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ABSTRACT OF THESIS

Estimating Free-Flow Speed with LiDAR and Overhead Imagery

Understanding free-flow speed is fundamental to transportation engineering in order to im-
prove traffic flow, control, and planning. The free-flow speed of a road segment is the
average speed of automobiles unaffected by traffic congestion or delay. Collecting speed
data across a state is both expensive and time consuming. Some approaches have been pre-
sented to estimate speed using geometric road features for certain types of roads in limited
environments. However, estimating speed at state scale for varying landscapes, environ-
ments, and road qualities has been relegated to manual engineering and expensive sensor
networks. This thesis proposes an automated approach for estimating free-flow speed using
LiDAR (Light Detection and Ranging) point clouds and satellite imagery. Employing deep
learning for high-level pattern recognition and feature extraction, we present methods for
predicting free-flow speed across the state of Kentucky.
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Chapter 1

Introduction

1.1 Free-Flow Speed in Transportation Engineering

Managing roads and traffic over a large area is a challenging and expensive endeavor. Ac-
cording to the Kentucky Transportation Cabinet (KYTC) [3], the state of Kentucky (USA)
has approximately 80,000 miles of public roads and 3 million licensed drivers. Kentucky
roads are traveled 47.2 billion miles of each year. With this volume of traffic, the roads are
in need of constant attention and maintenance. The KYTC requires state transportation en-
gineering to follow a data-driven Highway Safety Improvement Program. The $39 million
program prioritizes highway engineering improvement projects that are targeted towards
vehicle crash types and patterns, as supported by crash and road data. With Kentucky
highway engineering costs accruing $47 million of the $700 million in total expenditures,
reducing the cost of data collection could help the state reduce its $2 million deficit [2].
Sourcing sufficient crash and road data for all state and local roads can be expensive and
time consuming. One important type of road data required for evaluating designs and con-
struction cost in transportation engineering is free-flow speed [29].

According to the USA Highway Capacity Manual 2010 (HCM) [25] free-flow speed
is defined as the average speed of automobiles when operators are unaffected by delay or
traffic volume. The HCM stipulates that, ”the prevailing speed on freeways at flow rates
between 0 and 1,000 passenger cars per hour per lane” [25] is the preferred method of
measuring free-flow speed. This metric is directly used in not only determining the level
of service (LOS) [26] and capacity of highways [25], but also the speed limits of roads.

The Manual of Uniform Traffic Control Devices [1] states, “When a speed limit within a
speed zone is posted, it should be within 5mph of the 85th percentile speed of free-flow traf-
fic.” Furthermore, enforcement of posted speed limits directly impact driver behavior and
in turn traffic flow [36]. Thus, understanding free-flow speed is useful in directly designing
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traffic tools such as posted speed limits, but also in indirectly impacting driver behavior.
An estimated 550,000 signs and 3,200 traffic signals across Kentucky [3] are designed or
managed using road attributes such as free-flow speed. With the emerging capability of re-
motely controlled traffic devices and artificial intelligence, smart traffic devices have been
shown to reduce travel time by 25%, delays by 40%, stops by 30-40% and emissions by
20% on a road network in Pittsburgh, Pennsylvania [37]. Smart traffic systems could lead
to improvements in congestion control, reductions in crashes, and reductions traffic fatali-
ties [10]. Analytic tools like state-wide free-flow speed mapping could become an integral
component of such smart traffic systems (e.g. variable speed limits) [16].

1.2 LiDAR and Remote Sensing

Light Detection and Ranging (LiDAR) is a remote sensing method used to visually describe
the topography of a scene using clouds composed of individual points. LiDAR operates by
recording the distances measured by the surface reflectance of a pulsed laser on a given
scene. Terrestrial LiDAR is used in autonomous driving [24] and remote sensing [34]
applications due to its capability of describing 3D scenes at varying spatial resolutions.
In the fields of robotics and autonomous driving, ground-based LiDAR has been used for
tasks such as scene recognition [23], vehicle odometry, and environment mapping [47].

Airborne LiDAR is often used in remote sensing applications. In particular, overhead
LiDAR can enable high resolution topographic mapping of natural geographies [7]. Simi-
larly, Fedrigo et al. [9] have also shown the potential of combining LiDAR-derived struc-
tural profiles and species distribution models to create predictive maps of ecosystems in
Australia. LiDAR-based mapping has also been used to describe man-made geographies
such as the city of Dublin [20]. Since airborne LiDAR can depict both small (e.g. road
shoulder) and large (e.g. city block) scale areas, it can be used to source descriptive fea-
tures of roads. In this thesis, we explore using airborne LiDAR combined with overhead
satellite imagery to estimate free-flow driving speed, as illustrated in Figure 1.1.

1.3 Estimating Free-Flow Speed using Deep Learning

Measuring free-flow speed across an entire state or country requiring extensive sensor net-
works or cumbersome manual estimation can strain transportation engineering budgets.
Transportation engineers utilize free-flow speed modeling to reduce the need for directly
measuring free-flow speed. Traditional approaches for free-flow speed modeling involved
the use of highway geometric features such as lateral clearance, median type, number of
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Figure 1.1: Airborne LiDAR (green) and satellite imagery (red) of a road segment are used
to predict the free-flow speed of a given road segment.

access points, and lane [25]. For state-maintained roads, these geometric features are gener-
ally collected during road construction or improvement projects. Locally maintained roads
generally do not record these features. Recent regression model approaches tend to be spe-
cific to certain network class type (arterial, local, collector) [36], or human geographies
(urban and rural) [35]. Deardoff et al. [5] proposed a method of estimating free-flow speed
directly from posted speed limits in Rapid City, South Dakota and neighboring highways.
Since these methods are dependent on the availability of geometric highway features, they
are limited to well documented roads. However, statewide free-flow speed estimation is
possible with learning models using abundant visual data across an entire state.

Operators tend to drive vehicles based on visual feedback such as road size, preva-
lence of congestion, and scene. Recent approaches using convolutional neural networks
found that satellite images of road segments can enable a model to identify the intrinsic
visual patterns in roads that correlate with free-flow speed [38]. Combining these visual
features with road features further improves prediction performance, but limits model ap-
plicability only to sufficiently documented roads. However, geometric road features can
be extracted from LiDAR point clouds based on the spatial relationship between elements
within a scene. Our approach utilizes deep learning models for large-scale free-flow speed
estimation using ample raw visual data (LiDAR and satellite imagery).
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1.4 Thesis Outline

The subsequent chapters of this thesis are outlined as follows:

• Chapter 2 presents the processes for creating a real world LiDAR point cloud dataset
for free-flow speed estimation using airborne LiDAR. We also investigate how point
clouds could complement overhead imagery for describing roads.
• Chapter 3 discusses a set of deep learning models that can be used to accurately

estimate the free-flow speed. We introduce a raster-based data fusion method for
geospatially pairing point clouds with an existing satellite imagery dataset. Our
multi-modal models demonstrate the predictive performance of combining overhead
image and point cloud features using a raster-based neural network.
• Chapter 4 summarizes the contributions of the thesis and provides closing remarks.

