

Figure 8.31: Vision system defined drop zone identifier locations relative to

acceptable drop-zone area .. 146

Page | xiii

Figure 8.32: Vision system mean measurement displacement uncertainty for

different altitudes ... 149

Figure 8.33: SITL simulation of the payload release node.................................... 150

Figure 8.34: Updated waypoint map indicating the payload release waypoints.... 151

Figure 8.35: Payload release trajectory during physical testing 153

Figure 8.36: Stitched image illustrating the payload release trajectory and aircraft

flight progression during payload release testing .. 154

Page | xiv

List of Tables

Table 3.1: Test bench aircraft physical parameters ... 16

Table 3.2: Remote-control hardware onboard the aircraft 17

Table 3.3: Remote-control sensory hardware onboard the aircraft 18

Table 3.4: Companion computer comparison merit table 21

Table 3.5: Pixhawk periphery devices .. 22

Table 3.6: Camera type comparison merit table .. 26

Table 3.7: ELP CMOS camera comparison merit table .. 27

Table 3.8: ELP-USB500W04AF-A60 camera key specifications 28

Table 3.9: Wing segment moments of inertia ... 46

Table 3.10: New wing specifications .. 49

Table 4.1: List of available flight modes for the APM Plane Pixhawk firmware 53

Table 4.2: Catapult design criteria .. 55

Table 4.3: Latex rubber elastic properties testing results 56

Table 4.4: Takeoff waypoint parameters .. 58

Table 4.5: FCU takeoff parameters .. 59

Table 4.6: VFR_HUD header published data ... 62

Table 4.7: Generic waypoint parameters ... 63

Table 4.8: Multiple turn loiter waypoint parameters .. 63

Table 4.9: FCU landing parameters ... 66

Table 4.10: Generic mission waypoints ... 67

Table 5.1: OpenCV HoughCircles function parameters.. 73

Table 5.2: GoPro HERO 5 physical specifications .. 79

Table 8.1: Power consumption comparison between manual flight control and

autonomous flight control ... 117

Table 8.2: Accuracy and repeatability testing point coordinates at 0.275 m camera

displacement .. 129

Table 8.3: Manufacturer defined performance of the ELP-USB500W04AF-A60

camera.. 131

Table 8.4: Manufacturer defined performance of the TAROT GoPro 3D V metal 3 axis

gimbal .. 131

Table 8.5: Vision system accuracy testing results ... 133

Table 8.6: Repeatability testing statistics results (mean, standard deviation, variance)

 ... 135

Table 8.7: Repeatability testing statistics results (precision interval) 135

Page | xv

Table 8.8: Vision system defined coordinates of the drop-zone identifier 145

Table 8.9: Repeatability results for second onboard integrated test (mean, standard

deviation, variance) ... 147

Table 8.10: Possible values of the true mean for the results gathered for the second

integrated test... 148

Table 8.11: Payload release test parameters .. 152

Table K1.1: Payload Release Equilibrium Time Lookup Tables for an altitude of 45 m

 ... 218

Table K1.2: Payload Release Equilibrium Time Lookup Tables for an altitude of 50 m

 ... 220

Table K2.1: Payload Release Phase A Displacement Look Up Table at an Altitude of

45 m ... 224

Table K2.2: Payload Release Phase A Displacement Look Up Table at an Altitude of

50 m ... 226

Page | 1

Chapter 1

Introduction

Industry 4.0 refers to a combination of major innovations in digital technology which

are composed to transform the energy and manufacturing sectors. These

technologies include: advanced robotics and artificial intelligence, sophisticated

sensors, cloud computing, data capture and analytics, digital fabrication, and

platforms which use algorithms to direct motor vehicles (for example, autonomous

vehicles). These technologies are often used independently. However, when used

together, allow for the integration of physical and virtual worlds. Similarly, this

research sought to develop and combine an autonomous flight control system with

a vision-based identification and recognition system to deliver payloads to targets

with non-specific Global Positioning System (GPS) coordinates [19].

To define this system as autonomous, flight control from take-off to mission

execution to landing was fully automated, with the only human intervention being

that of the aircraft’s pre-flight preparation. The system utilised a computer vision

system to locate and authenticate a desired drop-zone location, then, with the

assistance of onboard computational hardware and software, calculated an

appropriate drop trajectory for a given payload, taking into account current flight

and environmental conditions. With this information, the system then

communicated flight path alterations to the aircraft’s flight control unit (FCU) until

an acceptable drop trajectory was obtained, from which the system would then

release the given payload. The use of the real-time vision system allowed for the

system to be able to deliver payloads to targets with nonspecific GPS coordinates.

With each defining element of this research: autonomous flight, vision, and trajectory

plotting, having been developed separately and able to work independently, this

dissertation focused on the conceptualisation, development and testing of an

integrated vision-based autonomous aircraft payload delivery system. Specific focus

was placed on the integration of each of these defining elements into a single modular

system, requiring low level user input in order to function. This level of autonomy

and integration allowed for the combination of independent technologies to be

integrated into a system which is capable of contributing to the innovations evolving

within Industry 4.0.

Page | 2

1.1 Rationale and Motivation

Irrespective of efforts made towards the development of the developing countries,

service delivery in developing countries has long been an issue yet to find a solution.

This lack of service delivery has subsequently led to the need for an effective and

efficient mode of service delivery to be developed. A solution to the service delivery

issue would seek to not only promote the development of the service delivery sector

but would also look at the fulfilment of basic human rights and the development of

the various other sectors, including the manufacturing sector. As such, the

development of an effective and efficient service delivery system would seek to provide

a solution to political, social, economic and ecological issues. The development of a

service delivery system capable of benefiting several developing countries and the

sectors within those countries, places such a system within the objective of

Industry 4.0 and it is through such a system that, interconnectivity between sectors

would be promoted and integrated [12].

This research sought to define the development of an autonomous fixed-wing aircraft

that was capable of using a vision-based system to identify and locate desired

payload drop-zones and then, adjusting its flight path accordingly, achieve a ballistic

trajectory drop of a given payload to said drop-zone. Where, such research seeks to

transform the service delivery sector by providing a system capable of the desired

service delivery functionality, whilst maintaining a low-cost, efficient and effective

design.

Within the framework of this research, four defining components existed: mode of

transportation, method of navigation, identification and authentication of service

delivery recipient and method of delivery. Each of these components played a role in

the development of a system capable of promoting Industry 4.0 within a developing

country and the constraints experienced within various sectors. The desired mode of

transportation, a fixed-wing aircraft, provided the beneficial functionality of a system

which was able to circumvent obstacles faced through land- and sea-based service

delivery, and in turn allowing for the delivery of goods and services to time-sensitive

or previously inaccessible areas. With the use of such a transportation system, a

method of navigation proves necessary to fulfil the delivery process and as such, the

introduction of autonomous control into the aircraft provides the ability to optimise

the delivery process by mitigating human error. The introduction of autonomy

introduces the need for implementation of service delivery confirmation. As such, a

method of delivery location identification and authentication becomes necessary to

Page | 3

avoid disruption of service delivery based on process-oriented disconnectivity.

Finally, with a stable delivery platform in place, the selection of an appropriate

delivery method which promotes efficiency and effective service delivery is necessary.

Therefore, an airborne method of delivery would prove to be the most feasible option,

by providing the required service delivery capabilities without the need for the

introduction of additional infrastructure.

However, the application of such a delivery system is not limited to the service

delivery sector. There are various ways in which this system could be utilized to fulfil

outcomes within several sectors. As such, the applications discussed within this

rationale are not exhaustive and should rather be used as a foundation for what

could be achieved with the utilization of this system.

1.2 Aim, Objectives and Research Contributions

This section discusses the research aim and objectives, and provides an overview of

the contributions made through the completion of this research.

1.2.1 Aim

The purpose of this research was the development of an autonomous aircraft payload

delivery system which made use of vision-based object identification and recognition,

in parallel with real-time environmental parameter assessment for application in

aircraft flight path alteration and payload drop trajectory modelling to deliver a given

payload from altitude to an identified drop-zone location.

1.2.2 Objectives

The objectives and sub-objectives pursued in this research include:

➢ The development of a vision-based autonomous aircraft payload delivery

system.

a. Hardware architecture defining the physical infrastructure utilised in

achieving an integrated industry standard, compact and modular

design.

b. Software architecture defining the computational infrastructure

utilised in achieving autonomous flight control, vision-based

identification and location, and payload trajectory computation.

c. Minimal operator defined inputs for mission execution.

Page | 4

➢ The development of an autonomous flight control system.

a. Full mission autonomy must be implemented, where all required flight

procedures are to be executed by the onboard hardware and software.

b. The autonomous flight control system must be able to adjust the

aircraft’s flight path based on current mission parameters and sensory

data.

➢ The development of a vision-based identification and recognition system.

a. Development of an image processing algorithm capable of drop-zone

identification without the need for operator intervention.

b. Identify the drop-zone location with respect to the aircraft’s current

location and provide the onboard flight control unit with a drop-zone

location.

➢ The development of a payload release system.

a. The development of a mathematical model upon which the ballistic

trajectory of a payload could be mapped.

b. Payload release computation in real-time, as to allow for adaptation of

current mission parameters.

c. Payload delivery within a 5 m radius of the drop-zone location.

1.2.3 Research Contributions

In addition to the overall aims and objectives of this research, this research sought

to bridge the gap in related research, where applications of similar systems failed to

perform efficiently. The areas in which this research contributed towards the

furtherment of previous literature were as follows:

➢ The development of a vision system and image processing algorithm which

achieved similar results in target location determination accuracy at an

altitude of 75 m when compared to the apparent average accuracy of Hinas

et al.’s vision system at an altitude of 40 m [27].

➢ The development of a fully integrated autonomous aircraft with an integrated

autonomous vision system capable of achieving the automated payload

release. This research built upon the research conducted by Boura et al. [10]

Page | 5

in the development of an autonomous aircraft with payload release

capabilities.

➢ Based on the work conducted by Boura et al. [10] where payload trajectory

modelling was achieved through real-time environmental parameter

monitoring, it was found that payload trajectory modelling could be further

developed. As such, this research included the development of a two-

dimensional two-phase payload release trajectory model for the prediction of

a payload’s ballistic fall trajectory, which achieved successful displacement

prediction results during simulated and physical testing.

➢ An integrated payload delivery system capable of achieving the same results

as achieved by Zipline [50] and DHL Parcelcopter [16], two commercially used

systems implementing autonomous aircraft payload delivery. Additionally, the

introduction of a vision system, a system the two commercial systems did not

possess, increased payload delivery accuracy and security by ensuring

payload drop-zone identification.

➢ The development of a fully automated mission flight plan based on a single

user-defined waypoint. Improving upon the DHL Parcelcopter’s [16] system of

manual user mission designation and subsequently optimising mission

waypoint designation.

1.3 Hypothesis

A vision-based autonomous aircraft payload delivery system can be used to identify

and accurately drop a given payload within a 5 m radius of a given drop-zone

location.

1.4 Delimitation

As this research consisted of several subsystems, integrated into a single operational

system, various limiting factors existed between the subsystems.

➢ System accuracy and reliability will be limited to the accuracy and reliability

of the relevant onboard hardware and computational performance limited by

the onboard processing ability.

➢ Testing limited to duration of onboard battery life.

➢ Results and testing are limited to weather permitting testing periods.

➢ Environmental parameters will be modelled to represent a static system,

where unforeseen events, such as sudden wind gusts, will be excluded from

the relevant computations.

Page | 6

1.5 Dissertation Outline

This dissertation was structured as follows. Chapter 1 provides an introductory view

into the given research topic, highlighting the rational and significance of the

research. Chapter 2 defines the relevant background research pertaining to the

application of this research and the relevant technologies applied. Chapter 3 focuses

on the developed system architecture, the hardware and software architecture, and

the test platform aircraft.

Chapter 4 through to Chapter 6 of the dissertation was structured to follow the order

in which an autonomous mission would be executed. Chapter 4 highlights the

autonomous flight control system, discussing the processes which constituted an

autonomous mission, the flight plan and waypoint allocation. Chapter 5 focuses on

the vision system, defining the theoretical approach taken to translate captured

imagery into discernible drop-zone information. Chapter 6 discussed the payload

delivery system, defining the mathematical foundation which formed the payload

trajectory model. Chapter 8 discussed the integration process, defining the method

mission initiation and discussing the process of integration implementation in terms

of structured execute of the respective control algorithms.

Thereafter, Chapter 8 discussed the testing procedure and results for each

subsystem and the integrated system. Finally, Chapter 9 concludes the dissertation,

answering the question as to whether the proposed hypothesis was achieved and

indicates possible future recommendations and alterations to be made to the current

system.

1.6 Chapter Conclusion

Chapter 1 represented the introduction to the research, where the research was

defined to be the development of an autonomous aircraft vision-based payload

delivery system. Aims and objectives were defined, where it was noted that

integration between several subsystems was necessary to achieve the desired results.

whose design would be modular to allow for variation of application. Elements such

as the objectives, hypothesis, delimitation, research timeframe and dissertation

outline were discussed. Furthermore, the literature study in Chapter 2 will be used

to provide a background in order to achieve the desired outcomes of this research.

Providing the reader with the foundation pertaining to relevant technologies and

developments in similar fields.

Page | 7

Chapter 2

Literature Study

This chapter discussed the application-based approach pertaining to how this

research was developed. Research into relevant technologies and commercially

available systems capable of the desired functionality were reviewed.

2.1 Application-Based Background

As discussed in Chapter 1, this research sought to provide various applications in

both the public and private sector, moving from aid relief to privatised package

delivery for offshore freighters. The modularity of the system was defined as an

overall objective due to the wide variety of applications this research encompassed.

To design such a system, insight into the relevant technologies was undertaken.

Hassanalian et al. [26] has provided a detailed view of possible drone aircraft

applications, as seen in Figure 2.1.

Figure 2.1: Drone aircraft classifications [26]

From Figure 2.1, it was noted that applications for delivery systems in drone

technology had already been identified and as such, the proposed delivery system

was feasible. The applications of drone technology in this research were highlighted

in Figure 2.1.

Page | 8

2.1.1 Airframes

Prior to the study into airframes, the clarification of the nomenclature utilised in

these technologies was necessary to remove any misconceptions. The term drone was

first utilised in the early to mid-1900’s to classify remotely piloted aircraft used for

surveillance, target practice and other military applications. The term for these

vehicles changed over the years, until the classification of unmanned aerial vehicles

(UAVs) was developed [41]. UAV has become a term that not all aviation authorities

have conformed to. The International Civil Aviation Organization (ICAO), among other

aviation authorities, employ the term remotely piloted aircraft system (RPAS) when

referring to these aircraft systems [29]. Due to the wide variety of terms used to

classify these vehicles, this research focussed on and defined the specific type of

airframe utilised.

Airframes have been classified based on their features including weight, range,

speed, wing span, endurance, production costs and application [26]. As application

was the driving factor behind this research, selection of the most appropriate

airframe was necessary to achieve the desired results. For the purpose of this

research, three airframes were assessed. These frames included: multirotor aircraft,

fixed-wing aircraft and quadplane aircraft, and were assessed based on models

designed for remote piloting.

2.1.1.1 Multirotor Aircraft

Multirotor aircraft, also known as multicopter aircraft, are aerial vehicles which

derive their motion from the control of several thrusting propellers. These vehicles

are aerodynamically unstable and require an FCU to ensure stable flight. At their

core, multirotors require very few mechanical components to operate and their basic

design consists of a frame, control electronics, motors and propellers [5].

Multirotors require thrust to remain airborne, where the failure of a single motor

would result in the aircraft becoming unstable and crashing. As such, the power

consumption of multirotors is high, where average flight time can range from

5 minutes to 30 minutes depending on the aircraft’s size, weight, motors and

available power source.

Page | 9

2.1.1.2 Fixed-Wing Aircraft

Fixed-wing aircraft are flying vehicles which possess the capability of flight due to

their use of wings to generate lift caused by the forward motion of the aircraft. Fixed-

wing aircraft provided both advantages and disadvantages when compared to

multirotor aircraft. Fixed-wing aircraft are more flexible in the event of a technical

fault and possess natural glide capabilities when under no power. Additionally, fixed-

wing aircraft are also capable of carrying greater loads over greater distances under

less power when compared to multirotor applications. Areas in which the fixed-wing

aircraft does not perform as well as multirotor aircraft include applications where

missions with precise objectives are required, as the fixed-wing’s need for constant

forward motion to produce lift, limits their manoeuvrability [3].

2.1.1.3 QuadPlane Aircraft

QuadPlane aircraft form part of the Vertical Takeoff and Landing (VTOL) class of

aircraft. QuadPlane aircraft combine the advantages features of both multirotor and

fixed-wing aircraft, where the frame design of the aircraft follows that of a fixed-wing

aircraft while possessing four to eight horizontal rotors to provide the aircraft with

the functionality of a multirotor. The benefits of QuadPlane aircraft include improved

manoeuvrability during precision missions, smaller launch area required and larger

range of travel. The disadvantages of QuadPlane aircraft include the need for two

integrated control systems to control the multirotor and fixed-wing functionalities

respectively. Additionally, the increase in aircraft functionality introduces more

onboard weight, complexity and greater possible number modes of failure [4].

2.1.2 Airborne Delivery

The concept of airborne delivery of goods and services, specifically the airdrop, was

first developed during World War II for the purpose of resupplying troops with limited

access to additional support. Many of these techniques are still used today [35].

Various types of airdrops exist, these include:

➢ Free-Drop. Developed for the delivery of non-delicate loads, such as clothing,

Free-Drops are the most uncommon form of airdrop. Figure 2.2 depicts an

image of a DC3 Cargo Plane executing a Free-Drop Airdrop, delivering tons of

needed food to refugees in a region of South Sudan, inaccessible by

trucks [38].

➢ High-Velocity. Designed for higher altitude deployment, where, at the time,

aircraft were less vulnerable to ground-based defence systems. High-velocity

Page | 10

airdrops made use of small stabilizing parachutes attached to the loads to

ensure the load remained in an upright position during descent, with energy-

dissipating material secured to the base of the load to reduce impact force.

These loads would descend at rates between 21 m/s to 27 m/s.

➢ Low-Velocity. Developed for the delivery of delicate loads. Cargo parachutes

were attached to the loads to allow for substantial descent deceleration to no

more than 8.5 m/s.

➢ Low-Altitude Parachute Extraction (LAPE). LAPE airdrops consisted of an

airdrop from an aircraft flying between two to three metres above the ground,

where the load was rigger with a specially designed airdrop platform and one

to three LAPE parachutes to assist with deceleration. Once released from the

aircraft, the load then slides across the drop-zone, where the LAPE parachutes

ensured the load would not tumble. LAPE airdrops require relatively flat and

smooth drop-zones, requiring specialized preparations to be made prior to

execution.

Figure 2.2: Free-Drop Airdrop from a DC3 Cargo Plane in South Sudan [38]

In addition to the types of airdrop, there are also various methods of airdrop. These

include:

➢ Extraction. A method used for low-velocity and LAPE platform airdrops, where

with the use of an extraction parachute or LAPE parachute, the load would be

pulled from the aircraft’s cargo compartment.

➢ Gravity. Prior to the drop, with the cargo restrained in the aircraft by a nylon

webbing release gate, the aircraft is flown in a nose-up attitude. With the

release gate being cut, the cargo would roll out the aircraft.

Although effective, the limiting factor of airdrops was the need for specialised

personnel for rigging and piloting the aircraft to execute them.

Page | 11

2.2 Related Research

This research did not represent the first applications of integrated vision and

autonomous aircraft. As such, a study into the available literature on existing

research within this field was undertaken to provide insight to the available hardware

and software for such applications and to identify possible limitations the systems

present.

2.2.1 Academic Studies

Hinas et al. [27] developed an autonomous multirotor, specifically a quadrotor, for

application in vision-based identification and inspection of a red circle. The aircraft

flew a survey flightpath over a given area and upon detection of a red circle, would

descend to a predefined hover height at which the vision system would inspect the

identified red circle. Results from the physical implementation of the autonomous

system showed that the system was able to achieve high levels of success up to an

altitude of 40 m. This system contributed to high altitude applications of similar

research which were previously run at altitudes of 3 m to 5 m. Additionally, from

visual inspection of the results of the vision system’s ability to determine the x and

y coordinates of the red circle when in view, an average accuracy within 2 m of the

target’s true location was achieved from an altitude of 10 m. The system architecture

utilised in the development of this autonomous detection and inspection system

highlighted the possible efficiency of low-cost implementation of readily available

technologies. These technologies included a Pixhawk FCU for autonomous flight

control, a Raspberry Pi 2 for onboard vision processing and a four-node Robotic

Operating System software architecture was developed for computational control.

Moving from multirotors to fixed-wing applications of autonomous flight control and

vision, Prabowo et al. [36] developed a hardware in the loop (HITL) simulation for the

development and testing of target identification influenced servoing of a fixed-wing

aircraft. The desired application of such a system was based in the identification and

tracking of specific targets, where monitoring of the various avionics and camera

parameters were used as an indication of the performance of the system. The system

architecture and testing procedure consisted of an integrated hardware-controlled

flight simulator, where a simulated fixed-wing was flown on a given course and

presented with a target. Upon identification of the desired target, the simulated

aircraft would begin to follow the target, both physically in terms of avionics and via

its onboard vision system. The subsequent output of the simulation was the

monitored motion of the various control servos and the vision system pan and tilt

Page | 12

angles. The implemented hardware included a Pixhawk PX4 flight-stack for flight

control and a Cubieboard2 for image processing. The results from the HITL

simulations showed minimal errors when compared to simulated results and the

system was deemed ready for application in a physical aircraft system.

Hochstenbach et al. [28] developed a VTOL aircraft for autonomous parcel delivery

which was capable of transporting parcels up to 1 kg in weight. This available

onboard cargo weight was optimised to determine the greatest ratio between weight

and transportation distance. The VTOL system developed, the VertiKUL, achieved a

functional range of 26 km over a sustained flight period of 29 minutes. The system

was never fully automated in terms of parcel delivery and parcel delivery was

achieved through physical removal of the parcel from the aircraft. To allow for flight

control and stability, a Pixhawk FCU was utilised in a mid-level control state where

user defined inputs were still used for flight control of the aircraft.

The UAV Challenge Outback Rescue held in Kingaroy, Australia, held between 2007

and 2014, was a search and rescue competition where autonomous aircraft were

used to locate a mannequin in the Outback and deliver a bottle of water within 100 m

of the mannequin’s location. CanberraUAV were the first to successfully complete

the challenge in 2014 [46]. Boura et al. [10] represented one of the many teams which

attempted the UAV challenge in 2010. This entry into the UAV challenge was not the

primary aim of the research conducted by Boura et al. and the initial system was

developed for application in a Lockheed Martin Desert Hawk III for the autonomous

delivery drop of roughly 1 kg of medical supplies. The onboard hardware utilised

included a Piccolo II autopilot for autonomous control and a Gumstix computer-on-

module for onboard computation of the most appropriate payload release timing.

Determination of the desired drop-zone’s location was not done with the use of an

automated vision system and the onboard vision system, comprising of a TASE

gimbal and Song block camera, relayed the video feed from the aircraft back to the

ground station. This lack of vision autonomy was compensated for by the vision

system’s ability to communicate the GPS location of the point on the ground at which

the camera was focussed. From the UAV Challenge, Boura et al. were able to

successfully detect the mannequin but upon payload release, a malfunction in the

autopilot’s waypoint allocation system prevented the payload from being released in

the correct location. The resulting displacement of the payload relative to the

mannequin was approximately 450 m, even though testing of the system had result

in an optimum displacement of approximately 3.5 m.

Page | 13

2.2.2 Commercial Systems

This section discussed the commercial implementation of systems which utilised

autonomous aircraft as a means of airborne delivery.

2.2.2.1 Zipline

Zipline, an American-based start-up company, was used for delivering units of blood,

vaccines and platelets in African countries, Rwanda and Tanzania, where access to

necessary medical supplies were limited. Zipline uses custom-built autonomous

fixed-wing aircraft to deliver these medical payloads. Once loaded with supplies, the

aircraft were launched and would fly a predefined flight path to the requested drop-

zone. Upon reaching the designated drop-zone, the aircraft initiates a controlled

decent, until the required drop altitude has been acquired. The payload descends to

the desired drop-zone with the assistance of a small wax parachute, where the

drop-zone of the given payload was defined to be accurate within a 5 m radius. The

aircraft then flies back and lands at the distribution centre, where it would then be

prepared for the next flight [50]. The launch of a Zipline aircraft can be seen in

Figure 2.3 [39].

Figure 2.3: Zipline aircraft launching [39]

From the available literature, it was deduced that Zipline did not utilise any onboard

intelligence that can identify and confirm the drop-zone, other than the initially

predefined GPS drop-zone location. This lack of visual confirmation introduced the

possibility that Zipline’s payloads could be compromised upon delivery in terms of

correct recipient collection of the payload.

Page | 14

2.2.2.2 DHL Parcelcopter

Much like Zipline, the DHL Parcelcopter was an autonomous aircraft system

developed for the transportation of medical supplies in Tanzania. The DHL

Parcelcopter project started in 2013 with the manual flight control of a multirotor to

deliver medical supplies across the Rhine to the Deutsche Post DHL Group

headquarters in Bonn. From this initial concept, the DHL Parcelcopter evolved into

an autonomous VTOL aircraft, used for the delivery of medical supplies to

inaccessible areas in Tanzania in the 3rd quarter of 2018. Unlike Zipline, whose

mission flightpaths were fully automated, DHL’s Parcelcopter made use of user

defined mission waypoints, including takeoff and landing, in the QGroundControl

software. Additionally, the Parcelcopter did not make use of an airdrop to deliver

their packages and the VTOL would land and allow for package removal. The DHL

Parcelcopter can be seen in Figure 2.4 [16].

Figure 2.4: DHL Parcelcopter [16]

Like Zipline, DHL Parcelcopter did not make use of any onboard vision systems to

assist with mission execution and although autonomous landing was a feature, no

indication of object avoidance was seen. The significance of this lack of onboard

vision or obstacle avoidance was that the missions were user defined and incorrect

placement of the landing waypoint could have resulted in the aircraft colliding with

physical obstacles. The need for such an avoidance system was only present in DHL’s

aircraft, as Zipline’s aircraft only launched and landed at Zipline ground stations and

the implementation of airborne delivery removed the need for additional onboard

hardware.

Page | 15

2.3 Chapter Conclusion

From the research conducted it was noted that a trend in the use of the Pixhawk FCU

flight controller for the introduction of autonomy into various airframes can be seen.

Additionally, from the research conducted into the various airframes it was noted

that VTOL aircraft seemed to be the theoretical favourite, but upon review of the

commercial systems, Zipline’s fixed-wing aircraft achieved the desired result equally,

if not better than the DHL Parcelcopter VTOL. From the commercially available

systems, a lack of onboard vision was noted, providing the opportunity for

implementation of such a system to improve the desired performance. Looking at the

required infrastructure for the necessary airdrops, the least complex method for

implementation on a low-cost system would be the free-drop. As such, the focus of

the research has been steered towards integrating and improving upon the research

conducted by Hinas et al. and Boura et al. into a single fully autonomous system

capable of vision-based autonomous aircraft payload delivery. Chapter 3 follows this

literature study with the development process of the system architecture utilised in

this research.

Page | 16

Chapter 3

System Architecture

This chapter discussed the platform used to develop the vision-based autonomous

aircraft payload delivery system. Aspects such as the test bench aircraft, hardware

architecture, software architecture and aircraft alternations were discussed.

3.1 The Test Bench Aircraft

This research was developed for the purpose of developing a modular design that

could easily be transferred between different airframes. Considering this, the test

bench model, upon which results were gathered, was selected.

The test bench model aircraft utilised in the development of this research was the

Skywalker 2013 (Carbon Fibre Tail Version), as seen in Figure 3.1. The Skywalker

frame presented the necessary flexibility and expendability due to its Erythropoietin

(EPO) foam composition which allowed for alterations to be made to the physical

structure of the aircraft with minimal detriment to the aircraft’s structural rigidity.

Physical specifications of the aircraft can be seen in Table 3.1.

Figure 3.1: Test bench aircraft - Skywalker 2013

Table 3.1: Test bench aircraft physical parameters

Parameter Value Unit

Wingspan 1.88 m

Length 1.225 m

Height 0.22 m

Weight 1.4 kg

The aircraft was altered from its given state to accommodate the necessary hardware.

These alterations were discussed in Section 3.4.

Page | 17

3.2 Hardware Architecture

Several subsystems were required to be integrated into a single operational platform,

hardware for each subsystem was selected based on functionality and integrability

with the other remaining subsystems. This section focused on the hardware selected

and discussed the rationale pertaining to the reasoning for each hardware

component and its selection.

3.2.1 Aircraft Flight Control

Prior to any additional hardware being introduced into the aircraft to achieve

autonomous control, basic flight control hardware was installed to achieve sustained

flight and control of the aircraft. This section focused on these devices, as their

performance and functionality formed the foundation upon which the remainder of

this research was based.

3.2.1.1 Remote-Control

Basic remote-control hardware was installed to develop a functional test platform.

The aircraft’s remote-control hardware can be seen in Table 3.2.

Table 3.2: Remote-control hardware onboard the aircraft

Component Model Quantity

Control Actuators 15g Servo 4

Motor
SunnySky X2814-7

KV: 1100
1

Electronic Speed

Controller (ESC)

Hobbywing

FLYFUN 40A
1

Receiver FrSky X8R 1

Transmitter FrSkyTaranis QX7 1

Batteries
X-Power LiPo

3300mAh 3S
2

Page | 18

3.2.1.2 Telemetry Sensors

In addition to the control hardware, telemetry sensors were installed onboard the

aircraft to provide sensory information during flight. These sensors did not form part

of the final integrated system’s sensory package but were kept onboard to provide

comparative information for testing. These telemetry sensors were also included due

to their compatibility with the remote-control hardware onboard the aircraft. The

remote-control telemetry sensors can be seen in Table 3.3.

Table 3.3: Remote-control sensory hardware onboard the aircraft

Sensor Model Quantity

Airspeed sensor FrSky ASS-70 1

Current and Voltage

Sensor

FrSky

FCS-150A
1

GPS Sensor FrSky GPS V2 1

Variometer FrSky Vari-N 1

3.2.1.3 Configuration

With the aircraft’s remote-control and sensory hardware defined, their configuration

in the aircraft could be defined. Within the remote-control hardware, two subsystems

existed, namely: the onboard remote-control hardware and the ground-based

remote-control hardware. The ground-based remote-control hardware was

represented by the transmitter and the onboard remote-control hardware was

represented by the remaining remote-control hardware, with its central configuration

point being the X8R receiver. The configuration of the onboard remote control and

sensory hardware can be seen in Figure 3.2.

Figure 3.2: Onboard remote control and sensory hardware configuration

Page | 19

The configuration of the receiver for the remote-control hardware can be seen in

Figure 3.3.

Figure 3.3: Initial receiver configuration of the control actuators

3.2.2 Autonomous Flight Hardware

With the basic flight control hardware defined, the hardware introduced to convert

the system into a fully autonomous aircraft could be defined. During the installation

of the autonomous flight control hardware, none of the aircraft’s remote-control

hardware and sensory hardware was removed.

3.2.2.1 The Autopilot

The Pixhawk 1 Flight Controller (The Pixhawk), an open hardware, industry standard

autopilot system, was selected as the desired autopilot. The Pixhawk was a

commonly used and readily available system, whose integration into the current

flight control configuration did not require third party hardware. The Pixhawk can

be seen in Figure 3.4 and the list of the Pixhawk’s specifications can be seen in

Appendix C1 [37].

Figure 3.4: The Pixhawk 1 [37]

Page | 20

The Pixhawk, with the assistance of a ground control station (GCS), was capable of

several manual and autonomous flight control modes. These modes ranged from

MANUAL flight mode, where the Pixhawk acted like a remote-control receiver in terms

of full actuator control. Thereafter, GUIDED flight mode, a semi-autonomous flight

mode where the aircraft would follow user defined waypoints either through a

mission statement or via a click-and-fly approach in the GCS. Finally, AUTO flight

mode, where the aircraft could receive and execute an entire mission statement from

the GCS. These flight modes include variations for both GPS dependent and non-

GPS dependent flight paths. The Pixhawk also came with a variety of peripheral

devices for sensory feedback and extended functionality, several of which were used

within this research and were discussed later in this chapter.

The Pixhawk provided several autonomous flight control functions, for a wide variety

of airframes, however it was not an autonomous flight controller as it possessed no

onboard intelligence, in terms of situational decision making other than that of

predefined failsafe procedures. This lack of additional intelligence meant that the

Pixhawk would only execute commands presented to it by the GCS and the

transmitter. As such, the introduction of onboard intelligence was necessary to

transform the aircraft into a fully autonomous system. Therefore, the next phase of

the autonomous flight hardware was introduced, the companion computer.

3.2.2.2 The Companion Computer

Companion computers were used to interface and communicate with flight

controllers through the Micro Air Vehicle Link (MAVLink) protocol, allowing for

onboard intelligence to be integrated into the aircraft. The level of onboard

intelligence introduced into the flight controller was only limited by the capabilities

of the selected companion computer. Tasks, such as vision processing and mapping,

were a few of the capabilities of these companion devices. These devices had

limitations, with issues such as additional power consumption, weight and available

onboard space all became relevant factors when developing a sustainable and

feasible autonomous system.

Page | 21

Several possible Pixhawk compatible companion computer systems existed. The

selection of the most applicable system was based on application, computational

requirements and functionality. The available companion computers that offered the

necessary functionality include:

➢ Raspberry Pi

➢ ODroid

➢ NVidia Jetson TX1

Considering the available companion computers, a comparison based on cost,

processing capability and functionality was conducted to determine the applicable

system for selection. Functionality implied the integrability of the companion

computer with additional onboard hardware. The results of these comparisons can

be seen Table 3.4 and Figure 3.5.

Table 3.4: Companion computer comparison merit table

 Cost
Processing

Capabilities
Functionality Total

Weighting 0.3 0.5 0.2

Raspberry Pi 8 5 7 6.67

ODroid 6 9 7 7.33

NVidia Jetson TX1 1 7 5 4.33

Figure 3.5: Companion computer weighted comparison

Noting the results gathered from Table 3.4 and Figure 3.5, it was found that the

largest weighting was placed on processing capabilities. The ODroid-XU4, as seen in

Figure 3.6, was selected as the desired companion computer for this research. The

list of the ODroid-XU4’s specifications can be seen in Appendix D1 and the ODroid-

XU4’s schematic can be seen in Appendix D2 [25].

Raspberry Pi ODroid NVidia Jetson TX1

Page | 22

Figure 3.6: The ODroid-XU4 [25]

To establish a communication link between the ODroid and the Pixhawk, a six-way

Future Technology Devices International (FTDI) Universal Serial Bus (USB) to Serial

converter cable was used. This USB to serial cable, more commonly referred to as an

FTDI cable, was used to establish the link between the ODroid’s USB port and the

TELEM2 port of the Pixhawk. The FTDI cable operated by converting the USB

communication from the ODroid to Transistor-Transistor Logic (TTL) level Serial

communication for the Pixhawk. In addition to the FTDI cable, further functionality

was added to the ODroid with the introduction of an embedded Multi-Media

Controller (eMMC). The eMMC acted as the ODroid’s high speed storage device.

3.2.2.3 Peripheral Devices

The Pixhawk provided a wide variety of peripheral devices for both data capture and

data transmission. Several of these devices were included in the configuration of the

autonomous flight controller, but not all of the peripheral devices utilized in this

research were discussed in this section as they were not applicable to the

autonomous flight of the aircraft. These additional peripheral devices were discussed

in their respective sections. With the available peripheral devices for the Pixhawk

considered, the devices utilized in the development of the autonomous flight control

of this research can be seen in Table 3.5.

Table 3.5: Pixhawk peripheral devices

Peripheral Device Quantity

GPS and Compass 1

Digital Airspeed Sensor 1

933MHz Wireless Telemetry Modem 1

Battery Monitor 1

I2C Splitter 1

Page | 23

3.2.2.4 Configuration

The configuration of the autonomous flight control hardware was integrated with the

remote-control flight control configuration as the remote-control system was kept in

place as a safety. Various other sub-configurations in the autonomous flight

hardware architecture were also present within the autonomous flight control

configuration. These included the Pixhawk’s peripheral devices’ configuration, the

FTDI cable wiring configuration for the Pixhawk’s TELEM2 port and the

receiver-Pixhawk configuration. These configurations can be seen in Figure 3.7,

Figure 3.8 and Figure 3.9, respectively. The integrated configuration of the

autonomous flight control hardware can be seen in Figure 3.11. The Pixhawk port

pinouts can be seen in Appendix C2 and the Pixhawk’s schematic can be seen in

Appendix C3.

Figure 3.7: Pixhawk’s peripheral devices’ configuration

The FTDI cable’s serial port connector did not match the Pixhawk’s TELEM2 port

and as such, the correct six-pin male JST ZH connector was used to replace the FTDI

cable’s serial port connector. The corresponding wiring configuration of the correct

serial port connector to the Pixhawk’s TELEM2 port can be seen in Figure 3.8. A

wiring convention table was also included, as the FTDI cable and the Pixhawk did

not share the same wiring colour conventions.

Page | 24

Figure 3.8: FTDI cable wiring configuration for Pixhawk TELEM2 port

To allow for manual control of the aircraft to be taken at any time, the remote-control

receiver was connected to the Pixhawk. This connection was established between the

receiver’s Serial BUS (SBUS) port and the Pixhawk’s RC IN port using a three-wire

servo lead with female JR connectors at both ends.

Figure 3.9: Receiver – Pixhawk configuration

Page | 25

Due to the integration of the Pixhawk into the autonomous flight control system, the

control actuators were required to be rewired as per the Pixhawk’s control surface

configuration. The Pixhawk control actuators configuration can be seen in

Figure 3.10.

Figure 3.10: Pixhawk control actuator configuration for a fixed-wing aircraft

Figure 3.11: Integrated autonomous flight control hardware configuration

Page | 26

3.2.3 Vision System Hardware

The following phase of an autonomous payload delivery mission involved the

identification of the desired drop-zone location, therefore the required hardware to

establish such a system was discussed in this section.

3.2.3.1 The Processor

The ODroid-XU4 was selected as the main processing unit. The defining reason for

selecting the ODroid was due to its vision processing capabilities. As such, the

ODroid formed part of the vision system hardware.

3.2.3.2 The Camera

The key element of the vision system was the selection of an appropriate camera. The

selection was based on the application of the camera and the system requirements

of the current hardware and future software in terms of integrability. In addition to

these criteria, the size and weight of the camera were also considered due to the

limited space onboard the aircraft. A comparison of available camera systems was

conducted. Due to the wide variety of possible solutions, the list was refined for the

final selection. The initial comparison of camera systems can be seen in Table 3.6

and Figure 3.12.

Table 3.6: Camera type comparison merit table

 Cost
Size &

Shape

Application

Suitability
Integrability Total

Weighting 0.2 0.1 0.4 0.3

Webcam 5 5.5 5 8 5.875

GoPro 2 8 8 5 5.75

CMOS Camera 8 8 7 8 7.75

Figure 3.12: Camera type weighted comparison

Webcam GoPro CMOS Camera

Page | 27

From the comparison in Table 3.6 and Figure 3.12, a complementary metal-oxide

semiconductor (CMOS) camera was selected as the desired type of camera system.

With the type of camera now selected, the search field could now be narrowed to

optimise the selection of the most appropriate CMOS camera. Refining the search

noted the application specific criteria. A criterion for the camera system was to

possess a USB connector to interface with the ODroid’s USB ports. To narrow the

search field further, the selection of possible camera systems was focussed at a single

CMOS camera manufacturer, ELP, who specialised in USB camera modules. The

final camera system comparison can be seen in Table 3.7 and Figure 3.13.

Table 3.7: ELP CMOS camera comparison merit table

 Resolution FOV
Functional

Range
Functionality Total

Weighting 0.4 0.1 0.4 0.1

ELP-

USB500W04AF-A60
7 8 9 8 8

ELP-USB500W02M-

L21
7 4 9 8 7

ELP-USB8MP02G-

L75
9 6 7 7 7.25

Figure 3.13: ELP CMOS camera weighted comparison

ELP-USB500W04AF-A60 ELP-USB500W02M-L21 LP-USB8MP02G-L75

Page | 28

From Table 3.7 and Figure 3.13, the highest weighting was given to resolution and

functional range of the camera system. Based on the final weighted comparison, the

ELP-USB500W04AF-A60 was selected as the desired camera system for the onboard

vision system, as seen in Figure 3.14 [17]. The full list of the ELP-USB500W04AF-

A60 camera’s specifications can be seen in Appendix E1 and the

ELP-USB500W04AF-A60 camera’s schematic can be seen in Appendix E2. Some of

the ELP-USB500W04AF-A60 camera’s specifications can be seen in Table 3.8 [17].

