
Journal of Digital Forensics, Journal of Digital Forensics,

Security and Law Security and Law

Volume 14 Number 3 Article 2

9-1-2019

Improved Decay Tolerant Inference of Previously Uninstalled Improved Decay Tolerant Inference of Previously Uninstalled

Computer Applications Computer Applications

Oluwaseun Adegbehingbe
George Mason University, oadegbeh@gmu.edu

James Jones
George Mason University, jjonesu@gmu.edu

Follow this and additional works at: https://commons.erau.edu/jdfsl

 Part of the Computer Law Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Adegbehingbe, Oluwaseun and Jones, James (2019) "Improved Decay Tolerant Inference of Previously
Uninstalled Computer Applications," Journal of Digital Forensics, Security and Law: Vol. 14 : No. 3 , Article
2.
DOI: https://doi.org/10.15394/jdfsl.2019.1626
Available at: https://commons.erau.edu/jdfsl/vol14/iss3/2

This Article is brought to you for free and open access by
the Journals at Scholarly Commons. It has been
accepted for inclusion in Journal of Digital Forensics,
Security and Law by an authorized administrator of
Scholarly Commons. For more information, please
contact commons@erau.edu.

(c)ADFSL

http://commons.erau.edu/jdfsl
http://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl
https://commons.erau.edu/jdfsl/vol14
https://commons.erau.edu/jdfsl/vol14/iss3
https://commons.erau.edu/jdfsl/vol14/iss3/2
https://commons.erau.edu/jdfsl?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.15394/jdfsl.2019.1626
https://commons.erau.edu/jdfsl/vol14/iss3/2?utm_source=commons.erau.edu%2Fjdfsl%2Fvol14%2Fiss3%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu
http://commons.erau.edu/
http://commons.erau.edu/
/creativecommons.org/licenses/by-nc-nd/4.0/
/creativecommons.org/licenses/by-nc-nd/4.0/

JDFSL V14N3

IMPROVED DECAY TOLERANT
INFERENCE OF PREVIOUSLY
UNINSTALLED COMPUTER

APPLICATIONS
Oluwaseun Adegbehingbe and James H. Jones Jr.

George Mason University
Fairfax, Virginia, USA

{oadegbeh, jjonesu}@gmu.edu

ABSTRACT
When an application is uninstalled from a computer system, the application’s deleted file
contents are overwritten over time, depending on factors such as operating system, available
unallocated disk space, user activity, etc. As this content decays, the ability to infer the
application’s prior presence, based on the remaining digital artifacts, becomes more difficult.
Prior research inferring previously installed applications by matching sectors from a hard
disk of interest to a previously constructed catalog of labeled sector hashes showed promising
results. This prior work used a white list approach to identify relevant artifacts, resulting in
no irrelevant artifacts but incurring the loss of some potentially useful artifacts. In this current
work, we collect a more complete set of relevant artifacts by adapting the sequential snapshot
file differencing method to identify and eliminate from the catalog file-system changes which
are not due to application installation and use.
The key contribution of our work is the building of a more complete catalog which ultimately
results in more accurate prior application inference.

1. INTRODUCTION

Digital forensics investigations are often lim-
ited when digital artifacts have been inten-
tionally or inadvertently deleted and partially
overwritten. The current approach for deal-
ing with this situation is to use forensic anal-
ysis tools to attempt to recover files through
file signature matching and data structure
analysis [1]. Another approach is to match
individual file sectors to known content or
to search for sub-sector strings (keywords) of

interest. This approach ignores the inferen-
tial value of combining matched sectors and
strings from multiple source files. A partial
solution to this problem as proposed by Jones
and his collaborators [2] compares matched
sectors to a catalog of known multi-file ar-
tifact sets associated with specific software
applications, then computes a weighted score
over those matched sectors.

The approach used by Jones is limited
by the fact that the sequential snapshot
file differencing method used to build the

c© 2020 JDFSL Page 1

JDFSL V14N3

application-sector catalog is highly restric-
tive in its artifact selection. The files chosen
for inclusion in the catalog are restricted to
files with filenames or file paths matching a
few selected keywords related to the appli-
cation name, i.e., a white list. For example,
only installed files whose file paths contain
the keyword “firefox” are used in constructing
a hash database for Firefox application. This
approach results in the exclusion of sectors
from certain files of interest whose file paths
do not consist of the chosen keyword of in-
terest. Jones and his collaborators, in their
approach, produced a satisfactory result, but
removed some number of file and sector arti-
facts which likely have inferential value. The
need exists for a modified approach which
produces a more complete set of artifacts for
each application.
In this work, we propose a method for

generating a more complete and accurate ar-
tifact set for each application included in the
catalog. This method involves accurately iso-
lating all artifacts that are generated directly
or indirectly by an application during the ap-
plication’s lifecycle. If file system changes are
monitored during an application’s life cycle,
it can be observed that not all the changes
can be linked to the application. For instance,
some of the activities are from the operating
system (OS), and some might be due to user
activities not related to the application of
interest. In order to create a more accurate
set of artifacts associated with an application,
we need a means of distinguishing between
application related and non-application re-
lated changes on the system’s persistent stor-
age. In this work, we extend the prior se-
quential snapshot file differencing method by
isolating all application related file system
changes in order to collect a larger but still
accurate artifact set for the catalog construc-
tion. This is achieved by identifying and
eliminating non-application-related file sys-
tem changes and related artifacts collected

while monitoring a file system for changes
caused by an application’s life cycle activi-
ties. In this work, we achieve this goal by
adding a "do-nothing" branch to the artifact
collection process. The "do-nothing" branch
is simply a computer system running con-
currently with the computer system being
monitored for file system changes during ap-
plication life cycle activities (Install, Open,
Close, Uninstall, Close, Restart). The "do-
nothing" system is left untouched while the
"application-run" system gets an application
installed, used, and uninstalled. In addition
to the already reported file differencing per-
formed between base and post activity im-
ages of the "application-run" branch, we also
perform file differencing between the base
and post activity images of the "do-nothing"
branch. File system changes which appear
in both difference sets are deemed to be not
related to the application of interest. These
file system changes can be removed from con-
sideration for use in generating artifacts for
the specific application catalog set. The key
contribution of our work is improved catalog
completeness and accuracy as compared to
the previous file differencing approach for cat-
alog construction, and the improvement in
the accuracy of application inference based on
the more complete catalog. We compare our
new catalog sets to those previously reported,
and we compare the inferential performance
of our technique using known ground truth
test images, including images from the M57
Patents Scenario data set [3]. We show that
improving the completeness and accuracy of
the catalog will produce improved application
inference. This work is relevant for law en-
forcement, intelligence, digital forensics, and
user-activity profiling.