The chapter concludes by outlining potential future work in extending the LiDAR
and overhead imagery dataset, exploring combined data representation, and inspiring
new neural network architectures for free-flow speed estimation.

4



Chapter 2

LiDAR Dataset Construction

2.1 Introduction

Airborne LiDAR provides geometric representations of scenes in the form of point clouds.
Point cloud representations of scenes are spatially consistent with scene structure seen in
the natural world. This characteristic makes point clouds a useful depiction of large areas
such as road segments and their surrounding environment. Geometric characteristics of
roads such as lane width, slope, and curvature can be described by point clouds. The task
of free-flow speed estimation has traditionally made use of many of these road characteris-
tics [25]. Environment area descriptions of roads used in free-flow speed estimation [35],
such as whether roads are in urban or rural areas, can also be encoded into point clouds.
LiDAR point cloud’s 3D representation of geography ensures that many physical road fea-
tures can be extracted and incorporated into improving free-flow speed modeling.

We present a new point cloud dataset for estimating average free-flow driving speed.
Our dataset is composed of airborne LiDAR point clouds of roads across the state of Ken-
tucky and vehicle free-flow speeds. The dataset can be used to model the relationship
between road topography and public free-flow driving speeds. Additionally, our dataset
was designed to pair with satellite imagery from Song et al.’s [39] dataset, enabling data
fusion driven methods. To the best of our knowledge, this is the first dataset developed for
estimating free-flow vehicle driving speeds utilizing airborne LiDAR point clouds of urban
and rural roads in the state of Kentucky.
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2.2 Related Work

Recently, learning-based approaches have been introduced to address challenging auto-
mobile traffic problems. Remote sensing datasets have been developed in response to the
volume of data required by these learning based approaches. Naphade et al. [27] presented
a video surveillance dataset for vehicle speed estimation, anomaly detection, and vehicle
re-identification for the 2018 NVIDIA AI City Challenge. For the 2019 NVIDIA AI City
Challenge Naphade et al. [28] presented a video dataset using traffic cameras for large
scale vehicle tracking and re-identification, in addition to anomaly detection. While both
datasets utilize video to predict vehicle traffic characteristics, these characteristics are at
individual vehicle scale. However, in order to address the challenge of free-flow speed
estimation at a statewide scale, other sensing technologies are preferable over video due to
its cumbersome size and lack of availability on most roads.

LiDAR has become increasingly popular in autonomous driving applications, making
a strong case for introducing it to transportation engineering challenges. Road-side LiDAR
has been utilized in extracting vehicle trajectories [40], estimating free-flow speed, and
vehicle classification [41]. The superior spatial area coverage of airborne LiDAR over road-
side LiDAR qualifies it for use in large scale applications. Airborne LiDAR is deployed
for tasks such as road obstruction detection [17] and vehicle detection [22,46]. Inspired by
the statewide airborne LiDAR applications, we developed a LiDAR point cloud dataset to
cover roads across Kentucky.

Most similar to our work, Song et al. [38] constructed a dataset using 400x400m2 satel-
lite imagery paired with the Kentucky Transportation Center free-flow speed data. We used
the same Kentucky free-flow speed data for our dataset, but opted for high resolution point
cloud data in lieu of large scale overhead imagery. Unlike overhead imagery, our dataset
can be used at varying resolutions and scales. Our dataset allows for feature extraction to
range from fine-grain lane markers, useful for tasks such as road safety evaluation [38], up
to satellite image scale city centers.

2.3 Motivation

Image-only methods for estimating free-flow speed, such as Song et al. [38], are capable of
utilizing two dimensional visual features for roadway pattern recognition. However, such
methods lack sufficient features for identifying patterns in the height dimension. Spatial
patterns in the height dimension can help extract high level road features such as road
slope and lateral clearance, which can be useful for free-flow speed estimation. Height
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Figure 2.1: Aerial LiDAR coverage of Kentucky by KyFromAbove [18] program. Each
color corresponds to the flight identifier of a flight for a given LiDAR sweep.

Point Cloud

Free-Flow Speed Label Data

Latitude Longitude Speed

38.053641 -84.503844 25

... ... ...

... ... ...

KD-Tree

Tile 
Sampling

Raster 
Generation

LiDAR Tiles

Selected Tile

Raster Center Grid

Figure 2.2: LiDAR point cloud dataset construction process. The blue map of Kentucky is
the KyFromAbove [18] aerial LiDAR tile distribution, where each blue square is a single
LiDAR tile. Free-flow speed labels are used to select LiDAR tiles, and sample point clouds.
The output of the process is a paired point cloud and raster center grid.

dimension features can be represented by overhead LiDAR point clouds, which are capable
of geometrically describing a scene in three dimensions. Additionally, point clouds could
be paired with overhead imagery to provide both visual and 3D geometric representations
of roads in order to further improve free-flow speed estimation. Our objective was to
construct a point cloud dataset of roads across the state of Kentucky that could be used for
free-flow speed estimation, and could be integrated into data fusion approaches. Moreover,
models could utilize the 3D spatial information and gray-scale color intensities of road
segments in this dataset to predict the free-flow speed of the road segments.
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2.4 Methods

We present a new point cloud dataset for free-flow speed estimation of road segments.
The dataset contains 3D point clouds of road segments that geospatially correspond with
georeferenced free-flow speed labels. While this dataset was designed in such a manner
that it could be paired with satellite imagery for data fusion approaches, it can also function
as a standalone free-flow speed estimation dataset. Point cloud representations of road
segments could be combined with representations from other modalities by coordinating
data representations using geospatial coordinates.

The Kentucky Transportation Center aggregated HERE technologies speed data across
uncongested periods to extract free-flow speeds of road segments and their corresponding
geospatial coordinates. The speed data expressed free-flow speed of a vehicle on a road
segment as the speed at which an operator would drive in uncongested traffic on weekdays
during non-peak hours (9am-3pm), and outside of holiday hours. Free-flow speed data
was recorded in 2014 and was averaged across the year for each respective road segment.
Interpolating between the two ends of a road segment was used to reduce each segment to
a single spatial location.

