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CLOSE FORMATION FLIGHT MISSIONS USING VISION-BASED

POSITION DETECTION SYSTEM

Abstract

by Ashok Sarath Chandra Reddy Irigireddy, Master of Science in Unmanned and
Autonomous Systems Engineering

Embry-Riddle Aeronautical University
January 2020

Chair: Advisor

In this thesis, a formation flight architecture is described along with the implementation

and evaluation of a state-of-the-art vision-based algorithm for solving the problem of esti-

mating and tracking a leader vehicle within a close-formation configuration. A vision-based

algorithm that uses Darknet architecture and a formation flight control law to track and

follow a leader with desired clearance in forward, lateral directions are developed and imple-

mented. The architecture is run on a flight computer that handles the process in real-time

while integrating navigation sensors and a stereo camera. Numerical simulations along with

indoor and outdoor actual flight tests demonstrate the capabilities of detection and tracking

by providing a low cost, compact size and low weight solution for the problem of estimat-

ing the location of other cooperative or non-cooperative flying vehicles within a formation

architecture.
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Chapter One

Introduction

1.1 Background

In recent years, Unmanned Aircraft Systems (UAS) persist as a high priority asset to military

and a go-to tool for many civilian applications and have seen a rapid growth in the both the

areas. The major advancement in this field is due to heavy use of UAS by Armed Forces.

According to a forecast global spending on UAS will increase from $6.6 billion dollars in

2013 to $11.4 billion in 2022 Harrison, January 30, 2013 . A part of this growth is from

civilian applications such as terrain mapping, crop dusting, commercial transport and by first

responders for disaster relief, search and rescue, and medical deliveries. Due to this improved

interest in this field, dramatic advancements have been made driven by parallel advancements

in subsystem technologies. UAS is adopted by many applications that demand greater range

and endurance with its increased reliability and autonomy. Yet, small UAS applications will

always be limited by size, area of coverage and reduced payload capability. Many of the

applications considered for small unmanned systems compensate these limitations by using

multiple systems, capitalizing on cost reduction and increasing the redundancy of the system

using multiple UAS in required formation. These vast applications have lead to significant

study in the area of formation flying in unmanned systems.

As the technological development of close proximity operations progresses and the cost
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and size of such systems decrease, there is a perceived interest on the implementation of flight

formation to accomplish several types of missions. Formation operations have enabled a wide

variety of applications ranging from reduced fuel consumption using wake vortex profiles,

aerial refueling services, cooperative space exploration missions, surveillance, among others.

A formation flight guidance law enables each UAS to maintain its relative position in the

formation, which allows the UAS to be efficiently and safely controlled while they perform

their mission satisfactorily. It is this UAS Formation Flight control strategy development

and evaluation process that serves as the topic area of this thesis.

1.2 Objectives

Successful sustained formation flight within small three dimensional spaces requires high

accuracy, real-time and low processing requirements for position estimation. By using Global

Positioning System (GPS) sensors, the estimation of the relative position of an agent with

respect to others within a formation would be limited to high separations as the resolution

of position provided by this sensor is in the order of meters. Even with highly accurate GPS,

the problem translates to the latency or delay generated between agents. In addition, close

proximity formation flight missions within GPS-denied environments such space exploration,

urban scenarios or indoor applications make this sensor unsuitable for this type of application.

Common methods such as radars or radio telemetry have been previously used for measuring

the relative displacement between leader and follower agents. These approaches, however,

limit the applications to large distances. Alternatively, vision systems can provide solutions

for short distances that can be directly applied to closed-formation missions. With the use

of advanced camera systems along with state-of-the-art vision-based algorithms the same

results can be obtained with precision and accuracy. This can be easily achieved as we can

afford the computational power on board by reducing the use of more sensors and more

hardware to complete the same operations.
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The research work presented in this thesis resulted in a conference paper accepted for

publishing in American Institute of Aeronautics and Astronautics (AIAA) SciTech 2020

conference: Sarath & Moncayo, 2020 (Vision Based Relative Navigation for Close-Formation

Flight Missions).

1.3 Overview of the Thesis

A literature review that includes explanation and background of unmanned vehicles, for-

mation flight, formation flight in unmanned vehicles, vision systems, object tracking, and

some simulation parameters are presented in Chapter 2. Chapter 3 gives an overview and

a detailed explanation of vision system, object detection algorithm and its training process

involved in this research. Chapter 4 presents the mathematical model and derives the equa-

tions of formation flight of unmanned systems with and without clearance distance. This

chapter also includes the mathematical implementation of inner and outer loop controllers

along with the required controller gains. This chapter also explains the setup of a simulation

environment in MATLAB/Simulink. The simulation model, Formation flight model and

control laws are presented with two models of simulated quad-copters.

Chapter 5 explains the communication protocols, packages and communication between

protocols which are controlled by Robot Operating System (ROS). Chapter 6 gives a brief

explanation of a graphical simulation environment used to validate the vision system. This is

followed by an overview of hardware and software components used in the research test-bed

including an introduction to flight test facilities both vicon indoor testing facility in Advanced

Dynamics and Control Lab at ERAU and outdoor testing facility at ERAU’s intramural soft-

ball field in Chapter 7. All the experimental and flight test results of Formation Flight are

presented in Chapter 8, followed by conclusions of the experiments in Chapter 9 and ending

this thesis document with future work in Chapter 10.
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Chapter Two

Literature Review

UAS is an aircraft without human operators on-board. They are also commonly referred to

as Drones due to their resemblance to the male bee. They are initially designed to carry

lethal and non-lethal military payload for missions such as reconnaissance, command and

control, and deception. One of the military drones used for intelligence, surveillance, and

reconnaissance (ISR) is shown in Fig.2.1.

Figure 2.1 Perspective of NASA’s Global Hawk unmanned aircraft from one of the
wings [NASA, 2017]

A UAS is defined as a "powered, aerial vehicle that does not carry a human operator,
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uses aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely,

can be expendable or recoverable, and can carry a lethal or nonlethal payload" [Tice, 1991].

UAS are available in different levels of autonomy like Remotely Piloted Vehicles (RPV’s),

which are capable of being controlled from a distant location through a communication link,

or Unmanned Autonomous Systems (UAS), which can carryout complete autonomous or

predefined missions using the on-board sensors, controllers and flight computer. They come

in designs ranging from full scaled aircraft design to ball-shaped helicopter blades. Sizes vary

from a vehicle larger than a commercial aircraft to small vehicles which can fit in a pocket.

Ideally they are designed to be recoverable and reused except if mission is intentionally

expendable.

UAS is categorized depending on size, shape, weight and application some of which are

detailed below:

1. Multi-Rotors: This UAS can hover, vertically take-off and land (VTOL) and have

high maneuverability. This includes helicopters, duck-type, tilting and multi-rotor

rotorcraft.

2. Blimps: Unlike fix-rotor UAS, the blimps is a balloon type UAS which has long en-

durance but cannot cruise at high speeds.

3. Fixed-wings: This category includes UAS which are model airplanes particularly used

for high cruise speed and long endurance.

4. Flapping wing: This type of UAS is inspired from birds and bees. They utilized wing

that flap instead of being propelled via motors or engines.

Depending on weight and size they can be categorized as:

1. Micro/Mini: UAS which has very small takeoff weight falls under this category. The

takeoff weight is less than 30kg and can reach a maximum altitude of less than 300m

with a lower endurance of less than 2 hours.
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2. Tactical: UAS which has maximum takeoff weight between 150kg to 1,500kg is cate-

gorised as Tactical UAS. The Tactical UASs can reach a maximum flight altitude of

8km with an endurance of up to 48 hours.

3. Strategic: UAS in this category has takeoff weight between 2,500kg to 12,500kg and

can reach an altitude of 15km to 20km.

4. Special Task: UAS which is specifically customised for a specific task comes under this

category.

UAS have become an integral part of military for complex tasks including surveillance,

reconnaissance, precision strike and aerial refueling missions in the presence of disturbances,

failures, and complicated battlefield subjected to uncertainties and variations [Duan et al.,

2013].

Now, UASs are being used in civil applications for remote sensing, goods delivery, agri-

culture, wireless coverage, security and coverage and real-time monitoring of roads, pipeline

and civil infrastructure due to their small size, noiseless operation, hovering capability, low

cost, high-mobility, ease of deployment and low maintenance. Some of the applications in

military and non-military mission are presented in Table.2.1. For these reasons a lot of re-

search is being done in this field and on the various control problems associated with it. One

of such research is done in formation flight phenomenon and a brief introduction is given

below.

2.1 Formation Flight

Humans have been gaining inspiration for solving engineering and design challenges by ob-

serving the natural phenomenons , which is known as bio-mimicry (for example aeroplanes

are originally designed by studying birds). While engineers looked at birds to fly, some

looked at birds to learn how to fly more efficiently [Ning, Flanzer, and Kroo, 2010]. Among
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Military and Civil applications

Military Civil

- Battle Damage Assessment (BDA) - Agricultural operations

- Intelligence, surveillance, and reconnaissance (ISR) - Pipeline survey

- Reconnaissance Surveillance and Target Acquisition (RSTA) - Fire fighting

- Surveillance for peacetime and combat Synthetic Aperture - Agriculture and forestry

- Radar (SAR) - Environmental monitoring

- Deception operations - Power line survey

- Maritime operations (Naval fire support, over the horizon

targeting, anti-ship missile defence, ship classification)

-Disaster and crisis management

search and rescue

- Electronic Warfare (EW) and SIGINT (Signals Intelligence) - Aerial mapping and meteorology

- Special and psyops - Communications relay

- Meteorology missions - Law enforcement

- Route and landing reconnaissance support - Aerial photography

- Adjustment of indirect fire and Close Air Support (CAS) - Border patrol

- Radio and data relay - Policing duties

- Nuclear cloud surveillance - Traffic spotting

- Military roles according to arm and forces -Research by university

laboratories

Table 2.1 Some of Military and Civil applications
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Figure 2.2 Migration of birds flying in V formation [Isaaq, 2019]

the many insights gleaned from nature was the observation that migratory birds often flew

together in formations as shown in Figure.2.2 which was a fascinating concept in natural

occurrence for ages.