2. RELATED WORK
Software applications such as word proces-
sors, spreadsheets, web browsers, media play-

Page 2 c© 2020 JDFSL

JDFSL V14N3

ers, etc., are of interest to the digital foren-
sics community as they are the instruments
of user and system activity. Determining a
user’s application use is an active research
area because different types of software al-
lows a user to perform certain tasks that
may be of investigative interest, e.g. a web
browser can be used to access illegal content,
hacking tools can be used to illegally access
a computer system, etc. Forensic research
regarding software applications often decon-
structs or observes the application software
to determine how it operates and what digital
artifacts are created, modified, or deleted in
different scenarios. Many applications have
been studied in this manner and reported
publicly, for example cloud storage software
such as Dropbox [4], anti-forensic tools such
as SecureClean [5], various browser artifacts,
etc., while other analysis has been conducted
on a one-time basis or not released publicly
for other reasons.
Observation-based forensic analysis of ap-

plication programs is typically implemented
using one or both of two primary techniques:
system monitoring and differential analysis.
Both techniques identify system-level changes
that an application makes during the applica-
tion life cycle. Process Monitor [6] is a system
monitoring tool which provides a unified view
of the file system, Registry and process activ-
ities. It determines file system and Registry
changes using common operating system Ap-
plication Programming Interfaces (APIs).

Differential analysis is a process that com-
pare two objects and reports the differences
between them. The differential forensic anal-
ysis formula developed by Garfinkel [7] can be
expressed as: A———R >$B. “If A and B are
disk images and the examiner is evaluating
the installation footprint of a new applica-
tion, then R might be a list of files and Reg-
istry entries that are created or changed” [7].
The objects that can be compared could be
disk images, files, or network traffic capture

files. The result of the differential forensic
analysis is the report of changes between the
two objects, e.g., additions, modifications
or deletions to the file system. Garfinkel
et al [Ibid.] authored differential forensic
analysis tools, such as idifference.py, rdiffer-
ence.py, idifference2.py. The idifference.py
and idifference2.py tools take two disk im-
ages as input and report on the file system
differences between them. The rdifference.py
tool takes two offline Registry hive files as
input and reports on the differences between
them. When an application program gets
uninstalled or deleted by the user, files asso-
ciated with the application are deleted and
the data storage areas associated with those
files are deallocated by the file system. These
application artifacts are now subject to decay
or destruction because they can get partially
or completely overwritten when the operating
system reallocates their associated clusters
for new data. When the deleted files remain
intact, there are tools such as TestDisk [8]
that can be used to recover the files. There
are also file carving techniques [9], [10] that
can be used to recover partially overwritten
files. Other work [11] studied deleted file
persistence in digital devices and media.
During the course of the forensic exam-

ination of a digital device, one goal is to
explain what was found in the digital de-
vice, possibly in relation to a crime. Often
a hypothesis is proposed to explain how a
computer crime was committed, and analysis
of the digital media is performed to obtain
evidence that would support or refute such a
hypothesis. This analysis may be intended to
answer simple questions involving timelines,
or user or application program activities in-
volving a digital device. When one aspect of
a digital forensic examination is to infer pre-
viously deleted application program software
on a digital device, current approaches and re-
search can be grouped into one or more of the
following categories, discussed in the sections

c© 2020 JDFSL Page 3

JDFSL V14N3

that follow: string and keyword searching,
log analysis, file carving, hash-based carving,
and matching.
A simple approach that can be used to

infer previously uninstalled application on a
persistent storage media is by parsing the
media for certain strings or keywords related
to the application program activities in a
manner similar to that used for memory [12],
registry [13] and network logs [14]. Tools
such as EnCase [15] are used to search digital
media for specific keywords without the need
to parse the file system. The problem with
this approach is that other information such
as time stamps, file meta-data, etc., have to
be used to interpret the extracted keywords
to determine whether application program
activities were responsible for the existence
of those keywords on the media.

Another approach to infer previously unin-
stalled applications on digital media is analyz-
ing log files [16] to find evidence of previously
recorded application program activities. Ap-
plication program activities can be logged by
the application itself (for debugging or trou-
bleshooting purpose), another interacting ap-
plication, or the operating system. These log
files may persist even after the application
program has been uninstalled, and may serve
as evidence of application program activities
on the digital device. This approach works
if the desired log exists and has not been
tampered with, but is less useful if such log
files don’t exist or have been corrupted or
tampered with [17].

