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ABSTRACT OF DISSERTATION

STRUCTURAL AND LEXICAL METHODS FOR AUDITING BIOMEDICAL
TERMINOLOGIES

Biomedical terminologies serve as knowledge sources for a wide variety of biomedi-
cal applications including information extraction and retrieval, data integration and
management, and decision support. Quality issues of biomedical terminologies, if
not addressed, could affect all downstream applications that use them as knowledge
sources. Therefore, Terminology Quality Assurance (TQA) has become an integral
part of the terminology management lifecycle. However, identification of potential
quality issues is challenging due to the ever-growing size and complexity of biomed-
ical terminologies. It is time-consuming and labor-intensive to manually audit them
and hence, automated TQA methods are highly desirable. In this dissertation, sys-
tematic and scalable methods to audit biomedical terminologies utilizing their struc-
tural as well as lexical information are proposed. Two inference-based methods, two
non-lattice-based methods and a deep learning-based method are developed to iden-
tify potentially missing hierarchical (or is-a) relations, erroneous is-a relations, and
missing concepts in biomedical terminologies including the Gene Ontology (GO), the
National Cancer Institute thesaurus (NCIt), and SNOMED CT.

In the first inference-based method, the GO concept names are represented using
set-of-words model and sequence-of-words model, respectively. Inconsistencies de-
rived between hierarchical linked and unlinked concept pairs are leveraged to detect
potentially missing or erroneous is-a relations. The set-of-words model detects a total
of 5,359 potential inconsistencies in the 03/28/2017 release of GO and the sequence-of-
words model detects 4,959. Domain experts’ evaluation shows that the set-of-words
model achieves a precision of 53.78% (128 out of 238) and the sequence-of-words
model achieves a precision of 57.55% (122 out of 212) in identifying inconsistencies.

In the second inference-based method, a Subsumption-based Sub-term Inference
Framework (SSIF) is developed by introducing a novel term-algebra on top of a
sequence-based representation of GO concepts. The sequence-based representation
utilizes the part of speech of concept names, sub-concepts (concept names appearing
inside another concept name), and antonyms appearing in concept names. Three
conditional rules (monotonicity, intersection, and sub-concept rules) are developed



for backward subsumption inference. Applying SSIF to the 10/03/2018 release of
GO suggests 1,938 potentially missing is-a relations. Domain experts’ evaluation of
randomly selected 210 potentially missing is-a relations shows that SSIF achieves
a precision of 60.61%, 60.49%, and 46.03% for the monotonicity, intersection, and
sub-concept rules, respectively.

In the first non-lattice-based method, lexical patterns of concepts in Non-Lattice
Subgraphs (NLSs: graph fragments with a higher tendency to contain quality issues),
are mined to detect potentially missing is-a relations and missing concepts in NCIt.
Six lexical patterns: containment, union, intersection, union-intersection, inference-
contradiction, and inference-union are leveraged. Each pattern indicates a potential
specific type of error and suggests a potential type of remediation. This method
identifies 809 NLSs exhibiting these patterns in the 16.12d version of NCIt, achieving
a precision of 66% (33 out of 50).

In the second non-lattice-based method, enriched lexical attributes from concept
ancestors are leveraged to identify potentially missing is-a relations in NLSs. The
lexical attributes of a concept are inherited in two ways: from ancestors within the
NLS, and from all the ancestors. For a pair of concepts without a hierarchical relation,
if the lexical attributes of one concept is a subset of that of the other, a potentially
missing is-a relation between the two concepts is suggested. This method identifies
a total of 1,022 potentially missing is-a relations in the 19.01d release of NCIt with
a precision of 84.44% (76 out of 90) for inheriting lexical attributes from ancestors
within the NLS and 89.02% (73 out of 82) for inheriting from all the ancestors.

For the non-lattice-based methods, similar NLSs may contain similar quality is-
sues, and thus exhaustive examination of NLSs would involve redundant work. A
hybrid method is introduced to identify similar NLSs to avoid redundant analyses.
Given an input NLS, a graph isomorphism algorithm is used to obtain its structurally
identical NLSs. A similarity score between the input NLS and each of its structurally
identical NLSs is computed based on semantic similarity between their correspond-
ing concept names. To compute the similarity between concept names, the concept
names are converted to vectors using the Doc2Vec document embedding model and
then the cosine similarity of the two vectors is computed. All the structurally identical
NLSs with a similarity score above 0.85 is considered to be similar to the input NLS.
Applying this method to 10 different structures of NLSs in the 02/12/2018 release of
GO reveals that 38.43% of these NLSs have at least one similar NLS.

Finally, a deep learning-based method is explored to facilitate the suggestion of
missing is-a relations in NCIt and SNOMED CT. Concept pairs exhibiting a contain-
ment pattern is the focus here. The problem is framed as a binary classification task,
where given a pair of concepts, the deep learning model learns to predict whether
the two concepts have an is-a relation or not. Positive training samples are existing
is-a relations in the terminology exhibiting containment pattern. Negative training
samples are concept-pairs without is-a relations that are also exhibiting containment
pattern. A graph neural network model is constructed for this task and trained with
subgraphs generated enclosing the pairs of concepts in the samples. To evaluate each
model trained by the two terminologies, two evaluation sets are created considering
newer releases of each terminology as a partial reference standard. The model trained



on NCIt achieves a precision of 0.5, a recall of 0.75, and an F1 score of 0.6. The model
trained on SNOMED CT achieves a precision of 0.51, a recall of 0.64 and an F1 score
of 0.56.

KEYWORDS: Biomedical Terminologies, Terminology Quality Assurance, Missing
hierarchical relations, Erroneous hierarchical relations, Missing con-
cepts, Non-lattice subgraphs
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CHAPTER 1. Introduction

1.1 Motivation

The need for standardized biomedical vocabularies traces back to 17th century where

a standardized list of 200 causes of death were compiled by health authorities in

London [1]. Currently, there are many artifacts created for representing biomedical

knowledge which are referred to as vocabularies, terminologies and ontologies. While

there are different definitions for each [2] and distinct characteristics have been laid

out for each [3], in practice these names are often used interchangeably [1]. Therefore,

for simplicity, in this dissertation all these artifacts are referred to as terminologies.

Biomedical terminologies represent biomedical knowledge by means of concepts

and relationships. Concepts are used to represent unique biomedical entities while

relationships represent how they are inter-related. It can be considered that the most

important relationship of a biomedical terminology is the is-a relation (also known

as subsumption or hierarchical relation) which forms the hierarchical structure of

the terminology. In addition, most modern terminologies are modeled with logical

definitions with attribute relations linking concepts to other concepts.

Biomedical terminologies, such as the National Cancer Institute thesaurus (NCIt)

[4, 5], Gene Ontology (GO) [6, 7], and SNOMED CT [8], play important roles in

knowledge management; data integration, exchange and semantic interoperability;

and decision support and reasoning in biomedicine [1, 9–12]. They serve as knowl-

edge sources for many biomedical applications, including natural language processing

(NLP) applications and decision support systems [1]. Complicated NLP tasks benefit

from well-formed domain terminologies [13]. The usage of biomedical terminologies

and their importance in research is ever increasing. During 1998-2007 period, the

number of citations on terminologies in PubMed/MEDLINE has grown by 600% [1].

During 2012-2014, Google Scholar reveals over 60,000 publications that reference
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“ontology” [14]. National Center for Biomedical Ontology (NCBO) BioPortal accom-

modates 690 terminologies consisiting of over 9 million classes.

Terminologies are generally incomplete, under-specified, and non-static due to

evolving state of knowledge, manual curation work involved, and the progressive na-

ture of terminological engineering [15, 16]. Therefore, terminologies are constantly

evolving to reflect the state of the art of knowledge discovery [17], and thus it is

unavoidable that inconsistencies or errors may be introduced during their creation

and curation process. Quality issues, if not addressed, can affect the quality of all

downstream information systems relying on them as knowledge sources [9]. There-

fore, quality assurance of biomedical terminologies has become an integral aspect of

terminology management. Terminology Quality Assurance (TQA) strives to estimate

and enhance the quality of terminologies by improving consistency, coverage and com-

pleteness, non-redundancy and clarity [15]. Identified quality issues of a terminology

are regularly fixed and released in a new version of the terminology. For instance,

a new version of SNOMED CT is released every 6 months [18], GO and NCIt are

updated monthly [19, 20].

However, quality assurance of biomedical terminologies becomes increasingly chal-

lenging due to their ever-growing size and structural complexity. For instance, SNOMED

CT (02/06/2017 release) contains 332,416 concepts, Gene Ontology (01/19/2018 re-

lease) contains 49,290 concepts, and National Cancer Institute thesaurus (03/27/2018

release) contains 138,291 concepts [21]. Resources for comprehensive content reviews

of terminologies are limited [22]. Therefore, it is time-consuming and labor-intensive

to manually review the terminologies and uncover potential quality issues. Hence,

there is an urgent need to develop automated and effective approaches to detect po-

tential defects (e.g., missing concepts and relations) in biomedical terminologies [23].
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1.2 Contributions

This dissertation presents systematic and scalable terminology quality assurance ap-

proaches that leverage both structural and lexical information of terminologies. Par-

ticularly, the dissertation introduces two inference-based auditing methods, two non-

lattice-based auditing methods, and a deep learning-based method to uncover po-

tentially missing is-a relations, erroneous is-a relations, or missing concepts in three

biomedical terminologies (NCIt, GO, and SNOMED CT). The is-a relations are used

for inheritance and the effect of even a single error in omission or commission can

have broad consequences [24].

This dissertation interpolates material from six papers first authored by the au-

thor [25–30]. Chapter 3 uses material from References [26, 27]. Chapter 4 uses

material from Reference [30]. Material from Reference [25] is used in Chapter 5.

Material from Reference [29] is used in Chapter 6. Chapter 7 uses material from

Reference [28].

An overview of the dissertation is given in Figure 1.1. In this section, an outline

of the contributions are discussed.

