
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 14 Number 3 Article 3

9-1-2019

Memoryranger Prevents Highjacking File_object Structures in Memoryranger Prevents Highjacking File_object Structures in

Windows Kernel Windows Kernel

Igor Korkin
igor.korkin@gmail.com

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Law Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Korkin, Igor (2019) "Memoryranger Prevents Highjacking File_object Structures in Windows Kernel,"
Journal of Digital Forensics, Security and Law: Vol. 14 : No. 3 , Article 3.
Available at: https://commons.erau.edu/jdfsl/vol14/iss3/3

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Embry-Riddle Aeronautical University

https://core.ac.uk/display/289203156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol14
https://commons.erau.edu/jdfsl/vol14/iss3
https://commons.erau.edu/jdfsl/vol14/iss3/3
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.erau.edu/jdfsl/vol14/iss3/3?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

MEMORYRANGER PREVENTS HIJACKING... ADFSL 2020

MEMORYRANGER PREVENTS HIJACKING
FILE_OBJECT STRUCTURES IN WINDOWS

KERNEL
Igor Korkin

Security Researcher
Moscow, Russia

igor.korkin@gmail.com

ABSTRACT
Windows OS kernel memory is one of the main targets of cyber-attacks. By launching such
attacks, hackers are succeeding in process privilege escalation and tampering users’ data by
accessing kernel-mode memory. This paper considers a new example of such an attack, which
results in access to the files opened in an exclusive mode. Windows built-in security features
prevent such a legal access, but attackers can circumvent them by patching dynamically
allocated objects. The research shows that the newest Windows 10 x64 is vulnerable to this
attack. The paper provides an example of using MemoryRanger, a hypervisor- based solution
to prevent such attack by running kernel-mode drivers in isolated kernel memory enclaves.

Keywords: attacks on files, hypervisorbased protection, memory isolation, exclusively
opened file.

1. INTRODUCTION
Modern preemptive multitasking operating
systems like Windows and UNIX-based have
two modes of operation: user mode and ker-
nel mode. These modes are supported by
CPUs and make it possible to isolate code and
memory data in these two modes. Apart from
OS kernel and drivers, kernel-mode memory
includes a lot of sensitive data structures,
which can be used by attackers. CPUs do
not provide any security features to prevent
illegal access to that memory. As a result, in-
truders can gain read- and write access to the
kernel-mode memory by installing malware
drivers or by exploiting driver vulnerabilities.
To mitigate these threats Windows has issued
several protection mechanisms: Patch Guard,

Device Guard etc. but they protect only fixed
memory regions and they do not completely
prevent access to the dynamically allocated
data structures. For example, by exploit-
ing Microsoft CVE-20188120 (Rapid7, 2018a)
vulnerability an attacker “could run arbitrary
code in kernel mode”. By using recently pub-
lished vulnerabilities CVE20188611 (Rapid7,
2018b) and CVE20188170 (Rapid7,2018c) at-
tackers can elevate process privileges even on
newest Windows 10. During these attacks, in-
truders patch the fields of EPROCESS struc-
ture, which corresponds to the particular pro-
cess. This paper considers a new kernel-mode
memory attack on FILE_OBJECT struc-
tures, which makes it possible to read and
write the content of the files opened by drivers
in an exclusive mode. As a result, attackers

c© 2020 ADFSL Page 1

ADFSL 2020 MEMORYRANGER PREVENTS HIJACKING...

can illegally access opened local and network
files, which were not permitted for sharing.
The remainder of the paper proceeds as fol-
lows. Section 2 provides the details of this
attack and shows that security features from
Windows 10 do not prevent it. Section 3 con-
tains the details of adapting MemoryRanger
to prevent this attack and demonstrates that
this solution successfully prevents this attack.
Section 4 and Section 5 focus on the main
conclusions and further research directions
respectively.

2. HIJACKING
FILE_OBJECT TO GET
AN ACCESS TO THE

FILE OPENED IN
EXCLUSIVE MODE

This section describes the internals of filesys-
tem routines in the kernel mode with and
without sharing access. The details of how
to gain a full access to the file opened in an
exclusive mode will be given in the second
part of this chapter.

2.1 Overview of File System
Kernelmode Routines

Windows drivers call the following routines
during file operations:

• ZwCreateFile – to create (or open) a file;

• ZwReadFile/ZwWriteFile – to read and
write the file content;

• ZwClose – to close the file handle and
release system resources.