All the approaches described above rely on
artifacts with human-readable content like
log entries, keywords, etc. Research work by
GG Richard III [18] showed that unallocated
cluster data and non-human-readable file con-
tent may also indicate the prior existence of
a file, e.g., an application program, on the
storage media. File system references for the
“deleted” files are not necessarily needed to
retrieve the application file fragments from a

storage media. The extraction of unallocated
files and file fragments is known as file carv-
ing. File carving is the process of recovering
file contents from digital media without the
help of a file system. In order to successfully
extract complete files from a digital media,
knowledge of the file format (e.g. file headers
and footers) is necessary. Earlier file carving
approaches only work with unfragmented file
clusters which are in order. Advanced recent
file carving approaches work even if the ap-
plication files are made of multiple fragments
file clusters [19] by using cluster classification
techniques to identify clusters belonging to
the same file.
When complete file recovery is not possi-

ble due to decay of a deleted file’s contents,
a sub-file forensics approach [20] is needed.
Research has shown that one can prove file
existence and hence application program ac-
tivities on a digital device through a process
called hash-based carving. Hash-based carv-
ing is a technique for detecting the presence
of specific files on digital media by evaluating
the hashes of individual data blocks, rather
than the hashes of entire files. Hash-based
carving has been successful [21] in identifying
files that are fragmented, incomplete, or par-
tially modified. In order for this approach to
be used to successfully identify a specific file,
a catalog or database of block hashes derived
from the file of interest has to be pre-built.
The catalog is then used to scan a test media
in search of matching hashes. The higher
the number of matching blocks, the higher
the likelihood that the full file was previously
present in the test media.
The sector matching and aggregation ap-

proach, proposed by Jones, is a means of
inferring the likelihood that an application
was previously installed on a examined sys-
tem by matching sectors on the examined
system with known stored sectors associated
with the multiple files from the application
of interest. From the matched sectors, poten-

Page 4 c© 2020 JDFSL

JDFSL V14N3

tially probative sector blocks are selected and
weighted using an inverse weighting scheme
(ala Inverse Document Frequency (IDF)) to
compute the inferential value of the matched
sectors. The results from this technique were
promising in that the technique was able to
indicate past application activity even after
the application has been uninstalled and the
host system rebooted and used. Disk im-
ages from the M57 data set [3] were used to
evaluate this approach. While the approach
was able to identify previously uninstalled
applications on the test images, it was deter-
mined that the approach could be improved.
Specifically, the process of selecting the sec-
tors that get stored in the catalog was quite
coarse, relying on the sector belonging to files
with keywords of interest in its filename or
file path. We are improving this approach
by implementing a better selection process
to build the catalog.

3. APPROACH AND
METHODOLOGY

Our approach, summarized in Figure 1, seeks
to improve on the technique used by Jones.
Where Jones reduced noisy sectors using a
keyword white list approach, we do so by
eliminating sectors that are obtained from
systems running without any activities asso-
ciated with the application of interest. This
is our so-called “do nothing” branch.
Our initial catalog was built by file differ-

encing multiple virtual machine disk images
taken while installing, using, and uninstalling
applications in a controlled environment. The
virtual disk images obtained were processed
to identify new, modified, or deleted files

Figure 1. Approach Overview

between snapshots during the application in-
stall(I), open(O), close(C), uninstall(U) and
system reboot (R) stages as indicated in Fig-
ure 1. The purpose of this process is to
extract all the forensics artifacts an appli-
cation of interest will create on a computer
system throughout the application’s life cycle.
Once extracted, the disk images are then ana-
lyzed with custom tools based on elements of
the DFXML toolset [7] to generate a Digital
Forensic XML (DFXML) file showing new,
modified, or deleted files.
In our work, we also collect artifacts gen-

erated when the application of interest is
not installed to identify artifacts due to non-
application related activities (e.g. user, other
application, or operating system related activ-
ities). Rather than restrict sectors of interest
to files with filenames or file paths associated
with application keywords, we include in the
catalog all file system artifacts except those
appearing in the do nothing branches. With
the understanding that operating system ac-
tivities occur simultaneously during the ap-
plication software life cycle (i.e. install, open,
close, uninstall and restart), we identify those
artifacts in order to exclude them from the fi-
nal catalog hash database. We achieve this by
having a "do-nothing" branch that runs con-
currently with the "application-run" branch.
The "application-run" branch is a sequence
of virtual machine snapshots taken after the
occurrence of each part of the application soft-
ware life cycle (install(I), open(O), close(C),
uninstall(U) and system reboot (R)). The
"do-nothing" branch is a sequence of vir-
tual machine snapshots taken from virtual
machines cloned from the "application-run"
branch and run undisturbed and concurrently
with the "application-run" branch. The pur-
pose of the "do-nothing" branch is to collect
file system activities that occur without the
involvement or influence of the application
of interest. These collected operating sys-
tem related file system activities, if found

c© 2020 JDFSL Page 5

JDFSL V14N3

among file system activities observed in the
"application-run" branch, will be excluded,
resulting is a smaller and more accurate ar-
tifact set associated with the application of
interest. The procedure described above and
further explained in the subsequent subsec-
tions, is depicted in greater details in Figure
2.

We have two copies of the same base vir-
tual machine instance (the two side-by-side
boxes labeled “B”), one designated for the
application install, use, and removal, the
other designated for the "do-nothing" branch
where the virtual machine (VM) is allowed
to run concurrently with the “application-
run” branch. The “do nothing” VM does
not have the application of interest installed
and has no user initiated activity. Immedi-
ately after the completion of each part of the
application software life cycle, snapshots of
the VMs at the "application-run" and "do-

Figure 2. Overview of the VM buildup proce-
dure for "application-run" and "do- nothing"
branches with respect to catalog creation.

nothing" branches are taken. The VM at the
"application-run" branch is then copied for
use in the "do-nothing" branch in the next
part of the experiment. This experiment is
repeated, in sequential order, going through
the stages of the application’s life cycle (Base-
Install- Open-Close-Uninstall-Restart). After
each action (e.g., Install), the “application-
run” and “do-nothing” VMs are suspended
and the respective disk images are archived
for further processing in the next stage of
the experiment. The “application-run” VM
is cloned and the two VMs are set up for
the next action (e.g. Open) with one desig-
nated for the “application-run” and the other
designated for the “do- nothing” run. The
next action (e.g. Open) is performed in the
“application-run” VM while the “do-nothing”
VM runs undisturbed. These steps are re-
peated as depicted in Figure 2 until all the
actions in the life cycle for the application
software are completed. At each step in the
experiment, disk images are archived from the
suspended VMs. The following subsections
describe the experiment in greater detail.

