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Abstract

If X is a connected graph, then an X-factor of a larger graph is a span-
ning subgraph in which all of its components are isomorphic to X. A
uniformly resolvable {X,Y }-decomposition of the complete graph K, is
an edge decomposition of K, into exactly » X-factors and s Y-factors.
In this article we determine necessary and sufficient conditions for when
the complete graph K, has a uniformly resolvable decompositions into
1-factors and K 4-factors.
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1 Introduction and definitions

For any graph G, let V(G) and E(G) be the vertex-set and the edge-set of G,
respectively. Throughout the paper K, will denote the complete graph on v vertices,
while K, \ K, will denote the graph with V' (K,) as vertex-set and F(K,) \ E(K})
as edge-set (this graph is sometimes referred to as a complete graph of order v with
a hole of size h).

Given a set ‘H of pairwise non-isomorphic graphs, an H-decomposition (or H-
design) of a graph G is a decomposition of the edge-set of G into subgraphs (called
blocks) isomorphic to some element of H. An H-factor of G is a spanning subgraph
of G whose components are isomorphic to a members of H. If X € H, then an
X-factor is a spanning subgraph whose components are isomorphic to X. An H-
decomposition of G is resolvable if its blocks can be partitioned into H-factors and
is called an H-factorization of G. An H-factorization F of G is called uniform if
each factor of F is an X-factor for some graph X € H. A Ky-factorization of G is
known as a 1-factorization and its factors are called 1-factors; it is well known that
a 1-factorization of K, exists if and only if v is even ([18]).

An H-isofactorization of G is an H-factorization with isomorphic factors. If H
is the set of all possible cycles of K, then determining the existence of possible H-
isofactorizations of K, v odd is known as the Oberwolfach Problem. It was first posed
in 1967 by Gerhard Ringel and asks whether it is possible to seat an odd number v
of mathematicians at n round tables in (v — 1)/2 meals so that each mathematician
sits next to everyone else exactly once. If the n round tables are of sizes p1,po, ..., pn
(with p; +p2 + -+ + p, = v), the Oberwolfach Problem asks for an isofactorization
of K, with factors isomorphic to the 2-factor with components isomorphic to cycles
of length py, ps, ..., pn. The uniform Oberwolfach problem (all cycles of the 2-factor
have the same size) has been completely solved by Alspach and Haggkvist [4] and
Alspach, Schellenberg, Stinson and Wagner [5] .

Additional existence problems for H-factorizations of K, have been studied and
many results have been obtained, especially on uniformly resolvable H-decomposi-
tions: when H is a set of two complete graphs of order at most five in [8, 21, 22, 24];
when H is a set of two or three paths on two, three or four vertices in [11, 12, 17];
for H = {Ps, K3+ e} in [10]; for H = { K3, K1 3} in [14]; for H = {Cy, Ps} in [19]; for
H = { K3, P3} in [20]. And most famous is the variation of the Oberwolfach problem
known as the Hamilton-Waterloo problem. In this problem the meals for the dinning
mathematicians take place at two different venues. Hence a decomposition of K, is
sought where the factors can be either one of two types. In particular the uniform
case asks for a decomposition of K, into C,-factors and Cj-factors. Thus the round
tables in one venue sit p mathematicians whereas the tables in the other venue each
sit ¢. Of course in this case p and ¢ must divide v, v must be odd and H = {C,, C}.

A uniformly resolvable {X, Y }-decomposition of K, into exactly r X-factors and
s Y-factors, is abbreviated (X,Y)-URD(v;r,s). The uniform case of the Hamilton-
Waterloo problem is the existence problem for (C,, C,)-URD(v;r, s).
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In this paper, we focus on the case H = {Kj, K1,}. The resulting uniformly
resolvable problem, affectionally known as the stars and stripes problem, can be seen
as the attendance at a conference of v participants that has v/(n+1) parallel sessions
and in which during the breaks the participants pair up for one on one discussions.
The parallel sessions are K ,-factors and are also known as star-factors: the one on
one discussions are Ks-factors and are the stripes.

The existence of a (K», K;,)-URD(v;r, s) was studied and completely solved for
n = 3 in [6] and [13]. Here we concentrate on the case n = 4 and, because the results
for the extremal cases s = 0 and r = 0 are known, i.e.:

e a (Ky, Ky ,)-URD(v;r,0) exists if and only if v is even;

e if n is even, a (K, K1,)-URD(v;0, s) exists is and only v = 1 (mod 2n) and
v =0 (mod n+ 1) ([25]);

we deal with (K5, K;4)-URD(v;r,s) where r,s > 0 and so v = 0 (mod 10) and
r=v—1-%,
5

For v =0 (mod 10), define J(v) according to the following table:

v J(v)
0 (mod 40) | {(v—1—8z,5z),z=0,1,..., %5}
10 (mod 40) | {(v—1—8z,5z),z =0,1,..., 22}
20 (mod 40) | {(v — 1 —8x,5z),2 =0, 1, ,”g4}
30 (mod 40) | {(v—1—8z,52),z=0,1,...,*%}

Table 1: The set J(v)

In this paper we completely solve the existence problem of a (K, K7 4)-URD(v; 7, s)
by proving the following result.

Main Theorem. For any v =0 (mod 10), there exists a (Ks, K;.4)-URD(v; r,s) if
and only if (r,s) € J(v).

2 Necessary conditions

In this section we will give necessary conditions for the existence of a (Ks, Kj4)-

URD(v;r, s).

