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MEMORYRANGER PREVENTS HIJACKING
FILE_OBJECT STRUCTURES IN WINDOWS

KERNEL
Igor Korkin
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ABSTRACT
Windows OS kernel memory is one of the main targets of cyber-attacks. By launching such
attacks, hackers are succeeding in process privilege escalation and tampering users’ data by
accessing kernel-mode memory. This paper considers a new example of such an attack, which
results in access to the files opened in an exclusive mode. Windows built-in security features
prevent such a legal access, but attackers can circumvent them by patching dynamically
allocated objects. The research shows that the newest Windows 10 x64 is vulnerable to this
attack. The paper provides an example of using MemoryRanger, a hypervisor- based solution
to prevent such attack by running kernel-mode drivers in isolated kernel memory enclaves.

Keywords: attacks on files, hypervisorbased protection, memory isolation, exclusively
opened file.

1. INTRODUCTION
Modern preemptive multitasking operating
systems like Windows and UNIX-based have
two modes of operation: user mode and ker-
nel mode. These modes are supported by
CPUs and make it possible to isolate code and
memory data in these two modes. Apart from
OS kernel and drivers, kernel-mode memory
includes a lot of sensitive data structures,
which can be used by attackers. CPUs do
not provide any security features to prevent
illegal access to that memory. As a result, in-
truders can gain read- and write access to the
kernel-mode memory by installing malware
drivers or by exploiting driver vulnerabilities.
To mitigate these threats Windows has issued
several protection mechanisms: Patch Guard,

Device Guard etc. but they protect only fixed
memory regions and they do not completely
prevent access to the dynamically allocated
data structures. For example, by exploit-
ing Microsoft CVE-20188120 (Rapid7, 2018a)
vulnerability an attacker “could run arbitrary
code in kernel mode”. By using recently pub-
lished vulnerabilities CVE20188611 (Rapid7,
2018b) and CVE20188170 (Rapid7,2018c) at-
tackers can elevate process privileges even on
newest Windows 10. During these attacks, in-
truders patch the fields of EPROCESS struc-
ture, which corresponds to the particular pro-
cess. This paper considers a new kernel-mode
memory attack on FILE_OBJECT struc-
tures, which makes it possible to read and
write the content of the files opened by drivers
in an exclusive mode. As a result, attackers
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can illegally access opened local and network
files, which were not permitted for sharing.
The remainder of the paper proceeds as fol-
lows. Section 2 provides the details of this
attack and shows that security features from
Windows 10 do not prevent it. Section 3 con-
tains the details of adapting MemoryRanger
to prevent this attack and demonstrates that
this solution successfully prevents this attack.
Section 4 and Section 5 focus on the main
conclusions and further research directions
respectively.

2. HIJACKING
FILE_OBJECT TO GET
AN ACCESS TO THE

FILE OPENED IN
EXCLUSIVE MODE

This section describes the internals of filesys-
tem routines in the kernel mode with and
without sharing access. The details of how
to gain a full access to the file opened in an
exclusive mode will be given in the second
part of this chapter.

2.1 Overview of File System
Kernelmode Routines

Windows drivers call the following routines
during file operations:

• ZwCreateFile – to create (or open) a file;

• ZwReadFile/ZwWriteFile – to read and
write the file content;

• ZwClose – to close the file handle and
release system resources.

The detailed overview of all the parameters
for the functions are in MSDN (2017). The
first function ZwCreateFile takes the full file
name, flags etc and returns a handle to a

successfully opened file and otherwise it re-
turns error status. During this operation, the
I/O manager calls the Object Manager to
look up the named file and to help it resolve
any symbolic links for the file object (Ease-
filter, n.d.). Object Manager calls Security
Reference Monitor (SRM) to process secu-
rity checks, see Figure 1. According to the
Yosifovich, Ionescu, Russinovich, & Solomon
(2017) SRM “determine whether a file’s Ac-
cess Control List (ACL) allows to access the
file in the way its thread is requesting. If it
does, the object manager grants the access
and associates the granted access rights with
the file handle that it returns”. I/O Man-
ager builds FILE_OBJECTS with help from
the Object Manager (Russinovich, 1997; Na-
gar, 1997a). The handle is used in read and
write operations as well as to close the file.
The FILE_OBJECT structure is an internal
OS structure, which plays the role of kernel
equivalent of a handle. As a result, each
opened file has two structures in memory: a
handle and a FILE_OBJECT, see Figure 1.
The functions ZwReadFile ZwWriteFile take
the handle obtained at the previous step to
read and write the files content. During these
operations, SRM is not involved, see Figure
1, and this feature can be used by attackers.
Finally, the ZwClose routine takes a handle
to finish all writing operations and close an
opened file. During this operation, SRM is
not involved as well.

