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Abstract

If X is a connected graph, then an X-factor of a larger graph is a span-
ning subgraph in which all of its components are isomorphic to X. A
uniformly resolvable {X, Y }-decomposition of the complete graph Kv is
an edge decomposition of Kv into exactly r X-factors and s Y -factors.
In this article we determine necessary and sufficient conditions for when
the complete graph Kv has a uniformly resolvable decompositions into
1-factors and K1,4-factors.
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1 Introduction and definitions

For any graph G, let V (G) and E(G) be the vertex-set and the edge-set of G,
respectively. Throughout the paper Kv will denote the complete graph on v vertices,
while Kv \ Kh will denote the graph with V (Kv) as vertex-set and E(Kv) \ E(Kh)
as edge-set (this graph is sometimes referred to as a complete graph of order v with
a hole of size h).

Given a set H of pairwise non-isomorphic graphs, an H-decomposition (or H-
design) of a graph G is a decomposition of the edge-set of G into subgraphs (called
blocks) isomorphic to some element of H. An H-factor of G is a spanning subgraph
of G whose components are isomorphic to a members of H. If X ∈ H, then an
X-factor is a spanning subgraph whose components are isomorphic to X . An H-
decomposition of G is resolvable if its blocks can be partitioned into H-factors and
is called an H-factorization of G. An H-factorization F of G is called uniform if
each factor of F is an X-factor for some graph X ∈ H. A K2-factorization of G is
known as a 1-factorization and its factors are called 1-factors; it is well known that
a 1-factorization of Kv exists if and only if v is even ([18]).

An H-isofactorization of G is an H-factorization with isomorphic factors. If H
is the set of all possible cycles of Kv, then determining the existence of possible H-
isofactorizations ofKv, v odd is known as the Oberwolfach Problem. It was first posed
in 1967 by Gerhard Ringel and asks whether it is possible to seat an odd number v
of mathematicians at n round tables in (v − 1)/2 meals so that each mathematician
sits next to everyone else exactly once. If the n round tables are of sizes p1, p2, . . . , pn
(with p1 + p2 + · · ·+ pn = v), the Oberwolfach Problem asks for an isofactorization
of Kv with factors isomorphic to the 2-factor with components isomorphic to cycles
of length p1, p2, . . . , pn. The uniform Oberwolfach problem (all cycles of the 2-factor
have the same size) has been completely solved by Alspach and Häggkvist [4] and
Alspach, Schellenberg, Stinson and Wagner [5] .

Additional existence problems for H-factorizations of Kv have been studied and
many results have been obtained, especially on uniformly resolvable H-decomposi-
tions: when H is a set of two complete graphs of order at most five in [8, 21, 22, 24];
when H is a set of two or three paths on two, three or four vertices in [11, 12, 17];
for H = {P3, K3+ e} in [10]; for H = {K3, K1,3} in [14]; for H = {C4, P3} in [19]; for
H = {K3, P3} in [20]. And most famous is the variation of the Oberwolfach problem
known as the Hamilton-Waterloo problem. In this problem the meals for the dinning
mathematicians take place at two different venues. Hence a decomposition of Kv is
sought where the factors can be either one of two types. In particular the uniform
case asks for a decomposition of Kv into Cp-factors and Cq-factors. Thus the round
tables in one venue sit p mathematicians whereas the tables in the other venue each
sit q. Of course in this case p and q must divide v, v must be odd and H = {Cp, Cq}.

A uniformly resolvable {X, Y }-decomposition of Kv into exactly r X-factors and
s Y -factors, is abbreviated (X, Y )-URD(v; r, s). The uniform case of the Hamilton-
Waterloo problem is the existence problem for (Cp, Cq)-URD(v; r, s).
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In this paper, we focus on the case H = {K2, K1,n}. The resulting uniformly
resolvable problem, affectionally known as the stars and stripes problem, can be seen
as the attendance at a conference of v participants that has v/(n+1) parallel sessions
and in which during the breaks the participants pair up for one on one discussions.
The parallel sessions are K1,n-factors and are also known as star-factors: the one on
one discussions are K2-factors and are the stripes.

The existence of a (K2, K1,n)-URD(v; r, s) was studied and completely solved for
n = 3 in [6] and [13]. Here we concentrate on the case n = 4 and, because the results
for the extremal cases s = 0 and r = 0 are known, i.e.:

• a (K2, K1,n)-URD(v; r, 0) exists if and only if v is even;

• if n is even, a (K2, K1,n)-URD(v; 0, s) exists is and only v ≡ 1 (mod 2n) and
v ≡ 0 (mod n+ 1) ([25]);

we deal with (K2, K1,4)-URD(v; r, s) where r, s > 0 and so v ≡ 0 (mod 10) and
r = v − 1− 8s

5
.

For v ≡ 0 (mod 10), define J(v) according to the following table:

v J(v)
0 (mod 40) {(v − 1− 8x, 5x), x = 0, 1, . . . , v−8

8
}

10 (mod 40) {(v − 1− 8x, 5x), x = 0, 1, . . . , v−2
8
}

20 (mod 40) {(v − 1− 8x, 5x), x = 0, 1, . . . , v−4
8
}

30 (mod 40) {(v − 1− 8x, 5x), x = 0, 1, . . . , v−6
8
}

Table 1: The set J(v)

In this paper we completely solve the existence problem of a (K2, K1,4)-URD(v; r, s)
by proving the following result.

Main Theorem. For any v ≡ 0 (mod 10), there exists a (K2, K1,4)-URD(v; r, s) if
and only if (r, s) ∈ J(v).

2 Necessary conditions

In this section we will give necessary conditions for the existence of a (K2, K1,4)-
URD(v; r, s).

Lemma 2.1. Let v ≡ 0 (mod 10). If there exists a (K2, K1,4)-URD(v; r, s), then
(r, s) ∈ J(v).
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Proof. Assume that there exists a (K2, K1,4)-URD(v; r, s). By resolvability, it follows
that

rv

2
+

4sv

5
=

v(v − 1)

2

and hence
5r + 8s = 5(v − 1). (1)

Denote by R the set of r K2-factors and by S the set of s K1,4-factors. Since the
factors of R are regular of degree 1, every vertex of Kv is incident to r edges in R and
(v − 1)− r edges in S. Assume that the any fixed vertex appears in x K1,4-factors
with degree 4 and in y K1,4-factors with degree 1. Since

x+ y = s and 4x+ y = v − 1− r,

the equality (1) gives

5(v − 1− 4x− y) + 8(x+ y) = 5(v − 1),

which implies y = 4x and so s = 5x. Further, replacing s = 5x in Equation (1)
provides r = v − 1− 8x, where x ≤ v−1

8
(because r is a non-negative integer).