Lemma 2.1. Let v = 0 (mod 10). If there exists a (K3, Ki4)-URD(v;r,s), then
(r,s) € J(v).
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Proof. Assume that there exists a (K2, K;4)-URD(v;r, s). By resolvability, it follows

that
v 4sv v(v—1)
2 s T T
and hence
5r+8s =5(v —1). (1)

Denote by R the set of r Ks-factors and by S the set of s K 4-factors. Since the
factors of R are regular of degree 1, every vertex of K, is incident to r edges in R and
(v—1) —r edges in S. Assume that the any fixed vertex appears in z K, 4-factors
with degree 4 and in y K, 4-factors with degree 1. Since

r4+y=s and dr+y=v—1—r,
the equality (1) gives
5(v—1—4x—y)+8(x+y) =5(v—1),

which implies y = 4z and so s = 5z. Further, replacing s = 5z in Equation (1)

provides r = v — 1 — 8z, where x < %1 (because r is a non-negative integer). [

3 General constructions and related structures

An H-decomposition of K, ), the complete multi-partite graph with u parts of size
g, is known as a group divisible decomposition (H-GDD, in short) of type g¢*; the
parts of size g are called the groups. (If H consists of complete subgraphs, then a
GDD is called a group divisible design.) When H = {H} we simply write H-GDD
and when H = K,, we refer to such a group divisible design as an n-GDD. We denote
a (uniformly) resolvable #-GDD by #H-(U)RGDD. Specifically, a (X, Y)-URGDD with
r X-factors and s Y-factors is denoted by (X, Y)-URGDD(r, s). It is easy to deduce

that the number of H-factors of a H-RGDD is %.

If the blocks of an n-GDD of type ¢ can be partitioned into partial factors,
each of which contains all vertices except those of one group, we refer to such a
decomposition as a n-frame. It is easy to deduce that the number of partial factors
missing a specified group is —= (see [9]). It is well known that a 2-frame of type g*
exists if and only if u > 3 and g(u —1) =0 (mod 2); and a 3-frame of type g* exists
if and only if u > 4, g is even and g(u — 1) =0 (mod 3) (see [7]).

An H-decomposition of K, \ K}, is known as an incomplete H-design of order
v+ h with a hole of size h. We are interested in incomplete resolvable H-designs,
which will be used in the “Filling” and “Frame”-Constructions of this section. These
designs have two types factors: partial factors, which cover every vertex except the
ones in the hole; and full factors, which cover every vertex of K, .

Specifically, a (X,Y)-IURD(v+ h, h; [, §'], [r, s]) is a uniformly resolvable (X, Y)-
decomposition of K, \ K, with 7’ partial X-factors and s’ partial Y-factors which
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cover every vertex not in the hole, and r» X-factors and s Y-factors which cover every
point of K, .

Given a graph G and a positive integer ¢, then G will denote the graph on
V(G) x Z; with edge-set {{z;,vy;} : {z,y} € E(G),i,j € Z}, where the subscript
notation a; is used to denote the pair (a,7). The graph Gy is said to be obtained
from G by expanding each vertex ¢ times. When G = K,,, the graph G, is the
complete equipartite graph Kt, bt with n parts of size ¢t and will be denoted by

W—/

n times
K, 1); while Cy, ;) will denote the graph G where G is an n-cycle.

Remark 3.1. Note that the graph G(;) admits ¢ 1-factors corresponding to each
I-factor of G for instance, because a 2m-cycle has two 1-factors, Cop,) admits 2t
1-factors.

For any two pairs of non-negative integers (r, s) and (r/, '), define (r, s)+(r', s') =
(r+71,s+¢). If X and X' are two sets of pairs of non-negative integers and a is a
positive integer, then X + X’ will denote the set {(r,s)+ (r',s") : (r,s) € X, (1", ¢) €
X'} and a x X will denote the set of all pairs of non-negative integers which can
be obtained by adding any a pairs of X together (repetitions of elements of X are
allowed).

Construction 3.2. (GDD-construction) Let ¢ be a positive integer and G be an H-
RGDD of type ¢g*, where H is a graph with n > 2 vertices and m edges. If there exists
a (X,Y)-URD(7, 5) of H, for each (7,5) € J, then so does a (X,Y)-URGDD(r, s) of

ng(u—1)
2m

type (gt)* for each (r,s) € a* J, where a =

Proof. Let G;, @+ = 1,2,...,u, be the groups and F}, Fy, ..., F, an H-factorization
of G, where a@ = "g(;;;l). Expand each vertex ¢ times, and for each block B of the
H-factor Fj, for j = 1,2,...,a, place a copy of a (X,Y)-URD(r;,s;) of Hy with
(rj,s;) € J on V(B) x Z;. Thus we obtain a (X, Y)-URGDD(r, s) of type (gt)* with
r=3 7 rjand s=3" s; and so (r,5) € axJ. O

Construction 3.3. (Filling Construction) Suppose there exists a (X,Y)-URGDD(r,s)
of type g* for each (r,s) € J. If there exists a (X, Y)-URD(g; 7', s'), for each (1, ¢') €
J’, then so does:

(i) a (X,Y)-IURD(ug,g; [, ], |r,s]) for each (1’,s") € J and (r,s) € J;

(i) a (X,Y)-URD(ug;7,3), for each (7,5) € J' + J.

Proof. Fix any pairs (r,s) € J and (r/, s') € J', and start with a (X, Y)-URGDD(r, s)
with u groups of size g, G;, i = 1,2,...,u. For every i = 2,3,...,u, place a copy of
a (X,Y)-URD(g;7",s") on G; to obtain a (X,Y)-IlURD(gu, g; [r', §'], [r, s]) with G as

the hole. Finally, on G; place a copy of a (X,Y)-URD(g;r',s’) to obtain a (X,Y)-
URD(gu;r" + 1,5 + s). O
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Remark 3.4. Note that the “filling” technique allows us to construct a (X,Y)-
URD(v+ h;r'+7,s"+s) whenever a (X, Y)-IURD(v+ h, h; [r', §'],[r, s]) and a (X,Y)-
URD(h; 7', s") are given.

