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Abstract 

This research sought to design and develop an autonomous aircraft payload delivery 

system which utilised an onboard computer vision system for drop-zone 

identification. The research was tasked at achieving a modular system which could 

be used in the delivery of a given payload within a 5 m radius of designated drop-zone 

identifier. An integrated system was developed, where an autonomous flight 

controller, an onboard companion computer and computer vision system formed the 

physical hardware utilised to achieve the desired objectives. A Linux-based Robotic 

Operating System software architecture was used to develop the control algorithms 

which governed the autonomous flight control, object recognition and tracking 

through image processing, and payload release trajectory modelling of the system. 

The hardware and software architectures were integrated into a remote control fixed-

wing aircraft for testing. Implementation of the system through simulation and 

physical testing proved successful and payload delivery was achieved at an altitude 

of 75 m, within an average displacement of 1.82 m from the true drop-zone location, 

where drop-zone detection and location were determined through autonomous 

survey over the approximate drop-zone’s location. This research furthered the 

development of autonomous aircraft delivery systems by introducing computer vision 

as a means of drop-zone location confirmation and authentication, allowing for 

greater payload delivery security and efficiency. The results gathered in this research 

illustrated the possible applications of modular airborne payload delivery systems 

into Industry 4.0 through the use of such a system in the service delivery sector. 
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Chapter 1  

Introduction 

Industry 4.0 refers to a combination of major innovations in digital technology which 

are composed to transform the energy and manufacturing sectors. These 

technologies include: advanced robotics and artificial intelligence, sophisticated 

sensors, cloud computing, data capture and analytics, digital fabrication, and 

platforms which use algorithms to direct motor vehicles (for example, autonomous 

vehicles). These technologies are often used independently. However, when used 

together, allow for the integration of physical and virtual worlds. Similarly, this 

research sought to develop and combine an autonomous flight control system with 

a vision-based identification and recognition system to deliver payloads to targets 

with non-specific Global Positioning System (GPS) coordinates [19].  

To define this system as autonomous, flight control from take-off to mission 

execution to landing was fully automated, with the only human intervention being 

that of the aircraft’s pre-flight preparation. The system utilised a computer vision 

system to locate and authenticate a desired drop-zone location, then, with the 

assistance of onboard computational hardware and software, calculated an 

appropriate drop trajectory for a given payload, taking into account current flight 

and environmental conditions. With this information, the system then 

communicated flight path alterations to the aircraft’s flight control unit (FCU) until 

an acceptable drop trajectory was obtained, from which the system would then 

release the given payload. The use of the real-time vision system allowed for the 

system to be able to deliver payloads to targets with nonspecific GPS coordinates. 

With each defining element of this research: autonomous flight, vision, and trajectory 

plotting, having been developed separately and able to work independently, this 

dissertation focused on the conceptualisation, development and testing of an 

integrated vision-based autonomous aircraft payload delivery system. Specific focus 

was placed on the integration of each of these defining elements into a single modular 

system, requiring low level user input in order to function. This level of autonomy 

and integration allowed for the combination of independent technologies to be 

integrated into a system which is capable of contributing to the innovations evolving 

within Industry 4.0.   
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1.1 Rationale and Motivation 

Irrespective of efforts made towards the development of the developing countries, 

service delivery in developing countries has long been an issue yet to find a solution. 

This lack of service delivery has subsequently led to the need for an effective and 

efficient mode of service delivery to be developed. A solution to the service delivery 

issue would seek to not only promote the development of the service delivery sector 

but would also look at the fulfilment of basic human rights and the development of 

the various other sectors, including the manufacturing sector. As such, the 

development of an effective and efficient service delivery system would seek to provide 

a solution to political, social, economic and ecological issues. The development of a 

service delivery system capable of benefiting several developing countries and the 

sectors within those countries, places such a system within the objective of 

Industry 4.0 and it is through such a system that, interconnectivity between sectors 

would be promoted and integrated [12]. 

This research sought to define the development of an autonomous fixed-wing aircraft 

that was capable of using a vision-based system to identify and locate desired 

payload drop-zones and then, adjusting its flight path accordingly, achieve a ballistic 

trajectory drop of a given payload to said drop-zone. Where, such research seeks to 

transform the service delivery sector by providing a system capable of the desired 

service delivery functionality, whilst maintaining a low-cost, efficient and effective 

design. 

Within the framework of this research, four defining components existed: mode of 

transportation, method of navigation, identification and authentication of service 

delivery recipient and method of delivery. Each of these components played a role in 

the development of a system capable of promoting Industry 4.0 within a developing 

country and the constraints experienced within various sectors. The desired mode of 

transportation, a fixed-wing aircraft, provided the beneficial functionality of a system 

which was able to circumvent obstacles faced through land- and sea-based service 

delivery, and in turn allowing for the delivery of goods and services to time-sensitive 

or previously inaccessible areas. With the use of such a transportation system, a 

method of navigation proves necessary to fulfil the delivery process and as such, the 

introduction of autonomous control into the aircraft provides the ability to optimise 

the delivery process by mitigating human error. The introduction of autonomy 

introduces the need for implementation of service delivery confirmation. As such, a 

method of delivery location identification and authentication becomes necessary to 
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avoid disruption of service delivery based on process-oriented disconnectivity. 

Finally, with a stable delivery platform in place, the selection of an appropriate 

delivery method which promotes efficiency and effective service delivery is necessary. 

Therefore, an airborne method of delivery would prove to be the most feasible option, 

by providing the required service delivery capabilities without the need for the 

introduction of additional infrastructure. 

However, the application of such a delivery system is not limited to the service 

delivery sector. There are various ways in which this system could be utilized to fulfil 

outcomes within several sectors. As such, the applications discussed within this 

rationale are not exhaustive and should rather be used as a foundation for what 

could be achieved with the utilization of this system.  

1.2 Aim, Objectives and Research Contributions 

This section discusses the research aim and objectives, and provides an overview of 

the contributions made through the completion of this research. 

1.2.1 Aim 

The purpose of this research was the development of an autonomous aircraft payload 

delivery system which made use of vision-based object identification and recognition, 

in parallel with real-time environmental parameter assessment for application in 

aircraft flight path alteration and payload drop trajectory modelling to deliver a given 

payload from altitude to an identified drop-zone location. 

1.2.2 Objectives 

The objectives and sub-objectives pursued in this research include: 

➢ The development of a vision-based autonomous aircraft payload delivery 

system. 

a. Hardware architecture defining the physical infrastructure utilised in 

achieving an integrated industry standard, compact and modular 

design. 

b. Software architecture defining the computational infrastructure 

utilised in achieving autonomous flight control, vision-based 

identification and location, and payload trajectory computation. 

c. Minimal operator defined inputs for mission execution. 
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➢ The development of an autonomous flight control system. 

a. Full mission autonomy must be implemented, where all required flight 

procedures are to be executed by the onboard hardware and software. 

b. The autonomous flight control system must be able to adjust the 

aircraft’s flight path based on current mission parameters and sensory 

data. 

➢ The development of a vision-based identification and recognition system. 

a. Development of an image processing algorithm capable of drop-zone 

identification without the need for operator intervention. 

b. Identify the drop-zone location with respect to the aircraft’s current 

location and provide the onboard flight control unit with a drop-zone 

location. 

➢ The development of a payload release system. 

a. The development of a mathematical model upon which the ballistic 

trajectory of a payload could be mapped. 

b. Payload release computation in real-time, as to allow for adaptation of 

current mission parameters. 

c. Payload delivery within a 5 m radius of the drop-zone location. 

1.2.3 Research Contributions 

In addition to the overall aims and objectives of this research, this research sought 

to bridge the gap in related research, where applications of similar systems failed to 

perform efficiently. The areas in which this research contributed towards the 

furtherment of previous literature were as follows: 

➢ The development of a vision system and image processing algorithm which 

achieved similar results in target location determination accuracy at an 

altitude of 75 m when compared to the apparent average accuracy of Hinas 

et al.’s vision system at an altitude of 40 m [27]. 

➢ The development of a fully integrated autonomous aircraft with an integrated 

autonomous vision system capable of achieving the automated payload 

release. This research built upon the research conducted by Boura et al. [10] 
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in the development of an autonomous aircraft with payload release 

capabilities.  

➢ Based on the work conducted by Boura et al. [10] where payload trajectory 

modelling was achieved through real-time environmental parameter 

monitoring, it was found that payload trajectory modelling could be further 

developed. As such, this research included the development of a two-

dimensional two-phase payload release trajectory model for the prediction of 

a payload’s ballistic fall trajectory, which achieved successful displacement 

prediction results during simulated and physical testing.  

➢ An integrated payload delivery system capable of achieving the same results 

as achieved by Zipline [50] and DHL Parcelcopter [16], two commercially used 

systems implementing autonomous aircraft payload delivery. Additionally, the 

introduction of a vision system, a system the two commercial systems did not 

possess, increased payload delivery accuracy and security by ensuring 

payload drop-zone identification. 

➢ The development of a fully automated mission flight plan based on a single 

user-defined waypoint. Improving upon the DHL Parcelcopter’s [16] system of 

manual user mission designation and subsequently optimising mission 

waypoint designation.  

1.3 Hypothesis 

A vision-based autonomous aircraft payload delivery system can be used to identify 

and accurately drop a given payload within a 5 m radius of a given drop-zone 

location. 

1.4 Delimitation 

As this research consisted of several subsystems, integrated into a single operational 

system, various limiting factors existed between the subsystems.  

➢ System accuracy and reliability will be limited to the accuracy and reliability 

of the relevant onboard hardware and computational performance limited by 

the onboard processing ability. 

➢ Testing limited to duration of onboard battery life. 

➢ Results and testing are limited to weather permitting testing periods. 

➢ Environmental parameters will be modelled to represent a static system, 

where unforeseen events, such as sudden wind gusts, will be excluded from 

the relevant computations.  
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1.5 Dissertation Outline 

This dissertation was structured as follows. Chapter 1 provides an introductory view 

into the given research topic, highlighting the rational and significance of the 

research. Chapter 2 defines the relevant background research pertaining to the 

application of this research and the relevant technologies applied. Chapter 3 focuses 

on the developed system architecture, the hardware and software architecture, and 

the test platform aircraft.  

Chapter 4 through to Chapter 6 of the dissertation was structured to follow the order 

in which an autonomous mission would be executed. Chapter 4 highlights the 

autonomous flight control system, discussing the processes which constituted an 

autonomous mission, the flight plan and waypoint allocation. Chapter 5 focuses on 

the vision system, defining the theoretical approach taken to translate captured 

imagery into discernible drop-zone information. Chapter 6 discussed the payload 

delivery system, defining the mathematical foundation which formed the payload 

trajectory model. Chapter 8 discussed the integration process, defining the method 

mission initiation and discussing the process of integration implementation in terms 

of structured execute of the respective control algorithms. 

Thereafter, Chapter 8 discussed the testing procedure and results for each 

subsystem and the integrated system. Finally, Chapter 9 concludes the dissertation, 

answering the question as to whether the proposed hypothesis was achieved and 

indicates possible future recommendations and alterations to be made to the current 

system. 

1.6 Chapter Conclusion 

Chapter 1 represented the introduction to the research, where the research was 

defined to be the development of an autonomous aircraft vision-based payload 

delivery system. Aims and objectives were defined, where it was noted that 

integration between several subsystems was necessary to achieve the desired results. 

whose design would be modular to allow for variation of application. Elements such 

as the objectives, hypothesis, delimitation, research timeframe and dissertation 

outline were discussed. Furthermore, the literature study in Chapter 2 will be used 

to provide a background in order to achieve the desired outcomes of this research. 

Providing the reader with the foundation pertaining to relevant technologies and 

developments in similar fields.    
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Chapter 2  

Literature Study 

This chapter discussed the application-based approach pertaining to how this 

research was developed. Research into relevant technologies and commercially 

available systems capable of the desired functionality were reviewed. 

2.1 Application-Based Background 

As discussed in Chapter 1, this research sought to provide various applications in 

both the public and private sector, moving from aid relief to privatised package 

delivery for offshore freighters. The modularity of the system was defined as an 

overall objective due to the wide variety of applications this research encompassed. 

To design such a system, insight into the relevant technologies was undertaken. 

Hassanalian et al. [26] has provided a detailed view of possible drone aircraft 

applications, as seen in Figure 2.1. 

 

Figure 2.1: Drone aircraft classifications [26] 

From Figure 2.1, it was noted that applications for delivery systems in drone 

technology had already been identified and as such, the proposed delivery system 

was feasible. The applications of drone technology in this research were highlighted 

in Figure 2.1.  
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2.1.1 Airframes 

Prior to the study into airframes, the clarification of the nomenclature utilised in 

these technologies was necessary to remove any misconceptions. The term drone was 

first utilised in the early to mid-1900’s to classify remotely piloted aircraft used for 

surveillance, target practice and other military applications. The term for these 

vehicles changed over the years, until the classification of unmanned aerial vehicles 

(UAVs) was developed [41]. UAV has become a term that not all aviation authorities 

have conformed to. The International Civil Aviation Organization (ICAO), among other 

aviation authorities, employ the term remotely piloted aircraft system (RPAS) when 

referring to these aircraft systems [29]. Due to the wide variety of terms used to 

classify these vehicles, this research focussed on and defined the specific type of 

airframe utilised. 

Airframes have been classified based on their features including weight, range, 

speed, wing span, endurance, production costs and application [26]. As application 

was the driving factor behind this research, selection of the most appropriate 

airframe was necessary to achieve the desired results. For the purpose of this 

research, three airframes were assessed. These frames included: multirotor aircraft, 

fixed-wing aircraft and quadplane aircraft, and were assessed based on models 

designed for remote piloting. 

2.1.1.1 Multirotor Aircraft 

Multirotor aircraft, also known as multicopter aircraft, are aerial vehicles which 

derive their motion from the control of several thrusting propellers. These vehicles 

are aerodynamically unstable and require an FCU to ensure stable flight. At their 

core, multirotors require very few mechanical components to operate and their basic 

design consists of a frame, control electronics, motors and propellers [5]. 

Multirotors require thrust to remain airborne, where the failure of a single motor 

would result in the aircraft becoming unstable and crashing. As such, the power 

consumption of multirotors is high, where average flight time can range from 

5 minutes to 30 minutes depending on the aircraft’s size, weight, motors and 

available power source.  
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2.1.1.2 Fixed-Wing Aircraft 

Fixed-wing aircraft are flying vehicles which possess the capability of flight due to 

their use of wings to generate lift caused by the forward motion of the aircraft. Fixed-

wing aircraft provided both advantages and disadvantages when compared to 

multirotor aircraft. Fixed-wing aircraft are more flexible in the event of a technical 

fault and possess natural glide capabilities when under no power. Additionally, fixed-

wing aircraft are also capable of carrying greater loads over greater distances under 

less power when compared to multirotor applications. Areas in which the fixed-wing 

aircraft does not perform as well as multirotor aircraft include applications where 

missions with precise objectives are required, as the fixed-wing’s need for constant 

forward motion to produce lift, limits their manoeuvrability [3]. 

2.1.1.3 QuadPlane Aircraft 

QuadPlane aircraft form part of the Vertical Takeoff and Landing (VTOL) class of 

aircraft. QuadPlane aircraft combine the advantages features of both multirotor and 

fixed-wing aircraft, where the frame design of the aircraft follows that of a fixed-wing 

aircraft while possessing four to eight horizontal rotors to provide the aircraft with 

the functionality of a multirotor. The benefits of QuadPlane aircraft include improved 

manoeuvrability during precision missions, smaller launch area required and larger 

range of travel. The disadvantages of QuadPlane aircraft include the need for two 

integrated control systems to control the multirotor and fixed-wing functionalities 

respectively. Additionally, the increase in aircraft functionality introduces more 

onboard weight, complexity and greater possible number modes of failure [4]. 

2.1.2 Airborne Delivery 

The concept of airborne delivery of goods and services, specifically the airdrop, was 

first developed during World War II for the purpose of resupplying troops with limited 

access to additional support. Many of these techniques are still used today [35]. 

Various types of airdrops exist, these include: 

➢ Free-Drop. Developed for the delivery of non-delicate loads, such as clothing, 

Free-Drops are the most uncommon form of airdrop. Figure 2.2 depicts an 

image of a DC3 Cargo Plane executing a Free-Drop Airdrop, delivering tons of 

needed food to refugees in a region of South Sudan, inaccessible by 

trucks [38]. 

➢ High-Velocity. Designed for higher altitude deployment, where, at the time, 

aircraft were less vulnerable to ground-based defence systems. High-velocity 
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airdrops made use of small stabilizing parachutes attached to the loads to 

ensure the load remained in an upright position during descent, with energy-

dissipating material secured to the base of the load to reduce impact force. 

These loads would descend at rates between 21 m/s to 27 m/s. 

➢ Low-Velocity. Developed for the delivery of delicate loads. Cargo parachutes 

were attached to the loads to allow for substantial descent deceleration to no 

more than 8.5 m/s. 

➢ Low-Altitude Parachute Extraction (LAPE). LAPE airdrops consisted of an 

airdrop from an aircraft flying between two to three metres above the ground, 

where the load was rigger with a specially designed airdrop platform and one 

to three LAPE parachutes to assist with deceleration. Once released from the 

aircraft, the load then slides across the drop-zone, where the LAPE parachutes 

ensured the load would not tumble. LAPE airdrops require relatively flat and 

smooth drop-zones, requiring specialized preparations to be made prior to 

execution. 

 

Figure 2.2: Free-Drop Airdrop from a DC3 Cargo Plane in South Sudan [38] 

In addition to the types of airdrop, there are also various methods of airdrop. These 

include: 

➢ Extraction. A method used for low-velocity and LAPE platform airdrops, where 

with the use of an extraction parachute or LAPE parachute, the load would be 

pulled from the aircraft’s cargo compartment.  

➢ Gravity. Prior to the drop, with the cargo restrained in the aircraft by a nylon 

webbing release gate, the aircraft is flown in a nose-up attitude. With the 

release gate being cut, the cargo would roll out the aircraft. 

Although effective, the limiting factor of airdrops was the need for specialised 

personnel for rigging and piloting the aircraft to execute them. 
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2.2 Related Research 

This research did not represent the first applications of integrated vision and 

autonomous aircraft. As such, a study into the available literature on existing 

research within this field was undertaken to provide insight to the available hardware 

and software for such applications and to identify possible limitations the systems 

present. 

2.2.1 Academic Studies 

Hinas et al. [27] developed an autonomous multirotor, specifically a quadrotor, for 

application in vision-based identification and inspection of a red circle. The aircraft 

flew a survey flightpath over a given area and upon detection of a red circle, would 

descend to a predefined hover height at which the vision system would inspect the 

identified red circle. Results from the physical implementation of the autonomous 

system showed that the system was able to achieve high levels of success up to an 

altitude of 40 m. This system contributed to high altitude applications of similar 

research which were previously run at altitudes of 3 m to 5 m. Additionally, from 

visual inspection of the results of the vision system’s ability to determine the x and 

y coordinates of the red circle when in view, an average accuracy within 2 m of the 

target’s true location was achieved from an altitude of 10 m. The system architecture 

utilised in the development of this autonomous detection and inspection system 

highlighted the possible efficiency of low-cost implementation of readily available 

technologies. These technologies included a Pixhawk FCU for autonomous flight 

control, a Raspberry Pi 2 for onboard vision processing and a four-node Robotic 

Operating System software architecture was developed for computational control. 

Moving from multirotors to fixed-wing applications of autonomous flight control and 

vision, Prabowo et al. [36] developed a hardware in the loop (HITL) simulation for the 

development and testing of target identification influenced servoing of a fixed-wing 

aircraft. The desired application of such a system was based in the identification and 

tracking of specific targets, where monitoring of the various avionics and camera 

parameters were used as an indication of the performance of the system. The system 

architecture and testing procedure consisted of an integrated hardware-controlled 

flight simulator, where a simulated fixed-wing was flown on a given course and 

presented with a target. Upon identification of the desired target, the simulated 

aircraft would begin to follow the target, both physically in terms of avionics and via 

its onboard vision system. The subsequent output of the simulation was the 

monitored motion of the various control servos and the vision system pan and tilt 
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angles. The implemented hardware included a Pixhawk PX4 flight-stack for flight 

control and a Cubieboard2 for image processing. The results from the HITL 

simulations showed minimal errors when compared to simulated results and the 

system was deemed ready for application in a physical aircraft system.  

Hochstenbach et al. [28] developed a VTOL aircraft for autonomous parcel delivery 

which was capable of transporting parcels up to 1 kg in weight. This available 

onboard cargo weight was optimised to determine the greatest ratio between weight 

and transportation distance. The VTOL system developed, the VertiKUL, achieved a 

functional range of 26 km over a sustained flight period of 29 minutes. The system 

was never fully automated in terms of parcel delivery and parcel delivery was 

achieved through physical removal of the parcel from the aircraft. To allow for flight 

control and stability, a Pixhawk FCU was utilised in a mid-level control state where 

user defined inputs were still used for flight control of the aircraft. 

The UAV Challenge Outback Rescue held in Kingaroy, Australia, held between 2007 

and 2014, was a search and rescue competition where autonomous aircraft were 

used to locate a mannequin in the Outback and deliver a bottle of water within 100 m 

of the mannequin’s location. CanberraUAV were the first to successfully complete 

the challenge in 2014 [46]. Boura et al. [10] represented one of the many teams which 

attempted the UAV challenge in 2010. This entry into the UAV challenge was not the 

primary aim of the research conducted by Boura et al. and the initial system was 

developed for application in a Lockheed Martin Desert Hawk III for the autonomous 

delivery drop of roughly 1 kg of medical supplies. The onboard hardware utilised 

included a Piccolo II autopilot for autonomous control and a Gumstix computer-on-

module for onboard computation of the most appropriate payload release timing. 

Determination of the desired drop-zone’s location was not done with the use of an 

automated vision system and the onboard vision system, comprising of a TASE 

gimbal and Song block camera, relayed the video feed from the aircraft back to the 

ground station. This lack of vision autonomy was compensated for by the vision 

system’s ability to communicate the GPS location of the point on the ground at which 

the camera was focussed. From the UAV Challenge, Boura et al. were able to 

successfully detect the mannequin but upon payload release, a malfunction in the 

autopilot’s waypoint allocation system prevented the payload from being released in 

the correct location. The resulting displacement of the payload relative to the 

mannequin was approximately 450 m, even though testing of the system had result 

in an optimum displacement of approximately 3.5 m. 
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2.2.2 Commercial Systems 

This section discussed the commercial implementation of systems which utilised 

autonomous aircraft as a means of airborne delivery. 

2.2.2.1 Zipline 

Zipline, an American-based start-up company, was used for delivering units of blood, 

vaccines and platelets in African countries, Rwanda and Tanzania, where access to 

necessary medical supplies were limited. Zipline uses custom-built autonomous 

fixed-wing aircraft to deliver these medical payloads. Once loaded with supplies, the 

aircraft were launched and would fly a predefined flight path to the requested drop-

zone. Upon reaching the designated drop-zone, the aircraft initiates a controlled 

decent, until the required drop altitude has been acquired. The payload descends to 

the desired drop-zone with the assistance of a small wax parachute, where the 

drop-zone of the given payload was defined to be accurate within a 5 m radius. The 

aircraft then flies back and lands at the distribution centre, where it would then be 

prepared for the next flight [50]. The launch of a Zipline aircraft can be seen in 

Figure 2.3 [39]. 

 

Figure 2.3: Zipline aircraft launching [39] 

From the available literature, it was deduced that Zipline did not utilise any onboard 

intelligence that can identify and confirm the drop-zone, other than the initially 

predefined GPS drop-zone location. This lack of visual confirmation introduced the 

possibility that Zipline’s payloads could be compromised upon delivery in terms of 

correct recipient collection of the payload.  
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2.2.2.2 DHL Parcelcopter 

Much like Zipline, the DHL Parcelcopter was an autonomous aircraft system 

developed for the transportation of medical supplies in Tanzania. The DHL 

Parcelcopter project started in 2013 with the manual flight control of a multirotor to 

deliver medical supplies across the Rhine to the Deutsche Post DHL Group 

headquarters in Bonn. From this initial concept, the DHL Parcelcopter evolved into 

an autonomous VTOL aircraft, used for the delivery of medical supplies to 

inaccessible areas in Tanzania in the 3rd quarter of 2018. Unlike Zipline, whose 

mission flightpaths were fully automated, DHL’s Parcelcopter made use of user 

defined mission waypoints, including takeoff and landing, in the QGroundControl 

software. Additionally, the Parcelcopter did not make use of an airdrop to deliver 

their packages and the VTOL would land and allow for package removal. The DHL 

Parcelcopter can be seen in Figure 2.4 [16]. 

 

Figure 2.4: DHL Parcelcopter [16] 

Like Zipline, DHL Parcelcopter did not make use of any onboard vision systems to 

assist with mission execution and although autonomous landing was a feature, no 

indication of object avoidance was seen. The significance of this lack of onboard 

vision or obstacle avoidance was that the missions were user defined and incorrect 

placement of the landing waypoint could have resulted in the aircraft colliding with 

physical obstacles. The need for such an avoidance system was only present in DHL’s 

aircraft, as Zipline’s aircraft only launched and landed at Zipline ground stations and 

the implementation of airborne delivery removed the need for additional onboard 

hardware. 
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2.3 Chapter Conclusion 

From the research conducted it was noted that a trend in the use of the Pixhawk FCU 

flight controller for the introduction of autonomy into various airframes can be seen. 

Additionally, from the research conducted into the various airframes it was noted 

that VTOL aircraft seemed to be the theoretical favourite, but upon review of the 

commercial systems, Zipline’s fixed-wing aircraft achieved the desired result equally, 

if not better than the DHL Parcelcopter VTOL. From the commercially available 

systems, a lack of onboard vision was noted, providing the opportunity for 

implementation of such a system to improve the desired performance. Looking at the 

required infrastructure for the necessary airdrops, the least complex method for 

implementation on a low-cost system would be the free-drop. As such, the focus of 

the research has been steered towards integrating and improving upon the research 

conducted by Hinas et al. and Boura et al. into a single fully autonomous system 

capable of vision-based autonomous aircraft payload delivery. Chapter 3 follows this 

literature study with the development process of the system architecture utilised in 

this research.  
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Chapter 3  

System Architecture 

This chapter discussed the platform used to develop the vision-based autonomous 

aircraft payload delivery system. Aspects such as the test bench aircraft, hardware 

architecture, software architecture and aircraft alternations were discussed.  

3.1 The Test Bench Aircraft 

This research was developed for the purpose of developing a modular design that 

could easily be transferred between different airframes. Considering this, the test 

bench model, upon which results were gathered, was selected. 

The test bench model aircraft utilised in the development of this research was the 

Skywalker 2013 (Carbon Fibre Tail Version), as seen in Figure 3.1. The Skywalker 

frame presented the necessary flexibility and expendability due to its Erythropoietin 

(EPO) foam composition which allowed for alterations to be made to the physical 

structure of the aircraft with minimal detriment to the aircraft’s structural rigidity. 

Physical specifications of the aircraft can be seen in Table 3.1. 

 

Figure 3.1: Test bench aircraft - Skywalker 2013 

Table 3.1: Test bench aircraft physical parameters 

Parameter Value Unit 

Wingspan 1.88 m 

Length 1.225 m 

Height 0.22 m 

Weight 1.4 kg 

The aircraft was altered from its given state to accommodate the necessary hardware. 

These alterations were discussed in Section 3.4. 
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3.2 Hardware Architecture 

Several subsystems were required to be integrated into a single operational platform, 

hardware for each subsystem was selected based on functionality and integrability 

with the other remaining subsystems. This section focused on the hardware selected 

and discussed the rationale pertaining to the reasoning for each hardware 

component and its selection. 

3.2.1 Aircraft Flight Control 

Prior to any additional hardware being introduced into the aircraft to achieve 

autonomous control, basic flight control hardware was installed to achieve sustained 

flight and control of the aircraft. This section focused on these devices, as their 

performance and functionality formed the foundation upon which the remainder of 

this research was based. 

3.2.1.1 Remote-Control 

Basic remote-control hardware was installed to develop a functional test platform. 

The aircraft’s remote-control hardware can be seen in Table 3.2. 

Table 3.2: Remote-control hardware onboard the aircraft 

Component Model Quantity 

Control Actuators 15g Servo 4 

Motor 
SunnySky X2814-7 

KV: 1100 
1 

Electronic Speed 

Controller (ESC) 

Hobbywing 

FLYFUN 40A 
1 

Receiver FrSky X8R 1 

Transmitter FrSkyTaranis QX7 1 

Batteries 
X-Power LiPo 

3300mAh 3S 
2 
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3.2.1.2 Telemetry Sensors  

In addition to the control hardware, telemetry sensors were installed onboard the 

aircraft to provide sensory information during flight. These sensors did not form part 

of the final integrated system’s sensory package but were kept onboard to provide 

comparative information for testing. These telemetry sensors were also included due 

to their compatibility with the remote-control hardware onboard the aircraft. The 

remote-control telemetry sensors can be seen in Table 3.3. 

Table 3.3: Remote-control sensory hardware onboard the aircraft 

Sensor Model Quantity 

Airspeed sensor FrSky ASS-70 1 

Current and Voltage 

Sensor 

FrSky 

FCS-150A 
1 

GPS Sensor FrSky GPS V2 1 

Variometer FrSky Vari-N 1 

3.2.1.3 Configuration 

With the aircraft’s remote-control and sensory hardware defined, their configuration 

in the aircraft could be defined. Within the remote-control hardware, two subsystems 

existed, namely: the onboard remote-control hardware and the ground-based 

remote-control hardware. The ground-based remote-control hardware was 

represented by the transmitter and the onboard remote-control hardware was 

represented by the remaining remote-control hardware, with its central configuration 

point being the X8R receiver. The configuration of the onboard remote control and 

sensory hardware can be seen in Figure 3.2. 

 

Figure 3.2: Onboard remote control and sensory hardware configuration 
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The configuration of the receiver for the remote-control hardware can be seen in 

Figure 3.3. 

 

Figure 3.3: Initial receiver configuration of the control actuators 

3.2.2 Autonomous Flight Hardware 

With the basic flight control hardware defined, the hardware introduced to convert 

the system into a fully autonomous aircraft could be defined. During the installation 

of the autonomous flight control hardware, none of the aircraft’s remote-control 

hardware and sensory hardware was removed. 

3.2.2.1 The Autopilot 

The Pixhawk 1 Flight Controller (The Pixhawk), an open hardware, industry standard 

autopilot system, was selected as the desired autopilot. The Pixhawk was a 

commonly used and readily available system, whose integration into the current 

flight control configuration did not require third party hardware. The Pixhawk can 

be seen in Figure 3.4 and the list of the Pixhawk’s specifications can be seen in 

Appendix C1 [37].  

 

Figure 3.4: The Pixhawk 1 [37] 
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The Pixhawk, with the assistance of a ground control station (GCS), was capable of 

several manual and autonomous flight control modes. These modes ranged from 

MANUAL flight mode, where the Pixhawk acted like a remote-control receiver in terms 

of full actuator control. Thereafter, GUIDED flight mode, a semi-autonomous flight 

mode where the aircraft would follow user defined waypoints either through a 

mission statement or via a click-and-fly approach in the GCS. Finally, AUTO flight 

mode, where the aircraft could receive and execute an entire mission statement from 

the GCS. These flight modes include variations for both GPS dependent and non-

GPS dependent flight paths. The Pixhawk also came with a variety of peripheral 

devices for sensory feedback and extended functionality, several of which were used 

within this research and were discussed later in this chapter.  

The Pixhawk provided several autonomous flight control functions, for a wide variety 

of airframes, however it was not an autonomous flight controller as it possessed no 

onboard intelligence, in terms of situational decision making other than that of 

predefined failsafe procedures. This lack of additional intelligence meant that the 

Pixhawk would only execute commands presented to it by the GCS and the 

transmitter. As such, the introduction of onboard intelligence was necessary to 

transform the aircraft into a fully autonomous system. Therefore, the next phase of 

the autonomous flight hardware was introduced, the companion computer. 

3.2.2.2 The Companion Computer 

Companion computers were used to interface and communicate with flight 

controllers through the Micro Air Vehicle Link (MAVLink) protocol, allowing for 

onboard intelligence to be integrated into the aircraft. The level of onboard 

intelligence introduced into the flight controller was only limited by the capabilities 

of the selected companion computer. Tasks, such as vision processing and mapping, 

were a few of the capabilities of these companion devices. These devices had 

limitations, with issues such as additional power consumption, weight and available 

onboard space all became relevant factors when developing a sustainable and 

feasible autonomous system.  
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Several possible Pixhawk compatible companion computer systems existed. The 

selection of the most applicable system was based on application, computational 

requirements and functionality. The available companion computers that offered the 

necessary functionality include: 

➢ Raspberry Pi 

➢ ODroid 

➢ NVidia Jetson TX1 

Considering the available companion computers, a comparison based on cost, 

processing capability and functionality was conducted to determine the applicable 

system for selection. Functionality implied the integrability of the companion 

computer with additional onboard hardware. The results of these comparisons can 

be seen Table 3.4 and Figure 3.5.  

Table 3.4: Companion computer comparison merit table 

 Cost 
Processing 

Capabilities 
Functionality Total 

Weighting 0.3 0.5 0.2  

Raspberry Pi 8 5 7 6.67 

ODroid 6 9 7 7.33 

NVidia Jetson TX1 1 7 5 4.33 

 

Figure 3.5: Companion computer weighted comparison 

Noting the results gathered from Table 3.4 and Figure 3.5, it was found that the 

largest weighting was placed on processing capabilities. The ODroid-XU4, as seen in 

Figure 3.6, was selected as the desired companion computer for this research. The 

list of the ODroid-XU4’s specifications can be seen in Appendix D1 and the ODroid-

XU4’s schematic can be seen in Appendix D2 [25]. 

Raspberry Pi ODroid NVidia Jetson TX1
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Figure 3.6: The ODroid-XU4 [25] 

To establish a communication link between the ODroid and the Pixhawk, a six-way 

Future Technology Devices International (FTDI) Universal Serial Bus (USB) to Serial 

converter cable was used. This USB to serial cable, more commonly referred to as an 

FTDI cable, was used to establish the link between the ODroid’s USB port and the 

TELEM2 port of the Pixhawk. The FTDI cable operated by converting the USB 

communication from the ODroid to Transistor-Transistor Logic (TTL) level Serial 

communication for the Pixhawk. In addition to the FTDI cable, further functionality 

was added to the ODroid with the introduction of an embedded Multi-Media 

Controller (eMMC). The eMMC acted as the ODroid’s high speed storage device.  

3.2.2.3 Peripheral Devices 

The Pixhawk provided a wide variety of peripheral devices for both data capture and 

data transmission. Several of these devices were included in the configuration of the 

autonomous flight controller, but not all of the peripheral devices utilized in this 

research were discussed in this section as they were not applicable to the 

autonomous flight of the aircraft. These additional peripheral devices were discussed 

in their respective sections. With the available peripheral devices for the Pixhawk 

considered, the devices utilized in the development of the autonomous flight control 

of this research can be seen in Table 3.5. 

Table 3.5: Pixhawk peripheral devices 

Peripheral Device Quantity 

GPS and Compass 1 

Digital Airspeed Sensor 1 

933MHz Wireless Telemetry Modem 1 

Battery Monitor 1 

I2C Splitter 1 
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3.2.2.4 Configuration 

The configuration of the autonomous flight control hardware was integrated with the 

remote-control flight control configuration as the remote-control system was kept in 

place as a safety. Various other sub-configurations in the autonomous flight 

hardware architecture were also present within the autonomous flight control 

configuration. These included the Pixhawk’s peripheral devices’ configuration, the 

FTDI cable wiring configuration for the Pixhawk’s TELEM2 port and the 

receiver-Pixhawk configuration. These configurations can be seen in Figure 3.7, 

Figure 3.8 and Figure 3.9, respectively. The integrated configuration of the 

autonomous flight control hardware can be seen in Figure 3.11. The Pixhawk port 

pinouts can be seen in Appendix C2 and the Pixhawk’s schematic can be seen in 

Appendix C3. 

 

Figure 3.7: Pixhawk’s peripheral devices’ configuration 

The FTDI cable’s serial port connector did not match the Pixhawk’s TELEM2 port 

and as such, the correct six-pin male JST ZH connector was used to replace the FTDI 

cable’s serial port connector. The corresponding wiring configuration of the correct 

serial port connector to the Pixhawk’s TELEM2 port can be seen in Figure 3.8. A 

wiring convention table was also included, as the FTDI cable and the Pixhawk did 

not share the same wiring colour conventions. 
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Figure 3.8: FTDI cable wiring configuration for Pixhawk TELEM2 port 

 

To allow for manual control of the aircraft to be taken at any time, the remote-control 

receiver was connected to the Pixhawk. This connection was established between the 

receiver’s Serial BUS (SBUS) port and the Pixhawk’s RC IN port using a three-wire 

servo lead with female JR connectors at both ends. 

 

Figure 3.9: Receiver – Pixhawk configuration 
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Due to the integration of the Pixhawk into the autonomous flight control system, the 

control actuators were required to be rewired as per the Pixhawk’s control surface 

configuration. The Pixhawk control actuators configuration can be seen in 

Figure 3.10. 

 

Figure 3.10: Pixhawk control actuator configuration for a fixed-wing aircraft 

 

 

Figure 3.11: Integrated autonomous flight control hardware configuration 
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3.2.3 Vision System Hardware 

The following phase of an autonomous payload delivery mission involved the 

identification of the desired drop-zone location, therefore the required hardware to 

establish such a system was discussed in this section. 

3.2.3.1 The Processor 

The ODroid-XU4 was selected as the main processing unit. The defining reason for 

selecting the ODroid was due to its vision processing capabilities. As such, the 

ODroid formed part of the vision system hardware. 

3.2.3.2 The Camera 

The key element of the vision system was the selection of an appropriate camera. The 

selection was based on the application of the camera and the system requirements 

of the current hardware and future software in terms of integrability. In addition to 

these criteria, the size and weight of the camera were also considered due to the 

limited space onboard the aircraft. A comparison of available camera systems was 

conducted. Due to the wide variety of possible solutions, the list was refined for the 

final selection. The initial comparison of camera systems can be seen in Table 3.6 

and Figure 3.12. 

Table 3.6: Camera type comparison merit table 

 Cost 
Size & 

Shape 

Application 

Suitability 
Integrability Total 

Weighting 0.2 0.1 0.4 0.3  

Webcam 5 5.5 5 8 5.875 

GoPro 2 8 8 5 5.75 

CMOS Camera 8 8 7 8 7.75 

 

Figure 3.12: Camera type weighted comparison 

Webcam GoPro CMOS Camera
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From the comparison in Table 3.6 and Figure 3.12, a complementary metal-oxide 

semiconductor (CMOS) camera was selected as the desired type of camera system. 

With the type of camera now selected, the search field could now be narrowed to 

optimise the selection of the most appropriate CMOS camera. Refining the search 

noted the application specific criteria. A criterion for the camera system was to 

possess a USB connector to interface with the ODroid’s USB ports. To narrow the 

search field further, the selection of possible camera systems was focussed at a single 

CMOS camera manufacturer, ELP, who specialised in USB camera modules. The 

final camera system comparison can be seen in Table 3.7 and Figure 3.13. 

Table 3.7: ELP CMOS camera comparison merit table 

 Resolution FOV 
Functional 

Range 
Functionality Total 

Weighting 0.4 0.1 0.4 0.1  

ELP-

USB500W04AF-A60 
7 8 9 8 8 

ELP-USB500W02M-

L21 
7 4 9 8 7 

ELP-USB8MP02G-

L75 
9 6 7 7 7.25 

 

Figure 3.13: ELP CMOS camera weighted comparison 

  

ELP-USB500W04AF-A60 ELP-USB500W02M-L21 LP-USB8MP02G-L75
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From Table 3.7 and Figure 3.13, the highest weighting was given to resolution and 

functional range of the camera system. Based on the final weighted comparison, the 

ELP-USB500W04AF-A60 was selected as the desired camera system for the onboard 

vision system, as seen in Figure 3.14 [17]. The full list of the ELP-USB500W04AF-

A60 camera’s specifications can be seen in Appendix E1 and the 

ELP-USB500W04AF-A60 camera’s schematic can be seen in Appendix E2. Some of 

the ELP-USB500W04AF-A60 camera’s specifications can be seen in Table 3.8 [17]. 