Training, validation, and test dataset partitioning followed the methodology established
by Song et al. [38]. Roads within the boarders of the following Kentucky, USA counties
were held-out for the test set: Bell, Lee, Ohio, Union, Woodford, Owen, Fayette, and
Campbell. All other Kentucky roads that were present in the label data but were not part of
the test set were incorporated into the training and validation sets. The validation set was
constructed from 1% of the random samples not included in the test set. Altogether, this
dataset allows image-only, point cloud-only, and hybrid image and point cloud models to
be trained and evaluated equally on the challenging task of free-flow speed estimation. The
dataset is representative of rural, urban, highway and arterial roads across the state of Ken-
tucky. Roads range in structure from one-way dirt/gravel roads to multi-lane highways.
The point clouds allow for high level features to be extracted, such as change in eleva-
tion, road curvature, lane delineation markings, lane width, and proximity to neighboring
structures.

An overview of urban (a) and rural (b) road segments represented as point clouds is
shown in Figure 2.3. Point cloud colors in both figures portray the gray-scale light inten-
sity of the airborne LiDAR. The 3D urban road point cloud example illustrates the impact
the height dimension can have in describing a scene. The dark blue roadways are shown
at lowest elevation compared to the roof tops of small buildings on sky scrapers (top right
roof top). Rural landscapes depicted by point clouds can express the dynamic topogra-
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phy of landscapes neighboring roads, as shown in the rural road example. Additionally,
examples of highway (a) and dirt road (d) point clouds are depicted in Figure 2.4. The
highway example demonstrates that point clouds can describe road slope, a feature which
can impact free-flow speed. Conversely, dirt roads represented by point clouds uniquely
show an absence of clear road features, which could potentially be used to identify unpaved
roads when compared with other road types. As depicted in Figure 2.2, construction of the
point cloud dataset consisted of LiDAR tile selection, point cloud sampling, and raster
generation.

2.4.1 LiDAR Tiles

The Kentucky Division of Geographic Information’s KyFromAbove [18] program col-
lected aerial LiDAR data over the state of Kentucky USA, with the objective of constructing
a base-map of the Commonwealth of Kentucky. Aerial LiDAR data was collected by mul-
tiple flights and several aircraft in order to cover the entire state of Kentucky, as shown
by the flight routes in Figure 2.1. From 2010 to 2017, LiDAR sweeps were conducted
during leaf-off (winter to spring) seasons to minimize the impact of foliage on point cloud
data. Flights were organized to ensure ≥ 20% overlap to maximize the prevalence of us-
able data [19]. In accordance with the United States Geographical Survey (USGS) LiDAR
Base Specification QL2, all points were expected to have vertical accuracy requirements
of 95% confidence vertical accuracy ≤ 19.6cm for non-vegetated areas and 95% confi-
dence vertical accuracy ≤ 29.4cm for vegetated areas [13]. The LiDAR data was stored as
31,135 LAZ tiles; each of which corresponds to a spatial region of Kentucky, as depicted
in the blue map of Kentucky in Figure 2.2. We selected tile attributes that were visually
descriptive of roads such as the three dimension point cloud spatial coordinates and 16-bit
intensity values [19].

2.4.2 Point Cloud Sampling

We paired each free-flow speed label from the Kentucky Transportation Center data with
the corresponding neighboring point cloud. The label data curated by Song et al. [38]
paired each free-flow speed label with a corresponding WGS 84 (World Geodesic System)
geo-spatial coordinates. Each label coordinate was transformed into the Kentucky State
Plane (KSP) projection. Then an R-tree of LiDAR tile geo-spatial locations was used to
perform a nearest neighbor search for the tile that contained the given KSP coordinate and
label. Tile-label pairings were then sorted lexicographically by tile identifier, chunked into
16 sets, and distributed across 16 parallel machines to minimize computational runtime.
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(a) Urban

(b) Rural

Figure 2.3: Example point clouds of different environments from the LiDAR dataset. The
depicted point clouds are the same scenes shown in Figure 2.8 but are depicted at a different
angle to illustrate the 3D capability of point clouds.
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(a) Highway

(b) Dirt Road

Figure 2.4: Example point clouds of different road types from the LiDAR dataset. The de-
picted point clouds are the same scenes shown in Figure 2.9, but are depicted at a different
angle to illustrate the 3D capability of point clouds.

LiDAR tiles were then selected according to the tile identifier and 40% of the points
were randomly sampled. The sampled points were read into a k-d tree for fast lookup.
As detailed in section 2.4.4, multiple tile sampling strategies were examined and evaluated
with respect to point cloud descriptiveness and number of points required. We found that
an 80x80 point grid sampling method around the target label’s location was the most ap-
propriate, as shown in Figure 2.7 (b). The 80x80 sampling grid was built by constructing a
400x400m2 bounding box centered on the target label location, and then 80 linearly spaced
points were selected for each row and column. The tile’s k-d tree was then used to find the
nearest point to each of the sampling grid’s point locations.

The x and y dimensions of the sampled point clouds were then reformulated to represent
the difference between a given point and the label location point at the center of the point
cloud. The z dimension of the point cloud and the point intensity values were normalized.
All point clouds were then rotated such that the direction of travel of the target road was
always pointed north, similar to how the imagery was aligned. Next, a 7x7 grid of raster
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Figure 2.5: 7x7 raster center points extracted for a single point cloud. The overhead image
is sourced from the National Agriculture Imagery Program (NAIP).

center locations was generated around the label location, as outlined in subsection 2.4.3.
Each of the raster center locations and tile’s k-d tree were then used to sample the nearest
point to a given location. Next, the raster center LiDAR points were centered in the same
manner as the extracted point cloud. Last, the point clouds, raster center grids, and labels
were batched and stored as binary files in order to minimize data loading runtime during
training and evaluation.