In this research effort, a catalog was cre-
ated for 16 Windows applications in a con-
trolled environment using virtual machine
snapshots. These applications are the same
applications selected in the NIST Diskprint-
ing effort [22]. The 16 applications’ lifecycle
were run in three Windows operating systems
(Windows XP, Windows 7 32-bit, Windows
7 64-bit) to generate 29 application-OS com-
binations known as diskprints. Application-
related files created during application Install,
Open, Close, Uninstall and system Reboot
are identified and associated sector and file
information collected for ingestion into the
catalog after some post-processing actions.

Page 6 c© 2020 JDFSL

JDFSL V14N3

3.1 Build the Virtual Machine
(VM) instances

1. Build the first VM by installing the oper-
ating system on the VM instance, adding
the appropriate service pack installations
so that the application software can suc-
cessfully run within the VM instances.

2. BASE: The built base VM currently
named "B" is cloned, with one copy
designated for the “application-run” and
the other designated for the “do-nothing”
run.

3. INSTALL: The two VMs are to be run
simultaneously. In the "application-run"
VM, the application software of inter-
est is installed while the "do-nothing"
VM is allowed to run undisturbed for a
period of time without user interaction
of any kind. At the end of the appli-
cation software installation, both VMs
are suspended, the "do- nothing" VM
is renamed as "BT" (Base-Time) and
the "application-run" VM is renamed as
"BI" (Base-Install) to reflect the current
state of the VMs pertaining to the appli-
cation life cycle stages. The virtual disk
images in "BT" and “BI” are converted
into raw disk images named "BT.img"
and "BI.img" respectively.

4. OPEN: The VM currently named "BI"
is cloned. In the "application-run" VM,
the application software of interest is
launched or run and used while the "do-
nothing" VM runs undisturbed. At the
end of the application software use, both
VMs are suspended, the "do-nothing"
VM is renamed as "BIT" (Base-Install-
Time) and the "application-run" VM is
renamed as "BIO" (Base- Install-Open).
The virtual disk images in the two VMs
are converted into raw disk images.

5. CLOSE: The VM currently named
"BIO" is cloned. In the "application-
run" VM, the application software of in-
terest is closed or terminated while the
"do-nothing" VM runs undisturbed. At
the end of the application software exit,
both VMs are suspended and renamed as
"BIOC" (Base-Install-Open-Close) and
"BIOT" (Base- Install-Open-Time) re-
spectively. The virtual disk images in
the two VMs are converted into raw disk
images.

6. UNINSTALL: The VM currently named
"BIOC" is cloned. In the "application-
run" VM, the application software of in-
terest is uninstalled or deleted while the
"do-nothing" VM runs undisturbed. At
the end of the application software unin-
stall, both VMs are suspended and re-
named as "BIOCU" (Base-Install-Open-
Close-Uninstall) and "BIOCT" (Base-
Install-Open-Close-Time) respectively.
The virtual disk images in the two VMs
are converted into raw disk images.

7. RESTART: The VM currently named
"BIOCU" is cloned. The "application-
run" VM is restarted while the "do-
nothing" VM runs undisturbed. At
the end of the VM restart, both
VMs are suspended, the "do-nothing"
VM is renamed as "BIOCUR" (Base-
Install-Open-Close- Uninstall-Restart)
and "BIOCUT" (Base-Install-Open-
Close-Uninstall-Time) respectively. The
virtual disk images in the two VMs are
converted into raw disk images.

3.2 Convert the VMWare
VMDK file to a raw image

file
1. The virtual disk images in the gener-

ated VMs are converted into raw disk im-
ages. Before the conversion, if the virtual

c© 2020 JDFSL Page 7

JDFSL V14N3

disk images are not flat (e.g., the disk
is made up of differntial snapshots, like
VDisk.vmdk, VDisk-s001.vmdk, VDisk-
s002.vmdk, VDisk-s003.vmdk, etc.), the
separate VMDK files would have to be
combined into a single VMDK file using
the VMWare’s vmware-vdiskmanager
tool as follows:$ vmware-vdiskmanager
-r VDisk.vmdk -t 0 BIOCUR.vmdk

2. The resulting single VMDK file is then
converted into a raw disk image file us-
ing the qemu-img tool as follows: $
qemu-img convert BIOCUR.vmdk -0 raw
BIOCUR.img

3.3 Compare adjacent images
using the idifference tool

The next step is to compare raw disk images
and determine file system changes that have
occurred between adjacent images or adjacent
states in the “application-run” or “do- nothing”
branch. For instance, comparing "B.img" to
"BT.img" would allow us to determine the
file system changes that occurred when the
base VM is allowed to run for a period of
time. The file system changes are stored in
"B-BT.dfxml" file. Similarly:

1. "B.img" is compared with "BI.img" to
identify file system changes due to appli-
cation software installation. The file sys-
tem changes are stored in "B-BI.dfxml"
file.

2. "BI.img" is compared with "BIT.img"
to identify file system changes due to the
operating system in "BI" state running
undisturbed. The file system changes
are stored in "BI-BIT.dfxml" file.

3. "BI.img" is compared with "BIO.img"
to identify file system changes due to
the specific application software being
launched or executed and use.. The

file system changes are stored in "BI-
BIO.dfxml" file.

4. "BIO.img" is compared with
"BIOT.img" to identify file system
changes due to the operating system
in "BIO" state running undisturbed.
The file system changes are stored in
"BIO-BIOT.dfxml" file.

5. "BIO.img" is compared with
"BIOC.img" to identify file system
changes due to the launched or running
application software getting terminated.
The file system changes are stored in
"BIO-BIOC.dfxml" file.