 

Figure 3.14: ELP-USB500W04AF-A60 CMOS camera [17] 

 

Table 3.8: ELP-USB500W04AF-A60 camera key specifications 

Specification Value Unit of Measurement 

Resolution (Max) 2592 (H) X 1944 (V) pixels 

Functional Range 0.05 to 100 m 

Focus Automatic - 

Operational Temperature 
Operation: -20 to 70 

Stable Image: 0 to 60 
˚C 

 

3.2.3.3 The Gimbal 

The overall performance of the vision system was predominantly based on the 

selection of an appropriate camera system, however the vision system would have 

been insufficient during flight without image stabilisation. As such, a camera gimbal 

was incorporated into the vision system to account for the CMOS camera’s lack of 

image stabilisation capabilities. The TAROT GoPro 3D V metal 3-axis gimbal was 

selected as the desired gimbal for the vision system.  
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Although designed for the GoPro HERO 5 BLACK camera, the TAROT gimbal was 

viable for use with the CMOS camera. The TAROT gimbal was mass-balanced 

according to the size and weight specifications of the GoPro HERO 5 BLACK. As such, 

the alterations required to allow the CMOS camera to function in the gimbal correctly 

was to mass-balance the CMOS camera according to the design of the GoPro. The 

CMOS camera mass-balancing adapter was discussed in Section 6.3. 

As image stabilisation was necessary with respect to the motion of the aircraft, the 

gimbal was connected to the Pixhawk’s AUX ports. Two of the gimbal’s axes were 

controllable, the TILT and the PAN axes. The roll axis was compensated for by the 

gimbal’s built-in controller. The wiring configuration of the gimbal and the Pixhawk 

can be seen in Figure 3.15. The TAROT GoPro 3D V metal 3-axis gimbal specifications 

can be seen in Appendix F. 

 

Figure 3.15: Gimbal - Pixhawk configuration 
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3.2.3.4 Configuration 

With the selection of the vision system components complete, the integration of the 

vision system to aircraft could take place. The vision system’s integrated 

configuration with the integrated autonomous flight control hardware configuration 

can be seen in Figure 3.16. 

 

Figure 3.16: Vision system integrated with autonomous flight control hardware configuration 
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3.2.4 Payload Release Hardware 

The hardware required for the payload release mechanism was an actuating servo 

release system. The payload release system was integrated with the other 

subsystems’ hardware and the required payload release signal was triggered by the 

Pixhawk when instructed to do so by the ODroid. 

3.2.4.1 Release System 

An initial concept of a single servo holding the payload was devised for this system. 

After testing, it was found that the servo was under continuous load when attempting 

to retain the payload. The solution to this payload release system problem was to 

make use of a predesigned release mechanism. The predesigned release mechanism 

was designed to remove any load from the actuating servo until payload release was 

necessary. A conceptual view of the actuation of the final release mechanism can be 

seen in Figure 3.17. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Payload 

Payload Retained 

Payload Released 

Payload 

Servo 

Servo 

Figure 3.17: Payload release mechanism actuation diagram 
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Although a new payload release mechanism was selected, the required 

electromechanical hardware remained unchanged from the initial concept and only 

a single servo was required to actuate the new mechanism. 

3.2.4.2 Configuration 

The remaining attributes of the payload release system were based on software 

conditions to determine when the payload should be released. As such, the final 

hardware attribute of the payload release system was the configuration of the payload 

release servo with respect to the Pixhawk, which can be seen in Figure 3.18. The 

payload release mechanism was then secured to the underside of the aircraft’s 

fuselage. 

 

Figure 3.18: Pixhawk configuration for the payload release servo 

 

3.2.5 Additional Hardware Considerations 

The operational temperature of the hardware devices was taken into consideration 

due to Lapse rate. Where, Lapse rate was the rate at which atmospheric temperature 

decreased with respect to an increase in altitude. Lapse rate was applicable due to 

the increase in altitude the hardware would experience during flight. As such, noting 

the standard Lapse rate for altitudes up 100m, the maximum change in the ambient 

temperature could be approximated to 1˚C below the ground level ambient 

temperature. Due to the location at which this research was conducted, this variation 

in ambient temperature was within the operational limits of the onboard hardware. 

Application of this research in areas with lower ambient temperatures could prove to 

generate inconsistent results and component insulation could be considered to 

rectify this [9].  
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3.3 Software Architecture 

The majority of the hardware utilised in this research provided preinstalled firmware 

and software, however the computational control algorithms required for 

autonomous flight, vision, payload release and additional onboard processing were 

required to be developed. These processes were required to run concurrently and 

communicate with one another and although the ODroid provided the necessary 

hardware to achieve this type of computational control, this hardware did not imply 

the necessary software was present to achieve these processes. As such, this section 

discussed the software and software architecture used to develop the aforementioned 

algorithms. 

3.3.1 Operating System 

When selecting the ODroid, the option to preinstall an operating system (OS) on the 

eMMC was selected. The ODroid came with an Android OS already preloaded on the 

ODroid’s built-in storage, but a Linux OS was selected to be installed on the eMMC. 

Linux offered a more user-friendly interface and was selected based on its 

compatibility with the computational middleware used for the required algorithms, 

the Robotic Operating System (ROS). The Linux OS installed on the ODroid was 

Ubuntu MATE 18.04, a companion computer supported OS. A similar Linux OS was 

installed on a separate computer system running virtual machine software. This 

secondary Linux OS was used for off-board testing and simulations of the various 

algorithms. 

3.3.2 Robotic Operating System 

ROS was selected as the middleware for this research. ROS allowed for several nodes 

to be executed concurrently, where ROS nodes represented the programmes and 

algorithms which performed computations. These nodes were written in the C++ 

programming language, where application specific ROS libraries and headers were 

added to these nodes to allow for extended functionality. Five separate nodes were 

used in this research, namely: the MAVROS node, the autonomous flight node, the 

image capture node, the image processing node and the payload release node. These 

nodes were discussed in detail in their respective chapters. The ROS node 

architecture can be seen in Figure 3.19. 
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Figure 3.19: System Software Architecture 

3.3.2.1 MAVROS Node 

The MAVROS node was a pre-written header-only message marshalling library that 

was developed for establishing the MAVLink communication protocol with 

unmanned air vehicles’ FCUs and in this case, the Pixhawk. No additional data was 

required to be added to the MAVROS node in order to achieve MAVLink 

communication with the Pixhawk. In order for the other nodes to communicate with 

the Pixhawk via the MAVROS node, each node was required to make use of MAVROS 

library headers. These headers were developed for vehicles enabled with the MAVLink 

communication protocol which was not limited to fixed-wing aircraft and as such, 

several of these headers were not compatible with fixed-wing aircraft. 

3.3.2.2 MAVROS Headers and MAVLink 

MAVLink represented the method of communication with the Pixhawk and the 

MAVROS node handled all encoding and decoding of the MAVLink messages to and 

from the Pixhawk. The MAVLink message structure can be seen in Figure 3.20. 

 

Figure 3.20: MAVLink message structure [47] 
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From Figure 3.20, the MSG byte represented the Message ID byte which defined 

which MAV_CMD messages were being transmitted. The MAV_CMD messages 

represented the possible commands available to be transmitted via MAVLink to a 

supporting FCU. The PAYLOAD byte represented the parameters within the given 

MAV_CMD being transmitted. The remaining bytes represented system parameters 

and identifiers which ensured that the communication link would only exist between 

the desired FCU and the MAVLink transmitting device. Ensuring the correct link was 

established created an end-to-end encryption between the transmitting and receiving 

devices. The MAVROS library worked in such a way as to request that the user define 

the MSG and PAYLOAD bytes by defining the corresponding variables for the 

available byte parameters. The remaining bytes were handled by the MAVROS node 

upon connection with the desired FCU. These bytes could be altered manually if 

necessary [47]. 

Considering the MAVROS header structure, it was found that the MAVROS headers 

required the use of the ROS node structure of a Subscriber and Publisher node. 

These node structures implied that, in order to transmit data from a node to the FCU 

via the MAVROS node, a publisher was to be written for each MAVROS header with 

a node wanting to be transmitted information. In the case of receiving data from the 

FCU, a subscriber was to be written in a node to request the desired MAVROS header 

data from the MAVROS node. Each MAVROS header defined which of its variables 

would require a publisher or subscriber to be written to execute the desired 

command. These MAVROS header subscriber and publisher structures were defined 

from the FCU’s frame of reference and as such, the opposing publisher and 

subscriber node structure was to be written by the transmitting device, in this case 

the ODroid’s ROS nodes. The process of transmitting and receiving data upon 

request via the ROS subscribers and publishers allowed for several processes to run 

simultaneously and was the defining feature of ROS which solidified it as the desired 

middleware for the required computational control [48][49].  

MAVROS headers made use of the ROS node structure of Services and Clients. 

Where, like the subscriber and publisher structures, the MAVROS header variables 

requiring services and clients were defined within each MAVROS header description. 

Command requests and replies were executed with the use of ROS services and 

clients. Unlike the subscribers and publishers, the MAVROS headers only made use 

of the service node structure. As such, functions could be requested from the 

Pixhawk and no additional functionality could be added. The defining differences 
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between subscribers and publishers, and services and clients were that subscribers 

and publishers were many-to-many one-way transmissions, which originated from 

the transmitting device. Services and clients were one-to-one, two-way 

communication. Several nodes could make use of subscribers and publishers, but 

only a single service and client node could exist, a master node.  

3.3.2.3 Autonomous Flight Node 

The autonomous flight node was responsible for flight mode selection, aircraft 

arming, mission waypoint allocation and vehicle diagnostic monitoring. The MAVROS 

headers, although developed for various vehicles, presented limited information as 

to the operation and application of the various header variables, especially in the 

case of fixed-wing aircraft. The majority of the available data on the application of 

the MAVROS header was for multirotor vehicles and as such, various fixed-wing 

flight scenarios could not be programmed using the available headers. The full 

description of the autonomous flight node can be seen in Chapter 4.  

3.3.2.4 The Image Capture Node and the Image Processing Node 

The image capture node was used to interface with the camera and for capturing the 

image stream from the camera. The image processing node, upon receiving the 

captured image stream, was responsible for image processing, making use of the 

Open Computer Vision Library (OpenCV) header to achieve the desired object 

recognition and object tracking. Upon successful identification of the drop-zone, the 

image processing node would communicate the drop-zone’s coordinates to the 

autonomous flight node and payload release node. The full description of the image 

capture node and image processing node can be seen in Chapter 5. 

3.3.2.5 Payload Release Node 

The payload release node was responsible for the computation of environmental 

parameters, such as the headwind velocity and direction. Additionally, the payload 

release node was responsible for the computation of the payload release trajectory 

and subsequently the payload release location. The full description of the payload 

release node can be seen in Chapter 6. 
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3.4 Aircraft Alterations 

Due to the hardware required to conduct this research, physical alterations were 

made to the aircraft to allow for the fully integrated system to function correctly. 

3.4.1 Nose Cone and Fuselage 

To house the vision system, ODroid and telemetry devices, a new nose cone and 

fuselage were designed. The new nose cone and fuselage were required due to the 

limited internal space offered by the standard Skywalker airframe. The additional 

space required was to primarily accommodate the vision system, where a gimbal 

mount and a viewing window for the camera were incorporated into the new nose 

and fuselage. The new nose and fuselage were designed as a three-tier system, as 

seen in Figure 3.21. The first tier was designed to accommodate for the camera 

gimbal to move about and housed the camera viewing window, the second tier 

supported the camera gimbal and the ODroid, and the third tier housed the telemetry 

devices. Above these three-tiers was a fibreglass reinforced foam hood which served 

to secure the three tiers to the aircraft. The design of the new nose and hood did not 

improve upon the aerodynamic profile of the aircraft and was purely for additional 

hardware storage.  
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Figure 3.21: New nose and fuselage conceptual design 
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The new nose and fuselage were constructed from balsa and plywood to ensure 

minimal additional weight was introduced into the aircraft. Removing the original 

nose from the aircraft, the first tier was constructed and secured to the remaining 

aircraft fuselage. A comparison between the new nose first tier and the original nose 

can be seen in Figure 3.22.  

 

Figure 3.22: Comparative view of the aircraft’s old nose and new nose 

The second tier was designed to interlock with the first tier via forward facing 3D 

printed hooks. These hooks connected with the first tier’s support rods, as seen in 

the lower right-hand corner of Figure 3.22. In addition to the forward-facing hooks, 

two latches were added to the rear of the second tier and engaged with two reinforced 

holes in the aircraft’s fuselage. The second tier attached to the first tier can be seen 

in Figure 3.23. 

 

Figure 3.23: Second tier of the new nose with the camera gimbal mounted 
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The third tier of the new nose interlocked with the second tier via three sets of 

rear-facing hooks and was locked into place with the use of the fibreglass reinforced 

hood. The hood was then secured to the aircraft via two latches, one which 

interlocked the front of the hood with the first tier and the second latch interlocked 

with the aircraft upper fuselage. Figure 3.24 illustrates the third tier of the new nose, 

Figure 3.25 illustrates the hood during fibre-glassing and Figure 3.26 illustrates the 

fully assembled new nose and fuselage. 

 

Figure 3.24: The third tier of the new nose 

 

Figure 3.25: Fibreglass reinforcing the new nose hood 

 

Figure 3.26: Fully assembled new nose and fuselage 
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3.4.2 New Wing 

With the addition of the onboard hardware, the new nose and fuselage, the mass of 

the aircraft increased and as such, the Skywalker’s standard wing was not suited to 

support the additional load. To assist with this additional mass, a new wing was 

developed for the aircraft. This new wing was implemented for an application specific 

aircraft, as the original Skywalker wing was designed in a polyhedral fashion. 

Polyhedral implied a wing with multiple stages of dihedral, where dihedral refers to 

the dihedral angle a wing possesses with respect to the local horizontal. The added 

benefits of dihedral come in the form of roll stability, where if the aircraft experiences 

slight displacement in the roll axis, it will naturally return to its original attitude [24]. 

The added benefit of roll stability from a dihedral design comes at the sacrifice of lift 

and drag. As such, the polyhedral design of the Skywalker’s wing sought to maximise 

roll stabilisation and available lift by implementing a steep dihedral angle at the wing 

tips and a shallower dihedral angle at the wing root. Where, the steeper dihedral 

angle at the wing tips promoted roll stabilisation and the shallower dihedral angle 

promoted lift. As autonomous flight control of the aircraft was taken during missions, 

the need for roll stabilisation was compensated for by the FCU. As such, optimising 

the available lift of the wing was the primary objective for the new wing’s design. The 

Skywalker’s polyhedral wing design can be seen in Figure 3.27. 

 

Figure 3.27: Skywalker polyhedral wing structure 
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The first stage of designing the new wing for the aircraft involved the selection of the 

aerofoil profile of the new wing. The Clark Y (clarky-il) aerofoil was selected as the 

desired profile for the new wing, as seen in Figure 3.28. The Clark Y aerofoil was a 

flat bottom aerofoil for application in general purpose aircraft designs and the flat 

bottom design provided improved lift characteristics. 

 

Figure 3.28: Clark Y (clarky-il) aerofoil 

With the desired aerofoil selected, two wing halves were cut from closed cell expanded 

polystyrene (EPS) foam. With the wing halves prepared, the next stage of the new 

wing design was to determine the required spar cap design to allow for the wing to 

be able to endure wing loading. The process of determining the required design of 

the spar caps was done through the determination of the required moment of inertia 

of the spar caps. To determine the required moment of inertia, a wing strength 

analysis was conducted by simulating wing loading. Only half the wing was analysed, 

as wing loading was symmetric about the centreline of the aircraft. As such, the wing 

was broken into ten equidistant portions, with the final two wing segments being 

broken into five further segments each. The division of the wing for analysis can be 

seen in Figure 3.29. 

 

Figure 3.29: Wing division for wing loading analysis 
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For the purpose of this research, elliptical loading was used to determine the required 

moment of inertia of the new wing’s spar caps, where the applied loading was the 

bending moment experienced by the wing. The theoretical elliptical loading 

experienced by the new wing can be seen in Figure 3.30. 

 

Figure 3.30: Elliptical loading of new wing 

From Figure 3.30, it could be seen that towards the wing tip segments, the elliptical 

wing loading changed rapidly as the slope of the elliptical wing loading decreased. 

Due to the rapid change in wing loading, the final segments of the wing were divided 

into smaller portions for analysis. To determine the required spar cap moment of 

inertia, the total wing load, 𝐹𝑊𝐿, to be expected was determined, where the total load 

was represented by the area of the quarter elliptical wing loading function, as seen 

in Figure 3.31.  

 

Figure 3.31: Total wing load area within an elliptical loading function 

To determine this area, three additional aircraft parameters were required to be 

known: the gross mass of the aircraft, 𝑚𝑎, the mass of a single wing, 𝑚𝑤, and the 

load factor, 𝑛, for the wing. Equation 3.1 described the area of an ellipse, 

Equation 3.2 described the equation of an ellipse, Equation 3.3 defined the total wing 
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load and Equation 3.4 represented the effective wing area the wing load would act 

upon. 

𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 =
𝜋𝑎𝑏

4
                                                       (3.1) 

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1                                                  (3.2) 

𝐹𝑊𝐿 =
𝑔𝑛(𝑚𝑎−2𝑚𝑤)

2
                                                (3.3) 

𝑎 =
𝑆𝑝𝑎𝑛

2
−𝑤                                                 (3.4) 

Where, 𝑎 represented the loaded span length and 𝑔 was the gravitational 

acceleration. The maximum bending moment, 𝑏, was now determined by setting 

Equation 3.1 equal to Equation 3.3, as all equation variables were now known. The 

variables for these equations were found to be as follows: 

𝐹𝑊𝐿 = 90.25 𝑁 

𝑎 = 0.93 𝑚 

𝑏 = 136.54 𝑁/𝑚 

From the aforementioned variables, the maximum wing load was defined to 

be 𝐹𝑊𝐿 = 100 𝑁 to allow for a factor of safety. As such, with the use of Equation 3.2, 

the elliptical wing loading function was found to be: 

𝑦 = 136.54√1 −
𝑥2

0.87
                                         (3.5) 

For each wing segment, numbered 1 – 10, the net force exerted over the wing area 

was determined. The net force per segment was represented by the area of the 

elliptical wing loading function, which was initially determined through the 

application of a Left Riemann Sum of the elliptical load function. Subdivisions for the 

Riemann Sum were taken to be the wing segment divisions. The elliptical wing 

loading function graph, with the Left Riemann Sum superimposed, can be seen in 

Figure 3.32. 
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Figure 3.32: Elliptical wing loading function with Left Riemann Sum Superimposed 

From Figure 3.32, it was noted that the Left Riemann Sum resulted in an overshoot 

in terms of the net force exerted on the wing and as such, the finite integral of the 

elliptical wing loading function over the wingspan was taken to deduce the net force. 

Each wing segment required its own finite integral. Equation 3.6 defined the general 

form of the finite integral used to determine the net force exerted over the wing. 

𝐹𝑛𝑒𝑡 = ∫ (136.54√1 −
𝑥2

0.87
)𝑑𝑥

𝑑1

𝑑0
                               (3.6) 

Where, 𝑑0 and 𝑑1 represented the segment start and end distances in relation to 

point A on the wing. With the net force for each wing segment known, the bending 

moment (𝑀) and shear force (𝑉) at the inside edge of each wing segment could be 

determined.  

The bending moment was determined by taking the net force applied to the centre of 

each wing segment. Equation 3.7 defined the bending moment of each wing segment. 

The reference for the bending moment fulcrum was wing point K. The bending 

moment was used to determine the ability of the spar cap to endure the desired wing 

loading. 

𝑀𝑆𝑒𝑔 = ∑ 𝐹𝑛𝑒𝑡𝑛𝑑𝑛
𝑆𝑒𝑔
𝑛=𝐾                                             (3.7) 
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Where, 𝑀𝑆𝑒𝑔 represented the bending moment of a particular wing segment, 𝐹𝑆𝑒𝑔𝑛
 

represented the net force exerted on a wing segment starting at wing point K and 

working towards desired wing segment, and 𝑑𝑛 represented the distance from wing 

point K to the current wing segment’s centre. The new wing bending moment curve 

can be seen in Figure 3.33. 

 

 

Figure 3.33: New wing bending moment curve 

From Figure 3.33, it was noted that the bending moment diminished across the 

length of the wingspan, where the maximum bending moment was found to be 

53.58 N.m at the wing root (wing point A). With the bending moment for each 

segment known, the required moment of inertia of the spar cap was determined. 

Equation 3.8 described the moment of inertia of the spar cap. 

𝐼 =
𝑀𝑦

𝜎
                                                    (3.8) 

Where, 𝐼 represented the moment of inertia, 𝑀 represented the bending moment, 𝑦 

represented the vertical distance away from the neutral axis of the wing’s aerofoil 

and 𝜎 represented the allowable bending stress of the spar cap material. During the 

cutting of the aerofoil, the spar cap position was placed at 1 mm above the neutral 

axis of the aerofoil. The desired spar cap material was selected to be pultruded carbon 

fibre, with a bending stress of 1.6 GPa.  The required moment of inertia of each wing 

segment was determined, these moments of inertia can be seen in Table 3.9. 
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Table 3.9: Wing segment moments of inertia 

Wing Segment 
Moment of Inertia 

(m4) 

1 8.37 x10-12 

2 6.61 x10-12 

3 5.06 x10-12 

4 3.71 x10-12 

5 2.58 x10-12 

6 1.67 x10-12 

7 0.97 x10-12 

8 0.48 x10-12 

9 0.17 x10-12 

10 0.03 x10-12 

 

From Table 3.9, it was noted that the required moment of inertia of the spar cap 

decreased over the span of the wing. As such, a variable spar cap design would have 

been optimal in terms of the given moments of inertia. Due to the complexity and 

cost of manufacturing a variable spar cap, pultruded carbon fibre tubing and 

rectangular extrusion was used to construct the spar caps. As wing loading 

decreased outward from the fuselage of the aircraft towards the wing tips, the spar 

cap design was varied in terms the length of the carbon fibre tube utilised. The tubing 

was present for the first 0.5 m of a wing’s spar cap and the rectangular extrusion 

was present in two strips, at the top and bottom of the aerofoil, for the full length of 

the wing. The spar cap cross-sections can be seen in Figure 3.34. 

 

Figure 3.34: Spar cap cross-sections 
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The required shear stress (𝜏) of the wing was determined by deducing the applied 

shear force on the wing. The required shear stress of the wing was an indication of 

the required shear stress of the material from which the wing body was made. In this 

case, EPS foam. Equation 3.9 described the required shear stress. 

𝜏 =
𝑉

𝐴
                                                     (3.9) 

Where, 𝐴 represented the area of the upon which the shear force acted. The shear 

force curve can be seen in Figure 3.35. 

 

Figure 3.35: New wing shear force curve 

From Figure 3.35, it was noted that the shear force decreased over the length of the 

wingspan and the maximum shear force was found to be 90.3 N at the wing root. 

Due to the EPS foam design of the wing, the required shear stress of the wing was 

defined to be the shear strength of the EPS foam between the spar cap segments. 

The required shear stress of the new wing was defined to be the shear stress required 

at the point of maximum shear force along the wing, but due to the change in spar 

cap design throughout the wing, two shear stress measurements were required. One 

from the first spar cap section and one from the second spar cap section. From these 

two shear stress measurements, the measurement with the maximum required shear 

stress was defined to be the wing’s minimum required shear stress. The minimum 

required shear stress was found to be 407.07 kPa with a shear force of 90.3 N applied 

to a shear area of 0.22x10-3 m2 at wing point A. The shear stress of the EPS foam 

used in the construction of the wing was 482.63 kPa and as such, the wing’s design 

was within the required specifications to endure the desired wing loading. The spar 

cap and new wing design calculations can be seen in Appendix G. 
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Upon construction of the wing, it was found that due to the hot wire foam cutter’s 

spar cap cutting toolpath, the spar caps separated from the wing during tension and 

compression testing. This separation implied that the tension and compression 

experienced by the wing was not transferred across the wingspan via the spar caps. 

An additional wooded spar cap was placed in the middle portion of the wing, 

extending 0.6 m symmetrically about the centre of the wing. The wooden spar cap 

possessed a rectangular cross-section and extended through the entire thickness of 

the new wing. The wing was then sealed with clear adhesive tape to provide torsional 

strength. 

With the new wing constructed, it could be compared to the original Skywalker wing. 

An aspect ratio comparison was undertaken to compare the two wings. Where, aspect 

ratio (𝐴𝑅) was an indication of the square of the wingspan (𝑆2) divided by the area of 

the wing (𝐴), as defined by Equation 3.10 [24]. 

𝐴𝑅 =
𝑆2

𝐴
                                                   (3.10) 

Higher aspect ratio wings provided higher lift to drag ratio, allowing them to carry a 

given weight easier than their lower aspect ratio wing counterparts. It was found that 

the original Skywalker wing possessed an aspect ratio of 6.1639 and the new wing 

possessed an aspect ratio of 6.48.  

In addition to aspect ratio, a comparison in wing loading capabilities of the two wings 

showed that the new wing resulted in an 12.60% reduction in wing loading when 

compared to the original Skywalker wing. This wing loading comparison was done by 

working backwards with the moment of inertia of the spar caps and calculating the 

allowable loading force each wing would experience. As the spar caps were over 

designed for the new wing, they provided additional strength. 

With the physical parameters of the wing defined, the control surfaces and additional 

features could be added to the wing. The control surfaces included ailerons and flaps 

and the additional features included a wireless telemetry module and an airspeed 

sensor. The new wing, with the control surfaces included, can be seen in Figure 3.36 

and the new wing attached to the aircraft can be seen in Figure 3.37. The new wing’s 

specifications can be seen in Table 3.10. 
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Figure 3.36: New wing with wireless telemetry and control surfaces included 

 

Figure 3.37: New wing attached to the aircraft 

Table 3.10: New wing specifications 

Parameter Value Unit 

Aerofoil Clark Y - 

Chord Length 0.31 m 

Thickness 0.04 m 

Span 1.98 m 

Aspect Ratio 6.48 - 

Spar Cap Centre Position 
From Leading Edge: 0.102 

From Lower Surface: 0.018 

m 

m 

Wing Material Expanded Polystyrene - 

Spar Cap Material Carbon Fibre - 

Spar Cap Moment of Inertia 
First Spar Cap: 2.31x10-9 

Second Spar Cap: 2.01x10-9 

m4 

m4 

Wing Load Factor 4 - 

Wing Loading Reduction 12.60 % 

Full Wing Mass 0.4 kg 
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3.4.3 Additional Alterations 

With the new nose, fuselage and wing completed, several additional changes were 

introduced. These alterations included the addition of landing gear, including a tail 

wheel for ground steering during takeoffs. Another alteration included the addition 

of battery and FCU shelves inside the fuselage. A viewing window was installed on 

the side of the fuselage to allow for visual confirmation that the FCU was responding 

correctly in terms of its onboard LED indicator. These additional features concluded 

the alterations made to the aircraft. 

3.5 Chapter Conclusion 

Chapter 3 defined the system architecture utilised in this research. Elements such 

as the airframe, onboard hardware and onboard software were discussed. 

Component selection comparisons were undertaken and the Pixhawk FCU, 

ODroid-XU4 and ELP-USB500W04AF-A60 CMOS camera were some of the selected 

hardware for use in this research. A Linux-based, C++ programming language ROS 

node architecture was developed as the system’s software architecture, where five 

nodes were developed for the purpose of achieving the desired research objectives 

defined in Chapter 1. The final section of Chapter 3 discussed the alterations made 

to the aircraft in order to achieve the desired system functionality. The development 

of a new nose, fuselage and wing were discussed. With the conclusion of Chapter 3, 

Chapter 4 discussed the first subsystem, the autonomous flight control system. 
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Chapter 4  

Autonomous Flight 

This chapter discussed the details pertaining to the autonomous flight node and has 

been structured to describe the various phases of the autonomous flight process. In 

addition to this node structure, the defining Pixhawk parameters required to achieve 

the defined flight procedures were also discussed. 

4.1 Autonomous Flight Node 

As discussed in Chapter 3, the autonomous flight node made use of the MAVROS 

header to define all flight control variables. These processes include pre-flight 

calibration and safety checks, motor arming, flight mode selection, take-off and 

landing, waypoint allocation, environmental parameter determination and payload 

release approach. Prior to the configuration of the autonomous flight node, the 

computational logical flow was mapped out, as seen in Figure 4.1. The autonomous 

flight node code can be found in Appendix A1. 

 

Figure 4.1: Autonomous flight node computational flow diagram 
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4.1.1 Pre-flight Calibration and Safety Checks 

The aircraft was placed through a series of pre-flight safety checks and calibration 

tests. These checks included the response of the various control surfaces, battery 

state of charge, airspeed sensor feedback, GPS lock, altitude disparity, response of 

the vision system and release mechanism. These checks all fell within a greater check 

which ensured that a stable node build was running and that a sustainable 

communication between the FCU and the MAVROS node was established. This 

broader check was run throughout the flight control process to ensure sustained 

control over the aircraft by the companion computer. 

The Pixhawk possessed an onboard, pre-arm parameter evaluator which, when 

enabled, prevented the aircraft from being armed unless all selected pre-arm checks 

were successful. This pre-arm evaluator was used to ensure the airspeed sensor, 

GPS and the battery’s state of charge were responding correctly. The remaining 

pre-arm checks were assessed by subscribing and publishing to the MAVROS 

headers. These checks included the testing of the response of the control surfaces 

and payload release mechanism. For the vision system, the establishment of 

successful connections to the image capture node and the image processing node 

was defined as a successful response. 

4.1.2 Arming and Disarming 

Based on the success of the pre-flight arming checks, an arming client was defined 

which requested the aircraft’s arming sequence to take place. This arming client fell 

part of the MAVROS library’s CommandBool header which requested the changing of 

the arming state of the aircraft. To ensure the aircraft successfully armed, an FCU 

state subscriber was defined to listen to the aircraft’s published state using the 

MAVROS Library’s State header, where the published state of the aircraft defined the 

current arming state [48][49]. 

The arming of the aircraft was required prior to selection of the flight mode due to a 

predefined safety feature of the Pixhawk which prohibited the selection of an 

autonomous flight mode prior to arming the aircraft. 
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4.1.3 Flight Mode Selection 

With the use of the Pixhawk, a variety of flight modes were available for selection. 

However, the MAVROS header library’s limited application for fixed-wing aircraft, 

this list of flight modes was reduced to a select few. These flight modes fell under the 

MAVROS library’s CustomModes header. See Table 4.1 for the list of available flight 

modes [43][48][49]. 

Table 4.1: List of available flight modes for the APM Plane Pixhawk firmware 

Numeric String Description and notes 

0 MANUAL  

1 CIRCLE  

2 STABILIZE  

3 TRAINING  

4 ACRO  

5 FBWA Fly by wire A 

6 FBWB Fly by wire B 

7 CRUISE  

8 AUTOTUNE  

10 AUTO  

11 RTL Return to Launch 

12 LOITER  

14 LAND not in list now 

15 GUIDED  

 

From the Table 4.1, the AUTO flight mode was selected for the mission. The MAVROS 

command for the selection of the aircraft’s flight mode was not iterated repeatedly 

throughout the mission and only a single instance of the flight mode was defined at 

the beginning of the mission. The reason for this single declaration of the flight mode 

was to allow for manual control, STABILIZE flight mode, of the aircraft to be taken 

at any point should the aircraft’s autonomous flight control fail. The change from 

AUTO flight mode to STABILIZE flight mode was setup as a function of the aircraft’s 

remote control, requiring a flip of the switch to interchange between the two modes. 

Once back within stable control and at the operator’s discretion, AUTO flight mode 

could be reactivated by switching the transmitter flight mode switch back to its initial 

position. Upon reactivation, the FCU would pick up the mission where it had last left 

off after changing flight modes. 
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4.1.4 Takeoff 

Although the MAVROS Library possessed a header for the takeoff of an aircraft, 

CommandTOL, the header provided limited parameter allocation for the takeoff 

procedure of a fixed-wing aircraft and as such, the takeoff was defined as a takeoff 

waypoint. Several fixed-wing takeoffs were possible with the Pixhawk: all were 

defined in the same manner in terms of defining the take-off waypoint but differed in 

terms of their respective FCU parameters, where these FCU takeoff parameters were 

defined based on the aircraft’s physical capabilities and the type of takeoff desired. 

The available Pixhawk takeoff methods include [1]: 

➢ Hand Launching,  

➢ Catapult Launching, 

➢ Bungee Launching, and 

➢ Runway Takeoffs - Conventional Takeoff and Landing (CTOL).  

4.1.4.1 Hand Launching 

During the initial testing stages, the HAND LAUNCHING takeoff was utilised as the 

addition of the aircraft’s undercarriage had not yet been completed. Figure 4.2 

illustrates Hand Launching during the testing phase. Hand Launching was used with 

the assistance of manual flight control. 

 

Figure 4.2: Hand launching the aircraft during the testing phase 
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4.1.4.2 Catapult Launching 

An attempt to automate the takeoff process resulted in the development of a catapult 

system to make use of the aircraft’s Catapult Launching takeoff. Table 4.2 defines the 

design criteria for the catapult. 

Table 4.2: Catapult design criteria 

Criteria Value Unit 

Launch Angle (𝛼) 15 Degrees 

Minimum Launch 
Velocity (𝑉𝐿) 

18 kt 

Maximum Catapult 

Length (𝐿) 
2 m 

Launch Mass  
(Aircraft + Payload) 

3 kg 

 

From the catapult criteria, the required spring constant for the catapult’s launch 

mechanism was determined. To determine the elastic potential required, a force 

diagram representation of the catapult was developed, as seen in Figure 4.3. 

 

Figure 4.3: Catapult force diagram 

From Figure 4.3, 𝐹𝐿 represented the required launching force, 𝐹𝐴 represented the 

minimum required force for the aircraft to remain in equilibrium (the preload force), 

𝐹𝑁 represented the normal force of the aircraft, 𝑊 represented the weight of the 

aircraft and 𝐹𝑓 represented the frictional force of the catapult.  

The required preload force and launching force were deduced to be as follows: 

➢ 𝐹𝐴 = 18.39 𝑁 

➢ 𝐹𝐿 = 64.31 𝑁 

Where, 𝐹𝐿 was the average launch force over the length of the catapult. From these 

forces, the required spring constant of the launching mechanism was deduced with 

the use of Equation 4.1, Hooke’s Law [30]. 

𝐹𝐿 = 𝑘𝑥             (4.1) 
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Where, 𝑘 represented the spring constant of the launch mechanism and 𝑥 

represented the displacement of the launch mechanism. 

To assist the launch mechanism, the preload force was compensated for by applying 

thrust from the aircraft’s motor. The available thrust of the aircraft was deduced by 

placing the aircraft against a scale and measuring the additional weight generated 

by the aircraft whilst applying thrust. In addition to this preload thrust, the launch 

mechanism’s available displacement (𝑥) was increased by introducing a two-stage 

pulley mechanism. With the additional displacement for the launch mechanism 

being defined to 1.8 m, the required spring constant for the launch mechanism was 

found to be, with the assistance of Equation 4.1, 𝑘 = 36. 

With the spring constant known, latex rubber tubing was selected as the desired 

catapult launching mechanism. The rubber tubing was tested to deduce its elastic 

properties. This testing involved measuring the required force to extend the tubing 

to various lengths. The results of this testing can be seen in Table 4.3 and Figure 4.4. 

Table 4.3: Latex rubber elastic properties testing results 

Pieces of Rubber Tubing 
Extension 
Distance 

(m) 

Extension 
Ratio 

Required Force for 
Extension 

(N) 

Single Band 
(Initial length – 4.7 m) 

7 1.49 34.34 

10 2.13 49.05 

13.40 2.85 68.67 

Double Band 
(Initial length – 2.35 m) 

3.10 1.32 58.86 

4.23 1.80 88.29 

5.75 2.45 117.72 
 

 

Figure 4.4: Latex rubber extension force as a function of extension ratio 
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Looking at Table 4.3, it was deduced that the use of a double band launch 

mechanism would result in the greatest launching force with the smallest required 

extension length. From the extension force trend equation in Figure 4.3, it was 

deduced that an extension ratio of 1.40 was required to achieve the required average 

launch force of the length of the catapult. This extension ratio implied that a latex 

rubber double band of length 1.29 m was required. It was decided that the length of 

the rubber tubing would be decreased to 1 m to allow for an additional preload force 

to be introduced into the system. Refer to Appendix H1 for the catapult launcher 

calculations. 

The final catapult was designed and built as per the calculated forces. To cradle the 

aircraft on the catapult, a launch sled was designed to fit the rear of the aircraft, 

allowing for the tail and propeller of the aircraft to pass through without collision 

during launch. A release mechanism for the catapult was designed into the launch 

sled. The launch sled design can be seen in Figure 4.5. 

 

Figure 4.5: Catapult launch sled CAD model design 

The catapult proved to successfully launch the aircraft but limited the available room 

to mount the payload release system. As such, the catapult was used during the 

testing stage, as the aircraft’s autonomous flight control was being developed but 

was replaced by the addition of landing gear on the aircraft. The aircraft being 

launched from the catapult can be seen in Figure 4.6.  Refer to Appendix H2 for the 

CAD designs of the launch sled and catapult.  
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Figure 4.6: Aircraft launched from the catapult 

4.1.4.3 Runway Takeoff 

For the final integrated aircraft system’s takeoff, the addition of landing gear allowed 

for the selection of the Runway Takeoff. As stated previously, the takeoff for the 

aircraft was defined as a takeoff waypoint, which was done with the use of the 

MAVROS Library’s header Waypoint and WaypointPush. The Waypoint header 

provided the ability to define the desired waypoint type and corresponding 

parameters. The takeoff waypoint parameters can be seen in Table 4.4 [47]. 

Table 4.4: Takeoff waypoint parameters 

MAV_CMD_NAV_TAKEOFF 

Parameter Description 

Mission Param #1 Minimum pitch  

Mission Param #2 - 

Mission Param #3 - 

Mission Param #4 Yaw angle 

Mission Param #5 Latitude 

Mission Param #6 Longitude 

Mission Param #7 Altitude 

 

  

Launched 

Aircraft 

Launch 

Catapult 

Launch 

Sled 
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The location of the takeoff waypoint was automatically updated based on the location 

of the aircraft prior to takeoff and as such, only the desired altitude of the takeoff 

was necessary to be defined in the takeoff waypoint parameters. After the parameters 

of the takeoff waypoint had been defined, the WaypointPush header was used to 

publish the waypoint to the FCU. In addition to the declaration of the takeoff 

waypoint, the Runway Takeoff required that the aircraft was faced in the direction of 

the headwind prior to takeoff and that the corresponding FCU takeoff parameters for 

the Runway Takeoff be defined, as seen in Table 4.5. The use of the Runway Takeoff 

allowed for the aircraft to support the payload below the aircraft, as opposed to on 

the side of the aircraft, reducing the need to counter balance the 

aircraft [2][43][48][49].  

Table 4.5: FCU takeoff parameters 

Parameter Value Units Description 

TKOFF_TDRAG_ELEV 100 % 
Amount of elevator to apply in the 
initial stage of takeoff 

TKOFF_TDRAG_SPD1 4 m/s 
Airspeed at which to stop holding 
the tail down during takeoff 

TKOFF_THR_SLEW 33 %/s 
Percentage throttle change per 
second during takeoff 

TKOFF_ROTATE_SPD 11 m/s 
Airspeed at which the aircraft will 
begin to climb during takeoff 

TECS_PITCH_MAX 15 Degrees 
Maximum pitch in autonomous 
throttle modes 

STEER2SRV_P 4 m 
Ground turning radius of the 
aircraft 

GROUND_STEER_ALT 5 m 
Altitude at which ground steering of 
the rudder takes effect 

 

4.1.5 Waypoint Allocation 

The designation of all waypoints took place prior to the arming of the aircraft during 

the pre-flight checks. Defining all of the mission waypoints prior to the mission was 

possible due to the consistency of how each mission was structured. Defining each 

waypoint prior to the mission also allowed for only their parameters to be updated 

during the mission, mitigating the need to create new waypoints. All waypoints where 

their final location was to be determined during the mission were defined with default 

coordinates of (0,0), as the waypoint would not be executed if not updated or within 

acceptable range and the aircraft would enter RTL flight mode. The automatic RTL 
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feature was beneficial in the sense that the aircraft would not continue with the 

mission should mission waypoints not be within the achievable range of the aircraft. 

4.1.5.1 Survey Waypoints 

Due to variation in each mission’s drop-zone location, a low input waypoint allocation 

method was developed for the allocation of survey waypoints, where only the drop-

zone’s approximate location was to be defined prior to the mission’s execution and 

the autonomous flight node would expand the waypoints about this point. 

The survey area followed a square serpentine pattern of six defining coordinates, 

expanded about the drop-zone’s approximate location. The spacing between these 

survey points was dependent on the FOV of the onboard vision system and aircraft’s 

surveying altitude. Knowing the correct FOV for the planned surveying altitude, the 

survey waypoints were defined with the use of Equation 4.2 and Equation 4.3 [5]. 