2.4.3 Raster Center Generation

For each point cloud around a target label, a raster center point grid was generated. The
raster center point grid was used to bind point cloud features to a raster. The bound point
cloud features could then be paired with image features in a spatially consistent man-
ner. The raster center point grid was generated by constructing a bounding box with a
400x400m2 area centered on the target label’s geo-spatial location. Locations were then
selected by linearly spacing 8 points ti ∈ t0, t1, · · · , t8 across the top edge of the bound-
ing box, and repeating for the right edge of the bounding box. Halfway between any two
adjacent locations, a raster center point was selected ci = ri−ri−1

2
. The resulting 7 point

column and 7 point row were then used to populate a 7x7 grid of equally spaced points
cj ∈ {c0, c1, . . . , c49}, as shown in Figure 2.5. Each point in the 7x7 grid expresses the
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(a) Reference Image (b) 100 Nearest Neighbors

(c) 5000 Random Dense Sampling (d) 2000 Random Dense Sampling

Figure 2.6: Tile radial sampling approaches for an area depicted in (a). The reference image
(a) is obtained from the National Agriculture Imagery Program (NAIP). Each strategy is
designed to sample neighboring points around each center point selected from a 7x7 raster.

center point of a corresponding cell in a 7x7 raster grid. Similar to the label coordinates,
the raster center locations were then transformed into the KSP projection in order to be in
a common coordinate frame with the LiDAR tiles.
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(a) 500 Distance Weighted Radial Sampling (b) 100 Distance Weighted Radial Sampling

(c) 100x100 Grid Sampling (d) 80x80 Grid Samplings

Figure 2.7: Tile sampling approachs for an area depict in Figure 2.6 (a). Distance weighted
radial sampling with respect to a 7x7 center point raster for (a) 500 or (b) 100 points from
a given center point. Sampled points from a linearly spaced 100x100 grid and 80x80 grid
are shown in (c) and (d) respectively.
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2.4.4 Tile Sampling Strategies

A tile sampling experiment was performed in order to select a tile sampling strategy that
maximized the visual descriptiveness of the resulting point cloud, while using the fewest
points necessary. Should a specific strategy yield point clouds that were visually descrip-
tive, there is a higher likelihood that said samples would also be informative for a model
trying to estimate free-flow speed. By nature, LiDAR point clouds lack consistent struc-
ture in their point distribution, meaning a high density of points might be necessary to
adequately describe a scene. However, collecting dense point cloud samples leads to large
datasets that can be difficult to use in a timely manner. Low number of points per point
cloud was encouraged in order to reduce the training time of models using the dataset.

Since point cloud features would be grouped around the raster center points, our first
sampling strategy involved selecting the 100 nearest neighboring points around each raster
center point. An example of the raster nearest neighbor strategy is shown in Figure 2.6
(b). Comparing this sample to the corresponding satellite image (shown in Figure 2.6
(a)) suggests the sampling strategy is not visually descriptive, and likely a poor sampling
strategy for describing the entire roadway scene.

Second, we experimented with dense random sampling k points around each raster
center. As Figure 2.6 (c) illustrates, random dense sampling k = 5000 points around each
raster center resulted in a highly descriptive point cloud when compared to the reference
image Figure 2.6 (a). However, this sampling approach requires 254,000 points per sam-
ple. 254,000 points is high when considering that learning models using the popular point
cloud benchmark dataset ModelNet40 [45] is commonly sample 1,024-5,000 sized point
clouds [32, 33]. Similarly, when dense random sampling k = 2000 points the resulting
point cloud was visually descriptive (see Figure 2.6 (e)) but required 98,000 points per
sample. Interestingly, Figure 2.6 (e) depicts a challenging characteristic of LiDAR point
cloud data. Namely, some local point clouds are densely packed while others are more scat-
tered. As a result, for our next approach we tried to increase control of sampling around
the raster centers.

Next, we experimented with weighted sampling of points to construct a point cloud. Let
xi be a point set xi ∈ {x0, x2, . . . , xn} and cj ∈ {c0, c1, . . . , c49} be a given raster center
point. Weights were calculated by w(xi, cj) = d(cj, xi). Weights w were assigned based
on the distance (euclidean distance, d) between a given raster center point cj and any other
point xi in the point cloud. This weighting scheme ensured that weighted sampling would
select points that were closer to raster centers more often than points that were further away.
We call this sampling strategy distance weighted radial sampling, as shown in Figure 2.6
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k = 500 (d) and k = 100 (f). Setting k = 100 produced a point cloud that was not visually
descriptive, while the k = 500 point cloud was moderately descriptive but required 24,500
points per sample. Neither of the radial sampling approaches produced a point cloud that
was visually descriptive and that required few (n ≈ 5000) points per sample.

Last, uniform grid sampling was used to uniformly describe a scene using a limited
number of points. We started by creating a 400x400m2 bounding box centered on the
target label. We then created a linearly spaced grid of length l that covered the entire
bounding box area. Setting l = 100 (see Figure 2.7 (a)) resulted in a visually descriptive
point cloud of the region depicted in Figure 2.6 (a), but required 10,000 points. However,
setting l = 80 (see Figure 2.7 (b)) resulted in a similar visually informative point cloud
using only 6,400 points. As a result, we chose to use l = 80 grid sampling strategy to
generate point clouds for the point cloud dataset.

2.5 Data Fusion Examples

A qualitative analysis was performed on the point cloud dataset to evaluate whether visually
descriptive point clouds could complement corresponding satellite images. A montage of
point cloud examples from the dataset paired with satellite imagery of the same area are
shown in Figures 2.8 and 2.9. Figure 2.8 (b) depicts an example of an urban environment
where roofs (e.g. sky-scraper in red color) and streets are clearly distinguishable. Large
building shadows, which can be problematic for some convolution neural network models,
are shown affecting the satellite image in example (a). However, the urban road point cloud
is unaffected by time of day lighting conditions. Example (d) shows a rural road where
roads (dark blue lines) are distinguishable from grass and foliage from trees (speckled blue
dots).

Figure 2.9 depicts an example of a highway (b) in Kentucky. The highway point cloud
is topographically detailed, allowing streets and lanes to be clearly identified. More dense
sampling can also be used to reveal fine grain details such as lane delineation. Road slope
can be a useful features for estimating free-flow speed. The 2D highway satellite image
(a) shows little indication of road slope. The 3D point cloud representation of the same
road segment, depicted in Figure 2.4, reveals some road slope exists for the road segment.
The 3D spatial features of the highway point cloud could complement the corresponding
satellite image for data fusion approaches to free-flow speed estimation.