In the first inference-based method which is applied to GO, inconsistencies be-

tween hierarchically linked and unlinked pairs of GO concepts are leveraged to detect

potentially missing or erroneous relations. There exists contradictory situations in

terminologies where a hierarchically linked concept-pair and a hierarchically unlinked

concept-pair derive the same term-pair (which is obtained by removing the common

words existing between the pair of concepts). Such situations mean that either the hi-

erarchically unlinked concept-pair denotes a missing is-a relation, or the hierarchically

linked concept-pair denotes an incorrect existing is-a relation. This method focuses

on solving such contradictory cases and deriving potentially missing is-a relations

and potentially incorrect existing is-a relations.
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Figure 1.1: An overview of the auditing methods introduced in the dissertation.

In the second inference-based method, a Subsumption-based Sub-term Inference

Framework (SSIF) is developed for GO by introducing a novel term-algebra on top

of a sequence-based representation of GO Concepts. Three sources are utilized to

come up with the sequence-based representation of a concept: the part of speech of

the concept name, sub-concepts which are other concepts appearing as substrings

inside the concept’s name, and antonyms appearing in the concept name. Three

conditional rules (monotonicity, intersection and sub-concept) are developed which

uncover potential missing is-a and potential erroneous existing is-a in GO.

The first non-lattice-based method focuses on mining lexical patterns in concept

names in non-lattice subgraphs in the NCIt. Non-lattice subgraphs (NLSs) are sub-

graphs found within a terminology with a higher tendency to contain quality is-

sues [31, 32]. This investigation focuses on lexical patterns existing in NLSs each
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indicating a potential specific type of error and suggesting a potential type of re-

mediation measure to fix the error. Six lexical patterns are utilized: containment,

union, intersection, union-intersection, inference-contradiction, and inference-union.

The union-intersection pattern uncovers potentially missing concepts while the others

uncover potentially missing is-a relations.

The second non-lattice-based method investigates into enrichment of lexical at-

tributes of a concept by its ancestors to uncover potential is-a relation inconsistencies.

While the previous non-lattice-based method focused on the lexical attributes of the

concepts themselves, this approach further utilizes the lexical attributes of the ances-

tors of the concepts. For a particular concept, lexical attributes are inherited by two

types of ancestors: from ancestors within the NLS, and from all the ancestors. If the

enriched lexical attributes of one concept is a subset of that of the other, a potentially

missing is-a relation between the two concepts is suggested.

Potential inconsistencies identified by an auditing approach will need to be re-

viewed by domain experts to validate their correctness. However, for non-lattice-

based methods, similar NLSs, may contain similar quality issues, and hence, exhaus-

tive review of all NLSs would involve redundant work. Therefore, a hybrid method is

introduced to identify similar NLSs to alleviate the burden on domain experts. Once

similar NLSs are identified, only one of them is needed to be reviewed, and the com-

ment of the domain expert for that particular NLS is valid for all its similar NLSs.

Given an input NLS, all its structurally identical NLSs are obtained by leveraging a

graph isomorphism algorithm. A similarity score between the input NLS and each of

its structurally identical NLSs is computed based on semantic similarity between their

corresponding concept names. The semantic similarity is computed by first obtaining

the embeddings for concept names by using Doc2vec model (a model used to obtain

embeddings for pieces of text like sentences, paragraphs etc.), and then calculating

the cosine similarity between the vectors. If the semantic similarity is above a certain
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threshold, then the two NLSs are considered to be similar.

Finally, a deep learning-based approach is developed to automatically learn from

existing is-a relations and non-relations of a terminology to facilitate the suggestion

of missing is-a relations in both NCIt and SNOMED CT. The focus here is on concept

pairs exhibiting containment pattern when it is generally applied without restricting

to NLSs. While the containment pattern was found to identify missing is-a relations

with high precision in NLSs, it was observed that it produces a significant number

of false positives when it is not restricted to NLSs. This study attempts to see

whether deep learning could aid in distinguishing valid missing is-a suggestions made

by the containment pattern with the invalid ones. A Graph Neural Network (GNN)

model is used here to address the unique challenges posed by graphical nature of

terminology data. The training samples are generated from existing is-a relations

and non-relations exhibiting containment pattern. The performance of each model

trained for each terminology is evaluated by using a newer release of each terminology

as a reference standard.

OWL reasoners such as ELK ([33]) and Arachne ([34]) are used to check the

consistency of terminologies, and to infer implicit knowledge from explicitly stated

facts and axioms. The inference typically involves the reclassification of individuals

to new classes (or concepts), and classes to new superclasses, depending on their

stated relations. In other words, OWL reasoners infer additional is-a relations based

on the stated is-a relations. The auditing methods introduced in this dissertation are

designed for the inferred versions of terminologies where an OWL reasoner has already

been applied to obtain additional is-a relations. These methods aim at identifying

problematic is-a relations that even OWL reasoners have missed. Therefore, the

methods outlined in this dissertation complements OWL reasoners to enhance the

completeness and soundness of the ontology by identifying potentially missing or

erroneous is-a relations.
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Other than the deep learning-based method, the other proposed terminology au-

diting methods have been evaluated by domain experts to validate their correct-

ness. Random samples of potential inconsistencies obtained by each method have

been handed over to domain experts; and based on their comments, the performance

of each method is reported in terms of the precision. For the deep learning-based

method, the evaluation has been performed in terms of a partial reference standard

and the performance is reported in terms of the precision, recall and F1 score.

The inconsistencies uncovered in this dissertation will be handed over to respective

terminology curators so that where appropriate, they could be incorporated into the

respective terminologies.

1.3 Organization

The remainder of the dissertation is organized as follows. Chapter 2 introduces three

biomedical terminologies audited in this dissertation: NCIt, GO, and SNOMED CT,

as well as related work on terminology quality assurance. Chapter 3 discusses the

first inference-based method where the inconsistencies in hierarchically-linked and

-unlinked pairs of concepts are leveraged to uncover missing is-a relations and erro-

neous existing is-a relations in GO. Chapter 4 introduces the second inference-based

method called SSIF, Subsumption-based Sub-term Inference Framework, which un-

covers missing is-a relations and erroneous existing is-a relations in GO using con-

ditional rules. Chapter 5 presents the first NLS-based auditing approach where six

structural-lexical patterns are mined to uncover missing is-a relations and missing

concepts in the NCIt. Chapter 6 presents the second NLS-based approach where

enriched lexical attributes of concepts are used to expose missing is-a relations and

erroneous existing is-a relations in NCIt. Chapter 7 discusses a method to iden-

tify similar NLSs so that redundant analyses by domain experts could be avoided.

Chapter 8 introduces a deep learning-based method that learns from existing is-a
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relations and non-relations so as to predict the existence of a missing is-a relation.

Chapter 9 concludes this dissertation and discusses further areas of improvement for

future work.
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CHAPTER 2. Background

This chapter introduces biomedical terminologies and specifically discusses the three

biomedical terminologies audited in this dissertation: NCI thesaurus, Gene Ontol-

ogy, and SNOMED CT. Furthermore, this chapter discusses related work which have

been undertaken to perform terminology quality assurance. Mainly structural ap-

proaches, lexical approaches, structural-lexical approaches, semantic approach, and

deep learning approaches are discussed.

2.1 Biomedical terminologies

Biomedical terminologies are collections of formal, machine-processable, and human-

interpretable representations of the entities, and the relations between those entities,

within the domain of biomedicine. The humongous amount of biomedical data gen-

erated day by day has created many opportunities for various discoveries by mining

these data. Large online databases are increasingly relied upon as a source of knowl-

edge and data for coming up with new hypotheses. This poses significant unique

challenges concerning how to make sense of massive amounts of heterogeneous data.

Biomedical terminologies help scientists to manage such data by providing explicit

descriptions of biomedical entities, ability to annotate datasets with terminology en-

tities, and analyze the results of research [35].

New terminologies are being introduced, existing terminologies are being ex-

panded, and their relevance in biomedical research is rising. Presently, many biomed-

ical terminologies are developed in formal languages like OBO flat-file format or Web

Ontology Language (OWL) [36]. Description logic is used to represent the knowledge

and reasoning is performed for consistency checking and to infer implicit knowledge

from explicitly stated facts and axioms. Sophisticated tools like Protègè are available

for creating, editing, and reasoning with terminologies [37].
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BioPortal, the world’s most comprehensive repository of biomedical terminologies,

accommodates 690 terminologies containing over 9 million classes altogether [21]. Out

of these, this dissertation focuses on quality assurance approaches for three leading

biomedical terminologies: National Cancer Institute thesaurus, the reference termi-

nology of the National Cancer Institute (NCI) [38]; Gene Ontology, a terminology

representing genes and gene product attributes across all species; and SNOMED CT,

the largest clinical terminology in the world.

2.1.1 National Cancer Institute thesaurus

Developed and maintained by the National Cancer Institute, the NCIt is a reference

terminology used in an increasing number of NCI and other systems [39, 40]. It con-

tains concepts related to cancer research, including cancer-related diseases, findings

and abnormalities; anatomy; agents, drugs and chemicals; genes and so on [41].

The NCIt is a biomedical terminology for cancer research, covering vocabulary for

clinical care, translational and basic research, and public information and adminis-

trative activities [39, 40]. It was first published in 2000 with the intention to facilitate

data sharing and interoperability by different NCI components. Concepts in NCIt are

hierarchically organized in 19 domains, including Abnormal Cell; Anatomic Structure,

System, or Substance; Biological Process; Disease, Disorder or Finding; Drug, Food,

Chemical or Biomedical Material, Gene, Gene Product, Molecular Abnormality, and

Organism. NCIt provides stable, unique codes for biomedical concepts with preferred

terms, synonyms, research codes, external source codes, and other information in-

cluded for each concept. Figure 2.1 displays an NCIt concept as it is displayed in the

NCIt browser [39].