𝐿𝑎𝑡𝑆 = sin
−1(sin(𝐿𝑎𝑡𝑑𝑧) cos (

𝑑𝐹𝑂𝑉

𝑅𝐸
) + cos(𝐿𝑎𝑡𝑑𝑧) sin (

𝑑𝐹𝑂𝑉

𝑅𝐸𝑎𝑟𝑡ℎ
) cos(𝛾) ) (4.2) 

𝐿𝑜𝑛𝑆 = 𝐿𝑜𝑛𝑑𝑧 + 𝑎𝑟𝑐𝑡𝑎𝑛2 (sin(𝛾) sin (
𝑑𝐹𝑂𝑉

𝑅𝐸
) cos(𝐿𝑎𝑡𝑑𝑧) , cos (

𝑑𝐹𝑂𝑉

𝑅𝐸
) − sin(𝐿𝑎𝑡𝑑𝑧) sin(𝐿𝑎𝑡𝑆)) (4.3) 

Where, (𝐿𝑎𝑡𝑆, 𝐿𝑜𝑛𝑆) represented the respective survey waypoint coordinates, 

(𝐿𝑎𝑡𝑑𝑧, 𝐿𝑜𝑛𝑑𝑧) represented the coordinates of the drop-zone, 𝑑𝐹𝑂𝑉 represented the 

horizontal camera FOV distance, 𝛾 represented the bearing of the survey waypoint 

with respect to the approximate drop-zone coordinates and 𝑅𝐸 represented the radius 

of the Earth. The survey area was designed to ensure the FOV of the camera 

overlapped the other survey coordinates to ensure full coverage and as such, the 

effective surveyed area with respect to the survey waypoints can be seen in 

Figure 4.7. 

 

Figure 4.7: Effective survey area and survey waypoints expanded about the drop-zone's approximate 
location (waypoint 8) 
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After testing this survey system, it was found that aircraft was unable to successfully 

achieve the desired survey pattern without overshooting the desired survey points, 

specifically at the turn-around waypoints (Waypoints 3-4 and 5-6). As such, the 

minimum turning radius of the aircraft was determined based on the predefined 

maximum bank angle of the aircraft, 𝜑, and the airspeed of the aircraft, 𝑣𝑎𝑖𝑟, where 

the maximum bank angle FCU parameter was defined to be 

LEVEL_ROLL_LIMIT = 30˚. With these variables and with the use of Equation 4.4, 

the minimum turning radius of the aircraft during flight, 𝑅𝑚𝑖𝑛, could be determined. 

It should be noted that for Equation 4.4, the airspeed of the aircraft needed to be in 

knots [44]. 

𝑅𝑚𝑖𝑛 =
381𝑣𝑎𝑖𝑟

2

14075 tan𝜑
 (4.4) 

The minimum turning radius did not account for wind. With the turn radius known, 

the issue of survey waypoint spacing and the aircraft’s turn radius was 

accommodated for by designating an additional waypoint between the turn-around 

waypoints. This additional waypoint followed the trajectory of the survey pattern 

prior to the required turn and extended away from the survey area, such that the 

aircraft could successfully make the turn and achieve stable flight prior to re-entering 

the survey area. Figure 4.8 illustrates the extended survey area flight path. 

 

  

Figure 4.8: Survey area waypoints with additional turn-around 
waypoints (waypoint 4 and waypoint 7) 
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4.1.5.2 Environmental Parameter Determination Waypoint 

Once the vision system had successfully identified the drop-zone’s location, the 

environmental parameters were determined. From previous testing, it was found that 

taking the airspeed upon the drop approach yielded inaccurate results as the average 

wind speed measured lower than the overall average windspeed, resulting in 

inaccurate drop trajectories. As such, the average windspeed was determined during 

the headwind direction determination. Both the headwind velocity and direction were 

determined with the use of a three loop loiter waypoint about the location of the 

target. These three loiter loops were executed with the use of the MAVROS Library’s 

Waypoint and WaypointPush headers, where the required parameters to be declared 

was the centre coordinate of the loiter, the loiter altitude and the number of loiter 

loops. The centre of the loiter was defined to be the drop-zone location and the loiter 

altitude was defined to be the altitude at which the payload release would occur. The 

rationale behind the three loiter involved an initial redundant loop to stabilize the 

aircraft into a successful loiter flight path, the second loiter loop for environmental 

data capture, and the final loop for drop approach and trajectory computation and 

allocation.  

To physically capture the headwind data from the aircraft’s airspeed sensor, the 

MAVROS Library’s VFR_HUD header was used, as it published telemetry from the 

aircraft and as such, a telemetry subscriber was written to read the published data. 

Table 4.6 lists the available data published by the VFR_HUD header [47][48][49]. 

Table 4.6: VFR_HUD header published data 

VRF_HUD Data Units 

Airspeed m/s 

Groundspeed m/s 

Heading Degrees 

Throttle 
Normalized from 

0.0 to 1.0 

Altitude 

m  

(MSL – Mean Sea 

Level) 

Climb m/s 
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The true headwind velocity, 𝑣𝑤_𝑑𝑖𝑓𝑓, was determined by taking the difference between 

the aircraft’s groundspeed, 𝑣𝑔𝑟𝑜𝑢𝑛𝑑, and airspeed, 𝑣𝑎𝑖𝑟. 

𝑣𝑤_𝑑𝑖𝑓𝑓 = 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑣𝑎𝑖𝑟 (4.5) 

𝑣𝑤 =
∑ 𝑣𝑤_𝑑𝑖𝑓𝑓𝑖
𝑛
𝑖=1

𝑛
 (4.6) 

From Equation 4.5 and Equation 4.6, the average headwind velocity, 𝑣𝑤, was 

determined. The true headwind direction was determined by taking the heading just 

prior of the heading at which the lowest groundspeed was recorded. The headwind 

velocity and direction were determined in the payload release node. The generic 

waypoint parameters used for the survey waypoints and the multiple turn loiter 

waypoint parameters used for the headwind determination can be seen in Table 4.7 

and Table 4.8 [47]. 

Table 4.7: Generic waypoint parameters 

MAV_CMD_NAV_WAYPOINT 

Parameter Description 

Mission Param #1 - 

Mission Param #2 Waypoint acceptance radius in meters 

Mission Param #3 
0 to pass through the WP, if > 0 radius in metres to pass by WP. 

Positive value for clockwise orbit, negative value for counter-
clockwise orbit. 

Mission Param #4 Desired yaw angle at waypoint 

Mission Param #5 Latitude 

Mission Param #6 Longitude 

Mission Param #7 Altitude 

 

Table 4.8: Multiple turn loiter waypoint parameters 

MAV_CMD_NAV_LOITER_TURNS 

Parameter Description 

Mission Param #1 Number of turns 

Mission Param #2 - 

Mission Param #3 
Radius around waypoint, in meters. (Positive value = 

clockwise, negative value = counter-clockwise) 

Mission Param #4 
Loiter exit location (0 for centre of loiter, 1 for tangential exit 

location, else the desired yaw angle) 

Mission Param #5 Latitude 

Mission Param #6 Longitude 

Mission Param #7 Altitude 
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4.1.5.3 Payload Release Waypoints 

Once the drop-zone’s location had been successfully located by the vision system 

and the headwind velocity and direction had been determined, the appropriate 

payload release approach was defined. The process of defining the payload release 

approach was done by taking the drop-zone’s location and defining three waypoints 

along the same heading as the headwind. The first waypoint was a lineup waypoint 

(waypoint 12) and was used to allow the aircraft to reach the payload release 

approach in the desired attitude. The second payload release waypoint represented 

the payload release approach waypoint (waypoint 13). The final payload release 

waypoint represented the payload release point (waypoint 14) and was defined by the 

payload release node to be the displacement upwind or downwind of the drop-zone 

to achieve the desired release trajectory. Flying directly into the headwind allowed 

for the headwind to be modelled as a two-dimensional entity and was discussed in 

Chapter 6.  

The process of computing the payload release approach was done within the payload 

release node and the approach waypoints were published to the FCU during the third 

loiter loop of the environmental parameter determination phase of the mission. The 

payload release approach waypoints can be seen in Figure 4.9, where the direction 

of the increasing waypoint index number was defined to be the opposing direction of 

the wind.  

 

Figure 4.9: Payload release approach waypoints, with the drop-zone location defined by waypoint 15 
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4.1.5.4 Confirmation and Landing 

Once the payload had been released, the aircraft would circle back and execute the 

payload release approach again, this time recording the drop-zone. The recording 

was done to evaluate the success of the release and as a means of payload delivery 

confirmation should the system be implemented in a market related application, 

such as goods delivery. This footage was not processed onboard the aircraft and was 

left to post-flight processing, should the aircraft operator wish to evaluate the footage. 

To land the aircraft, the MAVROS Library’s Waypoint and WaypointPush headers 

were used. QGroundControl offered the option of selecting a fixed-wing landing 

waypoint, but this was not the case when working from first principles and as such, 

the basic waypoint elements of the fixed-wing landing waypoint were identified and 

defined separately. A fixed-wing waypoint had two distinct elements, namely: a loiter 

to altitude and landing waypoint. Out of these two elements, the loiter to altitude 

defined the majority of the landing parameters, such as landing approach altitude 

and the heading of the aircraft during landing. The landing heading corresponded 

with the second element of the landing, the landing waypoint, where the landing 

waypoint was defined at a given distance away from the aircraft tangential to when 

the aircraft exited the loiter and was defined in the direction of the heading defined 

during the loiter to altitude waypoint. The landing waypoint indicated the location at 

which the aircraft was theorised to land and as such, the aircraft would execute a 

landing flare just prior to this location. A landing flare represented the landing stage 

between landing approach and touchdown where the nose of the aircraft would raise 

up, decreasing the rate of descent, and the aircraft attains the correct touchdown 

attitude. The designation of fixed-wing landing waypoints can be seen in Figure 4.10. 

 

Figure 4.10: Fixed-wing landing waypoints 
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Provided the landing parameters and landing waypoints were defined correctly, the 

FCU would take full control over the landing. Along with the aforementioned landing 

waypoints, FCU parameters were also defined in terms of the aircraft’s physical 

capabilities as seen in Table 4.9. Figure 4.11 depicts the aircraft flying overhead 

during landing [2][47][48][49].  

Table 4.9: FCU landing parameters 

Parameter Value Units Description 

LAND_FLARE_ALT 3 m 
Altitude at which to lock heading 
and flare to the LAND_PITCH_CD 

pitch 

LAND_FLARE_SEC 2 s 
Vertical time before landing point 
at which to lock heading and flare 

with the motor stopped 

LAND_PITCH_CD 0 Centidegrees 
 The minimum pitch in the final 
stage of landing (after the flare) 

TECS_LAND_ARSPD -1 m/s 
The goal airspeed during the 

landing approach 

TECS_LAND_SPDWGT -1 - 
Weighting applied to speed control 

during landing 

 

 

Figure 4.11: Fixed-wing flying overhead during landing  
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4.1.5.5 Generic Mission Waypoint List 

With the description of each waypoint type used within any mission, the list of 

generic mission waypoints can be seen in Table 4.10 [47]. 

Table 4.10: Generic mission waypoints 

Waypoint 
Index 

ROS Node 
Designation 

MAV_CMD Type Description 

1 wp_takeoff MAV_CMD_NAV_TAKEOFF (#22) 
Takeoff 

waypoint 

2 wp_sl MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

alignment 
waypoint 

3 wp_s1 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 1 

4 wp_s2 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 2 

5 wp_s3 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 3 

6 wp_s4 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 4 

7 wp_s5 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 5 

8 wp_s6 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 6 

9 wp_s7 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 7 

10 wp_s8 MAV_CMD_NAV_WAYPOINT (#16) 
Survey 

waypoint 8 

11 wp_hw MAV_CMD_NAV_LOITER_TURNS (#18) 
Headwind 3 
turn loiter 

12 wp_dal MAV_CMD_NAV_WAYPOINT (#16) 

Drop 
approach 
alignment 
waypoint 

13 wp_da1 MAV_CMD_NAV_WAYPOINT (#16) 
Drop 

approach 
waypoint 1 

14 wp_da2 MAV_CMD_NAV_WAYPOINT (#16) 

Drop 

approach 
waypoint 2 

15 wp_target MAV_CMD_NAV_WAYPOINT (#16) 
Target 

location 
waypoint 

16 wp_landing1 MAV_CMD_NAV_LOITER_TURNS (#18) 
Landing loiter 

waypoint 

17 wp_landing2 MAV_CMD_NAV_WAYPOINT (#16) 
Landing 
location 
waypoint 
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4.2 Chapter Conclusion 

Chapter 4 discussed the development of the autonomous flight control functionality 

of the aircraft. Different approaches to aircraft takeoff were assessed and the 

development of an aircraft launch catapult was discussed. From the different takeoff 

procedures assessed, the Runway Takeoff procedure was selected. Where, runway 

takeoffs, and subsequent, landings were found to be more conducive towards the 

desired payload release system mounting arrangement. The various types of 

waypoints utilised in this research were also discussed. The functionality of the 

autonomous flight node in defining mission waypoints was discussed, where the 

necessary operator input prior to execute was the GPS coordinates of the 

approximate drop-zone location. All other mission waypoints were defined by the 

FCU or through the input of the vision system. With the conclusion of the 

autonomous flight control comes the next integrated subsystem, the vision system. 

Chapter 5 discussed the details pertaining to the vision system, where object 

recognition and object tracking were discussed in the form of the image capture and 

image processing algorithms. Additionally, drop-zone global frame location 

determination was discussed in Chapter 5.  
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Chapter 5  

Vision System 

This chapter discussed the details pertaining to image capture and image processing. 

The vision system allowed for the detection of the drop-zone and the determination 

of the drop-zone location with respect to the aircraft, through implementation of the 

image capture and image processing algorithms. 

5.1 Image Capture Node and Image Processing Node 

A two-stage image capture and image processing algorithm was developed, where 

image capture was executed in a separate node, the image capture node, to the node 

in which image processing was executed, the image processing node. The reason for 

the separation of the image capture and image processing was to allow for a constant 

flow of images to the image processing node. Initially, a combined image capture and 

processing node was constructed but it was found that a large latency in image 

feedback was experienced. This latency in image feedback was due to the execution 

of the image capture being dependent on the time taken for the image processing 

algorithm to finish with the previous image stream. Figure 5.1 illustrates the 

computational flow diagram of the image capture and image processing algorithm. 

 

Figure 5.1: Image capture node and the image processing node computational flow diagram 
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The image capture node and the image processing node were derived from the ROS 

C++ image publisher and image subscriber examples, where the alterations made to 

these example nodes was the adaptation of the code to accept video stream from the 

onboard camera [20][34]. The refresh rate of the image stream was altered to 

accommodate the amount of area covered by the aircraft during flight. A slower 

refresh rate resulted in regions of the survey area being omitted from the image 

capture process due to latency. 

5.2 Image Processing 

The image processing node consisted of two distinct phases, namely: the object 

recognition phase and the object tracking phase. Object recognition would occur for 

all images transmitted from the image capture node and object tracking would only 

occur upon successful detection of the drop-zone identifier. 

5.2.1 Object Recognition 

Object recognition and object tracking formed part of the image processing node, 

where in order to be able to achieve object tracking, object recognition was required 

first. The object to be recognised was defined to be a red circle. Hinas et al. [27] 

suggested that blue was a more suited colour for object recognition, but due to the 

application of this system, red was selected as the testing colour due to its contrast 

on both land and sea.  

Object recognition made use of OpenCV to execute a multistage image processing 

algorithm, as defined in Figure 5.1. Where, these multiple stages were: 

Blue-Green-Red (BGR) image formatting applied to the input image stream, 

converting from BGR image to Hue-Saturation-Value (HSV) image, assigning the 

upper and lower thresholds for image colour filtering, introduction of noise to 

optimise object detection, circle detection with the assistance of the Circle Hough 

Transform, and detected circle image overlay onto original image. The image 

processing algorithm was based on an existing red circle detection algorithm [40]. 

5.2.1.1 BGR Formatting 

From the image capture node, the video stream was transmitted as individual 

images, represented in the form of an n-dimensional array by the OpenCV Mat class. 

The captured image was represented in this array by the number of pixels present in 

the image and was structured according to the image’s pixel rows and columns. The 
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image array, in this case the two-dimensional image array, defined the captured 

image’s colour in a BGR format, implying that each element of the image array was 

defined to be the corresponding numerical value for the BGR colour of the pixel in 

the image. The BGR colour scale was defined to be three numbers, one for each 

colour, where each colour value ranged from 0 to 255. Figure 5.2 illustrates an 

example of the OpenCV BGR colourspace array of dimension 𝑛 ×𝑚 [32]. 

 

Figure 5.2: OpenCV BGR colourspace array [32] 

5.2.1.2 Converting from BGR to HSV 

HSV image formatting was used for image processing due to its ability to isolate 

objects based on colour through a single variable, hue, as opposed to the BGR image 

formatting where colour identification required variables to be defined for each BGR 

element. The difference between the HSV and BGR colourspace was their geometric 

representation, where the BGR colourspace was represented as a cubic geometry 

structure and the HSV colourspace was represented as a hexcone geometric 

structure, as seen in Figure 5.3. As such, the BGR image was converted to the HSV 

image format with use of the OpenCV cvtColor class.  

 

Figure 5.3: BGR cubic colourspace (left) and HSV hexacone colourspace (right) 

5.2.1.3 Image Threshold Filtering 

Image threshold filtering was used to define the colour range of the objects within 

the captured image to be processed, where this filtering was based on the hue of the 

HSV image. As such, the lower hue range and upper hue range of the desired object’s 

colour were defined. These upper and lower hue ranges were defined as binary 

images where if an object within the given colour ranges was detected, these objects 

would be displayed in white in the binary image. All colours outside of the hue ranges 
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would be displayed as black in the binary images, as seen in Figure 5.5. Both the 

lower and upper hue range binary images were combined into a single output binary 

image. The filtering of the HSV images to binary images was done with the use of the 

OpenCV inRange function and the OpenCV Scalar class. The final binary image was 

used in the object detection algorithm by defining the objects meeting the desired 

colouring criteria. Objects not meeting the colouring criteria were then disregarded 

for the remainder of object recognition algorithm. 

5.2.1.4 Noise Injection 

Noise injection was used to reduce the object recognition algorithm’s susceptibility 

to false object detection. Prior to noise injection, the binary threshold image was 

smoothed with the use of the OpenCV medianBlur function. Noise injection was 

executed with the assistance of the OpenCV GaussianBlur function, where a 

Gaussian filter was applied to the captured image, distorting the shape geometry. 

With the application of the Gaussian filter, the object recognition algorithm could be 

refined to filter both simulated and capture image interference and noise [33]. 

5.2.1.5 Hough Circle Transformation 

With the application of the threshold and Gaussian filters, the final process of the 

object recognition algorithm could take place, the detection of circular objects. 

Detection of circular objects was done with the use of the OpenCV HoughCircles 

function. The OpenCV HoughCircles function makes use of the Circle Hough 

Transform (CHT) via an adaptation of the Hough Gradient method.  

The standard CHT made use of a three-dimensional accumulator for circle detection 

within a greyscale image where the radius of the circle was unknown. This three-

dimensional accumulator stored the votes of the edge points of the circle, 𝑥 and 𝑦, 

and the radius of the circle, 𝑟. These votes represented the numerical value assigned 

to each pixel’s suitability at representing acceptable circle geometry, determined by 

the pixel’s colour within the greyscale, in this case binary, image. Each pixel’s vote 

was determined with the use of the mathematical expression defined in Equation 5.1. 

(𝑥 − 𝑥𝑐)
2 + (𝑦 − 𝑦𝑐)

2 = 𝑟2                     (5.1) 

Where, 𝑥𝑐 and 𝑦𝑐 represented the location of the pixel coordinated used to satisfy 

Equation 5.1 for each edge coordinate and radius stored within the accumulator. 

Due to the computational strain of the standard Circle Hough Transformation 

method of circle detection, OpenCV’s adaptation of the Hough Gradient method for 

the HoughCircles function was implemented. The Hough Gradient method monitors 
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the change in pixel colour gradient, reducing the number of votes required to deduce 

the location of the centre of a possible circle. Determination of the circle’s centre 

coordinates would allow for the image processing algorithm to proceed with the next 

phase, object tracking [11][31]. The OpenCV HoughCircles function and its parameter 

discretion can be seen in Equation 5.2 and Table 5.1. 

𝐻𝑜𝑢𝑔ℎ𝐶𝑖𝑟𝑐𝑙𝑒𝑠(𝐼𝑚𝑎𝑔𝑒, 𝐶𝑖𝑟𝑐𝑙𝑒𝑠,𝑀𝑒𝑡ℎ𝑜𝑑, 𝑑𝑝,𝑚𝑖𝑛𝐷𝑖𝑠𝑡, 𝑝𝑎𝑟𝑎𝑚1, 𝑝𝑎𝑟𝑎𝑚2,𝑚𝑖𝑛𝑅𝑎𝑑𝑖𝑢𝑠,𝑚𝑎𝑥𝑅𝑎𝑑𝑖𝑢𝑠 )  (5.2)  

Table 5.1: OpenCV HoughCircles function parameters 

Parameter Variable Type Description 

Image InputArray 8-bit, single-channel, grayscale input image. 

Circles OutputArray Output vector of found circles. 

Method int Detection method to use. 

dp double 

Inverse ratio of the accumulator resolution to the 

image resolution. For example, if dp=1 , the 

accumulator has the same resolution as the input 

image. If dp=2 , the accumulator has half as big 

width and height. 

minDist double 

Minimum distance between the centres of the 

detected circles. If the parameter is too small, 

multiple neighbour circles may be falsely detected 

in addition to a true one. If it is too large, some 

circles may be missed. 

param1 double 

First method-specific parameter. In case of 

CV_HOUGH_GRADIENT, it is the higher threshold of 

the two passed to the Canny() edge detector. 

param2 double 

Second method-specific parameter. In case of 

CV_HOUGH_GRADIENT, it is the accumulator 

threshold for the circle centres at the detection 

stage. The smaller it is, the more false circles may 

be detected. Circles, corresponding to the larger 

accumulator values, will be returned first. 

minRadius int Minimum circle radius 

maxRadius int Maximum circle radius 
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5.2.2 Object Tracking  

Upon successful detection of the drop-zone identifier, the image processing algorithm 

would proceed with object tracking phase. Objecting tracking involved the 

transformation of the object’s image plane coordinates, pixel coordinates, to global 

plane coordinates, relative GPS coordinates. 

5.2.2.1 Determination of the Object’s Pixel Coordinates 

The image plane represented the plane upon which object tracking and object 

recognition was executed. The image plane was divided into four quadrants, in which 

the location of the drop-zone identifier was determined relative to the global frame, 

as seen in Figure 5.4. The reason for the image plane zoning was to define location 

of the drop-zone relative to the centre of the image plane, as the centre of the image 

plane did not represent the origin of the image plane but represented the x and y 

origin of the camera frame. The origin of the image plane, also defined to be the image 

frame, was assigned by OpenCV to be the upper left-hand corner of the visible image. 

Relating the image frame to camera frame was necessary due to the camera frame 

and global frame sharing the same x and y axes. The only dimensional difference 

between the camera frame and global frame was a z-axis offset, ZCG, due to the 

mounting arrangement of the vision system relative to the GPS module. 

 

Figure 5.4: Image plane quadrant view 
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The designation of the image plane quadrant ranges were as follows: 

1. 
𝑥𝑚𝑎𝑥

2
< 𝑥 ≤ 𝑥𝑚𝑎𝑥, and 0 ≤ 𝑦 ≤

𝑦𝑚𝑎𝑥

2
                               (5.3) 

2. 0 ≤ 𝑥 ≤
𝑥𝑚𝑎𝑥

2
, and 0 ≤ 𝑦 ≤

𝑦𝑚𝑎𝑥

2
                                    (5.4) 

3. 0 ≤ 𝑥 ≤
𝑥𝑚𝑎𝑥

2
, and 

𝑦𝑚𝑎𝑥

2
< 𝑦 ≤ 𝑦𝑚𝑎𝑥                               (5.5) 

4. 
𝑥𝑚𝑎𝑥

2
< 𝑥 ≤ 𝑥𝑚𝑎𝑥, and 

𝑦𝑚𝑎𝑥

2
< 𝑦 ≤ 𝑦𝑚𝑎𝑥                          (5.6) 

From Figure 5.4, the drop-zone’s pixel coordinates could be defined. These pixel 

coordinates were used to determine the drop-zone’s global frame location by 

overlaying the pixel coordinates onto the ground plane. The image plane pixels were 

defined relative to the image frame, but the drop-zone’s pixel coordinates were 

defined relative to the camera frame for convenience of conversion to global frame 

coordinates. An illustration of the various coordinate frames can be seen in 

Figure 5.5. 

 

Figure 5.5: Relative coordinate frames 
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As seen in Figure 5.4, four quadrants were defined within the image plane. The 

allocation of quadrants was to allow for ease of drop-zone location determination 

within the image plane. These four quadrants allowed for the bearing, 𝛾, of the drop-

zone’s location relative to the aircraft’s heading to be determined, as seen in 

Figure 5.6. This drop-zone bearing was taken to be a new heading for the aircraft, as 

heading was required for the computation of the global coordinates of the drop-zone. 

Each quadrant was defined with a rule for determining the bearing heading of the 

drop-zone relative to the aircraft’s heading, where the aircraft’s heading was defined 

to be the direction of the camera’s y axis. These bearing heading rules for each 

quadrant were as follows: 

1. 𝛾1_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 − tan
−1 (

𝑎𝑐

𝑏𝑐
)                                    (5.7) 

2. 𝛾2_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 + tan
−1 (

𝑎𝑐

𝑏𝑐
)                                 (5.8) 

3. 𝛾3_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 + (180 − tan
−1 (

𝑎𝑐

𝑏𝑐
))                      (5.9) 

4. 𝛾4_ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔 + (180 + tan
−1 (

𝑎𝑐

𝑏𝑐
))                    (5.10) 

 

Figure 5.6: Image plane quadrant bearings 
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5.2.2.2 Conversion from Image Frame to Global Frame 

To determine the relationship the between camera’s image frame and the global 

frame, the true FOV of the camera was to be determined. Determining the FOV of the 

camera was done with the use of two calibration tests, one test at close range and 

another at far range. Both calibration tests involved placing the camera at a known 

distance from a fixed vertical plane, FL, and then measuring the maximum visible 

image area of the plane, (xmax, ymax). Determining this maximum visible area allowed 

for the calculation of the camera’s FOV. An illustration of the calibration tests can 

be seen in Figure 5.7.  

 

Figure 5.7: Camera FOV calibration illustration 

From Figure 5.7, the FOV of the camera was defined to be two angles, 𝛼 and 𝛽. 

Equation 5.11 and Equation 5.12 define how these angles were deduced. 

𝛼 = 2 tan−1 (
(
𝑦𝑚𝑎𝑥
2
)

𝐹𝐿
) (5.11) 

𝛽 = 2 tan−1 (
(
𝑥𝑚𝑎𝑥
2
)

𝐹𝐿
)  (5.12) 

Where, 𝛼 represented the vertical FOV angle of the camera and 𝛽 represented the 

horizontal FOV angle of the camera. Knowing these angles, the conversion from pixel 

coordinates to GPS coordinates was now possible. 
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5.2.2.3 Defining the GPS Coordinates of the Drop-Zone 

From the true FOV angles of the camera, the pixel coordinates of the drop-zone and 

the bearing of the drop-zone relative to the camera frame, the relationship between 

the image plane and the ground plane could be defined. This relationship allowed for 

the GPS coordinates of the drop-zone relative to the aircraft to be defined. Based on 

the FOV determined for the camera and knowing the altitude of the aircraft and the 

camera frame to global frame z axis offset, 𝑍𝐶𝐺, the camera’s visible image area on 

the ground plane could be defined. The drop-zone’s pixel coordinates could be 

superimposed upon the camera’s ground plane visible area and the drop-zone’s 

global frame offsets could be determined. These offsets, 𝑎𝐺 and 𝑏𝐺, along with the 

bearing of the drop-zone relative to the camera frame, were then used to determine 

the GPS location of the drop-zone, (𝐿𝑎𝑡𝑇 , 𝐿𝑜𝑛𝑇) with the use of Equation 5.14 and 

Equation 5.15. With the assistance of Equation 5.13 and offsets 𝑎𝐺 and 𝑏𝐺, the 

magnitude of the distance vector between the global frame origin and the drop-zone 

location could be determined [44]. 

𝑟𝐺 = √𝑎𝐺
2 + 𝑏𝐺

2    (5.13) 

𝐿𝑎𝑡𝑇 = sin
−1(sin(𝐿𝑎𝑡𝐴) cos (

𝑟𝐺

𝑅𝐸
) + cos(𝐿𝑎𝑡𝐴) sin (

𝑟𝐺

𝑅𝐸𝑎𝑟𝑡ℎ
) cos(𝛾))  (5.14) 

𝐿𝑜𝑛𝑇 = 𝐿𝑜𝑛𝐴 + 𝑎𝑟𝑐𝑡𝑎𝑛2 (sin(𝛾) sin (
𝑟𝐺

𝑅𝐸
) cos(𝐿𝑎𝑡𝐴) , cos (

𝑟𝐺

𝑅𝐸
) − sin(𝐿𝑎𝑡𝐴) sin(𝐿𝑎𝑡𝑇)) (5.15) 

Equation 5.14 and Equation 5.15 made use of three characteristics to determine the 

drop-zone’s GPS coordinates, namely: the GPS location of the aircraft upon 

drop-zone identification (𝐿𝑎𝑡𝐴, 𝐿𝑜𝑛𝐴), the bearing heading of the drop-zone relative to 

the aircraft, 𝛾, and the magnitude of the distance vector between the aircraft’s GPS 

coordinates and the drop-zone’s location, 𝑟𝐺. 

With the GPS coordinates of the drop-zone relative to the aircraft now known, the 

previously defined approximate drop-zone location could be updated. The image 

capture node and image processing node code can be found in Appendix A2 and 

Appendix A3. 
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5.3 Camera Mass-Balancing 

As discussed in Chapter 3, the image stabilisation gimbal utilised in this research 

was designed for a GoPro HERO 5 BLACK camera. As such, the CMOS camera 

required a mass-balancing adapter to be design in order for the gimbal to function 

correctly. In order to mass the CMOS camera, the centre of mass of a GoPro HERO 

5 BLACK camera was to be determined. The specifications of the GoPro can be seen 

in Table 5.2 [21]. 

Table 5.2: GoPro HERO 5 physical specifications 

Parameter Value Unit 

Mass 0.12 kg 

Length 62 mm 

Height 44 mm 

Thickness 24 mm 

Location of centre of mass 

(From front bottom left 

corner)  

x: 32 

y: 24 

z: 10 

mm 

mm 

mm 

 

From Table 5.2, the CMOS camera holder was designed to fit the physical dimensions 

of a GoPro. As the camera mount was to be 3D printed, the mount’s weight did not 

match that of the GoPro and a compartment was included within the camera mount’s 

design to house additional weights to balance the camera. The final CMOS camera 

mount can be seen in Figure 5.8 and the design of the camera mount can be seen in 

Appendix I. 

 

Figure 5.8: CMOS camera mount attached to the gimbal 
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5.4 Chapter Conclusion 

From Chapter 5, the foundation of the image capture and image processing node 

algorithms was discussed. The process through which captured images were 

converted between colourspaces was discussed, where it was found that application 

of the HSV colourspace was conducive to image filter and object detection. 

Additionally, it was found that the image processing algorithm possessed three 

phases for the determination of the drop-zone identifier’s location. These phases 

included: image hue filtering for the removal of unwanted colours from the search 

process, application of the OpenCV HoughCicrles function for detection of the 

drop-zone identifier’s circle geometry and transformation of the drop-zone identifier’s 

pixel coordinates from image frame to global frame coordinates. A camera mount was 

designed and 3D printed to match the physical properties of a GoPro HERO 5 BLACK 

camera, the intended camera for the TAROT gimbal. Chapter 6 discussed the final 

computational subsystem of integrated system, the payload release system. 

Elements of payload release modelling and payload design were discussed in 

Chapter 6.  
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Chapter 6  

Payload Delivery 

This chapter discussed the various environmental and structural factors influencing 

the payload during its ballistic projectile motion, along with the mathematical 

foundation upon which the payload trajectory was based. The design and modelling 

of the payload was also discussed, along with the structure of the payload release 

node. 

6.1 Environmental Factors 

This research considered the real-time environmental parameters which would affect 

the trajectory of the payload during the drop, where these parameters included the 

headwind velocity and direction experienced during flight. The consideration of these 

environmental parameters was based on the flight path of the aircraft during its drop 

approach, which would see the aircraft flying directly into the headwind. As such, 

the headwind and subsequent projectile motion could be modelled in two 

dimensions.  

Due to the unpredictability of wind gusts, the assumed influence of the wind on the 

payload was perceived to follow the wind gradient, also known as wind shear, as 

defined by Equation 6.1. Equation 6.1 was used to extrapolate the wind horizontal 

velocity with respect to the elevation [14]. 

 𝑣𝑤(ℎ) = 𝑣𝑤𝑎𝑙𝑡 (
ℎ

ℎ𝑎𝑙𝑡
)

1

𝛼
 (6.1) 

Where, 𝑣𝑤(ℎ) represented the wind velocity at elevation ℎ, 𝑣𝑤𝑎𝑙𝑡 the wind velocity at 

the drop elevation, ℎ𝑎𝑙𝑡 the elevation at the moment of release and 𝛼 the exponential 

wind coefficient. This equation holds only when 0 < ℎ < ℎ𝑎𝑙𝑡. Equation 6.1 

represented a generalisation of the predicted wind velocity at various heights of a 

building, as the desired testing altitudes of this system fell within the same height in 

which these structures were designed to withstand wind loading. Literature on wind 

gradient effects on aircraft were found to only describe the process in which wind 

shear occurs and methods of avoidance [45]. 
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6.2 Mathematical Foundation 

This subsection discussed the mathematical foundation upon which the ballistic 

projectile motion of the payload was derived, where ballistic motion has been defined 

as the falling motion of an object due only to the force of gravity [42]. 

6.2.1 Ballistic Projectile Motion in a Vacuum  

Two-dimensional projectile motion was expressed through the equations of motion. 

These equations of motion describe the projectile motion of an object within a 

vacuum. As defined by Hall [22] and Jewett and Serway [30], the equations of motion 

used for this research were as follows: 

𝑣𝑓 = 𝑣𝑖 + 𝑔𝑡 (6.2) 

𝑣𝑓
2 = 𝑣𝑖

2 + 2𝑔∆𝑥 (6.3) 

∆ℎ = 𝑣𝑖𝑡 +
1

2
𝑔𝑡2 (6.4) 

∆ℎ = (
𝑣𝑓+𝑣𝑖

2
) 𝑡 (6.5) 

Where, 𝑣𝑖 and 𝑣𝑓 described the initial and final velocity of the payload, 𝑔 the 

gravitational acceleration, ∆𝑥 the displacement of the payload and 𝑡 the time taken. 

Projectile motion within a vacuum follows a parabolic flight path, which implies that 

trajectory has symmetry about its axis of highest elevation, as seen in Figure 6.1. In 

Figure 6.1 it can be seen that, an initial launch angle of 45 degrees (red line) results 

in the largest projectile displacement for projectile motion within a vacuum, whereas 

angles greater and less than 45 degrees result in smaller displacements.  

 

Figure 6.1: Projectile motion of an object in a vacuum under various test parameters 
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6.2.2 Ballistic Projectile Motion with Drag 

The equations of motion mentioned previously were not used as the final product of 

the ballistic projectile motion due to lack of consideration of drag which the projectile 

would experience when traveling through air. As such, drag, specifically quadratic 

drag, was taken into account when determining the ballistic projectile motion of the 

payload.  

𝐹𝐷 =
1

2
𝜌𝐴𝐶𝑑𝑣

2 (6.6) 

Where, 𝐹𝐷 represented the drag force, 𝜌 the density of the medium the payload moved 

through, 𝐴 the cross-sectional area of the payload, 𝐶𝑑 the drag coefficient and 𝑣 the 

velocity of the payload relative to the fluid. Equation 6.6 formed one of the final forces 

required to develop the projectile motion of the payload for this research [8]. 

Unlike projectile motion within a vacuum, projectile motion with drag did not follow 

a parabolic trajectory path. Projectile motion with drag had two distinct phases, 

namely vertical ascent, Phase 1, and vertical descent, Phase 2, as seen in Figure 6.2. 

Where, unlike the horizontal displacement of projectile motion in a vacuum, the 

horizontal displacement of projectile motion with drag was not symmetrical between 

the two phases.   

 

  
Phase 1 Phase 2 

Figure 6.2: Projectile motion of an object with drag under test parameters 
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For the purpose of this research, only vertical descent, Phase 2, was considered as 

the aircraft was assumed to be in level flight and at altitude at the moment of release. 

As such, the derivation of the vertical descent equations of motion were as shown in 

Equation 6.7: 

𝑣𝑥(𝑡) =
𝑉𝑇

2𝑣𝑥𝑜

𝑉𝑇
2+𝑔𝑣𝑥𝑜𝑡

 (6.7) 

Where, 𝑣𝑥(𝑡) described the payload’s horizonal velocity component with respect to 

time, 𝑣𝑥𝑜 the payload’s initial horizontal velocity component, and 𝑉𝑇 the terminal 

velocity [23]. The terminal velocity of an object describes the maximum velocity said 

object could achieve during free-fall and was defined as shown in Equation 6.8: 

𝑉𝑇 = √
2𝑚𝑝𝑔

𝐶𝑑𝐴𝜌
 (6.8) 

Where 𝑚𝑝 defined the mass of the payload.  

The second equation of motion described the horizontal displacement of the payload, 

𝑥(𝑡). This horizontal displacement was with respect to the initial point of release and 

as such, this initial point represented zero displacement. 

𝑥(𝑡) =
𝑉𝑇
2

𝑔
ln (

𝑉𝑇
2+𝑔𝑣𝑥𝑜𝑡

𝑉𝑇
2 ) (6.9) 

The third equation of motion described the payload’s vertical velocity component with 

respect to time, 𝑣𝑦(𝑡), as seen in Equation 6.10a [23]:  

𝑣𝑦(𝑡) = 𝑉𝑇
𝑣𝑦𝑜−𝑉𝑇 tan(

𝑔𝑡

𝑉𝑇
)

𝑉𝑇+𝑣𝑦𝑜 tan(
𝑔𝑡

𝑉𝑇
)
 (6.10a) 

Since the aircraft was assumed to be in level flight at the moment of release, the 

payload’s initial velocity vertical component, 𝑣𝑦𝑜, would be zero and therefore, 

Equation 6.10a could be redefined as Equation 6.10b [23]: 

𝑣𝑦(𝑡) = −𝑉𝑇 tan (
𝑔𝑡

𝑉𝑇
) (6.10b) 
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The fourth equation of motion described the elevation of the projected payload with 

respect to time, ℎ(𝑡), as seen in Equation 6.11 [23]. This elevation was with respect 

to the ground and as such, the ground represented a zero elevation. 

ℎ(𝑡) =
𝑉𝑇
2

2𝑔
ln (

𝑉𝑇
2

𝑣𝑦(𝑡)
2+𝑉𝑇

2) (6.11a) 

With these equations of motion, the velocity and position of the payload could be 

determined for any time throughout the drop. A comparison of the projectile motion 

of a payload in a vacuum and in the presence of drag can be seen in Figure 6.3. In 

Figure 6.3 it was noted that, projectile motion within a vacuum (green) results in a 

greater horizontal displacement when compared to the horizontal displacement of 

the projectile motion with drag (red). 

 

Figure 6.3: Comparison of projectile motion in a vacuum and with drag under test parameters 
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6.2.3 Ballistic Projectile Motion with Quadratic Drag and Headwind 

Using the information gathered from the fundamentals of the environmental factors 

and the ballistic projectile motion to be experienced during the payload delivery, the 

final equations were defined. These equations describe the horizontal displacement 

of the payload during the ballistic projectile motion. 

As the aircraft was moving through the air, with the payload still attached, the 

payload was yet to reach a state of horizontal equilibrium within the fluid, air. Where, 

in this case the term state of horizontal equilibrium implied a steady state within the 

air where the effects of the aircraft’s thrust were no longer imparted on the aircraft. 

This state of horizontal equilibrium was hereafter referred to as ‘the state of 

equilibrium’. Within this state, the horizontal displacement of the projectile would be 

determined through the use of velocity vector addition. This state of imbalance 

between the payload and the fluid was due to the aircraft imparting thrust upon the 

payload at the moment of release. As such, the projectile motion of the payload was 

defined by two distinct phases, namely Phase A and Phase B. Phase A represented 

the period in which the payload reached a state of equilibrium within the fluid, such 

that the payload’s motion was no longer defined by the aircraft’s imparted thrust. 