In AD 79, Pliny the elder noted that birds flew ’like fast galleys, cleaving the air more

easily than if they drove at it with a straight front’, which has become a cornerstone to

study in this phenomenon. From then many ideas have been proposed to explain it but

Peter Lissaman and Carl Shollenberger in 1970 were the first to publish in detail the exact

benefit of the flock flying in formation with aerodynamic interactions [Steven Portugal, 2016].

The authors have predicted the exact position of each individual bird within the formation

for maximum utilization of the resources which have persisted as the gold standard in the

study of formation flight. This gives the basic principle that an object flying in a fluid

produces lift by creating downward momentum within its span. When a wing is generating

lift, the air on the upper side of the wing has lower pressure relative to the bottom side,

and air flows from below the wing and out around the wingtips. At the wingtips, vortices

− circular patterns of rotating air around the wingtip are generated, with a wingtip vortex

trailing from the tip of each wing; this results in a vortex trailing from the right-hand wing

and a vortex trailing from the left-hand wing. These vortices generate upwash, creating a
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favourable airflow for other birds flying abreast that they could take advantage of if they

flew in the optimal position to capture the upwash. The lift provided by the upwash causes a

reduction in the lift power that trailing individuals must produce, and thus can bring about

an energetic saving. Between these two regions of upwash, however, there is a large region of

downwash – created as a result of air being pushed down as the bird moves forward – that

most birds want to avoid [Steve Portugal, 2016].

Recently biologists like Weimerskirch et al. instrumented trained pelicans with a heart-

rate logger and measured their wing-beat frequency using a digital camera [Weimerskirch

et al., 2001] and found that the pelicans exhibited a significantly decreased heart rate and

wing-beat frequency when they are flying in a formation flight.

This concept is later introduced in the engineering field learning from birds and has

been studied extensively with numerous applications in aeronautics and space systems. One

of the initial basis is formed by Multhopp and Black in 1998, as they looked at modeling

airplanes with vortex lattice methods as well as horseshoe models with viscous cores and

found that the two methods produced similar trends, but differed in the predicted lateral

position for maximum induced drag savings Blake and Multhopp, 1998. Later in 2001,

Wagner et al. included the effect of trimming in roll using aileron deflection which the

optimal lateral position for maximum induced drag savings Jacques et al., 2001 which lead

to many studies in this concept [Mason and Iglesias, 2002] [King and Gopalarathnam, 2005].

As this concept is proven many flight tests were conducted to evaluate formation flight.

From the flight tests conducted by Hummel in 1996 with Dornier Do-28 and Wagner et al.

in 2002 shows reduction in power usage by 15% and fuel flow by 8% [Wagner et al., 2002].

Autonomous Formation Flight Project in 2002, funded by NASA’s Revolutionary Concepts

Program showed a maximum fuel flow reduction of 18% for the trailing aircraft using two

F/A-18 aircraft [Vachon et al., 2003] [Cobleigh, 2002] [Ray et al., 2002] which is shown in

Figure.2.3 More recent studies and analysis of formation flight have proved that there is

at least 13% reduction in fuel burn is achievable in commercial areas [Bower, Flanzer, and
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Figure 2.3 F/A-18 Autonomous Formation Flight (AFF) [Thomas, 2001]

Kroo, 2009].

The benefits of formation flight include fuel savings at certain close formation positions,

cooperative task allocation, mission success in terms of redundancy and battle damage as-

sessment and improved efficiency in air traffic control for aerial applications and an accurate

control of formation flight in space vehicles one of which is shown in Figure.2.4 will be a

greater asset in autonomous rendezvous and docking, large-aperture space telescopes and

robotic assembly of space structures.
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Figure 2.4 Formation flying with nano satellites (TU Delft Space Institute) [Insti-
tute, 2018]

2.2 Computer Vision and Object Tracking

Computer Vision (CV) is a field of study focused on artificial intelligence that trains comput-

ers to interpret, understand and see the visual world. It is a sub-field of artificial intelligence

and machine learning, which uses general learning algorithms, specialized methods to iden-

tify and classify digital images from cameras, videos and deep learning models, machines

then react to what they “see".

Neural Networks used in 1950s to detect the edges of an object and to sort them into

shapes was considered as the first use of CV. Later in 1970, it was used to recognise and read

the text and characters to the blind which then flourished into facial recognition 1990. Now

the rapid advances in artificial intelligence, machine learning and deep learning has lead to

extend far more than human capabilities in tasks related to managing data and sorting it.

A relation to computer vision and human vision system is given in Figure.2.5.

The advances like built-in cameras in mobile technology, affordable high performance

computing have made systems more actuate than humans at detecting and reacting to visual

inputs. In less than a decade the accuracy for object identification and classification have
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Figure 2.5 Computer Vision vs Human Vision [Elgendy, 2019]

gone from 50 percent to 99 percent. One of the important factors behind the rapid growth of

computer vision is the amount of data that is grown then used to train and make computer

vision better. Recent algorithms like Convolutional Neural Networks (CNN) take advantage

of this hardware and software capabilities to make CV faster and more accurate.

The main goal of CV is to understand and interpret the content of digital image which

involve extracting a description from the image, which may be an object, a text description,

a three-dimensional model. Today’s AI systems can go a step further and take actions based

on an understanding of the image. Some of the methods used are object classification, object

identification, object verification, object detection, object tracking, object recognition, object

segmentation and object landmark detection.

One of the main concepts covered in this research is object detection. Object detection
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identifies any defined object in a digital image. The models use an X,Y coordinate to create

a bounding box and recognizes single or multiple objects in the box. Object detection is

widely applied in autonomous systems, self-driving cars and for video surveillance. This

usually takes two processes: classification of objects type and drawing a box around it.

Common object detection architectures are:

1. R-CNN : This technique uses a combination of segmenting objects and using CNN

to localize. It is named as Regions with CNN features (R-CNN) as it combines re-

gional proposals with CNN which yeilds performance boost with domain-specific fine-

tuning and an architecture is shown in Figure.2.6. This model extracts more than

2000 bottom-up region proposals from an image and computes the features for each

proposal using a large CNN. Then using class-specific linear support vector machines

(SVMs) it classifies each region acheiving 53.7 % of mean average precision (mAP) on

PASCAL VOC 2010.

Figure 2.6 R-CNN Architecture [Girshick et al., 2013]

2. Fast R-CNN: This technique takes an image as input as well as a set of object pro-

posals and processes the image with convolutional and max-pooling layers to produce

a convolutional feature map from which a fixed-layer feature vector is extracted that

are fed to fully connected layers shown in Figure.2.7. These then produce softmax

probability estimates over several object classes and four real-value numbers for each

of the classes which represent the position of the bounding box for each of the objects.

13



Figure 2.7 Fast R-CNN Architecture [Girshick, 2015]

Fast R-CNN achieves mAP of 66% on PASCAL VOC 2012, which is lot better than

R-CNN and is implemented in python and in C++ using Caffe.

3. Faster R-CNN: This technique uses a Deep Convolutional Network (DCN) as shown in

Figure.2.8 for proposing regions and a Fast R-CNN detector which uses the regions. It

takes an image as input and generates rectangular object proposals with objectiveness

score.

Figure 2.8 Faster R-CNN Architecture [Ren et al., 2015]

4. Mask R-CNN: This technique is an extension of Faster R-CNN in which objects are

classified and localized using a bounding box and semantic segmentation to classify

pixels into categories. This Mask R-CNN produces class label and bounding box.

Mask R-CNN architecture is shown in Figure.2.9.

5. You Only Look Once (YOLO): In this technique each bounding box contains x, y, w,
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Figure 2.9 Mask R-CNN Architecture [He et al., 2017]

h,confidence and is predicted by features from the entire image. Where (x,y) is the

center of bounding box, w and h are the predicted width and height. YOLO is imple-

mented as CNN and these layers are responsible for extracting features, coordinates

and output probabilities are predicted by fully connected layers and its architecture is

shown in Figure.2.10.

Figure 2.10 YOLO v3 Architecture
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Chapter Three

Vision System

This chapter explains the Vision System used in this thesis and gives a description of the

packages used. The first section explains the Machine Learning (ML) algorithm YOLO

and Darknet, a framework of CNNs which acts as a basis of training source for vision

system. This is followed by camera geometry explaining Pinhole camera geometry of the

monochrome camera and the stereo camera to derive world coordinates from camera pixel

values. This chapter is ended with the Formation Flight Network (FF-Net) which is created

by using YOLO architecture and integrating it with stereo camera geometry to give real

world coordinates of objects detected relative to camera position along with the training

process of FF-Net.

3.1 You Only Look Once (YOLO)

There are two kinds of algorithms used for object detection which are classified as

1. Algorithms based on Classification: In these algorithms the initial step it is selected

from image intersecting regions and those regions are classified using CNN. The algo-

rithms in this category are slow compared to others. This category contains R-CNN,

Fast R-CNN and Faster R-CNN.

2. Algorithms based on Regression: In this category the classes and bounding boxes are
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predicted by looking at the whole image at once. YOLO is the most common example

of this category.

YOLO algorithm is a state-of-the-art, realtime, extremely fast and accurate object detec-

tion system. YOLO architecture uses Convolutional Neural Networks (CNN) and has been

modified in this study to guarantee light processing and is suitable for real time application.

With latest released version of YOLO, the tradeoff between speed and accuracy is achieved

by simply changing the size of the model with minimum or no training required. General

object detection algorithms use classifier or localizer approaches to perform detection and

apply the model to an image at multiple locations and scales. However, YOLO uses a neural

networks to divide the image into regions and predicts bounding boxes which are weighted by

predicted probabilities for each region. Figure.3.1 shows the main steps used by the YOLO

algorithm.