Figure 3.14: ELP-USB500W04AF-A60 CMOS camera [17]

Table 3.8: ELP-USB500W04AF-A60 camera key specifications

Specification Value Unit of Measurement

Resolution (Max) 2592 (H) X 1944 (V) pixels

Functional Range 0.05 to 100 m

Focus Automatic -

Operational Temperature
Operation: -20 to 70

Stable Image: 0 to 60
˚C

3.2.3.3 The Gimbal

The overall performance of the vision system was predominantly based on the

selection of an appropriate camera system, however the vision system would have

been insufficient during flight without image stabilisation. As such, a camera gimbal

was incorporated into the vision system to account for the CMOS camera’s lack of

image stabilisation capabilities. The TAROT GoPro 3D V metal 3-axis gimbal was

selected as the desired gimbal for the vision system.

Page | 29

Although designed for the GoPro HERO 5 BLACK camera, the TAROT gimbal was

viable for use with the CMOS camera. The TAROT gimbal was mass-balanced

according to the size and weight specifications of the GoPro HERO 5 BLACK. As such,

the alterations required to allow the CMOS camera to function in the gimbal correctly

was to mass-balance the CMOS camera according to the design of the GoPro. The

CMOS camera mass-balancing adapter was discussed in Section 6.3.

As image stabilisation was necessary with respect to the motion of the aircraft, the

gimbal was connected to the Pixhawk’s AUX ports. Two of the gimbal’s axes were

controllable, the TILT and the PAN axes. The roll axis was compensated for by the

gimbal’s built-in controller. The wiring configuration of the gimbal and the Pixhawk

can be seen in Figure 3.15. The TAROT GoPro 3D V metal 3-axis gimbal specifications

can be seen in Appendix F.

Figure 3.15: Gimbal - Pixhawk configuration

Page | 30

3.2.3.4 Configuration

With the selection of the vision system components complete, the integration of the

vision system to aircraft could take place. The vision system’s integrated

configuration with the integrated autonomous flight control hardware configuration

can be seen in Figure 3.16.

Figure 3.16: Vision system integrated with autonomous flight control hardware configuration

Page | 31

3.2.4 Payload Release Hardware

The hardware required for the payload release mechanism was an actuating servo

release system. The payload release system was integrated with the other

subsystems’ hardware and the required payload release signal was triggered by the

Pixhawk when instructed to do so by the ODroid.

3.2.4.1 Release System

An initial concept of a single servo holding the payload was devised for this system.

After testing, it was found that the servo was under continuous load when attempting

to retain the payload. The solution to this payload release system problem was to

make use of a predesigned release mechanism. The predesigned release mechanism

was designed to remove any load from the actuating servo until payload release was

necessary. A conceptual view of the actuation of the final release mechanism can be

seen in Figure 3.17.

Payload

Payload Retained

Payload Released

Payload

Servo

Servo

Figure 3.17: Payload release mechanism actuation diagram

Page | 32

Although a new payload release mechanism was selected, the required

electromechanical hardware remained unchanged from the initial concept and only

a single servo was required to actuate the new mechanism.

3.2.4.2 Configuration

The remaining attributes of the payload release system were based on software

conditions to determine when the payload should be released. As such, the final

hardware attribute of the payload release system was the configuration of the payload

release servo with respect to the Pixhawk, which can be seen in Figure 3.18. The

payload release mechanism was then secured to the underside of the aircraft’s

fuselage.

Figure 3.18: Pixhawk configuration for the payload release servo

3.2.5 Additional Hardware Considerations

The operational temperature of the hardware devices was taken into consideration

due to Lapse rate. Where, Lapse rate was the rate at which atmospheric temperature

decreased with respect to an increase in altitude. Lapse rate was applicable due to

the increase in altitude the hardware would experience during flight. As such, noting

the standard Lapse rate for altitudes up 100m, the maximum change in the ambient

temperature could be approximated to 1˚C below the ground level ambient

temperature. Due to the location at which this research was conducted, this variation

in ambient temperature was within the operational limits of the onboard hardware.

Application of this research in areas with lower ambient temperatures could prove to

generate inconsistent results and component insulation could be considered to

rectify this [9].

Page | 33

3.3 Software Architecture

The majority of the hardware utilised in this research provided preinstalled firmware

and software, however the computational control algorithms required for

autonomous flight, vision, payload release and additional onboard processing were

required to be developed. These processes were required to run concurrently and

communicate with one another and although the ODroid provided the necessary

hardware to achieve this type of computational control, this hardware did not imply

the necessary software was present to achieve these processes. As such, this section

discussed the software and software architecture used to develop the aforementioned

algorithms.

3.3.1 Operating System

When selecting the ODroid, the option to preinstall an operating system (OS) on the

eMMC was selected. The ODroid came with an Android OS already preloaded on the

ODroid’s built-in storage, but a Linux OS was selected to be installed on the eMMC.

Linux offered a more user-friendly interface and was selected based on its

compatibility with the computational middleware used for the required algorithms,

the Robotic Operating System (ROS). The Linux OS installed on the ODroid was

Ubuntu MATE 18.04, a companion computer supported OS. A similar Linux OS was

installed on a separate computer system running virtual machine software. This

secondary Linux OS was used for off-board testing and simulations of the various

algorithms.

3.3.2 Robotic Operating System

ROS was selected as the middleware for this research. ROS allowed for several nodes

to be executed concurrently, where ROS nodes represented the programmes and

algorithms which performed computations. These nodes were written in the C++

programming language, where application specific ROS libraries and headers were

added to these nodes to allow for extended functionality. Five separate nodes were

used in this research, namely: the MAVROS node, the autonomous flight node, the

image capture node, the image processing node and the payload release node. These

nodes were discussed in detail in their respective chapters. The ROS node

architecture can be seen in Figure 3.19.

Page | 34

Figure 3.19: System Software Architecture

3.3.2.1 MAVROS Node

The MAVROS node was a pre-written header-only message marshalling library that

was developed for establishing the MAVLink communication protocol with

unmanned air vehicles’ FCUs and in this case, the Pixhawk. No additional data was

required to be added to the MAVROS node in order to achieve MAVLink

communication with the Pixhawk. In order for the other nodes to communicate with

the Pixhawk via the MAVROS node, each node was required to make use of MAVROS

library headers. These headers were developed for vehicles enabled with the MAVLink

communication protocol which was not limited to fixed-wing aircraft and as such,

several of these headers were not compatible with fixed-wing aircraft.

3.3.2.2 MAVROS Headers and MAVLink

MAVLink represented the method of communication with the Pixhawk and the

MAVROS node handled all encoding and decoding of the MAVLink messages to and

from the Pixhawk. The MAVLink message structure can be seen in Figure 3.20.

Figure 3.20: MAVLink message structure [47]

Page | 35

From Figure 3.20, the MSG byte represented the Message ID byte which defined

which MAV_CMD messages were being transmitted. The MAV_CMD messages

represented the possible commands available to be transmitted via MAVLink to a

supporting FCU. The PAYLOAD byte represented the parameters within the given

MAV_CMD being transmitted. The remaining bytes represented system parameters

and identifiers which ensured that the communication link would only exist between

the desired FCU and the MAVLink transmitting device. Ensuring the correct link was

established created an end-to-end encryption between the transmitting and receiving

devices. The MAVROS library worked in such a way as to request that the user define

the MSG and PAYLOAD bytes by defining the corresponding variables for the

available byte parameters. The remaining bytes were handled by the MAVROS node

upon connection with the desired FCU. These bytes could be altered manually if

necessary [47].

Considering the MAVROS header structure, it was found that the MAVROS headers

required the use of the ROS node structure of a Subscriber and Publisher node.

These node structures implied that, in order to transmit data from a node to the FCU

via the MAVROS node, a publisher was to be written for each MAVROS header with

a node wanting to be transmitted information. In the case of receiving data from the

FCU, a subscriber was to be written in a node to request the desired MAVROS header

data from the MAVROS node. Each MAVROS header defined which of its variables

would require a publisher or subscriber to be written to execute the desired

command. These MAVROS header subscriber and publisher structures were defined

from the FCU’s frame of reference and as such, the opposing publisher and

subscriber node structure was to be written by the transmitting device, in this case

the ODroid’s ROS nodes. The process of transmitting and receiving data upon

request via the ROS subscribers and publishers allowed for several processes to run

simultaneously and was the defining feature of ROS which solidified it as the desired

middleware for the required computational control [48][49].

MAVROS headers made use of the ROS node structure of Services and Clients.

Where, like the subscriber and publisher structures, the MAVROS header variables

requiring services and clients were defined within each MAVROS header description.

Command requests and replies were executed with the use of ROS services and

clients. Unlike the subscribers and publishers, the MAVROS headers only made use

of the service node structure. As such, functions could be requested from the

Pixhawk and no additional functionality could be added. The defining differences

Page | 36

between subscribers and publishers, and services and clients were that subscribers

and publishers were many-to-many one-way transmissions, which originated from

the transmitting device. Services and clients were one-to-one, two-way

communication. Several nodes could make use of subscribers and publishers, but

only a single service and client node could exist, a master node.

3.3.2.3 Autonomous Flight Node

The autonomous flight node was responsible for flight mode selection, aircraft

arming, mission waypoint allocation and vehicle diagnostic monitoring. The MAVROS

headers, although developed for various vehicles, presented limited information as

to the operation and application of the various header variables, especially in the

case of fixed-wing aircraft. The majority of the available data on the application of

the MAVROS header was for multirotor vehicles and as such, various fixed-wing

flight scenarios could not be programmed using the available headers. The full

description of the autonomous flight node can be seen in Chapter 4.

3.3.2.4 The Image Capture Node and the Image Processing Node

The image capture node was used to interface with the camera and for capturing the

image stream from the camera. The image processing node, upon receiving the

captured image stream, was responsible for image processing, making use of the

Open Computer Vision Library (OpenCV) header to achieve the desired object

recognition and object tracking. Upon successful identification of the drop-zone, the

image processing node would communicate the drop-zone’s coordinates to the

autonomous flight node and payload release node. The full description of the image

capture node and image processing node can be seen in Chapter 5.

3.3.2.5 Payload Release Node

The payload release node was responsible for the computation of environmental

parameters, such as the headwind velocity and direction. Additionally, the payload

release node was responsible for the computation of the payload release trajectory

and subsequently the payload release location. The full description of the payload

release node can be seen in Chapter 6.

Page | 37

3.4 Aircraft Alterations

Due to the hardware required to conduct this research, physical alterations were

made to the aircraft to allow for the fully integrated system to function correctly.

3.4.1 Nose Cone and Fuselage

To house the vision system, ODroid and telemetry devices, a new nose cone and

fuselage were designed. The new nose cone and fuselage were required due to the

limited internal space offered by the standard Skywalker airframe. The additional

space required was to primarily accommodate the vision system, where a gimbal

mount and a viewing window for the camera were incorporated into the new nose

and fuselage. The new nose and fuselage were designed as a three-tier system, as

seen in Figure 3.21. The first tier was designed to accommodate for the camera

gimbal to move about and housed the camera viewing window, the second tier

supported the camera gimbal and the ODroid, and the third tier housed the telemetry

devices. Above these three-tiers was a fibreglass reinforced foam hood which served

to secure the three tiers to the aircraft. The design of the new nose and hood did not

improve upon the aerodynamic profile of the aircraft and was purely for additional

hardware storage.

First Tier

Foam Hood

Gimbal ODroid

Third Tier

Second Tier

Battery

USB Camera
Viewing Window

Figure 3.21: New nose and fuselage conceptual design

Page | 38

The new nose and fuselage were constructed from balsa and plywood to ensure

minimal additional weight was introduced into the aircraft. Removing the original

nose from the aircraft, the first tier was constructed and secured to the remaining

aircraft fuselage. A comparison between the new nose first tier and the original nose

can be seen in Figure 3.22.

Figure 3.22: Comparative view of the aircraft’s old nose and new nose

The second tier was designed to interlock with the first tier via forward facing 3D

printed hooks. These hooks connected with the first tier’s support rods, as seen in

the lower right-hand corner of Figure 3.22. In addition to the forward-facing hooks,

two latches were added to the rear of the second tier and engaged with two reinforced

holes in the aircraft’s fuselage. The second tier attached to the first tier can be seen

in Figure 3.23.

Figure 3.23: Second tier of the new nose with the camera gimbal mounted

Old Nose

New Nose

First Tier

New Nose

First Tier

New Nose

Second Tier

TAROT

Gimbal

Page | 39

The third tier of the new nose interlocked with the second tier via three sets of

rear-facing hooks and was locked into place with the use of the fibreglass reinforced

hood. The hood was then secured to the aircraft via two latches, one which

interlocked the front of the hood with the first tier and the second latch interlocked

with the aircraft upper fuselage. Figure 3.24 illustrates the third tier of the new nose,

Figure 3.25 illustrates the hood during fibre-glassing and Figure 3.26 illustrates the

fully assembled new nose and fuselage.

Figure 3.24: The third tier of the new nose

Figure 3.25: Fibreglass reinforcing the new nose hood

Figure 3.26: Fully assembled new nose and fuselage

New Nose

Third Tier

Fiberglass Reinforced

Foam Hood

Upper Hood

Latch

Foam Hood

Third Tier

Second Tier

First Tier

Upper Hood

Latch Retainer

Page | 40

3.4.2 New Wing

With the addition of the onboard hardware, the new nose and fuselage, the mass of

the aircraft increased and as such, the Skywalker’s standard wing was not suited to

support the additional load. To assist with this additional mass, a new wing was

developed for the aircraft. This new wing was implemented for an application specific

aircraft, as the original Skywalker wing was designed in a polyhedral fashion.

Polyhedral implied a wing with multiple stages of dihedral, where dihedral refers to

the dihedral angle a wing possesses with respect to the local horizontal. The added

benefits of dihedral come in the form of roll stability, where if the aircraft experiences

slight displacement in the roll axis, it will naturally return to its original attitude [24].

The added benefit of roll stability from a dihedral design comes at the sacrifice of lift

and drag. As such, the polyhedral design of the Skywalker’s wing sought to maximise

roll stabilisation and available lift by implementing a steep dihedral angle at the wing

tips and a shallower dihedral angle at the wing root. Where, the steeper dihedral

angle at the wing tips promoted roll stabilisation and the shallower dihedral angle

promoted lift. As autonomous flight control of the aircraft was taken during missions,

the need for roll stabilisation was compensated for by the FCU. As such, optimising

the available lift of the wing was the primary objective for the new wing’s design. The

Skywalker’s polyhedral wing design can be seen in Figure 3.27.

Figure 3.27: Skywalker polyhedral wing structure

Page | 41

The first stage of designing the new wing for the aircraft involved the selection of the

aerofoil profile of the new wing. The Clark Y (clarky-il) aerofoil was selected as the

desired profile for the new wing, as seen in Figure 3.28. The Clark Y aerofoil was a

flat bottom aerofoil for application in general purpose aircraft designs and the flat

bottom design provided improved lift characteristics.

Figure 3.28: Clark Y (clarky-il) aerofoil

With the desired aerofoil selected, two wing halves were cut from closed cell expanded

polystyrene (EPS) foam. With the wing halves prepared, the next stage of the new

wing design was to determine the required spar cap design to allow for the wing to

be able to endure wing loading. The process of determining the required design of

the spar caps was done through the determination of the required moment of inertia

of the spar caps. To determine the required moment of inertia, a wing strength

analysis was conducted by simulating wing loading. Only half the wing was analysed,

as wing loading was symmetric about the centreline of the aircraft. As such, the wing

was broken into ten equidistant portions, with the final two wing segments being

broken into five further segments each. The division of the wing for analysis can be

seen in Figure 3.29.

Figure 3.29: Wing division for wing loading analysis

Page | 42

For the purpose of this research, elliptical loading was used to determine the required

moment of inertia of the new wing’s spar caps, where the applied loading was the

bending moment experienced by the wing. The theoretical elliptical loading

experienced by the new wing can be seen in Figure 3.30.

Figure 3.30: Elliptical loading of new wing

From Figure 3.30, it could be seen that towards the wing tip segments, the elliptical

wing loading changed rapidly as the slope of the elliptical wing loading decreased.

Due to the rapid change in wing loading, the final segments of the wing were divided

into smaller portions for analysis. To determine the required spar cap moment of

inertia, the total wing load, 𝐹𝑊𝐿, to be expected was determined, where the total load

was represented by the area of the quarter elliptical wing loading function, as seen

in Figure 3.31.

Figure 3.31: Total wing load area within an elliptical loading function

To determine this area, three additional aircraft parameters were required to be

known: the gross mass of the aircraft, 𝑚𝑎, the mass of a single wing, 𝑚𝑤, and the

load factor, 𝑛, for the wing. Equation 3.1 described the area of an ellipse,

Equation 3.2 described the equation of an ellipse, Equation 3.3 defined the total wing

Page | 43

load and Equation 3.4 represented the effective wing area the wing load would act

upon.

𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 =
𝜋𝑎𝑏

4
 (3.1)

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 (3.2)

𝐹𝑊𝐿 =
𝑔𝑛(𝑚𝑎−2𝑚𝑤)

2
 (3.3)

𝑎 =
𝑆𝑝𝑎𝑛

2
−𝑤 (3.4)

Where, 𝑎 represented the loaded span length and 𝑔 was the gravitational

acceleration. The maximum bending moment, 𝑏, was now determined by setting

Equation 3.1 equal to Equation 3.3, as all equation variables were now known. The

variables for these equations were found to be as follows:

𝐹𝑊𝐿 = 90.25 𝑁

𝑎 = 0.93 𝑚

𝑏 = 136.54 𝑁/𝑚

From the aforementioned variables, the maximum wing load was defined to

be 𝐹𝑊𝐿 = 100 𝑁 to allow for a factor of safety. As such, with the use of Equation 3.2,

the elliptical wing loading function was found to be:

𝑦 = 136.54√1 −
𝑥2

0.87
 (3.5)

For each wing segment, numbered 1 – 10, the net force exerted over the wing area

was determined. The net force per segment was represented by the area of the

elliptical wing loading function, which was initially determined through the

application of a Left Riemann Sum of the elliptical load function. Subdivisions for the

Riemann Sum were taken to be the wing segment divisions. The elliptical wing

loading function graph, with the Left Riemann Sum superimposed, can be seen in

Figure 3.32.

Page | 44

Figure 3.32: Elliptical wing loading function with Left Riemann Sum Superimposed

From Figure 3.32, it was noted that the Left Riemann Sum resulted in an overshoot

in terms of the net force exerted on the wing and as such, the finite integral of the

elliptical wing loading function over the wingspan was taken to deduce the net force.

Each wing segment required its own finite integral. Equation 3.6 defined the general

form of the finite integral used to determine the net force exerted over the wing.

𝐹𝑛𝑒𝑡 = ∫ (136.54√1 −
𝑥2

0.87
)𝑑𝑥

𝑑1

𝑑0
 (3.6)

Where, 𝑑0 and 𝑑1 represented the segment start and end distances in relation to

point A on the wing. With the net force for each wing segment known, the bending

moment (𝑀) and shear force (𝑉) at the inside edge of each wing segment could be

determined.

The bending moment was determined by taking the net force applied to the centre of

each wing segment. Equation 3.7 defined the bending moment of each wing segment.

The reference for the bending moment fulcrum was wing point K. The bending

moment was used to determine the ability of the spar cap to endure the desired wing

loading.

𝑀𝑆𝑒𝑔 = ∑ 𝐹𝑛𝑒𝑡𝑛𝑑𝑛
𝑆𝑒𝑔
𝑛=𝐾 (3.7)

Page | 45

Where, 𝑀𝑆𝑒𝑔 represented the bending moment of a particular wing segment, 𝐹𝑆𝑒𝑔𝑛

represented the net force exerted on a wing segment starting at wing point K and

working towards desired wing segment, and 𝑑𝑛 represented the distance from wing

point K to the current wing segment’s centre. The new wing bending moment curve

can be seen in Figure 3.33.

Figure 3.33: New wing bending moment curve

From Figure 3.33, it was noted that the bending moment diminished across the

length of the wingspan, where the maximum bending moment was found to be

53.58 N.m at the wing root (wing point A). With the bending moment for each

segment known, the required moment of inertia of the spar cap was determined.

Equation 3.8 described the moment of inertia of the spar cap.

𝐼 =
𝑀𝑦

𝜎
 (3.8)

Where, 𝐼 represented the moment of inertia, 𝑀 represented the bending moment, 𝑦

represented the vertical distance away from the neutral axis of the wing’s aerofoil

and 𝜎 represented the allowable bending stress of the spar cap material. During the

cutting of the aerofoil, the spar cap position was placed at 1 mm above the neutral

axis of the aerofoil. The desired spar cap material was selected to be pultruded carbon

fibre, with a bending stress of 1.6 GPa. The required moment of inertia of each wing

segment was determined, these moments of inertia can be seen in Table 3.9.

Page | 46

Table 3.9: Wing segment moments of inertia

Wing Segment
Moment of Inertia

(m4)

1 8.37 x10-12

2 6.61 x10-12

3 5.06 x10-12

4 3.71 x10-12

5 2.58 x10-12

6 1.67 x10-12

7 0.97 x10-12

8 0.48 x10-12

9 0.17 x10-12

10 0.03 x10-12

From Table 3.9, it was noted that the required moment of inertia of the spar cap

decreased over the span of the wing. As such, a variable spar cap design would have

been optimal in terms of the given moments of inertia. Due to the complexity and

cost of manufacturing a variable spar cap, pultruded carbon fibre tubing and

rectangular extrusion was used to construct the spar caps. As wing loading

decreased outward from the fuselage of the aircraft towards the wing tips, the spar

cap design was varied in terms the length of the carbon fibre tube utilised. The tubing

was present for the first 0.5 m of a wing’s spar cap and the rectangular extrusion

was present in two strips, at the top and bottom of the aerofoil, for the full length of

the wing. The spar cap cross-sections can be seen in Figure 3.34.

Figure 3.34: Spar cap cross-sections

Page | 47

The required shear stress (𝜏) of the wing was determined by deducing the applied

shear force on the wing. The required shear stress of the wing was an indication of

the required shear stress of the material from which the wing body was made. In this

case, EPS foam. Equation 3.9 described the required shear stress.

𝜏 =
𝑉

𝐴
 (3.9)

Where, 𝐴 represented the area of the upon which the shear force acted. The shear

force curve can be seen in Figure 3.35.

Figure 3.35: New wing shear force curve

From Figure 3.35, it was noted that the shear force decreased over the length of the

wingspan and the maximum shear force was found to be 90.3 N at the wing root.

Due to the EPS foam design of the wing, the required shear stress of the wing was

defined to be the shear strength of the EPS foam between the spar cap segments.

The required shear stress of the new wing was defined to be the shear stress required

at the point of maximum shear force along the wing, but due to the change in spar

cap design throughout the wing, two shear stress measurements were required. One

from the first spar cap section and one from the second spar cap section. From these

two shear stress measurements, the measurement with the maximum required shear

stress was defined to be the wing’s minimum required shear stress. The minimum

required shear stress was found to be 407.07 kPa with a shear force of 90.3 N applied

to a shear area of 0.22x10-3 m2 at wing point A. The shear stress of the EPS foam

used in the construction of the wing was 482.63 kPa and as such, the wing’s design

was within the required specifications to endure the desired wing loading. The spar

cap and new wing design calculations can be seen in Appendix G.

Page | 48

Upon construction of the wing, it was found that due to the hot wire foam cutter’s

spar cap cutting toolpath, the spar caps separated from the wing during tension and

compression testing. This separation implied that the tension and compression

experienced by the wing was not transferred across the wingspan via the spar caps.

An additional wooded spar cap was placed in the middle portion of the wing,

extending 0.6 m symmetrically about the centre of the wing. The wooden spar cap

possessed a rectangular cross-section and extended through the entire thickness of

the new wing. The wing was then sealed with clear adhesive tape to provide torsional

strength.

With the new wing constructed, it could be compared to the original Skywalker wing.

An aspect ratio comparison was undertaken to compare the two wings. Where, aspect

ratio (𝐴𝑅) was an indication of the square of the wingspan (𝑆2) divided by the area of

the wing (𝐴), as defined by Equation 3.10 [24].

𝐴𝑅 =
𝑆2

𝐴
 (3.10)

Higher aspect ratio wings provided higher lift to drag ratio, allowing them to carry a

given weight easier than their lower aspect ratio wing counterparts. It was found that

the original Skywalker wing possessed an aspect ratio of 6.1639 and the new wing

possessed an aspect ratio of 6.48.

In addition to aspect ratio, a comparison in wing loading capabilities of the two wings

showed that the new wing resulted in an 12.60% reduction in wing loading when

compared to the original Skywalker wing. This wing loading comparison was done by

working backwards with the moment of inertia of the spar caps and calculating the

allowable loading force each wing would experience. As the spar caps were over

designed for the new wing, they provided additional strength.

With the physical parameters of the wing defined, the control surfaces and additional

features could be added to the wing. The control surfaces included ailerons and flaps

and the additional features included a wireless telemetry module and an airspeed

sensor. The new wing, with the control surfaces included, can be seen in Figure 3.36

and the new wing attached to the aircraft can be seen in Figure 3.37. The new wing’s

specifications can be seen in Table 3.10.

Page | 49

Figure 3.36: New wing with wireless telemetry and control surfaces included

Figure 3.37: New wing attached to the aircraft

Table 3.10: New wing specifications

Parameter Value Unit

Aerofoil Clark Y -

Chord Length 0.31 m

Thickness 0.04 m

Span 1.98 m

Aspect Ratio 6.48 -

Spar Cap Centre Position
From Leading Edge: 0.102

From Lower Surface: 0.018

m

m

Wing Material Expanded Polystyrene -

Spar Cap Material Carbon Fibre -

Spar Cap Moment of Inertia
First Spar Cap: 2.31x10-9

Second Spar Cap: 2.01x10-9

m4

m4

Wing Load Factor 4 -

Wing Loading Reduction 12.60 %

Full Wing Mass 0.4 kg

Page | 50

3.4.3 Additional Alterations

With the new nose, fuselage and wing completed, several additional changes were

introduced. These alterations included the addition of landing gear, including a tail

wheel for ground steering during takeoffs. Another alteration included the addition

of battery and FCU shelves inside the fuselage. A viewing window was installed on

the side of the fuselage to allow for visual confirmation that the FCU was responding

correctly in terms of its onboard LED indicator. These additional features concluded

the alterations made to the aircraft.

3.5 Chapter Conclusion

Chapter 3 defined the system architecture utilised in this research. Elements such

as the airframe, onboard hardware and onboard software were discussed.

Component selection comparisons were undertaken and the Pixhawk FCU,

ODroid-XU4 and ELP-USB500W04AF-A60 CMOS camera were some of the selected

hardware for use in this research. A Linux-based, C++ programming language ROS

node architecture was developed as the system’s software architecture, where five

nodes were developed for the purpose of achieving the desired research objectives

defined in Chapter 1. The final section of Chapter 3 discussed the alterations made

to the aircraft in order to achieve the desired system functionality. The development

of a new nose, fuselage and wing were discussed. With the conclusion of Chapter 3,

Chapter 4 discussed the first subsystem, the autonomous flight control system.

Page | 51

Chapter 4

Autonomous Flight

This chapter discussed the details pertaining to the autonomous flight node and has

been structured to describe the various phases of the autonomous flight process. In

addition to this node structure, the defining Pixhawk parameters required to achieve

the defined flight procedures were also discussed.

4.1 Autonomous Flight Node

As discussed in Chapter 3, the autonomous flight node made use of the MAVROS

header to define all flight control variables. These processes include pre-flight

calibration and safety checks, motor arming, flight mode selection, take-off and

landing, waypoint allocation, environmental parameter determination and payload

release approach. Prior to the configuration of the autonomous flight node, the

computational logical flow was mapped out, as seen in Figure 4.1. The autonomous

flight node code can be found in Appendix A1.

Figure 4.1: Autonomous flight node computational flow diagram

Page | 52

4.1.1 Pre-flight Calibration and Safety Checks

The aircraft was placed through a series of pre-flight safety checks and calibration

tests. These checks included the response of the various control surfaces, battery

state of charge, airspeed sensor feedback, GPS lock, altitude disparity, response of

the vision system and release mechanism. These checks all fell within a greater check

which ensured that a stable node build was running and that a sustainable

communication between the FCU and the MAVROS node was established. This

broader check was run throughout the flight control process to ensure sustained

control over the aircraft by the companion computer.

The Pixhawk possessed an onboard, pre-arm parameter evaluator which, when

enabled, prevented the aircraft from being armed unless all selected pre-arm checks

were successful. This pre-arm evaluator was used to ensure the airspeed sensor,

GPS and the battery’s state of charge were responding correctly. The remaining

pre-arm checks were assessed by subscribing and publishing to the MAVROS

headers. These checks included the testing of the response of the control surfaces

and payload release mechanism. For the vision system, the establishment of

successful connections to the image capture node and the image processing node

was defined as a successful response.

4.1.2 Arming and Disarming

Based on the success of the pre-flight arming checks, an arming client was defined

which requested the aircraft’s arming sequence to take place. This arming client fell

part of the MAVROS library’s CommandBool header which requested the changing of

the arming state of the aircraft. To ensure the aircraft successfully armed, an FCU

state subscriber was defined to listen to the aircraft’s published state using the

MAVROS Library’s State header, where the published state of the aircraft defined the

current arming state [48][49].

The arming of the aircraft was required prior to selection of the flight mode due to a

predefined safety feature of the Pixhawk which prohibited the selection of an

autonomous flight mode prior to arming the aircraft.

Page | 53

4.1.3 Flight Mode Selection

With the use of the Pixhawk, a variety of flight modes were available for selection.

However, the MAVROS header library’s limited application for fixed-wing aircraft,

this list of flight modes was reduced to a select few. These flight modes fell under the

MAVROS library’s CustomModes header. See Table 4.1 for the list of available flight

modes [43][48][49].

Table 4.1: List of available flight modes for the APM Plane Pixhawk firmware

Numeric String Description and notes

0 MANUAL

1 CIRCLE

2 STABILIZE

3 TRAINING

4 ACRO

5 FBWA Fly by wire A

6 FBWB Fly by wire B

7 CRUISE

8 AUTOTUNE

10 AUTO

11 RTL Return to Launch

12 LOITER

14 LAND not in list now

15 GUIDED

From the Table 4.1, the AUTO flight mode was selected for the mission. The MAVROS

command for the selection of the aircraft’s flight mode was not iterated repeatedly

throughout the mission and only a single instance of the flight mode was defined at

the beginning of the mission. The reason for this single declaration of the flight mode

was to allow for manual control, STABILIZE flight mode, of the aircraft to be taken

at any point should the aircraft’s autonomous flight control fail. The change from

AUTO flight mode to STABILIZE flight mode was setup as a function of the aircraft’s

remote control, requiring a flip of the switch to interchange between the two modes.

Once back within stable control and at the operator’s discretion, AUTO flight mode

could be reactivated by switching the transmitter flight mode switch back to its initial

position. Upon reactivation, the FCU would pick up the mission where it had last left

off after changing flight modes.

Page | 54

4.1.4 Takeoff

Although the MAVROS Library possessed a header for the takeoff of an aircraft,

CommandTOL, the header provided limited parameter allocation for the takeoff

procedure of a fixed-wing aircraft and as such, the takeoff was defined as a takeoff

waypoint. Several fixed-wing takeoffs were possible with the Pixhawk: all were

defined in the same manner in terms of defining the take-off waypoint but differed in

terms of their respective FCU parameters, where these FCU takeoff parameters were

defined based on the aircraft’s physical capabilities and the type of takeoff desired.

The available Pixhawk takeoff methods include [1]:

➢ Hand Launching,

➢ Catapult Launching,

➢ Bungee Launching, and

➢ Runway Takeoffs - Conventional Takeoff and Landing (CTOL).

4.1.4.1 Hand Launching

During the initial testing stages, the HAND LAUNCHING takeoff was utilised as the

addition of the aircraft’s undercarriage had not yet been completed. Figure 4.2

illustrates Hand Launching during the testing phase. Hand Launching was used with

the assistance of manual flight control.

Figure 4.2: Hand launching the aircraft during the testing phase

Page | 55

4.1.4.2 Catapult Launching

An attempt to automate the takeoff process resulted in the development of a catapult

system to make use of the aircraft’s Catapult Launching takeoff. Table 4.2 defines the

design criteria for the catapult.

Table 4.2: Catapult design criteria

Criteria Value Unit

Launch Angle (𝛼) 15 Degrees

Minimum Launch
Velocity (𝑉𝐿)

18 kt

Maximum Catapult

Length (𝐿)
2 m

Launch Mass
(Aircraft + Payload)

3 kg

From the catapult criteria, the required spring constant for the catapult’s launch

mechanism was determined. To determine the elastic potential required, a force

diagram representation of the catapult was developed, as seen in Figure 4.3.

Figure 4.3: Catapult force diagram

From Figure 4.3, 𝐹𝐿 represented the required launching force, 𝐹𝐴 represented the

minimum required force for the aircraft to remain in equilibrium (the preload force),

𝐹𝑁 represented the normal force of the aircraft, 𝑊 represented the weight of the

aircraft and 𝐹𝑓 represented the frictional force of the catapult.

The required preload force and launching force were deduced to be as follows:

➢ 𝐹𝐴 = 18.39 𝑁

➢ 𝐹𝐿 = 64.31 𝑁

Where, 𝐹𝐿 was the average launch force over the length of the catapult. From these

forces, the required spring constant of the launching mechanism was deduced with

the use of Equation 4.1, Hooke’s Law [30].

𝐹𝐿 = 𝑘𝑥 (4.1)

Page | 56

Where, 𝑘 represented the spring constant of the launch mechanism and 𝑥

represented the displacement of the launch mechanism.

To assist the launch mechanism, the preload force was compensated for by applying

thrust from the aircraft’s motor. The available thrust of the aircraft was deduced by

placing the aircraft against a scale and measuring the additional weight generated

by the aircraft whilst applying thrust. In addition to this preload thrust, the launch

mechanism’s available displacement (𝑥) was increased by introducing a two-stage

pulley mechanism. With the additional displacement for the launch mechanism

being defined to 1.8 m, the required spring constant for the launch mechanism was

found to be, with the assistance of Equation 4.1, 𝑘 = 36.

With the spring constant known, latex rubber tubing was selected as the desired

catapult launching mechanism. The rubber tubing was tested to deduce its elastic

properties. This testing involved measuring the required force to extend the tubing

to various lengths. The results of this testing can be seen in Table 4.3 and Figure 4.4.

Table 4.3: Latex rubber elastic properties testing results

Pieces of Rubber Tubing
Extension
Distance

(m)

Extension
Ratio

Required Force for
Extension

(N)

Single Band
(Initial length – 4.7 m)

7 1.49 34.34

10 2.13 49.05

13.40 2.85 68.67

Double Band
(Initial length – 2.35 m)

3.10 1.32 58.86

4.23 1.80 88.29

5.75 2.45 117.72

Figure 4.4: Latex rubber extension force as a function of extension ratio

y = 25.253x - 3.7613
R² = 0.9979

y = 95.267ln(x) + 32.415
R² = 1

0

20

40

60

80

100

120

140

1 1.5 2 2.5 3

Ex
te

n
si

o
n

 F
o

rc
e

(N
)

Extension Ratio

Extension Force Required for Different Extension Ratios

Single Band

Double Band

Linear (Single Band)

Log. (Double Band)

Page | 57

Looking at Table 4.3, it was deduced that the use of a double band launch

mechanism would result in the greatest launching force with the smallest required

extension length. From the extension force trend equation in Figure 4.3, it was

deduced that an extension ratio of 1.40 was required to achieve the required average

launch force of the length of the catapult. This extension ratio implied that a latex

rubber double band of length 1.29 m was required. It was decided that the length of

the rubber tubing would be decreased to 1 m to allow for an additional preload force

to be introduced into the system. Refer to Appendix H1 for the catapult launcher

calculations.

The final catapult was designed and built as per the calculated forces. To cradle the

aircraft on the catapult, a launch sled was designed to fit the rear of the aircraft,

allowing for the tail and propeller of the aircraft to pass through without collision

during launch. A release mechanism for the catapult was designed into the launch

sled. The launch sled design can be seen in Figure 4.5.

Figure 4.5: Catapult launch sled CAD model design

The catapult proved to successfully launch the aircraft but limited the available room

to mount the payload release system. As such, the catapult was used during the

testing stage, as the aircraft’s autonomous flight control was being developed but

was replaced by the addition of landing gear on the aircraft. The aircraft being

launched from the catapult can be seen in Figure 4.6. Refer to Appendix H2 for the

CAD designs of the launch sled and catapult.

Page | 58

Figure 4.6: Aircraft launched from the catapult

4.1.4.3 Runway Takeoff

For the final integrated aircraft system’s takeoff, the addition of landing gear allowed

for the selection of the Runway Takeoff. As stated previously, the takeoff for the

aircraft was defined as a takeoff waypoint, which was done with the use of the

MAVROS Library’s header Waypoint and WaypointPush. The Waypoint header

provided the ability to define the desired waypoint type and corresponding

parameters. The takeoff waypoint parameters can be seen in Table 4.4 [47].

Table 4.4: Takeoff waypoint parameters

MAV_CMD_NAV_TAKEOFF

Parameter Description

Mission Param #1 Minimum pitch

Mission Param #2 -

Mission Param #3 -

Mission Param #4 Yaw angle

Mission Param #5 Latitude

Mission Param #6 Longitude

Mission Param #7 Altitude

Launched

Aircraft

Launch

Catapult

Launch

Sled

Page | 59

The location of the takeoff waypoint was automatically updated based on the location

of the aircraft prior to takeoff and as such, only the desired altitude of the takeoff

was necessary to be defined in the takeoff waypoint parameters. After the parameters

of the takeoff waypoint had been defined, the WaypointPush header was used to

publish the waypoint to the FCU. In addition to the declaration of the takeoff

waypoint, the Runway Takeoff required that the aircraft was faced in the direction of

the headwind prior to takeoff and that the corresponding FCU takeoff parameters for

the Runway Takeoff be defined, as seen in Table 4.5. The use of the Runway Takeoff

allowed for the aircraft to support the payload below the aircraft, as opposed to on

the side of the aircraft, reducing the need to counter balance the

aircraft [2][43][48][49].

Table 4.5: FCU takeoff parameters

Parameter Value Units Description

TKOFF_TDRAG_ELEV 100 %
Amount of elevator to apply in the
initial stage of takeoff

TKOFF_TDRAG_SPD1 4 m/s
Airspeed at which to stop holding
the tail down during takeoff

TKOFF_THR_SLEW 33 %/s
Percentage throttle change per
second during takeoff

TKOFF_ROTATE_SPD 11 m/s
Airspeed at which the aircraft will
begin to climb during takeoff

TECS_PITCH_MAX 15 Degrees
Maximum pitch in autonomous
throttle modes

STEER2SRV_P 4 m
Ground turning radius of the
aircraft

GROUND_STEER_ALT 5 m
Altitude at which ground steering of
the rudder takes effect

4.1.5 Waypoint Allocation

The designation of all waypoints took place prior to the arming of the aircraft during

the pre-flight checks. Defining all of the mission waypoints prior to the mission was

possible due to the consistency of how each mission was structured. Defining each

waypoint prior to the mission also allowed for only their parameters to be updated

during the mission, mitigating the need to create new waypoints. All waypoints where

their final location was to be determined during the mission were defined with default

coordinates of (0,0), as the waypoint would not be executed if not updated or within

acceptable range and the aircraft would enter RTL flight mode. The automatic RTL

Page | 60

feature was beneficial in the sense that the aircraft would not continue with the

mission should mission waypoints not be within the achievable range of the aircraft.

4.1.5.1 Survey Waypoints

Due to variation in each mission’s drop-zone location, a low input waypoint allocation

method was developed for the allocation of survey waypoints, where only the drop-

zone’s approximate location was to be defined prior to the mission’s execution and

the autonomous flight node would expand the waypoints about this point.

The survey area followed a square serpentine pattern of six defining coordinates,

expanded about the drop-zone’s approximate location. The spacing between these

survey points was dependent on the FOV of the onboard vision system and aircraft’s

surveying altitude. Knowing the correct FOV for the planned surveying altitude, the

survey waypoints were defined with the use of Equation 4.2 and Equation 4.3 [5].