Phase B represented the time taken for the payload to reach the desired drop location 

through velocity vector addition. The payload would not always enter Phase B. The 

reasoning behind this payload phase dependency was discussed later in this 

subsection. 

6.2.3.1 Phase A of the Final Ballistic Projectile Motion 

Phase A of the payload’s projectile motion was defined to be the period in which the 

payload reached a state of equilibrium within the fluid, such that its motion was no 

longer defined by the aircraft’s imparted thrust. The period of this equalization was 

defined to begin at the moment of release and was defined to end at the moment 

when the payload’s horizontal acceleration, in this case deceleration, would equal 

zero. The rationale for this terminating state for Phase A was based on the payload 

decelerating horizontally due to drag and headwind, from the moment of release. The 

moment when the deceleration of the payload reached zero was the point at which 

the horizontally imparted thrust from the aircraft would have been cancelled out and 

the payload would be accelerated by the wind. 

The desired result of Phase A was to solve for the time at which the payload enters 

equilibrium (𝑡𝐸𝑞) and the change in elevation and horizontal displacement of the 
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payload (∆ℎ and ∆𝑥) with respect to the initial launch position (ℎ𝑎𝑙𝑡 and 𝑥0).  These 

variables could be solved with the use of Equation 6.9 and Equation 6.11, once the 

equilibrium time had been deduced.  

To solve for the equilibrium time constant, the projectile was modelled as a second-

order system, as seen in Figure 6.4. Several conditions were assumed throughout 

the derivation of the equilibrium time constant and were defined accordingly. 

 

Figure 6.4: Free-body diagram of the payload during phase 1 of the final ballistic projectile motion 

From the free-body diagram shown in Figure 6.4, the second-order differential 

equation could be defined. This equation described the acceleration of the payload, 

due to the imparted thrust from the aircraft, under the decelerating effects of both 

drag and headwind. Equation 6.12 and Equation 6.13 described this second-order 

differential equation. 

𝐹𝑊(𝑡) =  𝑚𝑝
𝑑2𝑥

𝑑𝑡2
−  𝐷

𝑑𝑥

𝑑𝑡
 (6.12) 

∴
𝑑2𝑥

𝑑𝑡2
=
𝐹𝑊(𝑡)

𝑚𝑝
+

𝐷

𝑚𝑝

𝑑𝑥

𝑑𝑡
 (6.13) 

Where, 

𝐷
𝑑𝑥

𝑑𝑡
= 𝐹𝐷(𝑡) (6.14) 

Thus, 

𝐷(𝑡) =
1

2
𝜌𝐴𝐶𝑑𝑣𝑝(𝑡) (6.15) 

Several variables of Equation 6.13 could be defined by Equation 6.15, a redefinition 

of Equation 6.7. The imparted force of the headwind onto the payload was modelled 

with use of Equation 6.15, such that: 

𝐹𝑊(𝑡) =
1

2
𝜌𝐴𝐶𝑑𝑣𝑤(𝑡)

2 (6.16a) 

Although Equation 6.1 described the headwind, 𝑣𝑤(ℎ), it was defined in terms of 

elevation, which would not suit the headwind velocity with respect to time, 𝑣𝑤(𝑡), 
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required by Equation 6.15. As such, Equation 6.1 was redefined to fulfil this 

criterion. 

Through substitution of Equation 6.10b into Equation 6.11a, Equation 6.11a could 

be expanded to its full variable equivalency: 

ℎ(𝑡) =
𝑉𝑇
2

2𝑔
ln(

𝑉𝑇
2

(−𝑉𝑇 tan(
𝑔𝑡

𝑉𝑇
))
2

+𝑉𝑇
2
) (6.11b) 

The final equation for headwind velocity could be defined by substituting Equation 

6.11b into Equation 6.1: 

𝑣𝑤(𝑡) = 𝑣𝑤𝑎𝑙𝑡

(

  
 
𝑉𝑇
2

2𝑔
𝑙𝑛(

𝑉𝑇
2

(−𝑉𝑇 𝑡𝑎𝑛(
𝑔𝑡
𝑉𝑇
))
2
+𝑉𝑇
2
)

ℎ𝑎𝑙𝑡

)

  
 

1

𝑎

 (6.17) 

Substituting Equation 6.17 into Equation 6.16a yielded the equation for headwind 

force with respect to time, Equation 6.16b. 

𝐹𝑊(𝑡) =
1

2
𝜌𝐴𝐶𝑑

(

 
 
 
 

𝑣𝑤𝑎𝑙𝑡

(

  
 
𝑉𝑇
2

2𝑔
ln(

𝑉𝑇
2

(−𝑉𝑇 tan(
𝑔𝑡
𝑉𝑇
))
2
+ 𝑉𝑇

2
)

ℎ𝑎𝑙𝑡

)

  
 

1

𝑎

)

 
 
 
 

2

 (6.16b) 

Expanding Equation 6.13: 

𝑑2𝑥

𝑑𝑡2
=

1

2
𝜌𝐴𝐶𝑑𝑣𝑤(𝑡)

2

𝑚𝑝
+

1

2
𝜌𝐴𝐶𝑑𝑣𝑝(𝑡)

𝑚𝑝

𝑑𝑥

𝑑𝑡
 (6.18) 

Where, 
𝑑𝑥

𝑑𝑡
= 𝑣𝑝(𝑡) and as such, Equation 6.13 was redefined as follows: 

 

∴
𝑑2𝑥

𝑑𝑡2
=
𝜌𝐴𝐶𝑑

2𝑚𝑝

(

 
 
 
 

(

 
 
 
 

𝑣𝑤𝑎𝑙𝑡

(

  
 
𝑉𝑇
2

2𝑔
ln(

𝑉𝑇
2

(−𝑉𝑇 tan(
𝑔𝑡
𝑉𝑇
))
2
+ 𝑉𝑇

2
)

ℎ𝑎𝑙𝑡

)

  
 

1

𝑎

)

 
 
 
 

2

+ (
𝑉𝑇
2𝑣𝑥𝑜

𝑉𝑇
2+𝑔𝑣𝑥𝑜𝑡

)
2

)

 
 
 
 

 (6.19) 
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Equation 6.19 was used to solve for the time at which the payload would reach 

equilibrium. To compute Equation 6.19 onboard the aircraft proved costly in terms 

of computation time. To mitigate this computational issue, lookup tables were 

developed with predetermined equilibrium times for various headwind velocities. 

These lookup tables were developed with several parameters predefined, including 

drop altitude, airspeed and payload mass. Using these lookup tables, a polynomial 

fit of the graph trend was developed to allow for extrapolation of data and ease of 

onboard computation. Figure 6.5 depicts an example of the acceleration curve of the 

payload used in the development of the lookup tables, where the time at which the 

payload reached zero acceleration has been indicated. Interpolation and linearization 

of the lookup tables trends were used to determine equilibrium data between tabled 

values. The MATLAB code used to determine these equilibrium times and 

displacement can be seen in Appendix B. Noting the structure of Equation 6.19, the 

payload’s mass was significant in terms of it influence on the rate of deceleration 

experienced by the payload. The payload’s mass was found to be inversely 

proportional to the payload’s deceleration and as such, a heavier payload would have 

a smaller rate of deceleration when compared to lighter payloads and would therefore 

take longer to decelerate. 

 

Figure 6.5: Payload acceleration curve under test parameters 

With the equilibrium time and the acceleration curve of the payload known, the 

displacement of the payload could be determined with the use of an adapted 

Equation 6.4. 

∆𝑥𝐴 = 𝑣𝑖𝑡 +
1

2
(∫ 𝑎 𝑑𝑡
𝑡𝐸𝑞
𝑡𝑜

) 𝑡 (6.20) 
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Where, 𝑎 =
𝑑2𝑥

𝑑𝑡2
. Considering that the acceleration integral would generate a negative 

value due to the payload’s deceleration, the full effects of drag and headwind would 

be compensated for in Equation 6.20. Thus, from Equation 6.20, the Phase A payload 

displacement could be determined.  

6.2.3.2 Phase B of the Final Ballistic Projectile Motion 

Phase B of the projectile motion assumed that the payload was in a state of 

equilibrium in the air and the resulting motion of the projectile could be defined by 

vector addition of the projectile’s velocity and the headwind’s velocity.  

Prior to this vector addition, it was determined as to whether the payload would have 

entered the state of equilibrium due to the available drop time from the given altitude, 

𝑡𝑓𝑎𝑙𝑙. Determining this drop time was done with the use of Equation 6.21. Assuming 

the aircraft was in level flight, Equation 6.3 could be rearranged to form 

Equation 6.21. Rearranging Equation 6.3 to form Equation 6.21 was possible due to 

the assumption that all external forces exerted on the payload were horizontal forces 

and the only vertical force acting upon the payload was gravity.  

𝑡𝑓𝑎𝑙𝑙 = √
2ℎ𝑎𝑙𝑡

𝑔
 (6.21) 

If this fall time was found to be greater than the equilibrium time, the payload would 

enter Phase B of the final projectile motion, as the payload would be in equilibrium 

prior to reaching the ground. If the fall time was found to be less than the equilibrium 

time, the payload would not enter Phase B and would only be modelled with the 

equations defined in Section 6.3.3.1 in terms of horizontal displacement. 

With the fall time and the equilibrium time constants known, the cumulative 

horizontal displacement of the payload could be determined. Furthermore, the 

subsequent final projectile displacement can be determined with the use of 

Equation 6.22, through substitution of Equation 6.17 and Equation 6.20.  

∆𝑥𝑇 = ∆𝑥𝐴 + ∫ 𝑣𝑤𝑎𝑙𝑡

(

  
 
𝑉𝑇
2

2𝑔
𝑙𝑛(

𝑉𝑇
2

(−𝑉𝑇 𝑡𝑎𝑛(
𝑔𝑡
𝑉𝑇
))
2
+𝑉𝑇
2
)

ℎ𝑎𝑙𝑡

)

  
 

1

𝑎

𝑡𝑓𝑎𝑙𝑙
𝑡𝐸𝑞

𝑑𝑡 (6.22) 

With Equation 6.22, the final displacement of the payload from its release point could 

be determined and as such, the ideal release point could be defined relative to the 
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desired drop-zone location. Equation 6.22 would hold if the payload were to enter 

Phase B, otherwise the final displacement of the payload would be defined by 

Equation 6.20. 

6.3 Payload Design 

With the mathematical foundations for the payload trajectory defined, the design of 

the payload was conducted.  

6.3.1 Design Concepts 

The desired outcome of the payload design phase was to ensure a reduced drag 

coefficient of the payload. An estimation of drag coefficients for various shapes can 

be seen in Figure 6.6 [8], where the effect of the projectile’s shape on the projectile’s 

drag coefficient can be noted. 

 

Figure 6.6: Various shapes' drag coefficients 

6.3.1.1 First Concept – Spherical 

The first concept consisted of a two-part spherical payload vessel, which was 

designed around ensuring a constant drag coefficient, irrespective of its orientation 

during flight. Each hemisphere would be hollow to allow for the desired payload items 

to be placed inside. The hemispheres would interlock with the use of locating pins. 

 

Figure 6.7: First payload design concept 
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6.3.1.2 Second Concept – Three-stage Aerodynamic 

This concept focussed on an aerodynamic approach, as opposed to that of the first 

concept, with the development of a three-stage payload with a nose cone and 

stabilising tail fins. The design was based on the premise of using readily available 

plastic piping as a payload body, allowing for a generic nose cone and tail to be 

designed to fit any length of pipe. 

 

Figure 6.8: Second payload design concept 

6.3.1.3 Third Concept – Two-stage Aerodynamic 

The third concept followed suit of the three-stage payload in that it also made use of 

the aerodynamic nose cone and tail design. However, this concept consisted of a 

hollow two-stage nose cone and tail, which interlocked with the use of pressure fit 

between the two components.  

 

Figure 6.9: Third payload design concept 
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6.3.2 Final Design and Design Refinement 

The desired outcome of the design phase was the optimisation of the payload’s drag 

coefficient. The first concept was eliminated from the available selections, due to the 

improvement in reduced drag that the nose cone designs offered. From the two 

remaining concepts, the decision was made to use the third concept, the two-stage 

nose cone and tail design. This decision was made as the full design of the payload 

could be altered to provide the lowest possible drag coefficient.  

There were considerations to be taken when designing the payload, namely: the 

centre of pressure, the centre of gravity and the aerodynamic centre. Allowing for 

unrestricted design alterations to be made to the payload presented the opportunity 

to ensure that the payload’s design aspects were optimised. Although the second 

concept’s design was more accommodating, in terms of ease of manufacturability 

and available internal space, the cylindrical body of the payload would not ensure 

that the desired design aspects’ relationships were satisfied. The significance of the 

centre of pressure versus centre of gravity design criteria was based on ensuring 

stabile flight of the payload and preventing the payload from tumbling during free 

fall. Centre of pressure was not a static variable. Changing the angle of attack of the 

payload during free fall resulted in a changing centre of pressure. This change in 

centre of pressure would create a torque and subsequently result in the 

aforementioned tumble of the payload during free fall. The payload tumbles about its 

centre of gravity. The aerodynamic centre represented the location through which 

the aerodynamic force components, lift and drag, acted through. As such, the correct 

placement of the aerodynamic centre would allow for the aerodynamic force 

components to induce a torque about the aerodynamic centre, aerodynamic moment, 

which would counteract the induced torque of the dynamic centre of pressure and 

subsequently stabilise the payload through free fall. For rocket and missile designs, 

the aerodynamic centre traditionally sits at the aerodynamic centre of the stabilising 

fins. Due to the induced aerodynamic moment, the centre of pressure could be 

deduced to be the product of the weighted centre of the areas of the payload’s features 

and their centre distances to a defined reference line. Figure 6.10 and Equation 6.23 

describe the method of weighted centre of pressure determination [6][7].  
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Figure 6.10: Determination of centre of pressure 

𝐴𝑇𝑜𝑡𝑎𝑙𝑑𝑐𝑝 = 𝐴𝐹𝑑𝐹 + 𝐴𝐵𝑑𝐵 + 𝐴𝑁𝑑𝑁                                         (6.23) 

Where, the respective areas were 𝐴𝐹, 𝐴𝐵, 𝐴𝑁 and 𝐴𝑇𝑜𝑡𝑎𝑙. where 𝐴𝑇𝑜𝑡𝑎𝑙 = 𝐴𝐹 + 𝐴𝐵 + 𝐴𝑁. 

The displacements from the reference line to each feature centre were 𝑑𝐹, 𝑑𝐵, 𝑑𝑁 and 

𝑑𝑐𝑝 [6]. 

Computational fluid dynamics (CFD) simulations were conducted to determine the 

final payload’s optimal design and drag coefficient. The drag coefficient was 

calculated by setting a simulation goal of the aerodynamic force exerted on the 

payload and using Equation 6.6, the average drag coefficient was determined. 

Figure 6.11 and Figure 6.12 show the flow results of the flow simulation. The payload 

was modelled in various orientations to ensure the greatest drag coefficient of the 

design was known. This changing orientation implied that the payload would not 

remain in the same orientation throughout freefall. One of these orientations can be 

seen in Figure 6.11. The final payload design’s drag coefficient was found to be 0.096.  

 

Figure 6.11: CFD drag coefficient calculation simulation 
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Figure 6.12: Drag coefficient plot from SolidWorks CFD simulation 

From Figure 6.11, it was noted that there was an increase in drag experienced across 

the payload, as the change in the force vector colour from blue to green indicated a 

decrease of the magnitude of the force vector. Figure 6.12 indicated the changing of 

the drag coefficient during the simulation. The decrease in drag coefficient was due 

to the decrease of the aerodynamic force over the length of the payload. It was noted 

that the drag coefficient converged to its average value as the simulation progressed, 

indicating that the payload had reached equilibrium within the flow simulation. The 

final payload design utilised in this research can be seen in Figure 6.13. 

 

Figure 6.13: Final payload design 

The final payload design was 3D printed with a minimal periphery layers to reduce 

the additional weight the payload vessel would possess above that of its contents. 

The final payload weight was found to be 0.11 kg and the overall length and major 

diameter of the payload was found to be 0.17 m and 0.06 m, respectively. The final 

payload design can be seen in Appendix K.  
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6.4 Payload Release Node 

The payload release node was responsible for the computation of the headwind 

velocity and direction. Based on these headwind variables, the payload release node 

was then responsible for the interpolation and extrapolation of the lookup table 

values. Once these values had been determined, the payload release approach was 

defined. Figure 6.14 illustrates the computational flow diagram for the payload 

release node. The code for the payload release node can be found in Appendix A4. 

 

Figure 6.14: Payload release node computational flow diagram 

6.4.1 Determination of the Environmental Parameters 

As discussed in Chapter 4, the headwind velocity and headwind direction were 

deduced during the second loop of a three loop loiter around the detected drop-zone 

location waypoint. During this second loop, the average headwind velocity was 

deduced by taking the sum of n headwind measurements and dividing it by n, as 

defined by Equation 4.6. Where, the headwind was defined to be the difference 

between the airspeed and groundspeed, as described by Equation 4.5. The direction 

of the headwind was defined to be the heading of the aircraft just prior to the lowest 

groundspeed reading during the second loiter. The airspeed, groundspeed and 

heading of the aircraft was determined with the use of the MAVROS Library’s 

VFR_HUD header [48]. 

𝑣𝑤_𝑑𝑖𝑓𝑓 = 𝑣𝑔𝑟𝑜𝑢𝑛𝑑 − 𝑣𝑎𝑖𝑟 (4.5) 

𝑣𝑤 =
∑ 𝑣𝑤_𝑑𝑖𝑓𝑓𝑖
𝑛
𝑖=1

𝑛
 (4.6) 
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6.4.2 Lookup Tables 

As discussed in Section 6.2.3.1, lookup tables were developed to reduce 

computational strain during flight by tabulating predetermined equilibrium times 

and Phase A displacements. As such, three lookup tables were developed, each for a 

different altitude to allow for data extrapolation. Each lookup table possessed the 

same headwind velocity and aircraft airspeed values to allow for data interpolation. 

Figure 6.15 and Figure 6.16 illustrates the graphed lookup table values for the 

equilibrium times for the payload released from an altitude of 50 m. Corresponding 

lookup tables for the Phase A displacement of the payload were also developed. The 

respective lookup tables for both the equilibrium time and displacement of the 

payload under different testing conditions can be seen in Appendix J1 and 

Appendix J2.  

 

Figure 6.15: Equilibrium times for different headwind velocities at fixed aircraft speeds at 50m 

 

Figure 6.16: Equilibrium times for different aircraft speeds at fixed headwind velocities at 50m 
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From Figure 6.15, the trend of the equilibrium time followed a power regression 

model. In the upper left side of Figure 6.15, the equilibrium time trends were seen to 

plateau and was due to the equilibrium times exceeding the fall time for the given 

release altitude, 50 m. With the increment of each aircraft airspeed value, a 

consistent shift in the equilibrium time trends appeared. Due to the complexity of 

the power regression trend, the graph in Figure 6.16 was generated, where 

Figure 6.16 illustrates the same equilibrium times as in Figure 6.15. The defining 

difference between Figure 6.15 and Figure 6.16 was that the fixed variable for each 

dataset in Figure 6.15 was the aircraft’s airspeeds and in Figure 6.16, the headwind 

velocities was the fixed variable. From Figure 6.16, the datasets were found to 

possess linear trends. These trends were also found to possess decreasing gradients 

as the headwind increased between datasets. In addition to these decreasing 

gradients, the vertical shift between the linear trends of the datasets decreased. The 

linear trends of the 50 m altitude lookup table data from Figure 6.16 was 

approximated by Equation 6.24.  

𝑦 = (0.7248𝑥−1.175)𝑥 + (−0.0017𝑥2 + 0.0495𝑥 − 0.4433)                (6.24) 

Where, the gradient of the linear trend was represented by the power function 

0.7248𝑥−1.175 and the y-axis intercept was defined by the quadratic equation 

−0.0017𝑥2 + 0.0495𝑥 − 0.4433. With the use of the linear trend equation from each 

lookup table, the equilibrium time of the payload could be deduced through 

substitution of the aircraft airspeed. Interpolation was used to deduce data between 

altitude values of the lookup table linear trend equations. The standard form of linear 

interpolation was defined by Equation 6.25. 

𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 𝑦𝑙𝑒𝑠𝑠 +
𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑−𝑥𝑙𝑒𝑠𝑠

𝑥𝑔𝑟𝑒𝑎𝑡𝑒𝑟−𝑥𝑙𝑒𝑠𝑠
(𝑦𝑔𝑟𝑒𝑎𝑡𝑒𝑟 − 𝑦𝑙𝑒𝑠𝑠)                      (6.25) 

Where, 𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 represented the desired equilibrium time, 𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 represented the 

desired equilibrium time’s aircraft airspeed, 𝑦𝑙𝑒𝑠𝑠 and 𝑥𝑙𝑒𝑠𝑠 represented a known 

equilibrium time lower than the desired result and its corresponding aircraft 

airspeed, and 𝑦𝑔𝑟𝑒𝑎𝑡𝑒𝑟 and 𝑥𝑔𝑟𝑒𝑎𝑡𝑒𝑟 represented a known equilibrium time greater than 

the desired result and its corresponding aircraft airspeed. 

With the equilibrium time deduced, the displacement of the payload could then be 

deduced through application of Equation 6.20 and Equation 6.22, based on the 

outcome of Equation 6.21 as to whether the payload would enter Phase B of the 

payload release. All mathematical computations executed within the payload release 
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node made use of the C++ cmath header, math.h. With the payload release trajectory 

now computed, the payload release waypoints could be updated. The updating of 

these waypoints was discussed in Chapter 4.  

6.5 Chapter Conclusion 

Chapter 6 presented the mathematic foundation upon which the payload release was 

modelled. Environmental parameters of the payload release were accommodated for 

by ensuring the aircraft flew directly into the headwind during the payload release 

approach. Flying into the headwind allowed for the payload release to be modelled in 

two dimensions. Modelling the payload release in two dimensions, it was found that 

two trajectory phases existed, Phase A and Phase B. Where, not all payload releases 

would result in the payload entering Phase B of the payload release. In addition to 

modelling the trajectory of the payload, the design of the payload was discussed. It 

was found that a two-stage aerodynamic payload design was the optimal for the 

desired application. Application of the mathematical foundation for the payload 

release trajectory was discussed in the form of the payload release node. The 

development of the payload release lookup tables and their mathematical 

relationships was discussed within the node structure. With the conclusion of 

Chapter 3 to Chapter 6, the method of subsystem communication could be 

discussed. Chapter 7 discussed the final integrated system achieved through 

subsystem communication.   
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Chapter 7  

Integrated System 

This chapter discussed the process through which integrated communication was 

achieved between the developed subsystems. 

7.1 Integrated Communication 

With the clarification of the functionality of the three defining subsystems: 

autonomous flight, vision and payload release, and their respective hardware and 

software configurations, the integrated communication between each subsystem 

could be defined. 

As discussed in Chapters 3, 4, 5 and 6, intelligence was introduced to the aircraft 

via the addition of the ODroid and ROS. Where, ROS, running on the ODroid, 

provided the necessary processing capabilities in order to execute each subsystem’s 

computational node simultaneously. Although the communication protocol between 

the various ROS nodes and hardware has been discussed, the clarification pertained 

to how these processes were executed initially has yet to be discussed.  

7.1.1 Communication with the ODroid and ROS 

During the development of this research, the majority of the ROS testing phase was 

developed offboard the aircraft and communication with the ODroid was established 

with the use of a keyboard, mouse and display monitor. This configuration allowed 

for ROS nodes to be constructed and tested manually with the use of the display 

monitor for performance evaluation. Due to the method of development, each ROS 

node required manual execution, and a specific order of execution of each ROS node 

was necessary based on prior node conditions. The ROS node execution order and 

conditions were as follows: 

1. Node: MAVROS Node 

• Condition: FTDI cable connected to FCU and FCU initialisation 

complete. 

2. Node: Image Publisher Node 

• Condition: Upon successful MAVLink connection with the FCU via the 

MAVROS node. 

3. Node: Image Processing Node 

• Condition: Image publisher node executed. 
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4. Node: Payload Release Node 

• Condition: Upon successful MAVLink connection with the FCU via the 

MAVROS node. 

5. Node: Autonomous Flight Node 

• Condition: Upon successful MAVLink connection with the FCU via the 

MAVROS node and all other nodes have been executed. 

Noting the ROS node execution order and conditions, the autonomous flight node 

was defined to be the final node to be executed. The final order position for the 

autonomous flight node was necessary to ensure that the aircraft would not begin 

its mission without the remaining nodes running. From the ROS node execution 

order, it was noted that the execution of the image publisher node and the payload 

release node could be alternated as their conditional statements were the same. 

Above all node executions, MAVLink communication via the MAVROS node was 

necessary first as the MAVROS node hosted the remaining nodes. 

7.1.1.1 Secure Shell (SSH) 

The ROS node development configuration of the ODroid was not feasible throughout 

a mission onboard the aircraft and as such, a method of wireless communication 

was developed in order to execute the ROS nodes remotely. Wireless communication 

was established between a laptop and the ODroid via the Secure Shell (SSH) protocol, 

where the SSH protocol represented an encrypted communication link between the 

SSH client (laptop) and the SSH Server (ODroid). This secure link ensured the data 

transfer between the two devices would remain protected. Figure 7.1 illustrates the 

SSH protocol [13]. 

 

Figure 7.1: SSH protocol 
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In order to establish the SSH communication between the client and server, client 

software was necessary. As the client’s OS was Windows-based and the server’s OS 

was Linux, client software capable of running on both systems was selected. PuTTY 

was the selected client software. In addition to the client software, a wireless network 

was required between the client and server in order for communication to be 

established. As such, a Wi-Fi adapter was added to the ODroid to provide it with the 

necessary wireless capabilities and an external wireless router was introduced to 

provide the required common network link between the client and server. Looking at 

the client software, PuTTY, a singular element was necessary in order to establish 

the desired SSH protocol link, the server’s internet protocol (IP) address. Upon 

successful connection with the server, the client would be prompted to enter the 

necessary server security credentials. Once logged into the server, the client was 

capable of executing the desired command line protocols to execute the ROS nodes. 

The PuTTY SSH protocol client interface during ROS node execution can be seen in 

Figure 7.2. 

 

Figure 7.2: PuTTY SSH protocol client interface during ROS node execution 

From Figure 7.2, the ROS node execution interface through the SSH protocol could 

be seen. The upper left window in Figure 7.2 depicts the execution of the MAVROS 

node and the transmission of mission waypoints. The remaining windows in 

Figure 7.2 represented the remaining nodes to be tested, namely: the autonomous 

flight node, the image capture node and the image processing node. 
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Use of the SSH protocol provided the necessary tools for testing the aircraft remotely 

during ground testing of integrated system and provided a command line diagnostic 

as to the state of the ROS nodes. The problem identified with the SSH protocol noted 

that it did not execute the ROS nodes onboard the ODroid and merely played host to 

the nodes in the client. This hosting of the ROS nodes resulted in the client rejecting 

some of the desired ROS and MAVROS functionality that the ODroid was capable of 

executing, such as the payload release command and the updating of mission 

waypoints. In addition to these limited functionality issues, the hosting of the ROS 

nodes was only present whilst the wireless connection between the client and server 

was present. As such, when the aircraft flew outside of the wireless network’s range, 

the ROS nodes would stop running, proving that the client only housed the ROS 

nodes and did not execute them onboard the ODroid. As the mission waypoints were 

saved to the FCU upon execution of the autonomous flight node, the aircraft would 

continue upon the desired mission, but elements such as MAVLink communication, 

vision and payload release would cease. Due to this limited range of functionality, 

the SSH protocol was not used in the final system and although long range wireless 

extenders and devices could have been introduced into the aircraft to continue the 

hosted execution of the ROS nodes, the risk of communication failure and 

subsequent ROS node failure was too prominent to overlook. The SSH protocol 

proved useful when in proximity to the wireless network and contributed to the 

development phase of this research.  

7.1.1.2 Physical Connection 

With the limitations the SSH protocol presented, a solution was required to ensure 

the ROS nodes were executed and hosted onboard the ODroid to ensure the entire 

integrated system was running during a mission. The final method of communication 

established with the ODroid to execute the required ROS nodes was done through 

the reimplementation of the ROS node development configuration. A keyboard, 

mouse and display monitor were connected to the ODroid in order to execute the 

ROS nodes. The alterations made to the integrated system to allow for this 

configuration were software based and the keyboard, mouse and display monitor 

were removed prior to mission execution. The software alterations involved the 

removing of the aircraft’s ability to arm via the autonomous flight node’s arming 

client. Removing the arming functionality allowed for all ROS nodes to be executed 

and the necessary hardware to be removed without the aircraft attempting to takeoff. 

The aircraft was then prepared for flight and placed in the direction of the headwind. 
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Once ready, the aircraft was manually armed and would begin the mission. Use of 

the ROS node development configuration succeeded in ensuring all ROS nodes were 

executed during a mission. The only feature that the ROS node development 

configuration lacked when compared to the SSH protocol approach was that the SSH 

protocol allowed for live monitoring of the ROS nodes. In the case of the ROS node 

development configuration, the discernible feedback as to the success of the system 

during a mission was the aircraft following the mission waypoints and the 

appearance of the updated waypoint coordinates during the mission. This loss of 

node monitoring was not detrimental to the performance of the system and resulted 

in the need for post mission analysis of the ROS nodes. The ROS node development 

configuration can be seen in Figure 7.3. 

 

Figure 7.3: ROS node development configuration of the ODroid onboard the aircraft 

7.2 Chapter Conclusion 

Chapter 7 served as an explanation as to the method in which communication was 

established with the ODroid in order to execute the ROS nodes. The method of the 

SSH protocol was discussed and although this communication protocol was not 

utilised in the final system, it was extensively used in the remote ground testing of 

the ODroid and ROS nodes. Chapter 3 through to Chapter 7 defined the subsystems 

of the final integrated system, which was used to obtain results through testing. 

Chapter 8 discussed the results obtained through the implementation of the 

integrated system developed. 
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Chapter 8  

Results and Discussion 

This chapter discussed the testing and results of the research design. Each of the 

three defining elements of this research were discussed independently. The 

integrated system’s performance was also discussed.  

8.1 Focus Area of Research Design and Methodology 

As this research focussed on the application of the developed system, testing and 

integration of each subsystem was the focus in achieving the defined objectives. The 

research design and methodology focussed on defining how each subsystem was 

tested. These tests served to provide an indication of the success of this research in 

achieving the defined objectives. 

Looking at the research objectives, the three subsystems: autonomous flight, vision 

and payload release, were seen to each possess individual objectives. Due to the 

diversity of each subsystem, various testing scenarios were necessary to test 

individual and integrated functionality. Noting that the hardware and software 

architecture of this research have already been stated, the research design and 

methodology of this research sought to define how the application of said hardware 

and software was used in order to achieve the research objectives defined in 

Chapter 1. 

8.1.1 Method for Testing 

As a mechatronic system has been defined to comprise of several systems integrated 

into a single system, testing was required for not only the final integrated system, 

but also each subsystem. Individual subsystem testing allowed for each subsystem’s 

performance to be evaluated. Where, subsystem performance allowed for the 

cumulative performance of the integrated system to be determined, highlighting the 

accuracy and repeatability limitations of the integrated system. These tests served 

as the results of this research. 

8.1.1.1 Autonomous Flight Control Testing 

In order to achieve the objectives defined for autonomous flight control, two testing 

scenarios were developed. These testing scenarios included the testing of the 

aircraft’s ability to execute an autonomous mission, where the aircraft’s ability to 

follow a predefined flight path represented the success of the test. Elements such as 



Page | 106  
 

waypoint overshoot and ability to maintaining altitude and airspeed were used to 

quantity the accuracy and repeatability of the autonomous flight control system. The 

second testing scenario included the aircraft’s ability to allocate new flight path 

waypoints based on mission parameters. Testing of the aircraft’s ability to allocate 

new flight path waypoints formed part of an integrated test, as input sensory data 

capable of influencing the change in the aircraft’s flight path was represented in the 

form of the vision system’s ability to detect the drop-zone’s location. 

Physical testing required a baseline upon which to quantify its results, as such 

simulations of the autonomous flight of the aircraft were conducted. As autonomous 

flight of the aircraft was influenced by testing environment specific parameters, such 

as wind speed and direction, simulations were conducted after physical testing to 

ensure equivalent testing parameters. 

8.1.1.2 Vision System Testing 

Vision formed the defining element of this research in terms of sensory feedback, the 

accuracy and repeatability of this system remained pertinent to the success of the 

integrated system. Considering the vision objective for this research, several 

requirements of the vision system were noted. From these requirements, the pure 

functionality of the vision system was defined to be the recognition of the drop-zone 

location. The remaining requirements formed part of the integrated system, where 

the relative location of the drop-zone with respect to the aircraft and the updating of 

the drop-zone’s true location saw the vision system interacting with the aircraft’s 

sensory feedback peripheral devices and the FCU. The integrated requirements of 

the vision system relied on the accuracy and repeatability of the vision system’s 

ability to identify the drop-zone’s location. Testing of the vision system took the form 

of accuracy tests, both simulated and physical, to ensure the vision system was 

capable of detecting the drop-zone identifier. Testing of the vision system’s ability to 

define the location of the drop-zone relative to the aircraft involved an integrated 

system test. Where, the accuracy and repeatability of this test was defined by the 

vision system’s ability to determine the drop-zone’s location with respect to a known 

location, highlighting any measurement errors that could be extrapolated over a 

larger distance. 

As with autonomous flight control testing, simulation formed a key role in testing the 

vision system. Simulation was primarily used for the calibration of the vision system, 

as desktop testing was possible with the vision system and simulated drop-zone 

identifiers could be replicated for offboard testing. 
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8.1.1.3 Payload Release Testing 

Physical payload release testing formed part of an integrated test as autonomous 

flight control and drop-zone identification was necessary in order to achieve the 

defined objectives. As such, payload release validation relied on simulation results, 

where different testing parameters were evaluated to determine their influence on 

the payload release trajectory. Physical payload release drops provided an indication 

of the payload release system’s accuracy and repeatability. Due to the level of 

integration of the payload release system in the final system, accuracy and 

repeatability results were dependant on the cumulative accuracy and repeatability 

of the integrated system. Testing of the payload delivery system’s accuracy and 

repeatability not only fulfilled the research objectives for the payload release system, 

but also contributed to the testing and fulfilment of the vision and autonomous flight 

control systems. 

8.2 Autonomous Flight Testing 

This section covered both the simulated and the physical testing and results of the 

autonomous flight control portion of this research.  

8.2.1 Simulation 

In order to determine whether the autonomous flight system would function, without 

putting the aircraft at risk, missions were simulated with the use of a Linux based 

software in the loop (SITL). The SITL enabled the simulation of a fully functioning 

aircraft which communicated via the MAVLink protocol. The same aircraft profile and 

parameter list utilised on the physical aircraft’s Pixhawk were uploaded and tested. 

As such, the SITL could simulate the full aircraft and any additional hardware 

without any physical hardware being present. In conjunction with the SITL 

simulator, MAVProxy was also simultaneously implemented. MAVProxy represented 

a fully functioning GCS which could be utilised for both SITL simulations and for 

real-time mission monitoring of physical aircraft communicating under the MAVLink 

protocol. The difference between MAVProxy and a GCS, such as QGroundControl, 

was that MAVProxy was open-source in terms of defining the additional plugin 

modules that would be opened when the GCS launched and MAVProxy acted as the 

MAVROS node. 

With SITL running, simulation parameters such as headwind direction and velocity 

could be implemented, allowing for the advanced testing of how the aircraft would 

theoretically react in a given flight scenario. The flight simulation was then used to 
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refine the aircraft’s flight parameters and allowed for fault finding prior to execution 

of the physical mission. Further implementation of the SITL software allowed for 

implementation of the ROS nodes and provided the ability to test each node’s effect 

on the flight of the aircraft. The primary ROS node tested in these situations was the 

autonomous flight node, as it allowed for the calibration of the required line-up and 

turnaround distances for the mission survey area. Further testing with the simulated 

flight paths allowed for the testing of the vision nodes and the payload release node, 

by simulating the detection of the drop-zone during the survey period. In addition to 

the flight path simulation, physical properties of the flight were monitored, such as 

the theorised power consumption of the given flight. A SITL simulation of the 

autonomous flight node can be seen in Figure 8.1. 

 

Figure 8.1: SITL simulation of the autonomous flight node 

8.2.2 Flight Tests 

Autonomous flight testing was undertaken in several stages to ensure the system 

was fully calibrated for an autonomous mission. In the initial stages of testing, no 

autonomy was introduced into the aircraft and the system was flown via the onboard 

remote-control hardware. These manual flights were used to calibrate the aircraft in 

terms of control surface trims and to allow for comparative data to be collected to 

determine the efficiency of the autonomous FCU versus manual remote piloting. 

These manual flights were also used to determine the necessary alterations required 

after the nose and fuselage of the aircraft were replaced. These alterations included 

balancing the aircraft accordingly due to the shift in the aircraft’s centre of gravity 

with the additional onboard weight. These manual flight tests were necessary in 

ensuring a stable platform was prepared for autonomous flight. 
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Once a stable platform had been developed, tested and calibrated, the testing of the 

Pixhawk’s built-in autonomous flight functionality was undertaken. As the 

autonomous takeoffs and landings were the final autonomous flight control 

processes tested, the aircraft was manually launched and landed for the majority of 

the autonomous flight control testing. Once manual takeoff and stable flight had 

been achieved, the aircraft was switched into AUTO flight mode, executing the 

autonomous mission. Whilst in AUTO flight mode, the aircraft’s onboard hardware 

was tested in terms of accuracy and repeatability. Where, the accuracy of an 

autonomous mission was based on the aircraft’s ability to replicate the SITL 

simulation flight paths. Additionally, a LOITER waypoint was used to test the 

aircraft’s ability to maintain a desired airspeed and altitude, and to test the aircraft’s 

repeatability when executing the same loiter repeatedly. 

The final testing stage involved the testing of the fully integrated system, involving 

mission autonomy from takeoff to payload delivery to landing. Final stage testing was 

an indication of the success of the autonomous flight node in allocating waypoints 

and updating mission parameters. The final test relied on the other subsystem’s 

inputs to ensure a full mission was executed. However, the performance of the 

autonomous flight node was still able to be evaluated independently. 

8.2.3 Flight Test Results  

As the manual flight test were for calibration and development of the test bench 

aircraft into a stable system, the flight manual tests were not discussed. The various 

parameters altered due to these tests were discussed in Chapter 3 and Chapter 4.  

The results of the second testing phase of the autonomous flight control system 

sought to identify the aircraft’s performance in maintaining a specific altitude, 

airspeed and flight path with no additional hardware onboard. This second test was 

undertaken by executing a loiter about a non-specific waypoint, where the loiter 

radius was defined to be 100 m and the setpoint altitude and airspeed were defined 

to be 75.5 m and 12.5 m/s respectively. Six loiter turns were executed about the 

given waypoint and the mapped flight path of the aircraft can be seen in Figure 8.2, 

where the theoretical loiter circle was been superimposed. The results of the aircraft’s 

ability to maintain the setpoint altitude and airspeed can be seen in Figure 8.3 and 

Figure 8.4. 
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Figure 8.2: Autonomous flight control loiter with theoretical loiter circle overlaid 

From Figure 8.2, it was noted that the aircraft was able to maintain the desired loiter 

circle successfully over all six rotations. The additional flight path lines that do not 

follow the theoretical loiter flight path represented the aircraft’s flight paths prior to 

entering the loiter. These prior flight paths were not considered during the 

assessment of the aircraft’s ability to maintain the desired flight path. From a 

hardware perspective, it was noted that although the GPS module onboard the 

aircraft was not as reliable as other available positioning systems, in terms of GPS 

location determination with respect to true GPS location. The aircraft’s ability to 

maintain a consistent loiter about the same GPS location indicated that the GPS 

module was able to maintain a consistent error. This consistency implied that the 

aircraft’s GPS module was accurate with respect to itself and this ability to maintain 

internal accuracy was found to be ideal in the application of the payload release 

system, where all drop-zone coordinates were defined relative to the aircraft’s GPS 

location and not the true location. 