YOLO network is fed with input images to predict 3D tensors corresponding to 3 scales

which are designed for different size object detection. In Figure.3.1 the scale 13x13 is taken

as an example. For this scale, the input image is divided into 13x13 grid cells with each grid

cell corresponding to a 1x1x255 voxel inside a 3D tensor.

Figure 3.1 YOLO Network Architecture Redmon, 2016

Here, 255 is taken by using 3x(4+1+80) equation values from third part of the image.

The final values in a 3D tensor are also shown in the third stage of the Figure.3.1. The

method uses K-mean clustering to classify the total boxes from Common Objects in Context

(COCO) data-set to 9 clusters before training. This results in 9 sizes chosen from 9 cluster,
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3 for 3 scales shown in Figure.3.2. This Information, which is known beforehand, helps the

system to learn to compute box coordinates precisely [Redmon, Divvala, et al., 2016].

Figure 3.2 YOLO CNN layers

Unlike Regions with Convolutional Neural Networks (R-CNN), YOLO looks at the whole

image with single network. YOLO integrates 75 convolutional layers as a feature-learning

based network which can handle variable image sizes. The algorithm does not use pooling

and an additional convolutional layer with stride 2 is used to downsample the feature maps.

This helps in preventing loss of low-level features often attributed to Pooling as described in

Figure.3.3.

Figure 3.3 YOLO Architecture Taru, 2019
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As shown in Figure.3.3, the algorithm works on a 13 X 13 feature map which is best

for localizing finer grained features of smaller objects. Then, it adds a pass-through layer

that brings features from an earlier layer at 26x26 resolution while R-CNN and Single Shot

Multi-Box Detector (SSD) run at various features maps to get the range of resolutions. The

pass-through layer similar to the identity mappings in Residual Neural Network (ResNet),

stacks adjacent features into different channels instead of spatial locations to concatenate

high resolution features with low resolution features. This turns the 26 X 26 X 512 feature

map into a 13 X 13 X 2048 feature map to access fine grained features [Redmon, 2016]. The

following equations as shown in Figure.3.4 describe how the network output is transformed

to obtain bounding box predictions.

Figure 3.4 Accuracy and Speed tradeoff on VOC 2007 with different Networks

bx = σ(tx) + cx (3.1)

19



by = σ(ty) + cy (3.2)

bw = ρw e
tw (3.3)

bh = ρh e
th (3.4)

where bx, by, bw, bh are x, y center coordinates, width and height tx, ty, tw, th are

network outputs, cx, cy are top-left coordinates of grid and pw, ph are anchors dimensions

for the box. A log-space transform is applied to the output and then multiplied with an

anchor to predict the dimensions of the bounding box. Height and width of the image are

obtained by normalized resultant predictions, bw, bh [Redmon and Farhadi, 2018].

There are three versions of YOLO which are given below:

1. YOLO v1: Initial version of YOLO is released in May 2016, which sets as a core

algorithm. This version of network is inspired by GoogleNet [Redmon, 2016]. It has

24 convolutional layers working as feature extractors and 2 dense layers for doing the

predictions. The loss that the algorithm minimises takes into account the predictions

of the locations of the bounding boxes, their sizes, the confidence scores for the said

predictions and the predicted classes.

2. YOLO v2: This version was released in December 2016 and introduces anchor boxes

and to detect small objects better [Redmon and Farhadi, 2016].

3. YOLO v3: This version is the recent release in April 2018, which is built on new

Darknet framework to have 53 convolutional layers and can predict bounding boxes at

different scales [Redmon and Farhadi, 2018].

Comparisons between different models is shown in Figure.3.5 and Figure.3.6.

3.1.1 Darknet

Darknet is an open source framework written in C / CUDA to train neural networks written

by J. Redmon [Redmon, 2013–2016]. Darknet sets the architecture of the YOLO and is used
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Figure 3.5 Accuracy and Speed trade-off on VOC 2007 with different Networks

Figure 3.6 YOLO v3 performance comparison between Networks

for training it. This framework allows YOLO to make realtime predictions by allowing it to

use GPU.
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3.2 Camera Geometry

The camera is a mechanism by which a computer can see and record the world around. In

this thesis a pinhole camera geometry is used to estimate the real-world coordinates of the

aerial vehicle which is explained below.

One of the first type of cameras is the Pinhole camera which use "Camera Obscura" as

fundamental principle. It uses the same science as present-day cameras use whereby light

travels through a small hole in a dark box to form a picture. The mathematical relationship

between the coordinates of a point in a three-dimensional space and its projection onto the

image plane of an ideal pinhole camera, where the camera aperture is described as a point

and no lenses are used to focus light, is described in the pinhole camera model [Fusiello,

2005]. Pinhole camera model can only be used as a first order approximation of the mapping

from a 3D scene to a 2D image.

Figure.3.7 shows the coordinate frame of a camera with the center of projection at O,

focal length f between camera center to image plane, a 3D point Q = (X, Y, Z) is imaged

on the camera’s image plane at coordinate q = (u, v, f) and the principal axis parallel to Z

axis.

We can get from Figure.3.8 from the above derived projections

f

Z
=

u

X
=
u

Y
(3.5)

u =
fX

Z
(3.6)

v =
fY

Z
(3.7)

which can be written as 
u

v

1

 =


f 0 0

0 f 0

0 0 1



X

Y

Z

 (3.8)
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Figure 3.7 Pinhole Geometry

Figure 3.8 Pinhole Geometry

which can be written as q = KQ

In the above equation X, Y, Z, U, V,W and focal length f are measured in meters or

millimeters. To convert to pixel distances the scale factor sx and sy are introduced and can
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be given as

fx = sx ∗ f (3.9)

fy = sy ∗ f (3.10)

These coordinates are converted into pixel distances as


u

v

1

 =


fx 0 0

0 fy 0

0 0 1



X

Y

Z

 (3.11)

Often pixel coordinates are not given with respect to the frame at the center of the optical

axis but are given in a positive quadrant. So, to keep the frame in the center a translation

is performed resulting in:


u

v

1

 =


fx 0 cx

0 fy cy

0 0 1



X

Y

Z

 (3.12)

where,

• u, v or in some cases x, y are the projection point coordinates in pixels.

• fx, fy are focal lengths.

• cx, cy are image center coordinates.

• X, Y, Z are 3D point coordinates in world coordinate space

which gives the coordinates of pixel points as

u =
fx ∗X
Z

+ cx (3.13)

v =
fy ∗ Y
Z

+ cy (3.14)
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3.3 Formation Flight Network (FF-Net)

In this thesis, a detection system called Formation Flight Network (FF-Net) was implemented

using Darknet framework [Redmon, 2013–2016] combined with a machine learning based

neural network algorithm YOLO to detect a flying vehicle in the camera field of view. A

stereo camera has been used in this thesis with TaraXL_ROS_Package to get the depth and

integrate it in the vision system. In this section, first training of vision system is discussed

followed by modification of the base network. The loss vs no of iterations determines the

accuracy of the training of the model while mean Average Precision (mAP) determines

average mean for each class.

3.3.1 FF-Net Training

The training of FF-Net involves collection of appropriate image data and sorting it to ap-

propriate data-sets. To compile the training sets, images were collected using a variety of

methods including collecting frames from old flight test data video footage, collecting live

images from both indoor and outdoor flights and retrieving images of different kinds of

drones from the world-wide web. By employing different kinds of data collection methods

a data-set is constructed that captures vehicles under a variety of conditions with regards

to color, type, size, illumination, occlusion, viewpoint, indoor and outdoor environments

for Formation Flight Network (FF-Net) to identify aerial vehicles in all kinds of scenes and

scenarios. These produced image data-sets were annotated and used to train the network.

The collected image data-set is divided into two classes, one specific to leader aerial vehicle

which is classified into Raft class and others in Drone class. Using these annotated data-sets

FF-Net algorithm is trained using Darknet framework using large data-set to increase the

robustness of the algorithm by detecting any multi-rotor regardless of orientation, angle and

position in the camera Field of view (FOV). This network is trained using loss function de-

fined to generate mean Average Precision (mAP). The training parameters are presented in
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Figure.3.9. The FF-Net was trained on different types of drones with average loss of 0.4340

at 359,200th iterations.

Figure 3.9 FF-Net Training Stats

3.3.2 FF-Net Depth inclusion

In this thesis, a pinhole camera geometry is considered to get the coordinates of 3D point in

world frame using the obtained center pixel coordinates from detected bounding box. In ad-

dition to the geometry presented in Section 3.2, a stereo camera is considered as its geometry

is similar to pinhole camera on each individual lense with depth as an additional feature. A

stereo camera geometry similar to pinhole camera geometry is shown in Figure.3.10

The equations obtained in Section 3.2 are then rearranged to get the global frame coor-

dinates of a point when pixel coordinates are known leading to
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Figure 3.10 Camera geometry of Stereo camera

X =
(u− cx) ∗ Z

fx
(3.15)

Y =
(v − cy) ∗ Z

fy
(3.16)

where,

• u, v are the Center pixels of the detected object by FF-Net

• fx, fy are obtained from the camera calibration matrix of TaraXL stereo camera.

• cx, cy are also obtained from the camera calibration matrix of TaraXL stereo camera.

• X, Y, Z are coordinates of the detected object in world frame with respect to camera.

FF-Net use the predicted center coordinates bx, by of the object obtained from the bound-

ing boxes and a further process is to obtain relative position of the detected object in the

camera frame X, Y , Z by adding the depth from the stereo camera. This is then con-

verted into a global frame coordinates which are used by the follower vehicle to estimate and

maintain the tracking position with a specific clearance. The results of the vision system are

shown in the experimental results section.
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Chapter Four

Formation Flight Control System Design

4.1 Formation Flight in Unmanned Vehicles

As it is proven to be beneficial to use unmanned vehicles in formations in the both aerial

and space applications, more attention is now paid to various control problems associated

with formation flight in unmanned vehicles. There are three methods commonly used in

formation control:

1. Leader - follower Structure: In this structure one of the unmanned vehicles in formation

is designated as leader and all other vehicles are considered as followers [Wu, Chen, and

Yuan, 2017]. This structure is widely popular in controlling and managing formation

flights missions as it is easy to track the position and orientation of the leader.