6. "BIOC.img" is compared with
"BIOCT.img" to identify file sys-
tem changes due to the operating
system in "BIOC" state running undis-
turbed. The file system changes are
stored in "BIOC-BIOCT.dfxml" file.

7. "BIOC.img" is compared with
"BIOCU.img" to identify file sys-
tem changes due to the application
software getting uninstalled. The
file system changes are stored in
"BIOC-BIOCU.dfxml" file.

8. "BIOCU.img" is compared with "BIO-
CUT.img" to identify file system changes
due to the operating system in "BIOCU"
state running undisturbed. The file
system changes are stored in "BIOCU-
BIOCUT.dfxml" file.

9. "BIOCU.img" is compared with
"BIOCUR.img" to identify file system
changes due to the operating system
in "BIOCU" state getting restarted.
The file system changes are stored in
"BIOCU-BIOCUR.dfxml" file. These
comparisons are depicted in Figure 3.

Page 8 c© 2020 JDFSL

JDFSL V14N3

The tool used to compare two raw disk image
files is the idifference tool [7]. The idifference
tool is a Python program that compares two
raw image files and report the differences on
the file objects that they contain. It reports
on file system changes such as files deleted,
files created, files moved or renamed, or files
modified. The output is a DFXML file. The
general command used for comparing the two
raw image files (B.img and BT.img) as fol-
lows: $ python idifference2.py -x B-BT.dfxml
B.img BT.img

3.4 Shrink the DFXML files
and generate a JSON file
containing digital artifacts

One of the motivations of this research exper-
iment is to eliminate all file system changes
attributed to operating system or other appli-
cation activities from the digital artifacts that
would be ingested into the catalog database.
For instance, "B-BI.dfxml" supposedly rep-
resents file system activities due to applica-
tion software installation. However, while
the application software program was being
installed, there are other file system changes

Figure 3. Comparing disk images

occurring simultaneously that are actually
due to operating system activities and not
due to the application installation. These
operating system-related activities must be
removed from our current data sets.
We remove the operating-system related

activities from "B- BI.dfxml" by comparing
"B-BI.dfxml" with "B-BT.dfxml", a dataset
that was created from running the base VM
instance ("B.vmware") undisturbed during
the same time that the other base VM in-
stance was having the application software
program installed in it. Upon comparing
"B-BI.dfxml" to "B- BT.dfxml", it was ob-
served that there are some file system changes
common to both data sets. Therefore it
can be assumed that the file system changes
common to "B-BI.dfxml" and "B-BT.dfxml"
are due to operating system or other appli-
cation activities in both "do-nothing" and
"application- run" paths in this portion of
the experiment. These common file system
changes are not application artifacts and so
are removed from "B-BI.dfxml". Following
a similar pattern as described in the above
paragraph:

1. "BI-BIO.dfxml" is compared to "BI-
BIT.dfxml" to remove common operat-
ing system related activities observed
during the "Open" phase. This results
in reduced "BI- BIO.dfxml".

2. "BIO-BIOC.dfxml" is compared to
"BIO-BIOT.dfxml" to remove common
operating system related activities ob-
served during the "Close" phase. This
results in reduced "BIO-BIOC.dfxml".

3. "BIOC-BIOCU.dfxml" is compared to
"BIOC-BIOCT.dfxml" to remove com-
mon operating system related activi-
ties observed during the "Uninstall"
phase. This results in reduced "BIOC-
BIOCU.dfxml".

c© 2020 JDFSL Page 9

JDFSL V14N3

4. "BIOCU-BIOCUR.dfxml" is compared
to "BIOCU- BIOCUT.dfxml" to remove
common operating system related ac-
tivities observed during the "Restart"
phase, resulting in a reduced "BIOCU-
BIOCUR.dfxml".

These comparisons ultimately result in the
reduced "application-run" DFXML files.
After eliminating non-application-related

file system changes from the DFXML files, we
are left with file system activities that are as-
sumed to be attributable to the application’s
run in the VM environment. The file system
activities include file creations, file deletions,
file renaming/moving and other file changes.
Upon reviewing the DFXML files, it was

observed that the application related files
were recorded several times among the differ-
ent DFXML files under different categories
of file system activities. For example, dur-
ing the application run process for Firefox,
configuration and usage files are created dur-
ing the "Install" phase and modified during
the "Run" phase. Due to these repetitions,
it was decided during the design stage of
this research effort that only file creations
would be considered for inclusion in the cat-
alog. Another justification for this design
choice is also due to the fact that there are
file system changes that remains in the re-
duced DFXML files that would be not be
unique to the specific application. For exam-
ple, Windows event logs are modified when
an application is installed and used. However,
it is not wise to include the Windows event
logs in the catalog as most application activ-
ity results in modification of Windows event
logs. If only newly created files are considered
for inclusion in the catalog, files such as win-
dows event logs would not be included in the
catalog. Therefore, only information about
file creations are extracted from the DFXML
files. Information about folder creations are
not included for ingestion into the catalog

because folders have a sub-sector footprint
and so would not be useful in our design.