2.2 Windows builtin security
sharing

ZwCreateFile has a ShareAccess flag. This
flag “determines how the file is currently
opened and also determines whether sub-
sequent opens requesting certain specific
types of access will be allowed to pro-
ceed or will be denied with an error code
of STATUS_SHARING_VIOLATION” (Na-
gar, 1997a). Let us focus on the following sce-
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Figure 1. Internals of File System Routines in Windows Kernel

nario, see Figure 2 a). DriverA calls ZwCre-
ateFile without sharing permission or with
flag ShareAccess equals NULL. Object Man-
ager successfully allocated FILE_OBJECT.
Next DriverB calls the ZwCreateFile in or-
der to gain a legal access to the file, which
is already opened in an exclusive mode by
DriverA. Object Manager returns the error
status STATUS_SHARING_VIOLATION
to DriverB, and prevents access to the file.
As a result, DriverB failed to open such a
file. The present research reveals a vulner-
ability in File System Routines. The thing
is that Object Manager addresses SRM only
during ZwCreateFile call. Object Manager
does not process any security checks during
ZwReadFile and ZwWriteFile calls.

2.3 Analysis of
FILE_OBJECT structure

Let us have a look at the details of
FILE_OBJECT structure. As it was men-
tioned before, this structure is created by I/O

Manager when a driver opens a file handle.
FILE_OBJECT structure includes about 30
fields, the detailed overview of all these files
are presented by (McHoes, & Flynn, 2013)
and (Nagar, 1997b). FILE_OBJECT fields
partially duplicates the flags, which have
been used during calling ZwCreateFile. For
example, for the file opened by ZwCreate-
File routine with flag ShareAccess equals
NULL, the corresponding FILE_OBJECT
structure has zero fields SharedRead and
SharedWrite. The processed research showes
that setting SharedRead and SharedWrite
fields in the FILE_OBJECT do not allow
the shared access to this file. The informa-
tion about files sharing permission is also col-
lected by SRM in the ACLs. The following
four FILE_OBJECT fields are used during
read and write operations:

• Vpb;

• FsContext;

• FsContext2;
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• SectionObjectPointer.

The Vpb field is initialized by the I/O Man-
ager before sending a create or an open re-
quest to the file system driver. The Vpb
field points to a mounted Volume Parame-
ter Block (VPB), associated with the tar-
get device object. According to the Nagar
(1997a) the FsContext, FsContext2, and Sec-
tionObjectPointer fields are initialized and
maintained by the file system drivers and
the NT Cache Manager. FsContext pointes
to the FSRTL_COMMON_FCB_HEADER
structure, which has to be allocated by the
file system or network driver. FsContext2
field refers to the Context Control Block
(CBB) associated with the file object. Sec-
tionObjectPointer refers to a structure of
type SECTION_OBJECT_POINTERS and
stores file mapping and caching-related infor-
mation for a file stream. These four fields are
used in read and write files operations, which
are processed without involving SRM and
checking shared permission. The key feature
is that attackers can read these fields without
any issues and use them to gain an access to
the opened file. The details of this hijacked
attack are below.