Many NCIt concepts have formal logic-based definitions [39]. The version 19.01d

of NCIt covers over 140,000 key biomedical concepts and contains over 120,000 written

definitions and over 500,000 inter-concept relationships [42]. The NCIt was built using
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Ontylog, a description logic explicitly for building large complex terminologies [41].

Figure 2.1: The NCIt concept Bile Duct Mucinous Cystic Neoplasm with High Grade
Intraepithelial Neoplasia with code C96838 as it is displayed in the NCIt browser [39].

2.1.2 Gene Ontology

Maintained by the Gene Ontology Consortium, GO provides computable knowl-

edge regarding the functions, organization, and localization of genes and gene prod-

ucts (GO concepts or terms) and how these functions relate to each other (rela-

tions) [6, 7, 43]. It is recognized as a tool for the unification of biology and it has

been widely used for codifying, managing, and sharing biological knowledge through

the annotation of genes, gene products and sequences with semantic specificity for an

across organisms [44]. GO is the world’s largest information source on the functions

of genes. It serves as a foundation for computational analysis of large-scale molecular

biology and experiments with regard to genetics in biomedical research [45].

GO covers three subdomains (or subontologies): biological process (the broad

biological system in which a gene product is involved), molecular function (the specific

role a gene product has or potentially has within a biological process), and cellular
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component (the location or organized unit in a cell where the gene product performs

its molecular function) [43, 46]. Each GO class has a label, a definition, a unique

identifier, and several other information. Figure 2.2 displays a GO concept as it is

displayed in the AmiGO 2 browser [47]. The 10/03/2018 release of GO contains over

40,000 biological concepts, which are constantly revised to reflect latest discoveries

and current biological knowledge.

Figure 2.2: The GO concept nucleotide catabolic process with GO ID GO:0009166
as it is displayed in the AmiGO 2 browser [47].

2.1.3 SNOMED CT

Maintained and distributed by SNOMED International, SNOMED CT is the largest

clinical terminology in the world containing more than 300,000 concepts connected by

over 1.5 million relationships [48]. It is a multilingual and multinational terminology

which is already used in more than 50 countries [49]. SNOMED CT covers clinical

medicine, including findings, diseases, and procedures for use in electronic medical

records [50]. It has 19 top-level sub-hierarchies which includes Clinical finding, Pro-

cedure, Body structure, Organism, Specimen etc.
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Each SNOMED CT concept has a unique identifier, descriptions, is-a, and at-

tribute relations. SNOMED CT concepts are logically defined with attribute re-

lations used to represent the characteristic of the meaning of a concept. Currently,

SNOMED CT uses more than fifty defining attribute relationships to define the mean-

ing of concepts. Each concept is either Fully Defined: if its defining characteristics

are sufficient to distinguish its meaning from other similar concepts; or Primitive:

if its defining characteristics are not sufficient to distinguish its meaning from other

similar concepts [51]. The figure 2.3 displays the SNOMED CT concept Acute com-

plication co-occurrent and due to diabetes mellitus (disorder) with SNOMED CT ID

762489000 as it is displayed in the SNOMED CT browser [52].

The aim of SNOMED CT is to improve patient care through the development of

systems to record health care encounters accurately [53]. Importantly, SNOMED CT

enables consistent, processable representation of clinical content in Electronic Health

Records (EHR) [49]. The 2019 March US edition of SNOMED CT contains more

than 350,000 concepts.

2.2 Quality assurance of biomedical terminologies

Even though biomedical terminologies have existed for centuries, it is only recently

that close attention has been paid to the quality of these terminologies. This has re-

sulted in the development and formulation of auditing approaches that access whether

terminologies are complete and accurate [24].

The approaches to auditing biomedical terminologies can be classified into the

following categories: lexical, structural, and semantic [24, 32]. More recently, deep-

learning approaches have been introduced to enhance the quality of biomedical ter-

minologies. While depending on the task, such work can be classified into either of

the above three categories, they are discussed below as a separate category as all of

them utilize deep learning techniques.
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Figure 2.3: The SNOMED CT concept Acute complication co-occurrent and due to
diabetes mellitus (disorder) with SNOMED CT ID 762489000 as it is displayed in
the SNOMED CT browser [52].

2.2.1 Structural approaches

Abstraction networks (AbNs) are a form of structural auditing methods that have

been extensively explored [22, 54–59]. An AbN of a terminology is a secondary graph

that provides a compact summary view of the structure and content of the terminol-

ogy [54]. Each node summarizes a set of “similar” classes within a terminology [57].

The definition of “similar” depends on the type of AbN. For instance, in partial-area

taxonomies, it is based on property domains [59–61]. In Tribal Abstraction Networks,

it is dependent on the sub-hierarchies that the classes belongs to [55]. AbN-defined

characteristics indicative of errors need to be identified. For instance, small partial-

areas and overlapping classes in partial-areas have been found to be more erroneous.
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However, AbN methods only locate error-prone areas of a terminology, thus may be

labor-intensive.

Gu et al. [62] have audited the semantic type assignments in UMLS with the help

of SNOMED CT hierarchies. They partition the set of concepts belonging to the same

SNOMED CT hierarchy according to the semantic type assignments in the UMLS.

Then, domain experts review concepts in any partition having a small number of

concepts. Their hypothesis is that a semantic type assignment combination applicable

only to a very small number of concepts is indicative of potential inconsistencies.

Zhe et al. [63–65] have worked on identifying trapezoid structures in the hierarchy

of two terminologies, that is, identifying cases where matching concept pairs exist in

two terminologies, but each terminology offers different intermediate concepts along

the hierarchy between the two concepts. Such topological patterns are indicative of

missing concepts in terminologies.

2.2.1.1 Non-lattice pairs

Zhang et al. [66, 67] have introduced lattice-based evaluation of terminologies.

From a structural point of view, lattice is a desirable property for a well-formed

terminology. A terminology is a lattice if any two concepts in the terminology have a

unique maximal shared descendant, as well as a unique minimal shared ancestor. A

pair of concepts is known as a non-lattice pair, if the two concepts have more than

one maximal shared descendant (alternatively minimal shared ancestor). Non-lattice

pairs may denote inconsistent areas of a terminology [66]. Zhang et al. [68] have

introduced an efficient, large scale, non-lattice-detection algorithm to exhaustively

detect non-lattice pairs.

2.2.1.2 Non-Lattice Subgraphs

There could be multiple non-lattice pairs which possess the same maximal shared

descendants. In this case, it is not economical to examine each of these separately. If
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non-lattice pairs possessing the same maximal shared descendants are added together,

this is also not economical since there might be concepts with ancestor-descendant

relationship, which cause redundant analysis. Therefore the notion of NLSs has been

introduced to facilitate effective analysis [31]. An NLS is obtained by a non-lattice

pair (c1, c2) by reversely computing the minimal common ancestors of the maximal

common descendents of the non-lattice pair: mca(mcd(c1, c2)) and aggregating all the

concepts and edges between (and including) mca(mcd(c1, c2)) and mcd(c1, c2) [31].

Here, mca(mcd(c1, c2)) is named as the upper bound and mcd(c1, c2) is named as the

lower bound of the NLS. The size of the NLS is the number of concepts it contains.

For example, in Figure 2.4, the non-lattice pair {1, 2} (alternatively {1, 3} or {2,

3}) yields {6, 7} as its maximal common descendants. Reversely computing minimal

common ancestors of {6, 7} yields {1, 2, 3}. Then, the concepts {4, 5} as well as

relations between {1, 2, 3} and {6, 7} are aggregated to form the given NLS.

Figure 2.4: An example of an NLS. Nodes of the graph are concepts. The edges
indicate hierarchical is-a relations where the arrowheads point to the parent concept.

2.2.2 Lexical approaches

Lexical features embedded in concept labels can be used for quality assurance pur-

poses. For instance, Bodenreider [50] has proposed a method to identify missing

hierarchical relations in SNOMED CT from logical definitions derived from the lex-

ical features of concept labels. Derived logical definitions are represented in OWL
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and subtype relations are inferred by the ELK reasoner. Then, the hierarchy ob-

tained from lexical features is compared with the original SNOMED CT hierarchy to

identify missing subtype relations.

Verspoor et al. [69] have introduced a quality assurance method for GO based on

univocality (similar concepts being expressed consistently). Their method identifies

terms which express similar semantics, but use different linguistic conventions to

express their meaning. The concepts are automatically transformed to normalize

their form and the concepts having the same form are clustered. Then, an automated

heuristic search is applied to concepts in a cluster to identify term occurrences that

are expressed non-uniformly compared to similar terms.

2.2.3 Structural-lexical approaches

Several methods have combined both structural and lexical features to audit termi-

nologies. For instance, Cui et al. [31] have introduced an approach where all non-

lattice subgraphs (see below) of SNOMED CT are mined (structural aspect) and

then, four lexical patterns that exists in those non-lattice subgraphs are extracted

(lexical aspect). The lexical patterns denote different types of issues and a remedia-

tion is suggested automatically to fix them. Cui et al. in [32] have further worked on

enriching lexical attributes of concepts by its ancestor concepts within the non-lattice

subgraph to detect missing subtype relations in SNOMED CT.

Agrawal et al.’s work [48] is based on the expectation of lexically similar concepts

to be modeled similarly. They have introduced Positional Similarity Sets (PSSs), sets

of lexically similar concept having only one different word at matching positions of

their labels. A PSS is considered for domain expert review, only if a concept in the

set exhibits any of the the three structural parameters: a different number of parents;

a different number of attributes; a different number of role groups. They hypothesize

that such concepts have a higher likelihood to be unjustifiably modeled as compared
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to other concepts in the PSS.