𝐿𝑎𝑡𝑆 = sin
−1(sin(𝐿𝑎𝑡𝑑𝑧) cos (

𝑑𝐹𝑂𝑉

𝑅𝐸
) + cos(𝐿𝑎𝑡𝑑𝑧) sin (

𝑑𝐹𝑂𝑉

𝑅𝐸𝑎𝑟𝑡ℎ
) cos(𝛾)) (4.2)

𝐿𝑜𝑛𝑆 = 𝐿𝑜𝑛𝑑𝑧 + 𝑎𝑟𝑐𝑡𝑎𝑛2 (sin(𝛾) sin (
𝑑𝐹𝑂𝑉

𝑅𝐸
) cos(𝐿𝑎𝑡𝑑𝑧) , cos (

𝑑𝐹𝑂𝑉

𝑅𝐸
) − sin(𝐿𝑎𝑡𝑑𝑧) sin(𝐿𝑎𝑡𝑆)) (4.3)

Where, (𝐿𝑎𝑡𝑆, 𝐿𝑜𝑛𝑆) represented the respective survey waypoint coordinates,

(𝐿𝑎𝑡𝑑𝑧, 𝐿𝑜𝑛𝑑𝑧) represented the coordinates of the drop-zone, 𝑑𝐹𝑂𝑉 represented the

horizontal camera FOV distance, 𝛾 represented the bearing of the survey waypoint

with respect to the approximate drop-zone coordinates and 𝑅𝐸 represented the radius

of the Earth. The survey area was designed to ensure the FOV of the camera

overlapped the other survey coordinates to ensure full coverage and as such, the

effective surveyed area with respect to the survey waypoints can be seen in

Figure 4.7.

Figure 4.7: Effective survey area and survey waypoints expanded about the drop-zone's approximate
location (waypoint 8)

Page | 61

After testing this survey system, it was found that aircraft was unable to successfully

achieve the desired survey pattern without overshooting the desired survey points,

specifically at the turn-around waypoints (Waypoints 3-4 and 5-6). As such, the

minimum turning radius of the aircraft was determined based on the predefined

maximum bank angle of the aircraft, 𝜑, and the airspeed of the aircraft, 𝑣𝑎𝑖𝑟, where

the maximum bank angle FCU parameter was defined to be

LEVEL_ROLL_LIMIT = 30˚. With these variables and with the use of Equation 4.4,

the minimum turning radius of the aircraft during flight, 𝑅𝑚𝑖𝑛, could be determined.

It should be noted that for Equation 4.4, the airspeed of the aircraft needed to be in

knots [44].

𝑅𝑚𝑖𝑛 =
381𝑣𝑎𝑖𝑟

2

14075 tan𝜑
 (4.4)

The minimum turning radius did not account for wind. With the turn radius known,

the issue of survey waypoint spacing and the aircraft’s turn radius was

accommodated for by designating an additional waypoint between the turn-around

waypoints. This additional waypoint followed the trajectory of the survey pattern

prior to the required turn and extended away from the survey area, such that the

aircraft could successfully make the turn and achieve stable flight prior to re-entering

the survey area. Figure 4.8 illustrates the extended survey area flight path.

Figure 4.8: Survey area waypoints with additional turn-around
waypoints (waypoint 4 and waypoint 7)

Page | 62

4.1.5.2 Environmental Parameter Determination Waypoint

Once the vision system had successfully identified the drop-zone’s location, the

environmental parameters were determined. From previous testing, it was found that

taking the airspeed upon the drop approach yielded inaccurate results as the average

wind speed measured lower than the overall average windspeed, resulting in

inaccurate drop trajectories. As such, the average windspeed was determined during

the headwind direction determination. Both the headwind velocity and direction were

determined with the use of a three loop loiter waypoint about the location of the

target. These three loiter loops were executed with the use of the MAVROS Library’s

Waypoint and WaypointPush headers, where the required parameters to be declared

was the centre coordinate of the loiter, the loiter altitude and the number of loiter

loops. The centre of the loiter was defined to be the drop-zone location and the loiter

altitude was defined to be the altitude at which the payload release would occur. The

rationale behind the three loiter involved an initial redundant loop to stabilize the

aircraft into a successful loiter flight path, the second loiter loop for environmental

data capture, and the final loop for drop approach and trajectory computation and

allocation.

To physically capture the headwind data from the aircraft’s airspeed sensor, the

MAVROS Library’s VFR_HUD header was used, as it published telemetry from the

aircraft and as such, a telemetry subscriber was written to read the published data.

Table 4.6 lists the available data published by the VFR_HUD header [47][48][49].

Table 4.6: VFR_HUD header published data

VRF_HUD Data Units

Airspeed m/s

Groundspeed m/s

Heading Degrees

Throttle
Normalized from

0.0 to 1.0

Altitude

m

(MSL – Mean Sea

Level)

Climb m/s

Page | 63

The true headwind velocity, 𝑣𝑤_𝑑𝑖𝑓𝑓, was determined by taking the difference between

the aircraft’s groundspeed, 𝑣𝑔𝑟𝑜𝑢𝑛𝑑, and airspeed, 𝑣𝑎𝑖𝑟.

𝑣𝑤_𝑑𝑖𝑓𝑓 = 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑣𝑎𝑖𝑟 (4.5)

𝑣𝑤 =
∑ 𝑣𝑤_𝑑𝑖𝑓𝑓𝑖
𝑛
𝑖=1

𝑛
 (4.6)

From Equation 4.5 and Equation 4.6, the average headwind velocity, 𝑣𝑤, was

determined. The true headwind direction was determined by taking the heading just

prior of the heading at which the lowest groundspeed was recorded. The headwind

velocity and direction were determined in the payload release node. The generic

waypoint parameters used for the survey waypoints and the multiple turn loiter

waypoint parameters used for the headwind determination can be seen in Table 4.7

and Table 4.8 [47].

Table 4.7: Generic waypoint parameters

MAV_CMD_NAV_WAYPOINT

Parameter Description

Mission Param #1 -

Mission Param #2 Waypoint acceptance radius in meters

Mission Param #3
0 to pass through the WP, if > 0 radius in metres to pass by WP.

Positive value for clockwise orbit, negative value for counter-
clockwise orbit.

Mission Param #4 Desired yaw angle at waypoint

Mission Param #5 Latitude

Mission Param #6 Longitude

Mission Param #7 Altitude

Table 4.8: Multiple turn loiter waypoint parameters

MAV_CMD_NAV_LOITER_TURNS

Parameter Description

Mission Param #1 Number of turns

Mission Param #2 -

Mission Param #3
Radius around waypoint, in meters. (Positive value =

clockwise, negative value = counter-clockwise)

Mission Param #4
Loiter exit location (0 for centre of loiter, 1 for tangential exit

location, else the desired yaw angle)

Mission Param #5 Latitude

Mission Param #6 Longitude

Mission Param #7 Altitude

Page | 64

4.1.5.3 Payload Release Waypoints

Once the drop-zone’s location had been successfully located by the vision system

and the headwind velocity and direction had been determined, the appropriate

payload release approach was defined. The process of defining the payload release

approach was done by taking the drop-zone’s location and defining three waypoints

along the same heading as the headwind. The first waypoint was a lineup waypoint

(waypoint 12) and was used to allow the aircraft to reach the payload release

approach in the desired attitude. The second payload release waypoint represented

the payload release approach waypoint (waypoint 13). The final payload release

waypoint represented the payload release point (waypoint 14) and was defined by the

payload release node to be the displacement upwind or downwind of the drop-zone

to achieve the desired release trajectory. Flying directly into the headwind allowed

for the headwind to be modelled as a two-dimensional entity and was discussed in

Chapter 6.

The process of computing the payload release approach was done within the payload

release node and the approach waypoints were published to the FCU during the third

loiter loop of the environmental parameter determination phase of the mission. The

payload release approach waypoints can be seen in Figure 4.9, where the direction

of the increasing waypoint index number was defined to be the opposing direction of

the wind.

Figure 4.9: Payload release approach waypoints, with the drop-zone location defined by waypoint 15

Page | 65

4.1.5.4 Confirmation and Landing

Once the payload had been released, the aircraft would circle back and execute the

payload release approach again, this time recording the drop-zone. The recording

was done to evaluate the success of the release and as a means of payload delivery

confirmation should the system be implemented in a market related application,

such as goods delivery. This footage was not processed onboard the aircraft and was

left to post-flight processing, should the aircraft operator wish to evaluate the footage.

To land the aircraft, the MAVROS Library’s Waypoint and WaypointPush headers

were used. QGroundControl offered the option of selecting a fixed-wing landing

waypoint, but this was not the case when working from first principles and as such,

the basic waypoint elements of the fixed-wing landing waypoint were identified and

defined separately. A fixed-wing waypoint had two distinct elements, namely: a loiter

to altitude and landing waypoint. Out of these two elements, the loiter to altitude

defined the majority of the landing parameters, such as landing approach altitude

and the heading of the aircraft during landing. The landing heading corresponded

with the second element of the landing, the landing waypoint, where the landing

waypoint was defined at a given distance away from the aircraft tangential to when

the aircraft exited the loiter and was defined in the direction of the heading defined

during the loiter to altitude waypoint. The landing waypoint indicated the location at

which the aircraft was theorised to land and as such, the aircraft would execute a

landing flare just prior to this location. A landing flare represented the landing stage

between landing approach and touchdown where the nose of the aircraft would raise

up, decreasing the rate of descent, and the aircraft attains the correct touchdown

attitude. The designation of fixed-wing landing waypoints can be seen in Figure 4.10.

Figure 4.10: Fixed-wing landing waypoints

Page | 66

Provided the landing parameters and landing waypoints were defined correctly, the

FCU would take full control over the landing. Along with the aforementioned landing

waypoints, FCU parameters were also defined in terms of the aircraft’s physical

capabilities as seen in Table 4.9. Figure 4.11 depicts the aircraft flying overhead

during landing [2][47][48][49].

Table 4.9: FCU landing parameters

Parameter Value Units Description

LAND_FLARE_ALT 3 m
Altitude at which to lock heading
and flare to the LAND_PITCH_CD

pitch

LAND_FLARE_SEC 2 s
Vertical time before landing point
at which to lock heading and flare

with the motor stopped

LAND_PITCH_CD 0 Centidegrees
 The minimum pitch in the final
stage of landing (after the flare)

TECS_LAND_ARSPD -1 m/s
The goal airspeed during the

landing approach

TECS_LAND_SPDWGT -1 -
Weighting applied to speed control

during landing

Figure 4.11: Fixed-wing flying overhead during landing

Page | 67

4.1.5.5 Generic Mission Waypoint List

With the description of each waypoint type used within any mission, the list of

generic mission waypoints can be seen in Table 4.10 [47].

Table 4.10: Generic mission waypoints

Waypoint
Index

ROS Node
Designation

MAV_CMD Type Description

1 wp_takeoff MAV_CMD_NAV_TAKEOFF (#22)
Takeoff

waypoint

2 wp_sl MAV_CMD_NAV_WAYPOINT (#16)
Survey

alignment
waypoint

3 wp_s1 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 1

4 wp_s2 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 2

5 wp_s3 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 3

6 wp_s4 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 4

7 wp_s5 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 5

8 wp_s6 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 6

9 wp_s7 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 7

10 wp_s8 MAV_CMD_NAV_WAYPOINT (#16)
Survey

waypoint 8

11 wp_hw MAV_CMD_NAV_LOITER_TURNS (#18)
Headwind 3
turn loiter

12 wp_dal MAV_CMD_NAV_WAYPOINT (#16)

Drop
approach
alignment
waypoint

13 wp_da1 MAV_CMD_NAV_WAYPOINT (#16)
Drop

approach
waypoint 1

14 wp_da2 MAV_CMD_NAV_WAYPOINT (#16)

Drop

approach
waypoint 2

15 wp_target MAV_CMD_NAV_WAYPOINT (#16)
Target

location
waypoint

16 wp_landing1 MAV_CMD_NAV_LOITER_TURNS (#18)
Landing loiter

waypoint

17 wp_landing2 MAV_CMD_NAV_WAYPOINT (#16)
Landing
location
waypoint

Page | 68

4.2 Chapter Conclusion

Chapter 4 discussed the development of the autonomous flight control functionality

of the aircraft. Different approaches to aircraft takeoff were assessed and the

development of an aircraft launch catapult was discussed. From the different takeoff

procedures assessed, the Runway Takeoff procedure was selected. Where, runway

takeoffs, and subsequent, landings were found to be more conducive towards the

desired payload release system mounting arrangement. The various types of

waypoints utilised in this research were also discussed. The functionality of the

autonomous flight node in defining mission waypoints was discussed, where the

necessary operator input prior to execute was the GPS coordinates of the

approximate drop-zone location. All other mission waypoints were defined by the

FCU or through the input of the vision system. With the conclusion of the

autonomous flight control comes the next integrated subsystem, the vision system.

Chapter 5 discussed the details pertaining to the vision system, where object

recognition and object tracking were discussed in the form of the image capture and

image processing algorithms. Additionally, drop-zone global frame location

determination was discussed in Chapter 5.

Page | 69

Chapter 5

Vision System

This chapter discussed the details pertaining to image capture and image processing.

The vision system allowed for the detection of the drop-zone and the determination

of the drop-zone location with respect to the aircraft, through implementation of the

image capture and image processing algorithms.

5.1 Image Capture Node and Image Processing Node

A two-stage image capture and image processing algorithm was developed, where

image capture was executed in a separate node, the image capture node, to the node

in which image processing was executed, the image processing node. The reason for

the separation of the image capture and image processing was to allow for a constant

flow of images to the image processing node. Initially, a combined image capture and

processing node was constructed but it was found that a large latency in image

feedback was experienced. This latency in image feedback was due to the execution

of the image capture being dependent on the time taken for the image processing

algorithm to finish with the previous image stream. Figure 5.1 illustrates the

computational flow diagram of the image capture and image processing algorithm.

Figure 5.1: Image capture node and the image processing node computational flow diagram

Page | 70

The image capture node and the image processing node were derived from the ROS

C++ image publisher and image subscriber examples, where the alterations made to

these example nodes was the adaptation of the code to accept video stream from the

onboard camera [20][34]. The refresh rate of the image stream was altered to

accommodate the amount of area covered by the aircraft during flight. A slower

refresh rate resulted in regions of the survey area being omitted from the image

capture process due to latency.

5.2 Image Processing

The image processing node consisted of two distinct phases, namely: the object

recognition phase and the object tracking phase. Object recognition would occur for

all images transmitted from the image capture node and object tracking would only

occur upon successful detection of the drop-zone identifier.

5.2.1 Object Recognition

Object recognition and object tracking formed part of the image processing node,

where in order to be able to achieve object tracking, object recognition was required

first. The object to be recognised was defined to be a red circle. Hinas et al. [27]

suggested that blue was a more suited colour for object recognition, but due to the

application of this system, red was selected as the testing colour due to its contrast

on both land and sea.

Object recognition made use of OpenCV to execute a multistage image processing

algorithm, as defined in Figure 5.1. Where, these multiple stages were:

Blue-Green-Red (BGR) image formatting applied to the input image stream,

converting from BGR image to Hue-Saturation-Value (HSV) image, assigning the

upper and lower thresholds for image colour filtering, introduction of noise to

optimise object detection, circle detection with the assistance of the Circle Hough

Transform, and detected circle image overlay onto original image. The image

processing algorithm was based on an existing red circle detection algorithm [40].

5.2.1.1 BGR Formatting

From the image capture node, the video stream was transmitted as individual

images, represented in the form of an n-dimensional array by the OpenCV Mat class.

The captured image was represented in this array by the number of pixels present in

the image and was structured according to the image’s pixel rows and columns. The

Page | 71

image array, in this case the two-dimensional image array, defined the captured

image’s colour in a BGR format, implying that each element of the image array was

defined to be the corresponding numerical value for the BGR colour of the pixel in

the image. The BGR colour scale was defined to be three numbers, one for each

colour, where each colour value ranged from 0 to 255. Figure 5.2 illustrates an

example of the OpenCV BGR colourspace array of dimension 𝑛 ×𝑚 [32].

Figure 5.2: OpenCV BGR colourspace array [32]

5.2.1.2 Converting from BGR to HSV

HSV image formatting was used for image processing due to its ability to isolate

objects based on colour through a single variable, hue, as opposed to the BGR image

formatting where colour identification required variables to be defined for each BGR

element. The difference between the HSV and BGR colourspace was their geometric

representation, where the BGR colourspace was represented as a cubic geometry

structure and the HSV colourspace was represented as a hexcone geometric

structure, as seen in Figure 5.3. As such, the BGR image was converted to the HSV

image format with use of the OpenCV cvtColor class.

Figure 5.3: BGR cubic colourspace (left) and HSV hexacone colourspace (right)

5.2.1.3 Image Threshold Filtering

Image threshold filtering was used to define the colour range of the objects within

the captured image to be processed, where this filtering was based on the hue of the

HSV image. As such, the lower hue range and upper hue range of the desired object’s

colour were defined. These upper and lower hue ranges were defined as binary

images where if an object within the given colour ranges was detected, these objects

would be displayed in white in the binary image. All colours outside of the hue ranges

Page | 72

would be displayed as black in the binary images, as seen in Figure 5.5. Both the

lower and upper hue range binary images were combined into a single output binary

image. The filtering of the HSV images to binary images was done with the use of the

OpenCV inRange function and the OpenCV Scalar class. The final binary image was

used in the object detection algorithm by defining the objects meeting the desired

colouring criteria. Objects not meeting the colouring criteria were then disregarded

for the remainder of object recognition algorithm.

5.2.1.4 Noise Injection

Noise injection was used to reduce the object recognition algorithm’s susceptibility

to false object detection. Prior to noise injection, the binary threshold image was

smoothed with the use of the OpenCV medianBlur function. Noise injection was

executed with the assistance of the OpenCV GaussianBlur function, where a

Gaussian filter was applied to the captured image, distorting the shape geometry.

With the application of the Gaussian filter, the object recognition algorithm could be

refined to filter both simulated and capture image interference and noise [33].

5.2.1.5 Hough Circle Transformation

With the application of the threshold and Gaussian filters, the final process of the

object recognition algorithm could take place, the detection of circular objects.

Detection of circular objects was done with the use of the OpenCV HoughCircles

function. The OpenCV HoughCircles function makes use of the Circle Hough

Transform (CHT) via an adaptation of the Hough Gradient method.

The standard CHT made use of a three-dimensional accumulator for circle detection

within a greyscale image where the radius of the circle was unknown. This three-

dimensional accumulator stored the votes of the edge points of the circle, 𝑥 and 𝑦,

and the radius of the circle, 𝑟. These votes represented the numerical value assigned

to each pixel’s suitability at representing acceptable circle geometry, determined by

the pixel’s colour within the greyscale, in this case binary, image. Each pixel’s vote

was determined with the use of the mathematical expression defined in Equation 5.1.

(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 = 𝑟2 (5.1)

Where, 𝑥𝑐 and 𝑦𝑐 represented the location of the pixel coordinated used to satisfy

Equation 5.1 for each edge coordinate and radius stored within the accumulator.

Due to the computational strain of the standard Circle Hough Transformation

method of circle detection, OpenCV’s adaptation of the Hough Gradient method for

the HoughCircles function was implemented. The Hough Gradient method monitors

Page | 73

the change in pixel colour gradient, reducing the number of votes required to deduce

the location of the centre of a possible circle. Determination of the circle’s centre

coordinates would allow for the image processing algorithm to proceed with the next

phase, object tracking [11][31]. The OpenCV HoughCircles function and its parameter

discretion can be seen in Equation 5.2 and Table 5.1.

𝐻𝑜𝑢𝑔ℎ𝐶𝑖𝑟𝑐𝑙𝑒𝑠(𝐼𝑚𝑎𝑔𝑒, 𝐶𝑖𝑟𝑐𝑙𝑒𝑠,𝑀𝑒𝑡ℎ𝑜𝑑, 𝑑𝑝,𝑚𝑖𝑛𝐷𝑖𝑠𝑡, 𝑝𝑎𝑟𝑎𝑚1, 𝑝𝑎𝑟𝑎𝑚2,𝑚𝑖𝑛𝑅𝑎𝑑𝑖𝑢𝑠,𝑚𝑎𝑥𝑅𝑎𝑑𝑖𝑢𝑠) (5.2)

Table 5.1: OpenCV HoughCircles function parameters

Parameter Variable Type Description

Image InputArray 8-bit, single-channel, grayscale input image.

Circles OutputArray Output vector of found circles.

Method int Detection method to use.

dp double

Inverse ratio of the accumulator resolution to the

image resolution. For example, if dp=1 , the

accumulator has the same resolution as the input

image. If dp=2 , the accumulator has half as big

width and height.

minDist double

Minimum distance between the centres of the

detected circles. If the parameter is too small,

multiple neighbour circles may be falsely detected

in addition to a true one. If it is too large, some

circles may be missed.

param1 double

First method-specific parameter. In case of

CV_HOUGH_GRADIENT, it is the higher threshold of

the two passed to the Canny() edge detector.

param2 double

Second method-specific parameter. In case of

CV_HOUGH_GRADIENT, it is the accumulator

threshold for the circle centres at the detection

stage. The smaller it is, the more false circles may

be detected. Circles, corresponding to the larger

accumulator values, will be returned first.

minRadius int Minimum circle radius

maxRadius int Maximum circle radius

Page | 74

5.2.2 Object Tracking

Upon successful detection of the drop-zone identifier, the image processing algorithm

would proceed with object tracking phase. Objecting tracking involved the

transformation of the object’s image plane coordinates, pixel coordinates, to global

plane coordinates, relative GPS coordinates.

5.2.2.1 Determination of the Object’s Pixel Coordinates

The image plane represented the plane upon which object tracking and object

recognition was executed. The image plane was divided into four quadrants, in which

the location of the drop-zone identifier was determined relative to the global frame,

as seen in Figure 5.4. The reason for the image plane zoning was to define location

of the drop-zone relative to the centre of the image plane, as the centre of the image

plane did not represent the origin of the image plane but represented the x and y

origin of the camera frame. The origin of the image plane, also defined to be the image

frame, was assigned by OpenCV to be the upper left-hand corner of the visible image.

Relating the image frame to camera frame was necessary due to the camera frame

and global frame sharing the same x and y axes. The only dimensional difference

between the camera frame and global frame was a z-axis offset, ZCG, due to the

mounting arrangement of the vision system relative to the GPS module.

Figure 5.4: Image plane quadrant view

Page | 75

The designation of the image plane quadrant ranges were as follows:

1.
𝑥𝑚𝑎𝑥

2
< 𝑥 ≤ 𝑥𝑚𝑎𝑥, and 0 ≤ 𝑦 ≤

𝑦𝑚𝑎𝑥

2
 (5.3)

2. 0 ≤ 𝑥 ≤
𝑥𝑚𝑎𝑥

2
, and 0 ≤ 𝑦 ≤

𝑦𝑚𝑎𝑥

2
 (5.4)

3. 0 ≤ 𝑥 ≤
𝑥𝑚𝑎𝑥

2
, and

𝑦𝑚𝑎𝑥

2
< 𝑦 ≤ 𝑦𝑚𝑎𝑥 (5.5)

4.
𝑥𝑚𝑎𝑥

2
< 𝑥 ≤ 𝑥𝑚𝑎𝑥, and

𝑦𝑚𝑎𝑥

2
< 𝑦 ≤ 𝑦𝑚𝑎𝑥 (5.6)

From Figure 5.4, the drop-zone’s pixel coordinates could be defined. These pixel

coordinates were used to determine the drop-zone’s global frame location by

overlaying the pixel coordinates onto the ground plane. The image plane pixels were

defined relative to the image frame, but the drop-zone’s pixel coordinates were

defined relative to the camera frame for convenience of conversion to global frame

coordinates. An illustration of the various coordinate frames can be seen in

Figure 5.5.

Figure 5.5: Relative coordinate frames

Page | 76

As seen in Figure 5.4, four quadrants were defined within the image plane. The

allocation of quadrants was to allow for ease of drop-zone location determination

within the image plane. These four quadrants allowed for the bearing, 𝛾, of the drop-

zone’s location relative to the aircraft’s heading to be determined, as seen in

Figure 5.6. This drop-zone bearing was taken to be a new heading for the aircraft, as

heading was required for the computation of the global coordinates of the drop-zone.

Each quadrant was defined with a rule for determining the bearing heading of the

drop-zone relative to the aircraft’s heading, where the aircraft’s heading was defined

to be the direction of the camera’s y axis. These bearing heading rules for each

quadrant were as follows:

1. 𝛾1_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 − tan
−1 (

𝑎𝑐

𝑏𝑐
) (5.7)

2. 𝛾2_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 + tan
−1 (

𝑎𝑐

𝑏𝑐
) (5.8)

3. 𝛾3_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 + (180 − tan
−1 (

𝑎𝑐

𝑏𝑐
)) (5.9)

4. 𝛾4_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 + (180 + tan
−1 (

𝑎𝑐

𝑏𝑐
)) (5.10)

Figure 5.6: Image plane quadrant bearings

Page | 77

5.2.2.2 Conversion from Image Frame to Global Frame

To determine the relationship the between camera’s image frame and the global

frame, the true FOV of the camera was to be determined. Determining the FOV of the

camera was done with the use of two calibration tests, one test at close range and

another at far range. Both calibration tests involved placing the camera at a known

distance from a fixed vertical plane, FL, and then measuring the maximum visible

image area of the plane, (xmax, ymax). Determining this maximum visible area allowed

for the calculation of the camera’s FOV. An illustration of the calibration tests can

be seen in Figure 5.7.

Figure 5.7: Camera FOV calibration illustration

From Figure 5.7, the FOV of the camera was defined to be two angles, 𝛼 and 𝛽.

Equation 5.11 and Equation 5.12 define how these angles were deduced.

𝛼 = 2 tan−1 (
(
𝑦𝑚𝑎𝑥
2
)

𝐹𝐿
) (5.11)

𝛽 = 2 tan−1 (
(
𝑥𝑚𝑎𝑥
2
)

𝐹𝐿
) (5.12)

Where, 𝛼 represented the vertical FOV angle of the camera and 𝛽 represented the

horizontal FOV angle of the camera. Knowing these angles, the conversion from pixel

coordinates to GPS coordinates was now possible.

Page | 78

5.2.2.3 Defining the GPS Coordinates of the Drop-Zone

From the true FOV angles of the camera, the pixel coordinates of the drop-zone and

the bearing of the drop-zone relative to the camera frame, the relationship between

the image plane and the ground plane could be defined. This relationship allowed for

the GPS coordinates of the drop-zone relative to the aircraft to be defined. Based on

the FOV determined for the camera and knowing the altitude of the aircraft and the

camera frame to global frame z axis offset, 𝑍𝐶𝐺, the camera’s visible image area on

the ground plane could be defined. The drop-zone’s pixel coordinates could be

superimposed upon the camera’s ground plane visible area and the drop-zone’s

global frame offsets could be determined. These offsets, 𝑎𝐺 and 𝑏𝐺, along with the

bearing of the drop-zone relative to the camera frame, were then used to determine

the GPS location of the drop-zone, (𝐿𝑎𝑡𝑇 , 𝐿𝑜𝑛𝑇) with the use of Equation 5.14 and

Equation 5.15. With the assistance of Equation 5.13 and offsets 𝑎𝐺 and 𝑏𝐺, the

magnitude of the distance vector between the global frame origin and the drop-zone

location could be determined [44].

𝑟𝐺 = √𝑎𝐺
2 + 𝑏𝐺

2 (5.13)

𝐿𝑎𝑡𝑇 = sin
−1(sin(𝐿𝑎𝑡𝐴) cos (

𝑟𝐺

𝑅𝐸
) + cos(𝐿𝑎𝑡𝐴) sin (

𝑟𝐺

𝑅𝐸𝑎𝑟𝑡ℎ
) cos(𝛾)) (5.14)

𝐿𝑜𝑛𝑇 = 𝐿𝑜𝑛𝐴 + 𝑎𝑟𝑐𝑡𝑎𝑛2 (sin(𝛾) sin (
𝑟𝐺

𝑅𝐸
) cos(𝐿𝑎𝑡𝐴) , cos (

𝑟𝐺

𝑅𝐸
) − sin(𝐿𝑎𝑡𝐴) sin(𝐿𝑎𝑡𝑇)) (5.15)

Equation 5.14 and Equation 5.15 made use of three characteristics to determine the

drop-zone’s GPS coordinates, namely: the GPS location of the aircraft upon

drop-zone identification (𝐿𝑎𝑡𝐴, 𝐿𝑜𝑛𝐴), the bearing heading of the drop-zone relative to

the aircraft, 𝛾, and the magnitude of the distance vector between the aircraft’s GPS

coordinates and the drop-zone’s location, 𝑟𝐺.

With the GPS coordinates of the drop-zone relative to the aircraft now known, the

previously defined approximate drop-zone location could be updated. The image

capture node and image processing node code can be found in Appendix A2 and

Appendix A3.

Page | 79

5.3 Camera Mass-Balancing

As discussed in Chapter 3, the image stabilisation gimbal utilised in this research

was designed for a GoPro HERO 5 BLACK camera. As such, the CMOS camera

required a mass-balancing adapter to be design in order for the gimbal to function

correctly. In order to mass the CMOS camera, the centre of mass of a GoPro HERO

5 BLACK camera was to be determined. The specifications of the GoPro can be seen

in Table 5.2 [21].

Table 5.2: GoPro HERO 5 physical specifications

Parameter Value Unit

Mass 0.12 kg

Length 62 mm

Height 44 mm

Thickness 24 mm

Location of centre of mass

(From front bottom left

corner)

x: 32

y: 24

z: 10

mm

mm

mm

From Table 5.2, the CMOS camera holder was designed to fit the physical dimensions

of a GoPro. As the camera mount was to be 3D printed, the mount’s weight did not

match that of the GoPro and a compartment was included within the camera mount’s

design to house additional weights to balance the camera. The final CMOS camera

mount can be seen in Figure 5.8 and the design of the camera mount can be seen in

Appendix I.

Figure 5.8: CMOS camera mount attached to the gimbal

Page | 80

5.4 Chapter Conclusion

From Chapter 5, the foundation of the image capture and image processing node

algorithms was discussed. The process through which captured images were

converted between colourspaces was discussed, where it was found that application

of the HSV colourspace was conducive to image filter and object detection.

Additionally, it was found that the image processing algorithm possessed three

phases for the determination of the drop-zone identifier’s location. These phases

included: image hue filtering for the removal of unwanted colours from the search

process, application of the OpenCV HoughCicrles function for detection of the

drop-zone identifier’s circle geometry and transformation of the drop-zone identifier’s

pixel coordinates from image frame to global frame coordinates. A camera mount was

designed and 3D printed to match the physical properties of a GoPro HERO 5 BLACK

camera, the intended camera for the TAROT gimbal. Chapter 6 discussed the final

computational subsystem of integrated system, the payload release system.

Elements of payload release modelling and payload design were discussed in

Chapter 6.

Page | 81

Chapter 6

Payload Delivery

This chapter discussed the various environmental and structural factors influencing

the payload during its ballistic projectile motion, along with the mathematical

foundation upon which the payload trajectory was based. The design and modelling

of the payload was also discussed, along with the structure of the payload release

node.

6.1 Environmental Factors

This research considered the real-time environmental parameters which would affect

the trajectory of the payload during the drop, where these parameters included the

headwind velocity and direction experienced during flight. The consideration of these

environmental parameters was based on the flight path of the aircraft during its drop

approach, which would see the aircraft flying directly into the headwind. As such,

the headwind and subsequent projectile motion could be modelled in two

dimensions.

Due to the unpredictability of wind gusts, the assumed influence of the wind on the

payload was perceived to follow the wind gradient, also known as wind shear, as

defined by Equation 6.1. Equation 6.1 was used to extrapolate the wind horizontal

velocity with respect to the elevation [14].

 𝑣𝑤(ℎ) = 𝑣𝑤𝑎𝑙𝑡 (
ℎ

ℎ𝑎𝑙𝑡
)

1

𝛼
 (6.1)

Where, 𝑣𝑤(ℎ) represented the wind velocity at elevation ℎ, 𝑣𝑤𝑎𝑙𝑡 the wind velocity at

the drop elevation, ℎ𝑎𝑙𝑡 the elevation at the moment of release and 𝛼 the exponential

wind coefficient. This equation holds only when 0 < ℎ < ℎ𝑎𝑙𝑡. Equation 6.1

represented a generalisation of the predicted wind velocity at various heights of a

building, as the desired testing altitudes of this system fell within the same height in

which these structures were designed to withstand wind loading. Literature on wind

gradient effects on aircraft were found to only describe the process in which wind

shear occurs and methods of avoidance [45].

Page | 82

6.2 Mathematical Foundation

This subsection discussed the mathematical foundation upon which the ballistic

projectile motion of the payload was derived, where ballistic motion has been defined

as the falling motion of an object due only to the force of gravity [42].

6.2.1 Ballistic Projectile Motion in a Vacuum

Two-dimensional projectile motion was expressed through the equations of motion.

These equations of motion describe the projectile motion of an object within a

vacuum. As defined by Hall [22] and Jewett and Serway [30], the equations of motion

used for this research were as follows:

𝑣𝑓 = 𝑣𝑖 + 𝑔𝑡 (6.2)

𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑔∆𝑥 (6.3)

∆ℎ = 𝑣𝑖𝑡 +
1

2
𝑔𝑡2 (6.4)

∆ℎ = (
𝑣𝑓+𝑣𝑖

2
) 𝑡 (6.5)

Where, 𝑣𝑖 and 𝑣𝑓 described the initial and final velocity of the payload, 𝑔 the

gravitational acceleration, ∆𝑥 the displacement of the payload and 𝑡 the time taken.

Projectile motion within a vacuum follows a parabolic flight path, which implies that

trajectory has symmetry about its axis of highest elevation, as seen in Figure 6.1. In

Figure 6.1 it can be seen that, an initial launch angle of 45 degrees (red line) results

in the largest projectile displacement for projectile motion within a vacuum, whereas

angles greater and less than 45 degrees result in smaller displacements.

Figure 6.1: Projectile motion of an object in a vacuum under various test parameters

Page | 83

6.2.2 Ballistic Projectile Motion with Drag

The equations of motion mentioned previously were not used as the final product of

the ballistic projectile motion due to lack of consideration of drag which the projectile

would experience when traveling through air. As such, drag, specifically quadratic

drag, was taken into account when determining the ballistic projectile motion of the

payload.

𝐹𝐷 =
1

2
𝜌𝐴𝐶𝑑𝑣

2 (6.6)

Where, 𝐹𝐷 represented the drag force, 𝜌 the density of the medium the payload moved

through, 𝐴 the cross-sectional area of the payload, 𝐶𝑑 the drag coefficient and 𝑣 the

velocity of the payload relative to the fluid. Equation 6.6 formed one of the final forces

required to develop the projectile motion of the payload for this research [8].

Unlike projectile motion within a vacuum, projectile motion with drag did not follow

a parabolic trajectory path. Projectile motion with drag had two distinct phases,

namely vertical ascent, Phase 1, and vertical descent, Phase 2, as seen in Figure 6.2.

Where, unlike the horizontal displacement of projectile motion in a vacuum, the

horizontal displacement of projectile motion with drag was not symmetrical between

the two phases.

Phase 1 Phase 2

Figure 6.2: Projectile motion of an object with drag under test parameters

Page | 84

For the purpose of this research, only vertical descent, Phase 2, was considered as

the aircraft was assumed to be in level flight and at altitude at the moment of release.

As such, the derivation of the vertical descent equations of motion were as shown in

Equation 6.7:

𝑣𝑥(𝑡) =
𝑉𝑇

2𝑣𝑥𝑜

𝑉𝑇
2+𝑔𝑣𝑥𝑜𝑡

 (6.7)

Where, 𝑣𝑥(𝑡) described the payload’s horizonal velocity component with respect to

time, 𝑣𝑥𝑜 the payload’s initial horizontal velocity component, and 𝑉𝑇 the terminal

velocity [23]. The terminal velocity of an object describes the maximum velocity said

object could achieve during free-fall and was defined as shown in Equation 6.8:

𝑉𝑇 = √
2𝑚𝑝𝑔

𝐶𝑑𝐴𝜌
 (6.8)

Where 𝑚𝑝 defined the mass of the payload.

The second equation of motion described the horizontal displacement of the payload,

𝑥(𝑡). This horizontal displacement was with respect to the initial point of release and

as such, this initial point represented zero displacement.

𝑥(𝑡) =
𝑉𝑇
2

𝑔
ln (

𝑉𝑇
2+𝑔𝑣𝑥𝑜𝑡

𝑉𝑇
2) (6.9)

The third equation of motion described the payload’s vertical velocity component with

respect to time, 𝑣𝑦(𝑡), as seen in Equation 6.10a [23]:

𝑣𝑦(𝑡) = 𝑉𝑇
𝑣𝑦𝑜−𝑉𝑇 tan(

𝑔𝑡

𝑉𝑇
)

𝑉𝑇+𝑣𝑦𝑜 tan(
𝑔𝑡

𝑉𝑇
)
 (6.10a)

Since the aircraft was assumed to be in level flight at the moment of release, the

payload’s initial velocity vertical component, 𝑣𝑦𝑜, would be zero and therefore,

Equation 6.10a could be redefined as Equation 6.10b [23]:

𝑣𝑦(𝑡) = −𝑉𝑇 tan (
𝑔𝑡

𝑉𝑇
) (6.10b)

Page | 85

The fourth equation of motion described the elevation of the projected payload with

respect to time, ℎ(𝑡), as seen in Equation 6.11 [23]. This elevation was with respect

to the ground and as such, the ground represented a zero elevation.

ℎ(𝑡) =
𝑉𝑇
2

2𝑔
ln (

𝑉𝑇
2

𝑣𝑦(𝑡)
2+𝑉𝑇

2) (6.11a)

With these equations of motion, the velocity and position of the payload could be

determined for any time throughout the drop. A comparison of the projectile motion

of a payload in a vacuum and in the presence of drag can be seen in Figure 6.3. In

Figure 6.3 it was noted that, projectile motion within a vacuum (green) results in a

greater horizontal displacement when compared to the horizontal displacement of

the projectile motion with drag (red).

Figure 6.3: Comparison of projectile motion in a vacuum and with drag under test parameters

Page | 86

6.2.3 Ballistic Projectile Motion with Quadratic Drag and Headwind

Using the information gathered from the fundamentals of the environmental factors

and the ballistic projectile motion to be experienced during the payload delivery, the

final equations were defined. These equations describe the horizontal displacement

of the payload during the ballistic projectile motion.

As the aircraft was moving through the air, with the payload still attached, the

payload was yet to reach a state of horizontal equilibrium within the fluid, air. Where,

in this case the term state of horizontal equilibrium implied a steady state within the

air where the effects of the aircraft’s thrust were no longer imparted on the aircraft.

This state of horizontal equilibrium was hereafter referred to as ‘the state of

equilibrium’. Within this state, the horizontal displacement of the projectile would be

determined through the use of velocity vector addition. This state of imbalance

between the payload and the fluid was due to the aircraft imparting thrust upon the

payload at the moment of release. As such, the projectile motion of the payload was

defined by two distinct phases, namely Phase A and Phase B. Phase A represented

the period in which the payload reached a state of equilibrium within the fluid, such

that the payload’s motion was no longer defined by the aircraft’s imparted thrust.

Phase B represented the time taken for the payload to reach the desired drop location

through velocity vector addition. The payload would not always enter Phase B. The

reasoning behind this payload phase dependency was discussed later in this

subsection.

6.2.3.1 Phase A of the Final Ballistic Projectile Motion

Phase A of the payload’s projectile motion was defined to be the period in which the

payload reached a state of equilibrium within the fluid, such that its motion was no

longer defined by the aircraft’s imparted thrust. The period of this equalization was

defined to begin at the moment of release and was defined to end at the moment

when the payload’s horizontal acceleration, in this case deceleration, would equal

zero. The rationale for this terminating state for Phase A was based on the payload

decelerating horizontally due to drag and headwind, from the moment of release. The

moment when the deceleration of the payload reached zero was the point at which

the horizontally imparted thrust from the aircraft would have been cancelled out and

the payload would be accelerated by the wind.

The desired result of Phase A was to solve for the time at which the payload enters

equilibrium (𝑡𝐸𝑞) and the change in elevation and horizontal displacement of the

Page | 87

payload (∆ℎ and ∆𝑥) with respect to the initial launch position (ℎ𝑎𝑙𝑡 and 𝑥0). These

variables could be solved with the use of Equation 6.9 and Equation 6.11, once the

equilibrium time had been deduced.

To solve for the equilibrium time constant, the projectile was modelled as a second-

order system, as seen in Figure 6.4. Several conditions were assumed throughout

the derivation of the equilibrium time constant and were defined accordingly.

Figure 6.4: Free-body diagram of the payload during phase 1 of the final ballistic projectile motion

From the free-body diagram shown in Figure 6.4, the second-order differential

equation could be defined. This equation described the acceleration of the payload,

due to the imparted thrust from the aircraft, under the decelerating effects of both

drag and headwind. Equation 6.12 and Equation 6.13 described this second-order

differential equation.