Construction 3.5. (Frame-construction) Let v, g, ¢, h and u be positive integers
such that v = gtu + h. If there exists

(i) a n-frame F of type g*, n > 2;
(ii) a (X,Y)-URGDD(r, 5) of type t™ for each (7,5) € J;

(iii) a (X,Y)-IURD(gt + h, h;[r',s'],[r, §]) for each (r',s') € J" and (7,5) € a* J,
where o = —4;

(iv) a (X,Y)-URD(h;r', ") for each (1, s") € J';
then so does a (X, Y)-URD(v;r,s) for each (r,s) € J' + ua * J.

Proof. Let F be an n-frame of type ¢g* with groups G;, i = 1,2,...,u. Expand each
vertex ¢ times and add a set H = {ay, a,...,an}. Forj =1,2,...,a = -5 let F; be
the j-th partial factor which misses the group G;. For each block B € F};, on B x Z,
place a copy, D;;(B), of a (X, Y)-URGDD(rj, s;;) of type t™ with (r;;, s;;) € J. Fori =
1,2,...,u,on HU(G; X Z;) place a copy D; of a (X, Y)-IURD(gt+h, h; [r', §'], [ri, si])
with (', s") € J" and (ri,s;) = D27, (rij,855) € a* J. For every i = 1,2,...,u,
combine all together the factors of D;;(B), B € Fj;, along with the full factors of
D; so to obtain 7 X-factors and § Y-factors, where (7,5) = > ., (r:,5;) € ua * J.
Now, fill the hole H with a copy D of a (X,Y)-URD(h;r',s") with (r',s") € J.
Combine the factors of D with the partial factors of D; to obtain further ' X-
factors and s’ Y-factors with (17, s") € J'. The result is a (X,Y)-URD(v;r, s) where
(rys)=(r'+7,54+35) € J +uaxl. O

4 Small cases

In what follows, we will denote by (a1; as, as, a4, as) the graph K 4 on the vertex-set
{ai, as, as, a4, a5} with edge-set {{ay, as},{a1,as},{a1,a4},{a1,as}}; and by (aq, as,
..., ay) the n-cycle on {ay, as, .. ., a,} with edge-set {{a1, as},{as,as},...,{an_1,a,},
{an,a1}}. If the vertices of B = (a;b,c,d, e) belong to Z,, then we will say orbit
of B under Z, the set {(a+i;0+i,c+i,d+i,e+1i):i € ZLy}.

For any positive integer n, let I(n) be the set of pairs of non-negative integers

n

I(n):{(n—8x,5x):x:(),l,...,{gj}.

By induction it is easy to prove the following lemma.
Lemma 4.1. If n =0 (mod 8), then ax I[(n) = I(an) for any positive integer c.
Lemma 4.2. A (K, K, 4)-URD(r,s) of Cops) exists for every (r,s) € 1(10).
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Proof. The case (r,s) = (10,0) follows by Remark 3.1. For the case (r,s) = (2,5),
let Com(s) be the graph obtained by starting with the cycle C' = (0,1,..., 2m — 1)
on Zs,, and taking the five K, 4-factors

Fy = {(i5; (1 44) 50, (1 44) 50, (1 49) 58, (1 44)j34) 2 5 € Zom}, J € Zs.

The two 1-factors are easily obtainable by decomposing the remaining set of edges,
which can be considered as the disjoint union of the five 2m-cycles C; = (0;,1;,. ..,
(2m - 1)]')7 J € ZLs. 0

Lemma 4.3. A (K, K;4)-URGDD(r, s) of type 2° exists for every (r,s) € I(8).
Proof. The case (r,s) = (8,0) corresponds to a 1-factorization of Kse), which is

known to exist ([7]). To settle the case (r,s) = (0,5), take the orbit of B =
(0;1,2,3,4) under Z, which can be decomposed into the five K 4-factors:

F,={B+j+5i:i=0,1}, j=0,1,23,4.
The groups are the cosets H, H + 1, H + 2, H + 3, H + 4 of H = 57y in Zqy. 0
Lemma 4.4. A (Ky, K14)-URD(10;1,s) exists for every (r,s) € J(10).
Proof. The case (r,s) = (9,0) corresponds to a 1-factorization of the complete K,

which is known to exist ([7]). For the case (r,s) = (1,5), apply the Filling Construc-
tion to a (Ka, K14, )-URGDD(0,5) of type 2°, which is given by Lemma 4.3. O

Lemma 4.5. A (Ky, K14)-URGDD(r, s) of type 10? exists for every (r,s) € 1(10).

Proof. Apply the GDD-construction with ¢ = 5 to a trivial C;-RGDD of type 22,
where o = 1. The input designs are given by Lemma 4.2. O

Lemma 4.6. A (K, K14)-URD(20; 1, s) exists for every (r,s) € J(20).

Proof. The Filling Construction applied to a (K3, K; 4)-URGDD(7, 5) of type 10? from
Lemma 4.5 (with input designs given by Lemma 4.4) gives a (K, K7 4)-URD(20; 7, s)
for each (r,s) € J(10) + I(10) = J(20).

]

Lemma 4.7. A (K, K14)-URD(40; 1, s) exists for every (r,s) € J(40).

Proof. Applying the GDD-construction with ¢ = 10 to a 2-RGDD of type 22 (where
a = 2) gives a (K», K1 4)-URGDD(7, 5) of type 202 for each (7, 5) € 2x1(10) (the input
designs are given by Lemma 4.5). Now filling the groups with designs given by Lemma
4.6 gives a (K, K1.4)-URD(40; 7, s) for each (r,s) € J(20) + 2 % [(20) = J(40). O

Lemma 4.8. A (K5, K1 4)-URD(0,25) of Cry20) exists for every m > 3.