The detailed overview of all the parameters
for the functions are in MSDN (2017). The
first function ZwCreateFile takes the full file
name, flags etc and returns a handle to a

successfully opened file and otherwise it re-
turns error status. During this operation, the
I/O manager calls the Object Manager to
look up the named file and to help it resolve
any symbolic links for the file object (Ease-
filter, n.d.). Object Manager calls Security
Reference Monitor (SRM) to process secu-
rity checks, see Figure 1. According to the
Yosifovich, Ionescu, Russinovich, & Solomon
(2017) SRM “determine whether a file’s Ac-
cess Control List (ACL) allows to access the
file in the way its thread is requesting. If it
does, the object manager grants the access
and associates the granted access rights with
the file handle that it returns”. I/O Man-
ager builds FILE_OBJECTS with help from
the Object Manager (Russinovich, 1997; Na-
gar, 1997a). The handle is used in read and
write operations as well as to close the file.
The FILE_OBJECT structure is an internal
OS structure, which plays the role of kernel
equivalent of a handle. As a result, each
opened file has two structures in memory: a
handle and a FILE_OBJECT, see Figure 1.
The functions ZwReadFile ZwWriteFile take
the handle obtained at the previous step to
read and write the files content. During these
operations, SRM is not involved, see Figure
1, and this feature can be used by attackers.
Finally, the ZwClose routine takes a handle
to finish all writing operations and close an
opened file. During this operation, SRM is
not involved as well.

2.2 Windows builtin security
sharing

ZwCreateFile has a ShareAccess flag. This
flag “determines how the file is currently
opened and also determines whether sub-
sequent opens requesting certain specific
types of access will be allowed to pro-
ceed or will be denied with an error code
of STATUS_SHARING_VIOLATION” (Na-
gar, 1997a). Let us focus on the following sce-

Page 2 c© 2020 ADFSL

MEMORYRANGER PREVENTS HIJACKING... ADFSL 2020

Figure 1. Internals of File System Routines in Windows Kernel

nario, see Figure 2 a). DriverA calls ZwCre-
ateFile without sharing permission or with
flag ShareAccess equals NULL. Object Man-
ager successfully allocated FILE_OBJECT.
Next DriverB calls the ZwCreateFile in or-
der to gain a legal access to the file, which
is already opened in an exclusive mode by
DriverA. Object Manager returns the error
status STATUS_SHARING_VIOLATION
to DriverB, and prevents access to the file.
As a result, DriverB failed to open such a
file. The present research reveals a vulner-
ability in File System Routines. The thing
is that Object Manager addresses SRM only
during ZwCreateFile call. Object Manager
does not process any security checks during
ZwReadFile and ZwWriteFile calls.

2.3 Analysis of
FILE_OBJECT structure

Let us have a look at the details of
FILE_OBJECT structure. As it was men-
tioned before, this structure is created by I/O

Manager when a driver opens a file handle.
FILE_OBJECT structure includes about 30
fields, the detailed overview of all these files
are presented by (McHoes, & Flynn, 2013)
and (Nagar, 1997b). FILE_OBJECT fields
partially duplicates the flags, which have
been used during calling ZwCreateFile. For
example, for the file opened by ZwCreate-
File routine with flag ShareAccess equals
NULL, the corresponding FILE_OBJECT
structure has zero fields SharedRead and
SharedWrite. The processed research showes
that setting SharedRead and SharedWrite
fields in the FILE_OBJECT do not allow
the shared access to this file. The informa-
tion about files sharing permission is also col-
lected by SRM in the ACLs. The following
four FILE_OBJECT fields are used during
read and write operations:

• Vpb;

• FsContext;

• FsContext2;

c© 2020 ADFSL Page 3

ADFSL 2020 MEMORYRANGER PREVENTS HIJACKING...

• SectionObjectPointer.

The Vpb field is initialized by the I/O Man-
ager before sending a create or an open re-
quest to the file system driver. The Vpb
field points to a mounted Volume Parame-
ter Block (VPB), associated with the tar-
get device object. According to the Nagar
(1997a) the FsContext, FsContext2, and Sec-
tionObjectPointer fields are initialized and
maintained by the file system drivers and
the NT Cache Manager. FsContext pointes
to the FSRTL_COMMON_FCB_HEADER
structure, which has to be allocated by the
file system or network driver. FsContext2
field refers to the Context Control Block
(CBB) associated with the file object. Sec-
tionObjectPointer refers to a structure of
type SECTION_OBJECT_POINTERS and
stores file mapping and caching-related infor-
mation for a file stream. These four fields are
used in read and write files operations, which
are processed without involving SRM and
checking shared permission. The key feature
is that attackers can read these fields without
any issues and use them to gain an access to
the opened file. The details of this hijacked
attack are below.