The dirt road (d) point cloud in Figure 2.9 is less clear than point clouds for all other
aforementioned road types. While the neighboring forest (dark blue spots) is identifiable,
the intensity of dirt roads is not distinguishable from the surrounding terrain. Examining
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(a) Urban Satellite Image (b) Urban Point Cloud

(c) Rural Satellite Image (d) Rural Point Cloud

Figure 2.8: Example point clouds of different environments from the LiDAR dataset paired
with satellite imagery. Point cloud coloring reflects the relative LiDAR intensities.
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(a) Highway Satellite Image (b) Highway Point Cloud

(c) Dirt Road Satellite Image (d) Dirt Road Point Cloud

Figure 2.9: Example point clouds of different road types from the LiDAR dataset paired
with satellite imagery. Point cloud coloring reflects the relative LiDAR intensities.
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(a) Dirt Road Intensity (b) Dirt Road Height

Figure 2.10: Example of a 5000 point densely sampled point cloud around a dirt road.
LiDAR light intensity is depicted in (a) and height in (b). The road example corresponds
to the same road depicted in Figure 2.9 (c) and (d).

the z-dimension of the dirt road in Figure 2.4 (b) suggests that z-dimension is not suffi-
ciently descriptive in order to identify dirt roads either. However, highway roads (a) are
distinguishable in the z-dimension, the same holds true for both urban and rural roads
from Figure 2.3 (a and b respectively). These examples suggest that dirt roads can be par-
ticularly challenging to represent with grid sampled LiDAR point clouds. Changing tile
sampling strategies to dense sampling for dirt roads does not produce more informative
features, as shown by the uninformative light intensity (a) and height channels (b) of a
dirt road in Figure 2.10. However, examining the corresponding dirt road satellite image
from Figure 2.9 (c) suggests that dirt roads are visible from imagery, though with less clar-
ity than non-dirt roads (image a and from Figure 2.8 images (a) and (c)). Pairing imagery
with point clouds could be beneficial for predicting the free-flow speed of dirt roads.

2.6 Conclusion

We presented a new LiDAR point cloud dataset of Kentucky, USA for free-flow speed
estimation. Our dataset provides 3D point clouds that can be paired with the Song et al’s
dataset [38] satellite imagery dataset. Additionally, our dataset supplies raster centers for
each point cloud, which allow locally (7x7 grid) sampled point cloud neighborhoods to
be spatially consistent when paired with corresponding overhead image features. We also
present multiple LiDAR tile sampling strategies for point cloud extraction to suit different
dataset configurations. Last, through qualitative comparison we illustrate how point cloud
representations of roads could complement overhead images of roads.

Copyright c© Armin Hadzic, 2020.
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Chapter 3

Estimating Free-Flow Speed

3.1 Introduction

While image based approaches tend to perform well on many tasks, such as free-flow speed
estimation [38], they can by limited by changes in season, cloud coverage, lighting, and
viewpoint. Point clouds, on the other hand, can be a useful alternative for scene repre-
sentation that is viewpoint invariant and robust to weather and lighting conditions. Scenes
represented by point clouds have their own limitations, primarily related to their lack of
rigid and consistent structure. We rectify the structural limitation of point clouds and light-
ing difficulties of images by employing data fusion. Data fusion is a method of combining
multiple data sources (such as point cloud and satellite imagery) in order to produce more
robust, informative, and consistent features than either source could provide individually.
We organize local point cloud neighborhoods into a raster and pair them with spatially con-
sistent image features. For a given road segment, our data fusion approach combines the
structured visual features of overhead imagery with the geometric features of point clouds.

We introduce RasterNet, a new neural network architecture that combines point cloud
and image features with spatial consistency for the task of free-flow speed estimation.
RasterNet is trained and evaluated on a large free-flow speed estimation dataset composed
of satellite imagery geospatially paired with point clouds. Our approach reaches state of
the art performance on the Kentucky free-flow speed test set [38] without using provided
highway geometric features. Our primary contributions can be summarized as follows:

• A method for fusing large-scale (400x400m2) overhead satellite imagery and aerial
LiDAR point clouds using a geospatially consistent raster structure.

• A series of neural network architectures for free-flow speed estimation using multi-
modal learning, improving the state-of-the-art in free-flow speed prediction on Song
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et al. [38] speed data.

• An evaluation of single modality and multi-modal free-flow speed estimation models
using overhead imagery and/or point clouds.

3.2 Related Work

Point Cloud Representations: Qi et al’s seminal work on point cloud feature extraction
with PointNet [32] introduced how deep neural networks could be used with point clouds
for tasks such as classification and semantic segmentation. Later, Qi et al. presented an
extension to PointNet with PointNet++ [33], which used furthest point sampling and multi-
scale grouping to push the state of the art. Recently, VoxelNet [48] remedied an intrinsic
problem of point clouds, a lack of structure. Voxelizing point clouds allowed conventional
image-based convolutional neural networks (CNN) to be employed for object detection
using point clouds. Furthermore, Weinmann et al. [42], Liu et al. [23], and Dubé et al. [8]
demonstrated that point clouds could be represented by neighborhood structural statistics
in order to improve performance on scene understanding and place recognition tasks.

Data Fusion Liang et al. [21] designed a method for multi-scale fusion of ground im-
agery with overhead LiDAR point clouds to perform object detection from multiple view-
points and modalities. Similar to our own work, Jaritz et al. [15] used cross-modal au-
tonomous driving dataset to perform unsupervised domain adaption for 3D semantic Seg-
mentation. Their dataset combined real world terrestrial LiDAR point clouds and camera
images for different times of day, countries, and sensor setups. The xMUDA cross-modal
model performed data fusion by projecting 3D point cloud points onto the 2D image plane
and sampling features at corresponding pixel locations. Jaritz et al’s dataset and method
were designed for small spatial areas around a vehicle, while we perform data fusion of
satellite imagery and airborne LiDAR point clouds of large 400x400m2 areas.

Vehicle Speed Estimation: Huang [14] used video surveillance data of traffic to per-
form individual vehicle speed estimation. We perform average free-flow speed estimation
to form a macroscopic understanding of the traffic flow behavior and capacity of roads in-
stead of individual vehicle speed characteristics. Most similar to our own work, Song et
al. [38] performed free-flow speed estimation using satellite imagery and human annotated
area type road features on the Kentucky free-flow speed dataset. Our RasterNet model is
trained on the same satellite imagery and label data, but our approach replaces the provided
highway geometric features with spatially consistent point cloud features.
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(Latitude, Longitude)

Figure 3.1: Image features are paired with point cloud features using a grid of raster center
points (red dots), ensuring geo-spatial consistency between the two feature sets.