Proof. Let Cy, = (1,2,...,m). Fori=1,2...,m, let X® = {i} x Zy = UiZOX,ff),
where X,(j) = {iak, tak+1, taks2, tap+3}, and for every r, s € Zs let RY denote the set
of the following four copies of K 4
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(l4m (04 D)y (0 D) ggpqs (04 1) gpo, (0 + 1)4s+3)
(7/4r+1a i+1 43+47 (1+ 1)4s+5’ (1 + 1)4s+6’ (i + 1)4s+7)’
(7/4'r'+2a { _'_ 4s+87 (2 + 1)4s+97 (2 + 1)4s+10’ (Z + 1)4s+11)’

Gar135 (0 1) ggi10 (0 1) goigr (04 1) 40 g4 (0 1)4s+15)’

where m 4+ 1 =1. If m = 2n, n > 2, take the five K, 4-factors

C \

<R(()21i+1) U Rézlzurz)) ’

=0
n—1

Fy = <R(22@'+1) U R§21i+2)> ’
i=0
n—1

Fy = <R(22+1) U R22lz+2)> ’
i=0
n—1 .

F = U <R(22+1) U Ré2lz+2)> ’
i=0
n—1

Fy = <Ré%z+1) UR 2z+2)> ’

while if m = 2n + 1, n > 1, take the five K, 4-factors

R VR URE) U | (RE U R@”l)

(2 (26+1)
oo U Ry

< )
( Ju U (rE o
B = (r o R url) o [ (s U Rg™
( Ju U (R ure
Ju U

)
)]
).
)]

The required 25 star factors are

F (Fk>+.7 _{RT-F_]S-F]:R’EZ:S) EFka 7",8625}, j€Z57 k:172737475

when m = 2n and

Fl=(F)+j={RY,,,,: RY € F, r,s € Ls}, j € Ls, k =1,2,3,4,5

when m = 2n + 1.

62
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Lemma 4.9. A Cy,,-decomposition of Cp2) exists for any m > 3.

Proof. Let Cp,2) be the graph obtained by expanding twice the vertices of the cycle
(1,2,...,m), m > 3. If m is even, take the two 2m-cycles

Cy = (10,21,30,41,...,m1, 11,20,31,40, - .., mp),

Cy = (1o,20,30, 40, - - . ,mo, 11,21,31,41,...,my1),
while if m is odd, take the following ones:

1 = (1o,21,30,41, . .., mo, 11, my, (m — 1)g, (m — 2)1, (m — 3)o, ..., 20),

Ch = (19, mo, (m — 1)g, (m — 2)g, (m — 3)o, - - -, 20, 11,21, 31,41, ..., m1). ]
Lemma 4.10. A (K3, K14)-URD(r,s) of Cp20), m > 3, exists for every (r,s) €
1(40).

Proof. The case (r,s) = (0,25) follows by Lemma 4.8. For any (r,s) € 1(40) \
{(0,25)}, start from the Cs,,-decomposition of Ciy2) of Lemma 4.9, which admits
a = 4 1-factors (each 2m-cycle gives two 1-factors). Expand each vertex 10 times. For
cach edge e of a given 1-factor, place on e X Zyj a copy of a (K», K 4)-URGDD(7, 5) of
type 10% with (7, 5) € 1(10) (given by Lemma 4.5) so to obtain a (K3, K 4)-URD(r, s)
of Cpy20) with (r,s) € 4% 1(10) = 1(40) \ {(0,25)}. O

Lemma 4.11. A (K3, K 4)-URD(r,s) of Crnaoy, m > 3, exists for every (r,s) €
1(20).

Proof. Start with a Cs,,-decomposition of Cl, (), which is given by Lemma 4.9 and is
trivially resolvable with o = 2 factors (i.e., the two 2m-cycles). Expand each vertex
5 times. For each cycle C, place on V(C') x Zs a copy of a (K», K14)-URD(7, 5) of
Com(s) with (7,5) € I1(10) given by Lemma 4.2 so to obtain a (K, K7 4)-URD(r, s) of
Cr(10) with (r,s) € 2% 1(10) = I(20). O

Lemma 4.12. A (Ky, K14)-URGDD(r, s) of type 40? exists for every (r,s) € I1(40).
Proof. Apply the GDD-construction with ¢ = 20 to a trivial C4-RGDD of type 22,
where o = 1. The input designs are given by Lemma 4.10 for m = 4. U
Lemma 4.13. A (K, K14)-URD(30;1,s) exists for every (r,s) € J(30).

Proof. The Filling Construction applied to a (K, K1 4)-RGDD(7, 5) of type 10* with

(7,5) € 1(20) (from Lemma 4.11) gives a (K5, K;4)-URD(30;r,s) for each (r,s) €
J(10) + 1(20) = J(30). The input designs are given by Lemma 4.4. O

Lemma 4.14. There exists a (K, K14)-URGDD(0,25) of type 105.
Proof. The union of the orbits of B; = (0; 1+ 5¢,2+ 5i,3+ 5,4+ 5i),7=0,1,2,3,4,
under Zs, gives the block set of a GDD of type 10, whose groups are the cosets

HH+1,H+2 H+3 H+4of H=>5Zs in Zsy. For every 1 =0, 1,2, 3,4, the orbit
of B; can be decomposed into five K; 4-factors:

F;={Bi+j+5kk=0,1,...,9}, 7=0,1,2,3,4.
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Lemma 4.15. A (K, K, 4)-URGDD(r, s) of type 10° exists for every (r,s) € I(40).

Proof. The case (r,s) = (0,25) follows by Lemma 4.14. For any (r,s) € I(40) \
{(0,25)}, the GDD-Construction applied with ¢ = 10 to a trivial C5-RGDD of type 1°
(where a = 2) gives a (K3, K1.4)-URGDD(r, s) of type 10° for each (r, s) € 2% 1(20) =
1(40) \ {(0,25)}. The input designs are given by Lemma 4.11.

Lemma 4.16. A (K», K;4)-IlURD(50,10; [, s'],[r,s]) exists for every (r', s')
J(10) and (r,s) € 1(40).

m [

Proof. Apply the Filling Construction to a (K3, K 4)-URGDD(r, s) of type 10° with
(r,s) € 1(40) from by Lemma 4.15 (the input designs are given by Lemma 4.4). O

Let S C Z, be such that if s € S, then —s ¢ S and set B = {{0,s} : s € S}},
then the orbit of B is the circulant graph with edges {z,y} where either x — y or
y—x € S. The edge {x,y} has even order if s = y — x has even additive order
modulo n. In the next Lemma we use the following famous result of Stern and Lenz.