3 General constructions and related structures

An H-decomposition of Ku(g), the complete multi-partite graph with u parts of size
g, is known as a group divisible decomposition (H-GDD, in short) of type gu; the
parts of size g are called the groups. (If H consists of complete subgraphs, then a
GDD is called a group divisible design.) When H = {H} we simply write H-GDD
and when H = Kn we refer to such a group divisible design as an n-GDD. We denote
a (uniformly) resolvable H-GDD by H-(U)RGDD. Specifically, a (X, Y )-URGDD with
r X-factors and s Y -factors is denoted by (X, Y )-URGDD(r, s). It is easy to deduce

that the number of H-factors of a H-RGDD is g(u−1)|V (H)|
2|E(H)| .

If the blocks of an n-GDD of type gu can be partitioned into partial factors,
each of which contains all vertices except those of one group, we refer to such a
decomposition as a n-frame. It is easy to deduce that the number of partial factors
missing a specified group is g

n−1
(see [9]). It is well known that a 2-frame of type gu

exists if and only if u ≥ 3 and g(u− 1) ≡ 0 (mod 2); and a 3-frame of type gu exists
if and only if u ≥ 4, g is even and g(u− 1) ≡ 0 (mod 3) (see [7]).

An H-decomposition of Kv+h \Kh is known as an incomplete H-design of order
v + h with a hole of size h. We are interested in incomplete resolvable H-designs,
which will be used in the “Filling” and “Frame”-Constructions of this section. These
designs have two types factors: partial factors, which cover every vertex except the
ones in the hole; and full factors, which cover every vertex of Kv+h.

Specifically, a (X, Y )-IURD(v+h, h; [r′, s′], [r, s]) is a uniformly resolvable (X, Y )-
decomposition of Kv+h \Kh with r′ partial X-factors and s′ partial Y -factors which
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cover every vertex not in the hole, and r X-factors and s Y -factors which cover every
point of Kv+h.

Given a graph G and a positive integer t, then G(t) will denote the graph on
V (G) × Zt with edge-set {{xi, yj} : {x, y} ∈ E(G), i, j ∈ Zt}, where the subscript
notation ai is used to denote the pair (a, i). The graph G(t) is said to be obtained
from G by expanding each vertex t times. When G = Kn, the graph G(t) is the
complete equipartite graph Kt, t, ..., t︸ ︷︷ ︸

n times

with n parts of size t and will be denoted by

Kn(t); while Cn(t) will denote the graph G(t) where G is an n-cycle.

Remark 3.1. Note that the graph G(t) admits t 1-factors corresponding to each
1-factor of G; for instance, because a 2m-cycle has two 1-factors, C2m(t) admits 2t
1-factors.

For any two pairs of non-negative integers (r, s) and (r′, s′), define (r, s)+(r′, s′) =
(r + r′, s+ s′). If X and X ′ are two sets of pairs of non-negative integers and a is a
positive integer, then X+X ′ will denote the set {(r, s)+(r′, s′) : (r, s) ∈ X, (r′, s′) ∈
X ′} and a ∗ X will denote the set of all pairs of non-negative integers which can
be obtained by adding any a pairs of X together (repetitions of elements of X are
allowed).

Construction 3.2. (GDD-construction) Let t be a positive integer and G be an H-
RGDD of type gu, where H is a graph with n ≥ 2 vertices and m edges. If there exists
a (X, Y )-URD(r̄, s̄) of H(t) for each (r̄, s̄) ∈ J , then so does a (X, Y )-URGDD(r, s) of

type (gt)u for each (r, s) ∈ α ∗ J , where α = ng(u−1)
2m

.

Proof. Let Gi, i = 1, 2, . . . , u, be the groups and F1, F2, . . . , Fα an H-factorization
of G, where α = ng(u−1)

2m
. Expand each vertex t times, and for each block B of the

H-factor Fj , for j = 1, 2, . . . , α, place a copy of a (X, Y )-URD(rj, sj) of H(t) with
(rj , sj) ∈ J on V (B)× Zt. Thus we obtain a (X, Y )-URGDD(r, s) of type (gt)u with
r =

∑α
j=1 rj and s =

∑α
j=1 sj , and so (r, s) ∈ α ∗ J .

Construction 3.3. (Filling Construction) Suppose there exists a (X,Y )-URGDD(r,s)
of type gu for each (r, s) ∈ J . If there exists a (X, Y )-URD(g; r′, s′), for each (r′, s′) ∈
J ′, then so does:

(i) a (X, Y )-IURD(ug, g; [r′, s′], [r, s]) for each (r′, s′) ∈ J ′ and (r, s) ∈ J ;

(ii) a (X, Y )-URD(ug; r̄, s̄), for each (r̄, s̄) ∈ J ′ + J .

Proof. Fix any pairs (r, s) ∈ J and (r′, s′) ∈ J ′, and start with a (X, Y )-URGDD(r, s)
with u groups of size g, Gi, i = 1, 2, . . . , u. For every i = 2, 3, . . . , u, place a copy of
a (X, Y )-URD(g; r′, s′) on Gi to obtain a (X, Y )-IURD(gu, g; [r′, s′], [r, s]) with G1 as
the hole. Finally, on G1 place a copy of a (X, Y )-URD(g; r′, s′) to obtain a (X, Y )-
URD(gu; r′ + r, s′ + s).
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Remark 3.4. Note that the “filling” technique allows us to construct a (X, Y )-
URD(v+h; r′+r, s′+s) whenever a (X, Y )-IURD(v+h, h; [r′, s′], [r, s]) and a (X, Y )-
URD(h; r′, s′) are given.

Construction 3.5. (Frame-construction) Let v, g, t, h and u be positive integers
such that v = gtu+ h. If there exists

(i) a n-frame F of type gu, n ≥ 2;

(ii) a (X, Y )-URGDD(r̄, s̄) of type tn for each (r̄, s̄) ∈ J ;

(iii) a (X, Y )-IURD(gt + h, h; [r′, s′], [¯̄r, ¯̄s]) for each (r′, s′) ∈ J ′ and (¯̄r, ¯̄s) ∈ α ∗ J ,
where α = g

n−1
;

(iv) a (X, Y )-URD(h; r′, s′) for each (r′, s′) ∈ J ′;

then so does a (X, Y )-URD(v; r, s) for each (r, s) ∈ J ′ + uα ∗ J .