3.3 Dataset

The free-flow speed estimation dataset used to train each of the deep learning models con-
tained a combination of the overhead image dataset developed by Song et al. [38] and the
point cloud dataset described in Chapter 2. The overhead satellite imagery portion of the
dataset was sourced from the National Agriculture Imagery Program (NAIP). Each satellite
image covered a 400x400m2 area and was cropped to 224x224. The geo-spatial coordi-
nates corresponding to the free-flow speed labels (provided by Kentucky Transportation
Center) were used to pair georeferenced point clouds and satellite images. The point cloud
dataset also paired each point cloud with a 7x7 raster center grid. Each raster center grid
(red dots) corresponded to a point cloud and was spatially consistent with the area depicted
in paired imagery, as shown on the left in Figure 3.1. Further detail regarding the spa-
tial correspondence between the overhead imagery, raster center grid, and point clouds is
discussed in section 3.4.

3.4 Methods

Using the overhead image dataset created by Song et al. [38] and our own LiDAR point
cloud dataset, we trained our models using both imagery and point clouds. The used an off-
the-shelf CNN for image feature extraction. However, instead of using Xception [4] (23M
parameters) as an image feature extractor like Song et al. [38], we chose the popular trans-
fer learning network ResNet18 [11] (12M parameters) due its impressive performance on
the ImageNet [6] classification task using a limited parameter count. Combining the effi-
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Figure 3.2: RasterNet general architecture diagram. Satellite images pass through a
ResNet-based image encoder, while point clouds and raster center locations are passed
through a point cloud encoder. Each cell of the point cloud feature map corresponds to
a set of features of a local point cloud neighborhood. The two sets of features are then
channel-wise concatenated before being passed through a shared model (ResNet block) to
produce a free-flow speed prediction.

cient ResNet image feature extractor with a point cloud feature extractor, we formed a new
network we call RasterNet, as depicted in Figure 3.2. The image encoder was built from
the first 6 ResNet blocks and part of the 7th block (the residual sub-block). The image en-
coder was frozen and separated from the remainder of ResNet. This partitioning was done
halfway through the 7th block because the downsample convolutions result in a BxCx7x7
set of features. The partitioning scheme ensured that the RasterNet network did not allow
residual connections to ignore point cloud features. The remainder of ResNet was left un-
frozen and was called the Shared Module, given that both the image features and the point
cloud features would pass through said module. We developed three variations of Raster-
Net, each with a different point cloud encoder. Each variation was designed to explore
alternative methods of extracting point cloud features. The three variations of RasterNet
included: (1) RasterNet Simple, (2) RasterNet Statistics, and (3) RasterNet Learn. All
three variations of RasterNet produced point cloud features that were spatially consistent
with the image features, using the raster center points.

Raster center spatial consistency between imagery and point clouds was maintained
using geo-spatial coordinates. The raster center grid ensured that image and point cloud
feature correspondence was maintained. As images passed through a feature extractor
a BxCx7x7 set of features was produced; where B and C are respective the batch and
channel dimensions. Similarly, point cloud features were grouped around the raster center
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Table 3.1: Simple Structural Features

Structural Feature Equation

Eigenvalues λx1 , λ
x
2 , λ

x
3

Means µxi,1 , µxi,2 , µxi,3

Variances σ2
xi,1
, σ2

xi,2
, σ2

xi,3

points such that the point cloud feature extractor returned a BxCx7x7 set of features. The
spatial correspondence established by the raster center grid between the overhead imagery
and point clouds, ensured these two sets of high level features were spatially correlated. As
a result, the image features and point cloud features could be concatenated channel-wise
and passed through a shared module to produce a free-flow speed prediction.

3.4.1 Point Cloud Learned Encoder

The RasterNet Learn model used a modified PointNet++ [33] architecture as a learned point
cloud feature extractor. PointNet++ was selected as a point cloud feature extractor because
of its 90.7% accuracy on ModelNet40 with only 1.7x106 parameters, according to Prokudin
et al. [31]. The publicly available PyTorch [30] implementation of PointNet++ from Wi-
jmans [43] was modified so the second multi-scale grouping layer performed grouping
around the raster centers of a given point cloud instead of using furthest point sampling.
This modification ensured that the point cloud features, corresponding to each raster center
that were extracted, could be channel-wise concatenated with image features while main-
taining spatial consistency. After the second multi-scale grouping layer the remainder of
Pointnet++ was replaced with a set of downsampling layers which reduced the number of
collected features per raster center down to 16. The resulting point cloud features were
the concatenated with the image features before being passed to the shared module for
free-flow speed prediction, as shown in Figure 3.2.

3.4.2 Point Cloud Structural Feature Encoder

Inspired by Liu et al. [23] and work on place recognition using LiDAR point cloud struc-
tural features, we developed the RasterNet Statistics model that extracted point cloud struc-
tural statistic features instead of using a fully learned point cloud feature extractor (such
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(a) Full Point Cloud (b) Grouping 16 Samples

(c) Grouping 32 Samples (d) Grouping 128 Samples

Figure 3.3: PointNet++ [33] style multi-scale grouping depicted for a point cloud (a) cen-
tered on a known free-flow speed label location. Grouping operations are performed around
each of the 7x7 raster centers (red) at different scales and number of samples. Local point
clouds (green) are grouped at varying sample sizes: 16 samples (b), 32 samples (c), and
128 samples (d).

as RasterNet Learn). The RasterNet Statistics model replaced the PointNet++ architecture
from RasterNet Learn model with a single instance of multi-scale grouping, as depicted
in Figure 3.3. Local point cloud neighborhood statistics were extracted by first calculat-
ing the covariance matrix of the 3D point cloud. Let x = xi,j,k be a three dimensional
point cloud from the flattened raster (n = 49) of n point clouds, where i ∈ {1, 2, · · ·n},
j ∈ {1, 2, 3}, and k ∈ {1, 2, · · · ,m} for m points. The covariance matrix was assumed to
be positive definite and symmetric, such that the corresponding eigenvalues λx1 , λ

x
2 , λ

x
3 of

the covariance matrix are all greater than zero. The local point cloud structural statistics
were calculated according to the notation from by Weinmann et al.’s [42] and Liu et al [23],
as shown in Table 3.2. Note, the 2D Scattering and 2D Linearity statistics required 2D xy-
plane eigenvalues. 2D xy-plane eigenvalues were calculated by projecting the 3D point
cloud to the 2D xy-plane and then calculating the two eigenvalues of the 2D covariance
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Table 3.2: Structural Statistics

Structural Statistic Equation

Change of Curvature Cxi =
λ
xi
3

λ
xi
1 +λ

xi
2 +λ

xi
3

Omni-variance Oxi =
3
√
λ
xi
3

λ
xi
1 +λ

xi
2 +λ

xi
3

Linearity Lxi =
λ
xi
1 −λxi2
λ
xi
1

Eigenentropy Axi = −
∑3

j=1 λ
xi
j lnλxij

Local Point Density Dxi =
kxi

4
3

∏3
j=1 λ

xi
j

2D Scattering S2D,xi = λxi2D,1 + λxi2D,2

2D Linearity L2D,xi =
λ
xi
2D,2

λ
xi
2D,1

Verticality Vxi = vxi3,3

Max Height Difference ∆Zxi = max(xi,3)−min(xi,3)

Height Variance σ2
xi,3

=
∑m

k=1 xi,3,k−µxi,3
m

matrix. Verticality is defined as the vertical component of the normal vector, which is the
3rd dimension of the covariance matrix’s 3rd eigenvector Additionally, the mean of local
point cloud x in the height dimension (3) was expressed as µxi,3 .