Theorem 4.17. (Theorem of Stern and Lenz [23]) Every circulant graph containing
an edge of even order has a one-factorization.

Lemma 4.18. A (K, K1 4)-URGDD(r, s) of type 10° exists for every (r,s) € {(8,45),
(0,50)}

Proof. On Zgyg let:

F ={(89;0,1,18,19), (52; 53,54, 71,72), (2; 40,67, 87, 85),
(3;41,68,88,86), (4;65,73,77,81), (5; 66, 74,78, 82),
(6;46,48,50,61), (7;47,49,51,62), (8; 38,42, 59, 83),

(9; 39,43, 60,84), (10; 32, 34, 36,63), (11; 33, 35, 37,64),
(12;20,69, 24, 79), (13; 21, 70, 25, 80), (14; 28, 30, 55, 57),
(15;29,31, 56, 58), (16;44, 22,26, 75), (17;45,23,27,76)}.

and B = (0;3,4,11,32). Take the forty-five K 4-factors F' + 21, for i = 0,1,...,44,
and partition the orbit of B under Zg, into the five K 4-factors:

Fy={B+j+5kk=0,1,...,17}, j=0,1,2,3,4.

The resulting design is a (K3, K 4)-URGDD(0, 50) of type 10, whose groups are the
cosets of H = 9Zg in Zgyo, i.e., H + h, for h=0,1,...,8.

For the case (r,s) = (8,45), remove the K 4-factors obtained from the orbit of B
and decompose the graph whose edges cover the differences of B into 1-factors by
using the theorem of Stern and Lenz. O

Lemma 4.19. A (K, K1 4)-URGDD(r, s) of type 10° exists for every (r,s) € I(80).

Proof. The cases (r,s) = (0,50), (8,45) follow by Lemma 4.18. To settle the remain-
ing cases, apply the GDD-construction with ¢ = 10 to a Co-RGDD of type 1° (where
a = 4) to get a (Ky, K;4)-URGDD(r, s) of type 10° for each (r,s) € 4 * I(20) =
1(80) \ {(0,50),(8,45)}. The input designs are given by Lemma 4.11. O
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Lemma 4.20. A (K5, K;4)-IlURD(90, 10; [, §'], [r, s]) exists for every (', s") € J(10)
and (r,s) € 1(80).

Proof. Apply the Filling Construction to a (K3, K 4)-URGDD(r, s) of type 10 with
(r,s) € 1(80) from by Lemma 4.19 (the input designs are given by Lemma 4.4). O

Lemma 4.21. A (K,, K;4)-IlURD(70,30;[r', s'],[0,25]) exists for every (', s') €
7(30).

Proof. Let V = ZyU{a1,as,...,as} be the vertex set, where {ay, as, ..., az} is the
hole. Consider the five K 4-factors on V:

Fi = {(a1; 16, 17, 18, 19), (az; 20,21, 22, 23), (as; 24, 25, 26, 27),
(a; 28,29, 30, 31), (as; 32, 33, 34, 35), (ag; 36, 37, 38, 39),
(0;8, a14, ass, ars), (159, asgs, ass, aso), (2; 10 a20,a22,a24)
(3; 11, ag, aio, a12), (4; 12, as3, ais, ai7), (5; 13, ass, asr, agy),
(67 14,&19,(121,(123), (7 15 (17,61,9,61,11)}7

= {(ar;8,9,10,11), (ag; 12, 13, 14, 15), (ag; 24, 25, 26, 27),
(a10: 28,2930, 31), (an1: 32, 33, 34, 35). (ar: 36, 37, 38, 39),
(0; 16 a26,a28,a30),(1, 17, ag,a4,a6) (2;18 a14,a16,a18)
(3519, agg, ase, asy), (4; 20, a1, as, as), (5; 21,&19,&21,&23),
(6522, ar3, as, a17), (7; 23, ags, asr, ) };

= {(a13;8,9,10, 11), (ar; 20,21, 22, 23), (a15; 24, 25, 26, 27),
(a16; 28, 29, 30, 31), (a17; 32, 33, 34, 35), (a1s; 36, 37, 38, 39),
(0512, ag, ayo, a12), (1; 13, aso, oz, a24), (2; 14, as, ay, ag),
(3515, agg, ass, aso), (4; 16, az, ag, a11), (5; 17, ay, as, as),

(6; 18, ags, aoy, a29), (7; 19, a9, a1, a23)};

= {(a19:8,9,10,11), (ago: 12,13, 22, 23), (as1; 24, 25, 26, 27),
(a3 28,29, 30, 31), (a03: 32, 33, 34, 35), (as4; 36, 37, 38, 39),
(0 14 CLQ,CL4,CL6) (]_ 15,(18,0,10,0,12), (2, 16,&26,(128,0,30),
(3;17, awa, ae, a1s), (4; 18, ags, azr, ag), (5;19, ar, ag, a1),
( 20,0,1,0,3,&5), (7,21,(113,0,15,(117)};

= {(a25:8,9,10, 11), (ass; 12, 13, 14, 15), (a2r; 16, 17, 26, 27),
(ass; 28,29, 30, 31), (as9; 32, 33, 34, 35), (az0; 36, 37, 38, 39),
(0;18 a207a22,a24) (1;19, ayy, ass, a1s), (2; 20, ag, ayo, a12),
(3;21, ag, ay, ag), (4; 22, ay9, as, as3), (5; 23, ais, ais, ai7),
( 24,0,7,0,9,0,11), (7, 25,(11,0,3,&5)}.