After new file lists are extracted from the
DFXML files, the next step is to generate
sector hashes of the indicated files. This in-
formation is not available in the DFXML files.
The DFXML files only contain file metadata
such as file inode number, file path, filename,
partition, file id, name type, file size, mac
time, file system offset, image offset, byte run
length, MD5 file hash and SHA1 file hash.
Since the goal of this research effort is to
be able to accurately infer previously unin-
stalled applications from partially overwrit-
ten files, the catalog needs to be built with
sector information. A sector is the smallest
physical storage unit on a disk and is typ-
ically 512 or 4096 bytes in size. Therefore,
in order to build the catalog with sector in-
formation from the files attributed to the
application of interest, one would need to
locate the files in the raw disk images and
compute the block hash in increments of 512
or 4096 bytes (we chose 512 in order to be
applicable to either 512 byte or 4096 byte
images). The files, once located in the raw
disk images, are broken down into blocks of
512-byte size, an md5 hash is computed, and
the resulting block hash is stored in a JSON
file. A custom Python script is used for gen-
erating the JSON file containing sector and
file information related to each application
program. The custom Python script, named
“get_sector_hashes.py”1 is used to generate
a JSON file that contains sector and file infor-
mation belonging to the “Firefox19-W7x64”
application diskprint in the following exam-
ple: $ python get_sector_hashes.py {$path
to DFXMLs}$ {$path to IMGs$}$ {$path
to JSONs}$ Firefox19-W7x64.json Firefox19-
W7x64

Page 10 c© 2020 JDFSL

JDFSL V14N3

3.5 Create catalog hashdb and
ingest tagged application

metadata into it
Once the JSON file containing the sector and
file information is created, the next step is
to create the catalog database into which
the information in the JSON file is ingested.
We chose to use the hashdb tool [22] version
3.1.0 for the database since it was specifically
designed for hash value storage and lookup.
The hashdb tool is also used to create hash
databases, import block hashes, scan, and
manage block hash databases.
The process of building the catalog hash

database involves creating an empty hash
database using the hashdb "create" com-
mand and ingesting the previously gener-
ated JSON file into it using the hashdb “im-
port” command as follows, for “Chrome28-
W7x64” application diskprint: $ hashdb cre-
ate -b 512 Chrome28-W7x64.hdb $ hashdb
import Chrome28-W7x64.hdb Chrome28-
W7x64.json The content of the created hash
database for each application diskprint can
be reduced further by removing from it data
about blocks that can found in other non-
application- related environments, like in a
computer system with only the base operat-
ing system running. Eliminating these com-
mon blocks reduces the false positive matches
when the catalog hash database is used to
scan against a test image. Removing the
common sector information from the appli-
cation hash database is accomplished using
the hashdb "subtract_hash" command. This
is accomplished by first creating a new hash
database using the hashdb “create” command,
ingesting sector and file information collected
from a clean Windows 7 64-bit OS image
(“W7x64.img”) into the database using the
hashdb “ingest” command, and then using
the hashdb “subtract_hash” to remove sector
information that this new database has in
common with the application diskprint hash

database. This series of commands is run
as follows for “Chrome28-W7x64” application
diskprint: $ hashdb create -b 512 W7x64.hdb
$ hashdb ingest -r W7x64 W7x64.hdb

W7x64.img
$ hashdb subtract_hash Chrome28-

W7x64.hdb W7x64.hdb Chrome28-
noW7x64.hdb
The next step is to combine all the sepa-

rate application hash databases into a sin-
gle hash database. This is accomplished us-
ing the hashdb "add_multiple" command.
All twenty-nine (29) hash databases are com-
bined as follows:
$ hashdb add_multiple Chrome28-

noW7x64.hdb Chrome28-W7x32.hdb . . .
catalog.hdb

3.6 Scan test images and
generate JSON file

containing matched sector
information

Once the catalog hash database has been
built, the next step is to test it for its ability
to infer previously uninstalled applications
in test disk images. In this research effort,
the true test of the improvement of our re-
search methodology over the one previously
proposed is to see an increase in the sectors
captured per application, and an ability to
infer previously uninstalled applications in
test images despite significant decay of the
application’s file artifacts.

The process of scanning test images against
the catalog hash database involve using
the hashdb "scan_media" command,1 gen-
erates information about matched blocks
in a JSON file. The hashdb “scan_media”
command is used as follows: $ hashdb
scan_media -j e catalog.hdb test.img $>$
catalog-test.match.json

1https://github.com/seunfuta/
AppDetective/blob/master/get

c© 2020 JDFSL Page 11

JDFSL V14N3

3.7 Analyze the JSON file
containing matched sector

information
The information about matched blocks,
stored in a JSON file, is then processed to
obtain information that demonstrates how
much of a previously uninstalled application
can be inferred in the scanned test raw disk
images. A custom python script was devel-
oped to process the JSON file generated in
the previous step. The python script, named
“process_matched_json.py”2 is used as fol-
lows: $ python process_matched_json.py
catalog- test.match.json The output of the
Python command line execution is a table
that shows information about:

• the number of sectors found per applica-
tion

• the total number of sectors in the catalog
per application

• the sector percentage, which is number
of found sectors/total number of sectors
per application

• the weighted sector percentage, which
considers the frequency of each matched
sector among the 29 applications in the
catalog

• the number of files, based on the sectors
found, per application

• the total number of files in the catalog
per application

• the file percentage, which is the number
of files with found sectors/total number
of files per application

• the weighted file percentage, which con-
siders the fraction matched sector/total
sectors for each matched file per appli-
cation

The final step in our research methodology
is to compare the tables generated in our re-
search work to the tables generated based on
the work of Jones. The tables are generated
with the two catalogs scanned against identi-
cal test images. Identifying more sectors per
applications known to be previously installed
in the test images would be sufficient as the
initial proof of concept of our hypothesis.

4. FINDINGS AND
ANALYSIS

This experiment was conducted with 16 ap-
plications in 3 operating systems environ-
ments, namely Windows XP, Windows 7 32-
bit and Windows 7 64-bit (not every applica-
tion was printed for every OS). Table 1 shows

Table 1. NIST Diskprints

the distribution of the application diskprints
created, which were the same applications
and operating systems used in the NIST
Diskprinting effort [23]. The combination
of the applications and operating systems
resulted into 29 application diskprints that
were used to build the catalog hash database.