Proof. Let F be an n-frame of type gu with groups Gi, i = 1, 2, . . . , u. Expand each
vertex t times and add a setH = {a1, a2, . . . , ah}. For j = 1, 2, . . . , α = g

n−1
, let Fij be

the j-th partial factor which misses the group Gi. For each block B ∈ Fij, on B×Zt

place a copy, Dij(B), of a (X, Y )-URGDD(rij , sij) of type t
n with (rij , sij) ∈ J . For i =

1, 2, . . . , u, on H∪ (Gi×Zt) place a copy Di of a (X, Y )-IURD(gt+h, h; [r′, s′], [ri, si])
with (r′, s′) ∈ J ′ and (ri, si) =

∑α
j=1 (rij , sij) ∈ α ∗ J . For every i = 1, 2, . . . , u,

combine all together the factors of Dij(B), B ∈ Fij , along with the full factors of
Di so to obtain r̄ X-factors and s̄ Y -factors, where (r̄, s̄) =

∑u
i=1(ri, si) ∈ uα ∗ J .

Now, fill the hole H with a copy D of a (X, Y )-URD(h; r′, s′) with (r′, s′) ∈ J ′.
Combine the factors of D with the partial factors of Di to obtain further r′ X-
factors and s′ Y -factors with (r′, s′) ∈ J ′. The result is a (X, Y )-URD(v; r, s) where
(r, s) = (r′ + r̄, s′ + s̄) ∈ J ′ + uα ∗ J .

4 Small cases

In what follows, we will denote by (a1; a2, a3, a4, a5) the graph K1,4 on the vertex-set
{a1, a2, a3, a4, a5} with edge-set {{a1, a2}, {a1, a3}, {a1, a4}, {a1, a5}}; and by (a1, a2,
. . . , an) the n-cycle on {a1, a2, . . . , an} with edge-set {{a1, a2},{a2, a3}, . . . , {an−1, an},
{an, a1}}. If the vertices of B = (a; b, c, d, e) belong to Zn, then we will say orbit
of B under Zn the set {(a+ i; b+ i, c+ i, d+ i, e+ i) : i ∈ Zn}.

For any positive integer n, let I(n) be the set of pairs of non-negative integers

I(n) = {(n− 8x, 5x) : x = 0, 1, . . . ,
⌊n
8

⌋
}.

By induction it is easy to prove the following lemma.

Lemma 4.1. If n ≡ 0 (mod 8), then α ∗ I(n) = I(αn) for any positive integer α.

Lemma 4.2. A (K2, K1,4)-URD(r, s) of C2m(5) exists for every (r, s) ∈ I(10).
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Proof. The case (r, s) = (10, 0) follows by Remark 3.1. For the case (r, s) = (2, 5),
let C2m(5) be the graph obtained by starting with the cycle C = (0, 1, . . . , 2m − 1)
on Z2m and taking the five K1,4-factors

Fj = {(ij; (1 + i)j+1, (1 + i)j+2, (1 + i)j+3, (1 + i)j+4) : i ∈ Z2m}, j ∈ Z5.

The two 1-factors are easily obtainable by decomposing the remaining set of edges,
which can be considered as the disjoint union of the five 2m-cycles Cj = (0j , 1j, . . . ,
(2m− 1)j), j ∈ Z5.

Lemma 4.3. A (K2, K1,4)-URGDD(r, s) of type 25 exists for every (r, s) ∈ I(8).

Proof. The case (r, s) = (8, 0) corresponds to a 1-factorization of K5(2), which is
known to exist ([7]). To settle the case (r, s) = (0, 5), take the orbit of B =
(0; 1, 2, 3, 4) under Z10, which can be decomposed into the five K1,4-factors:

Fj = {B + j + 5i : i = 0, 1}, j = 0, 1, 2, 3, 4.

The groups are the cosets H,H + 1, H + 2, H + 3, H + 4 of H = 5Z10 in Z10.

Lemma 4.4. A (K2, K1,4)-URD(10; r, s) exists for every (r, s) ∈ J(10).

Proof. The case (r, s) = (9, 0) corresponds to a 1-factorization of the complete K10,
which is known to exist ([7]). For the case (r, s) = (1, 5), apply the Filling Construc-
tion to a (K2, K1,4, )-URGDD(0, 5) of type 25, which is given by Lemma 4.3.

Lemma 4.5. A (K2, K1,4)-URGDD(r, s) of type 102 exists for every (r, s) ∈ I(10).

Proof. Apply the GDD-construction with t = 5 to a trivial C4-RGDD of type 22,
where α = 1. The input designs are given by Lemma 4.2.

Lemma 4.6. A (K2, K1,4)-URD(20; r, s) exists for every (r, s) ∈ J(20).

Proof. The Filling Construction applied to a (K2, K1,4)-URGDD(r̄, s̄) of type 10
2 from

Lemma 4.5 (with input designs given by Lemma 4.4) gives a (K2, K1,4)-URD(20; r, s)
for each (r, s) ∈ J(10) + I(10) = J(20).

Lemma 4.7. A (K2, K1,4)-URD(40; r, s) exists for every (r, s) ∈ J(40).

Proof. Applying the GDD-construction with t = 10 to a 2-RGDD of type 22 (where
α = 2) gives a (K2, K1,4)-URGDD(r̄, s̄) of type 20

2 for each (r̄, s̄) ∈ 2∗I(10) (the input
designs are given by Lemma 4.5). Now filling the groups with designs given by Lemma
4.6 gives a (K2, K1,4)-URD(40; r, s) for each (r, s) ∈ J(20) + 2 ∗ I(20) = J(40).

Lemma 4.8. A (K2, K1,4)-URD(0, 25) of Cm(20) exists for every m ≥ 3.