2. Virtual Leader Formation Structure: In this structure each individual vehicle receives

same trajectory information of the virtual leader and the entire formation is considered

as a single structure which makes it easy to define the formation behaviour.

3. Behavioral Structure: In this structure several behaviours of individual aerial vehicles

such as target keeping, collision avoidance and formation are prescribed and to make

control action of each individual unmanned vehicle in formation a weighted average of

the control of each behaviour.
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In this thesis, a formation flight control architecture based on Leader - Follower Structure

was implemented as part of this effort based on the work presented in [Rice et al., 2016]. The

formation flight (FF) geometry assumes decoupling lateral, vertical and forward clearances

with respect to the leader vehicle reference frame. Two quad-rotors are flown in a leader

follower configuration where the leader is programmed to follow a set of GPS waypoints.

The follower vehicle then keeps formation with the leader in a desired formation geometry

with forward fc, lateral lc and vertical vc clearance. The orientation of the quad-rotor

is derived from the difference in the yaw between the leader and follower. The horizontal

geometry is defined by a forward distance, f and a lateral distance, l as shown in Figure.4.1.

vertical geometry is then defined by the vertical distance error, h. Equation.4.1 describes

the transformation on position errors between the follower and leader to a local reference

frame that use forward and lateral clearances.

 l
f

 =

 sin(δ) −cos(δ)

cos(δ) sin(δ)


 xL − x

yL − y

−

 lc

fc

 (4.1)

where,

l is the lateral distance between the leader and the follower, f is the forward distance

between the leader and the follower.

δ is difference in yaw angles of leader and follower, defined as:

δ = ψL − ψ (4.2)

The vertical distance error, h, can be obtained using the vertical distance error relation-

ship:

h = zL − z − hc (4.3)

The rate of change of forward and lateral geometry with respect to time can be derived

as:
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Figure 4.1 Formation flight geometry

 l̇
ḟ

 =

 sin(δ) −cos(δ)

cos(δ) sin(δ)


 VxL − Vx

VyL − Vy

+ δ̇

 lc

fc

 (4.4)

where δ̇ is the rate of change in yaw angles, and δ is the difference between yaw angles

from the leader and the follower vehicles. To obtain the required acceleration for the follower

to maintain the formation geometry, the second derivative of lateral and forward clearances

must be calculated:
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 l̈
f̈

 =

 cos(δ) sin(δ)

−sin(δ) cos(δ)


 VxL − Vx

VyL − Vy

 δ̇
+

 sin(δ) −cos(δ)

cos(δ) sin(δ)


 axL − ax

ayL − ay

+ δ̇

 ḟ

−̇l

+ δ̈

 f + fc

−l − lc


(4.5)

The accelerations of follower in x direction, ax and y direction, ay are denoted as

ax = − u

m
(sin(θ)) (4.6)

ay =
u

m
(sin(φ)) (4.7)

where m is the mass and u is the total thrust output of the follower. A small angle

assumption is taken into consideration and the above equation can be written as:

ax = − u

m
(θ) (4.8)

ay =
u

m
(φ) (4.9)

Substituting this in equation [4.5] we get

 l̈
f̈

 =

 cos(δ) sin(δ)

−sin(δ) cos(δ)


 VxL − Vx

VyL − Vy

 δ̇
+

 sin(δ) −cos(δ)

cos(δ) sin(δ)


 axL − (− u

m
(θ))

ayL − ( u
m
(φ))

+ δ̇

 ḟ

−̇l

+ δ̈

 f + fc

−l − lc


(4.10)
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 sin(δ) −cos(δ)

cos(δ) sin(δ)


− u

m
(θ)

u
m
(φ)

 =

 cos(δ) sin(δ)

−sin(δ) cos(δ)


 VxL − Vx

VyL − Vy

 δ̇
+

 sin(δ) −cos(δ)

cos(δ) sin(δ)


 axL
ayL

+ δ̇

 ḟ

−̇l

+ δ̈

 f + fc

−l − lc


(4.11)

 sin(δ) −cos(δ)

cos(δ) sin(δ)


−(θ)

(φ)

 =
u

m

( cos(δ) sin(δ)

−sin(δ) cos(δ)


 VxL − Vx

VyL − Vy

 δ̇
+

 sin(δ) −cos(δ)

cos(δ) sin(δ)


 axL
ayL

+ δ̇

 ḟ

−̇l

+ δ̈

 f + fc

−l − lc

)
(4.12)

−(θ)

(φ)

 =
u

m

( sin(δ) −cos(δ)

cos(δ) sin(δ)


−1  cos(δ) sin(δ)

−sin(δ) cos(δ)


 VxL − Vx

VyL − Vy

 δ̇

+

 sin(δ) −cos(δ)

cos(δ) sin(δ)


−1  sin(δ) −cos(δ)

cos(δ) sin(δ)


 axL
ayL


+δ̇

 sin(δ) −cos(δ)

cos(δ) sin(δ)


−1  ḟ

−̇l


+δ̈

 sin(δ) −cos(δ)

cos(δ) sin(δ)


−1  f + fc

−l − lc

)

(4.13)

Finally, the desired pitch and roll angles can be calculated as:

 ˙−θd

φ̇d

 =
m

u

 0 1

−1 0


 VxL − Vx

VyL − Vy

 δ̇ + m

u

 ax,L
ay,L


+
m

u

 sin(δ) cos(δ)

−cos(δ) sin(δ)

(δ̇
 ḟ
l̇

+ δ̈

 ḟ + ḟc

−l̇ − l̇c

−

 l̈d

f̈d

)
(4.14)
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where l̈ and f̈ can be obtained from an outer-loop controller:

 l̈
f̈

 = −Kdist

 l

f

−Kspd

 l̇

ḟ

 (4.15)

where Kdist and Kspd are two gain parameters that can be designed using linear control

approaches.

An inner-loop controller is also implemented to provide tracking capabilities required to

minimize attitude errors:

τpitch = Kcmd(θd − θ) +Kq(q) (4.16)

τroll = Kcmd(φd − φ) +Kp(p) (4.17)

τyaw = Kδ(δ) +Kr(rl − r) (4.18)

τz = Kz(zL − z) +KVz(VzL − Vz) + TH (4.19)

where TH represents the minimum thrust required to maintain the position. The gains

for inner-loop and outer-loop controllers are outlined in in Table 4.1

pitch Kcmd = 1.5 Kq = 0.0315

Inner-loop controller roll Kcmd = 1.5 Kp = 0.0315

yaw Kψ = 0.6 Kr = 0.03

thrust Kz = 0.8 KVz = 12.5

Outer-loop controller Kfdist = 2.5 Kfspd = 5.85 Kldist = 2.5 Klspd = 5.85

Table 4.1 Controller gains
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Finally, a control command w to each motor can be calculated for the follower by using

the following control allocation with a combination of τpitch, τroll , τyaw , τz.



w1

w2

w3

w4


=



1 −1 1 1

1 1 −1 1

−1 1 1 1

−1 −1 −1 1





τpitch

τroll

τyaw

τz


(4.20)

4.2 Simulation in MATLAB/Simulink

Before deploying the Formation Flight control algorithm in the aerial vehicle it is validated

in a MATLAB/Simulink simulation environment. Two simulated quad-rotors with high

fidelity mathematical models are used in this simulation environment in which one acts as a

leader aircraft and other as a follower with formation flight control laws implemented that

are derived in Section.4.1. One of the simulated models of aerial vehicles is explained in

subsections below followed by sensor models and different functional blocks. This section

ends with explaining control law blocks used for formation flight.

4.2.1 Simulated Quad-rotor model

The simulation model of quad-rotor as shown in Figure.4.2 is a mathematical model of Leader

aircraft. This model contains a simulated model of a quad-rotor in x8 configuration with

sensor model block to simulate on-board sensors and control law block designated to give

required control inputs to the vehicle to follow waypoints. This setup consists of two quad

models. The leader quad-rotor which is following predefined waypoints and the follower

quad-rotor which is following the leader with the derived equations.
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Figure 4.2 Simulink Skyjib x8 model

4.2.2 Simulation Environment

Figure.4.3 shows the simulation environment with both the aerial vehicles, Formation Flight

control laws block, visualization block and variable clarence component. Top left "Skyjib

leader" block acts as a leader vehicle and its states are given to Formation Flight control

laws block which provides the follower vehicle (Skyjib Follower) with required control inputs

to follow it.

Figure.4.4 shows the control allocation block along with inner and outer loop controllers.

Inner loop controller contains PID controllers and outer loop controller contains Formation

Flight geometry as shown below in Figure.4.5

35



Figure 4.3 Formation Flight model with both the vehicles

Figure 4.4 Control Allocation
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Figure 4.5 Formation flight block in Outer loop controller
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Chapter Five

Communication Architecture

Communication between systems is a key feature addressed in this chapter. Robot Operating

System (ROS) is used in this research to tackle the flow between all the subsystems. A brief

explanation of ROS is given in the following section followed by the subsystems and packages

used in the Research.

5.1 Robot Operating System (ROS)

As the growth of robots increased drastically in 21st century the complexity of the robots in-

creased along with it. Robots operate under real-world, real-time conditions where actuators

and sensors are read and controlled. Various types of robots have various types of sensors,

actuators and hardware which uses different architectures making the code hard to interact

between each other. One other issue working with different types of robots is the size of the

code as it contains a large stack containing from driver-level software to localisation, flight

codes and controls which cannot be handled by a single researcher [Kramer and Scheutz,

2007]. To overcome these challenges, facilitate research in autonomous robotics and make

an easily intractable robot environment a lot of architectures were created from time to time

that support various aspects of the agent development process, ranging from the design of

an agent architecture, to its implementation on robot hardware, to executing it on the robot

38



[Dattalo, 2018]. These frameworks were designed for a particular purpose.