2.4 Accessing the content of
the file opened in exclusive

mode by hijacking its
FILE_OBJECT

Let us move on to the considered scenario,
see Figure 2 b). In a similar way, DriverA
has opened a target file in an exclusive mode.
Object Manager successfully allocated the
FILE_OBJECT structure to handle this file.
As it was mentioned before, the legal ac-

cess to this file is blocked and the malware
driver processes the following steps to gain
the access illegally:

1. Calls ZwCreateFile routine to create
a new file, e.g. with the name “hi-
jack_file”.

2. Calls ObReferenceObjectByHan-
dle to get a pointer to the created
FILE_OBJECT for the hijack_file.

3. Finds FILE_OBJECT structure for the
target file using the file name and
walk through the Object Directory list
(Probert, 2004; Pistelli, n.d.; Silberman,
2006; Microsoft. n.d.; GamingMasteR,
2009; Korkin & Nesterow, 2016; Fyyre,
2018; Abdalhalim, 2018).

4. Calls ZwReadFile/ZwWriteFile with the
opened handle for the hijack_file to read
and write the content of the target_file.

5. CopiesCopies the following four fields
from FILE_OBJECT for the target_file
to the FILE_OBJECT for the hi-
jack_file:

• Vpb;

• FsContext;

• FsContext2;

• SectionObjectPointer.

After processing these five steps, malware
driver has achieved a full read and write ac-
cess to the target file. These manipulations
has been successfully tested on newest Win-
dows 10 x64. After waiting 10 hours, noth-
ing has happened, like appearing BSOD from
PatchGuard, which is designed to prevent ille-
gal memory modifications. The experimental
results shows that a malware driver can gain
full access to the opened file without sharing
permission by hijacking its FILE_OBJECT
and PatchGuard does not prevent this in-
vasion. To protect files content from being
stolen and guarantee the trusted computing

Page 4 c© 2020 ADFSL

MEMORYRANGER PREVENTS HIJACKING... ADFSL 2020

Figure 2. Access attempts to the file opened without sharing permission: a) legally via calling
ZwCreateFile; b) illegally via hijacking target FILE_OBJECT structure

the MemoryRanger hypervisor has been ap-
plied. The steps of adapting MemoryRanger
to prevent this attack are in the next section.

3. MEMORYRANGER
PREVENTS

FILE_OBJECT
HIJACKING VIA

MEMORY ISOLATION
MemoryRanger is an open-source solution
presented at the recent Black Hat Europe
conference and designed to protect kernel-
mode memory by creating isolated kernel en-
claves and running drivers inside them (Ko-
rkin, 2018a). MemoryRanger has flexible
architecture, which makes it possible to ex-
tend it for protection new memory regions
without any issues. This chapter includes
brief overview of main components of Mem-
oryRanger and steps for adapting them to
prevent FILE_OBJECT hijacking attack.

3.1 MemoryRanger
architecture

MemoryRanger is a hypervisorbased solution
and includes the following components, see
Figure 3

• A kernelmode driver;

• DdiMon;

• MemoryMonRWX;

• Memory Access Policy (MAP).

The kernelmode driver registers driver-
supplied callback routines that are subse-
quently notified about various OS events, for
example, about loading of a new driver. The
next two components DdiMon and Memory-
MonRWX leverage hypervisor facilities and
use VTx technology with Extended Page Ta-
bles (EPT) mechanism, provided by Intel
CPU. DdiMon is designed to monitor device
driver interfaces and is able hook kernel-mode
API calls transparently for the OS. Memory-
MonRWX is able to track and trap all types

c© 2020 ADFSL Page 5

ADFSL 2020 MEMORYRANGER PREVENTS HIJACKING...