 

Figure 8.3: Aircraft altitude control during loiter flight test 
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Figure 8.4: Aircraft airspeed control during loiter flight test 

From Figure 8.3 and Figure 8.4, it was noted that the aircraft’s ability to maintain 

the desired setpoint altitude and airspeed seemed inconsistent. It was noted that the 

deviation of these results were within close proximity to the setpoint value. This 

observation was further validated by deducing the average altitude and average 

airspeed the aircraft attained during the loiter flight path. The average altitude was 

found to be 76.01 m and the average airspeed was found to be 12.57 m/s. These 

averages indicated that the aircraft maintained an average altitude error within 

0.68% of the desired altitude and maintained an average airspeed error within 0.57% 

of the desired airspeed. Equation 8.1 and Equation 8.2 described the method in 

which accuracy was determined. Where, Figliola et al. [18] defined the accuracy of a 

component to be an indication of how close a produced reading was to its actual 

value. 

 𝑒 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 − 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒                           (8.1) 

𝐴 =
|𝑒|

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑙𝑢𝑒
× 100                                           (8.2) 

Equation 8.1 described the error (𝑒) between the measure value and the true value, 

and Equation 8.2 described the accuracy (𝐴) of the error with respect to the true 

value.  
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Comparisons were made based on the performance of the autonomous flight control 

of the aircraft when compared to the simulated flight control and manual flight 

control of the aircraft. The first of comparison was based on the instantaneous power 

consumed during takeoff and during flight, where instantaneous power provided an 

indication of throttle control. The instantaneous power consumed during takeoff can 

be seen in Figure 8.5 and the instantaneous power consumption during flight can be 

seen in Figure 8.6. 

 

Figure 8.5: Instantaneous power consumption comparison during takeoff 

From Figure 8.5, it was noted that the simulated flight control and autonomous flight 

control shared similar instantaneous power trends, where an initial spike in power 

was present. This initial power spike indicated that both the simulator and the FCU 

implement high throttle power as soon as a takeoff was initiated and once at the 

desired upper throttle value, the simulator would keep the throttle power constant 

until takeoff was complete. Looking at the instantaneous power of the manual flight 

control, it was noted that a less aggressive throttle ramp was implemented until the 

desired throttle position was attained and maintained until takeoff was complete. 

Takeoff was noted to be the moment when the instantaneous power started to 

decrease consistently.  

Assessing these takeoff power trends, it was noted that the simulated flight control 

increased the throttle power at a steady, almost linear, rate. When compared to the 

autonomous flight control and manual flight control, incremental steps were noted 
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during throttle ramp. Focussing on the autonomous flight controller, this difference 

in throttle ramp was deduced to be due to hardware capabilities, where possible 

throttle ramp functions and multipliers were present to reduce the amount of 

instantaneous current introduced into the motor and ESC. These same functions 

would have been present for the manual flight control, but throttle control would 

have been at the operator’s discretion and as such, the inconsistency in throttle ramp 

was noted. 

Additionally, the time taken for simulated flight control and autonomous flight 

control were less than that of the manual flight control. Simulated flight control was 

seen to possess the fastest takeoff. The decrease in required takeoff time for manual 

flight control was to be expected due to the reduced throttle ramp and the moment 

of takeoff was also defined by the operator. This manual control implied that the 

given takeoff period for manual flight control could have been conservative. The 

difference between the simulated flight control and autonomous flight control takeoff 

period was deduced to be due to the effects of friction as the aircraft was executing 

the takeoff. The simulator did not replicate surface texture and the additional friction 

experienced during physical testing resulted in the autonomous flight control takeoff 

period increasing. 

 

Figure 8.6: Instantaneous power consumption comparison during flight 

From Figure 8.6 it should be noted that, the data captured for manual flight control 

of the aircraft was a recording of a non-specific flight path flown by the operator. 

However, simulated flight control and autonomous flight control executed the same 
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flight plan and their results provide a comparative view as to the simulated and the 

actual flight control of the aircraft. However, the manual flight control results 

provided a comparative view of the throttle control of the aircraft, with the additional 

flight control parameters for the simulated flight control and autonomous flight 

control being the introduction of an airspeed goal and waypoint goals. 

Regarding the manual flight control results gather in Figure 8.6, three flight 

manoeuvres were noted. For the first five vertical segments of the graph, the aircraft 

was noted to fly into the wind, for the proceeding two vertical graph segments the 

aircraft executed a turn and for the remaining vertical segments of the graph, the 

aircraft flew with a tailwind. Throughout manual flight control, steady throttle control 

was noted, where no attempt at airspeed maintenance was made. During the first 

flight manoeuvre, it was noted that the highest instantaneous power was recorder 

and was believed to be due to need for additional power to be introduced during flight 

to allow the aircraft to fly through the wind. Upon entering the second flight 

manoeuvre, the instantaneous power was seen to decrease and then stabilise at the 

manual flight control’s minimum recorded instantaneous power. The decrease in 

power indicated that upon entering the turn, the aircraft was being accelerated by 

the wind and as such, less power was required to achieve the desired turn. The 

stabilisation of the power indicated that the operator was still providing some throttle 

control to the aircraft during the turn. At the end of the second flight manoeuvre, the 

power was seen to increase again, this increase indicated that the turn had 

concluded and that the operator was regaining speed. During the third flight 

manoeuvre, the power was seen to remain steady, as seen in the first flight 

manoeuvre, but at a lower level than that of the first flight manoeuvre. The lower 

power during the final manoeuvre indicated that the operator had attained the 

desired speed and required less power input than the first flight manoeuvre due to 

the assistance of the tailwind. 

Assessing the simulated flight control and the autonomous flight control, it was 

noted that the introduction of the mission goals brought about large variations in 

power control. Two flight manoeuvres were present during the simulated flight 

control and autonomous flight control, namely: a turn and stabilised flight. The turn 

was represented by the first eight vertical segments of the graph in Figure 8.6 and 

the remaining vertical segments of the graph in Figure 8.6 describe the stabilisation 

of flight. These two flight manoeuvres’ flight paths for both the simulated flight 

control and the autonomous flight control can be seen in Figure 8.7.  
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Figure 8.7: Simulated flight control and autonomous flight control flight path comparison 

From the simulated flight control results from Figure 8.6, it was noted that upon 

entering the turn, the instantaneous power decreased. This decrease of power during 

entry of the turn can also be noted in Figure 8.7, as the aircraft took a larger flight 

path approach, but was able to achieve a sharper turn. This sharper turn allowed 

for the simulated aircraft to achieve a more linear flight path approach to the 

waypoints. Upon completion of the turn, the instantaneous power of the simulated 

flight control was seen to increase. This increase in power was believed to have been 

due to the aircraft requiring additional power to attain the defined airspeed and 

waypoint goals, where each waypoint goal also possessed an altitude goal. Entering 

the second manoeuvre of the flight path, the simulated flight control power was seen 

to decrease and then stabilise. This reduction in instantaneous power was credited 

to the simulated control system compensating for the overshoot in power upon 

leaving the turn. 

Looking at the autonomous flight control instantaneous power consumption it was 

noted that, unlike the simulation, the aircraft increased power when entering the 

turn. The result of this increased power was noted in Figure 8.7, where the 

autonomous aircraft overshot the turn and resulted in the autonomous flight control 

decreasing the power to achieve the turn, as noted in the fourth vertical segment of 

the graph in Figure 8.6. Upon completing the turn, the autonomous flight control 

power was seen to increase intermittently, and it was believed that this intermittent 

increase in power was to ensure the mission goals were met. Entering the second 

flight manoeuvre, the autonomous flight control was seen to also decrease its power 
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and much like the simulated flight control, this was due to the autonomous flight 

control overshooting the mission goals. The autonomous flight control power levelled 

out like in the simulated flight control, but substantial peaks in the power curve were 

noted. These spikes deduced to be the FCU’s control gain values varying from those 

of the simulated aircraft. 

In addition to the results gathered in Figure 8.7 during the comparison of the 

simulated flight control and the autonomous flight control, Figure 8.8 illustrates the 

ability of the simulated flight control and autonomous flight control to maintain the 

altitude goal during the turn and stabilisation. 

 

Figure 8.8: Simulated flight control and autonomous flight control altitude control comparison 

Assessing the resulted captured in Figure 8.8, it was noted that the simulated flight 

control and autonomous flight control initiated different flight trajectories when 

entering the turn. The simulated flight control was seen to decrease altitude during 

the turn approach and then increase altitude during the turn follow through and 

flight stabilisation. This flight trajectory was complemented by the instantaneous 

power curve of the simulated flight control, as the power decreased during the turn. 

The turn flight trajectory altitude control of the autonomous aircraft took the 

opposite approach and increased altitude when entering the turn. This increase in 

aircraft altitude was also complemented by its instantaneous power curve from 

Figure 8.6, as the power was seen to increase. Upon completing the turn, the aircraft 

was seen to decrease altitude and subsequently the power curve was noted to 

decrease at this point.  

The results captured in Figure 8.6, Figure 8.7 and Figure 8.8 complement one 

another in terms of visible trends from both a hardware level and a physical level. 

Variations in the simulation’s flight path approach and the autonomous aircraft’s 



Page | 117  
 

flight path could be the result of differing firmware versions. Newer versions of the 

firmware, including the one uploaded to the autonomous aircraft, could incorporate 

the use of gravity in assisting with mission waypoint flight paths by allowing the 

aircraft to glide into the desired airspeed and waypoint goals. Variations in all three 

flight control functions illustrated the defining differences between one another. 

Increased throttle control was noted for the simulated aircraft and autonomous 

aircraft, when compared to the manually piloted aircraft. A similarity between the 

simulated aircraft and the autonomous aircraft was noted in that both systems were 

unable to fly the desired missions without overshoot, both horizontally and vertically 

about the defined waypoints. These overshoots indicated that a level of mission 

tolerance was necessary when defining waypoints, as overshoots would be present 

and the need for survey line-up and turnaround waypoints was validated in ensuring 

the desired survey area would be monitored.  

To emphasise the improvements that the autonomous flight control system 

introduced over the manual flight control, total power consumption of each system 

during takeoff and flight was assessed, the results of which can be seen in Table 9.1. 

From the power consumption results gathered in Table 9.1, it was found that the 

autonomous flight control provided a 14.91% decrease in power consumption during 

takeoff and a 27.64% decrease in power consumption during flight. 

Table 8.1: Power consumption comparison between manual flight control and autonomous flight control 

Power Consumption (mAh) 

 
Manual Flight 

Control 

Autonomous 

Flight Control 
Difference 

Takeoff 94.64 80.53 14.11 

Flight 567.53 410.66 156.87 
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8.3 Vision Testing 

This section covered the onboard and offboard testing and results of the vision 

system, where both the simulation and physical testing were conducted. 

8.3.1 Offboard Testing 

Prior to integration with the aircraft’s onboard hardware, the vision system was 

developed and tested using both simulated video footage and live video footage. The 

simulated video footage depicted basic shapes of different colours for algorithm 

development and progressed to pre-recorded aerial drone footage for theoretical 

performance testing. Live video footage was used for further system refinement based 

on differing testing conditions, including lighting effects and moving object 

recognition and tracking. 

8.3.1.1 Simulated Footage Results 

Once an initial vision system had been developed, the first sets of test footage 

processed were images of basic shapes and colours. These tests deduced the ability 

of the vision system to detect the proposed red circle drop-zone identifier. The results 

from the vision system tests were displayed as four-windowed screenshots of each 

testing scenario, where the upper left window depicted the output image that was 

processed by the vision system, the upper right window depicted the upper red hue 

range of the test image, the lower left window depicted the lower red hue range of the 

test image and the lower right window depicted the image size, in pixels, and the 

centre coordinates of any detected red circles. Successful detection of circles within 

the permitted red hue range of the object recognition algorithm were circled by the 

object recognition algorithm by a blue circle. These initial shape and colour tests can 

be seen in Figure 8.9 to Figure 8.14.  
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Figure 8.9: Vision system test scenario 1 - Red circle detection amongst other circles of differing colours 

From Figure 8.9, the desired result was to ensure the object recognition algorithm 

was capable of detecting a red circle amongst other circles of different colours. As 

can be seen in Figure 8.9, the desired result was achieved. The red circle was filtered 

through the upper and lower hue filters, allowing only the red circle to appear in the 

binary image and subsequently be circled in blue by the object recognition algorithm.  

 

 

Figure 8.10: Vision system test scenario 2 - Red circle detection of varying size 
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The test conducted in Figure 8.10 was to test the object recognition algorithm’s 

ability to detect multiple red circles simultaneously. These red circles varied in size 

to test the limits of the algorithm. As seen in Figure 8.10, the desired result was 

achieved, and the object recognition algorithm was able to detect all eight of the red 

circles, highlighting them in blue. This result indicated that the algorithm was 

capable of processing an image in its entirety for any identifiers which met its search 

criteria. The significance of the algorithm’s ability to detect red circles of various sizes 

was necessary due to the fluctuation in aircraft altitude during flight and as such, 

the drop-zone identifier would appear larger or smaller respectively. 

 

Figure 8.11: Vision system test scenario 3 - Red circle detection of varying red hue 

Figure 8.11 depicted the results captured when testing the lower hue range of the 

object recognition algorithm. Seven identifiers of equal size and shape were placed 

within the processed image. The colour of each circle was varied in the lower red hue 

range to determine which colours would be detected by the algorithm. The 

significance of this hue range result was to determine whether objects of similar 

colour and shape would trigger the detection of the drop-zone, allowing for the hue 

range to be altered to ensure the correct identifier was detected. Considerations of 

the acceptable hue range were possible due to the change in appearance of the 

drop-zone identifier during the survey based on lighting conditions and the relative 

angle of the drop-zone identifier with respect to the aircraft. The results captured in 

Figure 8.11 noted that the resulting blue circle did not follow the outline of the 

identifiers in the test image and this was due to the identifiers not being exact circles, 

in terms of constant radii. The identifiers were purposefully elongated to test the 

algorithm’s ability to detect the drop-zone when not flying directly above it. 
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Figure 8.12: Vision system test scenario 4 - Red circle detection of varying circle proportion 

 

Figure 8.13: Vision system test scenario 5 - Red circle detection of varying wall thickness 

From Figure 8.12 and Figure 8.13, the functionality of the object recognition 

algorithm’s Hough Circle Transformation was noted. The desired test outcome was 

to determine how much of the drop-zone identifier had to be present in order to 

achieve successful detection. The results captured in Figure 8.12 depicted the 

variation of circle portions, starting from a full circle and ending with a quarter circle, 

to test circle portion detection. The circle portion detection test results showed that 

all of the testing images were detected and provided insight as to the HoughCircles 

function’s functionality. With the use of the Hough Gradient method, the algorithm 

was noted to require several edges of a circle to be present, with the same radius 

from a given centre coordinate. The result in Figure 8.12 contributed to the possible 

survey environment, where the drop-zone identifier would not need to be fully visible 

in order for the algorithm to detect it. Practical problems identified, such as shadows 

and partial concealment of the drop-zone identifier would not render the vision 

system useless. 
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In Figure 8.13, with the deduction of how much of the circle’s geometry was to be 

present in order to achieve a successful identification now known, the further testing 

of what the algorithm defined to be the drop-zone identifier was tested. In the case 

of Figure 8.13, the drop-zone identifier was converted from a solid circle to a 

cross-section of a hollow cylinder, donut shape. This new identifier geometry aimed 

to test the required edge thickness of a red circle in order to achieve detection and 

as such, the inner circle of the new geometry was coloured black and the edge of the 

circle was coloured red. During this edge detection test, a consistent result was 

obtained. Looking at Figure 8.13, this result was the detection of the inner edge of 

the hollow cylinder’s cross-section. The visible result, as displayed in Figure 8.13, 

alluded to the assumption that a black circle had been detected, but the result was 

indeed the detection of a red circle. This seemingly incorrect black circle detection 

was found to be the correct result and the result depicted the algorithm detecting the 

first red circle edge, providing insight into the functionality of the HoughCircles 

function. This functionality illustrated how the algorithm would allocate a theorised 

centre coordinate of a circle and work outward from said centre. Upon detection of a 

pixel meeting the algorithm’s search criteria, a radius would be defined between the 

centre and the pixel. This process of pixel detection would iterate repeatedly until the 

required number of pixels at the same radius from the centre point were detected. 

This observation was contradictory, as all solid red circles would possess several 

internal radii that meet this requirement and as such, it was believed that a 

secondary detection criterion was present. The pixel detected meeting the necessary 

radius and colour criteria was required to also be an edge pixel of the circle, either 

inward or outward of the given radius. 

The result captured in Figure 8.13 follows that of the functionality available with the 

use of the OpenCV Hough Circle Transformation. The detection of the edge colour 

instead of the entire colour of the identifier was not problematic in this research but 

a proposed solution to this method of detection would be to execute a secondary 

algorithm after a circle had been detected. This secondary algorithm could then be 

used to search about the same centre point for another red circle with a larger 

diameter than the first. Detection of a second circle about the same centre would 

indicate the detection of the cross-section of a hollow cylinder and eliminate the 

detected circle. 
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Figure 8.14: Vision system test 6 - Red circle detection amongst various shapes of differing shape 
geometry and colour 

Figure 8.14 illustrates the final of the simulated shape and colour testing scenarios 

utilised in the development of the vision system. Several geometric shapes of different 

colours, including circles of different colours, were supplied in the test image. The 

test aimed to show the object recognition algorithm’s ability to detect the red circle 

amongst various other geometric shapes. The result of the test in Figure 8.14 

illustrated the algorithm’s ability to filter colours in both the upper and lower hue 

ranges and through this filtering, detect the red circle. The significance of this test 

was to replicate possible object geometry surrounding the drop-zone during survey. 

With the success of the result in Figure 8.14, the testing of the vision system with 

simulated shapes and colours was concluded, and a movement towards video image 

processing was taken. 

For the second portion of the simulated footage testing of the vision system, aerial 

footage, recorded on a DJI Phantom 4, of the drone flying over the red circular drop-

zone identifier at different speeds and altitude was input into the object recognition 

algorithm for analysis. This aerial footage included footage from altitudes up to 75 m 

above the drop-zone identifier, speeds up to 60 km/h (~17 m/s) and included footage 

where the drop-zone identifier was not within the centre of the camera frame. To 

adjust for the camera discrepancy between the Phantom 4 and the proposed USB 

camera, the footage from the fly-overs was compressed to the same size as what was 

to be expected on the USB camera.  
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Figure 8.15: Flight test footage captured from a DJI Phantom 4 

From Figure 8.15, the drop-zone identifier could be seen as the DJI flew overhead. 

The flight path of the DJI was purposefully set off-centre of the drop-zone identifier 

to test the object recognition algorithm’s ability to detect the drop-zone identifier 

when not flying directly overhead. 

 

Figure 8.16: Vision system test 7 – Drop-zone identification with the use of simulated footage recorder on 
a DJI Phantom 4 

Drop-zone 

identifier 
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From Figure 8.16, the result of the object recognition algorithm in detecting the drop-

zone identifier was noted, with the algorithm circling the drop-zone identifier in blue. 

As all the recorded footage could not be displayed in these results, the full results 

obtained with the recorded footage could not be fully illustrated. As such, during the 

processing of the DJI footage, the displaying of the detected circle’s pixel coordinates 

was not possible due to the large image high resolution of the DJI camera’s recording, 

where the object recognition algorithm struggled to process and overlay the results 

of the footage at the captured framerate. This lack of coordinate display was not 

detrimental in the output result of the object recognition algorithm, as the algorithm 

was still capable of detecting the drop-zone identifier, as seen in Figure 8.16, and the 

setback to this lack of feedback was for accuracy testing purposes. This limitation of 

the ODroid’s image processing power for larger resolution images validated the use 

of the selected vision system, as the DJI recorded imagery was in full HD resolution 

(1920x1080) and the CMOS camera recorded imagery at a resolution of 640x480, 

resulting in a pixel density ratio of 6.75 less than that of the DJI. As such, the 

performance of the object recognition algorithm when processing the CMOS camera 

footage resulted in a far lower processing load for the ODroid. This lower processing 

requirement was necessary to ensure vision, flight control and payload release 

computation were possible during flight. The lack of visual processing feedback was 

also deemed admissible, as the final implementation of the image processing node 

was executed with all display functionality disabled. Other than the limited 

processing capabilities of the ODroid being noted, the object recognition algorithm 

was still able to achieve the desired result in the detection of the drop-zone identifier. 

In order to fully test the vision system’s capabilities and to refine the system, a final 

pre-recorded aerial footage test was undertaken. The footage was recorded with the 

use of the proposed USB camera. During an autonomous mission test, the USB 

camera was installed into the gimbal onboard the aircraft and the drop-zone 

identifier was placed within the survey region of the aircraft. The identifier was not 

placed directly below one of the flight paths, but on the outer limits of what was the 

theorised camera FOV. Flight parameters included an airspeed of 15 m/s and a flight 

altitude of 50 m. Upon completion of the flight test, the footage was subjected to the 

object recognition algorithm. An image captured during the flight test, with the 

drop-zone identifier indicated, can be seen in Figure 8.17 and the resulting output 

of the object recognition algorithm can be seen in Figure 8.18. 
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Figure 8.17: Flight test footage captured from onboard the aircraft with the USB camera 

 

Figure 8.18: Vision system test 8 – Drop-zone identification from onboard the aircraft (Left – Resulting 
image overlay, Right – Upper red hue result) 

  

Drop-zone 
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Drop-zone 

identifier 

Drop-zone 

identifier 
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Although seemingly indistinguishable from the surrounding scenery, the drop-zone 

identifier can be noted in the centre of the image depicted in Figure 8.17. Figure 8.17 

represented the farthest view of the drop-zone identifier from the surveyed flight plan, 

where the identifier was placed at the edge of the CMOS camera’s FOV and on the 

final survey flight path. The aircraft was also noted to be banking when the footage 

was captured, as the edge of the camera viewing window was noted in the upper left 

corner of the image. 

The result captured in Figure 8.18 was the most substantial of all the results 

gathered from the recorded CMOS camera footage, as the sheer size of the drop-zone 

identifier in the image alluded to the assumption that the algorithm would fail in its 

detection. However, the object recognition algorithm was able to successfully identify 

the drop-zone identifier. The successful detection of the drop-zone identifier was 

noted in the upper hue filter window in Figure 8.18, where only a few white pixels 

representing the drop-zone identifier were noted to have been filtered. Through the 

filtering of the image hue, the algorithm was able to discern the circular pattern of 

the identifier and the result overlay, depicted in the left-hand window of Figure 8.18, 

showed the drop-zone identifier being circled in blue.  

The detection of such a small drop-zone identifier was noted as a successful result. 

However, the detection of the identifier whilst the aircraft was banking called for a 

revaluation of the object recognition algorithm. The concern with the successful 

result was the possibility that small, incorrect, objects could have been mistaken for 

the drop-zone and as such, false locations of the drop-zone could have been 

transmitted. Additionally, the detection of the drop-zone identifier during a bank 

implied that the coordinate frame of the image plane was not parallel to the ground 

plane, implying that the translation of pixel coordinates to GPS coordinates would 

be incorrect. This mismatch of coordinate frames was not true for all bank angles of 

the aircraft, as the camera gimbal would stabilise the camera for smaller bank 

angles, but this would not have been the case with steep bank angles. With these 

issues considered, the object recognition algorithm was calibrated to only detect 

larger circles by altering the HoughCircles function minRadius parameter, as seen in 

Table 5.1. Altering the minRadius parameter resulted in successful detection of the 

drop-zone identifier when the aircraft was in level flight, where the gimbal was able 

to stabilise the camera, and removed the detection of the drop-zone identifier when 

the aircraft was banking.  
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8.3.1.2 Live Footage Results 

To determine whether the ODroid was capable of executing the object recognition 

and object tracking algorithms, live footage was streamed from the camera. To 

deduce the vision system’s capabilities, three tests were conducted. The first two 

tests were conducted in order to calibrate the camera and image processing 

algorithms and the final test was to calibrate the camera for onboard application. 

The first test was used to determine the vision system’s accuracy and repeatability. 

To determine these vision system parameters, a test setup was established with the 

camera placed perpendicular to a fixed surface at a known distance. A similar testing 

setup was utilised in the determination of the camera’s FOV, with the only difference 

being the use of a red circle, 16.5 mm diameter, to simulate the drop-zone identifier. 

The test was conducted to show the accuracy of the vision system by repeatedly 

placing the red circle at a known location within the image plane. In order to 

determine the repeatability of the vision system, the accuracy test was repeated at 

various locations within the image plane. Figure 8.19 depicts a screenshot taken 

during the vision system accuracy and repeatability testing. On the left-hand side, 

the red circle can be seen encircled in blue by the image processing algorithms and, 

on the right-hand side, the determined coordinates of the red circle within the image 

plane can be seen. The accuracy and repeatability testing template can be seen in 

Figure 8.20 and the corresponding testing point coordinates can be seen in 

Table 8.2. The coordinate origin was defined to be the centre of the testing template, 

indicated by the centre of the circle drawn on the testing template. The first accuracy 

and repeatability tests were conducted with the camera displaced from the testing 

template at a distance of 0.275 m.  

 

Figure 8.19: Vision system accuracy and repeatability testing screenshot  
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Figure 8.20: Accuracy and repeatability testing template 

Table 8.2: Accuracy and repeatability testing point coordinates at 0.275 m camera displacement 

Testing 

Point 
X Coordinate Y Coordinate 

1 0.0295 0.096 

2 0.067 0.0385 

3 -0.0385 0.048 

4 -0.077 0 

5 -0.043 -0.0815 

6 0.007 -0.0025 

7 0.0145 -0.048 

8 -0.0675 0.101 

9 0 0.015 

10 0.063 -0.101 
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Figure 8.21 illustrates the results of the accuracy and repeatability testing, where 

the results were defined relative to their respective testing point coordinates to 

illustrate the deviation of the results from the reference data. 

 

Figure 8.21: Vision system accuracy and repeatability results on testing template 

From the results gathered in Figure 8.21, the accuracy and repeatability of the vision 

system was determined. Discrepancies in the accuracy and repeatability results were 

not immediately considered, as the accuracy of the experimental setup was first to 

be determined. The theoretical performance of the vision system was defined by 

determining the design-stage uncertainty of the vision system. This uncertainty 

determination sought to define the minimum uncertainty in the results obtained. 

The vision system possessed two components which contributed to the uncertainty 

in results captured. These two components included the camera and the gimbal. For 

the purpose of this research, the 3D printed camera mount was assumed to present 

no error in the results as the additional uncertainty in the mount’s design would 

require an intricate uncertainty analysis of the 3D printer utilised in the manufacture 

of the mount. The manufacturer specified performance of the camera can be seen in 

Table 8.3 and the manufacturer specified performance of the gimbal can be seen in 

Table 8.4. 
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Table 8.3: Manufacturer defined performance of the ELP-USB500W04AF-A60 camera 

Performance Parameter Value Unit 

Pixel Size 1.4×1.4 μm×μm 

Resolution 640×480 Pixels 

Field of View 60(H)×40(V) Degrees 

Functional Range 0.05 - 100 m 

 

Table 8.4: Manufacturer defined performance of the TAROT GoPro 3D V metal 3 axis gimbal 

Performance Parameter Value Unit 

Control Accuracy ±0.02 Degrees 

Controllable Range (PAN) ±330° Degrees 

Controllable Range (TILT) -135° to +45° Degrees 

 

Design-stage uncertainty, as defined by Figliola et al. [18], represented a test to 

determine the minimum uncertainty to be expected based on available information. 

As such, design-state uncertainty (𝑢𝑑) was defined by Equation 8.3. 

𝑢𝑑 = √𝑢0
2 + 𝑢𝑐

2 (𝑃%)                                            (8.3) 

Where, 𝑢0 was the zero-order uncertainty which represented the uncertainty of an 

instrument’s measurement result with respect to only the instrument’s resolution, 

as seen in Equation 8.4. 𝑢𝑐 represented the instrument uncertainty which was the 

combined uncertainty estimate of all identifier instrument errors [18]. 

𝑃% represented the probability confidence interval. 

 𝑢0 =
1

2
𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛                                            (8.4) 

The desired function of the gimbal was to ensure the camera was perpendicular to 

the ground during flight, the error in the gimbal’s motion could be translated from 

an angular accuracy (𝑒𝐶𝐴), represented by the gimbal’s control accuracy, to a linear 

instrument uncertainty based on the aircraft’s altitude (𝑎𝑙𝑡). This uncertainty was 

represented by the horizontal displacement the gimbal’s angular accuracy would 

represent at altitude. Equation 8.5 defined this gimbal instrument uncertainty. 

𝑢𝑐 = 𝑎𝑙𝑡 tan(𝑒𝐶𝐴)                                            (8.5) 
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With the gimbal’s uncertainty determined, the camera’s zero-order uncertainty could 

be determined. From Table 8.3, the camera’s resolution was defined to be in terms 

of pixels, but this resolution was not an indication of statistical resolution which was 

defined to be the smallest detectable change in a measured value. The statistical 

resolution of the camera was the pixel size and with the gimbal’s instrument 

uncertainty being converted into metres based on the given flight altitude, the 

resolution of the camera was converted to metres. This conversion of the camera’s 

resolution was also required to incorporate the amount of ground plane area the pixel 

represented at a given altitude. The area covered by a single pixel at altitude was 

defined by Equation 8.6. 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑝𝑖𝑥𝑒𝑙 =
𝑎𝑙𝑡 tan(

𝐹𝑂𝑉

2
)

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑎𝑚𝑒𝑟𝑎
                                    (8.6) 

The zero-order uncertainty of the camera was then determined with the use of 

Equation 8.4. The final design-stage uncertainty of the vision system was then 

determined with the use of the uncertainties determined and Equation 8.3. The 

design-stage of the vision system was defined by Equation 8.7 and Equation 8.8, 

where two equations, horizontal (y axis) and vertical (x axis), were necessary due to 

the resolution and FOV of the camera being defined in two dimensions. 

𝑢𝑑𝑥 = ±5.70 × 10
−4𝑎𝑙𝑡 𝑚 (95%)                                     (8.7) 

𝑢𝑑𝑦 = ±8.35 × 10
−4𝑎𝑙𝑡 𝑚 (95%)                                       (8.8) 

With the design-stage uncertainty of the vision system known, the accuracy and 

repeatability of the vision system could be deduced from the results depicted in 

Figure 8.21. From the results gathered and with the use of Equation 8.1 and 

Equation 8.2, the average accuracy of the results gathered in Figure 8.21 were 

depicted in Table 8.5 for each testing point coordinate defined in Table 8.2. 
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Table 8.5: Vision system accuracy testing results 

Testing 

Point 

Average Error 

(m) 

Average Error Accuracy 

(%) 

X Coordinate Y Coordinate X Coordinate Y Coordinate 

1 0.21 x10-3 3.10 x10-3 0.07 1.55 

2 2.26 x10-3 0.06 x10-3 0.71 0.03 

3 1.00 x10-3 1.89 x10-3 0.31 0.95 

4 0.39 x10-3 0.63 x10-3 0.12 0.31 

5 1.90 x10-3 0.91 x10-3 0.60 0.46 

6 0.29 x10-3 0.62 x10-3 0.09 0.31 

7 0.93 x10-3 0.65 x10-3 0.29 0.32 

8 1.86 x10-3 1.45 x10-3 0.59 0.73 

9 1.09 x10-3 0.20 x10-3 0.34 0.10 

10 0.98 x10-3 1.04 x10-3 0.31 0.52 

Overall 

Average 
1.09 x10-3 1.06 x10-3 0.34 0.53 

 

From the results gather in Table 8.5, the average error of the vision system was 

deduced to be within approximately 1 mm, both horizontally and vertically, about 

the defined test points. This error resulted in an average measurement accuracy of 

0.34% in the horizontal axis and 0.53% in the vertical axis with respect to their given 

test point coordinates. The theorised design-state uncertainty for the given altitude 

of 0.275 m during testing was assessed and an error of ±0.16x10-3 m was expected in 

the horizontal axis and an error of ±0.23x10-3 m was expected in the vertical axis. The 

discrepancy in design-state uncertainty and the physical results was attributed to 

the fact that the red circle used for testing was hand-placed during each 

measurement. Human error and the possibility of the test surface not lying parallel 

with the camera would have resulted in impaired vision system accuracy.  
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With the accuracy of the vision system under the given testing parameters deduced, 

the repeatability of the vision system was deduced. Repeatability was defined to be 

the ability of a measurement device to produce the same output value during random 

testing of the same initial testing conditions. Equation 8.9 defined the mean value 

(�̅�) attained during testing [18]. 

�̅� =
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=1                                                 (8.9) 

Where, 𝑁 represented the number of datapoints captured and 𝑥𝑖 represented the ith 

datapoint value being assessed. With the mean value for each datapoint known, the 

standard deviation (𝑠𝑥) of each datapoint, with respect to the mean, was determined 

and was defined by Equation 8.10 [18]. 

𝑠𝑥 = √
1

𝑁−1
∑ (𝑥𝑖 − �̅�)

2𝑁
𝑖=1                                       (8.10) 

From this standard deviation, the variance (𝑠𝑥
2) was determined, where the variance 

was an indication of the probable measure of the variation found in the data set and 

was defined by Equation 8.11 [18]. 

𝑠𝑥
2 =

1

𝑁−1
∑ (𝑥𝑖 − �̅�)

2𝑁
𝑖=1                                       (8.11) 

With these statistical values of the data now defined, the precision interval in which 

a value at the calculated mean value was predictable within a 95% accuracy was 

determined with the use of Equation 8.12. 

𝑥𝑖 = �̅� ± 𝑡𝑣,𝑃𝑠𝑥 (95%)                                          (8.12) 

Where, 

𝑣 = 𝑁 − 1                                                   (8.13) 

Where, 𝑣 represented the degrees of freedom and 𝑡𝑣,𝑃 represented the t-distribution 

at a value of 𝑣 and probability 𝑃.  As such, the value of 𝑡𝑣,𝑃 was found to be 2.77 as 

defined by Figliola et al. in Table 4.4 [18]. As several datapoints were tested for 

accuracy and repeatability, the results for each datapoint can be seen in Table 8.6 

and Table 8.7. 
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Table 8.6: Repeatability testing statistics results (mean, standard deviation, variance)  

Testing 

Point 

Mean Coordinate Value 

(m) 

Standard 

Deviation 

(m) 

Variance 

(m) 

X Y X Y X Y 

1 29.52 x10-3 99.10 x10-3 0.35 x10-3 0.4 x10-3 1.23x10-7 1.57 x10-7 

2 69.26 x10-3 38.44 x10-3 0.27 x10-3 0.00 x10-3 0.72 x10-7 0.00 

3 -39.20 x10-3 49.61 x10-3 0.66 x10-3 0.26 x10-3 4.38 x10-7 0.66 x10-7 

4 -77.25 x10-3 0.63 x10-3 0.54 x10-3 0.21 x10-3 2.93 x10-7 0.44 x10-7 

5 -44.90 x10-3 -80.59 x10-3 0.00 x10-3 0.21 x10-3 0.00 0.44 x10-7 

6 -7.22 x10-3 -1.88 x10-3 0.22 x10-3 0.52 x10-3 0.49 x10-7 2.71 x10-7 

7 15.38 x10-3 -48.65 x10-3 0.70 x10-3 0.00 x10-3 4.93 x10-7 0.00 

8 -65.64 x10-3 102.45 x10-3 0.55 x10-3 0.43 x10-3 3 x10-7 1.81 x10-7 

9 1.09 x10-3 15.09 x10-3 0.22 x10-3 0.21 x10-3 0.5 x10-7 0.44 x10-7 

10 63.98 x10-3 -102.04 x10-3 0.22 x10-3 0.00 x10-3 0.48 x10-7 0.00 

 

Table 8.7: Repeatability testing statistics results (precision interval) 

Testing Point 
𝑥𝑖 = �̅� ± 𝑡𝑣,𝑃𝑠𝑥 (95%) 

X Coordinate (m) Y Coordinate (m) 

1 29.52 ± 0.97 x10-3 99.10 ± 1.10 x10-3 

2 69.26 ± 0.74 x10-3 38.44 ± 0.00 x10-3 

3 -39.20 ± 1.83 x10-3 49.61 ± 0.71 x10-3 

4 -77.25 ± 1.50 x10-3 0.63 ± 0.58 x10-3 

5 -44.90 ± 0.00 x10-3 -80.59 ± 0.58 x10-3 

6 -7.22 ± 0.61 x10-3 -1.88 ± 1.44 x10-3 

7 15.38 ± 1.94 x10-3 -48.65 ± 0.00 x10-3 

8 -65.64 ± 1.52 x10-3 102.45 ± 1.18 x10-3 

9 1.09 ± 0.62 x10-3 15.09 ± 0.58 x10-3 

10 63.98 ± 0.61 x10-3 -102.04 ± 0.00 x10-3 
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From the results gathered in Table 8.6 and Table 8.7, the average precision interval 

for measurements about the two coordinate axes were defined. For the x-axis, the 

average precision interval was found to be ±1.03x10-3 m and for the y-axis, the 

precision interval was found to be ±0.62x10-3 m. Although the y-axis appeared to 

possess a more repeatable measurement, a comparison of the precision intervals over 

the camera’s visible area showed that the x-axis precision interval represented 0.32% 

of the visible area’s x-axis dimension. The precision interval of the y-axis represented 

0.31% of the visible area’s y-axis dimension and as such, the repeatability of both 

axes was found to be marginally different. 

From the results gathered during the vision system’s accuracy and repeatability 

testing, the design-stage uncertainty and precision interval could be extrapolated to 

determine the performance of the vision system over the camera’s functional range. 

Assuming a linear trend in the calculated vision system performance, the 

extrapolated vision system’s precision intervals can be seen in Figure 8.22. As 

design-stage uncertainty was defined as a function of altitude, these results could be 

plotted without the need for extrapolation and can be seen Figure 8.23. 

 

Figure 8.22: Linear extrapolation of the vision system's precision intervals 
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Figure 8.23: Vision system design-stage uncertainty at various altitudes 

From Figure 8.22 and Figure 8.23, the theorised performance of the vision system 

could be seen. From Figure 8.22, it was noted that the precision interval of the vision 

system was found to increase to ±0.38 m about the x-axis and ±0.23 m about the 

y-axis at an altitude of 100 m, the upper limit of the CMOS camera’s functional 

range. The increase in precision intervals, at the upper limit of the CMOS camera’s 

range, were still within the defined acceptable area of the drop-zone, which was 

defined to be within a 5 m radius of the drop-zone identifier. Looking at the design-

stage uncertainty over the CMOS camera’s function range, the linear increase in the 

design-stage uncertainty was noted, as defined by Equation 8.7 and Equation 8.8. 

This increased design-stage uncertainty resulted in a maximum uncertainty of 

±0.06 m in the x-axis and ±0.08 m in the y-axis. Combining these accuracy and 

repeatability results, it was concluded that the vision system was fully suited for its 

desired application in terms of achieving results which were both accurate and 

repeatable. This deduction about the accuracy and repeatability of the vision system 

concluded the first live footage testing of the vision system.  
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The second live footage testing configuration allowed for the testing of differing 

lighting effects on the camera, which subsequently further tested the hue range 

tolerance of the camera. As per the basic shape and colour testing of the vision 

system, a four-windowed resulting figure described the results of the second live 

video testing. The upper left window depicted the streamed video footage with the 

resulting object recognition result superimposed, in the upper middle window the 

upper red hue range could be seen, the upper middle window depicted the upper red 

hue range of the live footage, the upper left window depicted the lower red hue range 

of the live footage and the lower window depicted the algorithm feedback. The image 

size and the centre coordinates of any detected red circles were defined. The testing 

environment for this second live footage test was not fully illuminated by natural 

light and as such, artificial light was utilised in these tests. 

 

Figure 8.24: Vision system test 9 – Live video feed of red circle with low lighting 

From Figure 8.22, it was noted that when only ambient artificial light was present, 

the image processing algorithms were unable to detect the red circle on the test 

template. The ability of the image processing algorithms to detect the red circle 

during low light conditions was compromised, indicating that application of the 

delivery system would be dependent on available light.  
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Figure 8.25: Vision system test 10 – Live video feed of red circle with lighting from a single side 

The same test as seen in Figure 8.24 was repeated with the addition of a single 

artificial light source illuminating the testing template from the side. The results of 

this test were noted in Figure 8.25, where it was found that the vision system was 

able to detect half of the red circle on the testing template. Additionally, it was noted 

that the introduction of the grid on the test template resulted in the division of the 

red circle into the respective grid squares they fell within. This separation of circle 

portions was an indication that the hue filter of the image processing algorithm was 

not able to detect the darker portions of the circle. The coordinates of each circle 

detected were noted in the lower window of Figure 8.25. 

 

Figure 8.26: Vision system test 11 – Live video feed of red circle with full lighting 
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From Figure 8.26, the final illumination results were noted where full artificial 

lighting was introduced. Portioning of the red circle in the grid was still present, 

indicating that the undetected portions were not within the image processing 

algorithms’ hue ranges. The detected portions of the circle’s coordinates were also 

noted in the lower window of Figure 8.26.  