Page 12 c© 2020 JDFSL

JDFSL V14N3

A diskprint represents a set of sequential VM
snapshots, each snapshot capturing a slice of
time in the software’s life cycle on the system.
The experiment, as presumed, revealed

that there were file system changes that were
common between disk images obtained from
the “application-run” path of the experiment
and those obtained from the “do-nothing”
path. Eliminating these common file system
changes reduced the number of files whose
sectors are included in the catalog when com-
pared to all file differencing files and sectors,
but resulted in more files and sectors than
the previous method after white list applica-
tion. A review of the remaining files showed
that they are unique to the "application-run"
branch and thus true indicators of activities
that are attributable to the application of in-
terest. These includes created files that can
be directly linked to the application instal-
lation package content and other related file
systems changes. All these are good candi-
dates for consideration for the catalog hash
database building.

Table 2 Shows the total sector hashes and
files per diskprints in our catalog and in the
work of Jones.

The higher sector and file count per appli-
cation diskprint in our method supports our
assertion that this is a more complete cata-
log. Manual review of the artifact source files
indicates that these are application related
files, hence the new catalog has maintained
accuracy as well.

Jones used the following equations to com-
pute a score based on matched sectors:

sector %DP = sector_matches / sectors_totalDP

file %DP = files_found / files_totalDP

We tested our catalog using the same
twelve (12) test images used by Jones and

these scoring equations; the full results are
presented in Tables 4 and 5 (in the Appendix).
Our catalog typically scored lower than the
Jones catalog due to the fact that the Jones
catalog is smaller. Since total sectors (and
total files) are a denominator in Jones’ scor-
ing equations, our scores are usually lower
even when we match more sectors. Given a
more complete and still accurate catalog (no
irrelevant artifacts), a better measure would
emphasize the number of sectors (and files)
matched, rather than the % of total sectors
or files. Further, our more complete cata-
log is inherently more decay tolerant, as it
provides more sectors against which matches
can be made. This revised scoring equation
is noted as future work, but here we present
a comparison of the number of sectors and
files matched (Table 3) 2

weighted file %DP =

(
num_file_matches∑

F=1

matchedsectorsF

totalscoresF

)
/files_totalDP

weighted sector%DP =

(
num_sector_matches∑

S=1

1

fre1s

)
/sectors_totalDP

4.1 Result of Catalog Scan
against Test Images with

Single Applications
The same five single-application test images
used by Jones for testing their catalog hash
database were used to test our newly built
catalog hash database. Testing with the same
test images would allow one to compare the
two catalog hash databases and methodolo-
gies for difference in accuracy of detection.
The five single-application test images were
built using Chrome28, Firefox19, UPX, Win-
rar5beta, and sdelete within Windows 7 64-
bit environments. The results of the scans,
using the five images which contained the in-
stallation, use and uninstallation of a single

2https://github.com/seunfuta/
AppDetective/blob/master/process_matched\
_json.p

c© 2020 JDFSL Page 13

JDFSL V14N3

Table 2. Total hashes and files per Applica-
tion Diskprint

application, shows improvement in the num-
ber of sectors matched for known previously
uninstalled applications. Table 3 summarizes
the results and Table 4 shows the full results
of the comparisons.

4.2 Result of Catalog Scan
against Test Images with
Multiple Applications

Similarly, the same three multiple-application
test images used by Jones for testing their
catalog hash database were used to test our
newly built catalog hash database. Each
test image contained the installation, use
and uninstallation of multiple applications
(Chrome28-Firefox19, Chrome28- Firefox19-
Safari517 and Winrar5beta-Winzip17pro) in
Windows 7 64-bit environments. The test
results show improvement in the number of

sectors matched for known previously unin-
stalled applications. Table 3 summarizes the
results and Table 5 shows the full results of
the comparisons.

4.3 Result of Catalog Scan
against M57 Dataset

The new catalog hash database was also
tested against the M57 Patents dataset [3].
The M57-Patents dataset corresponds to a
case involving four employees of a fictitious
corporation, three of whom were involved in
various types of criminal activity. In pro-
ducing the dataset, the scenario participants
engaged in scripted and normal user activities
every day for one month. Researchers made
forensic images of the user workstations at
the end of each day. Testing the catalog hash

Table 3. Sector and File Match Comparison
between Methods

Page 14 c© 2020 JDFSL

JDFSL V14N3

database using these images would help deter-
mine the ability of our catalog hash dataset
to accurately infer the presence of previously
uninstalled applications under semi-realistic
conditions. Testing against the M57-Patents
dataset also completes our comparison to the
methodology and catalog hash database of
Jones.

Table 4. Multiple Application Test Case Re-
sults

Table 5. M57 Patent Scenario Results

The test images used are the final day snap-
shots of the workstations of the four employ-
ees, namely Charlie, Jo, Pat and Terry. The
results from scanning the final day images
for the four scenario users are summarized in
Table 3.

A review of Tables 3-5 shows that our
methodology has resulted in more identified
sectors and files per application known to be
previously present on the test images. How-
ever, the previous approach of inferring appli-
cation presence based on sector percentages,
weighted sector percentages, file percentages
and weighted file percentages does not take
advantage of the more complete catalog, nor
does it capture the increased decay tolerance
of the new catalog. To demonstrate this
point, we used our catalog to scan all of the
M57 Pat workstation images collected over
the one-month period and plotted the count
of sectors associated with Advanced Keylog-
ger over the time period of the scenario. Ad-
vanced Keylogger is malware that was in-
stalled and active 12/3 and 12/4, then unin-
stalled. Figure 4 shows how our approach
was able to identify considerably more sec-
tors (308 vs 20 for the final image captured)
associated with the Advanced Keylogger ap-
plication program in Pat’s system, even after
uninstallation and continued system use. In
digital forensic investigations, we frequently
analyze systems well after the event has oc-
curred. The presence of significantly more
sectors against which we can match may be

Figure 4. Sector artifact persistence for Ad-
vanced Keylogger on Pat’s M57 system

c© 2020 JDFSL Page 15

JDFSL V14N3

the difference between whether we identify a
previoulsy uninstalled application or not.