Local neighborhood structural statistic features were then extracted from each of the
three sets of 7x7 local point clouds. The three sets of 7x7 structural features were con-
catenated and passed through a downsampling convolution to produce a single set of 10
features corresponding to each of the 7x7 grid of point clouds. Last, the set of 10 structural
features were then channel-wise concatenated with the 7x7 image features.

The third variant of RasterNet called RasterNet Simple was designed using nine simple
local point cloud structural features from Table 3.1 instead of ten complex statistics inspired
by Liu et al’s [23]. Similar to the RasterNet Statistics model, RasterNet Simple employed
multi-scale grouping to extract three groups of point clouds at different scales. The simple
structural features extracted from each of the three groups was composed of: (1) the mean
of each of the three spatial dimensions, (2) the variance of each of the three dimensions,
and (3) the three eigenvalues of the 3D point cloud’s covariance matrix. The three groups of

26



7x7 structural features were concatenated then passed through a downsampling convolution
to simplify to a single 7x7 set of 10 structural features. Last, the 7x7 set of features was
channel-wise concatenated with the 7x7 image features.

3.4.3 Loss Function

Similar to Song et al. [38] we formatted the free-flow speed prediction as a multi-class
classification problem. Free-flow speeds were binned into 1mph bins, totaling 79 possi-
ble classes. We also experimented with a second binning strategy, where each speed was
binned into 16 classes with bin increments of 5mph. Since free-flow speed prediction accu-
racy is measured within-5mph, binning in 5mph increments seemed like a natural binning
strategy. We decided to work with cross-entropy loss due to its strong performance after
experimenting with multiple loss functions: Huber regression loss, combined Huber and
cross-entropy losses inspired by Workman et al. [44], Gaussian filtered cross-entropy loss,
and weighted cross-entropy loss. Cross-entropy loss (L) with a Softmax activation was
formulated as follows,

L(Y, Ŷ ) = − 1

N

N∑
i=1

log

(
eyi∑C
j e

ŷi,j

)
. (3.1)

Let yi ∈ Y be a positive class bin label for the ith sample from N training samples. The
predicted probability from the distribution Ŷ for the ith sample from the jth class was
expressed as ŷi,j . A given class j ∈ {0, 1, · · · , C}, where C was the maximum number of
classes (either 16 or 79, depending on binning strategy). Some experimentation was done
with class balanced weighting of cross-entropy, but it resulted in little improvement.

3.4.4 Implementation Details

Each network was trained with a learning rate of 1x10−6 that was scheduled for a reduction
of 10 every 25 epochs. The Adam optimizer was used with weight decay of 0.1, since it
resulted in the best performance. All RasterNet variant models also had an additional
dropout layer before the last fully connected layer for added regularization. Early stopping
was used for each model, where a model would halt training if the validation loss had no
decreased for at least 3 epochs. Otherwise, each model was trained and validated for 100
epochs. Each model was evaluated on the set of weights corresponding to the smallest
validation loss.
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Table 3.3: Free-flow Speed Estimation Model Performances

Method Architecture Bin Width Accuracy
Song et al. Image Only [38] Xception 1 37.60%
Song et al. Image + Road Features [38] Xception ⊕ F 1 49.86%
Image Only ResNet 1 42.01%
Point Cloud Only Reduced PointNet++ 1 34.08%
Image + Point Cloud RasterNet Learn 1 49.38%
Image + Simple Structural Features RasterNet Simple 1 50.28%
Image + Structural Statistics RasterNet Statistics 1 47.75%
Image + Point Cloud RasterNet Learn 1 50.47%
Image + Point Cloud RasterNet Learn 5 46.46%

3.5 Evaluation

Following Song et al’s [38] convention, free-flow speed estimation was evaluated using
within-5mph accuracy of the predicted free-flow speed when compared with the known
speed. While all models predicted speed in terms of bins (1mph or 5 mph), their accuracy
was evaluated with respect to the raw average free-flow speeds.

3.5.1 Quantitative Evaluation

We started by evaluating the performance of a full ResNet model trained only on satellite
imagery for the task of free-flow speed estimation in order to highlight the differences in
image feature extractors between Song et al.’s Xception-based architecture and our choice
of a ResNet architecture. The first 6 blocks and the residual sub-block of the 7th layer were
frozen for all evaluated ResNet feature extractors. Additionally, we evaluated a standalone
full PointNet++ model trained only using point cloud features to predict free-flow speed.
Similar to the truncated RasterNet Learn feature extractor, the second multi-scale grouping
layer was modified to extract features at raster center locations. The remainder of the
PointNet++ architecture was left intact, with some modifications. The number of fully
connected layers in the last multi-layer perceptron (MLP) (after the multi-scale grouping
layer) was reduced to two layers in order reduce the number of trainable parameters and
training time.

A summary of the average within-5mph test accuracy of each RasterNet variation,
PointNet++, and ResNet are shown in Table 3.3. Interestingly, ResNet trained only with
image features out performed the Song et al. Xception-based network. The reduced Point-
Net++ with raster center locations had the worst performance, likely due to the more de-

28



10 20 30 40 50 60 70
True Free-Flow Speed

10

20

30

40

50

60

70

Pr
ed

ict
ed

 F
re

e-
Fl

ow
 S

pe
ed

Figure 3.4: Scatterplot of free-flow speed predictions on the test set from the RasterNet
Learn model compared with known speed labels. Overlayed heatmap depicts higher point
density in darker color. Optimal performance should follow the green line.

scriptive nature of image features. The RasterNet Learn model (image and point cloud
features) was able to achieve similar performance to Song et al.’s image and road feature
model (Xception concatenated with road features), despite not using provided highway ge-
ometric features. The RasterNet Learn variant using learned point cloud features with a
bin size of 1, achieved the best performance and used fewer parameters than either of the
other two RasterNet variants. Using the best performing model to predict within-5 accu-
racy with bin widths of 5, instead of 1, decreased performance. This binning behavior is
likely attributed to the network being trained to have a more shallow understanding of the
relationship between features due to less severe punishment for incorrect predictions.