From these live footage illumination tests, it was clear that the vision system required 

sufficient lighting to detect the drop-zone identifier, further iterating the time-frame 

of operation of the delivery system. Methods to mitigate these illumination issues 

were possible, such as multispectral cameras to detect different trace signatures of 

the drop-zone identifier or the illumination of the drop-zone identifier. With these 

possible alterations noted, the development of the delivery system with the current 

system was perused as daytime testing of the delivery system utilised and conceptual 

proof was the desired outcome of this research. Looking at the CMOS camera’s 

parameters, it was defined that the CMOS camera sensor required 70% illumination 

for optimal use.  

With the camera calibrated for the correct lighting and hue ranges, a final offboard 

test was conducted to determine whether the image recognition and object tracking 

algorithms could detect and locate the physical drop-zone identifier. The final 

offboard vision system test also allowed for the initial calibration of the image 

tracking algorithm’s ability to define the location of the drop-zone identifier in terms 

of the global frame. The aircraft was carried over the drop-zone identifier to simulate 

the flight of the aircraft. The results from these tests were displayed as the relocation 

of the drop-zone identifier’s waypoint relative to the simulated aircraft’s reference 

GPS location. The test results were displayed as a screenshot of the GCS map 

waypoints on the left and a real-time update of the displacement of the drop-zone 

identifier relative to the reference GPS location and camera frame was displayed on 

the right, as seen in Figure 8.27. This test represented the first integrated test 

between vision system and the FCU and made use of the drop-zone identifier which 

would be used for the application of the integrated system. This final drop-zone 

identifier was a red circle, 0.4 m in diameter. 
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Figure 8.27: Vision system test 12 – Live video feed testing of the location allocation of the drop-zone 

identifier 

From Figure 8.27, the successful identification of drop-zone identifier and the 

allocation of drop-zone location waypoints were noted. In the left window of 

Figure 8.27, the designation of the drop-zone’s location, waypoint 16, relative to the 

reference GPS location, waypoint 15, was noted to be above and to the left of the 

aircraft. Looking at the real-time results depicted in the right window of Figure 8.27 

confirmed these results, as the reference location, displacement and subsequent 

calculated location of the drop-zone identifier were noted. 

Confirmation of the ability of the vision system to deduce the location of the 

drop-zone identifier based on the aircraft’s GPS location implied that the integrated 

vision and flight control system was ready for a flight test. As such, this vision system 

test represented the final offboard test.   
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8.3.2 Onboard Testing 

With the vision system and image processing algorithm calibrated, the refinement of 

the algorithms’ integration with the onboard hardware could be completed. This 

refinement included the determination of the drop-zone identifier’s location relative 

to the global frame with the assistance of the Pixhawk’s GPS and compass during 

flight. To test the integrated vision system and autonomous flight control system, the 

aircraft was taken to Port Elizabeth Radio Flyers (PERF) airfield for testing and a 

survey mission was planned over the airfield. The payload release indicator was 

placed within the survey area and the aircraft’s MAVROS node, autonomous flight 

node, image capture node and the image processing node were executed. Successful 

detection of the drop-zone identifier was indicated by the vision system’s ability to 

allocate the drop-zone waypoint (waypoint 15) accordingly. The results of the onboard 

test were depicted in Figure 8.28, where in the left window, the initial survey 

waypoint allocation could be noted and in the right window, the vision system 

allocated waypoints were noted after a mission update request. 

 

Figure 8.28: GCS mission map view of the first onboard integrated testing of the vision system and 
autonomous flight control system 

Comparing the two window views in Figure 8.28, it was noted that the allocation of 

the drop-zone location waypoint was present after requesting a mission waypoint 

update. The drop-zone location waypoint, waypoint 15, can be seen in the top 

left-hand corner of the right window in Figure 8.28. Prior to any deductions being 

made based on the result obtained, it should be noted that the drop-zone identifier 

was placed in region between waypoint 6 and waypoint 17. It was noted that the 

designated drop-zone location waypoint was placed in the wrong location. Upon 

assessment of the airfield, it was found that an orange coloured windsock was 

present at the airfield’s clubhouse and was the location specified by the vision system 
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to be the drop-zone. From this result, several deductions were made, the first being 

that the vision system had successfully detected an object meeting its required 

drop-zone classification parameters and had successfully allocated a waypoint 

indicating said drop-zone’s location. The remaining deductions were that the image 

processing algorithm’s parameters were in need of refinement as the aircraft did fly 

over the correct drop-zone indicator without detection, indicating incorrect hue range 

filtering. Additionally, the detection of the windsock indicated that the HoughCircles 

function’s minRadius and maxRadius parameters required refinement, as the 

windsock’s geometry was detected. Although not the desired result of the first 

onboard test of the integrated vision system and autonomous flight control, the result 

displayed in Figure 8.28 was a clear indicator that the integrated systems were 

functioning correctly and were relaying information between one another. 

After the correction of the necessary algorithm parameters, the onboard test was 

ready to be repeated. Two alterations to the physical mission were changed during 

this second test, namely: the mission was changed from the traditional survey to an 

accumulation of waypoints not within the vicinity of the drop-zone indicator and the 

drop-zone indicator was placed further away from the airfield clubhouse. The reason 

for the change in mission waypoints was due to the autonomous flight control of the 

aircraft in executing a mission survey had already been defined and the desired 

result was to test the vision system’s integration with FCU. The movement of the 

drop-zone indicator away from the clubhouse was to avoid the detection of any other 

object’s other than the drop-zone identifier. The aircraft was then flown over the 

newly placed and recorded location of the drop-zone identifier and the success of the 

vision system’s ability to define the drop-zone’s location was assessed. The 

positioning of the mission waypoints and placement location of the drop-zone 

identifier prior to the second test can be seen in the left window of Figure 8.29. The 

vision system’s reallocation of the drop-zone location waypoint can be seen in right 

window of Figure 8.29. Reallocation of the mission waypoints required the new 

designation of the drop-zone location waypoint due to the structure of the 

autonomous flight node. Therefore, the drop-zone location was defined by waypoint 

17. Additionally, with the mission waypoints reallocated, the location of the headwind 

loiter, and initial payload release approach waypoint were also reallocated upon 

detection of the drop-zone identifier and these waypoints were defined to be 

waypoint 15 and waypoint 16. The aircraft was flown at an average altitude of 75 m 

and an average airspeed of 12 m/s. 
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Figure 8.29: GCS mission map view of the second onboard integrated testing of the vision system and 

autonomous flight control system 

During the second onboard integrated test, the aircraft was flown over the 

approximate drop-zone identifier several times and from Figure 8.29, it was noted 

that upon mission waypoint update, the location of the drop-zone had been 

redefined. Visual comparison of both the right and left windows of Figure 8.29, 

indicated that the vision system was successfully able to identify and define the 

drop-zone location based on the aircraft’s GPS location. To confirm the visual 

comparison’s results, the vision system’s image processing node logs were gathered 

for the computation of statistical results. As discussed in Chapter 7, the use of the 

ROS node development configuration prevented any form of node feedback to the 

operator and as such, the recorded locations defined by the vision system were 

assessed post-mission. Additionally, the vision system could record and transmit the 

location of the drop-zone identifier several times in a single fly over, as the refresh 

rate of the CMOS camera presented the image processing algorithm with new images 

every few milliseconds. As such, accuracy and repeatability tests were conducted. 

The vision system defined drop-zone location information retrieved from the image 

processing node can be seen in Table 8.8, Figure 8.30 and Figure 8.31. 
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Table 8.8: Vision system defined coordinates of the drop-zone identifier 

 Latitude Longitude 
Displacement 

(m) 

Drop-Zone 

Identifier True 

Coordinates 

-33.8761795 25.3518254 - 

 Vision System Determined Coordinates 

1 -33.8761765 25.3518152 1.17 

2 -33.8761795 25.3518492 1.07 

3 -33.8761743 25.3518397 1.34 

4 -33.8761782 25.3518191 0.63 

5 -33.8761664 25.3518191 1.58 

6 -33.8761966 25.3518365 2.3 

7 -33.8761927 25.3518223 1.49 

8 -33.8761882 25.3518094 1.99 

9 -33.8761861 25.3518333 1.01 

10 -33.8761585 25.3518207 2.49 

11 -33.8761795 25.3518223 0.37 

12 -33.8761795 25.3518286 0.34 

13 -33.8761822 25.3518318 0.55 

14 -33.8761808 25.3518333 0.7 

15 -33.8761835 25.3518397 1.31 

16 -33.8761848 25.3518159 0.99 

17 -33.8761927 25.3518238 1.48 

18 -33.8761611 25.3518096 2.59 

19 -33.8761848 25.3518508 2.34 

20 -33.8761785 25.3518397 1.29 

21 -33.8761680 25.3518380 1.61 
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Figure 8.30: Vision system defined drop-zone identifier locations relative to the true drop-zone location 

 

 Figure 8.31: Vision system defined drop zone identifier locations relative to acceptable drop-zone area 
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From Table 8.8, it was noted that the vision system was able to determine 21 

drop-zone coordinates during the second integrated test. Of these 21 locations, 6 

were within a 1 m radius of the true location of the placed drop-zone identifier, with 

the closest determined location calculated to be within 0.34 m of the true location, 

location 12 in Table 8.8. Of the remaining 15 locations, 14 were determined by the 

vision system within a 2.5 m radius of the true location, with the farthest recorded 

location placed at 2.59 m from the true location, location 18 in Table 8.8. Figure 8.30 

was utilised to show the distribution of the vision system-defined locations relative 

to the true location. Figure 8.31 was used to illustrate the location coordinates with 

respect to the allowable drop-zone area and was constructed with the use of 

Google Earth Pro.  

From the results displayed in Figure 8.30 and Figure 8.31, no discernible pattern to 

the vision system’s identification could be defined. The statistical accuracy and 

repeatability of the vision system was determined and through the use of 

Equation 8.9, Equation 8.10 and Equation 8.11, the repeatability results determined 

for the second onboard test can be seen in Table 8.9. 

Table 8.9: Repeatability results for second onboard integrated test (mean, standard deviation, variance) 

 Mean Value 
Standard 

Deviation 
Variance 

Latitude (Degrees) -33.8761796 9.9 x10-6 0.98x10-10 

Longitude (Degrees) 25.3518285 12.1 x10-6 1.45x10-10 

Displacement (m) 1.36 0.68 0.46 

 

From the data captured in Table 8.9, the precision interval of the mean was deduced, 

where the precision interval of the mean made use of the standard deviation of the 

mean as opposed to the standard deviation. The significance of the standard 

deviation of the mean showed an accurate representation of how well a measurement 

would be defined over an entire dataset when only a small portion of sample data 

was provided. The standard deviation of the mean was defined by Equation 8.14. 

𝑠�̅� =
𝑠𝑥

√𝑁
                                                  (8.14)  
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With the use of Equation 8.14, the possible values of the true mean were determined 

by Equation 8.15. The resulting values can be seen in Table 8.10 [18]. 

𝑥′ = �̅� ± 𝑡𝑣,𝑃𝑠�̅� (𝑃%)                                          (8.15) 

Table 8.10: Possible values of the true mean for the results gathered for the second integrated test 

 Possible values of the true mean 

Latitude (Degrees) -33.88 ± 4.51 x10-6 

Longitude (Degrees) 25.35 ± 5.51 x10-6 

Displacement (m) 1.36 ± 0.31 

 

From Table 8.9 and Table 8.10, the latitude and longitude results defined the 

repeatability of the second integrated test, as their coordinates were specific to the 

testing area. The defining result from the second integrated test was the repeatability 

of the displacement of the vision system defined drop-zone locations. The average 

displacement from the true drop-zone location was found to be 1.36 m with an 

uncertainty of ±0.31 m. From the largest predicted displacement of the vision 

system’s measurements, as extrapolated in Figure 8.22, it was found that the vision 

results should have resulted in the detection of the drop-zone identifier within 0.32 m 

of the true location. Introducing the greatest design-stage uncertainty from 

Figure 8.23, for the given testing altitude, would have resulted in an additional 

0.08 m of displacement from the true drop-zone location. From the results gathered 

in Table 8.10, the resulting average displacement introduced approximately 1 m of 

unpredicted deviation from the desired location. Additionally, assuming the possible 

value of the mean to shift towards the true location by the given precision in 

Table 8.10, the resulting average was still approximately 0.7 m greater than the 

predicted value. Several issues could have resulted in this deviation but due to the 

majority of the results captured in Table 8.8 occurring between the 1 m radius mark 

and the 2.5 m radius mark it was deduced that the uncertainty of the vision system 

could not be assumed to be the same linear trend defined in Figure 8.22. A new 

linear trend was defined for the displacement uncertainty of the vision system’s 

measurements and built upon the results captured in Figure 8.22. This new trend 

can be seen in Figure 8.32. 
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Figure 8.32: Vision system mean measurement displacement uncertainty for different altitudes 

With the final mean and uncertainty in the vision system’s displacement 

measurements from the true drop-zone location defined, it was noted that at the 

upper limit of the CMOS camera’s operation range, the measurement uncertainty 

was still within the defined allowable drop-zone area. The maximum vision system 

mean displacement and uncertainty at 1.82 ± 0.40 m at an altitude of 100 m. The 

final performance of the integrated system would be defined by the additional 

uncertainty that the payload release trajectory would provide.  
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8.4 Payload Release Testing 

Simulated and physical testing of the payload release algorithm and payload release 

mechanism were discussed in this section. 

8.4.1 Simulation 

To determine the baseline results expected from the payload release system, payload 

release trajectory simulations were conducted. The simulations made use of the 

lookup tables and equations developed, as these described the same computational 

information available to the payload release node during flight. The simulations were 

conducted with the use of the MAVProxy SITL and a MAVProxy HITL, where the 

location of the drop-zone was simulated to have been detected by the vision system. 

The simulation tested the payload release node algorithm’s ability to determine the 

headwind velocity and direction, and placing of the correct payload release 

waypoints. The HITL aspect of the payload release simulation was the introduction 

of the Pixhawk and payload release servo into the simulation, where visual 

confirmation of payload release was obtained through the actuation of the payload 

release servo. The SITL simulation of the payload release node can be seen in 

Figure 8.33. 

 

Figure 8.33: SITL simulation of the payload release node 

From the SITL simulation of the payload release node, successful computation of the 

required payload release approach and payload release waypoint was achieved. The 

payload release algorithm, through application of the lookup tables, was able to 
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interpolate the simulated flight data and to determine a theorised release 

displacement. From the simulation it was found that the aircraft achieved: an 

average altitude of 49.4 m, an average airspeed of 12.81 m/s and an average 

headwind speed of 1.67 m/s from a heading of 298˚. With these averages, the 

algorithm was able to determine that a location of 2 m before the drop-zone 

identifier’s determined location was the correct moment for payload release. Upon 

inspection of the lookup tables, as seen in Appendix J1 and Appendix J2, the 

displacement determined by the algorithm was within the calculated displacement’s 

predicted by the mathematical model described in Chapter 6. The updated waypoint 

map from the simulated payload release can be seen in Figure 8.34, where the 

payload release location (waypoint 14) can be seen next to the determined drop-zone 

identifier’s location (waypoint 15). 

 

Figure 8.34: Updated waypoint map indicating the payload release waypoints 

The simulation was conducted under several headwind velocities and headings, and 

the resulting placements of the payload release waypoints followed the success of the 

results depicted in Figure 8.33 and Figure 8.34. From these simulations, it was 

determined that the payload release node was functioning correctly, and physical 

testing was needed to provide an indication as to the success of the payload release 

system as a whole. 
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8.4.2 Physical Payload Release 

Although the simulation provided an indication of the locations for payload release, 

they did not simulate the payloads fall trajectory. As such, integrated payload 

releases were conducted onboard the aircraft. These physical payload release tests 

were to conclude the accuracy of the payload release algorithm by dropping the 

payload during flight and determining their final displacement relative to the point 

of release. Aircraft parameters such as: altitude, airspeed, groundspeed and GPS 

location were recorded. Additionally, the payload’s impact location was also recorded. 

With these parameters, the payload’s impact location versus the simulation predicted 

location was deduced and the resulting error noted. The parameters recorded a 

payload release test can be seen in Table 8.11. 

Table 8.11: Payload release test parameters 

Parameter Value Unit 

Release Altitude 76.2 m 

Aircraft Airspeed 12.6 m/s 

Aircraft Groundspeed 8.6 m/s 

Headwind Velocity 4 m/s 

Aircraft GPS Location 
Latitude: -34.005355 

Longitude: 25.682660 
Degrees 

Payload Impact Location 
Latitude: -34.005369 

Longitude: 25.682628 
Degrees 

 

From the recorded parameters recorded in Table 8.11, the payload was found to enter 

both Phase A and Phase B of the payload release trajectory described in Chapter 6. 

The deduction that the payload would enter both release trajectory phases was made 

with the use of Equation 6.19, where the equilibrium time of the payload was 

deduced to be 1.65 seconds. With the equilibrium time known, Equation 6.21 was 

used to determine the total fall time of the payload from the release altitude and was 

determined to be 3.94 seconds. Due to the payload possessing a larger total fall time 

than equilibrium time, the payload was found to fall for an additional 2.29 seconds 

under the effects of headwind vector addition. At the point of equilibrium, the payload 

was found to have displaced 1.96 m, as determined with the use of Equation 6.20. 

Additionally, the payload equilibrium altitude was found to be 44.37 m and the 

Phase B displacement was found to be 5.29 m. The resulting final theoretical payload 
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displacement was found to be 3.33 m behind the initial release location, where 

forward was defined to be a heading of 63˚. Comparing the theoretical displacement 

of the payload with the actual displacement of the payload, it was found that the 

physical payload release resulted in a payload displacement of 3.47 m behind and to 

the initial release location. As such, the physical payload release of the payload 

resulted in a payload displacement error of 0.14 m from the theorised location and 

was within the acceptable area of the drop-zone. The payload release trajectory for 

the physical testing can be seen in Figure 8.35. 

 

Figure 8.35: Payload release trajectory during physical testing 

Two more payload release tests were conducted at different airspeed and altitudes, 

and an average payload displacement error of ±0.28 m was achieved. In addition to 

this average displacement error, it was noted that the payload tended to land to the 

right of the aircraft’s heading. This tendency for the payload to land to the right of 

the aircraft’s heading indicated that the algorithm was defining the payload release 

approach along a heading where the headwind would hit the aircraft on its port side. 

As such, the algorithm was altered to correct for this heading offset. 
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Images of the aircraft during the payload release testing were captured and overlaid 

to provide a view of the payload’s trajectory. The trajectory of the payload was 

highlighted due to the distorted quality of the overlaid image, as seen in Figure 8.36. 

 

Figure 8.36: Stitched image illustrating the payload release trajectory and aircraft flight progression 
during payload release testing 

In terms of the payload’s physical capabilities when impacting the ground, it was 

found that the 3D printed payload design was able to withstand three to four payload 

release tests before physical damage occurred. During the payload release testing, 

the GPS module installed within the payload was fully protected for any physical 

damage. During the initial physical testing stages, it was noted that the payload 

release mechanism could be triggered, and the payload would not release. These 

failed drops resulted in small alterations to the payload release mechanism to remove 

the edges which were catching during release. However, it was noted that these failed 

drops only occurred on testing days with higher wind speeds and the system 

functioned accordingly at lower wind speeds. Furthermore, during missions where 

the drop-zone identifier was not detected, and the aircraft would circle back to its 

takeoff position, it was noted that the payload release command would be triggered 

due to the mission being aborted by the FCU. The release of the payload indicated 

that the FCU deemed all waypoints met if no new waypoints were presented to it and 

as such, an additional release command condition was introduced to ensure the drop 

location waypoint had been defined. 
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8.5 System Performance 

Combing the payload release results with the remaining subsystems allowed for the 

system’s overall performance to be evaluated. Taking the average errors achieved 

within each subsystem and defining the mean vision system accuracy to be the mean 

accuracy of the system, the integrated system’s performance was defined by 

Equation 8.16. 

𝑥′ = 1.82 ± 0.49 𝑚                                         (8.16) 

From Equation 8.16, the final performance of the integrated system was found to 

achieve an average payload displacement of 1.82 m from the true location of the 

designated drop-zone identifier when operating at an approximate altitude of 75 m. 

At this altitude, the displacement was found to possess an average error of ±0.49 m. 

A linear trend was noted with the system’s performance errors and as such, the 

accuracy of the system decreased with an increase in altitude. Therefore, the system 

performance defined in Equation 8.16 would decrease with a decrease in altitude.  

Considering the integrated performance and the defined allowable circular drop-zone 

area of 10 m in diameter, the integrated system was able to achieve the desired 

result. The performance of the integrated system was able to achieve the desired 

results within 13.19% of the designated drop-zone area, indicating that the 

remaining 86.81% of the drop-zone’s designated area was available to compensate 

for any errors in payload release. Radially, the performance of the system was found 

to achieve payload release within an average range of 36.24% of the defined 

drop-zone radius.  

8.6 Chapter Conclusion 

Chapter 8 discussed the details pertaining to the test of the three defining 

subsystems within this research. Results depicting the simulation and physical 

results were discussed and a performance evaluation of each system was used to 

declare the performance of the integrated system and it was found that the system 

was able to achieve the desired results through implementation of the developed 

subsystems. Chapter 9 concludes the research by defining the overall performance 

of the integrated system and reiterates the research objectives achieved. Additionally, 

Chapter 9 defined possible future applications and alterations to the research to 

expand upon the results achieved.  
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Chapter 9  

Conclusion and Recommendations 

This chapter concludes this dissertation, highlighting the final performance of the 

vision-based autonomous aircraft payload delivery system developed. Additional 

sections discussed within this chapter included research contributions and 

recommendations for future research. 

10.1 Conclusion 

The aim of this research was to develop a modular vision-based autonomous aircraft 

payload delivery system for application in the automated delivery of a given payload 

to a drop-zone location. This payload delivery system was designed for use in, 

amongst various other applications, the service delivery sector. The desired objective 

was to promote the development of the service delivery sector into the era of 

Industry 4.0. 

To achieve the aims and objectives of this research, an application specific hardware 

and software architecture was developed. The hardware architecture consisted of a 

test bench aircraft, the Skywalker 2013, integrated with the Pixhawk flight controller 

to enable the system with autonomous flight control. Additionally, an Odroid-XU4 

companion computer was integrated onboard to provide the necessary 

computational power required to achieve a fully automated vision-based payload 

delivery system, where the vision system consisted of an ELP-USB500W04AF-A60 

CMOS camera and TAROT gimbal. A Linux-based ROS node software architecture 

was developed, where five C++ ROS nodes were utilised for integrated control. 

Selection of these system architecture components was done through the research 

of relevant literature on similar systems. 

This research found through application of SITL and HITL simulations, and physical 

testing, it was found that a low-input operator defined mission was successfully 

achieved with fully autonomous flight control of the aircraft. Comparative results 

captured during physical flight tests illustrated a 14.91% reduction in power 

consumption with the application the autonomous flight control of the aircraft as 

opposed to manual flight control of the aircraft.  

Through application of simulated footage, both onboard and offboard the aircraft, an 

image processing algorithm was developed which was capable of drop-zone 

identification and location up to 100 m away based on the vision hardware utilised. 
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Physical testing of the vision system and image processing algorithm resulted in 

drop-zone identification and location within the defined acceptable drop-zone area. 

Application of the vision system at an altitude of 75 m resulted in the determination 

of the drop-zone location with an average displacement of 1.82 m from the true 

drop-zone location. Additionally, it was found that approximately 30% of the detected 

drop-zone locations were within a 1 m radius of the true location. The resulting 

accuracy of the vision system was found to improve upon the research conducted by 

Hinas et al. [27], where similar vision system test results were achieved at an altitude 

of 40 m. 

Application of SITL and HITL simulations, and the mathematical model developed in 

Chapter 6 resulted in the successful payload displacement prediction of payloads 

dropped from altitude. A payload displacement prediction uncertainty error of 

±0.28 m was achieved, with the most accurate payload release achieving a payload 

displacement error 0.14 m from the theoretical location, at an altitude of 76.2 m. The 

resulting automated payload release testing provided the necessary evidence to 

conclude that a two-phase payload release trajectory was present, as described in 

Chapter 6. Additionally, the payload release results indicated an improvement upon 

the research conducted by Boura et al. [10], where through application of an 

autonomous aircraft payload delivery system, an average payload displacement of 

75 ft (~23 m) was achieved during testing. 

As an integrated unit, the system was able to successfully fly an autonomous mission 

and through vision-based survey, determine the true location of the drop-zone within 

the acceptable tolerance. Through drop-zone identification, the system was able to 

update mission waypoints, execute environmental parameter survey for payload 

release trajectory calculations and subsequently release the payload to within the 

acceptable drop-zone area. As such, this research successfully met the required 

research aims and objectives defined and proved the proposed hypothesis. 
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10.2 Research Contributions 

With the conclusion of this research, the following research contributions were 

achieved: 

➢ The development of a vision system and image processing algorithm which 

achieved similar results in target location determination accuracy at an 

altitude of 75 m when compared to the apparent average accuracy of Hinas et 

al.’s vision system [27] at an altitude of 40 m. 

➢ The development of a fully integrated autonomous aircraft with an integrated 

autonomous vision system capable of achieving the automated payload 

release. Where, this research built upon the research conducted by 

Boura et al. [10] in the development of an autonomous aircraft with payload 

release capabilities.  

➢ Based on the work conducted by Boura et al. [10], where payload trajectory 

modelling was achieved through real-time environmental parameter 

monitoring, it was found that payload trajectory modelling could be furthered. 

As such, this research included the development of a two-dimensional two-

phase payload release trajectory model for the prediction of a payload’s 

ballistic fall trajectory, which achieved successful displacement prediction 

results during simulated and physical testing.  

➢ An integrated payload delivery system capable of achieving the same results 

as achieved by Zipline [50] and DHL Parcelcopter [16], two commercially used 

systems implementing autonomous aircraft payload delivery. Additionally, the 

introduction of a vision system, a system the two commercial systems did not 

possess, increased payload delivery accuracy and security by ensuring 

payload drop-zone identification. 

➢ The development of a fully automated mission flight plan based on a single 

user-defined waypoint. Improving upon the DHL Parcelcopter’s [16] system of 

manual user mission designation and subsequently optimising mission 

waypoint designation.  
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10.3 Recommendations for Future Research 

Upon completion of this research and reflection on the results gathered, several 

future considerations were derived to further this research. These considerations 

included: 

➢ Application of the integrated system within different airframes to allow for 

comparative results to be drawn of the performance of the integrated system 

within another airframe. 

➢ Application of a larger FOV vision system or several vision systems to allow 

for a larger survey area, in terms of spacing between survey waypoints. 

➢ Future development of the image processing algorithm for use in unique 

drop-zone identifier locations as opposed to a generic red circle. Such an 

application would allow for greater payload delivery security in terms of 

decreasing the number of false detections by the vision system. 

➢ Development of a controlled payload could be undertaken in order to mitigate 

the design-stage uncertainty errors and overall errors obtained. 