One of such robot environments is ROS, which is chosen in this research as it contains

all the required libraries to the solve the problem of communication required. ROS is an

open source set of libraries and tools that help to write application specific or robot specific

software which can interface between processes [Quigley et al., 2009]. It is a flexible frame-

work containing a collection of tools, libraries, and conventions that aim to simplify the task

of creating complex and robust robot behavior across a wide variety of robotic platforms

and provides hardware abstraction, device drivers, libraries, visualizers, message-passing,

package management. ROS is a Meta Operating system that provides a structured com-

munications layer and assumes there is an underlying operating system of a heterogeneous

compute cluster that will assist it in carrying base tasks. ROS as a Meta Operating system

cannot be classified as a simple framework as it provides a huge amount of functionalities of

operating system and a cluster of libraries but not fully. ROS is based on five philosophical

goals:

1. Peer-to-peer

2. Tools-based

3. Multi-lingual

4. Thin

5. Free and Open-Source

As ROS is freely available to a large population due to its open nature it also needs an

operating system that is open source so the operating system and ROS can be modified as

per the requirements of the application. Hence, it is initially created to run ROS on Linux

particularly Debian and Ubuntu. The main feature of ROS is the way it runs in a system

and the way it communicates.

39



ROS starts with the ROS Master. The Master provides a way to connect a network of

processes (nodes) with a central hub and allows all other ROS pieces of software to find

and talk to each other where every node is responsible for one task. Nodes communicate

with each other using messages passing via logical channels called topics. Each node can

send or get data from the other node using the publish/subscribe model. By providing

service on request, or by using publisher or subscriber connections a network is created and

communicates via predefined message types. Some of the features are mentioned below:

1. Any modification to the interface can be carried-out on the go.

2. It is easy to connect different modules or packages from different software developers

by just implementing right message connectors to the master.

3. It provides Inter Process Communication (IPC) and Remote Procedure Call (RPC)

systems.

4. It allows parallel solving of many problems and also mixes multiple outputs of multiple

components into one.

5. It acts as a cross platform for various programming languages.

Other software interfaces like Mobile Robot Programming Toolkit (MRPT), Carnegie

Mellon Robot Navigation Toolkit (CARMEN), Microsoft Robotics Developer Studio (RDS),

Lightweight Communications and Marshalling (LCM) also provide some of the features, but

not all. One of the important feature of ROS is run-time computational graph which is a pear-

to-pear network of ROS processes that are loosely coupled using the ROS communication

infrastructure [Quigley et al., 2009]. The fundamental communication graph concepts are

nodes, master, parameter server, messages, services, topic, and bags.

An outline of ROS packages and nodes are shown in Figure.5.1. The most relevant

components integrated in this application are described as follows:
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Figure 5.1 ROS Framework on-board Jetson TX2

5.1.1 Stereo Camera

The on-board camera TaraXL is interfaced with a Jetson computer using a software suit

TaraXL SDK developed by e-con systems systems, 2019. However, a TaraXL_ROS package

is used to interface the camera with vision system and python APIs [taraxl_ros]. Some

of the published topics of the package are rectified images, depth image, disparity image,

pointcloud, Inertial Measurement Unit (IMU) inclination and raw data from the camera:

• /taraxl/left/image_rect - Rectified left image

• /taraxl/right/image_rect - Rectified right image

• /taraxl/left/image_raw - Unrectified left image

• /taraxl/right/image_raw - Unrectified right image

• /taraxl/stereo/disparity/image - Disparity image

• /taraxl/depth/image - Depth image

• /taraxl/stereo/pointcloud - pointcloud
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• /taraxl/imu/data_raw - Raw IMU data - linear acceleration and angular velocity

• /taraxl/imu/inclination - IMU inclination data w.r.t 3 axes x,y and z

5.1.2 MAVROS and PX4

MAVROS is a MAVlink [Koubaa et al., 2019] extendable communication node for ROS that

can convert between ROS topics and MAVLink messages. This allows vehicles to commu-

nicate with Ground Control Station using mavlink protocol [Ermakov, 2017]. MAVROS is

used to communicate between a low cost autopilot PX4 flight controller and Jetson TX2

onboard vision computer. MAVROS also handles the frame translations Aerospace north-

east-down (NED) from Flight Control Unit (FCU) to ROS east, north, up (ENU) frames

which is simply carried by applying a rotation of 180 deg about ROLL (X) axis and for local

translation by applying 180 deg about ROLL (X) and 90 deg about YAW (Z) axes. Some of

feature of MAVROS package are:

1. Connection to all MAVLink supported devices e.g. PX4, ArduPilot.

2. Communication with flight controller via serial port, UDP or TCP.

3. Modification of Parameters on the fly.

4. Internal proxy for Ground Control Station using serial, UDP, TCP communication

protocols.

5. Add new Waypoints to the mission.

6. PX4Flow support (by mavros_extras).

7. OFFBOARD mode support.

8. Geographic coordinates conversions.

The nodes used to communicate between PX4 and Jetson TX2 are pose, altitude and battery.
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5.1.3 Darknet_ROS

Darknet_ROS is an integrated package that supports the interface between Darknet library

and ROS [jelonic, 2018]. It is developed for object detection on GPU and CPU. This package

has been modified to include depth output from TaraXL camera and to get the X, Y,

Z relative coordinates of the target. This package publishes number of objects detected,

bounding box of the detected target and the detected image. Original published topics are:

• object_detector - Publishes the number of detected objects.

• bounding_boxes - Publishes an array of bounding boxes that gives information of the

position and size of the bounding box in pixel coordinates.

• detection_image - Publishes an image of the detection image including the bounding

boxes.

This packages is modified to give one more published topic:

• object_coord - Publishes the object coordinates relative to the camera position by

using "/taraxl/left/image_rect" and "/taraxl/depth/image" topics from TaraXL ros

package.

5.1.4 Vicon system

For this research effort, a Vicon indoor facility was available at the Advanced Dynamic

and Control Lab at ERAU. The facility, used to validate vision data, is equipped with a

Virtual-Reality Peripheral Network (VRPN) that broadcasts the tracking information to

any computer connected to the wireless network. Therefore, Vicon tracking position of the

vehicle can be simultaneously compared with the developed vision-based estimation algo-

rithm. The on-board computer Jetson TX2 uses Vrpn_client_ROS packages [ros-drivers,

2017] to subscribe to the published topics such as tracker pose, acceleration and orientation.
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Chapter Six

Simulation Environment For Vision

System In AirSim

6.1 UAS Simulator

Experimenting with unmanned systems are expensive and not safe. So, all the algorithm,

experimental setups and the performance of unmanned systems are tested and analyzed in

a simulated environment with Software In The Loop (SITL). Which gives a test-bed to test

and operate Planes, Rovers and Multi-rotors without any hardware built with autopilot code

and other sensors using C, C++ or Python based language. SITL simulates the vehicle to

run the autopilot and acts a practical tool to avoid the crashes and misbehaving in-flight on

a real system and is self-contained to avoid loss of simulated data. Using a simulator avoids

hazardous situations saving the cost of equipment and provide a real-time estimation of the

system [Shah et al., 2018]. Usually any simulator can be connected using User Datagram

Protocol (UDP) or Transmission Control Protocol (TCP) communication protocols. An

ideal simulator should provide mission specific modes and also a combination of operating

modes such as:

1. System behavioural analysis and predicting.

2. Artificial intelligence and machine learning training support.
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3. Allow testing and evaluation of different control algorithms.

4. Hardware In The Loop, Software In The Loop and Human In The Loop simulations.

The capabilities of a simulator must allow a customized [Driss et al., 2018], flexible and

selected formulation of scenarios to include a variety of

1. various kinds of missions.

2. Testing and evaluating different objectives.

3. Different levels of agent and system autonomy.

4. Different levels of risk and event occurrence probability.

5. Different levels of system intelligence.

6. Various kings of payload and communication for system analysis.

Some of the important feature of UAS simulator are:

1. Create a real-time environment to fly in.

2. Provide support to various autopilots like PX4, Aedupilot.

3. Allow a multitude of sensors like cameras, Lidar, GPS and other sensors.

4. Provide different kinds of configuration of vehicles i.e. quad-copter, octa-copter.

5. Simulate physical aspects like wind speeds, turbulance, air density, clouds, precipitation

and other fluid mechanics constrains.

6. Support multiple vehicles with individual controls and dynamics.

7. Able to interface with various languages.

8. Compatible with different platforms Like windows, Linux, android and mac.
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9. Simulate UAS physics in order to provide accurate represented data.

10. Supports Motion Capture (MOCAP) to simulate UAVs motion planning.

11. Available open source or easily accessible.

6.1.1 Comparison of Various UAS Simulator

There is no one go to simulator to give all the functions as most of them are designed for dif-

ferent purposes. Some of the simulators provide Hardware In The Loop (HITL) simulations

to integrate radio controller and autopilots in real-time. Figure.6.1 shows basic architec-

ture of most simulators. Some of the simulators available are XPlane, Flightgear, Gazebo,

AirSim, JMavSim, UE4Sim and Drone code.

Figure 6.1 Basic architecture of simulator

Some of the comparisons between commonly used UAS simulators are given in Table.6.1.
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Gazebo AirSim JMAVSim

Vehicle interface Multirotor and

Any robots

Multirotors Multirotors

Availability Open-Source Open-Source Open-Source

MAVLink Yes yes yes

multiple PLatforms Linux Windows,Linux

and mac

windows

Autopilot Ardupilot, PX4 Any MAVLink

compatible

device

Motion Capture no yes no

SITL - HITL yes yes yes

Obstacles yes yes no

ROS interface yes yes yes

Ease of deployment high medium high

Table 6.1 Comparison between different simulators

6.2 AirSim

In this thesis, to replicate realistic environment and to support the initial design and tuning

of the vision-based tracking algorithm, a simulation environment was implemented using

Microsoft Aerial Informatics and Robotics Simulation (Airsim) software. Airsim is integrated

with Unreal Engine (UE) tool which is an open-source tool for simulating vehicle translational

and rotational motion using modern high-quality engine and realistic physics library. AirSim

is developed by Microsoft to test and develop machine learning algorithms in February 2017.