3.5.2 Qualitative Evaluation

A qualitative evaluation was performed on the RasterNet Learn model on the test set, since
it had the best quantitative performance. Examining Figure 3.4 the model’s prediction
distribution followed the ground truth label distribution on the test set, as shown by the
highest density of points (the darker colors) being on the green line. The prediction distri-
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(a) Fayette and Woodford Counties Ground Truth

(b) Fayette and Woodford Counties Predicted
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Figure 3.5: Ground truth and predicted speed maps for both Woodford (left small city) and
Fayette (right larger city) counties in Kentucky, USA.
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(a) Campbell County Ground Truth (b) Campbell County Predicted
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Figure 3.6: Ground truth and predicted speed maps for Campbell county Kentucky, USA.

bution also suggest that the model had difficulties predicting slow free-flow speeds, since
it made no predictions below 17mph. Additionally, the scatter plot suggests that the model
had difficulty distinguishing speeds between 40mph and 50mph, since it often predicted
45mph.

Evaluating the geographic relevance of the RasterNet Learn model’s test predictions
was done by constructing free-flow speed maps. Free-flow speed maps visualize free-flow
speed as it relates to geographic location. We generated free-flow speed maps with the
ground truth and predicted free-flow speeds for 5 Kentucky counties from the test set:
Fayette, Woodford, Campbell, Bell, and Union. Since Fayette and Woodford counties are
closely connected, they were plotted on the same free-flow speed maps in Figure 3.5. Fig-
ure 3.5 (b) suggests that the model is capable of estimating free-flow speeds on highways
accurately, as shown by interstate-75 and interstate-65 both being red in both maps. How-
ever, Figures 3.5 and 3.6 suggest that the model does not perform well at predicting slow
speed areas since it rarely predicts speeds < 20mph, in particular in urban centers such
as the city center of Lexington Figure 3.5 (b). The model performs well in rural counties,
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(a) Bell County Ground Truth

(b) Bell County Predicted
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Figure 3.7: Ground truth and predicted speed maps for Bell county Kentucky, USA.
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(a) Union County Ground Truth

(b) Union County Predicted
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Figure 3.8: Ground truth and predicted speed maps for Union county Kentucky, USA.
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such as Bell county in Figure 3.7, with speeds primarily ranging from 30-50mph. Note
in Figure 3.8 (a), the road segment on the far left is dark blue, indicated free-flow speeds
< 20mph. The predicted free-flow speed map in Figure 3.8 (b) suggests that the model pre-
dicts speeds > 20mph for said road segment. The road segment in question is a dirt road,
which suggests that the model has difficulty correctly evaluating low speed dirt roads.

3.6 Conclusion

We presented a new architecture, RasterNet, designed to combine satellite image features
with LiDAR point cloud features using a structured raster for the task of free-flow speed
estimation. Our RasterNet Learn variant using learned point cloud and overhead imagery
achieved state of the art results of 50.47% within-5mph accuracy on the challenging Ken-
tucky free-flow speed estimation task. Our comparative analysis reflected that point cloud
structural features could be used to replace and outperform existing highway geometric
features, allowing our model to be used on roads where these highway geometric features
are not present. We also introduced a raster data fusion method for pairing overhead im-
agery with point clouds that both corresponded with free-flow speed labels. Our model
was capable of producing large-scale free-flow speed maps across Kentucky, a potentially
useful tool for transportation engineering and roadway planning. Through qualitative eval-
uation we showed that our RasterNet Learn model could predict free-flow speed on various
road types and speeds.

Copyright c© Armin Hadzic, 2020.
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Chapter 4

Conclusion

4.1 Contributions

This thesis presented a new Kentucky LiDAR point cloud dataset for the challenging task
of free-flow speed estimation. The dataset included roads composed of various types, to-
pographies, functional classes, elevations, and environment types. Point clouds provided
a roadway scene representation that allowed geometric features to be extracted from the
spatial correspondence of points. While highway geometric features are not always avail-
able for all roads in Kentucky, airborne LiDAR point clouds are abundant and cover roads
across the entire state.

We also introduced a data fusion method for combining point cloud and image features
using a raster structure. Pairing our point cloud dataset with the satellite imagery dataset
from Song et al. [38] enabled our models to train on image features, point cloud features,
or both sets of features. The raster center grid allowed our multi-modal approaches to
geospatially align local point cloud neighborhood features with corresponding overhead
image features.

We presented a new series of deep neural network architectures (RasterNets) for free-
flow speed estimation using both overhead image features and point cloud features. Raster-
Net Learn, a RasterNet variant, used learned point cloud features to achieve state of the art
performance on the Kentucky free-flow speed prediction dataset. Our model illustrated
that provided geometric highway features could be replaced with high level point cloud
structural features to improve estimation performance and coverage of state roads. We il-
lustrated the capability of using our model to automatically generate large-scale free-flow
speed maps on multiple counties in Kentucky, which could be expanded to include the
entire state of Kentucky.
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4.2 Future Work

While Kentucky includes an assortment of road types and environments, we would be
interested in expanding the real world use cases of our dataset by including landscapes with
more varied geographies and road types (ex. large bridges and multi-layered overpasses).
Additionally, we would like to expand the existing dataset to include more instances of road
types with limited number of examples, such as urban and unpaved dirt roads. Including
more examples of rare road types could improve the predictive capability of the RasterNet
models.

We would also be interested in exploring extensions of the raster data fusion method
by including street-level LiDAR point clouds and panoramas. Improving the resiliency
and capability of data-fusion approaches on more modalities further increase the RasterNet
models performance. Additionally, we are interested in exploring alternative methods for
data fusion, such as combined latent information representations using variational autoen-
coders. Latent data representations composed of features from a visual and spatial modality
could be useful for encouraging alignment between point cloud and image features.

He et al. [12] have shown the potential of combined graph and convolutional neural
networks for road understanding tasks (ex. lane and road type prediction). Graph-based
approaches have the advantage of sequentially reasoning for multiple road segments. We
would like to explore using graph neural networks for label smoothing with respect to a
group of spatially neighboring predictions, which could improve estimation performance
and consistency.
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