Proof. Let Cm = (1, 2, . . . , m). For i = 1, 2 . . . , m, let X(i) = {i} × Z20 =
⋃4

k=0X
(i)
k ,

where X
(i)
k = {i4k, i4k+1, i4k+2, i4k+3}, and for every r, s ∈ Z5 let R

(i)
rs denote the set

of the following four copies of K1,4
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(
i4r; (i+ 1)4s, (i+ 1)4s+1, (i+ 1)4s+2, (i+ 1)4s+3

)
,(

i4r+1; (i+ 1)4s+4, (i+ 1)4s+5, (i+ 1)4s+6, (i+ 1)4s+7

)
,(

i4r+2; (i+ 1)4s+8, (i+ 1)4s+9, (i+ 1)4s+10, (i+ 1)4s+11

)
,(

i4r+3; (i+ 1)4s+12, (i+ 1)4s+13, (i+ 1)4s+14, (i+ 1)4s+15

)
,

where m+ 1 = 1. If m = 2n, n ≥ 2, take the five K1,4-factors

F1 =

n−1⋃
i=0

(
R

(2i+1)
01 ∪ R

(2i+2)
01

)
,

F2 =
n−1⋃
i=0

(
R

(2i+1)
02 ∪ R

(2i+2)
11

)
,

F3 =
n−1⋃
i=0

(
R

(2i+1)
03 ∪ R

(2i+2)
21

)
,

F4 =

n−1⋃
i=0

(
R

(2i+1)
04 ∪ R

(2i+2)
31

)
,

F5 =

n−1⋃
i=0

(
R

(2i+1)
00 ∪ R

(2i+2)
41

)
,

while if m = 2n+ 1, n ≥ 1, take the five K1,4-factors

F ′
1 =

(
R

(1)
01 ∪ R

(2)
01 ∪ R

(3)
01

)
∪
[ n⋃

i=2

(
R

(2i)
01 ∪R

(2i+1)
01

)]
,

F ′
2 =

(
R

(1)
02 ∪ R

(2)
13 ∪ R

(3)
21

)
∪
[ n⋃

i=2

(
R

(2i)
02 ∪R

(2i+1)
11

)]
,

F ′
3 =

(
R

(1)
03 ∪ R

(2)
20 ∪ R

(3)
41

)
∪
[ n⋃

i=2

(
R

(2i)
03 ∪R

(2i+1)
21

)]
,

F ′
4 =

(
R

(1)
04 ∪ R

(2)
32 ∪ R

(3)
11

)
∪
[ n⋃

i=2

(
R

(2i)
04 ∪R

(2i+1)
31

)]
,

F ′
5 =

(
R

(1)
00 ∪ R

(2)
44 ∪ R

(3)
31

)
∪
[ n⋃

i=2

(
R

(2i)
00 ∪R

(2i+1)
41

)]
.

The required 25 star factors are

Fk,j = (Fk) + j = {R(i)
r+j,s+j : R

(i)
rs ∈ Fk, r, s ∈ Z5}, j ∈ Z5, k = 1, 2, 3, 4, 5

when m = 2n and

F ′
k,j = (F ′

k) + j = {R(i)
r+j,s+j : R

(i)
rs ∈ F ′

k, r, s ∈ Z5}, j ∈ Z5, k = 1, 2, 3, 4, 5

when m = 2n+ 1.
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Lemma 4.9. A C2m-decomposition of Cm(2) exists for any m ≥ 3.

Proof. Let Cm(2) be the graph obtained by expanding twice the vertices of the cycle
(1, 2, . . . , m), m ≥ 3. If m is even, take the two 2m-cycles

C1 = (10, 21, 30, 41, . . . , m1, 11, 20, 31, 40, . . . , m0),

C2 = (10, 20, 30, 40, . . . , m0, 11, 21, 31, 41, . . . , m1),

while if m is odd, take the following ones:

C ′
1 = (10, 21, 30, 41, . . . , m0, 11, m1, (m− 1)0, (m− 2)1, (m− 3)0, . . . , 20),

C ′
2 = (10, m0, (m− 1)0, (m− 2)0, (m− 3)0, . . . , 20, 11, 21, 31, 41, . . . , m1).

Lemma 4.10. A (K2, K1,4)-URD(r, s) of Cm(20), m ≥ 3, exists for every (r, s) ∈
I(40).

Proof. The case (r, s) = (0, 25) follows by Lemma 4.8. For any (r, s) ∈ I(40) \
{(0, 25)}, start from the C2m-decomposition of Cm(2) of Lemma 4.9, which admits
α = 4 1-factors (each 2m-cycle gives two 1-factors). Expand each vertex 10 times. For
each edge e of a given 1-factor, place on e×Z10 a copy of a (K2, K1,4)-URGDD(r̄, s̄) of
type 102 with (r̄, s̄) ∈ I(10) (given by Lemma 4.5) so to obtain a (K2, K1,4)-URD(r, s)
of Cm(20) with (r, s) ∈ 4 ∗ I(10) = I(40) \ {(0, 25)}.
Lemma 4.11. A (K2, K1,4)-URD(r, s) of Cm(10), m ≥ 3, exists for every (r, s) ∈
I(20).

Proof. Start with a C2m-decomposition of Cm(2), which is given by Lemma 4.9 and is
trivially resolvable with α = 2 factors (i.e., the two 2m-cycles). Expand each vertex
5 times. For each cycle C, place on V (C) × Z5 a copy of a (K2, K1,4)-URD(r̄, s̄) of
C2m(5) with (r̄, s̄) ∈ I(10) given by Lemma 4.2 so to obtain a (K2, K1,4)-URD(r, s) of
Cm(10) with (r, s) ∈ 2 ∗ I(10) = I(20).

Lemma 4.12. A (K2, K1,4)-URGDD(r, s) of type 402 exists for every (r, s) ∈ I(40).

Proof. Apply the GDD-construction with t = 20 to a trivial C4-RGDD of type 22,
where α = 1. The input designs are given by Lemma 4.10 for m = 4.

Lemma 4.13. A (K2, K1,4)-URD(30; r, s) exists for every (r, s) ∈ J(30).

Proof. The Filling Construction applied to a (K2, K1,4)-RGDD(r̄, s̄) of type 10
3 with

(r̄, s̄) ∈ I(20) (from Lemma 4.11) gives a (K2, K1,4)-URD(30; r, s) for each (r, s) ∈
J(10) + I(20) = J(30). The input designs are given by Lemma 4.4.

Lemma 4.14. There exists a (K2, K1,4)-URGDD(0, 25) of type 105.

Proof. The union of the orbits of Bi = (0; 1+5i, 2+5i, 3+5i, 4+5i), i = 0, 1, 2, 3, 4,
under Z50 gives the block set of a GDD of type 105, whose groups are the cosets
H,H +1, H +2, H+3, H+4 of H = 5Z50 in Z50. For every i = 0, 1, 2, 3, 4, the orbit
of Bi can be decomposed into five K1,4-factors:

Fij = {Bi + j + 5k, k = 0, 1, . . . , 9}, j = 0, 1, 2, 3, 4.
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Lemma 4.15. A (K2, K1,4)-URGDD(r, s) of type 105 exists for every (r, s) ∈ I(40).