For each j = 1,2,3,4,5, take the five K -factors F; + 8i, for ¢ = 0,1,2,3,4,
where a + x = a; for every x € Zyy and for every k = 1,2,...,30. Let D =
{1,2,3,4,5,6,7,9,10,11,13,15,17,19, 20}, i.e. the set of the 15 differences not cov-
ered by the 25 above factors, and decompose the graph consisting of the edges
{i,d+1i}, 1 € Zy and d € D, as follows.
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For (r',s") = (29,0), apply the theorem of Stern and Lenz to decompose the
graph consisting of the edges {i,d + i}, i € Zyo and d € D, into 29 partial 1-factors
on Z40.

For (r',s") = (21,5), take the base block B = (0;7,9, 11, 13), whose orbit modulo
40 can be decomposed into five K; 4-factors on Zyg:

Fl={B+j+5k:k=0,1,....7}, j=0,1,2,34.

Decompose the graph whose edges cover the remaining differences of D into 1-factors
by using the theorem of Stern and Lenz.

For (1,s") = (13, 10), take the base blocks
B =1(0;7,9,11,13) and B, = (0;1,2,3,4),

which give in total ten K; 4-factors on Z,p. Then decompose the graph whose edges
cover the differences of D into 1-factors by using the theorem of Stern and Lenz.

For (1, s") = (5, 15), take the base blocks B = (0;7,9,11,13), By = (0; 3,4, 5, 19)
and B; = (6;7,8,12,21). Obtain five K; 4-factors on Zy from B, and ten K 4-factors
from By and Bjs as follows:

F!'={By+j+ 10k, By +j + 10k : k=0,1,2,3}, j=0,1,...,9.

Decompose the graph whose edges cover the remaining differences 10, 17 and 20 of
D into 1-factors by using the theorem of Stern and Lenz. U

Lemma 4.22. A (K>, K14)-IURD(70,30; [r', §'], [r, s]) exists for every (', s") € J(30)
and (r,s) € 1(40).

Proof. The case (r,s) = (0,25) follows by Lemma 4.21. For any (r,s) € I1(40) \
{(0,25)}, start from the decomposition of the graph K7\ K3 on X = {z,y,2} U
{a1, az, az, as} into one 4-cycle Cy = (a1, as, as, as) and two hamiltonian cycles Cy =
(a1,as,y,as, z,a4,x) and Cy = (aq, 2, a3, T, as,a4,y). Expand each vertex 10 times
and on V(C;) X Zy, for j = 0,1,2, place a copy of a (Ks, Ki4)-URD(rj,s;) of
Cmaoy (m = 4 or 7) with (r;,s;) € I(20) (given by Lemma 4.11). It follows that,
corresponding to the hamiltonian cycles €} and (5, there are r full 1-factors and
s full Ky 4-factors, where (r,s) = (11 + ro, 51 + s2) € 2% 1(20) = 1(40) \ {(0,25)};
while Cy provides 1y partial 1-factors and s, partial K, 4-factors missing the hole
{z,y,2} X Z1o. Now, placing on each set {a;} X Z, ¢ = 1,2,3,4, a copy of a
(K3, K1.4)-URD(10,7", ") with (r”,s") € J(10) (from Lemma 4.4) gives further r”
partial 1-factors and s” partial K 4-factors so that the resulting design is a (K, K4 4)-
IURD(70, 30; [+, §], [r, s]), where (1, s") = (ro + 1", 50+ s") € 1(20) + J(10) = J(30).

0

Lemma 4.23. A (K», K;4)-IlURD(110, 30; [1', 5], [r, s]) exists for every (r',s") € J(30)
and (r,s) € {(8,45), (0,50)}.
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Proof. Let V = ZgyU{a1,as,...,as} be the vertex set, where {ay, as, ..., az} is the
hole. Consider the two K, 4-factors on V:

Fi = {(ass; 16, 18, 20, 22), (asg; 24, 26, 28, 30), (asr; 32, 34, 36, 38),
(ass: 17,19, 21, 23), (ase; 25, 27, 29, 31), (as0; 33, 35, 37, 39),

(0; 14, agy, ass, ag), (1;15, arg, aso, az1), (2; 8, ais, a7, ais),

(3;9, a13, a14, a15), (4512, a1o, ar1, a12), (5; 13, az, as, ag),

(6510, a4, as, ag), (7; 11, ay, as, ag),

(40; 67, 68, 69, 70), (41; 62, 64, 66, 72), (42; 63, 65,73, 78),

(43; 54, 58, 60, 79), (44; 55, 56, 59, 61), (45; 48, 50, 52, 57),

(46;49,51,53,71), (47;74,75,76,77) };

— {(ass;4, 14,24, 34), (ase; 2,12, 22, 32), (as7: 0, 10, 20, 30).

(ass: 5, 15,25, 35), (aso; 3, 13, 23, 33), (as; 1, 11,21, 31),

(46; 506, as, ass, &24), (47§ 57, ag, ag, a21)> (44; 54, aye, ar7, a18),

(457 55, a13,a14, &15), (427 52, a10,a11, a12), (43, 53, ar, as, a,g),

(40; 50, ay, as, ag), (41; 51, ay, as, as),

(6:8, 48, 64, 66), (7: 9,49, 65, 67), (16; 18,74, 76, 62),

(17:19, 75, 77, 63), (26; 28, 68, 60, 72), (27; 29, 69, 61, 73),

(36: 38, 78, 70, 58), (37; 39,79, 71, 59) };

and the sets of pairs A; = {{0,20}, {1,21},{6,26},{7,27}} and A, = {{2,40},
{3,41},{6,28},{7,29}}.