𝐹𝑊(𝑡) = 𝑚𝑝
𝑑2𝑥

𝑑𝑡2
− 𝐷

𝑑𝑥

𝑑𝑡
 (6.12)

∴
𝑑2𝑥

𝑑𝑡2
=
𝐹𝑊(𝑡)

𝑚𝑝
+

𝐷

𝑚𝑝

𝑑𝑥

𝑑𝑡
 (6.13)

Where,

𝐷
𝑑𝑥

𝑑𝑡
= 𝐹𝐷(𝑡) (6.14)

Thus,

𝐷(𝑡) =
1

2
𝜌𝐴𝐶𝑑𝑣𝑝(𝑡) (6.15)

Several variables of Equation 6.13 could be defined by Equation 6.15, a redefinition

of Equation 6.7. The imparted force of the headwind onto the payload was modelled

with use of Equation 6.15, such that:

𝐹𝑊(𝑡) =
1

2
𝜌𝐴𝐶𝑑𝑣𝑤(𝑡)

2 (6.16a)

Although Equation 6.1 described the headwind, 𝑣𝑤(ℎ), it was defined in terms of

elevation, which would not suit the headwind velocity with respect to time, 𝑣𝑤(𝑡),

Page | 88

required by Equation 6.15. As such, Equation 6.1 was redefined to fulfil this

criterion.

Through substitution of Equation 6.10b into Equation 6.11a, Equation 6.11a could

be expanded to its full variable equivalency:

ℎ(𝑡) =
𝑉𝑇
2

2𝑔
ln(

𝑉𝑇
2

(−𝑉𝑇 tan(
𝑔𝑡

𝑉𝑇
))
2

+𝑉𝑇
2
) (6.11b)

The final equation for headwind velocity could be defined by substituting Equation

6.11b into Equation 6.1:

𝑣𝑤(𝑡) = 𝑣𝑤𝑎𝑙𝑡

(

𝑉𝑇
2

2𝑔
𝑙𝑛(

𝑉𝑇
2

(−𝑉𝑇 𝑡𝑎𝑛(
𝑔𝑡
𝑉𝑇
))
2
+𝑉𝑇
2
)

ℎ𝑎𝑙𝑡

)

1

𝑎

 (6.17)

Substituting Equation 6.17 into Equation 6.16a yielded the equation for headwind

force with respect to time, Equation 6.16b.

𝐹𝑊(𝑡) =
1

2
𝜌𝐴𝐶𝑑

(

𝑣𝑤𝑎𝑙𝑡

(

𝑉𝑇
2

2𝑔
ln(

𝑉𝑇
2

(−𝑉𝑇 tan(
𝑔𝑡
𝑉𝑇
))
2
+ 𝑉𝑇

2
)

ℎ𝑎𝑙𝑡

)

1

𝑎

)

2

 (6.16b)

Expanding Equation 6.13:

𝑑2𝑥

𝑑𝑡2
=

1

2
𝜌𝐴𝐶𝑑𝑣𝑤(𝑡)

2

𝑚𝑝
+

1

2
𝜌𝐴𝐶𝑑𝑣𝑝(𝑡)

𝑚𝑝

𝑑𝑥

𝑑𝑡
 (6.18)

Where,
𝑑𝑥

𝑑𝑡
= 𝑣𝑝(𝑡) and as such, Equation 6.13 was redefined as follows:

∴
𝑑2𝑥

𝑑𝑡2
=
𝜌𝐴𝐶𝑑

2𝑚𝑝

(

(

𝑣𝑤𝑎𝑙𝑡

(

𝑉𝑇
2

2𝑔
ln(

𝑉𝑇
2

(−𝑉𝑇 tan(
𝑔𝑡
𝑉𝑇
))
2
+ 𝑉𝑇

2
)

ℎ𝑎𝑙𝑡

)

1

𝑎

)

2

+ (
𝑉𝑇
2𝑣𝑥𝑜

𝑉𝑇
2+𝑔𝑣𝑥𝑜𝑡

)
2

)

 (6.19)

Page | 89

Equation 6.19 was used to solve for the time at which the payload would reach

equilibrium. To compute Equation 6.19 onboard the aircraft proved costly in terms

of computation time. To mitigate this computational issue, lookup tables were

developed with predetermined equilibrium times for various headwind velocities.

These lookup tables were developed with several parameters predefined, including

drop altitude, airspeed and payload mass. Using these lookup tables, a polynomial

fit of the graph trend was developed to allow for extrapolation of data and ease of

onboard computation. Figure 6.5 depicts an example of the acceleration curve of the

payload used in the development of the lookup tables, where the time at which the

payload reached zero acceleration has been indicated. Interpolation and linearization

of the lookup tables trends were used to determine equilibrium data between tabled

values. The MATLAB code used to determine these equilibrium times and

displacement can be seen in Appendix B. Noting the structure of Equation 6.19, the

payload’s mass was significant in terms of it influence on the rate of deceleration

experienced by the payload. The payload’s mass was found to be inversely

proportional to the payload’s deceleration and as such, a heavier payload would have

a smaller rate of deceleration when compared to lighter payloads and would therefore

take longer to decelerate.

Figure 6.5: Payload acceleration curve under test parameters

With the equilibrium time and the acceleration curve of the payload known, the

displacement of the payload could be determined with the use of an adapted

Equation 6.4.

∆𝑥𝐴 = 𝑣𝑖𝑡 +
1

2
(∫ 𝑎 𝑑𝑡
𝑡𝐸𝑞
𝑡𝑜

) 𝑡 (6.20)

Page | 90

Where, 𝑎 =
𝑑2𝑥

𝑑𝑡2
. Considering that the acceleration integral would generate a negative

value due to the payload’s deceleration, the full effects of drag and headwind would

be compensated for in Equation 6.20. Thus, from Equation 6.20, the Phase A payload

displacement could be determined.

6.2.3.2 Phase B of the Final Ballistic Projectile Motion

Phase B of the projectile motion assumed that the payload was in a state of

equilibrium in the air and the resulting motion of the projectile could be defined by

vector addition of the projectile’s velocity and the headwind’s velocity.

Prior to this vector addition, it was determined as to whether the payload would have

entered the state of equilibrium due to the available drop time from the given altitude,

𝑡𝑓𝑎𝑙𝑙. Determining this drop time was done with the use of Equation 6.21. Assuming

the aircraft was in level flight, Equation 6.3 could be rearranged to form

Equation 6.21. Rearranging Equation 6.3 to form Equation 6.21 was possible due to

the assumption that all external forces exerted on the payload were horizontal forces

and the only vertical force acting upon the payload was gravity.

𝑡𝑓𝑎𝑙𝑙 = √
2ℎ𝑎𝑙𝑡

𝑔
 (6.21)

If this fall time was found to be greater than the equilibrium time, the payload would

enter Phase B of the final projectile motion, as the payload would be in equilibrium

prior to reaching the ground. If the fall time was found to be less than the equilibrium

time, the payload would not enter Phase B and would only be modelled with the

equations defined in Section 6.3.3.1 in terms of horizontal displacement.

With the fall time and the equilibrium time constants known, the cumulative

horizontal displacement of the payload could be determined. Furthermore, the

subsequent final projectile displacement can be determined with the use of

Equation 6.22, through substitution of Equation 6.17 and Equation 6.20.

∆𝑥𝑇 = ∆𝑥𝐴 + ∫ 𝑣𝑤𝑎𝑙𝑡

(

𝑉𝑇
2

2𝑔
𝑙𝑛(

𝑉𝑇
2

(−𝑉𝑇 𝑡𝑎𝑛(
𝑔𝑡
𝑉𝑇
))
2
+𝑉𝑇
2
)

ℎ𝑎𝑙𝑡

)

1

𝑎

𝑡𝑓𝑎𝑙𝑙
𝑡𝐸𝑞

𝑑𝑡 (6.22)

With Equation 6.22, the final displacement of the payload from its release point could

be determined and as such, the ideal release point could be defined relative to the

Page | 91

desired drop-zone location. Equation 6.22 would hold if the payload were to enter

Phase B, otherwise the final displacement of the payload would be defined by

Equation 6.20.

6.3 Payload Design

With the mathematical foundations for the payload trajectory defined, the design of

the payload was conducted.

6.3.1 Design Concepts

The desired outcome of the payload design phase was to ensure a reduced drag

coefficient of the payload. An estimation of drag coefficients for various shapes can

be seen in Figure 6.6 [8], where the effect of the projectile’s shape on the projectile’s

drag coefficient can be noted.

Figure 6.6: Various shapes' drag coefficients

6.3.1.1 First Concept – Spherical

The first concept consisted of a two-part spherical payload vessel, which was

designed around ensuring a constant drag coefficient, irrespective of its orientation

during flight. Each hemisphere would be hollow to allow for the desired payload items

to be placed inside. The hemispheres would interlock with the use of locating pins.

Figure 6.7: First payload design concept

Page | 92

6.3.1.2 Second Concept – Three-stage Aerodynamic

This concept focussed on an aerodynamic approach, as opposed to that of the first

concept, with the development of a three-stage payload with a nose cone and

stabilising tail fins. The design was based on the premise of using readily available

plastic piping as a payload body, allowing for a generic nose cone and tail to be

designed to fit any length of pipe.

Figure 6.8: Second payload design concept

6.3.1.3 Third Concept – Two-stage Aerodynamic

The third concept followed suit of the three-stage payload in that it also made use of

the aerodynamic nose cone and tail design. However, this concept consisted of a

hollow two-stage nose cone and tail, which interlocked with the use of pressure fit

between the two components.

Figure 6.9: Third payload design concept

Page | 93

6.3.2 Final Design and Design Refinement

The desired outcome of the design phase was the optimisation of the payload’s drag

coefficient. The first concept was eliminated from the available selections, due to the

improvement in reduced drag that the nose cone designs offered. From the two

remaining concepts, the decision was made to use the third concept, the two-stage

nose cone and tail design. This decision was made as the full design of the payload

could be altered to provide the lowest possible drag coefficient.

There were considerations to be taken when designing the payload, namely: the

centre of pressure, the centre of gravity and the aerodynamic centre. Allowing for

unrestricted design alterations to be made to the payload presented the opportunity

to ensure that the payload’s design aspects were optimised. Although the second

concept’s design was more accommodating, in terms of ease of manufacturability

and available internal space, the cylindrical body of the payload would not ensure

that the desired design aspects’ relationships were satisfied. The significance of the

centre of pressure versus centre of gravity design criteria was based on ensuring

stabile flight of the payload and preventing the payload from tumbling during free

fall. Centre of pressure was not a static variable. Changing the angle of attack of the

payload during free fall resulted in a changing centre of pressure. This change in

centre of pressure would create a torque and subsequently result in the

aforementioned tumble of the payload during free fall. The payload tumbles about its

centre of gravity. The aerodynamic centre represented the location through which

the aerodynamic force components, lift and drag, acted through. As such, the correct

placement of the aerodynamic centre would allow for the aerodynamic force

components to induce a torque about the aerodynamic centre, aerodynamic moment,

which would counteract the induced torque of the dynamic centre of pressure and

subsequently stabilise the payload through free fall. For rocket and missile designs,

the aerodynamic centre traditionally sits at the aerodynamic centre of the stabilising

fins. Due to the induced aerodynamic moment, the centre of pressure could be

deduced to be the product of the weighted centre of the areas of the payload’s features

and their centre distances to a defined reference line. Figure 6.10 and Equation 6.23

describe the method of weighted centre of pressure determination [6][7].

Page | 94

Figure 6.10: Determination of centre of pressure

𝐴𝑇𝑜𝑡𝑎𝑙𝑑𝑐𝑝 = 𝐴𝐹𝑑𝐹 + 𝐴𝐵𝑑𝐵 + 𝐴𝑁𝑑𝑁 (6.23)

Where, the respective areas were 𝐴𝐹, 𝐴𝐵, 𝐴𝑁 and 𝐴𝑇𝑜𝑡𝑎𝑙. where 𝐴𝑇𝑜𝑡𝑎𝑙 = 𝐴𝐹 + 𝐴𝐵 + 𝐴𝑁.

The displacements from the reference line to each feature centre were 𝑑𝐹, 𝑑𝐵, 𝑑𝑁 and

𝑑𝑐𝑝 [6].

Computational fluid dynamics (CFD) simulations were conducted to determine the

final payload’s optimal design and drag coefficient. The drag coefficient was

calculated by setting a simulation goal of the aerodynamic force exerted on the

payload and using Equation 6.6, the average drag coefficient was determined.

Figure 6.11 and Figure 6.12 show the flow results of the flow simulation. The payload

was modelled in various orientations to ensure the greatest drag coefficient of the

design was known. This changing orientation implied that the payload would not

remain in the same orientation throughout freefall. One of these orientations can be

seen in Figure 6.11. The final payload design’s drag coefficient was found to be 0.096.

Figure 6.11: CFD drag coefficient calculation simulation

Page | 95

Figure 6.12: Drag coefficient plot from SolidWorks CFD simulation

From Figure 6.11, it was noted that there was an increase in drag experienced across

the payload, as the change in the force vector colour from blue to green indicated a

decrease of the magnitude of the force vector. Figure 6.12 indicated the changing of

the drag coefficient during the simulation. The decrease in drag coefficient was due

to the decrease of the aerodynamic force over the length of the payload. It was noted

that the drag coefficient converged to its average value as the simulation progressed,

indicating that the payload had reached equilibrium within the flow simulation. The

final payload design utilised in this research can be seen in Figure 6.13.

Figure 6.13: Final payload design

The final payload design was 3D printed with a minimal periphery layers to reduce

the additional weight the payload vessel would possess above that of its contents.

The final payload weight was found to be 0.11 kg and the overall length and major

diameter of the payload was found to be 0.17 m and 0.06 m, respectively. The final

payload design can be seen in Appendix K.

Page | 96

6.4 Payload Release Node

The payload release node was responsible for the computation of the headwind

velocity and direction. Based on these headwind variables, the payload release node

was then responsible for the interpolation and extrapolation of the lookup table

values. Once these values had been determined, the payload release approach was

defined. Figure 6.14 illustrates the computational flow diagram for the payload

release node. The code for the payload release node can be found in Appendix A4.

Figure 6.14: Payload release node computational flow diagram

6.4.1 Determination of the Environmental Parameters

As discussed in Chapter 4, the headwind velocity and headwind direction were

deduced during the second loop of a three loop loiter around the detected drop-zone

location waypoint. During this second loop, the average headwind velocity was

deduced by taking the sum of n headwind measurements and dividing it by n, as

defined by Equation 4.6. Where, the headwind was defined to be the difference

between the airspeed and groundspeed, as described by Equation 4.5. The direction

of the headwind was defined to be the heading of the aircraft just prior to the lowest

groundspeed reading during the second loiter. The airspeed, groundspeed and

heading of the aircraft was determined with the use of the MAVROS Library’s

VFR_HUD header [48].

𝑣𝑤_𝑑𝑖𝑓𝑓 = 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑣𝑎𝑖𝑟 (4.5)

𝑣𝑤 =
∑ 𝑣𝑤_𝑑𝑖𝑓𝑓𝑖
𝑛
𝑖=1

𝑛
 (4.6)

Page | 97

6.4.2 Lookup Tables

As discussed in Section 6.2.3.1, lookup tables were developed to reduce

computational strain during flight by tabulating predetermined equilibrium times

and Phase A displacements. As such, three lookup tables were developed, each for a

different altitude to allow for data extrapolation. Each lookup table possessed the

same headwind velocity and aircraft airspeed values to allow for data interpolation.

Figure 6.15 and Figure 6.16 illustrates the graphed lookup table values for the

equilibrium times for the payload released from an altitude of 50 m. Corresponding

lookup tables for the Phase A displacement of the payload were also developed. The

respective lookup tables for both the equilibrium time and displacement of the

payload under different testing conditions can be seen in Appendix J1 and

Appendix J2.

Figure 6.15: Equilibrium times for different headwind velocities at fixed aircraft speeds at 50m

Figure 6.16: Equilibrium times for different aircraft speeds at fixed headwind velocities at 50m

Page | 98

From Figure 6.15, the trend of the equilibrium time followed a power regression

model. In the upper left side of Figure 6.15, the equilibrium time trends were seen to

plateau and was due to the equilibrium times exceeding the fall time for the given

release altitude, 50 m. With the increment of each aircraft airspeed value, a

consistent shift in the equilibrium time trends appeared. Due to the complexity of

the power regression trend, the graph in Figure 6.16 was generated, where

Figure 6.16 illustrates the same equilibrium times as in Figure 6.15. The defining

difference between Figure 6.15 and Figure 6.16 was that the fixed variable for each

dataset in Figure 6.15 was the aircraft’s airspeeds and in Figure 6.16, the headwind

velocities was the fixed variable. From Figure 6.16, the datasets were found to

possess linear trends. These trends were also found to possess decreasing gradients

as the headwind increased between datasets. In addition to these decreasing

gradients, the vertical shift between the linear trends of the datasets decreased. The

linear trends of the 50 m altitude lookup table data from Figure 6.16 was

approximated by Equation 6.24.

𝑦 = (0.7248𝑥−1.175)𝑥 + (−0.0017𝑥2 + 0.0495𝑥 − 0.4433) (6.24)

Where, the gradient of the linear trend was represented by the power function

0.7248𝑥−1.175 and the y-axis intercept was defined by the quadratic equation

−0.0017𝑥2 + 0.0495𝑥 − 0.4433. With the use of the linear trend equation from each

lookup table, the equilibrium time of the payload could be deduced through

substitution of the aircraft airspeed. Interpolation was used to deduce data between

altitude values of the lookup table linear trend equations. The standard form of linear

interpolation was defined by Equation 6.25.

𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑦𝑙𝑒𝑠𝑠 +
𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑥𝑙𝑒𝑠𝑠

𝑥𝑔𝑟𝑒𝑎𝑡𝑒𝑟−𝑥𝑙𝑒𝑠𝑠
(𝑦𝑔𝑟𝑒𝑎𝑡𝑒𝑟 − 𝑦𝑙𝑒𝑠𝑠) (6.25)

Where, 𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 represented the desired equilibrium time, 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 represented the

desired equilibrium time’s aircraft airspeed, 𝑦𝑙𝑒𝑠𝑠 and 𝑥𝑙𝑒𝑠𝑠 represented a known

equilibrium time lower than the desired result and its corresponding aircraft

airspeed, and 𝑦𝑔𝑟𝑒𝑎𝑡𝑒𝑟 and 𝑥𝑔𝑟𝑒𝑎𝑡𝑒𝑟 represented a known equilibrium time greater than

the desired result and its corresponding aircraft airspeed.

With the equilibrium time deduced, the displacement of the payload could then be

deduced through application of Equation 6.20 and Equation 6.22, based on the

outcome of Equation 6.21 as to whether the payload would enter Phase B of the

payload release. All mathematical computations executed within the payload release

Page | 99

node made use of the C++ cmath header, math.h. With the payload release trajectory

now computed, the payload release waypoints could be updated. The updating of

these waypoints was discussed in Chapter 4.

6.5 Chapter Conclusion

Chapter 6 presented the mathematic foundation upon which the payload release was

modelled. Environmental parameters of the payload release were accommodated for

by ensuring the aircraft flew directly into the headwind during the payload release

approach. Flying into the headwind allowed for the payload release to be modelled in

two dimensions. Modelling the payload release in two dimensions, it was found that

two trajectory phases existed, Phase A and Phase B. Where, not all payload releases

would result in the payload entering Phase B of the payload release. In addition to

modelling the trajectory of the payload, the design of the payload was discussed. It

was found that a two-stage aerodynamic payload design was the optimal for the

desired application. Application of the mathematical foundation for the payload

release trajectory was discussed in the form of the payload release node. The

development of the payload release lookup tables and their mathematical

relationships was discussed within the node structure. With the conclusion of

Chapter 3 to Chapter 6, the method of subsystem communication could be

discussed. Chapter 7 discussed the final integrated system achieved through

subsystem communication.

Page | 100

Chapter 7

Integrated System

This chapter discussed the process through which integrated communication was

achieved between the developed subsystems.

7.1 Integrated Communication

With the clarification of the functionality of the three defining subsystems:

autonomous flight, vision and payload release, and their respective hardware and

software configurations, the integrated communication between each subsystem

could be defined.

As discussed in Chapters 3, 4, 5 and 6, intelligence was introduced to the aircraft

via the addition of the ODroid and ROS. Where, ROS, running on the ODroid,

provided the necessary processing capabilities in order to execute each subsystem’s

computational node simultaneously. Although the communication protocol between

the various ROS nodes and hardware has been discussed, the clarification pertained

to how these processes were executed initially has yet to be discussed.

7.1.1 Communication with the ODroid and ROS

During the development of this research, the majority of the ROS testing phase was

developed offboard the aircraft and communication with the ODroid was established

with the use of a keyboard, mouse and display monitor. This configuration allowed

for ROS nodes to be constructed and tested manually with the use of the display

monitor for performance evaluation. Due to the method of development, each ROS

node required manual execution, and a specific order of execution of each ROS node

was necessary based on prior node conditions. The ROS node execution order and

conditions were as follows:

1. Node: MAVROS Node

• Condition: FTDI cable connected to FCU and FCU initialisation

complete.

2. Node: Image Publisher Node

• Condition: Upon successful MAVLink connection with the FCU via the

MAVROS node.

3. Node: Image Processing Node

• Condition: Image publisher node executed.

Page | 101

4. Node: Payload Release Node

• Condition: Upon successful MAVLink connection with the FCU via the

MAVROS node.

5. Node: Autonomous Flight Node

• Condition: Upon successful MAVLink connection with the FCU via the

MAVROS node and all other nodes have been executed.

Noting the ROS node execution order and conditions, the autonomous flight node

was defined to be the final node to be executed. The final order position for the

autonomous flight node was necessary to ensure that the aircraft would not begin

its mission without the remaining nodes running. From the ROS node execution

order, it was noted that the execution of the image publisher node and the payload

release node could be alternated as their conditional statements were the same.

Above all node executions, MAVLink communication via the MAVROS node was

necessary first as the MAVROS node hosted the remaining nodes.

7.1.1.1 Secure Shell (SSH)

The ROS node development configuration of the ODroid was not feasible throughout

a mission onboard the aircraft and as such, a method of wireless communication

was developed in order to execute the ROS nodes remotely. Wireless communication

was established between a laptop and the ODroid via the Secure Shell (SSH) protocol,

where the SSH protocol represented an encrypted communication link between the

SSH client (laptop) and the SSH Server (ODroid). This secure link ensured the data

transfer between the two devices would remain protected. Figure 7.1 illustrates the

SSH protocol [13].

Figure 7.1: SSH protocol

Page | 102

In order to establish the SSH communication between the client and server, client

software was necessary. As the client’s OS was Windows-based and the server’s OS

was Linux, client software capable of running on both systems was selected. PuTTY

was the selected client software. In addition to the client software, a wireless network

was required between the client and server in order for communication to be

established. As such, a Wi-Fi adapter was added to the ODroid to provide it with the

necessary wireless capabilities and an external wireless router was introduced to

provide the required common network link between the client and server. Looking at

the client software, PuTTY, a singular element was necessary in order to establish

the desired SSH protocol link, the server’s internet protocol (IP) address. Upon

successful connection with the server, the client would be prompted to enter the

necessary server security credentials. Once logged into the server, the client was

capable of executing the desired command line protocols to execute the ROS nodes.

The PuTTY SSH protocol client interface during ROS node execution can be seen in

Figure 7.2.

Figure 7.2: PuTTY SSH protocol client interface during ROS node execution

From Figure 7.2, the ROS node execution interface through the SSH protocol could

be seen. The upper left window in Figure 7.2 depicts the execution of the MAVROS

node and the transmission of mission waypoints. The remaining windows in

Figure 7.2 represented the remaining nodes to be tested, namely: the autonomous

flight node, the image capture node and the image processing node.

Page | 103

Use of the SSH protocol provided the necessary tools for testing the aircraft remotely

during ground testing of integrated system and provided a command line diagnostic

as to the state of the ROS nodes. The problem identified with the SSH protocol noted

that it did not execute the ROS nodes onboard the ODroid and merely played host to

the nodes in the client. This hosting of the ROS nodes resulted in the client rejecting

some of the desired ROS and MAVROS functionality that the ODroid was capable of

executing, such as the payload release command and the updating of mission

waypoints. In addition to these limited functionality issues, the hosting of the ROS

nodes was only present whilst the wireless connection between the client and server

was present. As such, when the aircraft flew outside of the wireless network’s range,

the ROS nodes would stop running, proving that the client only housed the ROS

nodes and did not execute them onboard the ODroid. As the mission waypoints were

saved to the FCU upon execution of the autonomous flight node, the aircraft would

continue upon the desired mission, but elements such as MAVLink communication,

vision and payload release would cease. Due to this limited range of functionality,

the SSH protocol was not used in the final system and although long range wireless

extenders and devices could have been introduced into the aircraft to continue the

hosted execution of the ROS nodes, the risk of communication failure and

subsequent ROS node failure was too prominent to overlook. The SSH protocol

proved useful when in proximity to the wireless network and contributed to the

development phase of this research.

7.1.1.2 Physical Connection

With the limitations the SSH protocol presented, a solution was required to ensure

the ROS nodes were executed and hosted onboard the ODroid to ensure the entire

integrated system was running during a mission. The final method of communication

established with the ODroid to execute the required ROS nodes was done through

the reimplementation of the ROS node development configuration. A keyboard,

mouse and display monitor were connected to the ODroid in order to execute the

ROS nodes. The alterations made to the integrated system to allow for this

configuration were software based and the keyboard, mouse and display monitor

were removed prior to mission execution. The software alterations involved the

removing of the aircraft’s ability to arm via the autonomous flight node’s arming

client. Removing the arming functionality allowed for all ROS nodes to be executed

and the necessary hardware to be removed without the aircraft attempting to takeoff.

The aircraft was then prepared for flight and placed in the direction of the headwind.

Page | 104

Once ready, the aircraft was manually armed and would begin the mission. Use of

the ROS node development configuration succeeded in ensuring all ROS nodes were

executed during a mission. The only feature that the ROS node development

configuration lacked when compared to the SSH protocol approach was that the SSH

protocol allowed for live monitoring of the ROS nodes. In the case of the ROS node

development configuration, the discernible feedback as to the success of the system

during a mission was the aircraft following the mission waypoints and the

appearance of the updated waypoint coordinates during the mission. This loss of

node monitoring was not detrimental to the performance of the system and resulted

in the need for post mission analysis of the ROS nodes. The ROS node development

configuration can be seen in Figure 7.3.

Figure 7.3: ROS node development configuration of the ODroid onboard the aircraft

7.2 Chapter Conclusion

Chapter 7 served as an explanation as to the method in which communication was

established with the ODroid in order to execute the ROS nodes. The method of the

SSH protocol was discussed and although this communication protocol was not

utilised in the final system, it was extensively used in the remote ground testing of

the ODroid and ROS nodes. Chapter 3 through to Chapter 7 defined the subsystems

of the final integrated system, which was used to obtain results through testing.

Chapter 8 discussed the results obtained through the implementation of the

integrated system developed.

Page | 105

Chapter 8

Results and Discussion

This chapter discussed the testing and results of the research design. Each of the

three defining elements of this research were discussed independently. The

integrated system’s performance was also discussed.

8.1 Focus Area of Research Design and Methodology

As this research focussed on the application of the developed system, testing and

integration of each subsystem was the focus in achieving the defined objectives. The

research design and methodology focussed on defining how each subsystem was

tested. These tests served to provide an indication of the success of this research in

achieving the defined objectives.

Looking at the research objectives, the three subsystems: autonomous flight, vision

and payload release, were seen to each possess individual objectives. Due to the

diversity of each subsystem, various testing scenarios were necessary to test

individual and integrated functionality. Noting that the hardware and software

architecture of this research have already been stated, the research design and

methodology of this research sought to define how the application of said hardware

and software was used in order to achieve the research objectives defined in

Chapter 1.

8.1.1 Method for Testing

As a mechatronic system has been defined to comprise of several systems integrated

into a single system, testing was required for not only the final integrated system,

but also each subsystem. Individual subsystem testing allowed for each subsystem’s

performance to be evaluated. Where, subsystem performance allowed for the

cumulative performance of the integrated system to be determined, highlighting the

accuracy and repeatability limitations of the integrated system. These tests served

as the results of this research.

8.1.1.1 Autonomous Flight Control Testing

In order to achieve the objectives defined for autonomous flight control, two testing

scenarios were developed. These testing scenarios included the testing of the

aircraft’s ability to execute an autonomous mission, where the aircraft’s ability to

follow a predefined flight path represented the success of the test. Elements such as

Page | 106

waypoint overshoot and ability to maintaining altitude and airspeed were used to

quantity the accuracy and repeatability of the autonomous flight control system. The

second testing scenario included the aircraft’s ability to allocate new flight path

waypoints based on mission parameters. Testing of the aircraft’s ability to allocate

new flight path waypoints formed part of an integrated test, as input sensory data

capable of influencing the change in the aircraft’s flight path was represented in the

form of the vision system’s ability to detect the drop-zone’s location.

Physical testing required a baseline upon which to quantify its results, as such

simulations of the autonomous flight of the aircraft were conducted. As autonomous

flight of the aircraft was influenced by testing environment specific parameters, such

as wind speed and direction, simulations were conducted after physical testing to

ensure equivalent testing parameters.

8.1.1.2 Vision System Testing

Vision formed the defining element of this research in terms of sensory feedback, the

accuracy and repeatability of this system remained pertinent to the success of the

integrated system. Considering the vision objective for this research, several

requirements of the vision system were noted. From these requirements, the pure

functionality of the vision system was defined to be the recognition of the drop-zone

location. The remaining requirements formed part of the integrated system, where

the relative location of the drop-zone with respect to the aircraft and the updating of

the drop-zone’s true location saw the vision system interacting with the aircraft’s

sensory feedback peripheral devices and the FCU. The integrated requirements of

the vision system relied on the accuracy and repeatability of the vision system’s

ability to identify the drop-zone’s location. Testing of the vision system took the form

of accuracy tests, both simulated and physical, to ensure the vision system was

capable of detecting the drop-zone identifier. Testing of the vision system’s ability to

define the location of the drop-zone relative to the aircraft involved an integrated

system test. Where, the accuracy and repeatability of this test was defined by the

vision system’s ability to determine the drop-zone’s location with respect to a known

location, highlighting any measurement errors that could be extrapolated over a

larger distance.

As with autonomous flight control testing, simulation formed a key role in testing the

vision system. Simulation was primarily used for the calibration of the vision system,

as desktop testing was possible with the vision system and simulated drop-zone

identifiers could be replicated for offboard testing.

Page | 107

8.1.1.3 Payload Release Testing

Physical payload release testing formed part of an integrated test as autonomous

flight control and drop-zone identification was necessary in order to achieve the

defined objectives. As such, payload release validation relied on simulation results,

where different testing parameters were evaluated to determine their influence on

the payload release trajectory. Physical payload release drops provided an indication

of the payload release system’s accuracy and repeatability. Due to the level of

integration of the payload release system in the final system, accuracy and

repeatability results were dependant on the cumulative accuracy and repeatability

of the integrated system. Testing of the payload delivery system’s accuracy and

repeatability not only fulfilled the research objectives for the payload release system,

but also contributed to the testing and fulfilment of the vision and autonomous flight

control systems.

8.2 Autonomous Flight Testing

This section covered both the simulated and the physical testing and results of the

autonomous flight control portion of this research.

8.2.1 Simulation

In order to determine whether the autonomous flight system would function, without

putting the aircraft at risk, missions were simulated with the use of a Linux based

software in the loop (SITL). The SITL enabled the simulation of a fully functioning

aircraft which communicated via the MAVLink protocol. The same aircraft profile and

parameter list utilised on the physical aircraft’s Pixhawk were uploaded and tested.

As such, the SITL could simulate the full aircraft and any additional hardware

without any physical hardware being present. In conjunction with the SITL

simulator, MAVProxy was also simultaneously implemented. MAVProxy represented

a fully functioning GCS which could be utilised for both SITL simulations and for

real-time mission monitoring of physical aircraft communicating under the MAVLink

protocol. The difference between MAVProxy and a GCS, such as QGroundControl,

was that MAVProxy was open-source in terms of defining the additional plugin

modules that would be opened when the GCS launched and MAVProxy acted as the

MAVROS node.

With SITL running, simulation parameters such as headwind direction and velocity

could be implemented, allowing for the advanced testing of how the aircraft would

theoretically react in a given flight scenario. The flight simulation was then used to

Page | 108

refine the aircraft’s flight parameters and allowed for fault finding prior to execution

of the physical mission. Further implementation of the SITL software allowed for

implementation of the ROS nodes and provided the ability to test each node’s effect

on the flight of the aircraft. The primary ROS node tested in these situations was the

autonomous flight node, as it allowed for the calibration of the required line-up and

turnaround distances for the mission survey area. Further testing with the simulated

flight paths allowed for the testing of the vision nodes and the payload release node,

by simulating the detection of the drop-zone during the survey period. In addition to

the flight path simulation, physical properties of the flight were monitored, such as

the theorised power consumption of the given flight. A SITL simulation of the

autonomous flight node can be seen in Figure 8.1.

Figure 8.1: SITL simulation of the autonomous flight node

8.2.2 Flight Tests

Autonomous flight testing was undertaken in several stages to ensure the system

was fully calibrated for an autonomous mission. In the initial stages of testing, no

autonomy was introduced into the aircraft and the system was flown via the onboard

remote-control hardware. These manual flights were used to calibrate the aircraft in

terms of control surface trims and to allow for comparative data to be collected to

determine the efficiency of the autonomous FCU versus manual remote piloting.

These manual flights were also used to determine the necessary alterations required

after the nose and fuselage of the aircraft were replaced. These alterations included

balancing the aircraft accordingly due to the shift in the aircraft’s centre of gravity

with the additional onboard weight. These manual flight tests were necessary in

ensuring a stable platform was prepared for autonomous flight.

Page | 109

Once a stable platform had been developed, tested and calibrated, the testing of the

Pixhawk’s built-in autonomous flight functionality was undertaken. As the

autonomous takeoffs and landings were the final autonomous flight control

processes tested, the aircraft was manually launched and landed for the majority of

the autonomous flight control testing. Once manual takeoff and stable flight had

been achieved, the aircraft was switched into AUTO flight mode, executing the

autonomous mission. Whilst in AUTO flight mode, the aircraft’s onboard hardware

was tested in terms of accuracy and repeatability. Where, the accuracy of an

autonomous mission was based on the aircraft’s ability to replicate the SITL

simulation flight paths. Additionally, a LOITER waypoint was used to test the

aircraft’s ability to maintain a desired airspeed and altitude, and to test the aircraft’s

repeatability when executing the same loiter repeatedly.

The final testing stage involved the testing of the fully integrated system, involving

mission autonomy from takeoff to payload delivery to landing. Final stage testing was

an indication of the success of the autonomous flight node in allocating waypoints

and updating mission parameters. The final test relied on the other subsystem’s

inputs to ensure a full mission was executed. However, the performance of the

autonomous flight node was still able to be evaluated independently.

8.2.3 Flight Test Results

As the manual flight test were for calibration and development of the test bench

aircraft into a stable system, the flight manual tests were not discussed. The various

parameters altered due to these tests were discussed in Chapter 3 and Chapter 4.

The results of the second testing phase of the autonomous flight control system

sought to identify the aircraft’s performance in maintaining a specific altitude,

airspeed and flight path with no additional hardware onboard. This second test was

undertaken by executing a loiter about a non-specific waypoint, where the loiter

radius was defined to be 100 m and the setpoint altitude and airspeed were defined

to be 75.5 m and 12.5 m/s respectively. Six loiter turns were executed about the

given waypoint and the mapped flight path of the aircraft can be seen in Figure 8.2,

where the theoretical loiter circle was been superimposed. The results of the aircraft’s

ability to maintain the setpoint altitude and airspeed can be seen in Figure 8.3 and

Figure 8.4.

Page | 110

Figure 8.2: Autonomous flight control loiter with theoretical loiter circle overlaid

From Figure 8.2, it was noted that the aircraft was able to maintain the desired loiter

circle successfully over all six rotations. The additional flight path lines that do not

follow the theoretical loiter flight path represented the aircraft’s flight paths prior to

entering the loiter. These prior flight paths were not considered during the

assessment of the aircraft’s ability to maintain the desired flight path. From a

hardware perspective, it was noted that although the GPS module onboard the

aircraft was not as reliable as other available positioning systems, in terms of GPS

location determination with respect to true GPS location. The aircraft’s ability to

maintain a consistent loiter about the same GPS location indicated that the GPS

module was able to maintain a consistent error. This consistency implied that the

aircraft’s GPS module was accurate with respect to itself and this ability to maintain

internal accuracy was found to be ideal in the application of the payload release

system, where all drop-zone coordinates were defined relative to the aircraft’s GPS

location and not the true location.

Figure 8.3: Aircraft altitude control during loiter flight test

Page | 111

Figure 8.4: Aircraft airspeed control during loiter flight test

From Figure 8.3 and Figure 8.4, it was noted that the aircraft’s ability to maintain

the desired setpoint altitude and airspeed seemed inconsistent. It was noted that the

deviation of these results were within close proximity to the setpoint value. This

observation was further validated by deducing the average altitude and average

airspeed the aircraft attained during the loiter flight path. The average altitude was

found to be 76.01 m and the average airspeed was found to be 12.57 m/s. These

averages indicated that the aircraft maintained an average altitude error within

0.68% of the desired altitude and maintained an average airspeed error within 0.57%

of the desired airspeed. Equation 8.1 and Equation 8.2 described the method in

which accuracy was determined. Where, Figliola et al. [18] defined the accuracy of a

component to be an indication of how close a produced reading was to its actual

value.

 𝑒 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒 (8.1)

𝐴 =
|𝑒|

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
× 100 (8.2)

Equation 8.1 described the error (𝑒) between the measure value and the true value,

and Equation 8.2 described the accuracy (𝐴) of the error with respect to the true

value.

Page | 112

Comparisons were made based on the performance of the autonomous flight control

of the aircraft when compared to the simulated flight control and manual flight

control of the aircraft. The first of comparison was based on the instantaneous power

consumed during takeoff and during flight, where instantaneous power provided an

indication of throttle control. The instantaneous power consumed during takeoff can

be seen in Figure 8.5 and the instantaneous power consumption during flight can be

seen in Figure 8.6.

Figure 8.5: Instantaneous power consumption comparison during takeoff

From Figure 8.5, it was noted that the simulated flight control and autonomous flight

control shared similar instantaneous power trends, where an initial spike in power

was present. This initial power spike indicated that both the simulator and the FCU

implement high throttle power as soon as a takeoff was initiated and once at the

desired upper throttle value, the simulator would keep the throttle power constant

until takeoff was complete. Looking at the instantaneous power of the manual flight

control, it was noted that a less aggressive throttle ramp was implemented until the

desired throttle position was attained and maintained until takeoff was complete.

Takeoff was noted to be the moment when the instantaneous power started to

decrease consistently.

Assessing these takeoff power trends, it was noted that the simulated flight control

increased the throttle power at a steady, almost linear, rate. When compared to the

autonomous flight control and manual flight control, incremental steps were noted

Page | 113

during throttle ramp. Focussing on the autonomous flight controller, this difference

in throttle ramp was deduced to be due to hardware capabilities, where possible

throttle ramp functions and multipliers were present to reduce the amount of

instantaneous current introduced into the motor and ESC. These same functions

would have been present for the manual flight control, but throttle control would

have been at the operator’s discretion and as such, the inconsistency in throttle ramp

was noted.

Additionally, the time taken for simulated flight control and autonomous flight

control were less than that of the manual flight control. Simulated flight control was

seen to possess the fastest takeoff. The decrease in required takeoff time for manual

flight control was to be expected due to the reduced throttle ramp and the moment

of takeoff was also defined by the operator. This manual control implied that the

given takeoff period for manual flight control could have been conservative. The

difference between the simulated flight control and autonomous flight control takeoff

period was deduced to be due to the effects of friction as the aircraft was executing

the takeoff. The simulator did not replicate surface texture and the additional friction

experienced during physical testing resulted in the autonomous flight control takeoff

period increasing.

Figure 8.6: Instantaneous power consumption comparison during flight

From Figure 8.6 it should be noted that, the data captured for manual flight control

of the aircraft was a recording of a non-specific flight path flown by the operator.

However, simulated flight control and autonomous flight control executed the same

Page | 114

flight plan and their results provide a comparative view as to the simulated and the

actual flight control of the aircraft. However, the manual flight control results

provided a comparative view of the throttle control of the aircraft, with the additional

flight control parameters for the simulated flight control and autonomous flight

control being the introduction of an airspeed goal and waypoint goals.