Proof. The case (r, s) = (0, 25) follows by Lemma 4.14. For any (r, s) ∈ I(40) \
{(0, 25)}, the GDD-Construction applied with t = 10 to a trivial C5-RGDD of type 15

(where α = 2) gives a (K2, K1,4)-URGDD(r, s) of type 10
5 for each (r, s) ∈ 2∗I(20) =

I(40) \ {(0, 25)}. The input designs are given by Lemma 4.11.

Lemma 4.16. A (K2, K1,4)-IURD(50, 10; [r
′, s′], [r, s]) exists for every (r′, s′) ∈

J(10) and (r, s) ∈ I(40).

Proof. Apply the Filling Construction to a (K2, K1,4)-URGDD(r, s) of type 105 with
(r, s) ∈ I(40) from by Lemma 4.15 (the input designs are given by Lemma 4.4).

Let S ⊂ Zn be such that if s ∈ S, then −s 	∈ S and set B =
{{0, s} : s ∈ S}},

then the orbit of B is the circulant graph with edges {x, y} where either x − y or
y − x ∈ S. The edge {x, y} has even order if s = y − x has even additive order
modulo n. In the next Lemma we use the following famous result of Stern and Lenz.

Theorem 4.17. (Theorem of Stern and Lenz [23]) Every circulant graph containing
an edge of even order has a one-factorization.

Lemma 4.18. A (K2, K1,4)-URGDD(r, s) of type 10
9 exists for every (r, s) ∈ {(8, 45),

(0, 50)}
Proof. On Z90 let:

F = {(89; 0, 1, 18, 19), (52; 53, 54, 71, 72), (2; 40, 67, 87, 85),
(3; 41, 68, 88, 86), (4; 65, 73, 77, 81), (5; 66, 74, 78, 82),
(6; 46, 48, 50, 61), (7; 47, 49, 51, 62), (8; 38, 42, 59, 83),
(9; 39, 43, 60, 84), (10; 32, 34, 36, 63), (11; 33, 35, 37, 64),
(12; 20, 69, 24, 79), (13; 21, 70, 25, 80), (14; 28, 30, 55, 57),
(15; 29, 31, 56, 58), (16; 44, 22, 26, 75), (17; 45, 23, 27, 76)}.

and B = (0; 3, 4, 11, 32). Take the forty-five K1,4-factors F + 2i, for i = 0, 1, . . . , 44,
and partition the orbit of B under Z90 into the five K1,4-factors:

Fj = {B + j + 5k, k = 0, 1, . . . , 17}, j = 0, 1, 2, 3, 4.

The resulting design is a (K2, K1,4)-URGDD(0, 50) of type 10
9, whose groups are the

cosets of H = 9Z90 in Z90, i.e., H + h, for h = 0, 1, . . . , 8.
For the case (r, s) = (8, 45), remove the K1,4-factors obtained from the orbit of B
and decompose the graph whose edges cover the differences of B into 1-factors by
using the theorem of Stern and Lenz.

Lemma 4.19. A (K2, K1,4)-URGDD(r, s) of type 109 exists for every (r, s) ∈ I(80).

Proof. The cases (r, s) = (0, 50), (8, 45) follow by Lemma 4.18. To settle the remain-
ing cases, apply the GDD-construction with t = 10 to a C9-RGDD of type 19 (where
α = 4) to get a (K2, K1,4)-URGDD(r, s) of type 109 for each (r, s) ∈ 4 ∗ I(20) =
I(80) \ {(0, 50), (8, 45)}. The input designs are given by Lemma 4.11.
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Lemma 4.20. A (K2, K1,4)-IURD(90, 10; [r
′, s′], [r, s]) exists for every (r′, s′) ∈ J(10)

and (r, s) ∈ I(80).

Proof. Apply the Filling Construction to a (K2, K1,4)-URGDD(r, s) of type 109 with
(r, s) ∈ I(80) from by Lemma 4.19 (the input designs are given by Lemma 4.4).

Lemma 4.21. A (K2, K1,4)-IURD(70, 30; [r
′, s′], [0, 25]) exists for every (r′, s′) ∈

J(30).

Proof. Let V = Z40∪{a1, a2, . . . , a30} be the vertex set, where {a1, a2, . . . , a30} is the
hole. Consider the five K1,4-factors on V :

F1 = {(a1; 16, 17, 18, 19), (a2; 20, 21, 22, 23), (a3; 24, 25, 26, 27),
(a4; 28, 29, 30, 31), (a5; 32, 33, 34, 35), (a6; 36, 37, 38, 39),
(0; 8, a14, a16, a18), (1; 9, a26, a28, a30), (2; 10, a20, a22, a24),
(3; 11, a8, a10, a12), (4; 12, a13, a15, a17), (5; 13, a25, a27, a29),
(6; 14, a19, a21, a23), (7; 15, a7, a9, a11)};

F2 = {(a7; 8, 9, 10, 11), (a8; 12, 13, 14, 15), (a9; 24, 25, 26, 27),
(a10; 28, 29, 30, 31), (a11; 32, 33, 34, 35), (a12; 36, 37, 38, 39),
(0; 16, a26, a28, a30), (1; 17, a2, a4, a6), (2; 18, a14, a16, a18),
(3; 19, a20, a22, a24), (4; 20, a1, a3, a5), (5; 21, a19, a21, a23),
(6; 22, a13, a15, a17), (7; 23, a25, a27, a29)};

F3 = {(a13; 8, 9, 10, 11), (a14; 20, 21, 22, 23), (a15; 24, 25, 26, 27),
(a16; 28, 29, 30, 31), (a17; 32, 33, 34, 35), (a18; 36, 37, 38, 39),
(0; 12, a8, a10, a12), (1; 13, a20, a22, a24), (2; 14, a2, a4, a6),
(3; 15, a26, a28, a30), (4; 16, a7, a9, a11), (5; 17, a1, a3, a5),
(6; 18, a25, a27, a29), (7; 19, a19, a21, a23)};

F4 = {(a19; 8, 9, 10, 11), (a20; 12, 13, 22, 23), (a21; 24, 25, 26, 27),
(a22; 28, 29, 30, 31), (a23; 32, 33, 34, 35), (a24; 36, 37, 38, 39),
(0; 14, a2, a4, a6), (1; 15, a8, a10, a12), (2; 16, a26, a28, a30),
(3; 17, a14, a16, a18), (4; 18, a25, a27, a29), (5; 19, a7, a9, a11),
(6; 20, a1, a3, a5), (7; 21, a13, a15, a17)};

F5 = {(a25; 8, 9, 10, 11), (a26; 12, 13, 14, 15), (a27; 16, 17, 26, 27),
(a28; 28, 29, 30, 31), (a29; 32, 33, 34, 35), (a30; 36, 37, 38, 39),
(0; 18, a20, a22, a24), (1; 19, a14, a16, a18), (2; 20, a8, a10, a12),
(3; 21, a2, a4, a6), (4; 22, a19, a21, a23), (5; 23, a13, a15, a17),
(6; 24, a7, a9, a11), (7; 25, a1, a3, a5)}.