2.4 Accessing the content of
the file opened in exclusive

mode by hijacking its
FILE_OBJECT

Let us move on to the considered scenario,
see Figure 2 b). In a similar way, DriverA
has opened a target file in an exclusive mode.
Object Manager successfully allocated the
FILE_OBJECT structure to handle this file.
As it was mentioned before, the legal ac-

cess to this file is blocked and the malware
driver processes the following steps to gain
the access illegally:

1. Calls ZwCreateFile routine to create
a new file, e.g. with the name “hi-
jack_file”.

2. Calls ObReferenceObjectByHan-
dle to get a pointer to the created
FILE_OBJECT for the hijack_file.

3. Finds FILE_OBJECT structure for the
target file using the file name and
walk through the Object Directory list
(Probert, 2004; Pistelli, n.d.; Silberman,
2006; Microsoft. n.d.; GamingMasteR,
2009; Korkin & Nesterow, 2016; Fyyre,
2018; Abdalhalim, 2018).

4. Calls ZwReadFile/ZwWriteFile with the
opened handle for the hijack_file to read
and write the content of the target_file.

5. CopiesCopies the following four fields
from FILE_OBJECT for the target_file
to the FILE_OBJECT for the hi-
jack_file:

• Vpb;

• FsContext;

• FsContext2;

• SectionObjectPointer.

After processing these five steps, malware
driver has achieved a full read and write ac-
cess to the target file. These manipulations
has been successfully tested on newest Win-
dows 10 x64. After waiting 10 hours, noth-
ing has happened, like appearing BSOD from
PatchGuard, which is designed to prevent ille-
gal memory modifications. The experimental
results shows that a malware driver can gain
full access to the opened file without sharing
permission by hijacking its FILE_OBJECT
and PatchGuard does not prevent this in-
vasion. To protect files content from being
stolen and guarantee the trusted computing
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Figure 2. Access attempts to the file opened without sharing permission: a) legally via calling
ZwCreateFile; b) illegally via hijacking target FILE_OBJECT structure

the MemoryRanger hypervisor has been ap-
plied. The steps of adapting MemoryRanger
to prevent this attack are in the next section.

3. MEMORYRANGER
PREVENTS

FILE_OBJECT
HIJACKING VIA

MEMORY ISOLATION
MemoryRanger is an open-source solution
presented at the recent Black Hat Europe
conference and designed to protect kernel-
mode memory by creating isolated kernel en-
claves and running drivers inside them (Ko-
rkin, 2018a). MemoryRanger has flexible
architecture, which makes it possible to ex-
tend it for protection new memory regions
without any issues. This chapter includes
brief overview of main components of Mem-
oryRanger and steps for adapting them to
prevent FILE_OBJECT hijacking attack.

3.1 MemoryRanger
architecture

MemoryRanger is a hypervisorbased solution
and includes the following components, see
Figure 3

• A kernelmode driver;

• DdiMon;

• MemoryMonRWX;

• Memory Access Policy (MAP).

The kernelmode driver registers driver-
supplied callback routines that are subse-
quently notified about various OS events, for
example, about loading of a new driver. The
next two components DdiMon and Memory-
MonRWX leverage hypervisor facilities and
use VTx technology with Extended Page Ta-
bles (EPT) mechanism, provided by Intel
CPU. DdiMon is designed to monitor device
driver interfaces and is able hook kernel-mode
API calls transparently for the OS. Memory-
MonRWX is able to track and trap all types
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Figure 3. Access attempts to the file opened without sharing permission: a) legally via calling
ZwCreateFile; b) illegally via hijacking target FILE_OBJECT structure

of memory access: read, write, and execute.
Memory Access Policy (MAP) plays the role
in intermediate during memory access to the
protected data and decides whether block or
allow access. All the details about Memo-
ryRanger are presented in the white paper
by Korkin (2018a). Initially MemoryRanger
allocates the default EPT structure and puts
all loaded drivers and kernel inside it. Memo-
ryRanger traps loading of a new driver, next
MemoryRanger allocates and configures a
new EPT structure so that only this new
driver and OS kernel are executed here. Mem-
oryRanger isolates execution of drivers by
switching between EPTs. MemoryRanger
hooks kernel API calls. The current version of
MemoryRanger hooks ExAllocatePoolWith-
Tag function to protected newly allocated
memory. Each time isolated driver allocates
memory MemoryRanger updates all EPTs:
the allocated memory buffer is accessible only
for this driver, while all other EPTs exclude

this memory. MemoryRanger skips the legal
memory access attempts and prevents the
illegal ones.