Figure 3. Access attempts to the file opened without sharing permission: a) legally via calling
ZwCreateFile; b) illegally via hijacking target FILE_OBJECT structure

of memory access: read, write, and execute.
Memory Access Policy (MAP) plays the role
in intermediate during memory access to the
protected data and decides whether block or
allow access. All the details about Memo-
ryRanger are presented in the white paper
by Korkin (2018a). Initially MemoryRanger
allocates the default EPT structure and puts
all loaded drivers and kernel inside it. Memo-
ryRanger traps loading of a new driver, next
MemoryRanger allocates and configures a
new EPT structure so that only this new
driver and OS kernel are executed here. Mem-
oryRanger isolates execution of drivers by
switching between EPTs. MemoryRanger
hooks kernel API calls. The current version of
MemoryRanger hooks ExAllocatePoolWith-
Tag function to protected newly allocated
memory. Each time isolated driver allocates
memory MemoryRanger updates all EPTs:
the allocated memory buffer is accessible only
for this driver, while all other EPTs exclude

this memory. MemoryRanger skips the legal
memory access attempts and prevents the
illegal ones.

3.2 Adapting MemoryRanger
to protect FILE_OBJECT

structures
To add a FILE_OBJECT support in Memo-
ryRanger the modification of following com-
ponents have been involved:

• DdiMon;

• MAP component.

The updated DdiMon hooks two file system-
related routines ZwCreateFile() and Zw-
Close(). ZwCreateFile-callback routine pro-
cess the following:

1. Calls the original ZwCreateFile routine
and checks whether the returned status
is successful.

Page 6 c© 2020 ADFSL

MEMORYRANGER PREVENTS HIJACKING... ADFSL 2020

2. Checks whether the file has been created
without sharing permission.

3. Checks whether the return address be-
longs to the protected drivers.

4. Gets the pointer to the allocated
FILE_OBJECT by calling ObRefer-
enceObjectByHandle.

5. Adds the FILE_OBJECT pointer and
its size, which equals 0xB bytes to the
protected memory region.

ZwClose()callback routine process the follow-
ing:

1. Checks whether the return address be-
longs to the protected drivers.

2. Gets the pointer to the allocated
FILE_OBJECT by calling ObRefer-
enceObjectByHandle.

3. Delete the FILE_OBJECT pointer and
its size, which equals 0xB-bytes from the
protected memory region.

The MAP component algorithm processes
access violation due to an access to
FILE_OBJECT structure is the similar with
the existing algorithm for processing an ac-
cess to the allocated memory pools. The
experimental results demonstrate that up-
dated MemoryRanger has successfully pro-
tected FILE_OBJECT structures by prevent-
ing its hijacking without blocking legal access
to FILE_OBJECT, see Figure 4. The source
code of updated MemoryRanger and video
demonstrations are here (Korkin, 2018-b).
The processing experiments on Windows

10 x64 have shown that developed updated
MemoryRanger causes acceptable perfor-
mance degradation.

4. CONCLUSION
To sum, up I would like to highlight the fol-
lowing:

1. Recently published kernel-mode exploits
highlight the fact that Windows OS ker-
nel data is becoming vulnerable.

2. analyzed attack on FILE_OBJECT
structure shows that the content of ex-
clusively opened file can be tampered.

3. The proposed update for MemoryRanger
shows how to prevent hijacking attacks
on FILE_OBJECT structures in kernel-
mode memory.

5. FUTURE PLANS
5.1 Prevent Process Privilege

Escalation
The analysis of recent kernel-mode vulner-
abilities, such as CVE-20188120 (Rapid7,
2018a), CVE2018-8611 (Rapid7, 2018-b) and
CVE-2018-8170 (Rapid7, 2018-c) shows that
typically, vulnerable drivers do not access
EPROCESS structures, but after exploita-
tion, they tamper with process structures.
For example during CVE2018-8120 exploita-
tion Win32k.sys driver directly access EPRO-
CESS fields, but usually this driver do not
communicate with this structure. The cur-
rent version of MemoryRanger traps the load-
ing only of new drivers, moves only those to
isolated enclosures. MemoryRanger skips al-
ready loaded drivers. MemoryRanger is able
to prevent this attack by deliberately running
all loaded drivers in separate enclaves.

5.2 Protect ACL \DCL From
Being Patched

According to the books and papers related
to the operating systems internals it is pos-
sible to conclude that information about ob-
jects access rights are collected in the Access

c© 2020 ADFSL Page 7

ADFSL 2020 MEMORYRANGER PREVENTS HIJACKING...