5. CONCLUSION
In this work, we proposed a method of gen-
erating an application-related artifact set for
our catalog hash database by extending the
sequential snapshot file differencing method
of Jones, adding a "do-nothing" branch to the
collection activity. This additional process
eliminates artifacts due to operating system
and other application activities while retain-
ing more of the relevant artifacts than the
previous method. This provides a more decay
tolerant catalog, although we note the need
for a new quantitative measure of application
presence which takes advantage of the more
complete catalog.

6. FUTURE WORK
Future work involves reviewing the makeup of
the catalog hash database to see how sectors
that don’t contribute much value to the appli-
cation inference calculation can be identified
and eliminated. In addition, a revised mea-
sure of application presence and thresholds
using our more complete catalog needs to be
devised. Such a measure may incorporate fac-
tors such as the application footprint, relative
sector locations, artifact decay contributing
factors, etc. We also intend to generate more
test images to continue testing our catalog
hash database.

REFERENCES
[1] J. Haggerty and M. Taylor, “Forsigs:

Forensic signature analysis of the hard
drive for multimedia file fingerprints,”
New Approaches Secur. Priv. Trust
Complex Environ., pp. 1–12, 2007.

[2] J. Jones, T. Khan, K. Laskey, A. Nelson,
M. Laamanen, and

[3] White, “Inferring previously uninstalled
applications from digital traces,” in Pro-
ceedings of the Conference on Digital
Forensics, Security and Law, 2016, pp.
113–130.

[4] K. Woods, C. A. Lee, S. Garfinkel, D.
Dittrich, A. Russell, and K. Kearton,
“Creating realistic corpora for security
and forensic education,” in Proceedings
of the Conference on Digital Forensics,
Security and Law, 2011, p. 123.

[5] D. Quick and K.-K. R. Choo, “Dropbox
analysis: Data remnants on user ma-
chines,” Digit. Investig., vol. 10, no. 1,
pp. 3–18, 2013.

[6] M. Geiger and L. F. Cranor, “Scrub-
bing stubborn data: An evaluation of
counter-forensic privacy tools,” IEEE Se-
cur. Priv., vol. 4, no. 5, pp. 16–25, 2006.

[7] A. Margosis and M. E. Russinovich,
Windows Sysinternals administrator’s
reference. Pearson Education, 2011.

[8] S. Garfinkel, A. J. Nelson, and J. Young,
“A general strategy for differential foren-
sic analysis,” Digit. Investig., vol. 9, Sup-
plement, pp. S50–S59, Aug. 2012.

[9] CGSecurity, “TestDisk - Parti-
tion Recovery and File Undelete,”
04-Jun-2016. [Online]. Available:
https://www.cgsecurity.org/wiki/TestDisk.
[Accessed: 22-Dec-2018].

[10] A. Ravi, T. R. Kumar, and A. R.
Mathew, “A method for carving frag-
mented document and image files,” in
Advances in Human Machine Interaction
(HMI), 2016 International Conference
on, 2016, pp. 1–6.

[11] G. Richard, Scalpel. The Sleuth Kit,
2005.

Page 16 c© 2020 JDFSL

JDFSL V14N3

[12] J. H. Jones and T. M. Khan, “A method
and implementation for the empirical
study of deleted file persistence in digital
devices and media,” in Computing and
Communication Workshop and Confer-
ence (CCWC), 2017 IEEE 7th Annual,
2017, pp. 1–7.

[13] M. H. Ligh, A. Case, J. Levy, and A.
Walters, The art of memory forensics:
detecting malware and threats in win-
dows, linux, and Mac memory. John Wi-
ley & Sons, 2014.

[14] A. Nelson, “XML Conversion of the Win-
dows Registry for Forensic Processing
and Distribution,” in Advances in Digi-
tal Forensics VIII: 8th IFIP WG 11.9 In-
ternational Conference on Digital Foren-
sics, Pretoria, South Africa, January 3-
5, 2012, Revised Selected Papers, G. Pe-
terson and S. Shenoi, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012,
pp. 51–65.

[15] E. Casey, “Network traffic as a source
of evidence: tool strengths, weaknesses,
and future needs,” Digit. Investig., vol.
1, no. 1, pp. 28–43, 2004.

[16] L. Garber, “Encase: A case study in
computer-forensic technology,” IEEE
Comput. Mag. January, 2001.

[17] E. Casey, Digital evidence and computer
crime: Forensic science, computers, and
the internet. Academic press, 2011.

[18] C. Painter, “Threats to the Net: Trends
and Law Enforcement Responses,” in
Crime and Technology: New Frontiers
for Regulation, Law Enforcement and
Research, E. U. Savona, Ed. Dordrecht:
Springer Netherlands, 2004, pp. 69–77.

[19] G. G. Richard III and V. Roussev,
“Scalpel: A Frugal, High Performance
File Carver.,” in DFRWS, 2005.

[20] C. J. Veenman, “Statistical Disk Clus-
ter Classification for File Carving,” in
Third International Symposium on In-
formation Assurance and Security, 2007,
pp. 393–398.

[21] S. Garfinkel, A. Nelson, D. White, and V.
Roussev, “Using purpose-built functions
and block hashes to enable small block
and sub-file forensics,” Digit. Investig.,
vol. 7, pp. S13–S23, 2010.

[22] S. L. Garfinkel and M. McCarrin, “Hash-
based carving: Searching media for com-
plete files and file fragments with sector
hashing and hashdb,” Digit. Investig.,
vol. 14, pp. S95–S105, 2015.

[23] M. Laamanen and A. Nelson, NSRL
Next Generation- Diskprinting. Foren-
sics@ NIST, Gaithersburg, MD, Decem-
ber 3, 2014. Last accessed 10.4. 15. 2014.

c© 2020 JDFSL Page 17

	Improved Decay Tolerant Inference of Previously Uninstalled Computer Applications
	Recommended Citation

	Improved Decay Tolerant Inference of Previously Uninstalled Computer Applications