2.2.4 Semantic approaches

Semantic auditing approaches utilize the meaning of concepts to identify inconsisten-

cies in a terminology. For instance, Cimino [70] has introduced five different semantic

techniques to audit the Unified Medical Language System (UMLS): (1) detection

of ambiguity in UMLS Metathesaurus concepts with two or more semantic types;

(2) detection of interchangeable keyword synonyms; (3) detection of redundant pairs

of UMLS Metathesaurus concepts; (4) detection of inconsistent parent-child rela-

tionships in UMLS Metathesaurus based on the semantic type information; and (5)

discovery of pairs of semantic types for which relations could be added to the UMLS

Semantic Network, based on attribute relationships between UMLS Metathesaurus

concepts.

Cornet et al. [71] have proposed a method to detect concepts with equivalent

definitions. Their method addresses two important problems: concept redundancy

(same concept represented by different representations) and underspecification (dif-

ferent concepts have the same representation). This method relies on the assumption

that concept definitions are non-primitive to detect sets of logically equivalent con-

cepts by a DL reasoner.

Geller et al. [72] have proposed a method to capture the semantics of concept in

a terminology. They have proposed a two-level approach where concepts are classi-

fied into high-level semantic types with the types constituting a portion of concepts’

semantics. This will produce a new network with “pure” semantic types and inter-

section types. Concepts are uniquely reallocated to these new types. They have used

these types to detect classification errors in UMLS.
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2.2.5 Deep learning-based approaches

Deep learning has revolutionized vision, speech, language understanding, and many

other fields [73]. Recently, some TQA approaches have tried to leverage the power of

deep learning to enhance the quality of terminologies.

Notably, Zheng et al. have explored deep learning to predict the concept names

of new concepts that comply with the naming convention of the terminology [74].

Some TQA approaches are able to generate the necessary words to construct the

name of a new concept. However, they may be unordered or they may not compy

with the naming conventions of the terminology [31]. Given a set of words, Zheng et

al.’s approach is able to predict the correct name of the concept. They explore three

deep learning models to achieve this task: simple neural network, Long Short-Term

Memory (LSTM) network, and Convolutional Neural Network (CNN) combined with

LSTM.

Liu et al. have introduced a deep learning approach that can predict the placement

of a new concept in the hierarchy of SNOMED CT [75]. Their method relies on the

name of a concept, not its properties. Each concept is turned into a feature vector by

creating a document including its parents, siblings and children and then obtaining the

Doc2vec embeddings for it. Then a Convolutional Neural Network is trained to predict

a is-a relation between a concept and its parents. The positive samples for the model

are existing is-a relations and negative samples are uncle-nephew pairs extracted

from the terminology. Given the name of the new concept, and one of its parents, the

model is able to predict all the other parents. Having to provide a single parent is one

of the limitations of their work. Zheng et al. have worked on a similar idea, but, also

have experimented with using area taxonomy terminology summarization mechanism

to constrain training data [76]. Liu et al. also have worked on a similar experiment

where they have investigated into utilization of Bidirectional Encoder Representations

from Transformers (BERT) [77] to come up with the embeddings for concepts.
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Sun et al. have investigated whether deep learning could aid in validating the

suggestions made by non-lattice-based auditing methods [78]. They use lattice sub-

graphs to generate positive and negative training samples. A hybrid convolutional

neural network and multilayer perception model is trained with the samples gener-

ated using a combination of graph, concept features and concept embeddings for each

sample. Their results show that deep learning has the potential to alleviate the man-

ual effort needed to confirm the suggestions made by non-lattice-based methods for

SNOMED CT.

Analogous to software quality assurance, where software bugs are identified, TQA

approaches try to identify terminology “bugs”. The related work discussed above

expose certain types of quality issues in terminologies, however, there still may exists

many other types of unknown defects which are left undetected. Therefore, additional

scalable and systematic approaches need to be identified to expose these different

types of inconsistencies.
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CHAPTER 3. A Lexical-based Inference Approach to Detect is-a

Relation Inconsistencies in Partial Matching Concept Pairs

This chapter discusses a lexical-based inference approach which aims at identifying

potential subtype (or is-a) inconsistencies among GO concept-pairs. This approach

utilizes three sources of GO knowledge: the names of concepts, the existing sub-

type relations, and the absent subtype relations. Firstly, the names of GO concepts

are represented using set-of-words model and sequence-of-words model, respectively.

Based on the representation of the concept names, partial matching pairs of concepts

that are hierarchically linked and unlinked are generated. Such concept-pairs further

derive linked and unlinked term-pairs. Then potential subtype inconsistencies are

identified through linked and unlinked concept-pairs that derive the same term-pair.

Finally, a random sample of detected potential inconsistencies is evaluated by domain

experts to suggest the types of errors indicated by those inconsistencies (missing sub-

type relations and incorrect subtype relations).

3.1 Methods

3.1.1 Modeling concept names

The names of GO concepts are represented using two models: set-of-words and

sequence-of-words. Intuitively, the set-of-words model considers the name of a concept

as a set (or bag) of words without ordering or repetition, while the sequence-of-words

model treats it as an ordered sequence of words. For example, the name of the concept

GO:0009785 (the unique identifier) is blue light signaling pathway; its unordered set-

of-words representation is {blue, light, signaling, pathway} and its sequence-of-words

representation is [blue, light, signaling, pathway]. Note that curly braces are used for

the set-of-words model and square brackets for the sequence-of-words model.
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GO:0010373
negative regulation of

gibberellin biosynthetic process

GO:0032353
negative regulation of

hormone biosynthetic process

gibberellin hormone

unlinked PMCP

unlinked ITP

Infer

A

GO:0009739
response to gibberellin

GO:0009725
response to hormone

gibberellin hormone

linked PMCP

linked ITP

Infer

B

Figure 3.1: A: Unlinked PMCP with diff 1 and its unlinked ITP; B: Linked PMCP
with diff 1 and its linked ITP. This example reveals a potentially missing subtype
relation in A, that is, GO:0010373 (negative regulation of gibberellin biosynthetic
process) is-a GO:0032353 (negative regulation of gibberellin hormone process).

GO:0031918
positive regulation of

synaptic metaplasticity

GO:0048518
positive regulation of
biological process

synaptic metaplasticity biological process

unlinked PMCP

unlinked ITP

Infer

A

GO:0031916
regulation of

synaptic metaplasticity

GO:0050789
regulation of

biological process

synaptic metaplasticity biological process

linked PMCP

linked ITP

Infer

B

Figure 3.2: A: Unlinked PMCP with diff 2 and its unlinked ITP; B: Linked PMCP
with diff 2 and its linked ITP. This example reveals a potentially missing subtype
relation in A, that is, GO:0031918 (positive regulation of synaptic metaplasticity)
is-a GO:0048518 (positive regulation of biological process).

3.1.2 Generating partial matching concept pairs

A pair of concepts is defined as a partial matching concept pair (PMCP) with diff

n, if the names of the two concepts have the same number of words and contain
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at least one word in common and n different words. In this work n = 1, 2, 3, 4, 5

is studied. The positional correspondence of words is required when applying this

definition to the sequence-of-words model, and it is disregarded for the set-of-words

model. For instance, GO:0009739 (response to gibberellin) and GO:0009725 (response

to hormone) is a PMCP with diff 1 in terms of both models; while GO:0009785 (blue

light signaling pathway) and GO:0009637 (response to blue light) is a PMCP with diff

2 only in term of the set-of-words model.

PMCPs are classified into two categories as follows:

• Linked PMCP: If the two concepts in a PMCP have a subtype relation (either

direct or indirect), then this pair of concepts is known as a linked PMCP.

• Unlinked PMCP: If the two concepts in a PMCP does not have a subtype

relation, then this pair of concepts is known as an unlinked PMCP.

For example, Fig. 3.1A contains an example of an unlinked PMCP with diff 1,

where the two concepts GO:0010373 (negative regulation of gibberellin biosynthetic

process) and GO:0032353 (negative regulation of hormone biosynthetic process) differ

in a single word – gibberellin versus hormone. Fig. 3.1B shows an example of a linked

PMCP with diff 1, where two concepts GO:0009739 (response to gibberellin) and

GO:0009725 (response to hormone) also differ in a single word – gibberellin versus

hormone. Fig. 3.2A presents an example of an unlinked PMCP with diff 2, and

Fig. 3.2B presents an example of a linked PMCP with diff 2, where the difference is

synaptic metaplasticity versus biological process. These two examples can be obtained

by both the set-of-words model and the sequence-of-words model.

Note that the pre-computed transitive closure of the subtype relation (i.e., di-

rect and indirect is-a relations) is utilized to decide whether a PMCP is linked or

unlinked. That is, if a concept of the PMCP is in the transitive closure, then it is

linked; otherwise, it is unlinked. For instance, the PMCP (GO:0009739, GO:0009725)
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in Fig. 3.1B is in the transitive closure; thus it is linked. However, the PMCP

(GO:0010373, GO:0032353) in Fig. 3.1A is not in the transitive closure; thus it is

unlinked. Moreover, for a linked PMCP (C1, C2), the concept C1 is either a direct

subtype of the concept C2 or an indirect subtype of C2. For example, the PMCP

(GO:0009739, GO:0009725) in Fig. 3.1B is a direct subtype relation, whereas the

PMCP (GO:0031916, GO:0050789) in Fig. 3.2B is an indirect subtype relation.

GO:1990258
histone glutamine methylation

GO:0006541
glutamine metabolic process

histone methylation metabolic process

unlinked PMCP

unlinked ITP

Infer

A

GO:0031061
negative regulation of
histone methylation

GO:0009892
negative regulation of
metabolic process

histone methylation metabolic process

linked PMCP

linked ITP

Infer

B

Figure 3.3: An example exclusively obtained using the set-of-words model. A:
Unlinked PMCP with diff 2 and its unlinked ITP; B: Linked PMCP of with diff 2
and its linked ITP. This example reveals a potentially missing subtype relation in
A, that is, GO:1990258 (histone glutamine methylation) is-a GO:0006541 (glutamine
metabolic process).