For each j = 1, 2, 3, 4, 5, take the five K1,4-factors Fj + 8i, for i = 0, 1, 2, 3, 4,
where ak + x = ak for every x ∈ Z40 and for every k = 1, 2, . . . , 30. Let D =
{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 15, 17, 19, 20}, i.e. the set of the 15 differences not cov-
ered by the 25 above factors, and decompose the graph consisting of the edges
{i, d+ i}, i ∈ Z40 and d ∈ D, as follows.
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For (r′, s′) = (29, 0), apply the theorem of Stern and Lenz to decompose the
graph consisting of the edges {i, d + i}, i ∈ Z40 and d ∈ D, into 29 partial 1-factors
on Z40.

For (r′, s′) = (21, 5), take the base block B = (0; 7, 9, 11, 13), whose orbit modulo
40 can be decomposed into five K1,4-factors on Z40:

F ′
j = {B + j + 5k : k = 0, 1, . . . , 7}, j = 0, 1, 2, 3, 4.

Decompose the graph whose edges cover the remaining differences of D into 1-factors
by using the theorem of Stern and Lenz.

For (r′, s′) = (13, 10), take the base blocks

B = (0; 7, 9, 11, 13) and B1 = (0; 1, 2, 3, 4),

which give in total ten K1,4-factors on Z40. Then decompose the graph whose edges
cover the differences of D into 1-factors by using the theorem of Stern and Lenz.

For (r′, s′) = (5, 15), take the base blocks B = (0; 7, 9, 11, 13), B2 = (0; 3, 4, 5, 19)
and B3 = (6; 7, 8, 12, 21). Obtain fiveK1,4-factors on Z40 from B, and tenK1,4-factors
from B2 and B3 as follows:

F ′′
j = {B2 + j + 10k, B3 + j + 10k : k = 0, 1, 2, 3}, j = 0, 1, . . . , 9.

Decompose the graph whose edges cover the remaining differences 10, 17 and 20 of
D into 1-factors by using the theorem of Stern and Lenz.

Lemma 4.22. A (K2, K1,4)-IURD(70, 30; [r
′, s′], [r, s]) exists for every (r′, s′) ∈ J(30)

and (r, s) ∈ I(40).

Proof. The case (r, s) = (0, 25) follows by Lemma 4.21. For any (r, s) ∈ I(40) \
{(0, 25)}, start from the decomposition of the graph K7 \ K3 on X = {x, y, z} ∪
{a1, a2, a3, a4} into one 4-cycle C0 = (a1, a2, a3, a4) and two hamiltonian cycles C1 =
(a1, a3, y, a2, z, a4, x) and C2 = (a1, z, a3, x, a2, a4, y). Expand each vertex 10 times
and on V (Cj) × Z10, for j = 0, 1, 2, place a copy of a (K2, K1,4)-URD(rj, sj) of
Cm(10) (m = 4 or 7) with (rj, sj) ∈ I(20) (given by Lemma 4.11). It follows that,
corresponding to the hamiltonian cycles C1 and C2, there are r full 1-factors and
s full K1,4-factors, where (r, s) = (r1 + r2, s1 + s2) ∈ 2 ∗ I(20) = I(40) \ {(0, 25)};
while C0 provides r0 partial 1-factors and s0 partial K1,4-factors missing the hole
{x, y, z} × Z10. Now, placing on each set {ai} × Z10, i = 1, 2, 3, 4, a copy of a
(K2, K1,4)-URD(10, r

′′, s′′) with (r′′, s′′) ∈ J(10) (from Lemma 4.4) gives further r′′

partial 1-factors and s′′ partialK1,4-factors so that the resulting design is a (K2, K1,4)-
IURD(70, 30; [r′, s′], [r, s]), where (r′, s′) = (r0 + r′′, s0 + s′′) ∈ I(20) + J(10) = J(30).

Lemma 4.23. A (K2, K1,4)-IURD(110, 30; [r
′, s′], [r, s]) exists for every (r′,s′) ∈J(30)

and (r, s) ∈ {(8, 45), (0, 50)}.
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Proof. Let V = Z80∪{a1, a2, . . . , a30} be the vertex set, where {a1, a2, . . . , a30} is the
hole. Consider the two K1,4-factors on V :

F1 = {(a25; 16, 18, 20, 22), (a26; 24, 26, 28, 30), (a27; 32, 34, 36, 38),
(a28; 17, 19, 21, 23), (a29; 25, 27, 29, 31), (a30; 33, 35, 37, 39),
(0; 14, a22, a23, a24), (1; 15, a19, a20, a21), (2; 8, a16, a17, a18),
(3; 9, a13, a14, a15), (4; 12, a10, a11, a12), (5; 13, a7, a8, a9),
(6; 10, a4, a5, a6), (7; 11, a1, a2, a3),
(40; 67, 68, 69, 70), (41; 62, 64, 66, 72), (42; 63, 65, 73, 78),
(43; 54, 58, 60, 79), (44; 55, 56, 59, 61), (45; 48, 50, 52, 57),
(46; 49, 51, 53, 71), (47; 74, 75, 76, 77)};

F2 = {(a25; 4, 14, 24, 34), (a26; 2, 12, 22, 32), (a27; 0, 10, 20, 30),
(a28; 5, 15, 25, 35), (a29; 3, 13, 23, 33), (a30; 1, 11, 21, 31),
(46; 56, a22, a23, a24), (47; 57, a19, a20, a21), (44; 54, a16, a17, a18),
(45; 55, a13, a14, a15), (42; 52, a10, a11, a12), (43; 53, a7, a8, a9),
(40; 50, a4, a5, a6), (41; 51, a1, a2, a3),
(6; 8, 48, 64, 66), (7; 9, 49, 65, 67), (16; 18, 74, 76, 62),
(17; 19, 75, 77, 63), (26; 28, 68, 60, 72), (27; 29, 69, 61, 73),
(36; 38, 78, 70, 58), (37; 39, 79, 71, 59)};

and the sets of pairs A1 = {{0, 20}, {1, 21}, {6, 26}, {7, 27}} and A2 = {{2, 40},
{3, 41}, {6, 28}, {7, 29}}.