Figure 4. MemoryRanger prevents FILE_OBJECT hijacking by running drives into isolated
kernel-mode memory enclaves

Control List (ACL). During ZwCreateFile
routine call the ObjectManager asks about
required permission from Security Reference
Monitor, which walk through the ACL to
check the permissions. ACL includes access
control entries (ACEs), which indicates what
rights are granted to the object (Hewardt
& Pravat, 2008; Swift, Brundrett, Dyke,
Garg, Hopkins, Chan, Goertzel, & Jensen-
worth, 2002; Bosworth & Kabay, 2002; Datta,
2012; The NT Insider, 2006; The NT Insider
1999;Govindavajhala & Appel, 2006; MSDN,
2018; Russinovich, Ionescu & Solomon, 2012).
It seems promising to analyze the possibility
of attacks on the ACL in order to deliberately
change access mask and gain access to the
target object. MemoryRanger can be applied
to provide integrity of ACL and prevent these
attacks as well.

REFERENCES
[1] Abdalhalim, A. (2018, January

14). A Light on Windows 10’s
“OBJECT_HEADER->TypeIndex”.

Retrieved from https://medium.
com/@ashabdalhalim/a-light-
on-windows-10s-object-header-
typeindex-value-e8f907e7073a

[2] Bosworth, S., & Kabay, M. E. (2002).
Operating System Security. Computer
Security Handbook. 4th edition. John
Wiley & Sons, Inc. New York, NY, USA

[3] Datta, A. (2012). Lecture 11: OS
Protection and Security. CITS2230
Operating Systems. School of Com-
puter Science & Software Engineering.
The University of Western Australia.
Crawley, Western Australia. Retrieved
from http://teaching.csse.uwa.
edu.au/units/CITS2230/handouts/
Lecture11/lecture11.pdf

[4] Easefilter. (n.d.). Understand Win-
dows File System File I/O. Re-
trieved from https://www.easefilter.
com/Forums_Files/File_IO.htm

Page 8 c© 2020 ADFSL

MEMORYRANGER PREVENTS HIJACKING... ADFSL 2020

[5] Fyyre. (2018, November 10). WalkDirec-
tory function. KernelDetective source
code. Retrieved from https://github.
com/Fyyre/kerneldetective/blob/
master/module.cpp

[6] GamingMasteR. (2009). Hidden
Kernel Module (Driver) detection tech-
niques. RCE forums. Retrieved from
http://www.woodmann.com/forum/
archive/index.php/t-12782.html

[7] Govindavajhala, S., & Appel, A.
W. (2006, January 31).Windows
Access Control Demystified. Prince-
ton University. Retrieved from
https://www.cs.princeton.edu/
~appel/papers/winval.pdf

[8] Hewardt, M., & Pravat, D. (2008). Se-
curity. Advanced Windows Debugging.
Addison- Wesley Professional.

[9] Korkin, I. (2018-a). Divide et Im-
pera: MemoryRanger Runs Drivers
in Isolated Kernel Spaces. In Pro-
ceedings of the BlackHat Europe
Conference, London, UK. Retrieved
from https://www.blackhat.com/eu-
18/briefings/schedule/#divide-
et-impera-memoryranger-runs-
drivers-in-isolated-kernel-
spaces-12668

[10] Korkin, I. (2018-b). MemoryRanger
source code. GitHub repository. Re-
trieved from https://github.com/
IgorKorkin/MemoryRanger

[11] Korkin, I., & Nesterow, I. (2016, May
24-26). Acceleration of Statistical De-
tection of Zero- day Malware in the
Memory Dump Using CUDA-enabled
GPU Hardware. Paper presented at the
Proceedings of the 11th Annual Confer-
ence on Digital Forensics, Security and

Law (CDFSL), Embry-Riddle Aeronau-
tical University, Daytona Beach, Florida,
USA, pp. 47-82 Retrieved from commons.
erau.edu/adfsl/2016/tuesday/10

[12] McHoes, A., & Flynn, I. (2013). File
Management. Windows Operating Sys-
tems. Understanding Operating Systems.
Cengage India; 6th edition

[13] Microsoft. (n.d.). NtQueryDirecto-
ryObject function. Microsoft Cor-
poration. Retrieved from https://
lacicloud.net/custom/open/leaks/
Windows\%20Leaked\%20Source/wrk-
v1.2/base/ntos/ob/obdir.c

[14] MSDN. (2017, June 17). Using
Files in a Driver. Kernel-Mode
Driver Architecture. Retrieved from
https://docs.microsoft.com/en-
us/windows-hardware/drivers/
kernel/using-files-in-a-driver