Regarding the manual flight control results gather in Figure 8.6, three flight

manoeuvres were noted. For the first five vertical segments of the graph, the aircraft

was noted to fly into the wind, for the proceeding two vertical graph segments the

aircraft executed a turn and for the remaining vertical segments of the graph, the

aircraft flew with a tailwind. Throughout manual flight control, steady throttle control

was noted, where no attempt at airspeed maintenance was made. During the first

flight manoeuvre, it was noted that the highest instantaneous power was recorder

and was believed to be due to need for additional power to be introduced during flight

to allow the aircraft to fly through the wind. Upon entering the second flight

manoeuvre, the instantaneous power was seen to decrease and then stabilise at the

manual flight control’s minimum recorded instantaneous power. The decrease in

power indicated that upon entering the turn, the aircraft was being accelerated by

the wind and as such, less power was required to achieve the desired turn. The

stabilisation of the power indicated that the operator was still providing some throttle

control to the aircraft during the turn. At the end of the second flight manoeuvre, the

power was seen to increase again, this increase indicated that the turn had

concluded and that the operator was regaining speed. During the third flight

manoeuvre, the power was seen to remain steady, as seen in the first flight

manoeuvre, but at a lower level than that of the first flight manoeuvre. The lower

power during the final manoeuvre indicated that the operator had attained the

desired speed and required less power input than the first flight manoeuvre due to

the assistance of the tailwind.

Assessing the simulated flight control and the autonomous flight control, it was

noted that the introduction of the mission goals brought about large variations in

power control. Two flight manoeuvres were present during the simulated flight

control and autonomous flight control, namely: a turn and stabilised flight. The turn

was represented by the first eight vertical segments of the graph in Figure 8.6 and

the remaining vertical segments of the graph in Figure 8.6 describe the stabilisation

of flight. These two flight manoeuvres’ flight paths for both the simulated flight

control and the autonomous flight control can be seen in Figure 8.7.

Page | 115

Figure 8.7: Simulated flight control and autonomous flight control flight path comparison

From the simulated flight control results from Figure 8.6, it was noted that upon

entering the turn, the instantaneous power decreased. This decrease of power during

entry of the turn can also be noted in Figure 8.7, as the aircraft took a larger flight

path approach, but was able to achieve a sharper turn. This sharper turn allowed

for the simulated aircraft to achieve a more linear flight path approach to the

waypoints. Upon completion of the turn, the instantaneous power of the simulated

flight control was seen to increase. This increase in power was believed to have been

due to the aircraft requiring additional power to attain the defined airspeed and

waypoint goals, where each waypoint goal also possessed an altitude goal. Entering

the second manoeuvre of the flight path, the simulated flight control power was seen

to decrease and then stabilise. This reduction in instantaneous power was credited

to the simulated control system compensating for the overshoot in power upon

leaving the turn.

Looking at the autonomous flight control instantaneous power consumption it was

noted that, unlike the simulation, the aircraft increased power when entering the

turn. The result of this increased power was noted in Figure 8.7, where the

autonomous aircraft overshot the turn and resulted in the autonomous flight control

decreasing the power to achieve the turn, as noted in the fourth vertical segment of

the graph in Figure 8.6. Upon completing the turn, the autonomous flight control

power was seen to increase intermittently, and it was believed that this intermittent

increase in power was to ensure the mission goals were met. Entering the second

flight manoeuvre, the autonomous flight control was seen to also decrease its power

Page | 116

and much like the simulated flight control, this was due to the autonomous flight

control overshooting the mission goals. The autonomous flight control power levelled

out like in the simulated flight control, but substantial peaks in the power curve were

noted. These spikes deduced to be the FCU’s control gain values varying from those

of the simulated aircraft.

In addition to the results gathered in Figure 8.7 during the comparison of the

simulated flight control and the autonomous flight control, Figure 8.8 illustrates the

ability of the simulated flight control and autonomous flight control to maintain the

altitude goal during the turn and stabilisation.

Figure 8.8: Simulated flight control and autonomous flight control altitude control comparison

Assessing the resulted captured in Figure 8.8, it was noted that the simulated flight

control and autonomous flight control initiated different flight trajectories when

entering the turn. The simulated flight control was seen to decrease altitude during

the turn approach and then increase altitude during the turn follow through and

flight stabilisation. This flight trajectory was complemented by the instantaneous

power curve of the simulated flight control, as the power decreased during the turn.

The turn flight trajectory altitude control of the autonomous aircraft took the

opposite approach and increased altitude when entering the turn. This increase in

aircraft altitude was also complemented by its instantaneous power curve from

Figure 8.6, as the power was seen to increase. Upon completing the turn, the aircraft

was seen to decrease altitude and subsequently the power curve was noted to

decrease at this point.

The results captured in Figure 8.6, Figure 8.7 and Figure 8.8 complement one

another in terms of visible trends from both a hardware level and a physical level.

Variations in the simulation’s flight path approach and the autonomous aircraft’s

Page | 117

flight path could be the result of differing firmware versions. Newer versions of the

firmware, including the one uploaded to the autonomous aircraft, could incorporate

the use of gravity in assisting with mission waypoint flight paths by allowing the

aircraft to glide into the desired airspeed and waypoint goals. Variations in all three

flight control functions illustrated the defining differences between one another.

Increased throttle control was noted for the simulated aircraft and autonomous

aircraft, when compared to the manually piloted aircraft. A similarity between the

simulated aircraft and the autonomous aircraft was noted in that both systems were

unable to fly the desired missions without overshoot, both horizontally and vertically

about the defined waypoints. These overshoots indicated that a level of mission

tolerance was necessary when defining waypoints, as overshoots would be present

and the need for survey line-up and turnaround waypoints was validated in ensuring

the desired survey area would be monitored.

To emphasise the improvements that the autonomous flight control system

introduced over the manual flight control, total power consumption of each system

during takeoff and flight was assessed, the results of which can be seen in Table 9.1.

From the power consumption results gathered in Table 9.1, it was found that the

autonomous flight control provided a 14.91% decrease in power consumption during

takeoff and a 27.64% decrease in power consumption during flight.

Table 8.1: Power consumption comparison between manual flight control and autonomous flight control

Power Consumption (mAh)

Manual Flight

Control

Autonomous

Flight Control
Difference

Takeoff 94.64 80.53 14.11

Flight 567.53 410.66 156.87

Page | 118

8.3 Vision Testing

This section covered the onboard and offboard testing and results of the vision

system, where both the simulation and physical testing were conducted.

8.3.1 Offboard Testing

Prior to integration with the aircraft’s onboard hardware, the vision system was

developed and tested using both simulated video footage and live video footage. The

simulated video footage depicted basic shapes of different colours for algorithm

development and progressed to pre-recorded aerial drone footage for theoretical

performance testing. Live video footage was used for further system refinement based

on differing testing conditions, including lighting effects and moving object

recognition and tracking.

8.3.1.1 Simulated Footage Results

Once an initial vision system had been developed, the first sets of test footage

processed were images of basic shapes and colours. These tests deduced the ability

of the vision system to detect the proposed red circle drop-zone identifier. The results

from the vision system tests were displayed as four-windowed screenshots of each

testing scenario, where the upper left window depicted the output image that was

processed by the vision system, the upper right window depicted the upper red hue

range of the test image, the lower left window depicted the lower red hue range of the

test image and the lower right window depicted the image size, in pixels, and the

centre coordinates of any detected red circles. Successful detection of circles within

the permitted red hue range of the object recognition algorithm were circled by the

object recognition algorithm by a blue circle. These initial shape and colour tests can

be seen in Figure 8.9 to Figure 8.14.

Page | 119

Figure 8.9: Vision system test scenario 1 - Red circle detection amongst other circles of differing colours

From Figure 8.9, the desired result was to ensure the object recognition algorithm

was capable of detecting a red circle amongst other circles of different colours. As

can be seen in Figure 8.9, the desired result was achieved. The red circle was filtered

through the upper and lower hue filters, allowing only the red circle to appear in the

binary image and subsequently be circled in blue by the object recognition algorithm.

Figure 8.10: Vision system test scenario 2 - Red circle detection of varying size

Page | 120

The test conducted in Figure 8.10 was to test the object recognition algorithm’s

ability to detect multiple red circles simultaneously. These red circles varied in size

to test the limits of the algorithm. As seen in Figure 8.10, the desired result was

achieved, and the object recognition algorithm was able to detect all eight of the red

circles, highlighting them in blue. This result indicated that the algorithm was

capable of processing an image in its entirety for any identifiers which met its search

criteria. The significance of the algorithm’s ability to detect red circles of various sizes

was necessary due to the fluctuation in aircraft altitude during flight and as such,

the drop-zone identifier would appear larger or smaller respectively.

Figure 8.11: Vision system test scenario 3 - Red circle detection of varying red hue

Figure 8.11 depicted the results captured when testing the lower hue range of the

object recognition algorithm. Seven identifiers of equal size and shape were placed

within the processed image. The colour of each circle was varied in the lower red hue

range to determine which colours would be detected by the algorithm. The

significance of this hue range result was to determine whether objects of similar

colour and shape would trigger the detection of the drop-zone, allowing for the hue

range to be altered to ensure the correct identifier was detected. Considerations of

the acceptable hue range were possible due to the change in appearance of the

drop-zone identifier during the survey based on lighting conditions and the relative

angle of the drop-zone identifier with respect to the aircraft. The results captured in

Figure 8.11 noted that the resulting blue circle did not follow the outline of the

identifiers in the test image and this was due to the identifiers not being exact circles,

in terms of constant radii. The identifiers were purposefully elongated to test the

algorithm’s ability to detect the drop-zone when not flying directly above it.

Page | 121

Figure 8.12: Vision system test scenario 4 - Red circle detection of varying circle proportion

Figure 8.13: Vision system test scenario 5 - Red circle detection of varying wall thickness

From Figure 8.12 and Figure 8.13, the functionality of the object recognition

algorithm’s Hough Circle Transformation was noted. The desired test outcome was

to determine how much of the drop-zone identifier had to be present in order to

achieve successful detection. The results captured in Figure 8.12 depicted the

variation of circle portions, starting from a full circle and ending with a quarter circle,

to test circle portion detection. The circle portion detection test results showed that

all of the testing images were detected and provided insight as to the HoughCircles

function’s functionality. With the use of the Hough Gradient method, the algorithm

was noted to require several edges of a circle to be present, with the same radius

from a given centre coordinate. The result in Figure 8.12 contributed to the possible

survey environment, where the drop-zone identifier would not need to be fully visible

in order for the algorithm to detect it. Practical problems identified, such as shadows

and partial concealment of the drop-zone identifier would not render the vision

system useless.

Page | 122

In Figure 8.13, with the deduction of how much of the circle’s geometry was to be

present in order to achieve a successful identification now known, the further testing

of what the algorithm defined to be the drop-zone identifier was tested. In the case

of Figure 8.13, the drop-zone identifier was converted from a solid circle to a

cross-section of a hollow cylinder, donut shape. This new identifier geometry aimed

to test the required edge thickness of a red circle in order to achieve detection and

as such, the inner circle of the new geometry was coloured black and the edge of the

circle was coloured red. During this edge detection test, a consistent result was

obtained. Looking at Figure 8.13, this result was the detection of the inner edge of

the hollow cylinder’s cross-section. The visible result, as displayed in Figure 8.13,

alluded to the assumption that a black circle had been detected, but the result was

indeed the detection of a red circle. This seemingly incorrect black circle detection

was found to be the correct result and the result depicted the algorithm detecting the

first red circle edge, providing insight into the functionality of the HoughCircles

function. This functionality illustrated how the algorithm would allocate a theorised

centre coordinate of a circle and work outward from said centre. Upon detection of a

pixel meeting the algorithm’s search criteria, a radius would be defined between the

centre and the pixel. This process of pixel detection would iterate repeatedly until the

required number of pixels at the same radius from the centre point were detected.

This observation was contradictory, as all solid red circles would possess several

internal radii that meet this requirement and as such, it was believed that a

secondary detection criterion was present. The pixel detected meeting the necessary

radius and colour criteria was required to also be an edge pixel of the circle, either

inward or outward of the given radius.

The result captured in Figure 8.13 follows that of the functionality available with the

use of the OpenCV Hough Circle Transformation. The detection of the edge colour

instead of the entire colour of the identifier was not problematic in this research but

a proposed solution to this method of detection would be to execute a secondary

algorithm after a circle had been detected. This secondary algorithm could then be

used to search about the same centre point for another red circle with a larger

diameter than the first. Detection of a second circle about the same centre would

indicate the detection of the cross-section of a hollow cylinder and eliminate the

detected circle.

Page | 123

Figure 8.14: Vision system test 6 - Red circle detection amongst various shapes of differing shape
geometry and colour

Figure 8.14 illustrates the final of the simulated shape and colour testing scenarios

utilised in the development of the vision system. Several geometric shapes of different

colours, including circles of different colours, were supplied in the test image. The

test aimed to show the object recognition algorithm’s ability to detect the red circle

amongst various other geometric shapes. The result of the test in Figure 8.14

illustrated the algorithm’s ability to filter colours in both the upper and lower hue

ranges and through this filtering, detect the red circle. The significance of this test

was to replicate possible object geometry surrounding the drop-zone during survey.

With the success of the result in Figure 8.14, the testing of the vision system with

simulated shapes and colours was concluded, and a movement towards video image

processing was taken.

For the second portion of the simulated footage testing of the vision system, aerial

footage, recorded on a DJI Phantom 4, of the drone flying over the red circular drop-

zone identifier at different speeds and altitude was input into the object recognition

algorithm for analysis. This aerial footage included footage from altitudes up to 75 m

above the drop-zone identifier, speeds up to 60 km/h (~17 m/s) and included footage

where the drop-zone identifier was not within the centre of the camera frame. To

adjust for the camera discrepancy between the Phantom 4 and the proposed USB

camera, the footage from the fly-overs was compressed to the same size as what was

to be expected on the USB camera.

Page | 124

Figure 8.15: Flight test footage captured from a DJI Phantom 4

From Figure 8.15, the drop-zone identifier could be seen as the DJI flew overhead.

The flight path of the DJI was purposefully set off-centre of the drop-zone identifier

to test the object recognition algorithm’s ability to detect the drop-zone identifier

when not flying directly overhead.

Figure 8.16: Vision system test 7 – Drop-zone identification with the use of simulated footage recorder on
a DJI Phantom 4

Drop-zone

identifier

Page | 125

From Figure 8.16, the result of the object recognition algorithm in detecting the drop-

zone identifier was noted, with the algorithm circling the drop-zone identifier in blue.

As all the recorded footage could not be displayed in these results, the full results

obtained with the recorded footage could not be fully illustrated. As such, during the

processing of the DJI footage, the displaying of the detected circle’s pixel coordinates

was not possible due to the large image high resolution of the DJI camera’s recording,

where the object recognition algorithm struggled to process and overlay the results

of the footage at the captured framerate. This lack of coordinate display was not

detrimental in the output result of the object recognition algorithm, as the algorithm

was still capable of detecting the drop-zone identifier, as seen in Figure 8.16, and the

setback to this lack of feedback was for accuracy testing purposes. This limitation of

the ODroid’s image processing power for larger resolution images validated the use

of the selected vision system, as the DJI recorded imagery was in full HD resolution

(1920x1080) and the CMOS camera recorded imagery at a resolution of 640x480,

resulting in a pixel density ratio of 6.75 less than that of the DJI. As such, the

performance of the object recognition algorithm when processing the CMOS camera

footage resulted in a far lower processing load for the ODroid. This lower processing

requirement was necessary to ensure vision, flight control and payload release

computation were possible during flight. The lack of visual processing feedback was

also deemed admissible, as the final implementation of the image processing node

was executed with all display functionality disabled. Other than the limited

processing capabilities of the ODroid being noted, the object recognition algorithm

was still able to achieve the desired result in the detection of the drop-zone identifier.

In order to fully test the vision system’s capabilities and to refine the system, a final

pre-recorded aerial footage test was undertaken. The footage was recorded with the

use of the proposed USB camera. During an autonomous mission test, the USB

camera was installed into the gimbal onboard the aircraft and the drop-zone

identifier was placed within the survey region of the aircraft. The identifier was not

placed directly below one of the flight paths, but on the outer limits of what was the

theorised camera FOV. Flight parameters included an airspeed of 15 m/s and a flight

altitude of 50 m. Upon completion of the flight test, the footage was subjected to the

object recognition algorithm. An image captured during the flight test, with the

drop-zone identifier indicated, can be seen in Figure 8.17 and the resulting output

of the object recognition algorithm can be seen in Figure 8.18.

Page | 126

Figure 8.17: Flight test footage captured from onboard the aircraft with the USB camera

Figure 8.18: Vision system test 8 – Drop-zone identification from onboard the aircraft (Left – Resulting
image overlay, Right – Upper red hue result)

Drop-zone

identifier

Drop-zone

identifier

Drop-zone

identifier

Page | 127

Although seemingly indistinguishable from the surrounding scenery, the drop-zone

identifier can be noted in the centre of the image depicted in Figure 8.17. Figure 8.17

represented the farthest view of the drop-zone identifier from the surveyed flight plan,

where the identifier was placed at the edge of the CMOS camera’s FOV and on the

final survey flight path. The aircraft was also noted to be banking when the footage

was captured, as the edge of the camera viewing window was noted in the upper left

corner of the image.

The result captured in Figure 8.18 was the most substantial of all the results

gathered from the recorded CMOS camera footage, as the sheer size of the drop-zone

identifier in the image alluded to the assumption that the algorithm would fail in its

detection. However, the object recognition algorithm was able to successfully identify

the drop-zone identifier. The successful detection of the drop-zone identifier was

noted in the upper hue filter window in Figure 8.18, where only a few white pixels

representing the drop-zone identifier were noted to have been filtered. Through the

filtering of the image hue, the algorithm was able to discern the circular pattern of

the identifier and the result overlay, depicted in the left-hand window of Figure 8.18,

showed the drop-zone identifier being circled in blue.

The detection of such a small drop-zone identifier was noted as a successful result.

However, the detection of the identifier whilst the aircraft was banking called for a

revaluation of the object recognition algorithm. The concern with the successful

result was the possibility that small, incorrect, objects could have been mistaken for

the drop-zone and as such, false locations of the drop-zone could have been

transmitted. Additionally, the detection of the drop-zone identifier during a bank

implied that the coordinate frame of the image plane was not parallel to the ground

plane, implying that the translation of pixel coordinates to GPS coordinates would

be incorrect. This mismatch of coordinate frames was not true for all bank angles of

the aircraft, as the camera gimbal would stabilise the camera for smaller bank

angles, but this would not have been the case with steep bank angles. With these

issues considered, the object recognition algorithm was calibrated to only detect

larger circles by altering the HoughCircles function minRadius parameter, as seen in

Table 5.1. Altering the minRadius parameter resulted in successful detection of the

drop-zone identifier when the aircraft was in level flight, where the gimbal was able

to stabilise the camera, and removed the detection of the drop-zone identifier when

the aircraft was banking.

Page | 128

8.3.1.2 Live Footage Results

To determine whether the ODroid was capable of executing the object recognition

and object tracking algorithms, live footage was streamed from the camera. To

deduce the vision system’s capabilities, three tests were conducted. The first two

tests were conducted in order to calibrate the camera and image processing

algorithms and the final test was to calibrate the camera for onboard application.

The first test was used to determine the vision system’s accuracy and repeatability.

To determine these vision system parameters, a test setup was established with the

camera placed perpendicular to a fixed surface at a known distance. A similar testing

setup was utilised in the determination of the camera’s FOV, with the only difference

being the use of a red circle, 16.5 mm diameter, to simulate the drop-zone identifier.

The test was conducted to show the accuracy of the vision system by repeatedly

placing the red circle at a known location within the image plane. In order to

determine the repeatability of the vision system, the accuracy test was repeated at

various locations within the image plane. Figure 8.19 depicts a screenshot taken

during the vision system accuracy and repeatability testing. On the left-hand side,

the red circle can be seen encircled in blue by the image processing algorithms and,

on the right-hand side, the determined coordinates of the red circle within the image

plane can be seen. The accuracy and repeatability testing template can be seen in

Figure 8.20 and the corresponding testing point coordinates can be seen in

Table 8.2. The coordinate origin was defined to be the centre of the testing template,

indicated by the centre of the circle drawn on the testing template. The first accuracy

and repeatability tests were conducted with the camera displaced from the testing

template at a distance of 0.275 m.

Figure 8.19: Vision system accuracy and repeatability testing screenshot

Page | 129

Figure 8.20: Accuracy and repeatability testing template

Table 8.2: Accuracy and repeatability testing point coordinates at 0.275 m camera displacement

Testing

Point
X Coordinate Y Coordinate

1 0.0295 0.096

2 0.067 0.0385

3 -0.0385 0.048

4 -0.077 0

5 -0.043 -0.0815

6 0.007 -0.0025

7 0.0145 -0.048

8 -0.0675 0.101

9 0 0.015

10 0.063 -0.101

Page | 130

Figure 8.21 illustrates the results of the accuracy and repeatability testing, where

the results were defined relative to their respective testing point coordinates to

illustrate the deviation of the results from the reference data.

Figure 8.21: Vision system accuracy and repeatability results on testing template

From the results gathered in Figure 8.21, the accuracy and repeatability of the vision

system was determined. Discrepancies in the accuracy and repeatability results were

not immediately considered, as the accuracy of the experimental setup was first to

be determined. The theoretical performance of the vision system was defined by

determining the design-stage uncertainty of the vision system. This uncertainty

determination sought to define the minimum uncertainty in the results obtained.

The vision system possessed two components which contributed to the uncertainty

in results captured. These two components included the camera and the gimbal. For

the purpose of this research, the 3D printed camera mount was assumed to present

no error in the results as the additional uncertainty in the mount’s design would

require an intricate uncertainty analysis of the 3D printer utilised in the manufacture

of the mount. The manufacturer specified performance of the camera can be seen in

Table 8.3 and the manufacturer specified performance of the gimbal can be seen in

Table 8.4.

Page | 131

Table 8.3: Manufacturer defined performance of the ELP-USB500W04AF-A60 camera

Performance Parameter Value Unit

Pixel Size 1.4×1.4 μm×μm

Resolution 640×480 Pixels

Field of View 60(H)×40(V) Degrees

Functional Range 0.05 - 100 m

Table 8.4: Manufacturer defined performance of the TAROT GoPro 3D V metal 3 axis gimbal

Performance Parameter Value Unit

Control Accuracy ±0.02 Degrees

Controllable Range (PAN) ±330° Degrees

Controllable Range (TILT) -135° to +45° Degrees

Design-stage uncertainty, as defined by Figliola et al. [18], represented a test to

determine the minimum uncertainty to be expected based on available information.

As such, design-state uncertainty (𝑢𝑑) was defined by Equation 8.3.

𝑢𝑑 = √𝑢0
2 + 𝑢𝑐

2 (𝑃%) (8.3)

Where, 𝑢0 was the zero-order uncertainty which represented the uncertainty of an

instrument’s measurement result with respect to only the instrument’s resolution,

as seen in Equation 8.4. 𝑢𝑐 represented the instrument uncertainty which was the

combined uncertainty estimate of all identifier instrument errors [18].

𝑃% represented the probability confidence interval.

 𝑢0 =
1

2
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (8.4)

The desired function of the gimbal was to ensure the camera was perpendicular to

the ground during flight, the error in the gimbal’s motion could be translated from

an angular accuracy (𝑒𝐶𝐴), represented by the gimbal’s control accuracy, to a linear

instrument uncertainty based on the aircraft’s altitude (𝑎𝑙𝑡). This uncertainty was

represented by the horizontal displacement the gimbal’s angular accuracy would

represent at altitude. Equation 8.5 defined this gimbal instrument uncertainty.

𝑢𝑐 = 𝑎𝑙𝑡 tan(𝑒𝐶𝐴) (8.5)

Page | 132

With the gimbal’s uncertainty determined, the camera’s zero-order uncertainty could

be determined. From Table 8.3, the camera’s resolution was defined to be in terms

of pixels, but this resolution was not an indication of statistical resolution which was

defined to be the smallest detectable change in a measured value. The statistical

resolution of the camera was the pixel size and with the gimbal’s instrument

uncertainty being converted into metres based on the given flight altitude, the

resolution of the camera was converted to metres. This conversion of the camera’s

resolution was also required to incorporate the amount of ground plane area the pixel

represented at a given altitude. The area covered by a single pixel at altitude was

defined by Equation 8.6.

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑝𝑖𝑥𝑒𝑙 =
𝑎𝑙𝑡 tan(

𝐹𝑂𝑉

2
)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑎𝑚𝑒𝑟𝑎
 (8.6)

The zero-order uncertainty of the camera was then determined with the use of

Equation 8.4. The final design-stage uncertainty of the vision system was then

determined with the use of the uncertainties determined and Equation 8.3. The

design-stage of the vision system was defined by Equation 8.7 and Equation 8.8,

where two equations, horizontal (y axis) and vertical (x axis), were necessary due to

the resolution and FOV of the camera being defined in two dimensions.

𝑢𝑑𝑥 = ±5.70 × 10
−4𝑎𝑙𝑡 𝑚 (95%) (8.7)

𝑢𝑑𝑦 = ±8.35 × 10
−4𝑎𝑙𝑡 𝑚 (95%) (8.8)

With the design-stage uncertainty of the vision system known, the accuracy and

repeatability of the vision system could be deduced from the results depicted in

Figure 8.21. From the results gathered and with the use of Equation 8.1 and

Equation 8.2, the average accuracy of the results gathered in Figure 8.21 were

depicted in Table 8.5 for each testing point coordinate defined in Table 8.2.

Page | 133

Table 8.5: Vision system accuracy testing results

Testing

Point

Average Error

(m)

Average Error Accuracy

(%)

X Coordinate Y Coordinate X Coordinate Y Coordinate

1 0.21 x10-3 3.10 x10-3 0.07 1.55

2 2.26 x10-3 0.06 x10-3 0.71 0.03

3 1.00 x10-3 1.89 x10-3 0.31 0.95

4 0.39 x10-3 0.63 x10-3 0.12 0.31

5 1.90 x10-3 0.91 x10-3 0.60 0.46

6 0.29 x10-3 0.62 x10-3 0.09 0.31

7 0.93 x10-3 0.65 x10-3 0.29 0.32

8 1.86 x10-3 1.45 x10-3 0.59 0.73

9 1.09 x10-3 0.20 x10-3 0.34 0.10

10 0.98 x10-3 1.04 x10-3 0.31 0.52

Overall

Average
1.09 x10-3 1.06 x10-3 0.34 0.53

From the results gather in Table 8.5, the average error of the vision system was

deduced to be within approximately 1 mm, both horizontally and vertically, about

the defined test points. This error resulted in an average measurement accuracy of

0.34% in the horizontal axis and 0.53% in the vertical axis with respect to their given

test point coordinates. The theorised design-state uncertainty for the given altitude

of 0.275 m during testing was assessed and an error of ±0.16x10-3 m was expected in

the horizontal axis and an error of ±0.23x10-3 m was expected in the vertical axis. The

discrepancy in design-state uncertainty and the physical results was attributed to

the fact that the red circle used for testing was hand-placed during each

measurement. Human error and the possibility of the test surface not lying parallel

with the camera would have resulted in impaired vision system accuracy.

Page | 134

With the accuracy of the vision system under the given testing parameters deduced,

the repeatability of the vision system was deduced. Repeatability was defined to be

the ability of a measurement device to produce the same output value during random

testing of the same initial testing conditions. Equation 8.9 defined the mean value

(�̅�) attained during testing [18].

�̅� =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1 (8.9)

Where, 𝑁 represented the number of datapoints captured and 𝑥𝑖 represented the ith

datapoint value being assessed. With the mean value for each datapoint known, the

standard deviation (𝑠𝑥) of each datapoint, with respect to the mean, was determined

and was defined by Equation 8.10 [18].

𝑠𝑥 = √
1

𝑁−1
∑ (𝑥𝑖 − �̅�)

2𝑁
𝑖=1 (8.10)

From this standard deviation, the variance (𝑠𝑥
2) was determined, where the variance

was an indication of the probable measure of the variation found in the data set and

was defined by Equation 8.11 [18].

𝑠𝑥
2 =

1

𝑁−1
∑ (𝑥𝑖 − �̅�)

2𝑁
𝑖=1 (8.11)

With these statistical values of the data now defined, the precision interval in which

a value at the calculated mean value was predictable within a 95% accuracy was

determined with the use of Equation 8.12.

𝑥𝑖 = �̅� ± 𝑡𝑣,𝑃𝑠𝑥 (95%) (8.12)

Where,

𝑣 = 𝑁 − 1 (8.13)

Where, 𝑣 represented the degrees of freedom and 𝑡𝑣,𝑃 represented the t-distribution

at a value of 𝑣 and probability 𝑃. As such, the value of 𝑡𝑣,𝑃 was found to be 2.77 as

defined by Figliola et al. in Table 4.4 [18]. As several datapoints were tested for

accuracy and repeatability, the results for each datapoint can be seen in Table 8.6

and Table 8.7.

Page | 135

Table 8.6: Repeatability testing statistics results (mean, standard deviation, variance)

Testing

Point

Mean Coordinate Value

(m)

Standard

Deviation

(m)

Variance

(m)

X Y X Y X Y

1 29.52 x10-3 99.10 x10-3 0.35 x10-3 0.4 x10-3 1.23x10-7 1.57 x10-7

2 69.26 x10-3 38.44 x10-3 0.27 x10-3 0.00 x10-3 0.72 x10-7 0.00

3 -39.20 x10-3 49.61 x10-3 0.66 x10-3 0.26 x10-3 4.38 x10-7 0.66 x10-7

4 -77.25 x10-3 0.63 x10-3 0.54 x10-3 0.21 x10-3 2.93 x10-7 0.44 x10-7

5 -44.90 x10-3 -80.59 x10-3 0.00 x10-3 0.21 x10-3 0.00 0.44 x10-7

6 -7.22 x10-3 -1.88 x10-3 0.22 x10-3 0.52 x10-3 0.49 x10-7 2.71 x10-7

7 15.38 x10-3 -48.65 x10-3 0.70 x10-3 0.00 x10-3 4.93 x10-7 0.00

8 -65.64 x10-3 102.45 x10-3 0.55 x10-3 0.43 x10-3 3 x10-7 1.81 x10-7

9 1.09 x10-3 15.09 x10-3 0.22 x10-3 0.21 x10-3 0.5 x10-7 0.44 x10-7

10 63.98 x10-3 -102.04 x10-3 0.22 x10-3 0.00 x10-3 0.48 x10-7 0.00

Table 8.7: Repeatability testing statistics results (precision interval)

Testing Point
𝑥𝑖 = �̅� ± 𝑡𝑣,𝑃𝑠𝑥 (95%)

X Coordinate (m) Y Coordinate (m)

1 29.52 ± 0.97 x10-3 99.10 ± 1.10 x10-3

2 69.26 ± 0.74 x10-3 38.44 ± 0.00 x10-3

3 -39.20 ± 1.83 x10-3 49.61 ± 0.71 x10-3

4 -77.25 ± 1.50 x10-3 0.63 ± 0.58 x10-3

5 -44.90 ± 0.00 x10-3 -80.59 ± 0.58 x10-3

6 -7.22 ± 0.61 x10-3 -1.88 ± 1.44 x10-3

7 15.38 ± 1.94 x10-3 -48.65 ± 0.00 x10-3

8 -65.64 ± 1.52 x10-3 102.45 ± 1.18 x10-3

9 1.09 ± 0.62 x10-3 15.09 ± 0.58 x10-3

10 63.98 ± 0.61 x10-3 -102.04 ± 0.00 x10-3

Page | 136

From the results gathered in Table 8.6 and Table 8.7, the average precision interval

for measurements about the two coordinate axes were defined. For the x-axis, the

average precision interval was found to be ±1.03x10-3 m and for the y-axis, the

precision interval was found to be ±0.62x10-3 m. Although the y-axis appeared to

possess a more repeatable measurement, a comparison of the precision intervals over

the camera’s visible area showed that the x-axis precision interval represented 0.32%

of the visible area’s x-axis dimension. The precision interval of the y-axis represented

0.31% of the visible area’s y-axis dimension and as such, the repeatability of both

axes was found to be marginally different.

From the results gathered during the vision system’s accuracy and repeatability

testing, the design-stage uncertainty and precision interval could be extrapolated to

determine the performance of the vision system over the camera’s functional range.

Assuming a linear trend in the calculated vision system performance, the

extrapolated vision system’s precision intervals can be seen in Figure 8.22. As

design-stage uncertainty was defined as a function of altitude, these results could be

plotted without the need for extrapolation and can be seen Figure 8.23.

Figure 8.22: Linear extrapolation of the vision system's precision intervals

Page | 137

Figure 8.23: Vision system design-stage uncertainty at various altitudes

From Figure 8.22 and Figure 8.23, the theorised performance of the vision system

could be seen. From Figure 8.22, it was noted that the precision interval of the vision

system was found to increase to ±0.38 m about the x-axis and ±0.23 m about the

y-axis at an altitude of 100 m, the upper limit of the CMOS camera’s functional

range. The increase in precision intervals, at the upper limit of the CMOS camera’s

range, were still within the defined acceptable area of the drop-zone, which was

defined to be within a 5 m radius of the drop-zone identifier. Looking at the design-

stage uncertainty over the CMOS camera’s function range, the linear increase in the

design-stage uncertainty was noted, as defined by Equation 8.7 and Equation 8.8.

This increased design-stage uncertainty resulted in a maximum uncertainty of

±0.06 m in the x-axis and ±0.08 m in the y-axis. Combining these accuracy and

repeatability results, it was concluded that the vision system was fully suited for its

desired application in terms of achieving results which were both accurate and

repeatable. This deduction about the accuracy and repeatability of the vision system

concluded the first live footage testing of the vision system.

Page | 138

The second live footage testing configuration allowed for the testing of differing

lighting effects on the camera, which subsequently further tested the hue range

tolerance of the camera. As per the basic shape and colour testing of the vision

system, a four-windowed resulting figure described the results of the second live

video testing. The upper left window depicted the streamed video footage with the

resulting object recognition result superimposed, in the upper middle window the

upper red hue range could be seen, the upper middle window depicted the upper red

hue range of the live footage, the upper left window depicted the lower red hue range

of the live footage and the lower window depicted the algorithm feedback. The image

size and the centre coordinates of any detected red circles were defined. The testing

environment for this second live footage test was not fully illuminated by natural

light and as such, artificial light was utilised in these tests.

Figure 8.24: Vision system test 9 – Live video feed of red circle with low lighting

From Figure 8.22, it was noted that when only ambient artificial light was present,

the image processing algorithms were unable to detect the red circle on the test

template. The ability of the image processing algorithms to detect the red circle

during low light conditions was compromised, indicating that application of the

delivery system would be dependent on available light.

Page | 139

Figure 8.25: Vision system test 10 – Live video feed of red circle with lighting from a single side

The same test as seen in Figure 8.24 was repeated with the addition of a single

artificial light source illuminating the testing template from the side. The results of

this test were noted in Figure 8.25, where it was found that the vision system was

able to detect half of the red circle on the testing template. Additionally, it was noted

that the introduction of the grid on the test template resulted in the division of the

red circle into the respective grid squares they fell within. This separation of circle

portions was an indication that the hue filter of the image processing algorithm was

not able to detect the darker portions of the circle. The coordinates of each circle

detected were noted in the lower window of Figure 8.25.

Figure 8.26: Vision system test 11 – Live video feed of red circle with full lighting

Page | 140

From Figure 8.26, the final illumination results were noted where full artificial

lighting was introduced. Portioning of the red circle in the grid was still present,

indicating that the undetected portions were not within the image processing

algorithms’ hue ranges. The detected portions of the circle’s coordinates were also

noted in the lower window of Figure 8.26.

From these live footage illumination tests, it was clear that the vision system required

sufficient lighting to detect the drop-zone identifier, further iterating the time-frame

of operation of the delivery system. Methods to mitigate these illumination issues

were possible, such as multispectral cameras to detect different trace signatures of

the drop-zone identifier or the illumination of the drop-zone identifier. With these

possible alterations noted, the development of the delivery system with the current

system was perused as daytime testing of the delivery system utilised and conceptual

proof was the desired outcome of this research. Looking at the CMOS camera’s

parameters, it was defined that the CMOS camera sensor required 70% illumination

for optimal use.

With the camera calibrated for the correct lighting and hue ranges, a final offboard

test was conducted to determine whether the image recognition and object tracking

algorithms could detect and locate the physical drop-zone identifier. The final

offboard vision system test also allowed for the initial calibration of the image

tracking algorithm’s ability to define the location of the drop-zone identifier in terms

of the global frame. The aircraft was carried over the drop-zone identifier to simulate

the flight of the aircraft. The results from these tests were displayed as the relocation

of the drop-zone identifier’s waypoint relative to the simulated aircraft’s reference

GPS location. The test results were displayed as a screenshot of the GCS map

waypoints on the left and a real-time update of the displacement of the drop-zone

identifier relative to the reference GPS location and camera frame was displayed on

the right, as seen in Figure 8.27. This test represented the first integrated test

between vision system and the FCU and made use of the drop-zone identifier which

would be used for the application of the integrated system. This final drop-zone

identifier was a red circle, 0.4 m in diameter.

Page | 141

Figure 8.27: Vision system test 12 – Live video feed testing of the location allocation of the drop-zone

identifier

From Figure 8.27, the successful identification of drop-zone identifier and the

allocation of drop-zone location waypoints were noted. In the left window of

Figure 8.27, the designation of the drop-zone’s location, waypoint 16, relative to the

reference GPS location, waypoint 15, was noted to be above and to the left of the

aircraft. Looking at the real-time results depicted in the right window of Figure 8.27

confirmed these results, as the reference location, displacement and subsequent

calculated location of the drop-zone identifier were noted.

Confirmation of the ability of the vision system to deduce the location of the

drop-zone identifier based on the aircraft’s GPS location implied that the integrated

vision and flight control system was ready for a flight test. As such, this vision system

test represented the final offboard test.

Page | 142

8.3.2 Onboard Testing

With the vision system and image processing algorithm calibrated, the refinement of

the algorithms’ integration with the onboard hardware could be completed. This

refinement included the determination of the drop-zone identifier’s location relative

to the global frame with the assistance of the Pixhawk’s GPS and compass during

flight. To test the integrated vision system and autonomous flight control system, the

aircraft was taken to Port Elizabeth Radio Flyers (PERF) airfield for testing and a

survey mission was planned over the airfield. The payload release indicator was

placed within the survey area and the aircraft’s MAVROS node, autonomous flight

node, image capture node and the image processing node were executed. Successful

detection of the drop-zone identifier was indicated by the vision system’s ability to

allocate the drop-zone waypoint (waypoint 15) accordingly. The results of the onboard

test were depicted in Figure 8.28, where in the left window, the initial survey

waypoint allocation could be noted and in the right window, the vision system

allocated waypoints were noted after a mission update request.

Figure 8.28: GCS mission map view of the first onboard integrated testing of the vision system and
autonomous flight control system

Comparing the two window views in Figure 8.28, it was noted that the allocation of

the drop-zone location waypoint was present after requesting a mission waypoint

update. The drop-zone location waypoint, waypoint 15, can be seen in the top

left-hand corner of the right window in Figure 8.28. Prior to any deductions being

made based on the result obtained, it should be noted that the drop-zone identifier

was placed in region between waypoint 6 and waypoint 17. It was noted that the

designated drop-zone location waypoint was placed in the wrong location. Upon

assessment of the airfield, it was found that an orange coloured windsock was

present at the airfield’s clubhouse and was the location specified by the vision system

Page | 143

to be the drop-zone. From this result, several deductions were made, the first being

that the vision system had successfully detected an object meeting its required

drop-zone classification parameters and had successfully allocated a waypoint

indicating said drop-zone’s location. The remaining deductions were that the image

processing algorithm’s parameters were in need of refinement as the aircraft did fly

over the correct drop-zone indicator without detection, indicating incorrect hue range

filtering. Additionally, the detection of the windsock indicated that the HoughCircles

function’s minRadius and maxRadius parameters required refinement, as the

windsock’s geometry was detected. Although not the desired result of the first

onboard test of the integrated vision system and autonomous flight control, the result

displayed in Figure 8.28 was a clear indicator that the integrated systems were

functioning correctly and were relaying information between one another.