Take the 50 full K1,4-factors F1 + 2i, for i = 0, 1, . . . , 39, and F2 + 8i, for i =
0, 1, . . . , 9, where ak + x = ak+3x for every x ∈ Z80 and k = 1, 2, . . . , 30; and the two
partial 1-factors (Aj) = {{x+ 8i, y + 8i} : {x, y} ∈ Aj , i = 0, 1, . . . , 9}, j = 1, 2. Let
D = {1, 9, 13, 16, 18, 19, 24, 26, 32, 33, 35, 37, 39, 40}, i.e. the set of the 14 differences
not covered by (A1), (A2) and the above 50 full K1,4-factors. Decompose the graph
consisting of the edges {i, d+ i}, i ∈ Z80 and d ∈ D, as follows:

For (r′, s′) = (29, 0), apply the theorem of Stern and Lenz to decompose the
graph consisting of the edges {i, d + i}, i ∈ Z80 and d ∈ D, into 27 partial 1-factors
on Z80 so to obtain 29 partial 1-factors along with (A1) and (A2).
For (r′, s′) = (21, 5), take the base block B = (0; 26, 32, 33, 39), whose orbit can be
decomposed into five K1,4-factors on Z80:

F ′
j = {B + j + 5k : k = 0, 1, . . . , 15}, j = 0, 1, 2, 3, 4.

Decompose the graph whose edges cover the remaining differences of D into 1-factors
by using the theorem of Stern and Lenz.

For (r′, s′) = (13, 10), take the base blocks B = (0; 26, 32, 33, 39) and B1 =
(0; 1, 13, 24, 37), which give in total ten K1,4-factors on Z80, while decomposing the
graph whose edges cover the differences of D into 1-factors by using the theorem of
Stern and Lenz.

For (r′, s′) = (5, 15), take the base blocks B = (0; 26, 32, 33, 39), B2 = (0; 1, 16,
19, 35) and B3 = (4; 13, 17, 22, 28). Obtain five K1,4-factors on Z80 from B, and ten
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K1,4-factors from B2 and B3 as follows:

F ′′
j = {B2 + j + 10k, B3 + j + 10k : k = 0, 1, . . . , 7}, j = 0, 1, . . . , 9.

Decompose the graph whose edges cover the remaining differences 37 and 40 of D
into 1-factors by using the theorem of Stern and Lenz.

Finally, to prove the existence of a (K2, K1,4)-IURD(110, 30; [r
′, s′], (8, 45)), with

(r′, s′) ∈ J(30), it will be sufficient to start from the constructed (K2, K1,4)-IURD
(110, 30; [r, s], (0, 50)). Destroy the 5 full K1,4-factors F1 + 16i, for i = 0, 1, 2, 3, 4,
and rearrange the resulting edges into the 8 full 1-factors (Mj) = {{x+16i, y+16i} :
{x, y} ∈ Mj , i = 0, 1, 2, 3, 4}, j = 1, 2, . . . , 8, where:

M1 =

{ {7, a3}, {6, a5}, {5, a7}, {2, a18}, {1, a20}, {0, a22},
{4, 12}, {40, 67}, {41, 62}, {43, 58}, {47, 77}

}
;

M2 =

{ {6, a6}, {5, a8}, {4, a10}, {1, a21}, {0, a23}, {18, a25},
{7, 11}, {42, 63}, {44, 56}, {45, 57}, {46, 51}

}
;

M3 =

{ {5, a9}, {4, a11}, {3, a13}, {0, a24}, {30, a26}, {17, a28},
{6, 10}, {41, 72}, {43, 79}, {44, 55}, {45, 50}

}
;

M4 =

{ {7, a1}, {4, a12}, {3, a14}, {2, a16}, {38, a27}, {29, a29},
{40, 69}, {41, 64}, {44, 59}, {46, 49}, {47, 74}

}
;

M5 =

{ {7, a2}, {6, a4}, {3, a15}, {2, a17}, {1, a19}, {37, a30},
{0, 14}, {40, 68}, {42, 73}, {44, 61}, {47, 75}

}
;

M6 =

{ {20, a25}, {28, a26}, {32, a27}, {23, a28}, {31, a29}, {33, a30},
{2, 8}, {3, 9}, {5, 13}, {42, 78}, {43, 54}

}
;

M7 =

{ {16, a25}, {26, a26}, {34, a27}, {19, a28}, {25, a29}, {39, a30},
{1, 15}, {40, 70}, {45, 52}, {46, 53}, {43, 60}

}
;

M8 =

{ {22, a25}, {24, a26}, {36, a27}, {21, a28}, {27, a29}, {35, a30},
{41, 66}, {42, 65}, {45, 48}, {46, 71}, {47, 76}

}
.

Lemma 4.24. A (K2, K1,4)-IURD(110, 30; [r
′, s′], [r, s]) exists for every (r′, s′) ∈

J(30) and (r, s) ∈ I(80).

Proof. The cases (r, s) = (8, 45), (0, 50) follow by Lemma 4.21. For any (r, s) ∈
I(80) \ {(8, 45), (0, 50)}, start from the decomposition of the graph K11 \K3 on X =
{x, y, z}∪{a1, a2, . . . , a8} into one 8-cycle C0 = (a1, a2, , . . . , a8) and four hamiltonian
cycles

C1 = (a1, x, a3, y, a5, z, a7, a2, a6, a8, a4),

C2 = (a2, x, a4, y, a6, z, a8, a3, a1, a7, a5),

C3 = (a5, x, a7, y, a1, z, a3, a6, a4, a2, a8),

C4 = (a6, x, a8, y, a2, z, a4, a7, a3, a5, a1).
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Expanding each vertex 10 times and using similar arguments to the proof of Lemma
4.22 gives a (K2, K1,4)-IURD(110, 30; [r

′, s′], [r, s]) for each (r′, s′) ∈ I(20) + J(10) =
J(30) and (r, s) ∈ 4 ∗ I(20)) = I(80) \ {(8, 45), (0, 50)}.
Lemma 4.25. Let v = 50, 70, 90, 110. A (K2, K1,4)-URD(v, r, s) exists for every
(r, s) ∈ J(v).

Proof. Apply the Filling Construction to the IURDs of Lemmas 4.16, 4.20, 4.22 and
4.24. The input designs are given by Lemmas 4.4 and 4.13.

The next three results are all obtained by applying the Frame-Construction with
various parameters. We leave them as separate results so that it is easier for the
reader to find each case.

Lemma 4.26. A (K2, K1,4)-URD(190; r, s) exists for every (r, s) ∈ J(190).