➢ Further testing of the payload release system to allow for system performance 

to be determined under a greater range of testing parameters, such as higher 

altitude releases, greater aircraft ground speeds and greater headwind 

velocities.  
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//Vision-Based Autonomous Aircraft Payload Delivery System 
//James Sewell 
//MEng (Mechatronics) 
//Nelson Mandela University 
///////////////////////////////////////////////// 
///////////////////FLIGHT NODE/////////////////// 
///////////////////////////////////////////////// 
/////////////////////HEADERS///////////////////// 
//ROS and Other Libraries 
#include <ros/ros.h> //ROS Header 
#include <math.h> //Maths header 
#include <geometry_msgs/Twist.h> //Velocity 
//MAVROS Message Types 
#include <mavros_msgs/OverrideRCIn.h> //Payload release 
#include <mavros_msgs/SetMode.h> //Define aircraft flightmode 
#include <mavros_msgs/State.h> //Current autopilot state 
#include <mavros_msgs/VFR_HUD.h> //Telemetry 
#include <mavros_msgs/Waypoint.h> //Waypoint header 
#include <mavros_msgs/WaypointClear.h> //Clear waypoints header 
#include <mavros_msgs/WaypointList.h> //List current waypoints 
#include <mavros_msgs/WaypointReached.h> //Confirmation on reaching waypoint 
//MAVROS Service Types 
#include <mavros_msgs/CommandBool.h> //Arming statement 
#include <mavros_msgs/CommandTOL.h> //Takeoff and Landing 
#include <mavros_msgs/WaypointPull.h> //Request waypoints from FCU 
#include <mavros_msgs/WaypointPush.h> //Send waypoints to FCU 
#include <mavros_msgs/WaypointSetCurrent.h> //Define a waypoint for the 
aircraft to fly to (Provide index) 
//Global Constants 
float pi = 3.14159265359; 
////////////////////CALLBACKS//////////////////// 
//Current flight controller status 
mavros_msgs::State FCU_State; //Assigning the FCU state variable 
void state_cb(const mavros_msgs::State::ConstPtr& msg) 
{ 
FCU_State = *msg; 
} 
//Current flight controller variables (airspeed, heading, etc) 
mavros_msgs::VFR_HUD HV; //Assigning the FCU state variable 
void vfr_cb(const mavros_msgs::VFR_HUD::ConstPtr& msg) 
{ 
HV = *msg; 
} 
//Current waypoint reached status 
mavros_msgs::WaypointReached WayReached; 
void wayreach_cb(const mavros_msgs::WaypointReached::ConstPtr& msg) 
{ 
WayReached = *msg; 
} 
//Current list of waypoints 
mavros_msgs::WaypointList WayList; 
void waylist_cb(const mavros_msgs::WaypointList::ConstPtr& msg) 
{ 
WayList = *msg; 
} 
////////////////////MAIN CODE//////////////////// 
int main(int argc, char **argv) 
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{ 
/********************Topics********************/ 
ros::init(argc, argv, "auto_flight_node"); //ROS Node Initialiser 
ros::NodeHandle nh; 
//Subscribers (Listens for information from FCU) 
ros::Subscriber state_sub = nh.subscribe<mavros_msgs::State>("mavros/ 
state", 10, state_cb); //Listens for aircraft state 
ros::Subscriber vfr_sub = nh.subscribe<mavros_msgs::VFR_HUD>("mavros/ 
vfr_hud", 10, vfr_cb); //Listens for aircraft variables 
ros::Subscriber way_reach_sub = nh.subscribe<mavros_msgs::WaypointReached> 
("mavros/mission/reached", 10, wayreach_cb); // Listens for whether the 
aircraft reached the desired waypoint 
ros::Subscriber way_list_sub = nh.subscribe<mavros_msgs::WaypointList> 
("mavros/mission/waypoints", 10, waylist_cb); // Listens for the list of 
waypoints 
//Publishers (Transmits information to FCU) 
ros::Publisher release_mechanism_pub = 
nh.advertise<mavros_msgs::OverrideRCIn>("mavros/rc/override", 10); // 
Publishisher for payload release 
ros::Publisher velocity_pub = nh.advertise<geometry_msgs::Twist>("mavros/ 
setpoint_velocity/cmd_vel_unstamped", 10); //Publisher for desired 
mission airspeed 
//Services and Clients (Allows for functions to be defined and called, 
returning a booleean result as to the clients success at executing the 
service 
//Two members: request and response 
ros::ServiceClient arming_client = 
nh.serviceClient<mavros_msgs::CommandBool>("mavros/cmd/arming"); // 
Arming client 
ros::ServiceClient set_mode_client = 
nh.serviceClient<mavros_msgs::SetMode>("mavros/set_mode"); //Flight mode 
setting client 
ros::ServiceClient wayclear_client = 
nh.serviceClient<mavros_msgs::WaypointClear>("mavros/mission/clear"); // 
Clear waypoints client 
ros::ServiceClient waypull_client = 
nh.serviceClient<mavros_msgs::WaypointPull>("mavros/mission/pull"); // 
Download waypoints from FCU 
ros::ServiceClient waypush_client = 
nh.serviceClient<mavros_msgs::WaypointPush>("mavros/mission/push"); // 
Upload waypoints to FCU 
ros::ServiceClient waysetcurrent_client = 
nh.serviceClient<mavros_msgs::WaypointSetCurrent>("mavros/mission/ 
set_current"); //Update next waypoint to fly to (use for when desired 
waypoint has been passed or is far away) 
//Communication Transmission Rate (>>2Hz) 
ros::Rate rate(20.0); //rate defines the frequency (rate is an attribute 
of the ROS::Rate topic) 
//Wait for connection to be established between MAVROS and autopilot 
while(ros::ok() && !FCU_State.connected) 
{ 
ros::spinOnce(); //Ensures that subscriptions, publishers, callbacks, 
etc are executed (laymans term = ROS ISR), Puases other nodes an 
runs this code 
rate.sleep(); //Ensures that the ROS::Rate maintrains the desired 
frequency of operation 
} 
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/******************Initialise******************/ 
//Ensures the aircraft is disarmed and set to manual mode initially 
ROS_INFO("Initialising..."); 
ros::Time last_request = ros::Time::now(); //Current flight control time 
mavros_msgs::SetMode aircraft_set_mode; //Define variable for setting the 
aircraft's flight mode 
mavros_msgs::CommandBool arm_motor_cmd; //Define the arming variable 
aircraft_set_mode.request.custom_mode = "MANUAL"; //Assign the desired 
aircraft flight mode (MANUAL Mode) 
arm_motor_cmd.request.value = false; //Disarm the aircraft (Service-Client 
memeber) 
while (FCU_State.mode != "MANUAL" || FCU_State.armed) //Disarming and 
MANUAL mode transmission loop 
{ 
if (FCU_State.mode != "MANUAL" && (ros::Time::now() - last_request > 
ros::Duration(0.2))) //Delay by 'X' seconds to prevent bottleneck 
{ 
if (set_mode_client.call(aircraft_set_mode) && 
aircraft_set_mode.response.mode_sent) //Call service client 
{ 
ROS_INFO("Manual Flight Mode"); //Confirmation 
} 
last_request = ros::Time::now(); //Update timer 
} 
else 
{ 
if (FCU_State.armed && (ros::Time::now() - last_request > 
ros::Duration(0.2))) //Delay by 'X' seconds to prevent 
bottleneck 
{ 
if (arming_client.call(arm_motor_cmd) && 
arm_motor_cmd.response.success) //Call service client 
{ 
ROS_INFO("Motors Disarmed"); //Confirmation 
} 
last_request = ros::Time::now(); //Update timer 
} 
} 
ros::spinOnce(); 
rate.sleep(); 
} 
ROS_INFO("Initialisation Complete"); 
//Define flight velocity 
geometry_msgs::Twist velo; 
velo.linear.x = 13; 
velocity_pub.publish(velo); 
ros::spinOnce(); 
rate.sleep(); 
/****************Mission Waypoint**************/ 
//Waypoint variables 
mavros_msgs::WaypointClear wayclear; 
mavros_msgs::WaypointPush waypush; 
mavros_msgs::WaypointSetCurrent waysetcur; 
mavros_msgs::Waypoint Points[18]; //Waypoint array 
mavros_msgs::Waypoint wp_dud; //Dud waypoint 
mavros_msgs::Waypoint wp_takeoff; //Target waypoint 
mavros_msgs::Waypoint wp_landing; //Landing waypoint 
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mavros_msgs::Waypoint wp_initial; //Initial target waypoint 
mavros_msgs::Waypoint wp_sl; //Survey waypoint lineup 
mavros_msgs::Waypoint wp_s1; //Survey waypoint #1 
mavros_msgs::Waypoint wp_s2; //Survey waypoint #2 
mavros_msgs::Waypoint wp_s3; //Survey waypoint #3 
mavros_msgs::Waypoint wp_s4; //Survey waypoint #4 
mavros_msgs::Waypoint wp_s5; //Survey waypoint #5 
mavros_msgs::Waypoint wp_s6; //Survey waypoint #6 
mavros_msgs::Waypoint wp_s7; //Survey waypoint #7 
mavros_msgs::Waypoint wp_s8; //Survey waypoint #8 
mavros_msgs::Waypoint wp_hw; //Headwind waypoint #3 
mavros_msgs::Waypoint wp_target; //Target waypoint 
mavros_msgs::Waypoint wp_dal; //Drop approach lineup 
mavros_msgs::Waypoint wp_da1; //Drop approach waypoint #1 
mavros_msgs::Waypoint wp_da2; //Drop approach waypoint #2 --> Drop payload 
location 
//Assigning the waypoints to the array 
Points[0] = wp_dud; //redundant 
Points[1] = wp_takeoff; 
Points[2] = wp_sl; 
Points[3] = wp_s1; 
Points[4] = wp_s2; 
Points[5] = wp_s3; 
Points[6] = wp_s4; 
Points[7] = wp_s5; 
Points[8] = wp_s6; 
Points[9] = wp_s7; 
Points[10] = wp_s8; 
Points[11] = wp_hw; 
Points[12] = wp_dal; 
Points[13] = wp_da1; 
Points[14] = wp_da2; 
Points[15] = wp_target; 
Points[16] = wp_landing; 
Points[17] = wp_initial; 
//Clear all onboard waypoints and refresh FCU 
bool NoOld = false; 
bool newMission = false; 
last_request = ros::Time::now(); 
while (NoOld != true) 
{ 
if (NoOld != true && (ros::Time::now() - last_request > ros::Duration 
(0.2))) 
{ 
if (wayclear_client.call(wayclear)) 
{ 
ROS_INFO("Waypoints Cleared %d", 
wayclear.response.success); //Confirm how many waypoints 
were cleared 
NoOld = true; 
} 
last_request = ros::Time::now(); 
} 
ros::spinOnce(); 
rate.sleep(); 
} 
//Redundant waypoint (mimics takeoff) - Necessary for transmission of all 
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waypoints or first is ignored 
Points[0].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
Points[0].command = 22; //takeoff command 
Points[0].is_current = false; 
Points[0].autocontinue = true; 
Points[0].param1 = 15; //pitch 
Points[0].param2 = 0; 
Points[0].param3 = 0; 
Points[0].param4 = 0; 
Points[0].x_lat = -33.876505; 
Points[0].y_long = 25.351275; 
Points[0].z_alt = 50.0; 
//Takeoff waypoint 
Points[1].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
Points[1].command = 22; //takeoff command 
Points[1].is_current = false; 
Points[1].autocontinue = true; 
Points[1].param1 = 15; //pitch 
Points[1].param2 = 0; 
Points[1].param3 = 0; 
Points[1].param4 = 0; 
Points[1].x_lat = -33.876505; 
Points[1].y_long = 25.351275; 
Points[1].z_alt = 50.0; 
//Initial target waypoint 
Points[17].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
Points[17].command = 16; 
Points[17].is_current = false; 
Points[17].autocontinue = true; 
Points[17].param1 = 0; 
Points[17].param2 = 2; 
Points[17].param3 = 0; 
Points[17].param4 = 0; 
Points[17].x_lat = -33.876505; //Approximate drop-zone latitude (centre of 
survey) 
Points[17].y_long = 25.351275; //Approximate drop-zone longitude (centre 
of survey) 
Points[17].z_alt = 50.0; //Altitude 
//Generic waypoint parameters 
for(int x = 2; x < 17; x++) 
{ 
Points[x].frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
Points[x].command = 16; //waypoint command 
Points[x].is_current = false; 
Points[x].autocontinue = true; 
Points[x].param1 = 0; 
Points[x].param2 = 2; //waypoint reached precision 
Points[x].param3 = 0; 
Points[x].param4 = 0; 
Points[x].z_alt = 50.0; 
} 
//Computation of survey area 
/* 
3 
| 
2----4 8 
| | | 
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| + | 
| | | 
1 5----7 
| 
6 
*/ 
float R = 6378.1; //Radius of the Earth (km) 
float B1 = 0; //Bearing upward (0 degrees -> radians) 
float B2 = pi/2; //Bearing right (90 degrees -> radians) 
float B3 = pi; //Bearing down (180 degrees -> radians) 
float B4 = 3*pi/2; //Bearing left (270 degrees -> radians) 
float d = 0.035; //Distance in km 
float lat_ref = Points[17].x_lat * (pi/180); //Initial target latitude 
converted to radians 
float long_ref = Points[17].y_long * (pi/180); //Initial target longitude 
converted to radians 
//Survey coordinate #3 
Points[6].x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R)*cos 
(B1))) * (180/pi); 
Points[6].y_long = (long_ref + atan2(sin(B1)*sin(d/R)*cos(lat_ref), cos(d/ 
R) - sin(lat_ref)*sin(Points[6].x_lat))) * (180/pi); 
//Survey coordinate #4 
Points[7].x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R)*cos 
(B3))) * (180/pi); 
Points[7].y_long = (long_ref + atan2(sin(B3)*sin(d/R)*cos(lat_ref), cos(d/ 
R) - sin(lat_ref)*sin(Points[7].x_lat))) * (180/pi); 
//Survey coordinate #1 
Points[3].x_lat = Points[7].x_lat; 
Points[3].y_long = (long_ref + atan2(sin(B4)*sin(d/R)*cos(lat_ref), cos(d/ 
R) - sin(lat_ref)*sin(Points[3].x_lat))) * (180/pi); 
//Survey coordinate #2 
Points[4].x_lat = Points[6].x_lat; 
Points[4].y_long = Points[3].y_long; 
//Survey coordinate #5 
Points[9].x_lat = Points[7].x_lat; 
Points[9].y_long = (long_ref + atan2(sin(B2)*sin(d/R)*cos(lat_ref), cos(d/ 
R) - sin(lat_ref)*sin(Points[9].x_lat))) * (180/pi); 
//Survey coordinate #6 
Points[10].x_lat = Points[4].x_lat; 
Points[10].y_long = Points[9].y_long; 
//Survey coordinate #SL 
Points[2].x_lat = (asin(sin(lat_ref)*cos(0.09/R) + cos(lat_ref)*sin(0.09/ 
R)*cos(B3))) * (180/pi); 
Points[2].y_long = Points[3].y_long; 
//Survey coordinate #T1 
Points[5].x_lat = (asin(sin(lat_ref)*cos(0.09/R) + cos(lat_ref)*sin(0.09/ 
R)*cos(B1))) * (180/pi); 
Points[5].y_long = Points[3].y_long; 
//Survey coordinate #T2 
Points[8].x_lat = (asin(sin(lat_ref)*cos(0.09/R) + cos(lat_ref)*sin(0.09/ 
R)*cos(B3))) * (180/pi); 
Points[8].y_long = Points[7].y_long; 
//Display waypoints and their locations 
for(int x = 2; x < 15; x++) 
{ 
ROS_INFO("%i %f", x, Points[x].x_lat); 
ROS_INFO("%i %f", x, Points[x].y_long); 
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} 
waypush.request.start_index = 0; //Start new waypoint list from the 
begining 
last_request = ros::Time::now(); 
while (newMission != true) //New mission transmission loop 
{ 
if (newMission != true && (ros::Time::now() - last_request > 
ros::Duration(0.2))) 
{ 
for(int x = 0; x < 18; x++) 
{ 
waypush.request.waypoints.push_back(Points[x]); //send all waypoints to the FCU 
} 
if (waypush_client.call(waypush)) //Call waypoint upload client 
{ 
ROS_INFO("Mission waypoints sent: %i", 
waypush.response.success); 
ROS_INFO("Number of waypoints sent: %i", 
waypush.response.wp_transfered); 
newMission = true; //Mission sent boolean (terminating 
statement) 
} 
last_request = ros::Time::now(); 
} 
ros::spinOnce(); 
rate.sleep(); 
} 
/*************Flight Mode Selection************/ 
//Defines desired aircraft flight mode and arms motors 
aircraft_set_mode.request.custom_mode = "AUTO"; //Assign the desired 
aircraft flight mode 
arm_motor_cmd.request.value = true; //Arm the aircraft (Service-Client 
memeber) 
last_request = ros::Time::now(); 
//Confirm that flight mode was successfully entered 
while(FCU_State.mode != "AUTO" || !FCU_State.armed) //Arming and AUTO 
Flight Mode Transmission Loop 
{ 
if(!FCU_State.armed && (ros::Time::now() - last_request > 
ros::Duration(2.0))) //Delay by 'X' seconds to prevent bottleneck 
{ 
if(arming_client.call(arm_motor_cmd) && 
arm_motor_cmd.response.success) 
{ 
ROS_INFO("Aircraft Armed"); 
} 
last_request = ros::Time::now(); //Update current timer time 
} 
if(!FCU_State.armed && (ros::Time::now() - last_request > 
ros::Duration(2.0))) 
{ 
if(FCU_State.mode != "AUTO" && (ros::Time::now() - last_request > 
ros::Duration(2.0))) //Delay by 'X' seconds to prevent 
bottleneck 
{ 
if(set_mode_client.call(aircraft_set_mode) && 
aircraft_set_mode.response.mode_sent) 
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{ 
ROS_INFO("AUTO Flight Mode"); 
} 
last_request = ros::Time::now(); 
} 
} 
ros::spinOnce(); 
rate.sleep(); 
} 
/*******************Payload Release******************/ 
mavros_msgs::WaypointSetCurrent WayFlyTo; 
bool dropped = false; 
mavros_msgs::OverrideRCIn release_cmd; //Release payload actuator 
while (ros::ok) 
{ 
if (dropped == true) 
{ 
WayFlyTo.wp_seq = 12; //Confirmation flyover 
waysetcurrent_client.call(WayFlyTo); //Confirmation flyover client 
call 
} 
if(WayReached.wp_seq == 14 && dropped != true) //Wait till payload 
waypoint has been defined and obtained 
{ 
release_cmd.channels[6] = 2000; //Release payload servo position 
dropped = true; 
} 
release_mechanism_pub.publish(release_cmd); //Publish release command 
ros::spinOnce(); 
rate.sleep(); 
} 
return 0; 
}
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//Vision-Based Autonomous Aircraft Payload Delivery System 
//James Sewell 
//MEng (Mechatronics) 
//Nelson Mandela University 
///////////////////////////////////////////////// 
///////////////////IMAGE CAPTURE///////////////// 
///////////////////////////////////////////////// 
#include <ros/ros.h> //ROS header 
#include <image_transport/image_transport.h> //Image transporter header for 
inter-node transfer 
#include <opencv2/highgui/highgui.hpp> //OPENCV Header 
#include <cv_bridge/cv_bridge.h> //OPENCV Bridge Header 
#include <sstream> // for converting the command line parameter to integer 
int main(int argc, char** argv) 
{ 
ros::init(argc, argv, "image_publisher"); 
ros::NodeHandle nh; 
image_transport::ImageTransport it(nh); //Define nodehandler function 
image_transport::Publisher pub = it.advertise("camera/image", 1); //Define 
pusblisher file from which image will be subscribed 
cv::VideoCapture cap(0); //Begin image stream from USB device 0 
// Check if video device can be opened with the given index 
if(!cap.isOpened()) return 1; //Ensure camera stream is present 
cv::Mat frame; //Create image file variable 
ros::Rate loop_rate(30); //Set transmission rate 30 FPS 
while (nh.ok()) //While publisher is active 
{ 
cap >> frame; //Capture image 
msg = cv_bridge::CvImage(std_msgs::Header(), "bgr8", frame).toImageMsg 
(); //Change format of captured image 
pub.publish(msg); //Publish Image 
cv::waitKey(1); //Provide transmission time 
ros::spinOnce(); 
loop_rate.sleep(); 
} 
} 
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//Vision-Based Autonomous Aircraft Payload Delivery System 
//James Sewell 
//MEng (Mechatronics) 
//Nelson Mandela University 
///////////////////////////////////////////////// 
//////////////IMAGE PROCESSING NODE////////////// 
///////////////////////////////////////////////// 
#include <ros/ros.h> //ROS Header 
#include <std_msgs/String.h> //String Header 
#include <image_transport/image_transport.h> //Image Transporter Header 
#include <opencv2/highgui/highgui.hpp> //OPENCV Header 
#include <cv_bridge/cv_bridge.h> //OPENCV Bridge Header 
#include <mavros_msgs/Waypoint.h> //Waypoint Header 
#include <mavros_msgs/WaypointPush.h> //Upload waypoints to FCU 
#include <mavros_msgs/VFR_HUD.h> //Telemetry Header 
#include <sensor_msgs/NavSatFix.h> //GPS Header 
#include <std_msgs/Float64.h> //Altitude header (realtive to takeoff) 
#include <math.h> //Maths header 
//Namespaces - for neater code 
using namespace cv; 
using namespace ros; 
using namespace std; 
using namespace mavros_msgs; 
using namespace sensor_msgs; 
Waypoint wp_target; //Drop-zone waypoint 
Waypoint wp_hw; //Headwind determination waypoint 
//Variables 
float BH = 0; //Drop-zone Bearing 
float H_cur = 0; //Heading 
float Alt_cur = 0; //Altitude 
float x = 0; //Pixel x coordinate 
float y = 0; //Pixel y coordinate 
float xm = 0; //x axis pixel displacement 
float ym = 0; //y axis pixel displacement 
float lat_ref = 0; //Reference latitude 
float long_ref = 0; //Reference longitude 
float d = 0; //Ground plane displacement 
float R = 0; //Earth's radius 
float B = 0; //Fixed bearing 
float pi = 3.14159265359; 
//Current flight controller variables (airspeed, heading, etc) 
VFR_HUD HV; 
void vfr_cb(const mavros_msgs::VFR_HUD::ConstPtr& msg) 
{ 
HV = *msg; 
} 
//Obtain current GPS location 
NavSatFix GPS; 
void nsf_cb(const sensor_msgs::NavSatFix::ConstPtr& msg) 
{ 
GPS = *msg; 
} 
//Obtain relative altitude 
std_msgs::Float64 Alt; 
void alt_cb(const std_msgs::Float64::ConstPtr& msg) 
{ 
Alt = *msg; 
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} 
//Image callback - Begin object recognition and tracking 
void imageCallback(const sensor_msgs::ImageConstPtr& msg) 
{ 
try 
{ 
NodeHandle n; 
Subscriber vfr_sub = n.subscribe<mavros_msgs::VFR_HUD>("mavros/vfr_hud", 
10, vfr_cb); //VFR_HUD Subscriber 
Subscriber nsf_sub = n.subscribe<sensor_msgs::NavSatFix>("mavros/ 
global_position/global", 10, nsf_cb); //GPS info Subscriber 
Subscriber alt_sub = n.subscribe<std_msgs::Float64>("mavros/ 
global_position/rel_alt", 10, alt_cb); //Altitude subscriber 
ServiceClient waypush_client = n.serviceClient<mavros_msgs::WaypointPush> 
("mavros/mission/push"); //Waypoint upload header 
lat_ref = GPS.latitude * (pi/180); //Reference latitude (current latitude 
of aircraft) 
long_ref = GPS.longitude * (pi/180); //Reference longitude (current 
longitude of aircraft) 
H_cur = HV.heading; //Current heading 
Alt_cur = Alt.data; //Current altitude 
Rate rate(30.0); //Transmission rate of imagery 
Mat BGR = cv_bridge::toCvShare(msg, "bgr8")->image; //Convert image from 
msg to BGR format 
Mat orig_image = BGR.clone(); //Make copy of image for processing 
medianBlur(BGR, BGR, 7); //Introduce blur for image flitering and 
converting 
// Convert input image to HSV 
Mat HSV; 
cvtColor(BGR, HSV, COLOR_BGR2HSV); //Convert BGR image to HSV image 
// Threshold the HSV image, keep only the red pixels 
Mat lower_hue; 
Mat upper_hue; 
inRange(HSV, Scalar(0, 100, 100), Scalar(10, 255, 255), lower_hue); // 
Lower hue threshold range 
inRange(HSV, Scalar(165, 100, 100), Scalar(179, 255, 255), upper_hue); // 
Upper hue threshold range 
// Combine the above two images 
Mat hue_image; 
addWeighted(lower_hue, 1.0, upper_hue, 1.0, 0.0, hue_image); //Combine hue 
images for object recognition 
// Introduce interference 
GaussianBlur(hue_image, hue_image, Size(9, 9), 2, 2); //Introduce noise 
// Hough transform to detect circles 
vector<Vec3f> circles; //Detected circles array 
HoughCircles(hue_image, circles, CV_HOUGH_GRADIENT, 1, hue_image.rows/8, 
100, 25, 0, 0); //HOUGH CIRCLE TRANSFORNATION 
// Highlight detected object 
for(size_t cur = 0; cur < circles.size(); ++cur) 
{ 
Point center(circles[cur][0], circles[cur][1]); //Define centre point 
of detected circle 
int radius = circles[cur][2]; //Define radius of detected circle 
circle(orig_image, center, radius, Scalar(239, 152, 38), 2); //Overlay 
detected cricle outline onto origional image 
ROS_INFO("Image Centre: %f , %f", circles[cur][0], circles[cur] 
[1]); //Display circle centre coordinates 
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} 
imshow("Lower hue", lower_hue); //Display lower hue image 
imshow("Upper hue", upper_hue); //Display upper hue image 
imshow("Vision Output", orig_image); //Display circle image overlay 
ROS_INFO("Size: (W) %i x (H) %i", orig_image.cols, orig_image.rows); // 
Define image size 
waitKey(10); //allow for display of image for given milliseconds (Image 
overlay refreshrate) 
//Target Locating 
if(circles.size() != 0) //Check if any circles were detected 
{ 
WaypointPush waypush; 
//Target bearing 
BH = 0; 
x = circles[0][0] - (orig_image.cols / 2); //x pixel coordinate 
y = circles[0][1] - (orig_image.rows / 2); //y pixel coordinate 
xm = (abs(x)/(orig_image.cols/2)) * (Alt_cur*tan(pi/6)); //x 
displacement in meters 
ym = (abs(y)/(orig_image.rows/2)) * (Alt_cur*tan(pi/8)); //y 
displacement in meters 
/* Region designation - (0,0) in top-left corner of 2 
2|1 
--- 
3|4 
*/ 
//Determine bearing of target based on image segment 
if(circles[0][0] >= 0 && circles[0][0] <= (orig_image.cols / 2)) // 
region 2 and 3 
{ 
if(circles[0][1] >= 0 && circles[0][1] <= (orig_image.rows / 
2)) //region 2 
{ 
BH = H_cur + atan(abs(x)/abs(y)); 
} 
else //region 3 
{ 
BH = H_cur + (180 - atan(abs(x)/abs(y))); 
} 
} 
else //region 1 and 4 
{ 
if(circles[0][1] > (orig_image.rows / 2)) //region 4 
{ 
BH = H_cur + 180 + atan(abs(x)/abs(y)); 
} 
else //region 1 
{ 
BH = H_cur - atan(abs(x)/abs(y)); 
} 
} 
//Bearing regression (0 - 359) 
if(BH >= 360) 
{ 
BH = BH - 360; 
} 
else if(BH < 0) 
{ 
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BH = BH + 360; 
} 
GPS.position_covariance_type = 3; //Type of GPS frame reference (3 - 
Covariance known) 
d = sqrt(pow(abs(xm), 2) + pow(abs(ym), 2)) / 1000; //magnitude of 
vector to target location in km 
R = 6378.1; //Radius of the Earth (km) 
B = BH * pi/180; //Bearing upward (0 degrees -> radians) 
wp_target.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
wp_target.command = 16; //MAV_CMD Waypoint type 
wp_target.is_current = false; 
wp_target.autocontinue = true; 
wp_target.param1 = 0; 
wp_target.param2 = 2; 
wp_target.param3 = 0; 
wp_target.param4 = 0; 
wp_target.z_alt = 50.0; 
//Deduce target's location based on current location 
wp_target.x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R) 
*cos(B))) * (180/pi); //Target Latitude 
wp_target.y_long = (long_ref + atan2(sin(B)*sin(d/R)*cos(lat_ref), cos 
(d/R) - sin(lat_ref)*sin(wp_target.x_lat))) * (180/pi); //Tag=rget 
Longitude 
//Display target details deduced 
ROS_INFO("Lat: %f", wp_target.x_lat); //Target latitude 
ROS_INFO("Long: %f", wp_target.y_long); //Target Longitude 
ROS_INFO("LatRef: %f", lat_ref); //Reference latitude 
ROS_INFO("LongRef: %f", long_ref); //Reference longitude 
ROS_INFO("xm: %f", xm); //X axis displacement (km) 
ROS_INFO("ym: %f", ym); //Y axis displacment (km) 
ROS_INFO("displacement: %f", d); //Total displacment (km) 
ROS_INFO("bearing: %f", BH); //Bearing 
ROS_INFO("altitude: %f", Alt_cur); 
//Update target waypoint parameters 
wp_hw.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
wp_hw.command = 18; 
wp_hw.is_current = false; 
wp_hw.autocontinue = true; 
wp_hw.param1 = 3; 
wp_hw.param2 = 0; 
wp_hw.param3 = 30; 
wp_hw.param4 = 1; 
wp_hw.z_alt = 50.0; 
wp_hw.x_lat = wp_target.x_lat; 
wp_hw.y_long = wp_target.y_long; 
//Transmit updated target location parameters to FCU 
bool targetSent = false; 
waypush.request.start_index = 15; //Update waypoint 15 
ros::Time last_request = ros::Time::now(); 
while (targetSent != true) 
{ 
if (targetSent != true && (ros::Time::now() - last_request > 
ros::Duration(0.2))) 
{ 
waypush.request.waypoints.push_back(wp_target); //send target 
waypoint to the FCU 
if (waypush_client.call(waypush)) 
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{ 
targetSent = true; 
} 
last_request = ros::Time::now(); 
} 
ros::spinOnce(); 
rate.sleep(); 
} 
//Transmit updated headwind determination location parameters to FCU 
targetSent = false; 
waypush.request.start_index = 11; //Update waypoint 11 
last_request = ros::Time::now(); 
while (targetSent != true) 
{ 
if (targetSent != true && (ros::Time::now() - last_request >ros::Duration(0.2))) 
{ 
waypush.request.waypoints.push_back(wp_hw); //send target 
waypoint to the FCU 
if (waypush_client.call(waypush)) 
{ 
targetSent = true; 
} 
last_request = ros::Time::now(); 
} 
ros::spinOnce(); 
rate.sleep(); 
} 
} 
}//End "if circles detected" loop - End target location identification 
//Throw error if image publisher fails 
catch (cv_bridge::Exception& e) 
{ 
ROS_ERROR("Could not convert from '%s' to 'bgr8'.", msg->encoding.c_str 
()); 
} 
} 
int main(int argc, char **argv) //Initial loop 
{ 
init(argc, argv, "image_listener"); //Define node name 
NodeHandle nh; 
namedWindow("Vision Output", WINDOW_AUTOSIZE); //Create viewable window - 
Image overlay output 
namedWindow("Lower hue", WINDOW_AUTOSIZE); //Create viewable window - 
Lower hue range 
namedWindow("Upper hue", WINDOW_AUTOSIZE); //Create viewable window - 
Upper hue range 
startWindowThread(); //Begin window view and image display 
image_transport::ImageTransport it(nh); //Define source of image 
image_transport::Subscriber sub = it.subscribe("camera/image", 1, 
imageCallback); //Image subscriber 
spin(); 
} 
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//Vision-Based Autonomous Aircraft Payload Delivery System 
//James Sewell 
//MEng (Mechatronics) 
//Nelson Mandela University 
///////////////////////////////////////////////// 
///////////////////PAYLOAD NODE/////////////////// 
///////////////////////////////////////////////// 
/////////////////////HEADERS///////////////////// 
#include <ros/ros.h> //ROS Header 
#include <math.h> //Maths header 
#include <mavros_msgs/VFR_HUD.h> //Telemetry 
#include <mavros_msgs/Waypoint.h> 
#include <mavros_msgs/WaypointList.h> 
#include <mavros_msgs/WaypointReached.h> //Confirmation on reaching waypoint 
#include <mavros_msgs/WaypointPush.h> //Send waypoints to device (Device = 
Pixhawk) 
//Global Constants 
float pi = 3.14159265359; 
using namespace ros; 
using namespace std; 
using namespace mavros_msgs; 
//Current flight controller variables (airspeed, heading, etc) 
VFR_HUD HV; 
void vfr_cb(const mavros_msgs::VFR_HUD::ConstPtr& msg) 
{ 
HV = *msg; 
} 
//Current waypoint reached status 
WaypointReached WayReached; 
void wayreach_cb(const mavros_msgs::WaypointReached::ConstPtr& msg) 
{ 
WayReached = *msg; 
} 
//Current waypoints on FCU 
WaypointList WayList; 
void waylist_cb(const mavros_msgs::WaypointList::ConstPtr& msg) 
{ 
WayList = *msg; 
} 
////////////////////////////////// 
//PAYLOAD RELEASE LOOPKUP TABLES// 
////////////////////////////////// 
//EQUILIBRIUM TIMES 
//Equilibrium time lookup table for 45m 
float lookup45_pv10[16] = { 3.1, 3.1, 2.5243, 1.5483, 1.089, 0.8272, 0.6607, 
0.5459, 0.4623, 0.3996, 0.3505, 0.3111, 0.2789, 0.2528, 0.2299, 0.2111 }; 
float lookup45_pv11[16] = { 3.1, 3.1, 2.8707, 1.7434, 1.2238, 0.9301, 0.7432, 
0.6149, 0.5217, 0.4514, 0.3965, 0.3527, 0.3169, 0.2872, 0.2621, 0.2408 }; 
float lookup45_pv12[16] = { 3.1, 3.1, 3.1, 1.9436, 1.3655, 1.0385, 0.8303, 
0.6872, 0.5834, 0.5049, 0.4436, 0.3947, 0.3547, 0.3215, 0.2936, 0.2698 }; 
float lookup45_pv13[16] = { 3.1, 3.1, 3.1, 2.1449, 1.5087, 1.1484, 0.9189, 
0.761, 0.6463, 0.5596, 0.492, 0.4378, 0.3936, 0.3569, 0.326, 0.2996 }; 
float lookup45_pv14[16] = { 3.1, 3.1, 3.1, 2.3455, 1.6517, 1.2584, 1.0076, 
0.835, 0.7095, 0.6146, 0.5406, 0.4813, 0.4328, 0.3926, 0.3587, 0.3298 }; 
float lookup45_pv15[16] = { 3.1, 3.1, 3.1, 2.5477, 1.7967, 1.3704, 1.0983, 
0.9108, 0.7745, 0.6713, 0.5907, 0.5262, 0.4734, 0.4296, 0.3926, 0.3611 }; 
float lookup45_pv16[16] = { 3.1, 3.1, 3.1, 2.7463, 1.939, 1.4802, 1.1872, 
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0.9852, 0.8382, 0.7268, 0.6398, 0.5701, 0.5132, 0.4658, 0.4259, 0.3917 }; 
float lookup45_pv17[16] = { 3.1, 3.1, 3.1, 2.9464, 2.0833, 1.5921, 1.2781, 
1.0614, 0.9037, 0.7841, 0.6906, 0.6157, 0.5544, 0.5034, 0.4604, 0.4237 }; 
float lookup45_pv18[16] = { 3.1, 3.1, 3.1, 3.143, 2.2242, 1.7009, 1.3662, 
1.1351, 0.9668, 0.8392, 0.7394, 0.6593, 0.5938, 0.5394, 0.4934, 0.4541 }; 
//Equilibrium time lookup table for 50m 
float lookup50_pv10[16] = { 3.1928, 3.1928, 2.6542, 1.6293, 1.1469, 0.8716, 
0.6959, 0.5748, 0.4872, 0.4208, 0.369, 0.3276, 0.2942, 0.266, 0.2427, 
0.2222 }; 
float lookup50_pv11[16] = { 3.1928, 3.1928, 2.959, 1.8242, 1.2864, 0.9786, 
0.7818, 0.6465, 0.548, 0.4733, 0.4152, 0.3688, 0.3308, 0.3, 0.2729, 0.251 }; 
float lookup50_pv12[16] = { 3.1928, 3.1928, 3.1928, 2.0201, 1.4274, 1.0875, 
0.8694, 0.7189, 0.6097, 0.5269, 0.4624, 0.4108, 0.3686, 0.3337, 0.3045, 
0.2791 }; 
float lookup50_pv13[16] = { 3.1928, 3.1928, 3.1928, 2.2167, 1.5698, 1.1973, 
0.9580, 0.7927, 0.6724, 0.5813, 0.5104, 0.4536, 0.4072, 0.3684, 0.3361, 
0.3085 }; 
float lookup50_pv14[16] = { 3.1928, 3.1928, 3.1928, 2.4125, 1.7125, 1.3077, 
1.0474, 0.8673, 0.7359, 0.6366, 0.5589, 0.497, 0.4462, 0.404, 0.3682, 
0.3380 }; 
float lookup50_pv15[16] = { 3.1928, 3.1928, 3.1928, 2.6069, 1.8553, 1.4189, 
1.1375, 0.9426, 0.8004, 0.6924, 0.6082, 0.5407, 0.4854, 0.4397, 0.4013, 
0.368 }; 
float lookup50_pv16[16] = { 3.1928, 3.1928, 3.1928, 2.8006, 1.9983, 1.5304, 
1.2282, 1.0184, 0.865, 0.7489, 0.6579, 0.5849, 0.5253, 0.4757, 0.4341, 
0.3989 }; 
float lookup50_pv17[16] = { 3.1928, 3.1928, 3.1928, 2.992, 2.1407, 1.6423, 
1.3193, 1.0947, 0.9303, 0.8057, 0.7081, 0.6297, 0.5657, 0.5125, 0.4676, 
0.4293 }; 
float lookup50_pv18[16] = { 3.1928, 3.1928, 3.1928, 3.1812, 2.2824, 1.7543, 
1.4106, 1.1712, 0.9962, 0.863, 0.7368, 0.6724, 0.6065, 0.5498, 0.5018, 
0.4606 }; 
//Equilibrium time lookup table for 55m 
float lookup55_pv10[16] = { 3.3486, 3.3486, 2.8617, 1.7281, 1.2082, 0.9154, 
0.7296, 0.6023, 0.5101, 0.4406, 0.3865, 0.3433, 0.308, 0.2788, 0.2543, 
0.2334 }; 
float lookup55_pv11[16] = { 3.3486, 3.3486, 3.182, 1.9246, 1.3472, 1.0215, 
0.8148, 0.6731, 0.5704, 0.4928, 0.4325, 0.3843, 0.345, 0.3124, 0.285, 
0.2616 }; 
float lookup55_pv12[16] = { 3.3486, 3.3486, 3.3486, 2.1233, 1.4875, 1.1287, 
0.9008, 0.7444, 0.6311, 0.5455, 0.4789, 0.4256, 0.3822, 0.3461, 0.3158, 
0.29 }; 
float lookup55_pv13[16] = { 3.3486, 3.3486, 3.3486, 2.3233, 1.6295, 1.2375, 
0.9884, 0.8173, 0.6932, 0.5995, 0.5265, 0.4681, 0.4205, 0.381, 0.3477, 
0.3194 }; 
float lookup55_pv14[16] = { 3.3486, 3.3486, 3.3486, 2.5226, 1.7713, 1.3465, 
1.0762, 0.8904, 0.7557, 0.6538, 0.5744, 0.5109, 0.4591, 0.4161, 0.3799, 
0.349 }; 
float lookup55_pv15[16] = { 3.3486, 3.3486, 3.3486, 2.7237, 1.9153, 1.4575, 
1.166, 0.9655, 0.8199, 0.7098, 0.624, 0.5553, 0.4992, 0.4526, 0.4133, 
0.3799 }; 
float lookup55_pv16[16] = { 3.3486, 3.3486, 3.3486, 2.921, 2.0564, 1.5663, 
1.254, 1.039, 0.8828, 0.7646, 0.6724, 0.5986, 0.5383, 0.4882, 0.446, 0.41 }; 
float lookup55_pv17[16] = { 3.3486, 3.3486, 3.3486, 3.1201, 2.1997, 1.6773, 
1.344, 1.1145, 0.9476, 0.8212, 0.7225, 0.6435, 0.579, 0.5253, 0.4801, 
0.4415 }; 
float lookup55_pv18[16] = { 3.3486, 3.3486, 3.3486, 3.3152, 2.3393, 1.785, 
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1.4311, 1.1872, 1.0098, 0.8755, 0.7705, 0.6865, 0.6178, 0.5606, 0.5125, 
0.4714 }; 
//DISPLACEMENT 
//Displacment lookup table for 45m 
float lookup45d_pv10[16] = { 1.7779, 1.5511, 0.9298, 0.5696, 0.4091, 0.3165, 
0.2567, 0.215, 0.1844, 0.161, 0.1426, 0.1278, 0.1157, 0.1055, 0.0969, 
0.0895 }; 
float lookup45d_pv11[16] = { 2.1438, 1.917, 1.2504, 0.7721, 0.5551, 0.4297, 
0.3486, 0.2921, 0.2506, 0.219, 0.194, 0.174, 0.1574, 0.1436, 0.1319, 
0.1219 }; 
float lookup45d_pv12[16] = { 2.5424, 2.3156, 1.6352, 1.0364, 0.743, 0.5739, 
0.4648, 0.3888, 0.3332, 0.2907, 0.2574, 0.2305, 0.2084, 0.19, 0.1744, 
0.161 }; 
float lookup45d_pv13[16] = { 2.9735, 2.7467, 2.0663, 1.3403, 0.9606, 0.7418, 
0.6006, 0.5024, 0.4305, 0.3756, 0.3324, 0.2977, 0.2692, 0.2453, 0.2252, 
0.2079 }; 
float lookup45d_pv14[16] = { 3.4366, 3.2098, 2.5294, 1.6956, 1.2152, 0.9385, 
0.7599, 0.6356, 0.5446, 0.4751, 0.4206, 0.3766, 0.3405, 0.3104, 0.2849, 
0.263 }; 
float lookup45d_pv15[16] = { 3.9315, 3.7047, 3.0243, 2.1069, 1.5108, 1.1673, 
0.9455, 0.7912, 0.678, 0.5917, 0.5238, 0.4692, 0.4243, 0.3868, 0.355, 
0.3278 }; 
float lookup45d_pv16[16] = { 4.4579, 4.2311, 3.5507, 2.5718, 1.8463, 1.4278, 
1.1573, 0.969, 0.8308, 0.7254, 0.6425, 0.5757, 0.5208, 0.4749, 0.436, 
0.4027 }; 
float lookup45d_pv17[16] = { 5.0154, 4.7886, 4.1082, 3.0856, 2.2196, 1.7192, 
1.3953, 1.1695, 1.0037, 0.8771, 0.7774, 0.697, 0.6309, 0.5757, 0.5288, 
0.4887 }; 
float lookup45d_pv18[16] = { 5.6037, 5.3769, 4.6965, 3.6557, 2.6358, 2.0451, 
1.6622, 1.395, 1.1985, 1.0483, 0.9299, 0.8344, 0.7558, 0.6901, 0.6343, 
0.5865 }; 
//Displacment lookup table for 50m 
float lookup50d_pv10[16] = { 1.8607, 1.6246, 0.9764, 0.6072, 0.4323, 0.3326, 
0.2685, 0.2249, 0.1928, 0.1688, 0.15, 0.135, 0.1222, 0.1125, 0.1035, 
0.0969 }; 
float lookup50d_pv11[16] = { 2.2433, 2.0071, 1.3125, 0.8192, 0.5841, 0.4494, 
0.363, 0.303, 0.2596, 0.2274, 0.2018, 0.1814, 0.1647, 0.1498, 0.1394, 
0.1282 }; 
float lookup50d_pv12[16] = { 2.66, 2.4238, 1.7154, 1.0755, 0.7682, 0.5911, 
0.4775, 0.399, 0.3416, 0.2986, 0.2646, 0.2375, 0.2158, 0.1974, 0.1812, 
0.169 }; 
float lookup50d_pv13[16] = { 3.1105, 2.8743, 2.1658, 1.3799, 0.9874, 0.7602, 
0.6141, 0.5129, 0.4396, 0.3837, 0.3398, 0.3045, 0.2762, 0.253, 0.2329, 
0.2156 }; 
float lookup50d_pv14[16] = { 3.5944, 3.3582, 2.6498, 1.7357, 1.2448, 0.9595, 
0.7751, 0.6479, 0.5546, 0.4839, 0.4285, 0.3838, 0.3477, 0.3176, 0.2933, 
0.2713 }; 
float lookup50d_pv15[16] = { 4.1114, 3.8752, 3.1668, 2.1461, 1.5429, 1.191, 
0.9629, 0.8043, 0.6882, 0.6007, 0.5319, 0.4769, 0.4321, 0.3944, 0.362, 
0.3365 }; 
float lookup50d_pv16[16] = { 4.6611, 4.4249, 3.7165, 2.6139, 1.8844, 1.4567, 
1.1787, 0.9852, 0.8435, 0.7351, 0.6512, 0.5839, 0.5289, 0.4829, 0.444, 
0.4094 }; 
float lookup50d_pv17[16] = { 5.2431, 5.007, 4.2985, 3.1421, 2.272, 1.7587, 
1.4245, 1.1907, 1.0201, 0.8894, 0.7875, 0.7061, 0.639, 0.5831, 0.5364, 
0.4963 }; 
float lookup50d_pv18[16] = { 5.8572, 5.621, 4.9126, 3.7327, 2.7076, 2.0993, 