3.1.3 Deriving inferred term pairs

For each PMCP (C1, C2), a related inferred pair of terms
(
C1− (C1 ∩C2), C2− (C1 ∩

C2)
)

can be derived. In other words, the different words between the names of C1

and C2 derives an Inferred Term Pair (ITP). Here, the positional correspondence

of words is required when deriving ITPs for the sequence-of-words model, and it is

disregarded for the set-of-words model.
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ITPs are also classified into two categories based on the PMCPs that they are

derived from:

• Linked ITP: If an ITP is derived from a linked PMCP, then it is known as a

linked ITP.

• Unlinked ITP: If an ITP is derived from an unlinked PMCP, then it is known

as an unlinked ITP.

Take Fig. 3.1A as an example, using the sequence-of-words model, the unlinked

concepts GO:0010373 (negative regulation of gibberellin biosynthetic process) and

GO:0032353 (negative regulation of hormone biosynthetic process) contain the com-

mon words [negative, regulation, of, biosynthetic, process], and removing them from

both concepts yields an unlinked ITP ([gibberellin], [hormone]). This ITP can also

be obtained using the set-of-words model. In Fig. 3.2B, using the sequence-of-words

model, the linked concepts GO:0031916 (regulation of synaptic metaplasticity) and

GO:0050789 (regulation of biological process) contain the common words [regulation,

of], which derives a linked ITP ([synaptic, metaplasticity], [biological, process]). Sim-

ilarly, this ITP can also be obtained using the set-of-words model. In Fig. 3.3A,

using the set-of-words model, the unlinked concepts GO:1990258 (histone glutamine

methylation) and GO:0006541 (glutamine metabolic process) contain the common

word {glutamine}, which derives an unlinked ITP ({histone, methylation}, {metabolic,

process}). Note that this ITP cannot be obtained using the sequence-of-words model

due to the requirement of the positional correspondence.

3.1.4 Detecting potential inconsistencies

If an unlinked PMCP and a linked PMCP both derive the same ITP, then these

two PMCPs are considered to contain a potential subtype inconsistency. For in-

stance, the unlinked PMCP (GO:0010373, GO:0032353) in Fig. 3.1A and the linked

25



GO:0043215
daunorubicin transport

GO:0051182
coenzyme transport

daunorubicin coenzyme

unlinked PMCP

unlinked ITP

Infer

A

GO:1901770
daunorubicin catabolic process

GO:0009109
coenzyme catabolic process

daunorubicin coenzyme

linked PMCP

linked ITP

Infer

B

Figure 3.4: A: Unlinked PMCP with diff 1 and its unlinked ITP; B: Linked PMCP
with diff 1 and its linked ITP. This example reveals a potentially incorrect existing
subtype relation in B, that is, GO:1901770 (daunorubicin catabolic process) is not
a subtype of GO:0009109 (coenzyme catabolic process).

PMCP (GO:0009739, GO:0009725) in Fig. 3.1B is considered a potential inconsis-

tency, since they derive the same ITP ([gibberellin], [hormone]) using both set-of-words

and sequence-of-words models. The unlinked PMCP (GO:0031918, GO:0048518) in

Fig. 3.2A and the linked PMCP (GO:0031916, GO:0050789) in Fig. 3.2B are consid-

ered a potential inconsistency, since they derive the same ITP ([synaptic, metaplas-

ticity], [biological, process]) using both set-of-words and sequence-of-words models.

The unlinked PMCP (GO:1990258, GO:0006541) in Fig. 3.3A and the linked PMCP

(GO:0031061, GO:0009892) in Fig. 3.3B are considered a potential inconsistency,

since they derive the same ITP ({histone, methylation}, {metabolic, process}) only

using the set-of-words model.

3.1.5 Evaluating detected inconsistencies

The potential subtype inconsistencies detected above are classified into three cate-

gories during the evaluation: missing subtype relations, incorrect existing subtype

relations, and false positives. Given an inconsistency I consisting of an unlinked
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PMCP (U1, U2) and a linked PMCP (L1, L2), each of these three categories are

described in detail as follows.

3.1.5.1 Missing subtype relations.

If the concepts in the unlinked PMCP (U1, U2) form a valid subtype relation, then

it is regarded as a missing subtype relation in GO (i.e., U1 should be a subtype of

U2). For instance, in Fig. 3.1A, the concepts in the unlinked PMCP (GO:0010373,

GO:0032353) indeed form a valid subtype relation; thus there is a missing subtype

relation – GO:0010373 (negative regulation of gibberellin biosynthetic process) should

be a subtype of GO:0032353 (negative regulation of gibberellin hormone process).

Similarly, in Fig. 3.2A, GO:0031918 (positive regulation of synaptic metaplasticity)

should be a subtype of GO:0048518 (positive regulation of biological process); and

in Fig. 3.3A, GO:1990258 (histone glutamine methylation) should be a subtype of

GO:0006541 (glutamine metabolic process).

GO:0061082
myeloid leukocyte

cytokine production

GO:0002444
myeloid leukocyte

mediated immunity
FP

cytokine production mediated immunity

unlinked PMCP

unlinked ITP

Infer

A

GO:0002728
negative regulation of natural

killer cell cytokine production

GO:0002716
negative regulation of natural

killer cell mediated immunity

cytokine production mediated immunity

linked PMCP

linked ITP

Infer

B

Figure 3.5: A: Unlinked PMCP with diff 2 and its unlinked ITP; B: Linked PMCP
with diff 2 and its linked ITP. Evaluated by the domain experts, the unlinked PMCP
in A is an invalid subtype relation, the linked PMCP in B is a valid subtype relation,
and therefore the potential inconsistency in this example is a false positive (FP).
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3.1.5.2 Incorrect existing subtype relations.

If the concepts in the linked PMCP (L1, L2) are found to be an invalid subtype

relation, then it is regarded as an incorrect existing subtype relation (i.e., L1 should

not be a subtype of L2). For example, in Fig. 3.4B, the concepts in the linked PMCP

(GO:1901770, GO:0009109) are found to form an invalid subtype relation, because

daunorubicin is not a coenzyme, but a small molecule intercalating agent that inserts

directly into the structure of DNA. That is, GO:1901770 (daunorubicin catabolic

process) should not be a subtype of GO:0009109 (coenzyme catabolic process).

3.1.5.3 False positives

If the concepts in the linked PMCP (L1, L2) indeed form a valid subtype relation

and the concepts in the unlinked PMCP (U1, U2) are found to be an invalid subtype re-

lation, then I is regarded as a false positive that is identified by the approach. For ex-

ample, the concepts in the linked PMCP (GO:0002728, GO:0002716) in Fig. 3.5B in-

deed forms a valid subtype relation, and the unlinked PMCP (GO:0061082, GO:0002444)

in Fig. 3.5A does not form a valid subtype relation. Therefore, the inconsistency

shown in Fig. 3.5 is a false positive.

3.2 Results

3.2.1 Summary results

A total of 5,359 and 4,959 potential inconsistencies were found in the 03/28/2017

release of GO using the set-of-words model and the sequence-of-words model, respec-

tively. As shown in Table 3.1, a total of 4,802 inconsistencies were commonly detected

by both models, 557 were detected only using set-of-words model, and 157 were de-

tected only using sequence-of-words model. The distribution of inconsistencies with

respect to the number of word differences between concepts (diff) is also given in

Table 3.1. The majority of inconsistencies were obtained by a diff of 1.
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Table 3.1: Number of potential inconsistencies derived by each model for n =
1, 2, 3, 4, 5.

Model n = 1 n = 2 n = 3 n = 4 n = 5 Total

Set-of-words 3,715 1,177 268 157 42 5,359

Sequence-of-words 3,527 1,112 247 64 9 4,959

Both models (common) 3,522 1,021 219 39 1 4,802

A total of 2,283 ITPs were involved in obtaining potential inconsistencies for the

set-of-words model, while 1,989 ITPs were involved for the sequence-of-words model.

The ITPs derived include (telencephalon, forebrain), (ethanolamine, peptide), and

(siderophore, drug). More examples of ITPs can be found in Table 3.4 (see the first

column).

3.2.2 Evaluation

Each detected inconsistency indicates a potentially missing subtype relation or an in-

correct existing subtype relation in GO (a valid inconsistency), or is a falsely identified

inconsistency (an invalid inconsistency).

A random sample of 250 detected inconsistencies was reviewed by the domain ex-

perts, and 131 were found to be valid inconsistencies. Among these, 101 were missing

subtype relations and 30 were incorrect existing subtype relations. Table 3.2 provides

a performance comparison between the set-of-words model and the sequence-of-words

model. Among 250 samples, 238 were obtained using the set-of-words model, 212 were

obtained using the sequence-of-words model, and 200 were obtained using both mod-

els. The overall precision of the set-of-words model is 53.78% (128/238), while for

the sequence-of-words model, the precision is 57.55% (122/212). This indicates that

the sequence-of-words model outperforms the set-of-words model. For the samples

identified by both models (common), the precision is 59.50% (119/200).

Table 3.3 shows the distribution of the valid inconsistencies in terms of the number
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Table 3.2: Valid inconsistencies found in the evaluation sample for the set-of-words
and sequence-of-words models.

Model Evaluation Inconsistencies Precision

sample size (valid)

Set-of-words 238 128 53.78%

Sequence-of-words 212 122 57.55%

Both models (common) 200 119 59.50%

of word differences using the sequence-of-words model. For instance, the samples with

1 difference achieved a precision of 60.27% (88/146), while those with 2 differences

got less precision 48.98% (24/49). The highest precision is 75% (3/4) for the samples

with 4 differences.