[15] MSDN. (2018, May 5). AC-
CESS_ALLOWED_ACE struc-
ture. Retrieved from https:
//docs.microsoft.com/en-
us/windows/desktop/api/winnt/ns-
winnt-_access_allowed_ace

[16] Nagar, R. (1997, September-a). Win-
dows NT File System Internals A
Developer’s Guide. O’Reilly Media. Re-
trieved from https://doc.lagout.
org/operating/20system\%20/
Windows/Windows\%20NT\%20File\
%20System\%20Internals\%20-
\%20A\%20Developer\%27s\
%20Guide\%20\%281997\%29.pdf

[17] Nagar, R. (1997, September-b).
Fields in the File Object. Windows
NT File System Internals A De-
veloper’s Guide. O’Reilly Media.
Retrieved from https://doc.lagout.
org/operating\%20system\%20/

c© 2020 ADFSL Page 9

ADFSL 2020 MEMORYRANGER PREVENTS HIJACKING...

Windows/Windows\%20NT\%20File\
%20System\%20Internals\%20-
\%20A\%20Developer\%27s\
%20Guide\%20\%281997\%29.pdf

[18] Pistelli, D. (n.d.). AntiMida 1.0.
Retrieved from https://www.ntcore.
com/files/antimida_1.0.htm

[19] Probert, D. (2004). Windows Ker-
nel Internals Object Manager &
LPC. Microsoft. Retrieved from
http://i-web.i.u-tokyo.ac.jp/
edu/training/ss/msprojects/data/
04-ObjectManagerLPC.ppt

[20] Rapid7. (2018-a). Vulnerability &
Exploit Database. Microsoft CVE-
2018-8120: Win32k Elevation of
Privilege Vulnerability. Retrieved
from https://www.rapid7.com/db/
vulnerabilities/msft-cve-2018-
8120

[21] Rapid7. (2018-b). Vulnerability &
Exploit Database. Microsoft CVE-
2018-8611: Windows Kernel Elevation
of Privilege Vulnerability. Retrieved
from https://www.rapid7.com/db/
vulnerabilities/msft-cve-2018-
8611

[22] Rapid7. (2018-c). Vulnerability &
Exploit Database. Microsoft CVE-
2018-8170: Windows Image Elevation
of Privilege Vulnerability. Retrieved
from https://www.rapid7.com/db/
vulnerabilities/msft-cve-2018-
8170

[23] Russinovich, M. (1997). Inside NT’s
Object Manager. Compute Engines. Re-
trieved from https://www.itprotoday.
com/compute-engines/inside-nts-
object-manager

[24] Russinovich, M., Ionescu, A., &
Solomon, D. (2012, March 15).
Microsoft Windows Security. Mi-
crosoft Press Store. Retrieved from
https://www.microsoftpressstore.
com/articles/article.aspx?p=
2228450&seqNum=3

[25] Silberman, P. (2006). FindOb-
jectTypes function. Source code
of FUTo_enhanced rootkit. Re-
trieved from http://read.pudn.com/
downloads133/sourcecode/windows/
system/568917/FUTo_enhanced/
FUTo/Sys/Rootkit.c.htm

[26] Swift, M.M., Brundrett, P., Dyke, C.V.,
Garg, P., Hopkins, A., Chan, S., Go-
ertzel, M., & Jensenworth, G. (2002).
Improving the Granularity of Access
Control in Windows NT. Published in:
Journal ACM Transactions on Informa-
tion and System Security (TISSEC). Vol-
ume 5 Issue 4. pp. 398-437. DOI: https:
//doi.org/10.1145/581271.581273

[27] The NT Insider (1999). Keeping Se-
crets - Windows NT Security (Part I).
The NT Insider. Vol 6, Issue 3. Re-
trieved from http://www.osronline.
com/article.cfm?id=56

[28] The NT Insider (2006). In Denial - De-
bugging STATUS_ACCESS_DENIED.
The NT Insider. Vol 13, Issue 2. Re-
trieved from http://www.osronline.
com/article.cfm?article=459

[29] Yosifovich P., Ionescu A., Russinovich
M.E., & Solomon D.A. (2017). Chapter 7
Security. Windows Internals 7th edition.
Microsoft Press. Redmond, Washington.

Page 10 c© 2020 ADFSL

	Memoryranger Prevents Highjacking File_object Structures in Windows Kernel
	Recommended Citation

	Memoryranger Prevents Highjacking File_object Structures in Windows Kernel