After the correction of the necessary algorithm parameters, the onboard test was

ready to be repeated. Two alterations to the physical mission were changed during

this second test, namely: the mission was changed from the traditional survey to an

accumulation of waypoints not within the vicinity of the drop-zone indicator and the

drop-zone indicator was placed further away from the airfield clubhouse. The reason

for the change in mission waypoints was due to the autonomous flight control of the

aircraft in executing a mission survey had already been defined and the desired

result was to test the vision system’s integration with FCU. The movement of the

drop-zone indicator away from the clubhouse was to avoid the detection of any other

object’s other than the drop-zone identifier. The aircraft was then flown over the

newly placed and recorded location of the drop-zone identifier and the success of the

vision system’s ability to define the drop-zone’s location was assessed. The

positioning of the mission waypoints and placement location of the drop-zone

identifier prior to the second test can be seen in the left window of Figure 8.29. The

vision system’s reallocation of the drop-zone location waypoint can be seen in right

window of Figure 8.29. Reallocation of the mission waypoints required the new

designation of the drop-zone location waypoint due to the structure of the

autonomous flight node. Therefore, the drop-zone location was defined by waypoint

17. Additionally, with the mission waypoints reallocated, the location of the headwind

loiter, and initial payload release approach waypoint were also reallocated upon

detection of the drop-zone identifier and these waypoints were defined to be

waypoint 15 and waypoint 16. The aircraft was flown at an average altitude of 75 m

and an average airspeed of 12 m/s.

Page | 144

Figure 8.29: GCS mission map view of the second onboard integrated testing of the vision system and

autonomous flight control system

During the second onboard integrated test, the aircraft was flown over the

approximate drop-zone identifier several times and from Figure 8.29, it was noted

that upon mission waypoint update, the location of the drop-zone had been

redefined. Visual comparison of both the right and left windows of Figure 8.29,

indicated that the vision system was successfully able to identify and define the

drop-zone location based on the aircraft’s GPS location. To confirm the visual

comparison’s results, the vision system’s image processing node logs were gathered

for the computation of statistical results. As discussed in Chapter 7, the use of the

ROS node development configuration prevented any form of node feedback to the

operator and as such, the recorded locations defined by the vision system were

assessed post-mission. Additionally, the vision system could record and transmit the

location of the drop-zone identifier several times in a single fly over, as the refresh

rate of the CMOS camera presented the image processing algorithm with new images

every few milliseconds. As such, accuracy and repeatability tests were conducted.

The vision system defined drop-zone location information retrieved from the image

processing node can be seen in Table 8.8, Figure 8.30 and Figure 8.31.

Page | 145

Table 8.8: Vision system defined coordinates of the drop-zone identifier

 Latitude Longitude
Displacement

(m)

Drop-Zone

Identifier True

Coordinates

-33.8761795 25.3518254 -

 Vision System Determined Coordinates

1 -33.8761765 25.3518152 1.17

2 -33.8761795 25.3518492 1.07

3 -33.8761743 25.3518397 1.34

4 -33.8761782 25.3518191 0.63

5 -33.8761664 25.3518191 1.58

6 -33.8761966 25.3518365 2.3

7 -33.8761927 25.3518223 1.49

8 -33.8761882 25.3518094 1.99

9 -33.8761861 25.3518333 1.01

10 -33.8761585 25.3518207 2.49

11 -33.8761795 25.3518223 0.37

12 -33.8761795 25.3518286 0.34

13 -33.8761822 25.3518318 0.55

14 -33.8761808 25.3518333 0.7

15 -33.8761835 25.3518397 1.31

16 -33.8761848 25.3518159 0.99

17 -33.8761927 25.3518238 1.48

18 -33.8761611 25.3518096 2.59

19 -33.8761848 25.3518508 2.34

20 -33.8761785 25.3518397 1.29

21 -33.8761680 25.3518380 1.61

Page | 146

Figure 8.30: Vision system defined drop-zone identifier locations relative to the true drop-zone location

 Figure 8.31: Vision system defined drop zone identifier locations relative to acceptable drop-zone area

Page | 147

From Table 8.8, it was noted that the vision system was able to determine 21

drop-zone coordinates during the second integrated test. Of these 21 locations, 6

were within a 1 m radius of the true location of the placed drop-zone identifier, with

the closest determined location calculated to be within 0.34 m of the true location,

location 12 in Table 8.8. Of the remaining 15 locations, 14 were determined by the

vision system within a 2.5 m radius of the true location, with the farthest recorded

location placed at 2.59 m from the true location, location 18 in Table 8.8. Figure 8.30

was utilised to show the distribution of the vision system-defined locations relative

to the true location. Figure 8.31 was used to illustrate the location coordinates with

respect to the allowable drop-zone area and was constructed with the use of

Google Earth Pro.

From the results displayed in Figure 8.30 and Figure 8.31, no discernible pattern to

the vision system’s identification could be defined. The statistical accuracy and

repeatability of the vision system was determined and through the use of

Equation 8.9, Equation 8.10 and Equation 8.11, the repeatability results determined

for the second onboard test can be seen in Table 8.9.

Table 8.9: Repeatability results for second onboard integrated test (mean, standard deviation, variance)

 Mean Value
Standard

Deviation
Variance

Latitude (Degrees) -33.8761796 9.9 x10-6 0.98x10-10

Longitude (Degrees) 25.3518285 12.1 x10-6 1.45x10-10

Displacement (m) 1.36 0.68 0.46

From the data captured in Table 8.9, the precision interval of the mean was deduced,

where the precision interval of the mean made use of the standard deviation of the

mean as opposed to the standard deviation. The significance of the standard

deviation of the mean showed an accurate representation of how well a measurement

would be defined over an entire dataset when only a small portion of sample data

was provided. The standard deviation of the mean was defined by Equation 8.14.

𝑠�̅� =
𝑠𝑥

√𝑁
 (8.14)

Page | 148

With the use of Equation 8.14, the possible values of the true mean were determined

by Equation 8.15. The resulting values can be seen in Table 8.10 [18].

𝑥′ = �̅� ± 𝑡𝑣,𝑃𝑠�̅� (𝑃%) (8.15)

Table 8.10: Possible values of the true mean for the results gathered for the second integrated test

 Possible values of the true mean

Latitude (Degrees) -33.88 ± 4.51 x10-6

Longitude (Degrees) 25.35 ± 5.51 x10-6

Displacement (m) 1.36 ± 0.31

From Table 8.9 and Table 8.10, the latitude and longitude results defined the

repeatability of the second integrated test, as their coordinates were specific to the

testing area. The defining result from the second integrated test was the repeatability

of the displacement of the vision system defined drop-zone locations. The average

displacement from the true drop-zone location was found to be 1.36 m with an

uncertainty of ±0.31 m. From the largest predicted displacement of the vision

system’s measurements, as extrapolated in Figure 8.22, it was found that the vision

results should have resulted in the detection of the drop-zone identifier within 0.32 m

of the true location. Introducing the greatest design-stage uncertainty from

Figure 8.23, for the given testing altitude, would have resulted in an additional

0.08 m of displacement from the true drop-zone location. From the results gathered

in Table 8.10, the resulting average displacement introduced approximately 1 m of

unpredicted deviation from the desired location. Additionally, assuming the possible

value of the mean to shift towards the true location by the given precision in

Table 8.10, the resulting average was still approximately 0.7 m greater than the

predicted value. Several issues could have resulted in this deviation but due to the

majority of the results captured in Table 8.8 occurring between the 1 m radius mark

and the 2.5 m radius mark it was deduced that the uncertainty of the vision system

could not be assumed to be the same linear trend defined in Figure 8.22. A new

linear trend was defined for the displacement uncertainty of the vision system’s

measurements and built upon the results captured in Figure 8.22. This new trend

can be seen in Figure 8.32.

Page | 149

Figure 8.32: Vision system mean measurement displacement uncertainty for different altitudes

With the final mean and uncertainty in the vision system’s displacement

measurements from the true drop-zone location defined, it was noted that at the

upper limit of the CMOS camera’s operation range, the measurement uncertainty

was still within the defined allowable drop-zone area. The maximum vision system

mean displacement and uncertainty at 1.82 ± 0.40 m at an altitude of 100 m. The

final performance of the integrated system would be defined by the additional

uncertainty that the payload release trajectory would provide.

Page | 150

8.4 Payload Release Testing

Simulated and physical testing of the payload release algorithm and payload release

mechanism were discussed in this section.

8.4.1 Simulation

To determine the baseline results expected from the payload release system, payload

release trajectory simulations were conducted. The simulations made use of the

lookup tables and equations developed, as these described the same computational

information available to the payload release node during flight. The simulations were

conducted with the use of the MAVProxy SITL and a MAVProxy HITL, where the

location of the drop-zone was simulated to have been detected by the vision system.

The simulation tested the payload release node algorithm’s ability to determine the

headwind velocity and direction, and placing of the correct payload release

waypoints. The HITL aspect of the payload release simulation was the introduction

of the Pixhawk and payload release servo into the simulation, where visual

confirmation of payload release was obtained through the actuation of the payload

release servo. The SITL simulation of the payload release node can be seen in

Figure 8.33.

Figure 8.33: SITL simulation of the payload release node

From the SITL simulation of the payload release node, successful computation of the

required payload release approach and payload release waypoint was achieved. The

payload release algorithm, through application of the lookup tables, was able to

Page | 151

interpolate the simulated flight data and to determine a theorised release

displacement. From the simulation it was found that the aircraft achieved: an

average altitude of 49.4 m, an average airspeed of 12.81 m/s and an average

headwind speed of 1.67 m/s from a heading of 298˚. With these averages, the

algorithm was able to determine that a location of 2 m before the drop-zone

identifier’s determined location was the correct moment for payload release. Upon

inspection of the lookup tables, as seen in Appendix J1 and Appendix J2, the

displacement determined by the algorithm was within the calculated displacement’s

predicted by the mathematical model described in Chapter 6. The updated waypoint

map from the simulated payload release can be seen in Figure 8.34, where the

payload release location (waypoint 14) can be seen next to the determined drop-zone

identifier’s location (waypoint 15).

Figure 8.34: Updated waypoint map indicating the payload release waypoints

The simulation was conducted under several headwind velocities and headings, and

the resulting placements of the payload release waypoints followed the success of the

results depicted in Figure 8.33 and Figure 8.34. From these simulations, it was

determined that the payload release node was functioning correctly, and physical

testing was needed to provide an indication as to the success of the payload release

system as a whole.

Page | 152

8.4.2 Physical Payload Release

Although the simulation provided an indication of the locations for payload release,

they did not simulate the payloads fall trajectory. As such, integrated payload

releases were conducted onboard the aircraft. These physical payload release tests

were to conclude the accuracy of the payload release algorithm by dropping the

payload during flight and determining their final displacement relative to the point

of release. Aircraft parameters such as: altitude, airspeed, groundspeed and GPS

location were recorded. Additionally, the payload’s impact location was also recorded.

With these parameters, the payload’s impact location versus the simulation predicted

location was deduced and the resulting error noted. The parameters recorded a

payload release test can be seen in Table 8.11.

Table 8.11: Payload release test parameters

Parameter Value Unit

Release Altitude 76.2 m

Aircraft Airspeed 12.6 m/s

Aircraft Groundspeed 8.6 m/s

Headwind Velocity 4 m/s

Aircraft GPS Location
Latitude: -34.005355

Longitude: 25.682660
Degrees

Payload Impact Location
Latitude: -34.005369

Longitude: 25.682628
Degrees

From the recorded parameters recorded in Table 8.11, the payload was found to enter

both Phase A and Phase B of the payload release trajectory described in Chapter 6.

The deduction that the payload would enter both release trajectory phases was made

with the use of Equation 6.19, where the equilibrium time of the payload was

deduced to be 1.65 seconds. With the equilibrium time known, Equation 6.21 was

used to determine the total fall time of the payload from the release altitude and was

determined to be 3.94 seconds. Due to the payload possessing a larger total fall time

than equilibrium time, the payload was found to fall for an additional 2.29 seconds

under the effects of headwind vector addition. At the point of equilibrium, the payload

was found to have displaced 1.96 m, as determined with the use of Equation 6.20.

Additionally, the payload equilibrium altitude was found to be 44.37 m and the

Phase B displacement was found to be 5.29 m. The resulting final theoretical payload

Page | 153

displacement was found to be 3.33 m behind the initial release location, where

forward was defined to be a heading of 63˚. Comparing the theoretical displacement

of the payload with the actual displacement of the payload, it was found that the

physical payload release resulted in a payload displacement of 3.47 m behind and to

the initial release location. As such, the physical payload release of the payload

resulted in a payload displacement error of 0.14 m from the theorised location and

was within the acceptable area of the drop-zone. The payload release trajectory for

the physical testing can be seen in Figure 8.35.

Figure 8.35: Payload release trajectory during physical testing

Two more payload release tests were conducted at different airspeed and altitudes,

and an average payload displacement error of ±0.28 m was achieved. In addition to

this average displacement error, it was noted that the payload tended to land to the

right of the aircraft’s heading. This tendency for the payload to land to the right of

the aircraft’s heading indicated that the algorithm was defining the payload release

approach along a heading where the headwind would hit the aircraft on its port side.

As such, the algorithm was altered to correct for this heading offset.

Page | 154

Images of the aircraft during the payload release testing were captured and overlaid

to provide a view of the payload’s trajectory. The trajectory of the payload was

highlighted due to the distorted quality of the overlaid image, as seen in Figure 8.36.

Figure 8.36: Stitched image illustrating the payload release trajectory and aircraft flight progression
during payload release testing

In terms of the payload’s physical capabilities when impacting the ground, it was

found that the 3D printed payload design was able to withstand three to four payload

release tests before physical damage occurred. During the payload release testing,

the GPS module installed within the payload was fully protected for any physical

damage. During the initial physical testing stages, it was noted that the payload

release mechanism could be triggered, and the payload would not release. These

failed drops resulted in small alterations to the payload release mechanism to remove

the edges which were catching during release. However, it was noted that these failed

drops only occurred on testing days with higher wind speeds and the system

functioned accordingly at lower wind speeds. Furthermore, during missions where

the drop-zone identifier was not detected, and the aircraft would circle back to its

takeoff position, it was noted that the payload release command would be triggered

due to the mission being aborted by the FCU. The release of the payload indicated

that the FCU deemed all waypoints met if no new waypoints were presented to it and

as such, an additional release command condition was introduced to ensure the drop

location waypoint had been defined.

Page | 155

8.5 System Performance

Combing the payload release results with the remaining subsystems allowed for the

system’s overall performance to be evaluated. Taking the average errors achieved

within each subsystem and defining the mean vision system accuracy to be the mean

accuracy of the system, the integrated system’s performance was defined by

Equation 8.16.

𝑥′ = 1.82 ± 0.49 𝑚 (8.16)

From Equation 8.16, the final performance of the integrated system was found to

achieve an average payload displacement of 1.82 m from the true location of the

designated drop-zone identifier when operating at an approximate altitude of 75 m.

At this altitude, the displacement was found to possess an average error of ±0.49 m.

A linear trend was noted with the system’s performance errors and as such, the

accuracy of the system decreased with an increase in altitude. Therefore, the system

performance defined in Equation 8.16 would decrease with a decrease in altitude.

Considering the integrated performance and the defined allowable circular drop-zone

area of 10 m in diameter, the integrated system was able to achieve the desired

result. The performance of the integrated system was able to achieve the desired

results within 13.19% of the designated drop-zone area, indicating that the

remaining 86.81% of the drop-zone’s designated area was available to compensate

for any errors in payload release. Radially, the performance of the system was found

to achieve payload release within an average range of 36.24% of the defined

drop-zone radius.

8.6 Chapter Conclusion

Chapter 8 discussed the details pertaining to the test of the three defining

subsystems within this research. Results depicting the simulation and physical

results were discussed and a performance evaluation of each system was used to

declare the performance of the integrated system and it was found that the system

was able to achieve the desired results through implementation of the developed

subsystems. Chapter 9 concludes the research by defining the overall performance

of the integrated system and reiterates the research objectives achieved. Additionally,

Chapter 9 defined possible future applications and alterations to the research to

expand upon the results achieved.

Page | 156

Chapter 9

Conclusion and Recommendations

This chapter concludes this dissertation, highlighting the final performance of the

vision-based autonomous aircraft payload delivery system developed. Additional

sections discussed within this chapter included research contributions and

recommendations for future research.

10.1 Conclusion

The aim of this research was to develop a modular vision-based autonomous aircraft

payload delivery system for application in the automated delivery of a given payload

to a drop-zone location. This payload delivery system was designed for use in,

amongst various other applications, the service delivery sector. The desired objective

was to promote the development of the service delivery sector into the era of

Industry 4.0.

To achieve the aims and objectives of this research, an application specific hardware

and software architecture was developed. The hardware architecture consisted of a

test bench aircraft, the Skywalker 2013, integrated with the Pixhawk flight controller

to enable the system with autonomous flight control. Additionally, an Odroid-XU4

companion computer was integrated onboard to provide the necessary

computational power required to achieve a fully automated vision-based payload

delivery system, where the vision system consisted of an ELP-USB500W04AF-A60

CMOS camera and TAROT gimbal. A Linux-based ROS node software architecture

was developed, where five C++ ROS nodes were utilised for integrated control.

Selection of these system architecture components was done through the research

of relevant literature on similar systems.

This research found through application of SITL and HITL simulations, and physical

testing, it was found that a low-input operator defined mission was successfully

achieved with fully autonomous flight control of the aircraft. Comparative results

captured during physical flight tests illustrated a 14.91% reduction in power

consumption with the application the autonomous flight control of the aircraft as

opposed to manual flight control of the aircraft.

Through application of simulated footage, both onboard and offboard the aircraft, an

image processing algorithm was developed which was capable of drop-zone

identification and location up to 100 m away based on the vision hardware utilised.

Page | 157

Physical testing of the vision system and image processing algorithm resulted in

drop-zone identification and location within the defined acceptable drop-zone area.

Application of the vision system at an altitude of 75 m resulted in the determination

of the drop-zone location with an average displacement of 1.82 m from the true

drop-zone location. Additionally, it was found that approximately 30% of the detected

drop-zone locations were within a 1 m radius of the true location. The resulting

accuracy of the vision system was found to improve upon the research conducted by

Hinas et al. [27], where similar vision system test results were achieved at an altitude

of 40 m.

Application of SITL and HITL simulations, and the mathematical model developed in

Chapter 6 resulted in the successful payload displacement prediction of payloads

dropped from altitude. A payload displacement prediction uncertainty error of

±0.28 m was achieved, with the most accurate payload release achieving a payload

displacement error 0.14 m from the theoretical location, at an altitude of 76.2 m. The

resulting automated payload release testing provided the necessary evidence to

conclude that a two-phase payload release trajectory was present, as described in

Chapter 6. Additionally, the payload release results indicated an improvement upon

the research conducted by Boura et al. [10], where through application of an

autonomous aircraft payload delivery system, an average payload displacement of

75 ft (~23 m) was achieved during testing.

As an integrated unit, the system was able to successfully fly an autonomous mission

and through vision-based survey, determine the true location of the drop-zone within

the acceptable tolerance. Through drop-zone identification, the system was able to

update mission waypoints, execute environmental parameter survey for payload

release trajectory calculations and subsequently release the payload to within the

acceptable drop-zone area. As such, this research successfully met the required

research aims and objectives defined and proved the proposed hypothesis.

Page | 158

10.2 Research Contributions

With the conclusion of this research, the following research contributions were

achieved:

➢ The development of a vision system and image processing algorithm which

achieved similar results in target location determination accuracy at an

altitude of 75 m when compared to the apparent average accuracy of Hinas et

al.’s vision system [27] at an altitude of 40 m.

➢ The development of a fully integrated autonomous aircraft with an integrated

autonomous vision system capable of achieving the automated payload

release. Where, this research built upon the research conducted by

Boura et al. [10] in the development of an autonomous aircraft with payload

release capabilities.

➢ Based on the work conducted by Boura et al. [10], where payload trajectory

modelling was achieved through real-time environmental parameter

monitoring, it was found that payload trajectory modelling could be furthered.

As such, this research included the development of a two-dimensional two-

phase payload release trajectory model for the prediction of a payload’s

ballistic fall trajectory, which achieved successful displacement prediction

results during simulated and physical testing.

➢ An integrated payload delivery system capable of achieving the same results

as achieved by Zipline [50] and DHL Parcelcopter [16], two commercially used

systems implementing autonomous aircraft payload delivery. Additionally, the

introduction of a vision system, a system the two commercial systems did not

possess, increased payload delivery accuracy and security by ensuring

payload drop-zone identification.

➢ The development of a fully automated mission flight plan based on a single

user-defined waypoint. Improving upon the DHL Parcelcopter’s [16] system of

manual user mission designation and subsequently optimising mission

waypoint designation.

Page | 159

10.3 Recommendations for Future Research

Upon completion of this research and reflection on the results gathered, several

future considerations were derived to further this research. These considerations

included:

➢ Application of the integrated system within different airframes to allow for

comparative results to be drawn of the performance of the integrated system

within another airframe.

➢ Application of a larger FOV vision system or several vision systems to allow

for a larger survey area, in terms of spacing between survey waypoints.

➢ Future development of the image processing algorithm for use in unique

drop-zone identifier locations as opposed to a generic red circle. Such an

application would allow for greater payload delivery security in terms of

decreasing the number of false detections by the vision system.

➢ Development of a controlled payload could be undertaken in order to mitigate

the design-stage uncertainty errors and overall errors obtained.

➢ Further testing of the payload release system to allow for system performance

to be determined under a greater range of testing parameters, such as higher

altitude releases, greater aircraft ground speeds and greater headwind

velocities.

Page | 160

References

[1] Ardupilot Dev Team. Automatic Takeoff. [Internet]: ArduPilot; 2016 [cited 2018

March 10]. Available from: http://ardupilot.org/plane/docs/automatic-

takeoff.html

[2] Ardupilot Dev Team. Complete Parameter List. [Internet]: ArduPilot; 2016 [cited

2018 March 10]. Available from: http://ardupilot.org/plane/docs/parameters.html

[3] ArduPilot Dev Team. Fixed-wing aircraft. [Internet]: ardupilot.org; 2016 [cited 2018

April 26]. Available from: http://ardupilot.org/plane/

[4] ArduPilot Dev Team. QuadPlane Overview. [Internet]: 2016 [cited 2018 April 26].

Available from: http://ardupilot.org/plane/docs/quadplane-overview.html

[5] ArduPilot Dev Team. What is a MultiCopter and How Does it Work? [Internet]:

ardupilot.org; 2016 [cited 2018 April 26]. Available from:

http://ardupilot.org/copter/docs/what-is-a-multicopter-and-how-does-it-

work.html

[6] Benson T. Centre of Pressure – cp. [Internet]: NASA; 2014 [Update 2014 June 12;

cited 2018 June 10]. Available from: https://www.grc.nasa.gov/www/k-

12/rocket/cp.html

[7] Benson T. Determining Centre of Pressure – cp. [Internet]: NASA; 2014 [Update

2014 June 12; cited 2018 June 10]. Available from:

https://www.grc.nasa.gov/www/k-12/rocket/rktcp.html

[8] Benson T. Shape Effects on Drag. [Internet]: NASA; 2015 [Updated 2015 October

22; cited 2018 June 10]. Available from:

https://spaceflightsystems.grc.nasa.gov/education/rocket/shaped.html

[9] Bhutia TK. Lapse Rate. [Internet]: Encyclopaedia Britannica; 2016 [cited 2018 June

08]. Available from: https://www.britannica.com/science/lapse-rate

[10] Boura D, Hajicek D, Semke W. Automated Air Drop System for Search and Rescue

Applications Utilizing Unmanned Aircraft Systems. American Institute of

Aeronautics and Astronautics. 2011; 1-8.

[11] Bradski G, Kaehler A. Learning OpenCV. 1st Edition. Sebastopol: O’Reilly; 2008.

[12] Byaruhanga, J. Improving Service Delivery in Developing Countries. Academia.

2011.

https://www.academia.edu/1281472/Improving_Service_delivery_in_Developing_

countries. 2011 January 01. Accessed Date: 2018 April 30.

[13] Communications Security, Inc.. SSH (SECURE SHELL). [Internet]: ssh.com; 2018

[cited 2018 September 28]. Available from: https://www.ssh.com/ssh/

Page | 161

[14] Crawley SW, Dillon RM. Steel Buildings: Analysis and Design. 4th Edition. United

States of America: John Wiley & Sons; 1993.

[15] David, M. Get lat/long given current point, distance and bearing. [Internet]:

StackOverflow; 2011 [cited 2018 July 16]. Available from:

https://stackoverflow.com/questions/7222382/get-lat-long-given-current-point-

distance-and-bearing

[16] Deutsche Post AG. DHL Parcelcopter. [Internet]: Deutsche Post DHL Group; 2018

[cited 2018 October 15]. Available from: https://www.dpdhl.com/en/media-

relations/specials/dhl-parcelcopter.html

[17] Elpcctv.com. MINI 5MP AF USB CAMERA MODULE OV5640 COLOR CMOS

SENSOR. [Internet]: Ailipu Technology Co.,Ltd.; 2018 [cited 2018 June 07].

Available from: http://www.elpcctv.com/mini-5mp-af-usb-camera-module-

ov5640-color-cmos-sensor-p-234.html

[18] Figliola, RS, Beasley, DE. Theory and Design for Mechanical Measurements. 6th

Edition. Hoboken: John Wiley & Sons; 2015.

[19] Geissbauer, R, Vedsø, J, Schrauf, S. A Strategists Guide to Industry 4.0. [Internet]:

strategy+business; 2016 [cited 2018 April 25]. Available from:

https://www.strategy-business.com/article/A-Strategists-Guide-to-Industry-

4.0?gko=7c4cf.

[20] Gomez, DA. Writing a Simple Image Publisher (C++). [Internet]: ROS.org; 2015-May

[cited 2018 July 20]. Available from:

http://wiki.ros.org/image_transport/Tutorials/PublishingImages

[21] GoPro. What is the Centre of Gravity on the HERO camera?. [Internet]: GoPro.com;

2018 [cited 2018 August 11]. Available from:

https://gopro.com/help/articles/question_answer/What-is-the-Center-of-

Gravity-on-the-HERO-Camera

[22] Hall N. Ballistic Flight Equations (no drag – no thrust). [Internet]: NASA; 2018

[Updated 2018 April 05; cited 2018 May 02]. Available from:

https://www.grc.nasa.gov/WWW/k-12/airplane/ballflght.html.

[23] Hall N. Flight Equations with Drag (no thrust – constant mass). [Internet]: NASA;

2018 [Updated 2018 April 05; cited 2018 June 10]. Available from:

https://www.grc.nasa.gov/www/k-12/airplane/flteqs.html.

[24] Hall N. Wing Geometry Definitions. [Internet]: NASA; 2018 [cited 2018 August 13].

Available from: https://www.grc.nasa.gov/www/k-12/airplane/geom.html

[25] Hardkernel Co. ODroid-XU4. [Internet]: hardkernel.com; 2018 [cited

2018 March 27]. Available from: https://www.hardkernel.com/shop/odroid-xu4/

Page | 162

[26] Hassanalian M, Abdelkefi A. Classifications, applications, and design challenges of

drones: A review. Progress in Aerospace Sciences. 2017; 91: 99‑131.

[27] Hinas, A., Roberts, J.M, Gonzalez, F. Vision-Based Target Finding and Inspection

of a Ground Target Using a Multirotor UAV System. Sensors. 2017; 2929:1-17.

[28] Hochstenbach M, Notteboom C, Theys B, De Schutter J. Design and Control of an

Unmanned Aerial Vehicle for Autonomous Parcel Delivery with Transition from

Vertical Take-off to Forward Flight. International Journal of Micro Air Vehicles.

2015; 7(4): 395-405.

[29] International Civil Aviation Organization. Frequently Used Terms. [Internet]:

International Civil Aviation Organization; 2018 [cited 2018 February 05]. Available

from: https://www.icao.int/safety/UA/UASToolkit/Pages/FAQ.aspx

[30] Jewett JW Jr., Serway RA. Physics for Scientists and Engineers with Modern

Physics. 8th Edition. Canada: Brooks/ Cole CENGAGE Learning; 2010.

[31] Opencv dev team. Hough Circle Transform. [Internet]: OpenCV; 2014 [cited 2018

July 30]. Available from:

https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_circle/hou

gh_circle.html#hough-circle-transform

[32] OpenCV dev team. How the image matrix is stored in the memory?. [Internet]:

OpenCV; 2014 [cited 15 October 2018]. Available from:

https://docs.opencv.org/2.4/doc/tutorials/core/how_to_scan_images/how_to_sc

an_images.html#how-the-image-matrix-is-stored-in-the-memory

[33] OpenCV dev team. Image Filtering. [Internet]: OpenCV; 2014 [cited 2018 July 25].

Available from:

https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html#image-filtering

[34] Osswald, S. Writing a Simple Image Subscriber (C++). [Internet]: ROS.org; 2015

May [cited 2018 July 20]. Available from:

http://wiki.ros.org/image_transport/Tutorials/SubscribingToImages

[35] Pike, J. Principles of Airdrop Supply and Resupply Operations. [Internet]:

GlobalSecurity.org; 2000 [cited 2018 April 10]. Available from:

https://www.globalsecurity.org/military/library/policy/army/fm/10-500-

1/Ch2.htm#top

[36] Prabowo YA, Trilaksono BR, Triputra FR. Hardware In-the-Loop Simulation for

Visual Servoing of Fixed Wing UAV. International Conference on Electrical

Engineering and Informatics (ICEEI). 2015; 247-252.

Page | 163

[37] PX4 Dev Team. Pixhawk 1 Flight Controller. [Internet]: Droncode.org; 2018 [cited

2018 March 18]. Available from:

https://docs.px4.io/en/flight_controller/pixhawk.html

[38] Samaritan’s Purse. 2011 Year in Pictures. [Internet]: Samaritanspurse.org; 2011

[cited 2018 October 15]. Available from:

https://www.samaritanspurse.org/article/2011-year-in-pictures-2/

[39] Shankland, S. Zipline drone launch. [Internet]: CNET; 2018 April [cited 2018

October 15]. Available from: https://www.cnet.com/pictures/take-a-look-at-

ziplines-new-drone-delivery-system/

[40] Sol. Detect red circles in an image using OpenCV. [Internet]: Solarian Programmer;

2015-May [cited 2018 July 25]. Available from:

https://solarianprogrammer.com/2015/05/08/detect-red-circles-image-using-

opencv/

[41] Sullivan, JM. Evolution or Revolution? The Rise of UAVs. IEEE Technology and

Society Magazine. 2006; 25(3): 43-49.

[42] Sutton GP, Biblarz O. Rocket Propulsion Elements. 7th Edition. Canada: John

Wiley & Sons, INC.; 2001.

[43] TSC. MAVROS/CustomModes. [Internet]: ROS.org; 2018 [cited 2018 July 07].

Available from: http://wiki.ros.org/mavros/CustomModes

[44] U.S. Department of Transport. Pilot’s Handbook of Aeronautical Knowledge. FAA-

H-8083-25B. Oklahoma City: United States Department of Transportation, Federal

Aviation Administration, Airman Testing Standards Branch; 2016.

[45] U.S. Department of Transport. Glider Flying Handbook. FAA-H-8083-13A.

Oklahoma City: United States Department of Transportation, Federal Aviation

Administration, Airman Testing Standards Branch; 2013.

[46] UAVChallenge. Search and Rescue. [Internet]: uavchallenge.org; 2014 [cited 2018

March 22]. Available from: https://uavchallenge.org/search-and-rescue/

[47] Unknown. MAVLINK Common Message Set. [Internet]: MAVLINK; 2018 [cited 2018

July 07]. Available from: https://mavlink.io/en/messages/common.html

[48] Vooon. MAVROS. [Internet]: ROS.org; 2018 [cited 2018 June 12]. Available from:

http://wiki.ros.org/mavros

[49] Vooon. MAVROS_MSGS. [Internet]: ROS.org; 2018 [cited 2018 June 12]. Available

from: http://wiki.ros.org/mavros_msgs

[50] Zipline. Zipline. [Internet]: Zipline; 2018 [cited 2018 February 12]. Available from:

http://www.flyzipline.com/

Page | 164

Appendices

Appendix A1 – Autonomous Flight Node Code

Page | 165

//Vision-Based Autonomous Aircraft Payload Delivery System
//James Sewell
//MEng (Mechatronics)
//Nelson Mandela University
///
///////////////////FLIGHT NODE///////////////////
///
/////////////////////HEADERS/////////////////////
//ROS and Other Libraries
#include <ros/ros.h> //ROS Header
#include <math.h> //Maths header
#include <geometry_msgs/Twist.h> //Velocity
//MAVROS Message Types
#include <mavros_msgs/OverrideRCIn.h> //Payload release
#include <mavros_msgs/SetMode.h> //Define aircraft flightmode
#include <mavros_msgs/State.h> //Current autopilot state
#include <mavros_msgs/VFR_HUD.h> //Telemetry
#include <mavros_msgs/Waypoint.h> //Waypoint header
#include <mavros_msgs/WaypointClear.h> //Clear waypoints header
#include <mavros_msgs/WaypointList.h> //List current waypoints
#include <mavros_msgs/WaypointReached.h> //Confirmation on reaching waypoint
//MAVROS Service Types
#include <mavros_msgs/CommandBool.h> //Arming statement
#include <mavros_msgs/CommandTOL.h> //Takeoff and Landing
#include <mavros_msgs/WaypointPull.h> //Request waypoints from FCU
#include <mavros_msgs/WaypointPush.h> //Send waypoints to FCU
#include <mavros_msgs/WaypointSetCurrent.h> //Define a waypoint for the
aircraft to fly to (Provide index)
//Global Constants
float pi = 3.14159265359;
////////////////////CALLBACKS////////////////////
//Current flight controller status
mavros_msgs::State FCU_State; //Assigning the FCU state variable
void state_cb(const mavros_msgs::State::ConstPtr& msg)
{
FCU_State = *msg;
}
//Current flight controller variables (airspeed, heading, etc)
mavros_msgs::VFR_HUD HV; //Assigning the FCU state variable
void vfr_cb(const mavros_msgs::VFR_HUD::ConstPtr& msg)
{
HV = *msg;
}
//Current waypoint reached status
mavros_msgs::WaypointReached WayReached;
void wayreach_cb(const mavros_msgs::WaypointReached::ConstPtr& msg)
{
WayReached = *msg;
}
//Current list of waypoints
mavros_msgs::WaypointList WayList;
void waylist_cb(const mavros_msgs::WaypointList::ConstPtr& msg)
{
WayList = *msg;
}
////////////////////MAIN CODE////////////////////
int main(int argc, char **argv)

Page | 166

{
/********************Topics********************/
ros::init(argc, argv, "auto_flight_node"); //ROS Node Initialiser
ros::NodeHandle nh;
//Subscribers (Listens for information from FCU)
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>("mavros/
state", 10, state_cb); //Listens for aircraft state
ros::Subscriber vfr_sub = nh.subscribe<mavros_msgs::VFR_HUD>("mavros/
vfr_hud", 10, vfr_cb); //Listens for aircraft variables
ros::Subscriber way_reach_sub = nh.subscribe<mavros_msgs::WaypointReached>
("mavros/mission/reached", 10, wayreach_cb); // Listens for whether the
aircraft reached the desired waypoint
ros::Subscriber way_list_sub = nh.subscribe<mavros_msgs::WaypointList>
("mavros/mission/waypoints", 10, waylist_cb); // Listens for the list of
waypoints
//Publishers (Transmits information to FCU)
ros::Publisher release_mechanism_pub =
nh.advertise<mavros_msgs::OverrideRCIn>("mavros/rc/override", 10); //
Publishisher for payload release
ros::Publisher velocity_pub = nh.advertise<geometry_msgs::Twist>("mavros/
setpoint_velocity/cmd_vel_unstamped", 10); //Publisher for desired
mission airspeed
//Services and Clients (Allows for functions to be defined and called,
returning a booleean result as to the clients success at executing the
service
//Two members: request and response
ros::ServiceClient arming_client =
nh.serviceClient<mavros_msgs::CommandBool>("mavros/cmd/arming"); //
Arming client
ros::ServiceClient set_mode_client =
nh.serviceClient<mavros_msgs::SetMode>("mavros/set_mode"); //Flight mode
setting client
ros::ServiceClient wayclear_client =
nh.serviceClient<mavros_msgs::WaypointClear>("mavros/mission/clear"); //
Clear waypoints client
ros::ServiceClient waypull_client =
nh.serviceClient<mavros_msgs::WaypointPull>("mavros/mission/pull"); //
Download waypoints from FCU
ros::ServiceClient waypush_client =
nh.serviceClient<mavros_msgs::WaypointPush>("mavros/mission/push"); //
Upload waypoints to FCU
ros::ServiceClient waysetcurrent_client =
nh.serviceClient<mavros_msgs::WaypointSetCurrent>("mavros/mission/
set_current"); //Update next waypoint to fly to (use for when desired
waypoint has been passed or is far away)
//Communication Transmission Rate (>>2Hz)
ros::Rate rate(20.0); //rate defines the frequency (rate is an attribute
of the ROS::Rate topic)
//Wait for connection to be established between MAVROS and autopilot
while(ros::ok() && !FCU_State.connected)
{
ros::spinOnce(); //Ensures that subscriptions, publishers, callbacks,
etc are executed (laymans term = ROS ISR), Puases other nodes an
runs this code
rate.sleep(); //Ensures that the ROS::Rate maintrains the desired
frequency of operation
}

Page | 167

/******************Initialise******************/
//Ensures the aircraft is disarmed and set to manual mode initially
ROS_INFO("Initialising...");
ros::Time last_request = ros::Time::now(); //Current flight control time
mavros_msgs::SetMode aircraft_set_mode; //Define variable for setting the
aircraft's flight mode
mavros_msgs::CommandBool arm_motor_cmd; //Define the arming variable
aircraft_set_mode.request.custom_mode = "MANUAL"; //Assign the desired
aircraft flight mode (MANUAL Mode)
arm_motor_cmd.request.value = false; //Disarm the aircraft (Service-Client
memeber)
while (FCU_State.mode != "MANUAL" || FCU_State.armed) //Disarming and
MANUAL mode transmission loop
{
if (FCU_State.mode != "MANUAL" && (ros::Time::now() - last_request >
ros::Duration(0.2))) //Delay by 'X' seconds to prevent bottleneck
{
if (set_mode_client.call(aircraft_set_mode) &&
aircraft_set_mode.response.mode_sent) //Call service client
{
ROS_INFO("Manual Flight Mode"); //Confirmation
}
last_request = ros::Time::now(); //Update timer
}
else
{
if (FCU_State.armed && (ros::Time::now() - last_request >
ros::Duration(0.2))) //Delay by 'X' seconds to prevent
bottleneck
{
if (arming_client.call(arm_motor_cmd) &&
arm_motor_cmd.response.success) //Call service client
{
ROS_INFO("Motors Disarmed"); //Confirmation
}
last_request = ros::Time::now(); //Update timer
}
}
ros::spinOnce();
rate.sleep();
}
ROS_INFO("Initialisation Complete");
//Define flight velocity
geometry_msgs::Twist velo;
velo.linear.x = 13;
velocity_pub.publish(velo);
ros::spinOnce();
rate.sleep();
/****************Mission Waypoint**************/
//Waypoint variables
mavros_msgs::WaypointClear wayclear;
mavros_msgs::WaypointPush waypush;
mavros_msgs::WaypointSetCurrent waysetcur;
mavros_msgs::Waypoint Points[18]; //Waypoint array
mavros_msgs::Waypoint wp_dud; //Dud waypoint
mavros_msgs::Waypoint wp_takeoff; //Target waypoint
mavros_msgs::Waypoint wp_landing; //Landing waypoint

Page | 168

mavros_msgs::Waypoint wp_initial; //Initial target waypoint
mavros_msgs::Waypoint wp_sl; //Survey waypoint lineup
mavros_msgs::Waypoint wp_s1; //Survey waypoint #1
mavros_msgs::Waypoint wp_s2; //Survey waypoint #2
mavros_msgs::Waypoint wp_s3; //Survey waypoint #3
mavros_msgs::Waypoint wp_s4; //Survey waypoint #4
mavros_msgs::Waypoint wp_s5; //Survey waypoint #5
mavros_msgs::Waypoint wp_s6; //Survey waypoint #6
mavros_msgs::Waypoint wp_s7; //Survey waypoint #7
mavros_msgs::Waypoint wp_s8; //Survey waypoint #8
mavros_msgs::Waypoint wp_hw; //Headwind waypoint #3
mavros_msgs::Waypoint wp_target; //Target waypoint
mavros_msgs::Waypoint wp_dal; //Drop approach lineup
mavros_msgs::Waypoint wp_da1; //Drop approach waypoint #1
mavros_msgs::Waypoint wp_da2; //Drop approach waypoint #2 --> Drop payload
location
//Assigning the waypoints to the array
Points[0] = wp_dud; //redundant
Points[1] = wp_takeoff;
Points[2] = wp_sl;
Points[3] = wp_s1;
Points[4] = wp_s2;
Points[5] = wp_s3;
Points[6] = wp_s4;
Points[7] = wp_s5;
Points[8] = wp_s6;
Points[9] = wp_s7;
Points[10] = wp_s8;
Points[11] = wp_hw;
Points[12] = wp_dal;
Points[13] = wp_da1;
Points[14] = wp_da2;
Points[15] = wp_target;
Points[16] = wp_landing;
Points[17] = wp_initial;
//Clear all onboard waypoints and refresh FCU
bool NoOld = false;
bool newMission = false;
last_request = ros::Time::now();
while (NoOld != true)
{
if (NoOld != true && (ros::Time::now() - last_request > ros::Duration
(0.2)))
{
if (wayclear_client.call(wayclear))
{
ROS_INFO("Waypoints Cleared %d",
wayclear.response.success); //Confirm how many waypoints
were cleared
NoOld = true;
}
last_request = ros::Time::now();
}
ros::spinOnce();
rate.sleep();
}
//Redundant waypoint (mimics takeoff) - Necessary for transmission of all