Page | 185  
 

1.7019, 1.424, 1.2192, 1.0642, 0.9419, 0.8444, 0.7634, 0.6957, 0.6395, 
0.5924 }; 
//Displacment lookup table for 55m 
float lookup55d_pv10[16] = { 1.9433, 1.6968, 1.0207, 0.635, 0.4521, 0.3478, 
0.281, 0.2346, 0.2014, 0.176, 0.1564, 0.1403, 0.1276, 0.1173, 0.1077, 
0.1006 }; 
float lookup55d_pv11[16] = { 2.3424, 2.0959, 1.3711, 0.8398, 0.6048, 0.4688, 
0.3808, 0.3194, 0.2742, 0.2398, 0.2126, 0.1907, 0.1727, 0.1576, 0.1448, 
0.1339 }; 
float lookup55d_pv12[16] = { 2.777, 2.5306, 1.7911, 1.1051, 0.7936, 0.6139, 
0.4977, 0.4168, 0.3574, 0.3121, 0.2764, 0.2477, 0.2241, 0.2044, 0.1877, 
0.1733 }; 
float lookup55d_pv13[16] = { 3.2468, 3.0004, 2.2609, 1.411, 1.013, 0.7834, 
0.635, 0.5316, 0.4558, 0.398, 0.3525, 0.3159, 0.2857, 0.2606, 0.2392, 
0.221 }; 
float lookup55d_pv14[16] = { 3.7514, 3.5049, 2.7654, 1.7687, 1.2698, 0.9819, 
0.7959, 0.6664, 0.5714, 0.4989, 0.4419, 0.3959, 0.3582, 0.3266, 0.2999, 
0.277 }; 
float lookup55d_pv15[16] = { 4.2903, 4.0438, 3.3043, 2.1828, 1.568, 1.2131, 
0.9836, 0.8239, 0.7066, 0.6171, 0.5467, 0.4899, 0.4433, 0.4043, 0.3712, 
0.3429 }; 
float lookup55d_pv16[16] = { 4.8631, 4.6166, 3.8771, 2.651, 1.9065, 1.4763, 
1.1979, 1.004, 0.8615, 0.7527, 0.6671, 0.5981, 0.5413, 0.4939, 0.4537, 
0.4192 }; 
float lookup55d_pv17[16] = { 5.4695, 5.223, 4.4836, 3.1687, 2.2834, 1.7709, 
1.4388, 1.2072, 1.0368, 0.9067, 0.8041, 0.7214, 0.6533, 0.5964, 0.5481, 
0.5067 }; 
float lookup55d_pv18[16] = { 6.1092, 5.8627, 5.1232, 3.7431, 2.7035, 2.1005, 
1.7091, 1.4357, 1.2344, 1.0805, 0.9591, 0.8611, 0.7804, 0.7128, 0.6555, 
0.6063 }; 
int main(int argc, char **argv) 
{ 
init(argc, argv, "payload_node"); 
NodeHandle nh; 
Subscriber vfr_sub = nh.subscribe<VFR_HUD>("mavros/vfr_hud", 10, 
vfr_cb); //Telemetry subscriber 
Subscriber way_reach_sub = nh.subscribe<WaypointReached>("mavros/mission/ 
reached", 10, wayreach_cb); //Waypoint reached subscriber 
Subscriber way_list_sub = nh.subscribe<WaypointList>("mavros/mission/ 
waypoints", 10, waylist_cb); //Waypoint list 
ServiceClient waypush_client = nh.serviceClient<WaypointPush>("mavros/ 
mission/push"); //Upload waypoints to FCU 
Rate rate(20.0); 
float h_max = 0; //Headwind heading 
float g_min = 100000; //Minimum ground speed 
float aspd = 0; //Airspeed variable 
float ave_aspd = 0; //Average airspeed 
float gspd = 0; //Groundspeed variable 
float head = 0; //Heading variable 
float ave_wspd = 0; //Average Wind Speed 
int wspd_cnt = 0; //Wind speed measurement counter 
float alt = 0; //Altitude variable 
float ave_alt = 0; //Average altitude 
float dra = 0; //Displacemnt for phase A release 
float drb = 0; //Displacemnt for phase B release 
float drf = 0; //Final displacment 
//Wait till in the headwind determination loiter 
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while(WayReached.wp_seq < 10) 
{ 
spinOnce(); 
rate.sleep(); 
} 
//Determine headwind direction and speed 
ROS_INFO("Calculating"); 
while(WayReached.wp_seq == 10) 
{ 
head = HV.heading; //Current aircraft heading 
aspd = HV.airspeed; //Current Airspeed 
gspd = HV.groundspeed; //Current groundspeed 
ave_wspd = ave_wspd + abs(aspd - gspd); //Cummulative windspeed 
ave_aspd = ave_aspd + aspd; //Cummulative airspeed 
alt = alt + HV.altitude; //Cummulative altitude 
wspd_cnt = wspd_cnt + 1; 
if(head <= g_min) 
{ 
h_max = head; 
} 
spinOnce(); 
rate.sleep(); 
} 
//Average headwind speed, altitude and airspeed 
ave_wspd = ave_wspd / wspd_cnt; 
ave_alt = alt / wspd_cnt; 
ave_aspd = ave_aspd / wspd_cnt; 
//Temp variables for lookup table search 
int a = 0; 
int b = 0; 
int c = 0; 
int g = round(ave_wspd); 
//Phase A displacment 
a = ceil(ave_aspd); 
if (ave_alt >= 45 && ave_alt <= 50) //For altitudes between 45m and 50m 
{ 
switch (a) //Airspeed switch statement 
{ 
case 10: 
b = lookup45d_pv10[g]; 
c = lookup50d_pv10[g]; 
break; 
case 11: 
b = lookup45d_pv11[g]; 
c = lookup50d_pv11[g]; 
break; 
case 12: 
b = lookup45d_pv12[g]; 
c = lookup50d_pv12[g]; 
break; 
case 13: 
b = lookup45d_pv13[g]; 
c = lookup50d_pv13[g]; 
break; 
case 14: 
b = lookup45d_pv14[g]; 
c = lookup50d_pv14[g]; 
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break; 
case 15: 
b = lookup45d_pv15[g]; 
c = lookup50d_pv15[g]; 
break; 
case 16: 
b = lookup45d_pv16[g]; 
c = lookup50d_pv16[g]; 
break; 
case 17: 
b = lookup45d_pv17[g]; 
c = lookup50d_pv17[g]; 
break; 
case 18: 
b = lookup45d_pv18[g]; 
c = lookup50d_pv18[g]; 
break; 
} 
dra = b + (c - b)*((ave_alt - 45) / 5); 
} 
else if ((ave_alt >= 50 && ave_alt <= 55) || (ave_alt == 50)) //For 
altitudes between 50m and 55m 
{ 
switch (a) //Airspeed switch statement 
{ 
case 10: 
b = lookup50d_pv10[g]; 
c = lookup55d_pv10[g]; 
break; 
case 11: 
b = lookup50d_pv11[g]; 
c = lookup55d_pv11[g]; 
break; 
case 12: 
b = lookup50d_pv12[g]; 
c = lookup55d_pv12[g]; 
break; 
case 13: 
b = lookup50d_pv13[g]; 
c = lookup55d_pv13[g]; 
break; 
case 14: 
b = lookup50d_pv14[g]; 
c = lookup55d_pv14[g]; 
break; 
case 15: 
b = lookup50d_pv15[g]; 
c = lookup55d_pv15[g]; 
break; 
case 16: 
b = lookup50d_pv16[g]; 
c = lookup55d_pv16[g]; 
break; 
case 17: 
b = lookup50d_pv17[g]; 
c = lookup55d_pv17[g]; 
break; 
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case 18: 
b = lookup50d_pv18[g]; 
c = lookup55d_pv18[g]; 
break; 
} 
dra = b + (c - b)*((ave_alt - 50) / 5); 
} 
else 
{ 
dra = 2; 
} 
a = 0; 
b = 0; 
c = 0; 
float heq = 0; //Equilibrium altitude 
float tl = 0; //Time left to fall 
float tint = 0; 
float dbx = 0; 
//Phase B displacment 
if (ave_wspd >= 3) //Cancel out none Phase B falls 
{ 
a = ceil(ave_aspd); 
if (ave_alt >= 45 && ave_alt <= 50) //For altitudes between 45m and 
50m 
{ 
switch (a) //Airspeed switch statement 
{ 
case 10: 
b = lookup45_pv10[g]; 
c = lookup50_pv10[g]; 
break; 
case 11: 
b = lookup45_pv11[g]; 
c = lookup50_pv11[g]; 
break; 
case 12: 
b = lookup45_pv12[g]; 
c = lookup50_pv12[g]; 
break; 
case 13: 
b = lookup45_pv13[g]; 
c = lookup50_pv13[g]; 
break; 
case 14: 
b = lookup45_pv14[g]; 
c = lookup50_pv14[g]; 
break; 
case 15: 
b = lookup45_pv15[g]; 
c = lookup50_pv15[g]; 
break; 
case 16: 
b = lookup45_pv16[g]; 
c = lookup50_pv16[g]; 
break; 
case 17: 
b = lookup45_pv17[g]; 
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c = lookup50_pv17[g]; 
break; 
case 18: 
b = lookup45_pv18[g]; 
c = lookup50_pv18[g]; 
break; 
} 
heq = ave_alt - ave_alt * ((b + (c - b)*((ave_alt - 45) / 5))/sqrt 
((2*ave_alt)/9.81)); //Altitude of euqilibrium 
tl = sqrt((2 * ave_alt) / 9.81) - ((b + (c - b)*((ave_alt - 45) / 
5))); 
tint = tl / 10; //remaining time 1oth 
for (int x = 1; x <= 10; x++) 
{ 
dbx = dbx + tint * ave_aspd*pow(((heq / 10) / 
ave_alt),0.4); 
} 
drb = dbx; //Phase B displacment 
} 
else if ((ave_alt >= 50 && ave_alt <= 55) || (ave_alt == 50)) //For 
altitudes between 50m and 55m 
{ 
switch (a) //Airspeed switch statement 
{ 
case 10: 
b = lookup50_pv10[g]; 
c = lookup55_pv10[g]; 
break; 
case 11: 
b = lookup50_pv11[g]; 
c = lookup55_pv11[g]; 
break; 
case 12: 
b = lookup50_pv12[g]; 
c = lookup55_pv12[g]; 
break; 
case 13: 
b = lookup50_pv13[g]; 
c = lookup55_pv13[g]; 
break; 
case 14: 
b = lookup50_pv14[g]; 
c = lookup55_pv14[g]; 
break; 
case 15: 
b = lookup50_pv15[g]; 
c = lookup55_pv15[g]; 
break; 
case 16: 
b = lookup50_pv16[g]; 
c = lookup55_pv16[g]; 
break; 
case 17: 
b = lookup50_pv17[g]; 
c = lookup55_pv17[g]; 
break; 
case 18: 
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b = lookup50_pv18[g]; 
c = lookup55_pv18[g]; 
break; 
} 
heq = ave_alt - ave_alt * ((b + (c - b)*((ave_alt - 45) / 5)) / 
sqrt((2 * ave_alt) / 9.81)); //Altitude of euqilibrium 
tl = sqrt((2 * ave_alt) / 9.81) - ((b + (c - b)*((ave_alt - 45) / 
5))); 
tint = tl / 10; //remaining time 10th 
for (int x = 1; x <= 10; x++) 
{ 
dbx = dbx + tint * ave_aspd*pow(((heq / 10) / 
ave_alt),0.4); 
} 
drb = dbx; //Phase B displacement 
} 
} 
else 
drb = 0; //Failsafe value 
//Final displacment 
drf = dra - drb; 
//Display calculated values 
ROS_INFO("Displacement%f", drf); 
ROS_INFO("Average Altitude%f", ave_alt); 
ROS_INFO("Average Airspeed%f", ave_aspd); 
ROS_INFO("Headwind Speed%f", ave_wspd); 
ROS_INFO("Heading%f", h_max); 
//Waypoint variables 
WaypointPush waypush; 
Waypoint WpRef; //Drop-zone location detected (waytpoint 15) 
Waypoint wp_dal; //Drop approach lineup 
Waypoint wp_da1; //Drop approach waypoint #1 
Waypoint wp_da2; //Drop payload 
Waypoint Points[3]; 
wp_dal.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
wp_dal.command = 16; 
wp_dal.is_current = false; 
wp_dal.autocontinue = true; 
wp_dal.param1 = 0; 
wp_dal.param2 = 2; 
wp_dal.param3 = 0; 
wp_dal.param4 = 0; 
wp_dal.z_alt = 50.0; 
wp_da1.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
wp_da1.command = 16; 
wp_da1.is_current = false; 
wp_da1.autocontinue = true; 
wp_da1.param1 = 0; 
wp_da1.param2 = 2; 
wp_da1.param3 = 0; 
wp_da1.param4 = 0; 
wp_da1.z_alt = 50.0; 
wp_da2.frame = 3; // mavros_msgs::Waypoint::FRAME_GLOBAL; 
wp_da2.command = 16; 
wp_da2.is_current = false; 
wp_da2.autocontinue = true; 
wp_da2.param1 = 0; 
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wp_da2.param2 = 2; 
wp_da2.param3 = 0; 
wp_da2.param4 = 0; 
wp_da2.z_alt = 50.0; 
WpRef = WayList.waypoints[15]; 
float h2 = h_max; //Heading for payload release 
float h1 = h2; //Heading for waypoints 
float R = 6378.1; //Radius of the Earth (km) 
float B = 0; //Bearing for payload 
float Bw = 0; //Bearing for lineup 
float d = drf/1000; //Distance in km 
//Heading correction 
if(d < 0) 
{ 
h2 = h2 - 180; 
} 
if(h2 >= 360) 
{ 
h2 = h2 - 360; 
} 
else if(h2 < 0) 
{ 
h2 = 360 + h2; 
} 
B = h2 * (pi / 180); 
if(h1 >= 360) 
{ 
h1 = h1 - 360; 
} 
else if(h1 < 0) 
{ 
h1 = 360 + h1; 
} 
Bw = h1 * (pi / 180); 
d = abs(d); //Absolute displacement 
float lat_ref = WpRef.x_lat * (pi/180); //Initial target latitude 
converted to radians 
float long_ref = WpRef.y_long * (pi/180); //Initial target longitude 
converted to radians 
//Drop approach 1 
wp_da1.x_lat = (asin(sin(lat_ref)*cos(0.100/R) + cos(lat_ref)*sin(0.100/R) 
*cos(Bw))) * (180/pi); 
wp_da1.y_long = (long_ref + atan2(sin(Bw)*sin(0.100/R)*cos(lat_ref), cos 
(0.100/R) - sin(lat_ref)*sin(wp_da1.x_lat))) * (180/pi); 
//Drop approach lineup 
wp_dal.x_lat = (asin(sin(lat_ref)*cos((0.12)/R) + cos(lat_ref)*sin((0.12)/ 
R)*cos(Bw))) * (180/pi); 
wp_dal.y_long = (long_ref + atan2(sin(Bw)*sin((0.12)/R)*cos(lat_ref), cos 
((0.12)/R) - sin(lat_ref)*sin(wp_dal.x_lat))) * (180/pi); 
//Drop Payload 
wp_da2.x_lat = (asin(sin(lat_ref)*cos(d/R) + cos(lat_ref)*sin(d/R)*cos 
(B))) * (180/pi); 
wp_da2.y_long = (long_ref + atan2(sin(B)*sin(d/R)*cos(lat_ref), cos(d/R) - 
sin(lat_ref)*sin(wp_da2.x_lat))) * (180/pi); 
Points[0] = wp_dal; 
Points[1] = wp_da1; 
Points[2] = wp_da2; 
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waypush.request.start_index = 12; 
ros::Time last_request = Time::now(); 
bool newMission = false; 
//Transmit new waypoints 
while (newMission != true) 
{ 
if (newMission != true && (Time::now() - last_request > Duration 
(0.2))) 
{ 
for(int x = 0; x < 3; x++) 
{ 
waypush.request.waypoints.push_back(Points[x]); //send all 
waypoints to the FCU 
} 
if (waypush_client.call(waypush)) 
{ 
newMission = true; //Mission sent boolean (terminating 
statement) 
} 
last_request = Time::now(); 
} 
spinOnce(); 
rate.sleep(); 
} 
return 0; 
} 
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Appendix B – Payload Equilibrium Time MATLAB Code 
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clc; 
clear; 
h = input('Enter the drop altitude: '); %Release altitude 
va = input('Enter the initial payload airspeed: '); %Aircraft airspeed 
vw = input('Enter the wind speed: '); %Headwind velocity at altitude 
p = 1.225; %kg/m^3 - air density 
A = 0.00283; %m^2 - cross-sectional area 
Cd = 0.096; %drag coefficient 
m = 0.14; %kg - payload mass 
g = 9.81; %m/s^2 - gravitational coefficient 
a = 2.5; %Hellmann coefficient 
Vt = sqrt((2*m*g)/(p*A*Cd));%Terminal Velocity 
tf = sqrt(2*h / g); %Fall time 
var = round((tf/0.05) + 1); 
dxdt = zeros(var, 1); %Deceleration matrix 
td = zeros(var, 1); %Time matrix 
t = 0; 
i = 1; 
while i <= var 
dxdt(i) = ((p*A*Cd)/(2*m))*(((vw*((Vt^2/2*g)*(log(Vt^2/((-Vt*tan(g*t/Vt))^2 + 
Vt^2)))/h)^(1/a))^2) + ((((Vt^2)*va)/((Vt^2)+g*va*t))^2)); %Equilibrium Time Equation 
td(i) = t; 
t = t + 0.05; 
i = i + 1; 
end 
j = 1; 
az = 1; 
bz = 0; 
while az >= 0 
az = dxdt(j); 
j = j + 1; 
end 
az = dxdt(j-2); 
bz = dxdt(j-1); 
%Plot 
plot(td, dxdt); 
title('PROJECTILE PHASE 1 ACCELERATION CURVE'); 
legend('Projectile acceleration'); 
xlabel('Time (Seconds)'); 
ylabel('Acceleration (m/^2)'); 
ylim([-inf inf]); 

xlim([-inf inf]);
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Appendix C1 - Pixhawk Specifications 

Key Features 

• Main System-on-Chip: STM32F427 

o CPU: 180 MHz ARM® Cortex® M4 with single-precision FPU 

o RAM: 256 KB SRAM (L1) 

• Failsafe System-on-Chip: STM32F100 

o CPU: 24 MHz ARM Cortex M3 

o RAM: 8 KB SRAM 

• Wifi: ESP8266 external 

• GPS: U-Blox® 7/8 (Hobbyking®) / U-Blox 6 (3D Robotics) 

• Optical flow: PX4 Flow unit 

• Redundant power supply inputs and automatic failover 

• External safety switch 

• Multicolor LED main visual indicator 

• High-power, multi-tone piezo audio indicator 

• microSD card for high-rate logging over extended periods of time 

Connectivity 

• 1x I2C 

• 1x CAN (2x optional) 

• 1x ADC 

• 4x UART (2x with flow control) 

• 1x Console 

• 8x PWM with manual override 

• 6x PWM / GPIO / PWM input 

• S.BUS / PPM / Spektrum input 

• S.BUS output 

Specifications 

Processor 

• 32bit STM32F427 Cortex-M4F core with FPU 

• 168 MHz 

• 256 KB RAM 

• 2 MB Flash 

• 32 bit STM32F103 failsafe co-processor 

http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577/LN1789
http://www.hobbyking.com/hobbyking/store/__66308__HK_Pilot32_Optical_Flow_Kit_With_Sonar.html
http://en.wikipedia.org/wiki/ARM_Cortex-M#Cortex-M4
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Sensors 

• ST Micro L3GD20H 16 bit gyroscope 

• ST Micro LSM303D 14 bit accelerometer / magnetometer 

• Invensense MPU 6000 3-axis accelerometer/gyroscope 

• MEAS MS5611 barometer 

Interfaces 

• 5x UART (serial ports), one high-power capable, 2x with HW flow control 

• 2x CAN (one with internal 3.3V transceiver, one on expansion connector) 

• Spektrum DSM / DSM2 / DSM-X® Satellite compatible input 

• Futaba S.BUS® compatible input and output 

• PPM sum signal input 

• RSSI (PWM or voltage) input 

• I2C and SPI 

• 3.3 and 6.6V ADC inputs 

• Internal microUSB port and external microUSB port extension 

Power System and Protection 

• Ideal diode controller with automatic failover 

• Servo rail high-power (max. 10V) and high-current (10A+) ready 

• All peripheral outputs over-current protected, all inputs ESD protected 

Voltage Ratings 

Pixhawk can be triple-redundant on the power supply if three power sources are supplied. The three 

rails are: Power module input, servo rail input, USB input. 

Normal Operation Maximum Ratings 

Under these conditions all power sources will be used in this order to power the system 

• Power module input (4.8V to 5.4V) 

• Servo rail input (4.8V to 5.4V) UP TO 10V FOR MANUAL OVERRIDE, BUT AUTOPILOT PART 

WILL BE UNPOWERED ABOVE 5.7V IF POWER MODULE INPUT IS NOT PRESENT 

• USB power input (4.8V to 5.4V) 

Absolute Maximum Ratings 

Under these conditions the system will not draw any power (will not be operational), but will remain 

intact. 

• Power module input (4.1V to 5.7V, 0V to 20V undamaged) 

• Servo rail input (4.1V to 5.7V, 0V to 20V) 

• USB power input (4.1V to 5.7V, 0V to 6V) 
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Appendix C2 – Pixhawk Port Pinouts 

TELEM1, TELEM2 ports 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) TX (OUT) +3.3V 

3 (blk) RX (IN) +3.3V 

4 (blk) CTS (IN) +3.3V 

5 (blk) RTS (OUT) +3.3V 

6 (blk) GND GND 

 
GPS port 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) TX (OUT) +3.3V 

3 (blk) RX (IN) +3.3V 

4 (blk) CAN2 TX +3.3V 

5 (blk) CAN2 RX +3.3V 

6 (blk) GND GND 

 
SERIAL 4/5 port - due to space constraints two ports are on one connector. 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) TX (#4) +3.3V 

3 (blk) RX (#4) +3.3V 

4 (blk) TX (#5) +3.3V 

5 (blk) RX (#5) +3.3V 

6 (blk) GND GND 

 
ADC 6.6V 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) ADC IN up to +6.6V 

3 (blk) GND GND 

 
ADC 3.3V 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) ADC IN up to +3.3V 

3 (blk) GND GND 

4 (blk) ADC IN up to +3.3V 

5 (blk) GND GND 

 
I2C 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) SCL +3.3 (pullups) 

3 (blk) SDA +3.3 (pullups) 

4 (blk) GND GND 
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CAN 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) CAN_H +12V 

3 (blk) CAN_L +12V 

4 (blk) GND GND 

 
SPI 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) SPI_EXT_SCK +3.3 

3 (blk) SPI_EXT_MISO +3.3 

4 (blk) SPI_EXT_MOSI +3.3 

5 (blk) !SPI_EXT_NSS +3.3 

6 (blk) !GPIO_EXT +3.3 

7 (blk) GND GND 

 
POWER 

Pin Signal Volt 

1 (red) VCC +5V 

2 (blk) VCC +5V 

3 (blk) CURRENT +3.3V 

4 (blk) VOLTAGE +3.3V 

5 (blk) GND GND 

6 (blk) GND GND 

 
SWITCH 

Pin Signal Volt 

1 (red) VCC +3.3V 

2 (blk) !IO_LED_SAFETY GND 

3 (blk) SAFETY GND 
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Appendix C3 – Pixhawk Schematic 
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Appendix D1 – ODroid-XU4 Specifications 

SPECIFICATIONS 

Processor 
Samsung Exynos5422 ARM® Cortex™-A15 Quad 

2.0GHz/Cortex™-A7 Quad 1.4GHz 

Memory 
2Gbyte LPDDR3 RAM PoP (750Mhz, 12GB/s 

memory bandwidth, 2x32bit bus) 

3D Accelerator 
Mali™-T628 MP6 OpenGL ES 3.1 / 3.0 / 2.0 / 1.1 

and OpenCL 1.2 Full profile 

Audio 
HDMI Digital audio output. Optional USB sound 

card 

USB3.0 Host 
SuperSpeed USB standard A type connector x 2 

port 

USB2.0 Host 
HighSpeed USB standard A type connector x 1 

port 

Display HDMI 1.4a with a Type-A connector 

Storage (Option) 

eMMC module socket : eMMC 5.0 Flash Storage 

(up to 64GByte) 

MicroSD Card Slot (up to 128GByte) 

Fast Ethernet LAN 
10/100/1000Mbps Ethernet with RJ-45 Jack ( 

Auto-MDIX support) 

WiFi (Option) 
USB IEEE 802.11 ac/b/g/n 1T1R WLAN with 

Antenna (External USB adapter) 

HDD/SSD SATA interface (Optional) 
SuperSpeed USB (USB 3.0) to Serial ATA3 

adapter for 2.5″/3.5″ HDD and SSD storage 

Power Input 
4.8Volt~5.2Volt  (5V/4A Power supply is 

recommended) 

System Software 

Ubuntu 16.04 + OpenGL ES + OpenCL on Linux 

Kernel 4.14 LTS 

Android 4.4.2 on Kernel LTS 3.10 

Android 7.1 is available as a community driven 

OS development. 

Full source code is accessible via our Github. 

Size 
83 x 58 x 20 mm (weight: 38gram) without 

cooler approx. 
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Appendix D2 – ODroid-XU4 Schematic 
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Appendix E1 - ELP-USB500W04AF-A60 Camera Specifications 

 

Module No. ELP-USB500W04AF-A60 

Sensor OV5640 (1/4” ) 

Max. Resolution 2592 (H) *1944 (V) 

Sensitivity 600mV/Lux-sec 

Pixel Size 1.4µm x1.4µm 

Image area 3673.6µmx2738.4µm 

Maximum Image Transfer Rate 2592x1944@ 15fps MJPEG / 2048x1536@ 15fps MJPEG 
1600x1200@ 15fps MJPEG / 1920x1080@ 15fps MJPEG 
1280x1024@15fps MJPEG/ 1280x720@ 30fps MJPEG 
1024 x 768@ 30fps MJPEG/ 800 x 600@ 30fps MJPEG 
640x480@ 30fps MJPEG /  320x240@ 30fps MJPEG 

Camera Board Assembly technique SMT (ROSH) 

Focus Auto 

Object distance 5CM-100M 

Resolution 600LW/PH (Center) 

interface USB 2.0 High Speed 

protocol USB Video Class（UVC） 

S/N Ratio 36dB 

Dynamic Range 68dB 

Shutter Rolling shutter/ frame exposure 

Package CSP, Bare Die 

AGC/AEC/AWB/ABF Auto 

Output Formats YUYV/MJPEG 

Adjustable parameter Brightness Contrast Hue Saturation Sharpness Gamma White 
Balance  Exposure Focus 

Package LQFN-40pin 

Lens Parameter Size:  1/4,  Iris:  F2.8,  Focus: 3.2mm,  FOV: 65Degree 
Relative Illumination (Sensor): 70% 
IR Filter: 650±10nm 

LED board power connector Support  2P-2.0mm socket 

Power supply USB BUS POWER  4P-2.0mm socket 

Operating Voltage DC5V 

Power consumption 150mW （VGA）; 200mW （QSXGA）; 

Module Size 32X25MM 

Temperature (Operation) -20°C to 70°C 

Temperature (Stable Image) 0°C to 60°C 

USB Cable 1M(2M/3M/5M Optional) 

Operating system request Win XP/Vista/Win7/Win8 / Linux with UVC（above linux-2.6.26） 

MAC-OS X 10.4.8 or later/Android 4.0 or above with UVC 

Certifications FCC and CE 
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Appendix E2 - ELP-USB500W04AF-A60 Camera Schematic 
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Appendix F - TAROT GoPro 3D V metal 3-axis gimbal Specifications 

 

Input power 3S-6S Li(11V-26V)  

Operating current 30mA (@ 25V)/50mA (@ 12V)  

Stall current 350mA (@ 25V)/700mA (@ 12V)  

Attitude control accuracy ±0.02 degrees 

Maximum controllable speed 

Rotation direction (PAN) ±200°/s  

Tilt direction (TILT) ±200°/s  

Rolling direction (ROLL) ±200°/s  

Controllable rotation range 

Rotation direction (PAN) ±330°  

Tilt direction (TILT) -135° to +45°  

Rolling direction (ROLL) ±48°  

  

S-Bus/PPM/DSM receiver support  

Working temperature -20℃ ~ +50℃  

Maximum dimensions 60x75x100mm 

Adjust the software installation requirements  

Windows XP; Windows VISTA; Windows 7; Windows 8 (32 or 64 bit) 
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Appendix G - Wing Design Calculation 

 

The Clark Y aerofoil was selected as the desired new wing aerofoil profile. Two EPS  

Wing division for strength analysis 

 

Elliptical wing loading function 

 

 

  

FRONT VIEW 



Page | 206  
 

Maximum Wing Load 

n = 4 – Wing loading factor 

ma = 4 kg – Aircraft mass 

mw = 0.2 kg – Single wing mass 

The maximum expected wing load was defined to be, 

𝐹𝑊𝐿 =
𝑔𝑛(𝑚𝑎−2𝑚𝑤)

2
  

𝐹𝑊𝐿 =
9.81(4)(5−2(0.2))

2
  

𝐹𝑊𝐿 = 90.252 𝑁  

*Introducing a factor of safety, 𝐹𝑊𝐿 = 100 𝑁 

Knowing the maximum expected wing load, the maximum bending moment, 𝑏, and 
the loaded span length, 𝑎, could be deduced. 

𝑎 =
𝑆𝑝𝑎𝑛

2
−𝑤  

𝑎 =
1.975

2
− 0.055  

𝑎 = 0.9325 𝑚  

 

𝐴𝑒𝑙𝑙𝑖𝑝𝑠𝑒 =
𝜋𝑎𝑏

4
= 𝐹𝑊𝐿  

𝜋(0.9325)𝑏

4
= 100  

 𝑏 = 136.54043375176 𝑁/𝑚 

With the value for 𝑏 now known, the elliptical load function could be determined with 
respect to the displacement  

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1  

𝑦 = √𝑏2 (1 −
𝑥2

𝑎2
)  

𝑦 = 136.54043375176√1 −
𝑥2

0.86955625
  

For each wing segment, numbered 1 – 10, the net force exerted over the wing area 
could be determined. The net force per segment was represented by the area of the 
elliptical wing loading graph, which was initially determined through application of 
a Left Riemann Sum of the elliptical load function. Subdivisions for the Riemann 
Sum were taken to be the wing segment divisions. The resulting wing loading results 
incurred an overshoot due to the application of the Left Riemann Sum and as such, 
a finite integral was used to determine a less exaggerated wing loading force. 

𝐹𝑛𝑒𝑡 = ∫ (136.5404√1 −
𝑥2

0.86955625
)𝑑𝑥

𝑑1

𝑑0
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Maximum Bending Moment and Shear Force 

From the net force, the bending moment of the wing was then determined. The 
maximum bending moment was found to be 53.584 N.m at wing point A. 

𝑀𝑆𝑒𝑔 = ∑ 𝐹𝑛𝑒𝑡𝑛𝑑𝑛
𝑆𝑒𝑔
𝑛=𝐾   

Where, dn represented the bending moment test point displacement from the 
reference wing point. The bending moment curve of the wing was found to be as 
follows, 

 

The maximum bending moment represented the required minimum bending 

moment the wing’s spar caps were required to be able to endure. 

The required shear strength of the wing was represented by the shear strength of 

the structural material between the spar caps and the wing surface. In the case of 

this wing, this shear strength was the strength of the EPS foam. Required shear 

strength was determined by determining the shear stress exerted on the wing by 

the shear force. Where, shear stress was defined to be the shear force applied to a 

given area. 

𝜏 =
𝑉

𝐴
  

The shear force curve for the wing was found to  
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The required shear strength of the wing was determined to be 407.068 kPa and was 

within the allowable shear strength of the EPS foam which was found to be 

482.633 kPa. This provided a shear strength factor of safety of 1.186. 

 

Spar Cap Moment of Area 

With the required bending moment of the wing’s spar caps known, the require 
moment of inertia could be determined. The desired spar cap material was selected 
to be pultruded Carbon Fibre, with yield strength of 1.6 GPa. 

𝐼 =
𝑀𝑦

𝜎
  

The required spar cap moments of inertia were found to be as follows; 

Wing Segment Moment of Inertia (m4) 

1 8.372 x10-12 

2 6.613 x10-12 

3 5.055 x10-12 

4 3.708 x10-12 

5 2.579 x10-12 

6 1.669 x10-12 

7 0.9719 x10-12 

8 0.4791 x10-12 

9 0.173 x10-12 

10 0.0272x10-12 

 

Due to the high yield strength of the pultruded carbon fibre and diminishing moment 
of inertia required for each wing segment, a two-stage spar cap design was executed. 
The spar cap designs can be seen below.  

 

Where, 

First Spar Cap: I = 2.30515 x10-9 m4 

Second Spar Cap: I = 2.006537 x10-9 m4 
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Wing Point Net Force Shear Stress 
Bending 
Moment 

Moment of 
Inertia 

A 1 12.7111397 1.185313777 53.58356654 8.37243E-12 

B 2 12.58284624 1.173350412 42.32308565 6.61298E-12 

C 3 12.32223829 1.149048721 32.34960715 5.05463E-12 

D 4 11.92060598 1.111596508 23.73174175 3.70808E-12 

E 5 11.36293284 1.059593487 16.50636445 2.57912E-12 

F 6 10.62452128 0.990736609 10.67860027 1.66853E-12 

G 7 9.66365516 0.901135844 6.220285526 9.7192E-13 

H 8 8.403234494 0.783601617 3.066310073 4.79111E-13 

I 9 6.670194871 0.621995672 1.107306032 1.73017E-13 

J 10 3.738606423 0.348625049 0.174312524 2.72363E-14 
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Appendix H1 – Catapult Launcher Calculations 

Launch angle: 15˚ (𝛼) 

Launch velocity: 18 knots ~ 9.26 m/s (𝑉𝐿) 

Catapult Length: 2 m (𝐿) 

 

From the force diagram, 

Normal force 

𝐹𝑁 = 𝑊𝑐𝑜𝑠(𝛼) = 𝑚𝑔𝑐𝑜𝑠(𝛼)  

𝐹𝑁 = 3(9.81) cos(15) = 28.42719707 𝑁  

Frictional Force 

𝐹𝑓 = 𝜇𝐹𝑁 +𝑊𝑠𝑖𝑛(𝛼)   

𝐹𝑓 = (0.4)27.42719707 =  10.97083883 𝑁  

Applied Force 

𝐹𝐴 = 𝐹𝑓 +𝑊𝑠𝑖𝑛(𝛼)  

𝐹𝐴 = 10.97083883 + (3)(9.81)𝑠𝑖𝑛(15) = 18.5878833 𝑁  

Launch Force 

Launch time 

𝑡 =
2𝐿

𝑉𝐿+𝑉𝑖
  

𝑡 =
2(2)

9.26+0
= 0.432 𝑠  

Launch Acceleration 

𝑎 =
𝑑𝑉𝐿

𝑑𝑡
  

𝑎 = 9.26/0.432 = 21.4352 𝑚/𝑠2  
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𝐹𝐿 = 𝑚𝑎  

𝐹𝐿 = 3(21.4352) = 64.3056 N  

Introduction of launch trolley, new launcher displacement is now 1.8 m. Additional 

applied force provided from aircraft’s motor, reduced preload required. 

Elastic constant 

𝑘 =
𝐹𝐿

𝑥
  

𝑘 =
64.3056

1.8
= 35.7253 ≅ 36  

 Rubber extension testing 

Pieces of Rubber Tubing 
Extension 
Distance 

(m) 

Extension 
Ratio 

Required Force for 
Extension 

(N) 

Single Band 
(Initial length – 4.7 m) 

7 1.4894 34.34 

10 2.1277 49.05 

13.4 2.8511 68.67 

Double Band 
(Initial length – 2.35 m) 

3.1 1.3191 58.86 

4.23 1.8 88.29 

5.75 2.4468 117.72 

 

Double band rubber tubing selected as desired launch system. 

Required extension ratio 

 

𝑦 = 95.267 ln(𝑥) + 32.415 = 𝐹𝐿  

64.3056 = 95.267 ln(𝑥) + 32.415  

Extension ratio (x) = 1.398 

The final extension ratio was changed to 1.8 to allow for additional preload of ~30 N. 
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Appendix H2 - Launcher Sled and Catapult CAD Design 
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Appendix I – CMOS Camera Mount CAD Design 
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Appendix J1 – Payload Release Equilibrium Time Lookup Tables 

 

Altitude of 45 m  
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Table K1.12: Payload Release Equilibrium Time Lookup Tables for an altitude of 45 m 

  

Aircraft Speed 10 11 12 13 14 15 16 17 18 

Headwind Velocity          

0 - - - - - - - - - 

1 - - - - - - - - - 

2 2.524324 2.870736 - - - - - - - 

2.5 1.93125 2.181695 2.430843 2.680707 2.929263 3.17894 3.424242 3.670357 3.913149 

3 1.548333 1.743416 1.943576 2.144918 2.345506 2.547747 2.746345 2.946422 3.143044 

4 1.088953 1.223845 1.365531 1.508727 1.651719 1.796721 1.939006 2.083261 2.224202 

5 0.827193 0.930095 1.038468 1.148391 1.258354 1.370351 1.480192 1.592089 1.700937 

6 0.66069 0.743249 0.830305 0.918863 1.007583 1.098262 1.187159 1.278068 1.366194 

7 0.545858 0.614879 0.687217 0.760983 0.834974 0.91082 0.985152 1.061409 1.135122 

8 0.46226 0.521746 0.583362 0.646325 0.709546 0.774516 0.838172 0.903655 0.966799 

9 0.399563 0.45138 0.504863 0.559618 0.614647 0.671322 0.726839 0.784086 0.839172 

10 0.350534 0.396516 0.443639 0.49196 0.540564 0.59072 0.639841 0.690599 0.73935 

11 0.311058 0.352653 0.394676 0.437831 0.481271 0.526176 0.570147 0.61567 0.65932 

12 0.278869 0.31686 0.35471 0.393633 0.432838 0.47343 0.513171 0.554387 0.593847 

13 0.252792 0.287151 0.321529 0.356925 0.3926 0.42959 0.465801 0.503413 0.539374 

14 0.229877 0.262134 0.293583 0.325998 0.358688 0.392629 0.42585 0.460407 0.493406 

15 0.211075 0.240806 0.269752 0.29962 0.329756 0.361083 0.391743 0.423678 0.454139 
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Altitude of 50 m 
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Table K1.13: Payload Release Equilibrium Time Lookup Tables for an altitude of 50 m 

Aircraft Speed 10 11 12 13 14 15 16 17 18 

Headwind Velocity          

0 - - - - - - - - - 

1 - - - - - - - - - 

2 2.654 2.959 - - - - - - - 

2.5 2.032 2.271 2.51 2.749 2.986 - - - - 

3 1.629 1.824 2.02 2.217 2.413 2.607 2.801 2.992 3.181 

4 1.147 1.286 1.427 1.57 1.713 1.855 1.998 2.141 2.282 

5 0.872 0.979 1.088 1.197 1.308 1.419 1.53 1.642 1.754 

6 0.696 0.782 0.869 0.958 1.047 1.138 1.228 1.319 1.411 

7 0.575 0.647 0.719 0.793 0.867 0.943 1.018 1.095 1.171 

8 0.487 0.548 0.61 0.672 0.736 0.8 0.865 0.93 0.996 

9 0.421 0.473 0.527 0.581 0.637 0.692 0.749 0.806 0.863 

10 0.369 0.415 0.462 0.51 0.559 0.608 0.658 0.708 0.737 

11 0.328 0.369 0.411 0.454 0.497 0.541 0.585 0.63 0.672 

12 0.294 0.331 0.369 0.407 0.446 0.485 0.525 0.566 0.607 

13 0.266 0.3 0.334 0.368 0.404 0.44 0.476 0.513 0.55 

14 0.243 0.273 0.305 0.336 0.368 0.401 0.434 0.468 0.502 

15 0.222 0.251 0.279 0.309 0.338 0.368 0.399 0.429 0.461 
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Altitude of 55 m 
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Table K1.3: Payload Release Equilibrium Time Lookup Tables for an altitude of 55 m 

Aircraft Airspeed 10 11 12 13 14 15 16 17 18 

Headwind Velocity          

0 - - - - - - - - - 

1 - - - - - - - - - 

2 2.861717 3.181984 - - - - - - - 

2.5 2.168057 2.412846 2.660413 2.908922 3.156139 - - - - 

3 1.728101 1.924619 2.123253 2.32328 2.522565 2.723714 2.921039 3.120058 3.315211 

4 1.208218 1.347165 1.487485 1.629492 1.771302 1.915298 2.056421 2.199693 2.339297 

5 0.915354 1.021533 1.128691 1.237548 1.34645 1.457534 1.566325 1.677322 1.784968 

6 0.729605 0.814831 0.900799 0.988397 1.076159 1.166006 1.253952 1.344037 1.431076 

7 0.60229 0.67306 0.744414 0.817309 0.890428 0.965512 1.038976 1.114476 1.187198 

8 0.51011 0.570353 0.631071 0.693238 0.755661 0.819928 0.882786 0.947568 1.009804 

9 0.440586 0.49285 0.54551 0.59953 0.653823 0.709847 0.764627 0.821221 0.875468 

10 0.386463 0.432489 0.478851 0.526492 0.574413 0.623962 0.672396 0.722545 0.770517 

11 0.343254 0.38428 0.425597 0.468118 0.51092 0.555256 0.598586 0.643536 0.686458 

12 0.30804 0.344977 0.382167 0.420496 0.459104 0.49916 0.5383 0.578975 0.617752 

13 0.278845 0.312382 0.346141 0.380978 0.416091 0.452576 0.488219 0.52532 0.560638 

14 0.254287 0.284955 0.315821 0.347709 0.379868 0.41333 0.446015 0.480086 0.512478 

15 0.233373 0.261591 0.289985 0.319353 0.348986 0.379859 0.41001 0.441483 0.471367 
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Appendix J2 – Payload Release Phase A Displacement Look Up 

Tables 

 

Altitude of 45 m  
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Table K2.14: Payload Release Phase A Displacement Look Up Table at an Altitude of 45 m 

Aircraft Speed 10 11 12 13 14 15 16 17 18 

Headwind 
Velocity 

         

0 1.777896 2.143759 2.542394 2.973459 3.43662 3.931546 4.457912 5.015396 5.603681 

1 1.551097 1.91696 2.315594 2.746659 3.20982 3.704747 4.231113 4.788597 5.376882 

2 0.929783 1.250363 1.635195 2.06626 2.529422 3.024348 3.550714 4.108198 4.696483 

2.5 0.702427 0.951627 1.279756 1.655369 2.094208 2.601247 3.072845 3.601899 4.247741 

3 0.569564 0.772051 1.03637 1.340303 1.695618 2.10692 2.57177 3.085588 3.655657 

4 0.409132 0.555062 0.742952 0.960559 1.215203 1.510841 1.846302 2.219643 2.635786 

5 0.316531 0.42972 0.573899 0.741826 0.938484 1.167323 1.427783 1.719179 2.045142 

6 0.25666 0.34863 0.464754 0.600635 0.759863 0.945491 1.157299 1.395271 1.662242 

7 0.214966 0.29213 0.388835 0.502442 0.635639 0.791165 0.968998 1.169512 1.395005 

8 0.184365 0.250645 0.333172 0.430458 0.544573 0.677998 0.830838 1.0037 1.198503 

9 0.16101 0.218972 0.290727 0.375575 0.47514 0.591692 0.725418 0.87707 1.048283 

10 0.142637 0.194046 0.257362 0.332437 0.420566 0.523842 0.642504 0.777395 0.929934 

11 0.127829 0.173951 0.23049 0.297699 0.376618 0.469192 0.575694 0.697023 0.834428 

12 0.115657 0.157428 0.208416 0.269164 0.34052 0.424294 0.520786 0.630927 0.755828 

13 0.105487 0.143619 0.189982 0.245337 0.310376 0.386796 0.474912 0.575674 0.690079 

14 0.096869 0.131915 0.174371 0.225161 0.284851 0.355039 0.43605 0.528841 0.634315 

15 0.08948 0.121879 0.160993 0.207872 0.262979 0.327822 0.402734 0.488672 0.586457 
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Altitude of 50 m 
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Table K15.2: Payload Release Phase A Displacement Look Up Table at an Altitude of 50 m 

Aircraft Speed 10 11 12 13 14 15 16 17 18 

Headwind 
Velocity 

         

0 1.860723 2.24326 2.659961 3.110453 3.594373 4.111359 4.661056 5.243115 5.857191 

1 1.624572 2.007109 2.423809 2.874302 3.358221 3.875207 4.424905 5.006964 5.621039 

2 0.97642 1.312456 1.715355 2.165848 2.649767 3.166753 3.716451 4.298509 4.912585 

2.5 0.752403 0.977832 1.328795 1.701552 2.136095 2.635413 3.18511 3.767169 4.381244 

3 0.607164 0.819209 1.075544 1.379882 1.735672 2.146074 2.613938 3.142148 3.732704 

4 0.432278 0.584112 0.768162 0.987422 1.244756 1.542875 1.884426 2.27204 2.707605 

5 0.332647 0.449366 0.591076 0.760153 0.959463 1.191002 1.456736 1.758723 2.099291 

6 0.268536 0.362978 0.47749 0.614121 0.775107 0.962902 1.178743 1.424472 1.701852 

7 0.224891 0.303042 0.398968 0.512924 0.647855 0.804344 0.98519 1.190684 1.424039 

8 0.192822 0.259597 0.341604 0.43956 0.554624 0.688183 0.843495 1.020098 1.219246 

9 0.168842 0.22741 0.298594 0.38368 0.483948 0.600661 0.735068 0.88938 1.064168 

10 0.150024 0.201756 0.264626 0.339822 0.428532 0.531933 0.651193 0.787467 0.94189 

11 0.135027 0.18141 0.237532 0.304461 0.383831 0.476852 0.583925 0.706103 0.844434 

12 0.122184 0.164733 0.215752 0.276163 0.347681 0.432087 0.528878 0.638993 0.76337 

13 0.112534 0.149807 0.197356 0.253043 0.317641 0.394403 0.482936 0.583092 0.695735 

14 0.103473 0.13938 0.181236 0.232892 0.293279 0.36196 0.443958 0.536366 0.639481 

15 0.096852 0.128187 0.168984 0.215579 0.271337 0.336453 0.409439 0.496338 0.59237 
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Altitude of 55 m 

 

 

 



Page | 228  
 

Table K2.3: Payload Release Phase A Displacement Look Up Table at an Altitude of 55 m 

Aircraft Speed 10 11 12 13 14 15 16 17 18 

Headwind 
Velocity 

         

0 1.943266 2.342387 2.777048 3.246845 3.75138 4.290264 4.863111 5.469541 6.109182 

1 1.696773 2.095895 2.530555 3.000352 3.504888 4.043771 4.616618 5.223049 5.862689 

2 1.020674 1.371111 1.791077 2.260874 2.76541 3.304293 3.87714 4.483571 5.123212 

2.5 0.786818 1.033962 1.363197 1.740811 2.182068 2.692043 3.267073 3.900088 4.600335 

3 0.634973 0.839767 1.105149 1.411025 1.768689 2.182848 2.651045 3.168742 3.743135 

4 0.452147 0.604789 0.793627 1.01299 1.269761 1.567992 1.906502 2.283399 2.703521 

5 0.347804 0.468845 0.613865 0.783366 0.981933 1.213102 1.476313 1.770929 2.100509 

6 0.281026 0.380788 0.497663 0.634963 0.795912 0.983646 1.197945 1.438844 1.709112 

7 0.234623 0.319372 0.416754 0.53165 0.666411 0.823854 1.003958 1.20715 1.435667 

8 0.201382 0.274238 0.357381 0.455847 0.571394 0.706577 0.861503 1.036832 1.234425 

9 0.175987 0.239753 0.312072 0.398007 0.498894 0.617069 0.752725 0.906663 1.080467 

10 0.156389 0.212596 0.276432 0.352516 0.441871 0.546654 0.667111 0.804133 0.959091 

11 0.140331 0.190689 0.247711 0.31586 0.395923 0.489904 0.598084 0.721409 0.861082 

12 0.127607 0.172667 0.224104 0.285734 0.358161 0.443256 0.541323 0.653342 0.780379 

13 0.117323 0.157596 0.20438 0.260565 0.326612 0.404276 0.493877 0.596412 0.712836 

14 0.107667 0.144818 0.18767 0.239243 0.299886 0.371249 0.453665 0.548136 0.655524 

15 0.100623 0.133855 0.173343 0.220964 0.276973 0.342932 0.419177 0.506711 0.606318 
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Appendix K – Payload CAD Design 
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