Table 3.3: Valid inconsistencies found in the evaluation sample for n = 1, 2, 3, 4, 5
with respect to the sequence-of-words model.

n Evaluation Inconsistencies Precision

sample size (valid)

1 146 88 60.27%

2 49 24 48.98%

3 11 7 63.64%

4 4 3 75%

5 2 0 0%

Overall 212 122 57.55%

Table 3.4 lists 15 examples of the valid inconsistencies confirmed by the domain

experts. Each example consists of an ITP, unlinked PMCP, linked PMCP, and in-

consistency type (i.e., missing subtype relation or incorrect subtype relation). It is

worth noting that such inconsistencies found in this work also provide example cases

to audit similar cases in GO.
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3.3 Discussion

3.3.1 Analysis of failure cases

GO:0052670
geraniol kinase activity

(molecular function)

GO:1903446
geraniol metabolic process

(biological process)
FP

kinase activity metabolic process

unlinked PMCP

unlinked ITP

Infer

A

GO:0033673
negative regulation of

kinase activity
(biological process)

GO:0009892
negative regulation of
metabolic process
(biological process)

kinase activity metabolic process

linked PMCP

linked ITP

Infer

B

Figure 3.6: A false positive (FP) involving concepts across different GO sub-
hierarchies. A: Unlinked PMCP with diff 2 and its unlinked ITP; B: Linked PMCP
with diff 2 and its linked ITP. The unlinked concepts in A belong to different sub-
hierarchies: GO:0052670 is in the molecular function sub-hierarchy, while GO:1902446
is in the biological process sub-hierarchy.

The invalid inconsistencies confirmed by the domain experts are considered false

positives. Fig. 3.5 shows an example of false positives, where the linked PMCP is

correct, and the unlinked PMCP is incorrect. This is due to the existing relation

in GO in Fig. 3.5B being a regulation of a complex pathway of two concepts which

could be hierarchically related while the suggested relation in Figure 3.5A being the

concepts themselves which cannot be related. In scenarios such as these, the suitable

relationship is part-of instead of is-a. An analogy could be made to the two concepts

Engine and Cylinder block. The regulation of the Cylinder block may be a subclass

of regulation of the Engine, but deriving that Cylinder block is-a Engine is incorrect.

However, it is correct that Cylinder block is part-of Engine.

Fig. 3.6 presents another example of false positives involving concepts across dif-
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ferent GO sub-hierarchies. GO contains three sub-hierarchies. While other types of

cross-hierarchical relationships are permitted, the subtype relationship is-a is disjoint

among the three sub-hierarchies. In Fig. 3.6A, GO:0052670 belongs to the Molec-

ular Function sub-hierarchy and GO:1903446 belongs to the Biological Process sub-

hierarchy. So there cannot be an is-a relation connecting these two, as it would be a

violation of the ontology’s rules and would undermine its utility if added. Since this

approach was designed to be generally applicable to other ontologies, no restrictions

were set regarding the cross-hierarchy cases.

Another scenario of false positives is that the ITPs involve general terms such as

(senescence, development), which may not be suitable to serve as a good candidate to

detect subtype inconsistencies. An example of unlinked PMCPs is GO:0080187 (floral

organ senescence) and GO:0048437 (floral organ development). Senescence is not a

specific type of development, rather it is a state within the process of development

and would more accurately be considered a component of development. Therefore,

there should be a part-of relation between GO:0080187 (floral organ senescence) and

GO:0048437 (floral organ development), which is already existent in the current GO.

3.3.2 Distinction with related work

In [48], Agrawal et al. leveraged lexically similar concepts having only one different

word at the same position of their names to identify concept modeling inconsistencies

(from the point of view of concepts). This work is focusing on detecting subtype

defects in GO by leveraging the inconsistent ITPs derived across linked and unlinked

PMCPs (from the perspective of relations). In addition, this approach does not limit

the number of different words between concepts to one.

Chapter 5, investigates a structural-lexical approach to audit the NCI Thesaurus,

where six lexical patterns were applied to non-lattice subgraphs. Here, one of the

lexical patterns: Inference Contradiction leveraged inferred terms in non-lattice sub-
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graphs to suggest potentially missing is-a relations in the NCI Thesaurus. In this

work, all the linked and unlinked PMCPs were exhaustively considered for investigat-

ing potential inconsistencies in GO without limiting to any substructure, although a

similar idea of lexical-based inference to Inference Contradiction (only set-of-words

was used in Inference Contradiction) was employed. Moreover, this work identifies

potentially incorrect existing is-a relations in addition to missing is-a relations.

3.4 Conclusion

This chapter presents a lexical-based inference approach to audit Gene Ontology based

on inconsistencies of inferred term-pairs derived from linked and unlinked concept-

pairs. To implement this lexical approach, two models were employed to represent the

concept names: set-of-words model and sequence-of-words model, which achieved pre-

cisions of 53.78% and 57.55%, respectively. This demonstrates that the lexical-based

inference approach is a promising way to detect potential subtype inconsistencies:

missing subtype relations as well as incorrect subtype relations in GO. This approach

is also applicable to other biomedical ontologies for quality assurance analysis.
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Table 3.4: Examples of the subtype inconsistencies (I: Incorrect relation, M: Missing
relation) found.

ITP Unlinked PMCP Linked PMCP Type

(telencephalon, forebrain) GO:0021537: telencephalon development GO:0022029: telencephalon cell migration I

GO:0030900: forebrain development GO:0021885: forebrain cell migration

(oxidase, dehydrogenase) GO:0003884: D-amino-acid oxidase activity GO:0004158: dihydroorotate oxidase activity

GO:0008718: D-amino-acid dehydrogenase GO:0004152: dihydroorotate dehydrogenase I

activity activity

(methotrexate, drug) GO:0031427: response to methotrexate GO:0051870: methotrexate binding M

GO:0042493: response to drug GO:0008144: drug binding

(ethanolamine, peptide) GO:0046336: ethanolamine catabolic GO:0006580: ethanolamine metabolic

process process M

GO:0044248: cellular catabolic process GO:0044237: cellular metabolic process

(siderophore, drug) GO:0009237: siderophore metabolic process GO:0019290: siderophore biosynthetic process I

GO:0006518: peptide metabolic process GO:0043043: peptide biosynthetic process

(cortisol, hormone) GO:0034651: cortisol biosynthetic process GO:0043400: cortisol secretion M

GO:0042446: hormone biosynthetic process GO:0046879: hormone secretion

(cephalosporin, amine) GO:0043646: cephalosporin biosynthetic GO:0043645: cephalosporin metabolic

process process M

GO:0009309: amine biosynthetic process GO:0009308: amine metabolic process

(gamma-tubulin, tubulin) GO:1902481: gamma-tubulin complex GO:0043015: gamma-tubulin binding

assembly M

GO:0007021: tubulin complex assembly GO:0015631: tubulin binding

(rRNA, RNA) GO:1901259: chloroplast rRNA processing GO:0031167: rRNA methylation M

GO:0031425: chloroplast RNA processing GO:0001510: RNA methylation

(nickel, inorganic) GO:0090509: nickel cation import into GO:0035444: nickel cation transmembrane

cell transport M

GO:0098659: inorganic cation import into GO:0098662: inorganic cation transmembrane

cell transport

(galactosylceramide, GO:0006683: galactosylceramide catabolic GO:0061591: calcium activated

phospholipid) process galactosylceramide scrambling M

GO:0009395: phospholipid catabolic GO:0061588: calcium activated

process phospholipid scrambling

({activin, receptor}, GO:0070697: activin receptor binding GO:0048179: activin receptor complex M

{protein, kinase}) GO:0019901: protein kinase binding GO:1902911: protein kinase complex

({dimethyl, sulfoxide}, GO:1904620: cellular response to dimethyl GO:0018907: dimethyl sulfoxide metabolic

{organic, substance}) sulfoxide process M

GO:0071310: cellular response to organic GO:0071704: organic substance metabolic

substance process

({systemic, acquired, resistance}, GO:0052160: modulation by symbiont GO:1901672: positive regulation of

{innate, immune, response}) of host systemic acquired resistance systemic acquired resistance I

GO:0052167: modulation by symbiont GO:0045089: positive regulation of

of host innate immune response innate immune response

({complement, activation, GO:0045959: negative regulation of GO:0030450: regulation of complement,

classical, pathway}, complement activation, classical pathway activation classical pathway M

{response, to, GO:0032102: negative regulation of GO:0032101: regulation of response to

external, stimulus}) response to external stimulus external stimulus
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CHAPTER 4. SSIF: Subsumption-based Sub-term Inference Framework

to Audit is-a Relations

In this chapter, Subsumption-based Sub-term Inference Framework is discussed. SSIF

leverage the lexical features of concept labels, underlying graph structure of GO to-

gether with a novel term-algebra involving the former and the latter. SSIF contains

three main components: (1) a sequence-based representation of GO concepts con-

structed using part-of-speech (POS) tagging, sub-concept matching, and antonym

tagging; (2) a formulation of algebraic operations for the development of a term-

algebra based on the sequence-based representation, that leverages subsumption-

based longest subsequence alignment; and (3) the construction of a set of conditional

rules for backward subsumption inference aimed at uncovering problematic is-a rela-

tions in GO.

4.1 Material and methods

In this work, the 10/03/2018 release of GO in the Web Ontology Language (OWL)

format is used. First the OWL file is parsed to extract all the concepts and is-a

relations in GO. Then the is-a transitive closure is computed to get all the direct and

indirect is-a relations. The three main components of SSIF are described as follows.

4.1.1 Sequence-based representation of concepts

[79] pointed out that over 65% of GO concepts (or terms) contain another GO term

as a proper substring. For instance, negative regulation of cellular protein catabolic

process (GO:1903363) contains the term regulation of cellular protein catabolic pro-

cess (GO:1903362) as a proper substring. The proper substring is referred to as a

sub-concept of the original concept. In addition, GO concepts containing only al-

phanumeric characters are considered, constituting almost 90% of GO concepts.

35



In this work, each GO concept is represented with a sequence of primitive elements,

where a primitive element can be a single word or a sub-concept. Given an input

concept C, its sequence of elements E(C) is denoted as [e1, e2, e3, ..., en]. Further, the

elements are annotated with tags and form the corresponding sequence of tags T (C),

denoted as [t1, t2, t3, ..., tn] where tag ti corresponds to element ei. The following

three tagging processes are performed: Part-Of-Speech (POS) tagging, sub-concept

tagging, and antonym tagging.