Page | 169

waypoints or first is ignored
Points[0].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
Points[0].command = 22; //takeoff command
Points[0].is_current = false;
Points[0].autocontinue = true;
Points[0].param1 = 15; //pitch
Points[0].param2 = 0;
Points[0].param3 = 0;
Points[0].param4 = 0;
Points[0].x_lat = -33.876505;
Points[0].y_long = 25.351275;
Points[0].z_alt = 50.0;
//Takeoff waypoint
Points[1].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
Points[1].command = 22; //takeoff command
Points[1].is_current = false;
Points[1].autocontinue = true;
Points[1].param1 = 15; //pitch
Points[1].param2 = 0;
Points[1].param3 = 0;
Points[1].param4 = 0;
Points[1].x_lat = -33.876505;
Points[1].y_long = 25.351275;
Points[1].z_alt = 50.0;
//Initial target waypoint
Points[17].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
Points[17].command = 16;
Points[17].is_current = false;
Points[17].autocontinue = true;
Points[17].param1 = 0;
Points[17].param2 = 2;
Points[17].param3 = 0;
Points[17].param4 = 0;
Points[17].x_lat = -33.876505; //Approximate drop-zone latitude (centre of
survey)
Points[17].y_long = 25.351275; //Approximate drop-zone longitude (centre
of survey)
Points[17].z_alt = 50.0; //Altitude
//Generic waypoint parameters
for(int x = 2; x < 17; x++)
{
Points[x].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
Points[x].command = 16; //waypoint command
Points[x].is_current = false;
Points[x].autocontinue = true;
Points[x].param1 = 0;
Points[x].param2 = 2; //waypoint reached precision
Points[x].param3 = 0;
Points[x].param4 = 0;
Points[x].z_alt = 50.0;
}
//Computation of survey area
/*
3
|
2----4 8
| | |

Page | 170

| + |
| | |
1 5----7
|
6
*/
float R = 6378.1; //Radius of the Earth (km)
float B1 = 0; //Bearing upward (0 degrees -> radians)
float B2 = pi/2; //Bearing right (90 degrees -> radians)
float B3 = pi; //Bearing down (180 degrees -> radians)
float B4 = 3*pi/2; //Bearing left (270 degrees -> radians)
float d = 0.035; //Distance in km
float lat_ref = Points[17].x_lat * (pi/180); //Initial target latitude
converted to radians
float long_ref = Points[17].y_long * (pi/180); //Initial target longitude
converted to radians
//Survey coordinate #3
Points[6].x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R)*cos
(B1))) * (180/pi);
Points[6].y_long = (long_ref + atan2(sin(B1)*sin(d/R)*cos(lat_ref), cos(d/
R) - sin(lat_ref)*sin(Points[6].x_lat))) * (180/pi);
//Survey coordinate #4
Points[7].x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R)*cos
(B3))) * (180/pi);
Points[7].y_long = (long_ref + atan2(sin(B3)*sin(d/R)*cos(lat_ref), cos(d/
R) - sin(lat_ref)*sin(Points[7].x_lat))) * (180/pi);
//Survey coordinate #1
Points[3].x_lat = Points[7].x_lat;
Points[3].y_long = (long_ref + atan2(sin(B4)*sin(d/R)*cos(lat_ref), cos(d/
R) - sin(lat_ref)*sin(Points[3].x_lat))) * (180/pi);
//Survey coordinate #2
Points[4].x_lat = Points[6].x_lat;
Points[4].y_long = Points[3].y_long;
//Survey coordinate #5
Points[9].x_lat = Points[7].x_lat;
Points[9].y_long = (long_ref + atan2(sin(B2)*sin(d/R)*cos(lat_ref), cos(d/
R) - sin(lat_ref)*sin(Points[9].x_lat))) * (180/pi);
//Survey coordinate #6
Points[10].x_lat = Points[4].x_lat;
Points[10].y_long = Points[9].y_long;
//Survey coordinate #SL
Points[2].x_lat = (asin(sin(lat_ref)*cos(0.09/R) + cos(lat_ref)*sin(0.09/
R)*cos(B3))) * (180/pi);
Points[2].y_long = Points[3].y_long;
//Survey coordinate #T1
Points[5].x_lat = (asin(sin(lat_ref)*cos(0.09/R) + cos(lat_ref)*sin(0.09/
R)*cos(B1))) * (180/pi);
Points[5].y_long = Points[3].y_long;
//Survey coordinate #T2
Points[8].x_lat = (asin(sin(lat_ref)*cos(0.09/R) + cos(lat_ref)*sin(0.09/
R)*cos(B3))) * (180/pi);
Points[8].y_long = Points[7].y_long;
//Display waypoints and their locations
for(int x = 2; x < 15; x++)
{
ROS_INFO("%i %f", x, Points[x].x_lat);
ROS_INFO("%i %f", x, Points[x].y_long);

Page | 171

}
waypush.request.start_index = 0; //Start new waypoint list from the
begining
last_request = ros::Time::now();
while (newMission != true) //New mission transmission loop
{
if (newMission != true && (ros::Time::now() - last_request >
ros::Duration(0.2)))
{
for(int x = 0; x < 18; x++)
{
waypush.request.waypoints.push_back(Points[x]); //send all waypoints to the FCU
}
if (waypush_client.call(waypush)) //Call waypoint upload client
{
ROS_INFO("Mission waypoints sent: %i",
waypush.response.success);
ROS_INFO("Number of waypoints sent: %i",
waypush.response.wp_transfered);
newMission = true; //Mission sent boolean (terminating
statement)
}
last_request = ros::Time::now();
}
ros::spinOnce();
rate.sleep();
}
/*************Flight Mode Selection************/
//Defines desired aircraft flight mode and arms motors
aircraft_set_mode.request.custom_mode = "AUTO"; //Assign the desired
aircraft flight mode
arm_motor_cmd.request.value = true; //Arm the aircraft (Service-Client
memeber)
last_request = ros::Time::now();
//Confirm that flight mode was successfully entered
while(FCU_State.mode != "AUTO" || !FCU_State.armed) //Arming and AUTO
Flight Mode Transmission Loop
{
if(!FCU_State.armed && (ros::Time::now() - last_request >
ros::Duration(2.0))) //Delay by 'X' seconds to prevent bottleneck
{
if(arming_client.call(arm_motor_cmd) &&
arm_motor_cmd.response.success)
{
ROS_INFO("Aircraft Armed");
}
last_request = ros::Time::now(); //Update current timer time
}
if(!FCU_State.armed && (ros::Time::now() - last_request >
ros::Duration(2.0)))
{
if(FCU_State.mode != "AUTO" && (ros::Time::now() - last_request >
ros::Duration(2.0))) //Delay by 'X' seconds to prevent
bottleneck
{
if(set_mode_client.call(aircraft_set_mode) &&
aircraft_set_mode.response.mode_sent)

Page | 172

{
ROS_INFO("AUTO Flight Mode");
}
last_request = ros::Time::now();
}
}
ros::spinOnce();
rate.sleep();
}
/*******************Payload Release******************/
mavros_msgs::WaypointSetCurrent WayFlyTo;
bool dropped = false;
mavros_msgs::OverrideRCIn release_cmd; //Release payload actuator
while (ros::ok)
{
if (dropped == true)
{
WayFlyTo.wp_seq = 12; //Confirmation flyover
waysetcurrent_client.call(WayFlyTo); //Confirmation flyover client
call
}
if(WayReached.wp_seq == 14 && dropped != true) //Wait till payload
waypoint has been defined and obtained
{
release_cmd.channels[6] = 2000; //Release payload servo position
dropped = true;
}
release_mechanism_pub.publish(release_cmd); //Publish release command
ros::spinOnce();
rate.sleep();
}
return 0;
}

Page | 173

Appendix A2 – Image Capture Node Code

Page | 174

//Vision-Based Autonomous Aircraft Payload Delivery System
//James Sewell
//MEng (Mechatronics)
//Nelson Mandela University
///
///////////////////IMAGE CAPTURE/////////////////
///
#include <ros/ros.h> //ROS header
#include <image_transport/image_transport.h> //Image transporter header for
inter-node transfer
#include <opencv2/highgui/highgui.hpp> //OPENCV Header
#include <cv_bridge/cv_bridge.h> //OPENCV Bridge Header
#include <sstream> // for converting the command line parameter to integer
int main(int argc, char** argv)
{
ros::init(argc, argv, "image_publisher");
ros::NodeHandle nh;
image_transport::ImageTransport it(nh); //Define nodehandler function
image_transport::Publisher pub = it.advertise("camera/image", 1); //Define
pusblisher file from which image will be subscribed
cv::VideoCapture cap(0); //Begin image stream from USB device 0
// Check if video device can be opened with the given index
if(!cap.isOpened()) return 1; //Ensure camera stream is present
cv::Mat frame; //Create image file variable
ros::Rate loop_rate(30); //Set transmission rate 30 FPS
while (nh.ok()) //While publisher is active
{
cap >> frame; //Capture image
msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg
(); //Change format of captured image
pub.publish(msg); //Publish Image
cv::waitKey(1); //Provide transmission time
ros::spinOnce();
loop_rate.sleep();
}
}

Page | 175

Appendix A3 – Image Processing Node Code

Page | 176

//Vision-Based Autonomous Aircraft Payload Delivery System
//James Sewell
//MEng (Mechatronics)
//Nelson Mandela University
///
//////////////IMAGE PROCESSING NODE//////////////
///
#include <ros/ros.h> //ROS Header
#include <std_msgs/String.h> //String Header
#include <image_transport/image_transport.h> //Image Transporter Header
#include <opencv2/highgui/highgui.hpp> //OPENCV Header
#include <cv_bridge/cv_bridge.h> //OPENCV Bridge Header
#include <mavros_msgs/Waypoint.h> //Waypoint Header
#include <mavros_msgs/WaypointPush.h> //Upload waypoints to FCU
#include <mavros_msgs/VFR_HUD.h> //Telemetry Header
#include <sensor_msgs/NavSatFix.h> //GPS Header
#include <std_msgs/Float64.h> //Altitude header (realtive to takeoff)
#include <math.h> //Maths header
//Namespaces - for neater code
using namespace cv;
using namespace ros;
using namespace std;
using namespace mavros_msgs;
using namespace sensor_msgs;
Waypoint wp_target; //Drop-zone waypoint
Waypoint wp_hw; //Headwind determination waypoint
//Variables
float BH = 0; //Drop-zone Bearing
float H_cur = 0; //Heading
float Alt_cur = 0; //Altitude
float x = 0; //Pixel x coordinate
float y = 0; //Pixel y coordinate
float xm = 0; //x axis pixel displacement
float ym = 0; //y axis pixel displacement
float lat_ref = 0; //Reference latitude
float long_ref = 0; //Reference longitude
float d = 0; //Ground plane displacement
float R = 0; //Earth's radius
float B = 0; //Fixed bearing
float pi = 3.14159265359;
//Current flight controller variables (airspeed, heading, etc)
VFR_HUD HV;
void vfr_cb(const mavros_msgs::VFR_HUD::ConstPtr& msg)
{
HV = *msg;
}
//Obtain current GPS location
NavSatFix GPS;
void nsf_cb(const sensor_msgs::NavSatFix::ConstPtr& msg)
{
GPS = *msg;
}
//Obtain relative altitude
std_msgs::Float64 Alt;
void alt_cb(const std_msgs::Float64::ConstPtr& msg)
{
Alt = *msg;

Page | 177

}
//Image callback - Begin object recognition and tracking
void imageCallback(const sensor_msgs::ImageConstPtr& msg)
{
try
{
NodeHandle n;
Subscriber vfr_sub = n.subscribe<mavros_msgs::VFR_HUD>("mavros/vfr_hud",
10, vfr_cb); //VFR_HUD Subscriber
Subscriber nsf_sub = n.subscribe<sensor_msgs::NavSatFix>("mavros/
global_position/global", 10, nsf_cb); //GPS info Subscriber
Subscriber alt_sub = n.subscribe<std_msgs::Float64>("mavros/
global_position/rel_alt", 10, alt_cb); //Altitude subscriber
ServiceClient waypush_client = n.serviceClient<mavros_msgs::WaypointPush>
("mavros/mission/push"); //Waypoint upload header
lat_ref = GPS.latitude * (pi/180); //Reference latitude (current latitude
of aircraft)
long_ref = GPS.longitude * (pi/180); //Reference longitude (current
longitude of aircraft)
H_cur = HV.heading; //Current heading
Alt_cur = Alt.data; //Current altitude
Rate rate(30.0); //Transmission rate of imagery
Mat BGR = cv_bridge::toCvShare(msg, "bgr8")->image; //Convert image from
msg to BGR format
Mat orig_image = BGR.clone(); //Make copy of image for processing
medianBlur(BGR, BGR, 7); //Introduce blur for image flitering and
converting
// Convert input image to HSV
Mat HSV;
cvtColor(BGR, HSV, COLOR_BGR2HSV); //Convert BGR image to HSV image
// Threshold the HSV image, keep only the red pixels
Mat lower_hue;
Mat upper_hue;
inRange(HSV, Scalar(0, 100, 100), Scalar(10, 255, 255), lower_hue); //
Lower hue threshold range
inRange(HSV, Scalar(165, 100, 100), Scalar(179, 255, 255), upper_hue); //
Upper hue threshold range
// Combine the above two images
Mat hue_image;
addWeighted(lower_hue, 1.0, upper_hue, 1.0, 0.0, hue_image); //Combine hue
images for object recognition
// Introduce interference
GaussianBlur(hue_image, hue_image, Size(9, 9), 2, 2); //Introduce noise
// Hough transform to detect circles
vector<Vec3f> circles; //Detected circles array
HoughCircles(hue_image, circles, CV_HOUGH_GRADIENT, 1, hue_image.rows/8,
100, 25, 0, 0); //HOUGH CIRCLE TRANSFORNATION
// Highlight detected object
for(size_t cur = 0; cur < circles.size(); ++cur)
{
Point center(circles[cur][0], circles[cur][1]); //Define centre point
of detected circle
int radius = circles[cur][2]; //Define radius of detected circle
circle(orig_image, center, radius, Scalar(239, 152, 38), 2); //Overlay
detected cricle outline onto origional image
ROS_INFO("Image Centre: %f , %f", circles[cur][0], circles[cur]
[1]); //Display circle centre coordinates

Page | 178

}
imshow("Lower hue", lower_hue); //Display lower hue image
imshow("Upper hue", upper_hue); //Display upper hue image
imshow("Vision Output", orig_image); //Display circle image overlay
ROS_INFO("Size: (W) %i x (H) %i", orig_image.cols, orig_image.rows); //
Define image size
waitKey(10); //allow for display of image for given milliseconds (Image
overlay refreshrate)
//Target Locating
if(circles.size() != 0) //Check if any circles were detected
{
WaypointPush waypush;
//Target bearing
BH = 0;
x = circles[0][0] - (orig_image.cols / 2); //x pixel coordinate
y = circles[0][1] - (orig_image.rows / 2); //y pixel coordinate
xm = (abs(x)/(orig_image.cols/2)) * (Alt_cur*tan(pi/6)); //x
displacement in meters
ym = (abs(y)/(orig_image.rows/2)) * (Alt_cur*tan(pi/8)); //y
displacement in meters
/* Region designation - (0,0) in top-left corner of 2
2|1

3|4
*/
//Determine bearing of target based on image segment
if(circles[0][0] >= 0 && circles[0][0] <= (orig_image.cols / 2)) //
region 2 and 3
{
if(circles[0][1] >= 0 && circles[0][1] <= (orig_image.rows /
2)) //region 2
{
BH = H_cur + atan(abs(x)/abs(y));
}
else //region 3
{
BH = H_cur + (180 - atan(abs(x)/abs(y)));
}
}
else //region 1 and 4
{
if(circles[0][1] > (orig_image.rows / 2)) //region 4
{
BH = H_cur + 180 + atan(abs(x)/abs(y));
}
else //region 1
{
BH = H_cur - atan(abs(x)/abs(y));
}
}
//Bearing regression (0 - 359)
if(BH >= 360)
{
BH = BH - 360;
}
else if(BH < 0)
{

Page | 179

BH = BH + 360;
}
GPS.position_covariance_type = 3; //Type of GPS frame reference (3 -
Covariance known)
d = sqrt(pow(abs(xm), 2) + pow(abs(ym), 2)) / 1000; //magnitude of
vector to target location in km
R = 6378.1; //Radius of the Earth (km)
B = BH * pi/180; //Bearing upward (0 degrees -> radians)
wp_target.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
wp_target.command = 16; //MAV_CMD Waypoint type
wp_target.is_current = false;
wp_target.autocontinue = true;
wp_target.param1 = 0;
wp_target.param2 = 2;
wp_target.param3 = 0;
wp_target.param4 = 0;
wp_target.z_alt = 50.0;
//Deduce target's location based on current location
wp_target.x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R)
*cos(B))) * (180/pi); //Target Latitude
wp_target.y_long = (long_ref + atan2(sin(B)*sin(d/R)*cos(lat_ref), cos
(d/R) - sin(lat_ref)*sin(wp_target.x_lat))) * (180/pi); //Tag=rget
Longitude
//Display target details deduced
ROS_INFO("Lat: %f", wp_target.x_lat); //Target latitude
ROS_INFO("Long: %f", wp_target.y_long); //Target Longitude
ROS_INFO("LatRef: %f", lat_ref); //Reference latitude
ROS_INFO("LongRef: %f", long_ref); //Reference longitude
ROS_INFO("xm: %f", xm); //X axis displacement (km)
ROS_INFO("ym: %f", ym); //Y axis displacment (km)
ROS_INFO("displacement: %f", d); //Total displacment (km)
ROS_INFO("bearing: %f", BH); //Bearing
ROS_INFO("altitude: %f", Alt_cur);
//Update target waypoint parameters
wp_hw.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
wp_hw.command = 18;
wp_hw.is_current = false;
wp_hw.autocontinue = true;
wp_hw.param1 = 3;
wp_hw.param2 = 0;
wp_hw.param3 = 30;
wp_hw.param4 = 1;
wp_hw.z_alt = 50.0;
wp_hw.x_lat = wp_target.x_lat;
wp_hw.y_long = wp_target.y_long;
//Transmit updated target location parameters to FCU
bool targetSent = false;
waypush.request.start_index = 15; //Update waypoint 15
ros::Time last_request = ros::Time::now();
while (targetSent != true)
{
if (targetSent != true && (ros::Time::now() - last_request >
ros::Duration(0.2)))
{
waypush.request.waypoints.push_back(wp_target); //send target
waypoint to the FCU
if (waypush_client.call(waypush))

Page | 180

{
targetSent = true;
}
last_request = ros::Time::now();
}
ros::spinOnce();
rate.sleep();
}
//Transmit updated headwind determination location parameters to FCU
targetSent = false;
waypush.request.start_index = 11; //Update waypoint 11
last_request = ros::Time::now();
while (targetSent != true)
{
if (targetSent != true && (ros::Time::now() - last_request >ros::Duration(0.2)))
{
waypush.request.waypoints.push_back(wp_hw); //send target
waypoint to the FCU
if (waypush_client.call(waypush))
{
targetSent = true;
}
last_request = ros::Time::now();
}
ros::spinOnce();
rate.sleep();
}
}
}//End "if circles detected" loop - End target location identification
//Throw error if image publisher fails
catch (cv_bridge::Exception& e)
{
ROS_ERROR("Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str
());
}
}
int main(int argc, char **argv) //Initial loop
{
init(argc, argv, "image_listener"); //Define node name
NodeHandle nh;
namedWindow("Vision Output", WINDOW_AUTOSIZE); //Create viewable window -
Image overlay output
namedWindow("Lower hue", WINDOW_AUTOSIZE); //Create viewable window -
Lower hue range
namedWindow("Upper hue", WINDOW_AUTOSIZE); //Create viewable window -
Upper hue range
startWindowThread(); //Begin window view and image display
image_transport::ImageTransport it(nh); //Define source of image
image_transport::Subscriber sub = it.subscribe("camera/image", 1,
imageCallback); //Image subscriber
spin();
}

Page | 181

Appendix A4 – Payload Release Node Code

Page | 182

//Vision-Based Autonomous Aircraft Payload Delivery System
//James Sewell
//MEng (Mechatronics)
//Nelson Mandela University
///
///////////////////PAYLOAD NODE///////////////////
///
/////////////////////HEADERS/////////////////////
#include <ros/ros.h> //ROS Header
#include <math.h> //Maths header
#include <mavros_msgs/VFR_HUD.h> //Telemetry
#include <mavros_msgs/Waypoint.h>
#include <mavros_msgs/WaypointList.h>
#include <mavros_msgs/WaypointReached.h> //Confirmation on reaching waypoint
#include <mavros_msgs/WaypointPush.h> //Send waypoints to device (Device =
Pixhawk)
//Global Constants
float pi = 3.14159265359;
using namespace ros;
using namespace std;
using namespace mavros_msgs;
//Current flight controller variables (airspeed, heading, etc)
VFR_HUD HV;
void vfr_cb(const mavros_msgs::VFR_HUD::ConstPtr& msg)
{
HV = *msg;
}
//Current waypoint reached status
WaypointReached WayReached;
void wayreach_cb(const mavros_msgs::WaypointReached::ConstPtr& msg)
{
WayReached = *msg;
}
//Current waypoints on FCU
WaypointList WayList;
void waylist_cb(const mavros_msgs::WaypointList::ConstPtr& msg)
{
WayList = *msg;
}
//////////////////////////////////
//PAYLOAD RELEASE LOOPKUP TABLES//
//////////////////////////////////
//EQUILIBRIUM TIMES
//Equilibrium time lookup table for 45m
float lookup45_pv10[16] = { 3.1, 3.1, 2.5243, 1.5483, 1.089, 0.8272, 0.6607,
0.5459, 0.4623, 0.3996, 0.3505, 0.3111, 0.2789, 0.2528, 0.2299, 0.2111 };
float lookup45_pv11[16] = { 3.1, 3.1, 2.8707, 1.7434, 1.2238, 0.9301, 0.7432,
0.6149, 0.5217, 0.4514, 0.3965, 0.3527, 0.3169, 0.2872, 0.2621, 0.2408 };
float lookup45_pv12[16] = { 3.1, 3.1, 3.1, 1.9436, 1.3655, 1.0385, 0.8303,
0.6872, 0.5834, 0.5049, 0.4436, 0.3947, 0.3547, 0.3215, 0.2936, 0.2698 };
float lookup45_pv13[16] = { 3.1, 3.1, 3.1, 2.1449, 1.5087, 1.1484, 0.9189,
0.761, 0.6463, 0.5596, 0.492, 0.4378, 0.3936, 0.3569, 0.326, 0.2996 };
float lookup45_pv14[16] = { 3.1, 3.1, 3.1, 2.3455, 1.6517, 1.2584, 1.0076,
0.835, 0.7095, 0.6146, 0.5406, 0.4813, 0.4328, 0.3926, 0.3587, 0.3298 };
float lookup45_pv15[16] = { 3.1, 3.1, 3.1, 2.5477, 1.7967, 1.3704, 1.0983,
0.9108, 0.7745, 0.6713, 0.5907, 0.5262, 0.4734, 0.4296, 0.3926, 0.3611 };
float lookup45_pv16[16] = { 3.1, 3.1, 3.1, 2.7463, 1.939, 1.4802, 1.1872,

Page | 183

0.9852, 0.8382, 0.7268, 0.6398, 0.5701, 0.5132, 0.4658, 0.4259, 0.3917 };
float lookup45_pv17[16] = { 3.1, 3.1, 3.1, 2.9464, 2.0833, 1.5921, 1.2781,
1.0614, 0.9037, 0.7841, 0.6906, 0.6157, 0.5544, 0.5034, 0.4604, 0.4237 };
float lookup45_pv18[16] = { 3.1, 3.1, 3.1, 3.143, 2.2242, 1.7009, 1.3662,
1.1351, 0.9668, 0.8392, 0.7394, 0.6593, 0.5938, 0.5394, 0.4934, 0.4541 };
//Equilibrium time lookup table for 50m
float lookup50_pv10[16] = { 3.1928, 3.1928, 2.6542, 1.6293, 1.1469, 0.8716,
0.6959, 0.5748, 0.4872, 0.4208, 0.369, 0.3276, 0.2942, 0.266, 0.2427,
0.2222 };
float lookup50_pv11[16] = { 3.1928, 3.1928, 2.959, 1.8242, 1.2864, 0.9786,
0.7818, 0.6465, 0.548, 0.4733, 0.4152, 0.3688, 0.3308, 0.3, 0.2729, 0.251 };
float lookup50_pv12[16] = { 3.1928, 3.1928, 3.1928, 2.0201, 1.4274, 1.0875,
0.8694, 0.7189, 0.6097, 0.5269, 0.4624, 0.4108, 0.3686, 0.3337, 0.3045,
0.2791 };
float lookup50_pv13[16] = { 3.1928, 3.1928, 3.1928, 2.2167, 1.5698, 1.1973,
0.9580, 0.7927, 0.6724, 0.5813, 0.5104, 0.4536, 0.4072, 0.3684, 0.3361,
0.3085 };
float lookup50_pv14[16] = { 3.1928, 3.1928, 3.1928, 2.4125, 1.7125, 1.3077,
1.0474, 0.8673, 0.7359, 0.6366, 0.5589, 0.497, 0.4462, 0.404, 0.3682,
0.3380 };
float lookup50_pv15[16] = { 3.1928, 3.1928, 3.1928, 2.6069, 1.8553, 1.4189,
1.1375, 0.9426, 0.8004, 0.6924, 0.6082, 0.5407, 0.4854, 0.4397, 0.4013,
0.368 };
float lookup50_pv16[16] = { 3.1928, 3.1928, 3.1928, 2.8006, 1.9983, 1.5304,
1.2282, 1.0184, 0.865, 0.7489, 0.6579, 0.5849, 0.5253, 0.4757, 0.4341,
0.3989 };
float lookup50_pv17[16] = { 3.1928, 3.1928, 3.1928, 2.992, 2.1407, 1.6423,
1.3193, 1.0947, 0.9303, 0.8057, 0.7081, 0.6297, 0.5657, 0.5125, 0.4676,
0.4293 };
float lookup50_pv18[16] = { 3.1928, 3.1928, 3.1928, 3.1812, 2.2824, 1.7543,
1.4106, 1.1712, 0.9962, 0.863, 0.7368, 0.6724, 0.6065, 0.5498, 0.5018,
0.4606 };
//Equilibrium time lookup table for 55m
float lookup55_pv10[16] = { 3.3486, 3.3486, 2.8617, 1.7281, 1.2082, 0.9154,
0.7296, 0.6023, 0.5101, 0.4406, 0.3865, 0.3433, 0.308, 0.2788, 0.2543,
0.2334 };
float lookup55_pv11[16] = { 3.3486, 3.3486, 3.182, 1.9246, 1.3472, 1.0215,
0.8148, 0.6731, 0.5704, 0.4928, 0.4325, 0.3843, 0.345, 0.3124, 0.285,
0.2616 };
float lookup55_pv12[16] = { 3.3486, 3.3486, 3.3486, 2.1233, 1.4875, 1.1287,
0.9008, 0.7444, 0.6311, 0.5455, 0.4789, 0.4256, 0.3822, 0.3461, 0.3158,
0.29 };
float lookup55_pv13[16] = { 3.3486, 3.3486, 3.3486, 2.3233, 1.6295, 1.2375,
0.9884, 0.8173, 0.6932, 0.5995, 0.5265, 0.4681, 0.4205, 0.381, 0.3477,
0.3194 };
float lookup55_pv14[16] = { 3.3486, 3.3486, 3.3486, 2.5226, 1.7713, 1.3465,
1.0762, 0.8904, 0.7557, 0.6538, 0.5744, 0.5109, 0.4591, 0.4161, 0.3799,
0.349 };
float lookup55_pv15[16] = { 3.3486, 3.3486, 3.3486, 2.7237, 1.9153, 1.4575,
1.166, 0.9655, 0.8199, 0.7098, 0.624, 0.5553, 0.4992, 0.4526, 0.4133,
0.3799 };
float lookup55_pv16[16] = { 3.3486, 3.3486, 3.3486, 2.921, 2.0564, 1.5663,
1.254, 1.039, 0.8828, 0.7646, 0.6724, 0.5986, 0.5383, 0.4882, 0.446, 0.41 };
float lookup55_pv17[16] = { 3.3486, 3.3486, 3.3486, 3.1201, 2.1997, 1.6773,
1.344, 1.1145, 0.9476, 0.8212, 0.7225, 0.6435, 0.579, 0.5253, 0.4801,
0.4415 };
float lookup55_pv18[16] = { 3.3486, 3.3486, 3.3486, 3.3152, 2.3393, 1.785,

Page | 184

1.4311, 1.1872, 1.0098, 0.8755, 0.7705, 0.6865, 0.6178, 0.5606, 0.5125,
0.4714 };
//DISPLACEMENT
//Displacment lookup table for 45m
float lookup45d_pv10[16] = { 1.7779, 1.5511, 0.9298, 0.5696, 0.4091, 0.3165,
0.2567, 0.215, 0.1844, 0.161, 0.1426, 0.1278, 0.1157, 0.1055, 0.0969,
0.0895 };
float lookup45d_pv11[16] = { 2.1438, 1.917, 1.2504, 0.7721, 0.5551, 0.4297,
0.3486, 0.2921, 0.2506, 0.219, 0.194, 0.174, 0.1574, 0.1436, 0.1319,
0.1219 };
float lookup45d_pv12[16] = { 2.5424, 2.3156, 1.6352, 1.0364, 0.743, 0.5739,
0.4648, 0.3888, 0.3332, 0.2907, 0.2574, 0.2305, 0.2084, 0.19, 0.1744,
0.161 };
float lookup45d_pv13[16] = { 2.9735, 2.7467, 2.0663, 1.3403, 0.9606, 0.7418,
0.6006, 0.5024, 0.4305, 0.3756, 0.3324, 0.2977, 0.2692, 0.2453, 0.2252,
0.2079 };
float lookup45d_pv14[16] = { 3.4366, 3.2098, 2.5294, 1.6956, 1.2152, 0.9385,
0.7599, 0.6356, 0.5446, 0.4751, 0.4206, 0.3766, 0.3405, 0.3104, 0.2849,
0.263 };
float lookup45d_pv15[16] = { 3.9315, 3.7047, 3.0243, 2.1069, 1.5108, 1.1673,
0.9455, 0.7912, 0.678, 0.5917, 0.5238, 0.4692, 0.4243, 0.3868, 0.355,
0.3278 };
float lookup45d_pv16[16] = { 4.4579, 4.2311, 3.5507, 2.5718, 1.8463, 1.4278,
1.1573, 0.969, 0.8308, 0.7254, 0.6425, 0.5757, 0.5208, 0.4749, 0.436,
0.4027 };
float lookup45d_pv17[16] = { 5.0154, 4.7886, 4.1082, 3.0856, 2.2196, 1.7192,
1.3953, 1.1695, 1.0037, 0.8771, 0.7774, 0.697, 0.6309, 0.5757, 0.5288,
0.4887 };
float lookup45d_pv18[16] = { 5.6037, 5.3769, 4.6965, 3.6557, 2.6358, 2.0451,
1.6622, 1.395, 1.1985, 1.0483, 0.9299, 0.8344, 0.7558, 0.6901, 0.6343,
0.5865 };
//Displacment lookup table for 50m
float lookup50d_pv10[16] = { 1.8607, 1.6246, 0.9764, 0.6072, 0.4323, 0.3326,
0.2685, 0.2249, 0.1928, 0.1688, 0.15, 0.135, 0.1222, 0.1125, 0.1035,
0.0969 };
float lookup50d_pv11[16] = { 2.2433, 2.0071, 1.3125, 0.8192, 0.5841, 0.4494,
0.363, 0.303, 0.2596, 0.2274, 0.2018, 0.1814, 0.1647, 0.1498, 0.1394,
0.1282 };
float lookup50d_pv12[16] = { 2.66, 2.4238, 1.7154, 1.0755, 0.7682, 0.5911,
0.4775, 0.399, 0.3416, 0.2986, 0.2646, 0.2375, 0.2158, 0.1974, 0.1812,
0.169 };
float lookup50d_pv13[16] = { 3.1105, 2.8743, 2.1658, 1.3799, 0.9874, 0.7602,
0.6141, 0.5129, 0.4396, 0.3837, 0.3398, 0.3045, 0.2762, 0.253, 0.2329,
0.2156 };
float lookup50d_pv14[16] = { 3.5944, 3.3582, 2.6498, 1.7357, 1.2448, 0.9595,
0.7751, 0.6479, 0.5546, 0.4839, 0.4285, 0.3838, 0.3477, 0.3176, 0.2933,
0.2713 };
float lookup50d_pv15[16] = { 4.1114, 3.8752, 3.1668, 2.1461, 1.5429, 1.191,
0.9629, 0.8043, 0.6882, 0.6007, 0.5319, 0.4769, 0.4321, 0.3944, 0.362,
0.3365 };
float lookup50d_pv16[16] = { 4.6611, 4.4249, 3.7165, 2.6139, 1.8844, 1.4567,
1.1787, 0.9852, 0.8435, 0.7351, 0.6512, 0.5839, 0.5289, 0.4829, 0.444,
0.4094 };
float lookup50d_pv17[16] = { 5.2431, 5.007, 4.2985, 3.1421, 2.272, 1.7587,
1.4245, 1.1907, 1.0201, 0.8894, 0.7875, 0.7061, 0.639, 0.5831, 0.5364,
0.4963 };
float lookup50d_pv18[16] = { 5.8572, 5.621, 4.9126, 3.7327, 2.7076, 2.0993,

Page | 185

1.7019, 1.424, 1.2192, 1.0642, 0.9419, 0.8444, 0.7634, 0.6957, 0.6395,
0.5924 };
//Displacment lookup table for 55m
float lookup55d_pv10[16] = { 1.9433, 1.6968, 1.0207, 0.635, 0.4521, 0.3478,
0.281, 0.2346, 0.2014, 0.176, 0.1564, 0.1403, 0.1276, 0.1173, 0.1077,
0.1006 };
float lookup55d_pv11[16] = { 2.3424, 2.0959, 1.3711, 0.8398, 0.6048, 0.4688,
0.3808, 0.3194, 0.2742, 0.2398, 0.2126, 0.1907, 0.1727, 0.1576, 0.1448,
0.1339 };
float lookup55d_pv12[16] = { 2.777, 2.5306, 1.7911, 1.1051, 0.7936, 0.6139,
0.4977, 0.4168, 0.3574, 0.3121, 0.2764, 0.2477, 0.2241, 0.2044, 0.1877,
0.1733 };
float lookup55d_pv13[16] = { 3.2468, 3.0004, 2.2609, 1.411, 1.013, 0.7834,
0.635, 0.5316, 0.4558, 0.398, 0.3525, 0.3159, 0.2857, 0.2606, 0.2392,
0.221 };
float lookup55d_pv14[16] = { 3.7514, 3.5049, 2.7654, 1.7687, 1.2698, 0.9819,
0.7959, 0.6664, 0.5714, 0.4989, 0.4419, 0.3959, 0.3582, 0.3266, 0.2999,
0.277 };
float lookup55d_pv15[16] = { 4.2903, 4.0438, 3.3043, 2.1828, 1.568, 1.2131,
0.9836, 0.8239, 0.7066, 0.6171, 0.5467, 0.4899, 0.4433, 0.4043, 0.3712,
0.3429 };
float lookup55d_pv16[16] = { 4.8631, 4.6166, 3.8771, 2.651, 1.9065, 1.4763,
1.1979, 1.004, 0.8615, 0.7527, 0.6671, 0.5981, 0.5413, 0.4939, 0.4537,
0.4192 };
float lookup55d_pv17[16] = { 5.4695, 5.223, 4.4836, 3.1687, 2.2834, 1.7709,
1.4388, 1.2072, 1.0368, 0.9067, 0.8041, 0.7214, 0.6533, 0.5964, 0.5481,
0.5067 };
float lookup55d_pv18[16] = { 6.1092, 5.8627, 5.1232, 3.7431, 2.7035, 2.1005,
1.7091, 1.4357, 1.2344, 1.0805, 0.9591, 0.8611, 0.7804, 0.7128, 0.6555,
0.6063 };
int main(int argc, char **argv)
{
init(argc, argv, "payload_node");
NodeHandle nh;
Subscriber vfr_sub = nh.subscribe<VFR_HUD>("mavros/vfr_hud", 10,
vfr_cb); //Telemetry subscriber
Subscriber way_reach_sub = nh.subscribe<WaypointReached>("mavros/mission/
reached", 10, wayreach_cb); //Waypoint reached subscriber
Subscriber way_list_sub = nh.subscribe<WaypointList>("mavros/mission/
waypoints", 10, waylist_cb); //Waypoint list
ServiceClient waypush_client = nh.serviceClient<WaypointPush>("mavros/
mission/push"); //Upload waypoints to FCU
Rate rate(20.0);
float h_max = 0; //Headwind heading
float g_min = 100000; //Minimum ground speed
float aspd = 0; //Airspeed variable
float ave_aspd = 0; //Average airspeed
float gspd = 0; //Groundspeed variable
float head = 0; //Heading variable
float ave_wspd = 0; //Average Wind Speed
int wspd_cnt = 0; //Wind speed measurement counter
float alt = 0; //Altitude variable
float ave_alt = 0; //Average altitude
float dra = 0; //Displacemnt for phase A release
float drb = 0; //Displacemnt for phase B release
float drf = 0; //Final displacment
//Wait till in the headwind determination loiter

Page | 186

while(WayReached.wp_seq < 10)
{
spinOnce();
rate.sleep();
}
//Determine headwind direction and speed
ROS_INFO("Calculating");
while(WayReached.wp_seq == 10)
{
head = HV.heading; //Current aircraft heading
aspd = HV.airspeed; //Current Airspeed
gspd = HV.groundspeed; //Current groundspeed
ave_wspd = ave_wspd + abs(aspd - gspd); //Cummulative windspeed
ave_aspd = ave_aspd + aspd; //Cummulative airspeed
alt = alt + HV.altitude; //Cummulative altitude
wspd_cnt = wspd_cnt + 1;
if(head <= g_min)
{
h_max = head;
}
spinOnce();
rate.sleep();
}
//Average headwind speed, altitude and airspeed
ave_wspd = ave_wspd / wspd_cnt;
ave_alt = alt / wspd_cnt;
ave_aspd = ave_aspd / wspd_cnt;
//Temp variables for lookup table search
int a = 0;
int b = 0;
int c = 0;
int g = round(ave_wspd);
//Phase A displacment
a = ceil(ave_aspd);
if (ave_alt >= 45 && ave_alt <= 50) //For altitudes between 45m and 50m
{
switch (a) //Airspeed switch statement
{
case 10:
b = lookup45d_pv10[g];
c = lookup50d_pv10[g];
break;
case 11:
b = lookup45d_pv11[g];
c = lookup50d_pv11[g];
break;
case 12:
b = lookup45d_pv12[g];
c = lookup50d_pv12[g];
break;
case 13:
b = lookup45d_pv13[g];
c = lookup50d_pv13[g];
break;
case 14:
b = lookup45d_pv14[g];
c = lookup50d_pv14[g];