AirSim provides interface with MAVLink to obtain live data and communication with the

simulated vehicle and is possible to run SITL and HITL which is shown in Figure.6.2.
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Figure 6.2 MAVLink analysis of a quad-copter

The simulator is built on game development tool Unreal Engine 4 (UE4) as a base to

render the simulated environment more photo-realistic. AirSim is able to interface with

Ardupilot and Pixhawk firmware using MAVLink communication protocol and provides Ap-

plication programming interfaces (APIs) for both python and C/C++ programming lan-

guages. It provides monocular and stereo camera along with other sensors like Lidar, GPS

and accelerometer along with support for multiple vehicles with individual controls. Fig-

ure.6.3 shows the user interface with sensor output display. AirSim also supports ROS com-

munication along with integration of flight sensors such as IMU, LiDAR, GPS, Barometer,

among others [Shah et al., 2018].

AirSim is used as initial stage to simulate multiple vehicles while using the stereo camera

data for detection of a leader vehicle within formation flight. Two quad-rotor vehicles are

simulated while the follower transmit live images and depth maps through ROS as shown in
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Figure 6.3 User display showing sensor output

Figure.6.4.

Figure 6.4 Two quads flying in AirSim

A python code was created to receive this images and send them to the tracking algorithm

to detect the leader along with the estimation of position and orientation relative to the

follower. AirSim do not yet support any customised low level controller to be implemented

on the vehicles and this development is still in research stages. However, in this paper
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AirSim was used to test and validate the performance and functioning of the vision system

in a real-time environment. The system configuration running Airsim is given in Table.6.2

Figure 6.5 FF-Net detection in AirSim

Airsim Computer Configuration

Operating system Ubuntu 18.04 LTS

RAM Memory 128 GB

Processor Intel Xeon(R) Gold 6148 CPU @ 2.40GHZ X 80

Graphics P4000/PCLe/SSE2

Table 6.2 System Configuration
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Chapter Seven

UAS Research Testbed and Facilities

This chapter explains the UAS research test-bed and the testing facilities used to test and

validate the algorithms. The first section of this chapter explains in detail the research

vehicles used and hardware components such as on-board computer, flight controller, camera

on-board, power and propulsion system along with the firmware used on-board and software

used in the ground control station. This is followed by a comprehensive explanation of the

indoor and outdoor flight testing facilities used to for flight tests.

7.1 Research Vehicles

Two commercial aerial platforms, a 3DR and a SkyJib quadrotors, are used as research

testbed vehicles shown in Figure.7.1. Within the formation flight configuration, SkyJib

platform is considered as a follower as it allows higher payload for easier integration of vision

system and 3DR is considered as leader. Table.7.1 gives the basic configurations of both the

vehicles. Below sections explain these vehicles in detail.
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Figure 7.1 Skyjib and 3DR with all Hardware Components

3DR Quadrotor and SkyJib Quadrotor

Items Dimensions (mm) Dimensions (mm)

Propeller arms 240 mm 420 mm

Brushless motors 45 mm (height) 56 mm (height)

, 28 mm (dia.) , 45 mm (dia.)

Propellers 10 x 4.7 15 x 5

Battery 150 x 47 x 30 mm 140 x 90 x 43 mm

Weight 3 kg 8.07 kg

Table 7.1 Quadrotors Dimensions and Mass Properties
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Figure 7.2 Skyjib x8 with Jetsin TX2 on-board

7.2 On-board Flight Hardware

7.2.1 Pixhawk(PX4) Autopilot Flight Controller

The flight controller used in this research is a low cost Pixhawk 1 which is shown in Figure.7.3.

PX4 autopilot is an open-source autopilot system oriented toward inexpensive autonomous

aircraft. This was initially developed in Computer Vision and Geometry Lab of ETH Zurich

(Swiss Federal Institute of Technology) in 2009. Now it is manufactured and marketed

by 3D Robotics [sUAS, 2013]. The flexible PX4 middle-ware running on the NuttX Real-

Time Operating System brings multi-threading and the convenience of a Unix / Linux like

programming environment to the open source autopilot domain, while the custom PX4 driver

layer ensures tight timing. These facilities and additional headroom on RAM and flash will

allow Pixhawk the addition of completely new functionalities like programmatic scripting of

autopilot operations.

Some Features of Pixhawk are given below followed by specification ans interface in

Table.7.2.

1. 32 bit ARM Cortex M4 Processor running NuttX RTOS
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Figure 7.3 Pixhawk

2. 14 PWM / Servo outputs (8 with failsafe and manual override, 6 auxiliary, high-power

compatible)

3. Abundant connectivity options for additional peripherals (UART, I2C, CAN)

4. Integrated backup system for in-flight recovery and manual override with dedicated

processor and stand-alone power supply

5. Backup system integrates mixing, providing consistent autopilot and manual

6. External safety switch, Multicolor LED main visual indicator, High-power, multi-tone

piezo audio indicator, microSD card for long-time high-rate logging.

PX4 v1.8.2

The Pixhawk firmware used for testing in this research is a stable version 1.8.2 . Updates

and main features of PX4 v1.8.2 are mentioned below:

1. Fusion of Visual Inertial Odometry in EKF2 (video)

2. Interface for external Obstacle Avoidance systems (video)
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Pixhawk Specification

Specifications 32bit STM32F427 Cortex M4 core with FPU, 168 MHz, 256 KB

RAM, 2 MB Flash, 32 bit STM32F103 failsafe co-processor, ST

Micro L3GD20H 16 bit gyroscope, ST Micro LSM303D 14 bit ac-

celerometer / magnetometer, MEAS MS5611 barometer

Interfaces 5x UART (serial ports), one high-power capable, 2x with HW flow

control, 2xCAN, Spektrum DSM / DSM2 / DSM-X R© Satellite

compatible input, Futaba S.BUS R© compatible input and output,

PPM sum signal, RSSI (PWM or voltage) input, I2C R©, SPI, 3.3

and 6.6V ADC inputs, External microUSB port

Dimensions Weight: 38g (1.31oz), Width: 50mm (1.96), Thickness: 15.5mm

(.613), Length: 81.5mm (3.21)

Table 7.2 Pixhawk Specifications sUAS, 2013

3. Significantly improved performance on racing drones (users need to reconfigure, link)

(a) Improved filtering and reduced control latency

(b) Added Airmode

4. Improved flight performance on VTOL (Tiltrotors, Tailsitters)

5. Support for building natively on Windows (link)

6. Significant EKF2 improvements

(a) Hardening of the estimator for situations where GPS accuracy is limited

(b) improved sensor selection logic enabling simultaneous use of optical flow and GPS

(c) Added the EKF2_MAG_TYPE parameter for environments with high magnetic

interferences
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7. Wind Estimator

8. Support for structure scanning

9. High Latency telemetry support (Iridium)

10. Precision landing framework (including IRLock driver)

The configuration of the airframe used in the research is shown in Figure.7.4

Figure 7.4 Pixhawk Motor configuration for both Vehicles

7.2.2 GPS Receiver Module with Digital Compass

The UBlox GPS + Compass module is the most commonly used GPS for ArduPilot com-

patible autopilots. The external UBLOX GPS includes the HMC5883L digital compass,

convenient method of mounting the compass away from sources of interference that may be

present in the confines of the vehicle Ardupilot, 2019c. It features active circuitry for the

ceramic patch antenna, rechargeable backup battery for warm starts, and I2C EEPROM for

configuration storage. Features and specifications of GPS used in the research is shown in

Table.7.3
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Figure 7.5 GPS Receiver Module with Digital Compass

UBLOX GPS Specification

ublox LEA-6H module

5 Hz update rate

25 x 25 x 4 mm ceramic patch antenna

LNA and SAW filter

Rechargeable 3V lithium backup battery

Features and Specifications Low noise 3.3V regulator

I2C EEPROM for configuration storage

Power and fix indicator LEDs

APM compatible 6-pin DF13 connector

Exposed RX, TX, 5V and GND pad

38 x 38 x 8.5 mm total size, 16.8 grams.

Table 7.3 UBLOX GPS Specifications (ch 7-2)

7.2.3 915 mhz Telemetry

A SiK Telemetry Radio shown in Figure.7.6 is used to connect and monitor the aerial vehicle

with a ground control station in a laptop. This telemetry is a small, light and inexpensive

open source radio platform that typically allows ranges of better than 300m. The radio

uses open source firmware which has been specially designed to work well with MAVLink
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packets and to be integrated with the Mission Planner, Copter, Rover, and Plane. Some

specifications are mentioned in Table.7.4.

Telemetry Specification

Antenna connectors RP-SMA connector

Output Power 100mW (20dBm), ad-

justable between 1-20dBm

Sensitivity 117dBm sensitivity

Interface Standard TTL UART

Connection status LED indicators Demon-

strated

Table 7.4 Telemetry Specifications Ardupilot, 2019b

Figure 7.6 915mhz Telemetry

7.2.4 Batteries

A MAXAMP 6S 22.2 volts LiPo batteries as shown in Figure.7.7 are used to power the on-

board Jetson TX2 computer, Flight controller (Pixhawk), Camera and other drone hardware

peripherals on the Skyjib X8 configuration and a HRB 5000mah 50c 11.1V LiPo batteries

are used for 3DR quad-rotor is shown in Figure.7.8. Both are explained below.

In MAXAMP 8000mah 6S 22.2 volts LiPo battery the power load is split between two
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Figure 7.7 MAXAMP 6S 22.2 volts LiPo batteries used with Skyjib X8

cells(cores) instead of one. Each cell has the thickest and lowest resistance tabs available.