Take the 50 full K, 4-factors Fy 4 2, for 7 = 0,1,...,39, and F, + 8, for i =
0,1,...,9, where ay + x = aj,3, for every x € Zgy and k = 1,2,...,30; and the two
partlal 1 factors (A4;) = {{x +8i,y + &} : {z,y} € 4;,1 =0, 1,...,9}, j=1,2. Let
D ={1,9,13,16, 18,19, 24, 26, 32, 33, 35, 37, 39, 40}, i.c. the set of the 14 differences
not covered by (Al), (Ag) and the above 50 full K 4-factors. Decompose the graph
consisting of the edges {i,d + i}, i € Zgy and d € D, as follows:

For (r',s") = (29,0), apply the theorem of Stern and Lenz to decompose the
graph consisting of the edges {i,d + i}, i € Zgy and d € D, into 27 partial 1-factors
on Zsp so to obtain 29 partial 1-factors along with (A;) and (As).

For (r',s") = (21,5), take the base block B = (0;26,32,33,39), whose orbit can be
decomposed into five K 4-factors on Zg:

—{B+j+5k:k=0,1,...,15}, j=0,1,2,3,4.

Decompose the graph whose edges cover the remaining differences of D into 1-factors
by using the theorem of Stern and Lenz.

For (r',s') = (13,10), take the base blocks B = (0;26,32,33,39) and B, =
(0;1,13,24,37), which give in total ten K 4-factors on Zgy, while decomposing the
graph whose edges cover the differences of D into 1-factors by using the theorem of
Stern and Lenz.

For (r',s") = (5,15), take the base blocks B = (0;26,32,33,39), By = (0; 1, 16,
19,35) and B; = (4;13,17,22,28). Obtain five K 4-factors on Zgy from B, and ten



M.S. KERANEN ET AL./ AUSTRALAS. J. COMBIN. 76 (1) (2020), 55-72 68

K, 4-factors from B, and Bs as follows:
FJ{':{Bg—i—j—|—10k,Bg+j—|—1Ok::k:zO,l,...,?}, 7=0,1,...,9.

Decompose the graph whose edges cover the remaining differences 37 and 40 of D
into 1-factors by using the theorem of Stern and Lenz.

Finally, to prove the existence of a (Ks, K 4)-IURD(110, 30; [+, 5], (8,45)), with
(r',s") € J(30), it will be sufficient to start from the constructed (K, K;4)-IURD

(110, 305 [r, s], (0,50)). Destroy the 5 full K 4-factors Fy + 16, for i = 0, 1,2, 3,4,
and rearrange the resulting edges into the 8 full 1-factors (M;) = {{z+16¢,y+ 162}
{z,y} € M;,1=0,1,2,3,4}, j = 1,2,...,8, where:

A - { {7,a3}, {6,a5}, {5,ar}, {2,a1s}, {1, a0}, {0,a}, }
T\ {4,12), {40,673, {41,62}, {43, 58}, {47,77}

{6,a6}, {5,as}, {4,a10}, {1,a01}, {0,as}, {18, ass}, }.
{7,11}, {42,63}, {44, 56}, {45,57}, {46,51} ’

{5,a9}, {4,a11}, {3,a13}, {0, a04}, {30, ass}, {17, asx}, }.
{6,10}, {41,72}, {43,79}, {44,55}, {45,50} ’

{7,a1}, {4,a12}, {3,a14}, {2,a16}, {38, asr}, {29, ax}, };

{40, 69}, {41, 64}, {44, 59}, {46,49}, {47,74}

-
-
-
% {7,a2}, {6,a4}, {3,a15}, {2, ai7}, {1, a1o}, {37, as0}, };
v
v

{0,143}, {40,68}, {42, 73}, {44,61}, {47, 75}

{20,a25},{28,a26},{32,ag7},{23,a28},{31,a29},{33,a30},}.
{2,8}, {3,9}, {5,13}, {42,78}, {43,54} ’

{16,a25},{26,a26},{34,a27},{19,a28},{25,a29},{39,a30},}'
{1,15}, {40,70}, {45,52}, {46,53}, {43,60} :

{22, a5}, {24, ase}, {36, asr}, {21, a0s}, {27, a2}, {35, aso},
(41,66}, {42,65}, {45,48}, {46,71}, {47,76} }

Lemma 4.24. A (K», K, 4)-IlURD(110,30; [, s'], [r, s]) ewists for every (r', s') €
J(30) and (r,s) € 1(80).

Proof. The cases (r,s) = (8,45),(0,50) follow by Lemma 4.21. For any (r,s) €
I1(80)\ {(8,45), (0,50)}, start from the decomposition of the graph K1\ K3 on X =
{z,y,2}U{aq, as, ..., as} into one 8-cycle Cy = (ay, as, , ..., as) and four hamiltonian
cycles

a,r,as,y,as, z,ar,a, g, Ag, A4 ),

as,x,ar,y,a, z, a3, ag, 4, @2, ag

)

= ( )
= (ag,x,a4,y, ag, 2, as, as, ai, az, as),
= ( as)
( ).

Cy = (ag, x,as,y, as, 2, a4, a7, a3, as, a1



M.S. KERANEN ET AL./ AUSTRALAS. J. COMBIN. 76 (1) (2020), 55-72 69

Expanding each vertex 10 times and using similar arguments to the proof of Lemma
4.22 gives a (Ky, K 4)-IURD(110, 30; [/, §'], [r, s]) for each (r',s") € I(20) + J(10) =
J(30) and (r,s) € 4% 1(20)) = I(80) \ {(8,45), (0,50)}. O

Lemma 4.25. Let v = 50,70,90,110. A (Kj, K14)-URD(v,r,s) exists for every
(r,s) € J(v).

Proof. Apply the Filling Construction to the IURDs of Lemmas 4.16, 4.20, 4.22 and
4.24. The input designs are given by Lemmas 4.4 and 4.13. U

The next three results are all obtained by applying the Frame-Construction with
various parameters. We leave them as separate results so that it is easier for the
reader to find each case.

Lemma 4.26. A (K», K, 4)-URD(190; 1, s) exists for every (r,s) € J(190).