Page | 187

break;
case 15:
b = lookup45d_pv15[g];
c = lookup50d_pv15[g];
break;
case 16:
b = lookup45d_pv16[g];
c = lookup50d_pv16[g];
break;
case 17:
b = lookup45d_pv17[g];
c = lookup50d_pv17[g];
break;
case 18:
b = lookup45d_pv18[g];
c = lookup50d_pv18[g];
break;
}
dra = b + (c - b)*((ave_alt - 45) / 5);
}
else if ((ave_alt >= 50 && ave_alt <= 55) || (ave_alt == 50)) //For
altitudes between 50m and 55m
{
switch (a) //Airspeed switch statement
{
case 10:
b = lookup50d_pv10[g];
c = lookup55d_pv10[g];
break;
case 11:
b = lookup50d_pv11[g];
c = lookup55d_pv11[g];
break;
case 12:
b = lookup50d_pv12[g];
c = lookup55d_pv12[g];
break;
case 13:
b = lookup50d_pv13[g];
c = lookup55d_pv13[g];
break;
case 14:
b = lookup50d_pv14[g];
c = lookup55d_pv14[g];
break;
case 15:
b = lookup50d_pv15[g];
c = lookup55d_pv15[g];
break;
case 16:
b = lookup50d_pv16[g];
c = lookup55d_pv16[g];
break;
case 17:
b = lookup50d_pv17[g];
c = lookup55d_pv17[g];
break;

Page | 188

case 18:
b = lookup50d_pv18[g];
c = lookup55d_pv18[g];
break;
}
dra = b + (c - b)*((ave_alt - 50) / 5);
}
else
{
dra = 2;
}
a = 0;
b = 0;
c = 0;
float heq = 0; //Equilibrium altitude
float tl = 0; //Time left to fall
float tint = 0;
float dbx = 0;
//Phase B displacment
if (ave_wspd >= 3) //Cancel out none Phase B falls
{
a = ceil(ave_aspd);
if (ave_alt >= 45 && ave_alt <= 50) //For altitudes between 45m and
50m
{
switch (a) //Airspeed switch statement
{
case 10:
b = lookup45_pv10[g];
c = lookup50_pv10[g];
break;
case 11:
b = lookup45_pv11[g];
c = lookup50_pv11[g];
break;
case 12:
b = lookup45_pv12[g];
c = lookup50_pv12[g];
break;
case 13:
b = lookup45_pv13[g];
c = lookup50_pv13[g];
break;
case 14:
b = lookup45_pv14[g];
c = lookup50_pv14[g];
break;
case 15:
b = lookup45_pv15[g];
c = lookup50_pv15[g];
break;
case 16:
b = lookup45_pv16[g];
c = lookup50_pv16[g];
break;
case 17:
b = lookup45_pv17[g];

Page | 189

c = lookup50_pv17[g];
break;
case 18:
b = lookup45_pv18[g];
c = lookup50_pv18[g];
break;
}
heq = ave_alt - ave_alt * ((b + (c - b)*((ave_alt - 45) / 5))/sqrt
((2*ave_alt)/9.81)); //Altitude of euqilibrium
tl = sqrt((2 * ave_alt) / 9.81) - ((b + (c - b)*((ave_alt - 45) /
5)));
tint = tl / 10; //remaining time 1oth
for (int x = 1; x <= 10; x++)
{
dbx = dbx + tint * ave_aspd*pow(((heq / 10) /
ave_alt),0.4);
}
drb = dbx; //Phase B displacment
}
else if ((ave_alt >= 50 && ave_alt <= 55) || (ave_alt == 50)) //For
altitudes between 50m and 55m
{
switch (a) //Airspeed switch statement
{
case 10:
b = lookup50_pv10[g];
c = lookup55_pv10[g];
break;
case 11:
b = lookup50_pv11[g];
c = lookup55_pv11[g];
break;
case 12:
b = lookup50_pv12[g];
c = lookup55_pv12[g];
break;
case 13:
b = lookup50_pv13[g];
c = lookup55_pv13[g];
break;
case 14:
b = lookup50_pv14[g];
c = lookup55_pv14[g];
break;
case 15:
b = lookup50_pv15[g];
c = lookup55_pv15[g];
break;
case 16:
b = lookup50_pv16[g];
c = lookup55_pv16[g];
break;
case 17:
b = lookup50_pv17[g];
c = lookup55_pv17[g];
break;
case 18:

Page | 190

b = lookup50_pv18[g];
c = lookup55_pv18[g];
break;
}
heq = ave_alt - ave_alt * ((b + (c - b)*((ave_alt - 45) / 5)) /
sqrt((2 * ave_alt) / 9.81)); //Altitude of euqilibrium
tl = sqrt((2 * ave_alt) / 9.81) - ((b + (c - b)*((ave_alt - 45) /
5)));
tint = tl / 10; //remaining time 10th
for (int x = 1; x <= 10; x++)
{
dbx = dbx + tint * ave_aspd*pow(((heq / 10) /
ave_alt),0.4);
}
drb = dbx; //Phase B displacement
}
}
else
drb = 0; //Failsafe value
//Final displacment
drf = dra - drb;
//Display calculated values
ROS_INFO("Displacement%f", drf);
ROS_INFO("Average Altitude%f", ave_alt);
ROS_INFO("Average Airspeed%f", ave_aspd);
ROS_INFO("Headwind Speed%f", ave_wspd);
ROS_INFO("Heading%f", h_max);
//Waypoint variables
WaypointPush waypush;
Waypoint WpRef; //Drop-zone location detected (waytpoint 15)
Waypoint wp_dal; //Drop approach lineup
Waypoint wp_da1; //Drop approach waypoint #1
Waypoint wp_da2; //Drop payload
Waypoint Points[3];
wp_dal.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
wp_dal.command = 16;
wp_dal.is_current = false;
wp_dal.autocontinue = true;
wp_dal.param1 = 0;
wp_dal.param2 = 2;
wp_dal.param3 = 0;
wp_dal.param4 = 0;
wp_dal.z_alt = 50.0;
wp_da1.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
wp_da1.command = 16;
wp_da1.is_current = false;
wp_da1.autocontinue = true;
wp_da1.param1 = 0;
wp_da1.param2 = 2;
wp_da1.param3 = 0;
wp_da1.param4 = 0;
wp_da1.z_alt = 50.0;
wp_da2.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL;
wp_da2.command = 16;
wp_da2.is_current = false;
wp_da2.autocontinue = true;
wp_da2.param1 = 0;

Page | 191

wp_da2.param2 = 2;
wp_da2.param3 = 0;
wp_da2.param4 = 0;
wp_da2.z_alt = 50.0;
WpRef = WayList.waypoints[15];
float h2 = h_max; //Heading for payload release
float h1 = h2; //Heading for waypoints
float R = 6378.1; //Radius of the Earth (km)
float B = 0; //Bearing for payload
float Bw = 0; //Bearing for lineup
float d = drf/1000; //Distance in km
//Heading correction
if(d < 0)
{
h2 = h2 - 180;
}
if(h2 >= 360)
{
h2 = h2 - 360;
}
else if(h2 < 0)
{
h2 = 360 + h2;
}
B = h2 * (pi / 180);
if(h1 >= 360)
{
h1 = h1 - 360;
}
else if(h1 < 0)
{
h1 = 360 + h1;
}
Bw = h1 * (pi / 180);
d = abs(d); //Absolute displacement
float lat_ref = WpRef.x_lat * (pi/180); //Initial target latitude
converted to radians
float long_ref = WpRef.y_long * (pi/180); //Initial target longitude
converted to radians
//Drop approach 1
wp_da1.x_lat = (asin(sin(lat_ref)*cos(0.100/R) + cos(lat_ref)*sin(0.100/R)
*cos(Bw))) * (180/pi);
wp_da1.y_long = (long_ref + atan2(sin(Bw)*sin(0.100/R)*cos(lat_ref), cos
(0.100/R) - sin(lat_ref)*sin(wp_da1.x_lat))) * (180/pi);
//Drop approach lineup
wp_dal.x_lat = (asin(sin(lat_ref)*cos((0.12)/R) + cos(lat_ref)*sin((0.12)/
R)*cos(Bw))) * (180/pi);
wp_dal.y_long = (long_ref + atan2(sin(Bw)*sin((0.12)/R)*cos(lat_ref), cos
((0.12)/R) - sin(lat_ref)*sin(wp_dal.x_lat))) * (180/pi);
//Drop Payload
wp_da2.x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R)*cos
(B))) * (180/pi);
wp_da2.y_long = (long_ref + atan2(sin(B)*sin(d/R)*cos(lat_ref), cos(d/R) -
sin(lat_ref)*sin(wp_da2.x_lat))) * (180/pi);
Points[0] = wp_dal;
Points[1] = wp_da1;
Points[2] = wp_da2;

Page | 192

waypush.request.start_index = 12;
ros::Time last_request = Time::now();
bool newMission = false;
//Transmit new waypoints
while (newMission != true)
{
if (newMission != true && (Time::now() - last_request > Duration
(0.2)))
{
for(int x = 0; x < 3; x++)
{
waypush.request.waypoints.push_back(Points[x]); //send all
waypoints to the FCU
}
if (waypush_client.call(waypush))
{
newMission = true; //Mission sent boolean (terminating
statement)
}
last_request = Time::now();
}
spinOnce();
rate.sleep();
}
return 0;
}

Page | 193

Appendix B – Payload Equilibrium Time MATLAB Code

Page | 194

clc;
clear;
h = input('Enter the drop altitude: '); %Release altitude
va = input('Enter the initial payload airspeed: '); %Aircraft airspeed
vw = input('Enter the wind speed: '); %Headwind velocity at altitude
p = 1.225; %kg/m^3 - air density
A = 0.00283; %m^2 - cross-sectional area
Cd = 0.096; %drag coefficient
m = 0.14; %kg - payload mass
g = 9.81; %m/s^2 - gravitational coefficient
a = 2.5; %Hellmann coefficient
Vt = sqrt((2*m*g)/(p*A*Cd));%Terminal Velocity
tf = sqrt(2*h / g); %Fall time
var = round((tf/0.05) + 1);
dxdt = zeros(var, 1); %Deceleration matrix
td = zeros(var, 1); %Time matrix
t = 0;
i = 1;
while i <= var
dxdt(i) = ((p*A*Cd)/(2*m))*(((vw*((Vt^2/2*g)*(log(Vt^2/((-Vt*tan(g*t/Vt))^2 +
Vt^2)))/h)^(1/a))^2) + ((((Vt^2)*va)/((Vt^2)+g*va*t))^2)); %Equilibrium Time Equation
td(i) = t;
t = t + 0.05;
i = i + 1;
end
j = 1;
az = 1;
bz = 0;
while az >= 0
az = dxdt(j);
j = j + 1;
end
az = dxdt(j-2);
bz = dxdt(j-1);
%Plot
plot(td, dxdt);
title('PROJECTILE PHASE 1 ACCELERATION CURVE');
legend('Projectile acceleration');
xlabel('Time (Seconds)');
ylabel('Acceleration (m/^2)');
ylim([-inf inf]);

xlim([-inf inf]);

Page | 195

Appendix C1 - Pixhawk Specifications

Key Features

• Main System-on-Chip: STM32F427

o CPU: 180 MHz ARM® Cortex® M4 with single-precision FPU

o RAM: 256 KB SRAM (L1)

• Failsafe System-on-Chip: STM32F100

o CPU: 24 MHz ARM Cortex M3

o RAM: 8 KB SRAM

• Wifi: ESP8266 external

• GPS: U-Blox® 7/8 (Hobbyking®) / U-Blox 6 (3D Robotics)

• Optical flow: PX4 Flow unit

• Redundant power supply inputs and automatic failover

• External safety switch

• Multicolor LED main visual indicator

• High-power, multi-tone piezo audio indicator

• microSD card for high-rate logging over extended periods of time

Connectivity

• 1x I2C

• 1x CAN (2x optional)

• 1x ADC

• 4x UART (2x with flow control)

• 1x Console

• 8x PWM with manual override

• 6x PWM / GPIO / PWM input

• S.BUS / PPM / Spektrum input

• S.BUS output

Specifications

Processor

• 32bit STM32F427 Cortex-M4F core with FPU

• 168 MHz

• 256 KB RAM

• 2 MB Flash

• 32 bit STM32F103 failsafe co-processor

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN1789
http://www.hobbyking.com/hobbyking/store/__66308__HK_Pilot32_Optical_Flow_Kit_With_Sonar.html
http://en.wikipedia.org/wiki/ARM_Cortex-M#Cortex-M4

Page | 196

Sensors

• ST Micro L3GD20H 16 bit gyroscope

• ST Micro LSM303D 14 bit accelerometer / magnetometer

• Invensense MPU 6000 3-axis accelerometer/gyroscope

• MEAS MS5611 barometer

Interfaces

• 5x UART (serial ports), one high-power capable, 2x with HW flow control

• 2x CAN (one with internal 3.3V transceiver, one on expansion connector)

• Spektrum DSM / DSM2 / DSM-X® Satellite compatible input

• Futaba S.BUS® compatible input and output

• PPM sum signal input

• RSSI (PWM or voltage) input

• I2C and SPI

• 3.3 and 6.6V ADC inputs

• Internal microUSB port and external microUSB port extension

Power System and Protection

• Ideal diode controller with automatic failover

• Servo rail high-power (max. 10V) and high-current (10A+) ready

• All peripheral outputs over-current protected, all inputs ESD protected

Voltage Ratings

Pixhawk can be triple-redundant on the power supply if three power sources are supplied. The three

rails are: Power module input, servo rail input, USB input.

Normal Operation Maximum Ratings

Under these conditions all power sources will be used in this order to power the system

• Power module input (4.8V to 5.4V)

• Servo rail input (4.8V to 5.4V) UP TO 10V FOR MANUAL OVERRIDE, BUT AUTOPILOT PART

WILL BE UNPOWERED ABOVE 5.7V IF POWER MODULE INPUT IS NOT PRESENT

• USB power input (4.8V to 5.4V)

Absolute Maximum Ratings

Under these conditions the system will not draw any power (will not be operational), but will remain

intact.

• Power module input (4.1V to 5.7V, 0V to 20V undamaged)

• Servo rail input (4.1V to 5.7V, 0V to 20V)

• USB power input (4.1V to 5.7V, 0V to 6V)

Page | 197

Appendix C2 – Pixhawk Port Pinouts

TELEM1, TELEM2 ports

Pin Signal Volt

1 (red) VCC +5V

2 (blk) TX (OUT) +3.3V

3 (blk) RX (IN) +3.3V

4 (blk) CTS (IN) +3.3V

5 (blk) RTS (OUT) +3.3V

6 (blk) GND GND

GPS port

Pin Signal Volt

1 (red) VCC +5V

2 (blk) TX (OUT) +3.3V

3 (blk) RX (IN) +3.3V

4 (blk) CAN2 TX +3.3V

5 (blk) CAN2 RX +3.3V

6 (blk) GND GND

SERIAL 4/5 port - due to space constraints two ports are on one connector.

Pin Signal Volt

1 (red) VCC +5V

2 (blk) TX (#4) +3.3V

3 (blk) RX (#4) +3.3V

4 (blk) TX (#5) +3.3V

5 (blk) RX (#5) +3.3V

6 (blk) GND GND

ADC 6.6V

Pin Signal Volt

1 (red) VCC +5V

2 (blk) ADC IN up to +6.6V

3 (blk) GND GND

ADC 3.3V

Pin Signal Volt

1 (red) VCC +5V

2 (blk) ADC IN up to +3.3V

3 (blk) GND GND

4 (blk) ADC IN up to +3.3V

5 (blk) GND GND

I2C

Pin Signal Volt

1 (red) VCC +5V

2 (blk) SCL +3.3 (pullups)

3 (blk) SDA +3.3 (pullups)

4 (blk) GND GND

Page | 198

CAN

Pin Signal Volt

1 (red) VCC +5V

2 (blk) CAN_H +12V

3 (blk) CAN_L +12V

4 (blk) GND GND

SPI

Pin Signal Volt

1 (red) VCC +5V

2 (blk) SPI_EXT_SCK +3.3

3 (blk) SPI_EXT_MISO +3.3

4 (blk) SPI_EXT_MOSI +3.3

5 (blk) !SPI_EXT_NSS +3.3

6 (blk) !GPIO_EXT +3.3

7 (blk) GND GND

POWER

Pin Signal Volt

1 (red) VCC +5V

2 (blk) VCC +5V

3 (blk) CURRENT +3.3V

4 (blk) VOLTAGE +3.3V

5 (blk) GND GND

6 (blk) GND GND

SWITCH

Pin Signal Volt

1 (red) VCC +3.3V

2 (blk) !IO_LED_SAFETY GND

3 (blk) SAFETY GND

Page | 199

Appendix C3 – Pixhawk Schematic

Page | 200

Appendix D1 – ODroid-XU4 Specifications

SPECIFICATIONS

Processor
Samsung Exynos5422 ARM® Cortex™-A15 Quad

2.0GHz/Cortex™-A7 Quad 1.4GHz

Memory
2Gbyte LPDDR3 RAM PoP (750Mhz, 12GB/s

memory bandwidth, 2x32bit bus)

3D Accelerator
Mali™-T628 MP6 OpenGL ES 3.1 / 3.0 / 2.0 / 1.1

and OpenCL 1.2 Full profile

Audio
HDMI Digital audio output. Optional USB sound

card

USB3.0 Host
SuperSpeed USB standard A type connector x 2

port

USB2.0 Host
HighSpeed USB standard A type connector x 1

port

Display HDMI 1.4a with a Type-A connector

Storage (Option)

eMMC module socket : eMMC 5.0 Flash Storage

(up to 64GByte)

MicroSD Card Slot (up to 128GByte)

Fast Ethernet LAN
10/100/1000Mbps Ethernet with RJ-45 Jack (

Auto-MDIX support)

WiFi (Option)
USB IEEE 802.11 ac/b/g/n 1T1R WLAN with

Antenna (External USB adapter)

HDD/SSD SATA interface (Optional)
SuperSpeed USB (USB 3.0) to Serial ATA3

adapter for 2.5″/3.5″ HDD and SSD storage

Power Input
4.8Volt~5.2Volt (5V/4A Power supply is

recommended)

System Software

Ubuntu 16.04 + OpenGL ES + OpenCL on Linux

Kernel 4.14 LTS

Android 4.4.2 on Kernel LTS 3.10

Android 7.1 is available as a community driven

OS development.

Full source code is accessible via our Github.

Size
83 x 58 x 20 mm (weight: 38gram) without

cooler approx.

Page | 201

Appendix D2 – ODroid-XU4 Schematic

Page | 202

Appendix E1 - ELP-USB500W04AF-A60 Camera Specifications

Module No. ELP-USB500W04AF-A60

Sensor OV5640 (1/4”)

Max. Resolution 2592 (H) *1944 (V)

Sensitivity 600mV/Lux-sec

Pixel Size 1.4µm x1.4µm

Image area 3673.6µmx2738.4µm

Maximum Image Transfer Rate 2592x1944@ 15fps MJPEG / 2048x1536@ 15fps MJPEG
1600x1200@ 15fps MJPEG / 1920x1080@ 15fps MJPEG
1280x1024@15fps MJPEG/ 1280x720@ 30fps MJPEG
1024 x 768@ 30fps MJPEG/ 800 x 600@ 30fps MJPEG
640x480@ 30fps MJPEG / 320x240@ 30fps MJPEG

Camera Board Assembly technique SMT (ROSH)

Focus Auto

Object distance 5CM-100M

Resolution 600LW/PH (Center)

interface USB 2.0 High Speed

protocol USB Video Class（UVC）

S/N Ratio 36dB

Dynamic Range 68dB

Shutter Rolling shutter/ frame exposure

Package CSP, Bare Die

AGC/AEC/AWB/ABF Auto

Output Formats YUYV/MJPEG

Adjustable parameter Brightness Contrast Hue Saturation Sharpness Gamma White
Balance Exposure Focus

Package LQFN-40pin

Lens Parameter Size: 1/4, Iris: F2.8, Focus: 3.2mm, FOV: 65Degree
Relative Illumination (Sensor): 70%
IR Filter: 650±10nm

LED board power connector Support 2P-2.0mm socket

Power supply USB BUS POWER 4P-2.0mm socket

Operating Voltage DC5V

Power consumption 150mW （VGA）; 200mW （QSXGA）;

Module Size 32X25MM

Temperature (Operation) -20°C to 70°C

Temperature (Stable Image) 0°C to 60°C

USB Cable 1M(2M/3M/5M Optional)

Operating system request Win XP/Vista/Win7/Win8 / Linux with UVC（above linux-2.6.26）

MAC-OS X 10.4.8 or later/Android 4.0 or above with UVC

Certifications FCC and CE

Page | 203

Appendix E2 - ELP-USB500W04AF-A60 Camera Schematic

Page | 204

Appendix F - TAROT GoPro 3D V metal 3-axis gimbal Specifications

Input power 3S-6S Li(11V-26V)

Operating current 30mA (@ 25V)/50mA (@ 12V)

Stall current 350mA (@ 25V)/700mA (@ 12V)

Attitude control accuracy ±0.02 degrees

Maximum controllable speed

Rotation direction (PAN) ±200°/s

Tilt direction (TILT) ±200°/s

Rolling direction (ROLL) ±200°/s

Controllable rotation range

Rotation direction (PAN) ±330°

Tilt direction (TILT) -135° to +45°

Rolling direction (ROLL) ±48°

S-Bus/PPM/DSM receiver support

Working temperature -20℃ ~ +50℃

Maximum dimensions 60x75x100mm

Adjust the software installation requirements

Windows XP; Windows VISTA; Windows 7; Windows 8 (32 or 64 bit)

Page | 205

Appendix G - Wing Design Calculation

The Clark Y aerofoil was selected as the desired new wing aerofoil profile. Two EPS

Wing division for strength analysis

Elliptical wing loading function

FRONT VIEW

Page | 206

Maximum Wing Load

n = 4 – Wing loading factor

ma = 4 kg – Aircraft mass

mw = 0.2 kg – Single wing mass

The maximum expected wing load was defined to be,

𝐹𝑊𝐿 =
𝑔𝑛(𝑚𝑎−2𝑚𝑤)

2

𝐹𝑊𝐿 =
9.81(4)(5−2(0.2))

2

𝐹𝑊𝐿 = 90.252 𝑁

*Introducing a factor of safety, 𝐹𝑊𝐿 = 100 𝑁

Knowing the maximum expected wing load, the maximum bending moment, 𝑏, and
the loaded span length, 𝑎, could be deduced.

𝑎 =
𝑆𝑝𝑎𝑛

2
−𝑤

𝑎 =
1.975

2
− 0.055

𝑎 = 0.9325 𝑚

𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 =
𝜋𝑎𝑏

4
= 𝐹𝑊𝐿

𝜋(0.9325)𝑏

4
= 100

 𝑏 = 136.54043375176 𝑁/𝑚

With the value for 𝑏 now known, the elliptical load function could be determined with
respect to the displacement

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1

𝑦 = √𝑏2 (1 −
𝑥2

𝑎2
)

𝑦 = 136.54043375176√1 −
𝑥2

0.86955625

For each wing segment, numbered 1 – 10, the net force exerted over the wing area
could be determined. The net force per segment was represented by the area of the
elliptical wing loading graph, which was initially determined through application of
a Left Riemann Sum of the elliptical load function. Subdivisions for the Riemann
Sum were taken to be the wing segment divisions. The resulting wing loading results
incurred an overshoot due to the application of the Left Riemann Sum and as such,
a finite integral was used to determine a less exaggerated wing loading force.

𝐹𝑛𝑒𝑡 = ∫ (136.5404√1 −
𝑥2

0.86955625
)𝑑𝑥

𝑑1

𝑑0

Page | 207

Maximum Bending Moment and Shear Force

From the net force, the bending moment of the wing was then determined. The
maximum bending moment was found to be 53.584 N.m at wing point A.

𝑀𝑆𝑒𝑔 = ∑ 𝐹𝑛𝑒𝑡𝑛𝑑𝑛
𝑆𝑒𝑔
𝑛=𝐾

Where, dn represented the bending moment test point displacement from the
reference wing point. The bending moment curve of the wing was found to be as
follows,

The maximum bending moment represented the required minimum bending

moment the wing’s spar caps were required to be able to endure.

The required shear strength of the wing was represented by the shear strength of

the structural material between the spar caps and the wing surface. In the case of

this wing, this shear strength was the strength of the EPS foam. Required shear

strength was determined by determining the shear stress exerted on the wing by

the shear force. Where, shear stress was defined to be the shear force applied to a

given area.

𝜏 =
𝑉

𝐴

The shear force curve for the wing was found to

Page | 208

The required shear strength of the wing was determined to be 407.068 kPa and was

within the allowable shear strength of the EPS foam which was found to be

482.633 kPa. This provided a shear strength factor of safety of 1.186.

Spar Cap Moment of Area

With the required bending moment of the wing’s spar caps known, the require
moment of inertia could be determined. The desired spar cap material was selected
to be pultruded Carbon Fibre, with yield strength of 1.6 GPa.

𝐼 =
𝑀𝑦

𝜎

The required spar cap moments of inertia were found to be as follows;

Wing Segment Moment of Inertia (m4)

1 8.372 x10-12

2 6.613 x10-12

3 5.055 x10-12

4 3.708 x10-12

5 2.579 x10-12

6 1.669 x10-12

7 0.9719 x10-12

8 0.4791 x10-12

9 0.173 x10-12

10 0.0272x10-12

Due to the high yield strength of the pultruded carbon fibre and diminishing moment
of inertia required for each wing segment, a two-stage spar cap design was executed.
The spar cap designs can be seen below.

Where,

First Spar Cap: I = 2.30515 x10-9 m4

Second Spar Cap: I = 2.006537 x10-9 m4

Page | 209

Wing Point Net Force Shear Stress
Bending
Moment

Moment of
Inertia

A 1 12.7111397 1.185313777 53.58356654 8.37243E-12

B 2 12.58284624 1.173350412 42.32308565 6.61298E-12

C 3 12.32223829 1.149048721 32.34960715 5.05463E-12

D 4 11.92060598 1.111596508 23.73174175 3.70808E-12

E 5 11.36293284 1.059593487 16.50636445 2.57912E-12

F 6 10.62452128 0.990736609 10.67860027 1.66853E-12

G 7 9.66365516 0.901135844 6.220285526 9.7192E-13

H 8 8.403234494 0.783601617 3.066310073 4.79111E-13

I 9 6.670194871 0.621995672 1.107306032 1.73017E-13

J 10 3.738606423 0.348625049 0.174312524 2.72363E-14

Page | 210

Appendix H1 – Catapult Launcher Calculations

Launch angle: 15˚ (𝛼)

Launch velocity: 18 knots ~ 9.26 m/s (𝑉𝐿)

Catapult Length: 2 m (𝐿)

From the force diagram,

Normal force

𝐹𝑁 = 𝑊𝑐𝑜𝑠(𝛼) = 𝑚𝑔𝑐𝑜𝑠(𝛼)

𝐹𝑁 = 3(9.81) cos(15) = 28.42719707 𝑁

Frictional Force

𝐹𝑓 = 𝜇𝐹𝑁 +𝑊𝑠𝑖𝑛(𝛼)

𝐹𝑓 = (0.4)27.42719707 = 10.97083883 𝑁

Applied Force

𝐹𝐴 = 𝐹𝑓 +𝑊𝑠𝑖𝑛(𝛼)

𝐹𝐴 = 10.97083883 + (3)(9.81)𝑠𝑖𝑛(15) = 18.5878833 𝑁

Launch Force

Launch time

𝑡 =
2𝐿

𝑉𝐿+𝑉𝑖

𝑡 =
2(2)

9.26+0
= 0.432 𝑠

Launch Acceleration

𝑎 =
𝑑𝑉𝐿

𝑑𝑡

𝑎 = 9.26/0.432 = 21.4352 𝑚/𝑠2

Page | 211

𝐹𝐿 = 𝑚𝑎

𝐹𝐿 = 3(21.4352) = 64.3056 N

Introduction of launch trolley, new launcher displacement is now 1.8 m. Additional

applied force provided from aircraft’s motor, reduced preload required.

Elastic constant

𝑘 =
𝐹𝐿

𝑥

𝑘 =
64.3056

1.8
= 35.7253 ≅ 36

 Rubber extension testing

Pieces of Rubber Tubing
Extension
Distance

(m)

Extension
Ratio

Required Force for
Extension

(N)

Single Band
(Initial length – 4.7 m)

7 1.4894 34.34

10 2.1277 49.05

13.4 2.8511 68.67

Double Band
(Initial length – 2.35 m)

3.1 1.3191 58.86

4.23 1.8 88.29

5.75 2.4468 117.72

Double band rubber tubing selected as desired launch system.

Required extension ratio

𝑦 = 95.267 ln(𝑥) + 32.415 = 𝐹𝐿

64.3056 = 95.267 ln(𝑥) + 32.415

Extension ratio (x) = 1.398

The final extension ratio was changed to 1.8 to allow for additional preload of ~30 N.

Page | 212

Appendix H2 - Launcher Sled and Catapult CAD Design

Page | 213

Page | 214

Page | 215

Appendix I – CMOS Camera Mount CAD Design

Page | 216

Page | 217

Appendix J1 – Payload Release Equilibrium Time Lookup Tables

Altitude of 45 m

Page | 218

Table K1.12: Payload Release Equilibrium Time Lookup Tables for an altitude of 45 m

Aircraft Speed 10 11 12 13 14 15 16 17 18

Headwind Velocity

0 - - - - - - - - -

1 - - - - - - - - -

2 2.524324 2.870736 - - - - - - -

2.5 1.93125 2.181695 2.430843 2.680707 2.929263 3.17894 3.424242 3.670357 3.913149

3 1.548333 1.743416 1.943576 2.144918 2.345506 2.547747 2.746345 2.946422 3.143044

4 1.088953 1.223845 1.365531 1.508727 1.651719 1.796721 1.939006 2.083261 2.224202

5 0.827193 0.930095 1.038468 1.148391 1.258354 1.370351 1.480192 1.592089 1.700937

6 0.66069 0.743249 0.830305 0.918863 1.007583 1.098262 1.187159 1.278068 1.366194

7 0.545858 0.614879 0.687217 0.760983 0.834974 0.91082 0.985152 1.061409 1.135122

8 0.46226 0.521746 0.583362 0.646325 0.709546 0.774516 0.838172 0.903655 0.966799

9 0.399563 0.45138 0.504863 0.559618 0.614647 0.671322 0.726839 0.784086 0.839172

10 0.350534 0.396516 0.443639 0.49196 0.540564 0.59072 0.639841 0.690599 0.73935

11 0.311058 0.352653 0.394676 0.437831 0.481271 0.526176 0.570147 0.61567 0.65932

12 0.278869 0.31686 0.35471 0.393633 0.432838 0.47343 0.513171 0.554387 0.593847

13 0.252792 0.287151 0.321529 0.356925 0.3926 0.42959 0.465801 0.503413 0.539374

14 0.229877 0.262134 0.293583 0.325998 0.358688 0.392629 0.42585 0.460407 0.493406

15 0.211075 0.240806 0.269752 0.29962 0.329756 0.361083 0.391743 0.423678 0.454139

Page | 219

Altitude of 50 m

Page | 220

Table K1.13: Payload Release Equilibrium Time Lookup Tables for an altitude of 50 m

Aircraft Speed 10 11 12 13 14 15 16 17 18

Headwind Velocity

0 - - - - - - - - -

1 - - - - - - - - -

2 2.654 2.959 - - - - - - -

2.5 2.032 2.271 2.51 2.749 2.986 - - - -

3 1.629 1.824 2.02 2.217 2.413 2.607 2.801 2.992 3.181

4 1.147 1.286 1.427 1.57 1.713 1.855 1.998 2.141 2.282

5 0.872 0.979 1.088 1.197 1.308 1.419 1.53 1.642 1.754

6 0.696 0.782 0.869 0.958 1.047 1.138 1.228 1.319 1.411

7 0.575 0.647 0.719 0.793 0.867 0.943 1.018 1.095 1.171

8 0.487 0.548 0.61 0.672 0.736 0.8 0.865 0.93 0.996

9 0.421 0.473 0.527 0.581 0.637 0.692 0.749 0.806 0.863

10 0.369 0.415 0.462 0.51 0.559 0.608 0.658 0.708 0.737

11 0.328 0.369 0.411 0.454 0.497 0.541 0.585 0.63 0.672

12 0.294 0.331 0.369 0.407 0.446 0.485 0.525 0.566 0.607

13 0.266 0.3 0.334 0.368 0.404 0.44 0.476 0.513 0.55

14 0.243 0.273 0.305 0.336 0.368 0.401 0.434 0.468 0.502

15 0.222 0.251 0.279 0.309 0.338 0.368 0.399 0.429 0.461

Page | 221

Altitude of 55 m

Page | 222

Table K1.3: Payload Release Equilibrium Time Lookup Tables for an altitude of 55 m

Aircraft Airspeed 10 11 12 13 14 15 16 17 18

Headwind Velocity

0 - - - - - - - - -

1 - - - - - - - - -

2 2.861717 3.181984 - - - - - - -

2.5 2.168057 2.412846 2.660413 2.908922 3.156139 - - - -

3 1.728101 1.924619 2.123253 2.32328 2.522565 2.723714 2.921039 3.120058 3.315211

4 1.208218 1.347165 1.487485 1.629492 1.771302 1.915298 2.056421 2.199693 2.339297

5 0.915354 1.021533 1.128691 1.237548 1.34645 1.457534 1.566325 1.677322 1.784968

6 0.729605 0.814831 0.900799 0.988397 1.076159 1.166006 1.253952 1.344037 1.431076

7 0.60229 0.67306 0.744414 0.817309 0.890428 0.965512 1.038976 1.114476 1.187198

8 0.51011 0.570353 0.631071 0.693238 0.755661 0.819928 0.882786 0.947568 1.009804

9 0.440586 0.49285 0.54551 0.59953 0.653823 0.709847 0.764627 0.821221 0.875468

10 0.386463 0.432489 0.478851 0.526492 0.574413 0.623962 0.672396 0.722545 0.770517

11 0.343254 0.38428 0.425597 0.468118 0.51092 0.555256 0.598586 0.643536 0.686458

12 0.30804 0.344977 0.382167 0.420496 0.459104 0.49916 0.5383 0.578975 0.617752

13 0.278845 0.312382 0.346141 0.380978 0.416091 0.452576 0.488219 0.52532 0.560638

14 0.254287 0.284955 0.315821 0.347709 0.379868 0.41333 0.446015 0.480086 0.512478

15 0.233373 0.261591 0.289985 0.319353 0.348986 0.379859 0.41001 0.441483 0.471367

Page | 223

Appendix J2 – Payload Release Phase A Displacement Look Up

Tables

Altitude of 45 m

Page | 224

Table K2.14: Payload Release Phase A Displacement Look Up Table at an Altitude of 45 m

Aircraft Speed 10 11 12 13 14 15 16 17 18

Headwind
Velocity

0 1.777896 2.143759 2.542394 2.973459 3.43662 3.931546 4.457912 5.015396 5.603681

1 1.551097 1.91696 2.315594 2.746659 3.20982 3.704747 4.231113 4.788597 5.376882

2 0.929783 1.250363 1.635195 2.06626 2.529422 3.024348 3.550714 4.108198 4.696483

2.5 0.702427 0.951627 1.279756 1.655369 2.094208 2.601247 3.072845 3.601899 4.247741

3 0.569564 0.772051 1.03637 1.340303 1.695618 2.10692 2.57177 3.085588 3.655657

4 0.409132 0.555062 0.742952 0.960559 1.215203 1.510841 1.846302 2.219643 2.635786

5 0.316531 0.42972 0.573899 0.741826 0.938484 1.167323 1.427783 1.719179 2.045142

6 0.25666 0.34863 0.464754 0.600635 0.759863 0.945491 1.157299 1.395271 1.662242

7 0.214966 0.29213 0.388835 0.502442 0.635639 0.791165 0.968998 1.169512 1.395005

8 0.184365 0.250645 0.333172 0.430458 0.544573 0.677998 0.830838 1.0037 1.198503

9 0.16101 0.218972 0.290727 0.375575 0.47514 0.591692 0.725418 0.87707 1.048283

10 0.142637 0.194046 0.257362 0.332437 0.420566 0.523842 0.642504 0.777395 0.929934

11 0.127829 0.173951 0.23049 0.297699 0.376618 0.469192 0.575694 0.697023 0.834428

12 0.115657 0.157428 0.208416 0.269164 0.34052 0.424294 0.520786 0.630927 0.755828

13 0.105487 0.143619 0.189982 0.245337 0.310376 0.386796 0.474912 0.575674 0.690079

14 0.096869 0.131915 0.174371 0.225161 0.284851 0.355039 0.43605 0.528841 0.634315

15 0.08948 0.121879 0.160993 0.207872 0.262979 0.327822 0.402734 0.488672 0.586457

Page | 225

Altitude of 50 m

Page | 226

Table K15.2: Payload Release Phase A Displacement Look Up Table at an Altitude of 50 m

Aircraft Speed 10 11 12 13 14 15 16 17 18

Headwind
Velocity

0 1.860723 2.24326 2.659961 3.110453 3.594373 4.111359 4.661056 5.243115 5.857191

1 1.624572 2.007109 2.423809 2.874302 3.358221 3.875207 4.424905 5.006964 5.621039

2 0.97642 1.312456 1.715355 2.165848 2.649767 3.166753 3.716451 4.298509 4.912585

2.5 0.752403 0.977832 1.328795 1.701552 2.136095 2.635413 3.18511 3.767169 4.381244

3 0.607164 0.819209 1.075544 1.379882 1.735672 2.146074 2.613938 3.142148 3.732704

4 0.432278 0.584112 0.768162 0.987422 1.244756 1.542875 1.884426 2.27204 2.707605

5 0.332647 0.449366 0.591076 0.760153 0.959463 1.191002 1.456736 1.758723 2.099291

6 0.268536 0.362978 0.47749 0.614121 0.775107 0.962902 1.178743 1.424472 1.701852

7 0.224891 0.303042 0.398968 0.512924 0.647855 0.804344 0.98519 1.190684 1.424039

8 0.192822 0.259597 0.341604 0.43956 0.554624 0.688183 0.843495 1.020098 1.219246

9 0.168842 0.22741 0.298594 0.38368 0.483948 0.600661 0.735068 0.88938 1.064168

10 0.150024 0.201756 0.264626 0.339822 0.428532 0.531933 0.651193 0.787467 0.94189

11 0.135027 0.18141 0.237532 0.304461 0.383831 0.476852 0.583925 0.706103 0.844434

12 0.122184 0.164733 0.215752 0.276163 0.347681 0.432087 0.528878 0.638993 0.76337

13 0.112534 0.149807 0.197356 0.253043 0.317641 0.394403 0.482936 0.583092 0.695735

14 0.103473 0.13938 0.181236 0.232892 0.293279 0.36196 0.443958 0.536366 0.639481

15 0.096852 0.128187 0.168984 0.215579 0.271337 0.336453 0.409439 0.496338 0.59237

Page | 227

Altitude of 55 m

Page | 228

Table K2.3: Payload Release Phase A Displacement Look Up Table at an Altitude of 55 m

Aircraft Speed 10 11 12 13 14 15 16 17 18

Headwind
Velocity

0 1.943266 2.342387 2.777048 3.246845 3.75138 4.290264 4.863111 5.469541 6.109182

1 1.696773 2.095895 2.530555 3.000352 3.504888 4.043771 4.616618 5.223049 5.862689

2 1.020674 1.371111 1.791077 2.260874 2.76541 3.304293 3.87714 4.483571 5.123212

2.5 0.786818 1.033962 1.363197 1.740811 2.182068 2.692043 3.267073 3.900088 4.600335

3 0.634973 0.839767 1.105149 1.411025 1.768689 2.182848 2.651045 3.168742 3.743135

4 0.452147 0.604789 0.793627 1.01299 1.269761 1.567992 1.906502 2.283399 2.703521

5 0.347804 0.468845 0.613865 0.783366 0.981933 1.213102 1.476313 1.770929 2.100509

6 0.281026 0.380788 0.497663 0.634963 0.795912 0.983646 1.197945 1.438844 1.709112

7 0.234623 0.319372 0.416754 0.53165 0.666411 0.823854 1.003958 1.20715 1.435667

8 0.201382 0.274238 0.357381 0.455847 0.571394 0.706577 0.861503 1.036832 1.234425

9 0.175987 0.239753 0.312072 0.398007 0.498894 0.617069 0.752725 0.906663 1.080467

10 0.156389 0.212596 0.276432 0.352516 0.441871 0.546654 0.667111 0.804133 0.959091

11 0.140331 0.190689 0.247711 0.31586 0.395923 0.489904 0.598084 0.721409 0.861082

12 0.127607 0.172667 0.224104 0.285734 0.358161 0.443256 0.541323 0.653342 0.780379

13 0.117323 0.157596 0.20438 0.260565 0.326612 0.404276 0.493877 0.596412 0.712836

14 0.107667 0.144818 0.18767 0.239243 0.299886 0.371249 0.453665 0.548136 0.655524

15 0.100623 0.133855 0.173343 0.220964 0.276973 0.342932 0.419177 0.506711 0.606318

Page | 229

Appendix K – Payload CAD Design

Page | 230