The 150c burst rate gives enough power for acceleration.

Figure 7.8 HRB 5000mah 50c 11.1V lipo battery used with 3DR Aerial Vehicle

HRB 5000mah 50c 11.1V lipo battery shown in Figure.7.8 offers very high power and

very long run time for RC models. It enhances driving experience no matter what type of

driving.These batteries packs are made with superior Lithium Polymer raw material and

advanced stacking technology enables a single cell of capacity to reach 5000mah.
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7.2.5 Spectrum DX8 Transmitter and DSMX Remote Receiver

A Spectrum DX8 transmitter and DSMX remote receiver is used to communicate and pass

the commands to on-board flight controller. This transmitter is capable of using 8 channels

which are custom programmed for the flight tests performed in the research. The user

input from transmitter is transmitted to the on-board receiver which is connected to flight

controller executing commands.

7.3 Jetson TX2 On-board Computer

Figure 7.9 Jetson TX2 development Board

All the image processing and machine learning is performed in real time by the embedded

computing device Jetson TX2 (Fig.7.9). Jetson TX2 features an integrated 256-core NVIDIA

Pascal GPU, a hex-core ARMv8 64-bit CPU complex, and 8GB of LPDDR4 memory with a
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128-bit interface [NVIDIA, 2019]. The CPU complex combines a dual-core NVIDIA Denver

2 alongside a quad-core ARM Cortex-A57. Jetson uses NVIDIA cuDNN and TensorRT

libraries with support for Recurrent Neural Networks (RNNs), Long Short-Term Memory

networks (LSTMs), and online reinforcement learning accelerates state-of-the-art deep neural

networl (DNN). Robots and drones can use Jetson autopilot integration to control them to

operate safely in realworld and perceive it. Jetson TX2 provides processing and memory

features to perform complex tasks by using a NVIDIA PascalTM Architecture GPU, 2 Denver

64-bit CPUs + Quad-Core A57 processor [Jetson, 2019]. main characteristics of Jetson

computer are summarized in Table.7.5.

Mode Mode Name Denver 2 Frequency ARM A57 Frequency GPU Frequency

0 Max-N 2 2.0 GHz 4 2.0 GHz 1.30 GHz

1 Max-Q 0 4 1.2 GHz .085 GHz

2 Max-P Core-All 2 1.4 GHz 4 1.4 GHz 1.12 GHz

3 Max-P ARM 0 4 2.0 GHz 1.12 GHz

4 Max-P Denver 1 2.0 GHz 1 2.0 GHz 1.12 GHz

Table 7.5 NVIDIA Jetson Operating Modes

Complete specifications of jetson are presented in 7.6. A case shown in Figure.7.9 is

3D printed in the ADCL to integrate it into the drone gimble system and also help as a

protection case (Figure.7.10).

7.4 TaraXL Stereo Camera

A TaraXL USB stereo camera was integrated to the NVIDIA Jetson TX2 and NVIDIA GPU

cards. This 3D stereo camera is based on MT9V024 stereo sensor from ON Semiconductor.

TaraXL is bundled with a proprietary CUDA R© accelerated Stereo SDK called Tara XL SDK

that runs on the GPU of NVIDIA R© Tegra processors which has a capability to provide 3D
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NVIDIA Jetson TX2 Specifications

CPU ARM Cortex-A57 (quad-core) @ 2GHz + NVIDIA Denver2 (dual-core)

@ 2GHz

GPU 256-core Pascal @ 1300MHz

Memory 8GB 128-bit LPDDR4 @ 1866Mhz | 59.7 GB/s

Storage 32GB eMMC 5.1

Encoder 4Kp60, (3X) 4Kp30, (8X) 1080p30

Decoder (2X) 4Kp60

Camera 12 lanes MIPI CSI-2 | 2.5 Gb/sec per lane | 1400 megapixels/sec ISP

Display 2X HDMI 2.0 / DP 1.2 / eDP 1.2 | 2X MIPI DSI

Wireless 802.11a/b/g/n/ac 22 867Mbps | Bluetooth 4.1

Ethernet 10/100/1000 BASE-T Ethernet

USB USB 3.0 + USB 2.0

PCLe Gen 2 | 1X4 + 1X1 or 2X1 + 1X2

CAN Dual CAN bus controller

Misc I/O UART, SPI, I2C, I2S, GPIOs

Socket 400-pin Samtec board-to-board connector, 50X87mm

Thermals -25C to 80C

Power 7.5 W

Table 7.6 NVIDIA TX2 Jetson Specifications
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Figure 7.10 Jetson TX2 development Board with 3D Printed Case

Depth map for 752 X 480 @ 50 fps. TaraXL with a form factor 100 x 30 x 35mm consists

of two OnSemi’s 1/3 inch MT9V024 CMOS image sensors separated by an ’inter-ocular

distance’ or ’base line’ of 60 mm [systems, 2019].

Taraxl is connected to Jetson TX2 using USB 3.0 interface to stream uncompressed

Stereo WVGA format (1504*480) at 60 fps which are processed by TaraXL SDK to generate

the depth map of the scene. Jetson TX2 uses TaraXL SDK and TaraXL_ROS packages to

communicate and get data from the camera. Two ROS nodes are suscribed in the object

detection process to get the depth map along with the detected image outputs. The setup

for Taraxl is shown in Figure.7.11.

The different cameras considered for this research are compared in the Table.7.7.

Given the specifications above in Table.7.6, TaraXL is chosen because of its ROS com-

patibility and its depth sensing.
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Figure 7.11 Jetson and TaraXL Camera

Camera TaraXL CU130

Depth range 500 - 3000 [mm] -

Resolution QVGA (2*320) x 240

VGA (2*640) x 480

WVGA (2*752) x 480

VGA (640 x 480) FHD

(1920 x 1080) 13MP

(4224x3156)

Frame rate 60 fps 60 fps and 30

fps 60 fps and 30 fps

60 fps and 30 fps 30

fps and 15 fps 5 fps

and 2.5 fps

Colour Monochrome Colour

Size [mm] 95 x 17 x 27 30 x 30 x 31.3

ROS capability Yes NO

Table 7.7 NVIDIA TX2 Jetson Specifications
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7.5 Ground Control Station

All the initial updates of the firmware and calibration of the aerial vehicle is carried out by

Ground Control Station (GCS) [Driss et al., 2018]. Some of the basic features of GCS are

Mission Planning, Navigation and Position Control, Payload Control, Communication and

data exchange is detailed below:

Mission planning: GCS handles the path planning and mission plans for UAV to execute

depending on planned trajectories.

Navigation and position control: GCS controls and displays live information of the vehicle

along with the GCS and attitude.

Payload control: Cameras and Sensors connected on-board and to the Gamble System

can be controlled during the mission execution using GCS. Both GCS applications used in

the research are explained below and also shown in Table.7.8.

Mission Planner QGroundControl

Interface Graphical Graphical

Availability Open-Source Open-Source

MAVLink Yes yes

multiple PLatforms Windows, Android Windows, Linux, Android, MAC

Autopilot Ardupilot, PX4 Any MAVLink compatable device

Table 7.8 Specifications of Mission Planner and QGC
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7.5.1 Mission Planner (MP):

Mission Planner (MP) is written in Python language by Michael Oborne only compatible

for windows is shown in Figure.7.12. Mission planner is an open-source application which

provides Graphical display of vital functions like battery, GPS information, video stream

and attitude. It also allows the user to download the log files and examine them Ardupilot,

2019a.

Figure 7.12 Mission Planner User Interface

7.5.2 QgroundControl (QGC)

Unlike MP, QGC is written in C++ using QT libraries by Lorenz Meier and is comparable

with Windows, Linux, Android and Mac. It is flexible to use with many flight controllers and

anything compatible with MAVLink protocol and offer opportunity to monitor and control

aerial vehicle shown in Figure.7.13. The graphical interface of QGC include 2D map which

can manage and track single and multiple aerial vehicles. It offers control of vehicle position,

live video stream, attitude, GPS and to plan autonomous missions QGroundControl, 2019.

66



Figure 7.13 QGroundControl

7.6 Flight Testing Facilities

The vision system in this research is validated using both indoor and outdoor flights. Initial

validation of the model is carried out at Vicon Indoor Testing Facility located at Advanced

Dynamics and Control Lab (John Mica Engineering & Aerospace Innovation Complex (Mi-

caPlex), ERAU) and outdoor flight tests are conducted at Outdoor Testing Facility at ERAU

Intramural Soft-ball Field details of which are stated below.

7.6.1 Vicon Indoor Testing Facility

Vicon indoor test facility as shown in Figure.7.14 is a 3D motion capture room to obtain

vehicle’s position and orientation in real time. The facility shown in F features 12 infrared

cameras that triangulates the 3D position of the target by processing the captured cues from

each camera. This system is also configured to use the Virtual- Reality Peripheral Network

(VRPN) streaming protocol, making it compatible from a software point of view. This

information is passed through a router where it is then transmitted to anyone subscribed

to the IP. In this study, Jetson TX2 was setup with ROS and VRPN to receive data from
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Figure 7.14 Vicon System

Vicon system in real-time. This allowed validation of FF-net algorithm for detecting and

tracking the leader vehicle.

The placement of the leader and follower in Vicon System in 3D orthogonal view (Figure.??)

and 3D perspective view (Figure.7.15).
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Figure 7.15 3D Orthogonal view and Perspective view of quad-rotor in Vicon
system
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7.6.2 Outdoor Testing Facility at ERAU Intramural Softball Field

Outdoor test flights were conducted at Outdoor Testing Facility at Embry-Riddle Aero-

nautical University (ERAU) Intramural Softball Field is shown in Figure.7.16. This is a

designated testing facility to test unmanned autonomous vehicles in the University area.

This field provides a wide area to test, good GPS coverage and soft flat landing surface for

vehicle landing.