4.1.1.1 Part-Of-Speech tagging

The Stanford Parser ([80]) is used to parse and annotate the GO terms to obtain

sequence-based representations with tagged annotations for concepts. For example,

the concept C = negative regulation of cellular protein catabolic process (GO:1903363)

is represented and annotated as follows:

E(C) = [negative, regulation, of, cellular, protein, catabolic, process],

T (C) = [JJ, NN, IN, JJ, NN, JJ, NN],

where JJ, NN, and IN are the POS tags denoting adjective, noun, and preposition

or subordinating conjunction, respectively.

4.1.1.2 Sub-concept tagging

After the POS tagging, sub-concepts contained in the concepts, that is, the proper

substrings of concepts that are also GO concepts are detected. Then the substrings

corresponding to the subconcepts are replaced with their GO identifiers. More specif-

ically, for a concept C with sequence-based representation E(C) = [e1, e2, e3, ..., en]

and annotation T (C) = [t1, t2, t3, ..., tn], if substring [ej, ej+1, ...ek] (1 ≤ j ≤ k ≤ n)

is also a GO concept S whose identifier is I(S), then the representation is up-

dated as E(C) = [e1, e2, ..., ej−1, I(S), ek+1, ..., en] and the annotation as T (C) =

[t1, t2, ..., tj−1, SC, tk+1, ..., tn], where SC denotes the sub-concept tag.

For example, for the input concept C = negative regulation of cellular protein
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catabolic process (GO:1903363), there are four sub-concepts detected: regulation

of cellular protein catabolic process (GO:1903362), cellular protein catabolic pro-

cess (GO:0044257), protein catabolic process (GO:0030163), and catabolic process

(GO:0009056). Note that these sub-concepts are overlapping with each other (i.e.,

sharing at least one word in common), in which cases multiple representations are

generated for the input concept to handle the overlap. Therefore, the input con-

cept C has four different representations (see Table 4.1) corresponding to the four

sub-concepts detected.

Table 4.1: Sequence representations for concept C = negative regulation of cellular
protein catabolic process (GO:1903363).

Sequence representation – E(C) Tag annotation – T (C)

negative, GO:1903362 JJ, SC

negative, regulation, of, GO:0044257 JJ, NN, IN, SC

negative, regulation, of, cellular, GO:0030163 JJ, NN, IN, JJ, SC

negative, regulation, of, cellular, protein, GO:0009056 JJ, NN, IN, JJ, NN, SC

Table 4.2 shows the sequence-based representations and tag annotations for the

concept C = innate immune response activating cell surface receptor signaling path-

way (GO:0002220), which contains the following sub-concepts: innate immune re-

sponse (GO:0045087), immune response (GO: 0006955), cell (GO:0005623), cell

surface (GO:0009986), signaling (GO:0023052), and cell surface receptor signaling

pathway (GO:0007166). A total of six representations are generated to capture the

overlaps among sub-concepts (see Table 4.2). For instance, since sub-concepts innate

immune response (GO:0045087) and immune response (GO: 0006955) are overlap-

ping, different representations are generated to differentiate them (see the first three

representations versus the last three representations in Table 4.2).
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Table 4.2: Sequence representations for concept C = innate immune response acti-
vating cell surface receptor signaling pathway (GO:0002220).

Sequence representation – E(C)
Tag annotation – T (C)
GO:0045087, activating, GO:0005623, surface, receptor, GO:0023052, pathway
SC, VBG, SC, NN, NN, SC, NN
GO:0045087, activating, GO:0009986, receptor, GO:0023052, pathway
SC, VBG, SC, NN, SC, NN
GO:0045087, activating, GO:0007166
SC, VBG, SC
innate, GO:0006955, activating, GO:0005623, surface, receptor, GO:0023052, pathway
JJ, SC, VBG, SC, NN, NN, SC, NN
innate, GO:0006955, activating, GO:0009986, receptor, GO:0023052, pathway
JJ, SC, VBG, SC, NN, SC, NN
innate, GO:0006955, activating, GO:0007166
JJ, SC, VBG, SC

4.1.1.3 Antonym tagging

To annotate concepts involving words with antonyms, comprehensive collection

of antonym pairs provided by WordNet, the most well known lexical database for

English [81] is used. If there exists an element ei of E(C) belonging to the antonym

collection, then ei is annotated with the ANT tag in addition to its original tag. For

instance, for the concept C = negative regulation of cellular protein catabolic process

(GO:1903363) (in Table 4.1), its first element negative involves the antonym pair

(positive, negative), thus the ANT tag is added for the element negative (as shown

in Table 4.3). Note that the ANT does not replace the original POS tag but rather

serves as an additional tag for the element, indicating that the element negative is an

adjective and has an antonym. The antonym of element ei is denoted as ¬ei.

Table 4.3: Sequence representations for concept C = negative regulation of cellular
protein catabolic process (GO:1903363) after antonym tagging.

Sequence representation – E(C) Tag annotation – T (C)

negative, GO:1903362 JJ/ANT, SC

negative, regulation, of, GO:0044257 JJ/ANT, NN, IN, SC

negative, regulation, of, cellular, GO:0030163 JJ/ANT, NN, IN, JJ, SC

negative, regulation, of, cellular, protein, GO:0009056 JJ/ANT, NN, IN, JJ, NN, SC
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4.1.2 Algebraic operations

The sequence-based representation of GO concepts enables alignment (or matching)

between concepts. The Subsumption-based Longest Common Subsequence (SLCS)

alignment approach to compare concepts is introduced as follows. First, a subsump-

tion relation is defined between sequences of elements in GO, where an element can

be a word or a GO concept. Given two sequences of elements X and Y , if the term

corresponding to X is a GO concept and a subtype (direct or indirect) of the term

corresponding to Y , X and Y are said to have a subsumption relation, denoted as

X � Y ; otherwise, it is said that X and Y do not have a subsumption relation,

denoted as X � Y . In particular, it is assumed X � X for any sequence of elements

X.

Next the subsumption-based longest common subsequence between two sequences

of elements X = [x1, x2, ..., xm] and Y = [y1, y2, ..., yn] is defined. Let Xi = [x1, x2, ..., xi]

and Yj = [y1, y2, ..., yj] be the length i prefixes of X and length j prefixes of Y respec-

tively, then the subsumption-based longest common subsequence between Xi and Yj,

SLCS(Xi, Yj), is defined as follows:

SLCS(Xi, Yj) =



∅ if i = 0 or j = 0

[SLCS(Xi−1, Yj−1), xi] if i, j > 0 and xi � yj

[SLCS(Xi−1, Yj−1), yj] if i, j > 0 and yj � xi

[longest(SLCS(Xi, Yj−1), SLCS(Xi−1, Yj))] if i, j > 0 and xi � yj and yj � xi.

Hence, the subsumption-based longest common subsequence between X and Y ,

SLCS(X, Y ) = SLCS(Xm, Yn). For instance, consider the two concepts C1 = nega-

tive regulation by host of symbiont molecular function (GO: 0052405) and C2 = pos-

itive regulation by host of symbiont catalytic activity (GO:0043947), as well as their

sequence representations [negative, regulation, by, host, of, symbiont, GO:0003674 ]
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and [positive, regulation, by, host, of, symbiont, GO:0003824 ]. Since catalytic activ-

ity (GO:0003824) is a subtype of molecular function (GO:0003674), SLCS(C1, C2) =

[regulation, by, host, of, symbiont, GO:0003824 ].

The subsumption-based longest common subsequence between sequences of ele-

ments allows us to define an algebraic operation intersection (u) as follows. Given

two sequences of elements X and Y , there are two possible cases:

• Case I: X � Y

In this case, it is defined that XuY = X. That is to say, if the term correspond-

ing to X is a subtype of (or more specific than) the term corresponding to Y ,

then X u Y is defined as the sequence of the more specific term. For example,

since catabolic process (GO:0009056) � metabolic process (GO:0008152), the

intersection of the concepts catabolic process (GO:0009056) u metabolic process

(GO:0008152) = catabolic process (GO:0009056). In particular, X u X = X

is defined for any sequence of elements X. For instance, protein u protein =

protein.

• Case II: X � Y

Suppose the subsumption-based longest common subsequence between two con-

cepts X = [x1, x2, ..., xm] and Y = [y1, y2, ..., yn] is SLCS(X, Y ) = [e1, e2, ..., es],

where s ≤ m and s ≤ n. Then X u Y is defined as follows:

1. If s = m = n, then XuY is defined as the sequence obtained by performing

intersections between elements in X and Y , i.e.,

X u Y = [(x1 u y1), (x2 u y2), ..., (xs u ys)]

= [e1, e2, ..., es] = SLCS(X, Y ).

For instance, for X = [cytoplasmic microtubule (GO:0005881), depoly-
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merization] and Y = [astral microtubule (GO:0000235), depolymeriza-

tion], since astral microtubule (GO:0000235) � cytoplasmic microtubule

(GO:0005881), then,

X u Y = [(cytoplasmic microtubule (GO:0005881) u

astral microtubule (GO:0000235)),

(depolymerization u depolymerization)]

= [astral microtubule (GO:0000235), depolymerization]

= Y.

2. If s = m and s < n, then X u Y is defined as the sequence obtained by

replacing elements in Y with the corresponding elements in SLCS(X, Y ),

that is, performing intersections between elements in X and Y correspond-

ing to those in SLCS(X, Y ) while keeping the remaining elements in Y

intact. Take X = [protein, catabolic process (GO:0009056)] and Y =

[cellular, protein, metabolic process (GO:0008152)] as an example, since

catabolic process (GO:0009056) � metabolic process (GO:0008152), the

SLCS between the concepts SLCS(X, Y ) = [protein, catabolic process

(GO:0009056)] and

X u Y = [cellular, (protein u protein),

(catabolic process (GO:0009056) u

metabolic process (GO:0008152))]

= [cellular, protein, catabolic process (GO:0009056)]

3. Similarly, if s < m and s = n, then X u Y is defined as the sequence

obtained by replacing elements in X with the corresponding elements in
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SLCS(X, Y ), that is, performing intersections between elements in X and

Y corresponding to those in SLCS(X, Y ) while keeping the remaining

elements in X intact.