3.2 Adapting MemoryRanger
to protect FILE_OBJECT

structures
To add a FILE_OBJECT support in Memo-
ryRanger the modification of following com-
ponents have been involved:

• DdiMon;

• MAP component.

The updated DdiMon hooks two file system-
related routines ZwCreateFile() and Zw-
Close(). ZwCreateFile-callback routine pro-
cess the following:

1. Calls the original ZwCreateFile routine
and checks whether the returned status
is successful.
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2. Checks whether the file has been created
without sharing permission.

3. Checks whether the return address be-
longs to the protected drivers.

4. Gets the pointer to the allocated
FILE_OBJECT by calling ObRefer-
enceObjectByHandle.

5. Adds the FILE_OBJECT pointer and
its size, which equals 0xB bytes to the
protected memory region.

ZwClose()callback routine process the follow-
ing:

1. Checks whether the return address be-
longs to the protected drivers.

2. Gets the pointer to the allocated
FILE_OBJECT by calling ObRefer-
enceObjectByHandle.

3. Delete the FILE_OBJECT pointer and
its size, which equals 0xB-bytes from the
protected memory region.

The MAP component algorithm processes
access violation due to an access to
FILE_OBJECT structure is the similar with
the existing algorithm for processing an ac-
cess to the allocated memory pools. The
experimental results demonstrate that up-
dated MemoryRanger has successfully pro-
tected FILE_OBJECT structures by prevent-
ing its hijacking without blocking legal access
to FILE_OBJECT, see Figure 4. The source
code of updated MemoryRanger and video
demonstrations are here (Korkin, 2018-b).
The processing experiments on Windows

10 x64 have shown that developed updated
MemoryRanger causes acceptable perfor-
mance degradation.

4. CONCLUSION
To sum, up I would like to highlight the fol-
lowing:

1. Recently published kernel-mode exploits
highlight the fact that Windows OS ker-
nel data is becoming vulnerable.

2. analyzed attack on FILE_OBJECT
structure shows that the content of ex-
clusively opened file can be tampered.

3. The proposed update for MemoryRanger
shows how to prevent hijacking attacks
on FILE_OBJECT structures in kernel-
mode memory.

5. FUTURE PLANS
5.1 Prevent Process Privilege

Escalation
The analysis of recent kernel-mode vulner-
abilities, such as CVE-20188120 (Rapid7,
2018a), CVE2018-8611 (Rapid7, 2018-b) and
CVE-2018-8170 (Rapid7, 2018-c) shows that
typically, vulnerable drivers do not access
EPROCESS structures, but after exploita-
tion, they tamper with process structures.
For example during CVE2018-8120 exploita-
tion Win32k.sys driver directly access EPRO-
CESS fields, but usually this driver do not
communicate with this structure. The cur-
rent version of MemoryRanger traps the load-
ing only of new drivers, moves only those to
isolated enclosures. MemoryRanger skips al-
ready loaded drivers. MemoryRanger is able
to prevent this attack by deliberately running
all loaded drivers in separate enclaves.

5.2 Protect ACL \DCL From
Being Patched

According to the books and papers related
to the operating systems internals it is pos-
sible to conclude that information about ob-
jects access rights are collected in the Access
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Figure 4. MemoryRanger prevents FILE_OBJECT hijacking by running drives into isolated
kernel-mode memory enclaves

Control List (ACL). During ZwCreateFile
routine call the ObjectManager asks about
required permission from Security Reference
Monitor, which walk through the ACL to
check the permissions. ACL includes access
control entries (ACEs), which indicates what
rights are granted to the object (Hewardt
& Pravat, 2008; Swift, Brundrett, Dyke,
Garg, Hopkins, Chan, Goertzel, & Jensen-
worth, 2002; Bosworth & Kabay, 2002; Datta,
2012; The NT Insider, 2006; The NT Insider
1999;Govindavajhala & Appel, 2006; MSDN,
2018; Russinovich, Ionescu & Solomon, 2012).
It seems promising to analyze the possibility
of attacks on the ACL in order to deliberately
change access mask and gain access to the
target object. MemoryRanger can be applied
to provide integrity of ACL and prevent these
attacks as well.
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