Figure 7.16 Outdoor Testing Facility at ERAU Intramural Softball Field
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Chapter Eight

Experimental Results and Flight Test

Program

In this chapter several flight tests and experimental results are presented. First section

explain the results obtained from numerical simulations and gives the comparison of flight

trajectories to validate the Formation Flight control architecture. This is followed by FF-Net

detection in both indoor and outdoor environments. This chapter is ended with a section

explaining the validation of formation flight detection system with Vicon system in Indoor

testing facility and with GPS using flight tests performed outdoors at ERAU Intramural

Softball field.

8.1 Formation Flight Numerical Simulations

Numerical simulations were performed with two quad-rotors flying in formation with a leader

following a designated predefined trajectory while the follower is using formation flight con-

trol laws to follow the leader. In this simulation both the vehicles start at the same position

and at the same time. As the leader vehicle starts to follow the predefined waypoints using

a waypoint follower algorithm, follower gets the information of its states from the leader ve-

hicle to track them and follow the leader. The given trajectory involves the vehicle to climb
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to 45 meters and then follow the waypoints which represents the replication of a real-time

outdoor flight test process. Figure.8.1 shows the leader aircraft with blue and follower with

red line to show the trajectory. This shows the formation flight with two skyjib x8 models

is achieved without clearance in the follower trajectory.

Figure 8.1 Formation Flight without Clearance

The tracking performance of the leader and follower vehicles in X,Y ,Z is shown in Fig-

ure.8.2. This shows the individual tracking of the leader and follower trajectories without

clearance.

Figure.8.3 shows fluctuations in roll,pitch,yaw orientations of follower vehicle to main-

tain its position to track and follow the leader aerial vehicle without any clearance. This

shows that the formation flight control architecture presented in chapter four achieves a sta-

bility and tracks the leader vehicle even after performing some complex maneuvers involving

changes in roll, pitch and yaw.

As described in Chapter 4, the formation flight control algorithm is developed to incorpo-

rate a predefined clearance in forward direction as well as in lateral direction. Which means
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Figure 8.2 X, Y, Z tracking without clearance
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Figure 8.3 roll, pitch, yaw tracking without clearance

a clearance distance is added to the formation geometry to track the leader aerial vehicle at

certain fixed distances from follower. Figure.8.4 clearly shows the trajectory generated by
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formation flight control law with a predefined clearance in lateral direction. In this figure a

distance of 10m in lateral direction can be seen at the end point even though both the leader

vehicle and follower start at the same starting point.

Figure 8.4 Formation Flight with Clearance

Figure.8.5 shows the individual tracking performance of the leader and follower formation

flight in X,Y ,Z positions with lateral clearance. From the Y-position trajectory graph

presented this figure shows that the follower aerial vehicle is trying to keep the distance

with the leader vehicle. X-position and Z-position tracking graphs shows the follower aerial

vehicle following the leader with almost accurate tracking.

Figure.8.6 shows fluctuations in roll,pitch,yaw orientations of follower vehicle to maintain

its position to track and follow the leader aerial vehicle with a predefined clearance in lateral

direction. In this figure it can be seen that both roll and pitch almost tracks and converges

until a complex maneuver is commanded at 70 sec of the simulation. The follower vehicle

using formation flight control algorithm fluctuates to maintain the tracking position and

converges eventually while yaw remain same in all configurations proving the stability of the

74



0 20 40 60 80 100 120 140

Time (s)

0

100

200

300

400

500

600

700

800

D
is

ta
n
c
e
 (

m
)

X Position

0 20 40 60 80 100 120 140

Time (s)

-250

-200

-150

-100

-50

0

50

D
is

ta
n
c
e
 (

m
)

Y Position

0 20 40 60 80 100 120 140

Time (s)

0

5

10

15

20

25

30

35

40

45

50

D
is

ta
n
c
e
 (

m
)

Z Position

Leader

Follower

Figure 8.5 X, Y, Z tracking with clearance

controller even after performing some complex maneuvers involving changes in roll, pitch

and yaw conditions.
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Figure 8.6 roll, pitch, yaw tracking with clearance
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8.2 FF-Net Detection

Several indoor and outdoor flight tests were performed to validate the capabilities of FF-Net

architecture to detecting and tracking the leader vehicle in a real time environment. Two

general conditions considered in this thesis are indoor and outdoor flights. Most of the long

range mission, surveillance and other applications require an UAS to fly in various outdoor

conditions effecting the change in light, reflection of other objects, wind, blending in the

background color and other conditions giving a challenge to detection system. To overcome

these challenges the detection system is trained using data-sets involving samples of images in

all conditions. Figure.8.7 show an example of outdoor detection using FF-Net. A bounding

Figure 8.7 outdoor FF-Net detection for class Raft

box is created around the detected object labeling the class of the detected object, in this

case Raft is detected as leader aerial vehicle.

Figure.8.8 shows an example of the detection of a quad-rotor flying indoor in the Vicon

testing facility.
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Figure 8.8 FF-Net detection for class Raft

8.3 FF-Net Flight Test Indoor and Outdoor

This section validates the vision system by comparing the results with Vicon system. The

flight data collected from flight tests conducted in the vicon indoor testing facility at Ad-

vanced Dynamics and Controls lab and FF-Net detection data collected from vision system

compared in Subsection.8.3.1. The results of the flight tests conducted at ERAU intramural

soft-ball field to validate and compare the FF-Net detection with GPS data obtained from

outdoor flight tests are shown in Subsection.8.3.2 .

8.3.1 Indoor Flight Results at Vicon Indoor Testing Facility

Numerous flight tests are conducted indoors at vicon indoor testing facility to test, tune

and validate the FF-Net detection system. Vicon system provides an accurate tracking and

trajectory of the vehicle at low sampling rates which acts as a good reference reference to test

the vision system. The vision system data is collected using stereo camera and Jetson TX2

on-board skyjib x8 copter and the vicon system data is collected using VRPN_client_ROS
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package on-board Jetson. This collected data is processed in MATLAB to get the correlations

between them. Figure.8.9 shows a sample of results of a flight tests performed at the indoor

testing facility. In Figure.8.9, red lines represent the actual trajectory of the leader quad-

rotor while blue dots represent the position estimated by FF-Net. This figure is represented

to show the real dimension of the drone trajectory and vision system detection in the indoor

facility along with the global axis representation of the testing facility in X,Y ,Z directions.

Figure 8.9 Compared results of the FF-Net with Vicon System

8.3.2 Outdoor Flight Results at ERAU Intramural Soft-ball Field

Outdoor flight tests are conducted to validate the FF-Net with the GPS data collected. The

GPS data is collected using the UBlox GPS + Compass module and pixhawk on-board 3DR

and the vision data from stereo camera and Jetson TX2 on-board Skyjib x8 copter.

The collected GPS data is analysed and a trajectory is created as shown in Figure.8.10

which shows the flight path while collecting GPS data during the flight test conducted at

ERAU Intramural Soft-ball Field. Figure.8.11 shows the compare data of FF-Net detection

system and GPS data collected. The GPS data collected is converted to homogeneous

transformation coordinates to represent them in the local frame and a trajectory is generated.
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Figure 8.10 Flight test data trajectory

This generated trajectory is then correlated with the detected object position from FF-Net

detection system and plotted in Figure.8.11. In the figure, red lines represent the GPS

trajectory of the leader quad-rotor while blue dots represent the position estimated by FF-

Net. The sub-window in the figure shows the detection on leader aircraft in the camera

frame using stereo camera.

Figure 8.11 Compared results of the FF-Net with GPS data
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Chapter Nine

Conclusions And Future Work

9.1 Conclusion

This thesis resulted in a wide study, development and implementation of formation flight

control algorithm using a tracking algorithm, FF-Net, for relative navigation within a forma-

tion architecture using numerical simulations and experimental results obtained from flight

tests conducted indoor and outdoor. This also resulted in development of a test-bed to

validate the control algorithms and vision based algorithms which require high speed and

performance using Jetson TX2 on-board computer, stereo camera and Pixhawk autopilot.

Results for the developed controller without clearance and clearance in lateral direction and

forward direction between the leader and follower aerial vehicle are presented in a simulation

environment showing the performance and stability of the controller.

Numerical simulation results using MATLAB/Simulink and AirSim software were pre-

sented to demonstrate the capabilities of formation flight control laws to be integrated with

FF-Net for detection, tracking and estimation of the position of a leader vehicle. Indoor flight

tests were also performed a testing facility to evaluate accuracy and real-time capabilities of

the integrated system for the position estimation of vehicle. Additionally, the outdoor tests

provide the reliability of the system outdoor using GPS to compare its results.

Both indoor and outdoor from comparison of Vicon data and GPS data with FF-Net
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algorithm show an acceptable performance and demonstrate the potential of this architecture

to be used in different applications such as detection of cooperative and no-cooperative

vehicles, proximity operations, among others.

9.2 Future Work

The work presented in this thesis can be extended to improve in many ways. The formation

flight control algorithm although tested and evaluated in the simulation environment, it was

not tested in a real flight. This can be tested performing multiple flight tests and tuning the

controller in future to fly the multi-rotors in a stabilised formation.

More improvements can be achieved using a better camera and a better processor than

Jetson TX2 as it provides only 12 frames per second when its at high performance mode.

Vision system can also be improved with more optimised training and a larger data-set.

The vision system is trained to recognise any drone in the camera field of view using the

second class "Drone" in the FF-Net detection system which is not used in this thesis as it uses

a specific drone 3DR to be recognised with class "Raft". Using the "Drone" classification in

FF-Net an algorithm can be developed to detect and follow any drone in shadow formation

which is helpful for tracking cooperative and un-cooperative vehicles for military, air force

and other industries.

The developed test-bed in this research can be used to test various control algorithms

and vision based algorithms for various applications.
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APPENDIX



Figure 1 FF-Net detection with class "Drone"
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Figure 2 FF-Net detection with class "Drone"
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