Proof. Apply the Frame-Construction with t = 20 and h = 30 to a 3-frame of type 24

(where α = 1) to obtain a (K2, K1,4)-URD(190; r, s) for each (r, s) ∈ J(30)+4∗I(40) =
J(30)+ I(160) = J(190) (where the first equality follows by Lemma 4.1). The input
designs are given by Lemmas 4.10, 4.13 and 4.22.

Lemma 4.27. Let v = 690, 930. A (K2, K1,4)-URD(v; r, s) exists for every (r, s) ∈
J(v).

Proof. Apply the Frame-Construction with t = 40 and h = 10 to a 2-frame of type
1

v−10
40 (where α = 1) to obtain a (K2, K1,4)-URD(v; r, s) for each (r, s) ∈ J(10) +

v−10
40

∗ I(40) = J(10) + I(v − 10) = J(v) (where the first equality follows by Lemma
4.1). The input designs are given by Lemmas 4.4, 4.12 and 4.16.

Lemma 4.28. A (K2, K1,4)-URD(1290; r, s) exists for every (r, s) ∈ J(1290).

Proof. Apply the Frame-Construction with t = 40 and h = 10 to a 2-frame of type
216 (where α = 2) to obtain a (K2, K1,4)-URD(1290; r, s) for each (r, s) ∈ J(10) +
32 ∗ I(40) = J(10) + I(1280) = J(1290) (where the first equality follows by Lemma
4.1). The input designs are given by Lemmas 4.4, 4.12 and 4.20.

5 The main result

In the proof of the following lemmas we make use of the equality α ∗ I(n) = I(αn),
which holds by Lemma 4.1 when n is a multiple of 8.

Lemma 5.1. Let v ≡ 0 (mod 40). Then a (K2, K1,4)-URD (v; r, s) exists for every
(r, s) ∈ J(v).

Proof. Let v = 40k, k ≥ 1. The case v = 40 follows by Lemma 4.7. For k >
1, applying the GDD-Construction with t = 20 to a C2k-RGDD of type 2k, i.e., a
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decomposition ofKk(2) into α = k−1 hamiltonian cycles (see [15]), gives a (K2, K1,4)-
URGDD(r̄, s̄) of type 40k for each (r̄, s̄) ∈ (k − 1) ∗ I(40). (The input designs are
given by Lemma 4.10.) Filling each group with a (K2, K1,4)-URD(40; r

′, s′) with
(r′, s′) ∈ J(40) (from Lemma 4.7) gives a (K2, K1,4)-URD(v; r, s) for each (r, s) ∈
J(40) + (k − 1) ∗ I(40) = J(40) + v−40

40
∗ I(40) = J(40) + I(v − 40) = J(v).

Lemma 5.2. Let v ≡ 10 (mod 40). Then a (K2, K1,4)-URD(v; r, s) exists for every
(r, s) ∈ J(v).

Proof. Let v = 40k + 10, k ≥ 0. The cases v = 10, 50, 90, 690, 930, 1290 follow
by Lemmas 4.4, 4.25, 4.27, and 4.28. For k > 2, k 	= 17, 23, 32, start from a
5-RGDD of type 120k+5 (where α = 5k + 1, see [1, 2, 3, 9, 26]). Applying the
GDD-construction with t = 2 gives a (K2, K1,4)-URGDD(r̄, s̄) of type 220k+5 for each
(r̄, s̄) ∈ (5k + 1) ∗ I(8) (the input designs are given by Lemma 4.3). Now fill the
groups with a trivial (K2, K1,4)-URD(2; 1, 0) to get a (K2, K1,4)-URD(v; r, s) for each
(r, s) ∈ {(1, 0)}+(5k+1)∗I(8) = {(1, 0)}+ v−2

8
∗I(8) = {(1, 0)}+I(v−2) = J(v).

Lemma 5.3. Let v ≡ 20 (mod 40). Then a (K2, K1,4)-URD(v; r, s) exists for every
(r, s) ∈ J(v).

Proof. Let v = 40k + 20, k ≥ 0. The case v = 20 follows by Lemma 4.6. For
k > 0, applying the GDD-Construction with t = 20 to a C2k+1-cycle system of order
2k + 1, i.e. a decomposition of K2k+1 into α = k hamiltonian cycles (see [3, 16]),
gives a (K2, K1,4)-URGDD(r̄, s̄) of type 202k+1 for each (r̄, s̄) ∈ k ∗ I(40). (The input
designs are given by Lemma 4.10.) Filling each group with a copy of a (K2, K1,4)-
URD(20; r′, s′), with (r′, s′) ∈ J(20) (from Lemma 4.6) gives a (K2, K1,4)-URD(v; r, s)
for each (r, s) ∈ J(20)+k∗I(40) = J(20)+ v−20

40
∗I(40) = J(20)+I(v−20) = J(v).

Lemma 5.4. Let v ≡ 30 (mod 80). Then a (K2, K1,4)-URD(v; r, s) exists for every
(r, s) ∈ J(v).

Proof. Let v = 80k + 30, k ≥ 0. The cases v = 30, 110, 190 follow by Lemmas
4.13, 4.25 and 4.26. For k > 2, applying the Frame-Construction with t = 40 and
h = 30 to a 2-frame of type 2k (where α = 2) gives a (K2, K1,4)-URD(v; r, s) for each
(r, s) ∈ J(30) + 2k ∗ I(40) = J(30) + v−30

40
∗ I(40) = J(30) + I(v − 30) = J(v). (The

input designs are given by Lemmas 4.12, 4.13 and 4.24.)

Lemma 5.5. Let v ≡ 70 (mod 80). Then a (K2, K1,4)-URD(v; r, s) exists for every
(r, s) ∈ J(v).

Proof. Let v = 80k+70, k ≥ 0. The case v = 70 follows by Lemma 4.25. For k > 0,
apply the Frame-Construction with t = 40 and h = 30 to a 2-frame of type 12k+1

(where α = 1) to obtain a (K2, K1,4)-URD(v; r, s) for each (r, s) ∈ J(30) + (2k+ 1) ∗
I(40) = J(30) + v−30

40
∗ I(40) = J(30) + I(v − 30) = J(v). (The input designs are

given by Lemmas 4.12, 4.13 and 4.22.)

As consequence of Lemmas 2.1, 5.1–5.5, our main result immediately follows.

Theorem 5.6. A (K2, K1,4)-URD(v; r, s), with r, s > 0, exists if and only if v ≡ 0
(mod 10) and (r, s) ∈ J(v).
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