Proof. Apply the Frame-Construction with ¢ = 20 and h = 30 to a 3-frame of type 2*
(where @ = 1) to obtain a (K», K3 4)-URD(190; r, s) for each (7, s) € J(30)+4%I(40) =
J(30) + 1(160) = J(190) (where the first equality follows by Lemma 4.1). The input
designs are given by Lemmas 4.10, 4.13 and 4.22. O

Lemma 4.27. Let v = 690,930. A (Ky, K14)-URD(v;r,s) exists for every (r,s) €
J(v).

Proof. Apply the Frame-Construction with ¢ = 40 and h = 10 to a 2-frame of type
v—10

170 (where o« = 1) to obtain a (Ks, K7 4)-URD(v;r,s) for each (r,s) € J(10) +

210 4 J(40) = J(10) + I(v — 10) = J(v) (where the first equality follows by Lemma

4.1). The input designs are given by Lemmas 4.4, 4.12 and 4.16. 0

Lemma 4.28. A (K, K14)-URD(1290; 1, s) exists for every (r,s) € J(1290).

Proof. Apply the Frame-Construction with ¢ = 40 and h = 10 to a 2-frame of type
21% (where a = 2) to obtain a (K3, K;4)-URD(1290;r, s) for each (r,s) € J(10) +
32 % I(40) = J(10) + I(1280) = J(1290) (where the first equality follows by Lemma
4.1). The input designs are given by Lemmas 4.4, 4.12 and 4.20. 0

5 The main result

In the proof of the following lemmas we make use of the equality « * I(n) = I(an),
which holds by Lemma 4.1 when n is a multiple of 8.

Lemma 5.1. Let v =0 (mod 40). Then a (Ks, K;4)-URD (v;r,s) exists for every
(r,s) € J(v).

Proof. Let v = 40k, £ > 1. The case v = 40 follows by Lemma 4.7. For k >
1, applying the GDD-Construction with ¢ = 20 to a C5,-RGDD of type 2F, ie., a
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decomposition of Kj) into a = k—1 hamiltonian cycles (see [15]), gives a (K, K7.4)-
URGDD(7, 5) of type 40* for each (7,5) € (k — 1) = I(40). (The input designs are
given by Lemma 4.10.) Filling each group with a (K, K;4)-URD(40;7,s") with
(r',s") € J(40) (from Lemma 4.7) gives a (K, K;4)-URD(v;r,s) for each (r,s) €
J(40) + (k — 1)  I(40) = J(40) + 2522 « [(40) = J(40) + I (v — 40) = J(v). O
Lemma 5.2. Let v =10 (mod 40). Then a (Ks, Ki.4)-URD(v;r, s) exists for every

(r,s) € J(v).

Proof. Let v = 40k 4+ 10, k > 0. The cases v = 10,50, 90,690,930, 1290 follow
by Lemmas 4.4, 4.25, 4.27, and 4.28. For k > 2, k # 17,23,32, start from a
5-RGDD of type 12%%%5 (where a = 5k + 1, see [1, 2, 3, 9, 26]). Applying the
GDD-construction with ¢ = 2 gives a (K3, K;.4)-URGDD(F, 5) of type 22**5 for each
(7,5) € (bk + 1) % I(8) (the input designs are given by Lemma 4.3). Now fill the
groups with a trivial (K, K7 4)-URD(2;1,0) to get a (K», K;4)-URD(v; 1, s) for each
(r,s) € {(1,0)}4+(5k+1)*I(8) = {(1,0)}+ %2« (8) = {(1,0)}+1(v—2) = J(v). O
Lemma 5.3. Let v =20 (mod 40). Then a (Ky, K14)-URD(v;r,s) exists for every
(r,s) € J(v).

Proof. Let v = 40k + 20, £ > 0. The case v = 20 follows by Lemma 4.6. For
k > 0, applying the GDD-Construction with ¢ = 20 to a Cs1-cycle system of order
2k + 1, i.e. a decomposition of Kyyq into @ = k hamiltonian cycles (see [3, 16]),
gives a (Ks, K 4)-URGDD(7, 5) of type 202**! for each (7, 5) € k x [(40). (The input
designs are given by Lemma 4.10.) Filling each group with a copy of a (Kj, K 4)-
URD(20;7", s"), with (17, s") € J(20) (from Lemma 4.6) gives a (K5, K 4)-URD(v;r, s)
for each (r, s) € J(20)+k*1(40) = J(20)+2522%1(40) = J(20)+1(v—20) = J(v). O

Lemma 5.4. Let v =30 (mod 80). Then a (K, K14)-URD(v;r,s) exists for every
(r,s) € J(v).

Proof. Let v = 80k + 30, £k > 0. The cases v = 30,110,190 follow by Lemmas
4.13, 4.25 and 4.26. For k > 2, applying the Frame-Construction with ¢ = 40 and
h = 30 to a 2-frame of type 2% (where a = 2) gives a (Kj, K, 4)-URD(v;r, s) for each
(r,s) € J(30) + 2k % I(40) = J(30) + 52% % I(40) = J(30) + I (v — 30) = J(v). (The
input designs are given by Lemmas 4.12; 4.13 and 4.24.) U
Lemma 5.5. Let v =70 (mod 80). Then a (K, K14)-URD(v;r,s) exists for every

(r,s) € J(v).

Proof. Let v =80k + 70, k > 0. The case v = 70 follows by Lemma 4.25. For k£ > 0,
apply the Frame-Construction with t = 40 and h = 30 to a 2-frame of type 1%++!
(where av = 1) to obtain a (Kj, K 4)-URD(v; 7, s) for each (r,s) € J(30) + (2k + 1) *
1(40) = J(30) 4 52% « 1(40) = J(30) 4+ I(v — 30) = J(v). (The input designs are
given by Lemmas 4.12, 4.13 and 4.22.) O

As consequence of Lemmas 2.1, 5.1-5.5, our main result immediately follows.

Theorem 5.6. A (Ky, Ky4)-URD(v;r,s), with r,s > 0, exists if and only if v =0
(mod 10) and (r,s) € J(v).
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