4. In all other cases, X u Y is defined as ∅.

4.1.3 Conditional rules for backward subsumption-based inference

Based on the above-defined algebraic operations, three conditional rules are intro-

duced below for performing backward subsumption-based inference in order to iden-

tify potential problematic is-a relations in GO: missing is-a relations or erroneous

is-a relations.

4.1.3.1 Monotonicity rule

Given two GO concepts A and B such that E(A) and E(B) have the same number

of elements, E(A) = [a1, a2, a3, ..., an] and E(B) = [b1, b2, b3, ..., bn]. A suggestion of

A � B or A is-a B (a potentially missing is-a relation) may be made, if the following

conditions are met:

1. ai � bi holds for all i (1 ≤ i ≤ n);

2. A is currently not a subtype of B; and

3. there does not exist an element ai in E(A) with a tag ANT such that ¬ai is in

E(B).

Take two concepts A = cellular response to oxygen radical (GO:0071450) and

B = cellular response to inorganic substance (GO:0071241) shown in Fig. 4.1 as an

example, where the sequence-based representations of A and B are E(A) = [cellular,

response to oxygen radical (GO:0000305)] and E(B) = [cellular, response to inor-

ganic substance (GO:0010035)], respectively. Since cellular � cellular and response

to oxygen radical (GO:0000305) � response to inorganic substance (GO:0010035),
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a suggestion of A � B may be made, that is, cellular response to oxygen radical

(GO:0071450) is a subtype of cellular response to inorganic substance (GO:0071241).

Figure 4.1: An example of two GO concepts satisfying the monotonicity rule and
revealing a missing is-a relation: GO:0071450 is-a GO:0071241 (see the bolded,
dashed arrow).

Note that the validity of the suggested missing is-a relation still need to be verified

by domain experts. If the suggested missing is-a relation is valid, then it is indeed a

missing is-a relation (e.g., Fig. 4.1). If the suggested missing is-a relation is invalid,

but there exists j (1 ≤ j ≤ n) such that aj � bj is an erroneous relation which leads

to the invalid suggestion, then aj � bj can be identified as an erroneous relation in

GO.

For example, in Fig. 4.2, concept A = pyridine nucleotide catabolic process

(GO:0019364) has a sequence-based representation E(A) = [pyridine, nucleotide

catabolic process (GO:0009166)] and concept B = pyridine biosynthetic process

(GO:0019364) has a sequence-based representation E(B) = [pyridine, biosynthetic

process (GO:0009058)]. Since pyridine � pyridine and GO:0009166 �GO:0009058, a

suggestion of pyridine nucleotide catabolic process (GO:0019364) is-a pyridine biosyn-
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Figure 4.2: An example of two GO concepts satisfying the monotonicity rule and
revealing an erroneous is-a relation: nucleotide catabolic process (GO:0009166) is-a
biosynthetic process (GO:0009058) (see the bolded arrow with a cross).

thetic process (GO:0046220) may be made. However, this is an invalid suggestion due

to an erroneous existing is-a relation: nucleotide catabolic process (GO:0009166) �

biosynthetic process (GO:0009058), since catabolism is not anabolism (biosynthesis).

4.1.3.2 Intersection rule

Suppose A, B, and C are GO concepts such that A � B and A � C. A suggestion

of A � B u C (a potentially missing is-a relation) may be made, if the following

conditions are satisfied:

1. B u C is also a GO concept;

2. B u C � B and B u C � C;

3. A is currently not a subtype of B u C; and

4. there does not exist an element ai in E(A) with a tag ANT such that ¬ai is in

E(B).
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Intuitively, it is suggested that B u C is the maximal concept that is more specific

than both B and C.

For instance, in Fig. 4.3, concept A = negative regulation of ornithine catabolic

process (GO:1903267) is a subtype of concept B = negative regulation of cellular

amine metabolic process (GO:0033239) and also a subtype of concept C = regulation

of cellular catabolic process (GO:0031329). B u C = negative regulation of cellular

amine catabolic process (GO:0033242) is also a GO concept, which is a subtype of A

and B as well. Therefore a suggestion of A is-a B u C may be made, that is, neg-

ative regulation of ornithine catabolic process (GO:1903267) is a subtype of negative

regulation of cellular amine catabolic process (GO:0033242).

Figure 4.3: An example of four GO concepts satisfying the intersection rule and
revealing a missing is-a relation: negative regulation of ornithine catabolic process
(GO:1903267) is a subtype of negative regulation of cellular amine catabolic process
(GO:0033242) (see the bolded, dashed arrow).

If the suggested missing is-a relation is valid, then it is indeed a missing is-a

relation (e.g., Fig. 4.3). If the suggested missing is-a relation is invalid, but there exists

erroneous is-a relation(s) among A � B, A � C, B uC � B and B uC � C leading

to the invalid suggestion, then erroneous is-a relation(s) in GO can be identified.

For example, in Fig. 4.4, concept A = positive regulation of B cell deletion
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Figure 4.4: An example of four GO concepts satisfying the intersection rule
and revealing an erroneous existing relation: positive regulation of B cell deletion
(GO:0002869) is-a regulation of acute inflammatory response (GO:0002673) (see the
bolded arrow with a cross).

(GO:0002869) is a subtype of concept B = regulation of acute inflammatory response

(GO:0002673) and also a subtype of concept C = positive regulation of biological

process (GO:0048518). B u C = positive regulation of acute inflammatory response

(GO:0002675) is also a GO concept, which is a subtype of A and B as well. Therefore

a suggestion of A is-a B uC may be made, that is, positive regulation of B cell dele-

tion (GO:0002869) is a subtype of positive regulation of acute inflammatory response

(GO:0002675). However, this is an invalid suggestion due to an erroneous existing is-

a relation: positive regulation of B cell deletion (GO:0002869) is-a regulation of acute

inflammatory response (GO:0002673). The main purpose of B cell deletion is to pro-

duce immune tolerance. Since tolerance induction is a long process (not something

that is acute), it is incorrect that positive regulation of B cell deletion (GO:0002869)

is a subtype of regulation of acute inflammatory response (GO:0002673).

4.1.3.3 Sub-concept rule

Given a concept C with a sequence-based representation as E(C) =

[e1, e2, e3, ..., en−1, en] and a tag annotation as T (C) = [t1, t2, t3, ..., tn−1, tn]. A sug-
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gestion of C � en (a potentially missing is-a relation) may be made, if the following

conditions are met:

1. tn = SC, i.e., the last element en is also a GO concept;

2. ti ∈ {NN, JJ, SC} for each i (1 ≤ i ≤ n− 1), i.e., the tags t1, t2, t3, ..., tn−1 are

either noun, adjective, or sub-concept;

3. C is currently not a subtype of en; and

4. there does not exist an element ai in E(C) with a tag ANT such that ¬ai is in

en.

For instance, concept C = nerve growth factor receptor binding (GO:0005163)

has a sequence-based representation E(C) = [nerve, growth factor receptor binding

(GO:0070851)] with a tag annotation T (C) = [NN, SC ]. Since the last element growth

factor receptor binding (GO:0070851) is a also GO concept and the remaining element

nerve is a noun, a suggestion of nerve growth factor receptor binding (GO:0005163)

is-a growth factor receptor binding (GO:0070851) may be made.

If the suggested missing is-a relation is valid, then it is indeed a missing is-a

relation. Note that the sub-concept rule does not leverage any existing is-a relation

to make suggestions, thus it can not reveal erroneous existing is-a relations in GO.

4.1.4 Evaluation

A random sample of potentially missing is-a relations is selected and evaluated by two

domain experts. The evaluation is performed independently by each domain expert

and the disagreements between the two experts are resolved by discussion. For the

monotonicity rule and intersection rule, domain experts are also provided with the

existing is-a relations in GO that are leveraged to suggest the potentially missing is-a

relations.
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The validity of each suggested missing is-a relation in the random sample is eval-

uated by the domain experts. If the suggested missing is-a relation is valid, then it is

indeed a missing is-a relation and considered as a true positive; if the suggested miss-

ing is-a relation is invalid due to existing erroneous relation(s), then the erroneous

is-a relation(s) are identified as valid and considered as true positive(s); and all the

other cases are considered as false positives. The precision of SSIF according to each

rule can be calculated by dividing the number of true positives by the total number

of true positives and false positives.

4.2 Results

4.2.1 Summary results

For the 10/03/2018 release of GO, a total of 40,030 (out of 44,942) concepts were an-

notated with sequence-based representation. Among these, 30,086 concepts involve

sub-concepts and 13,163 involve antonyms. The number of potentially missing is-a

relations suggested by each conditional rule can be found in Table 4.4. In total, three

conditional rules suggested 1,938 unique potentially missing is-a relations. The mono-

tonicity and intersection rules leveraged 2,436 existing is-a relations to make these

suggestions. Note that certain potentially missing is-a relations can be obtained by

multiple rules. For instance, 11 potentially missing is-a relations can be obtained by

both the sub-concept rule and monotonicity rule; 228 can be obtained by the mono-

tonicity rule and intersection rule; and 1 can be obtained by all the three conditional

rules.

Table 4.4: Number of potentially missing is-a relations suggested by each conditional
rule.

Conditional rule No. of potentially missing is-a

Monotonicity rule 819

Intersection rule 691

Sub-concept rule 669
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4.2.2 Evaluation results

A total of 210 potentially missing is-a relations were randomly selected and evaluated

by domain experts. Table 4.5 shows the number of potentially missing is-a relations

(column 2) in the evaluation sample for each condition rule, as well as the number of

valid missing is-a relations (column 3), the number of valid erroneous is-a relations

(column 4), the total number of valid problematic (including both missing and erro-

neous) is-a relations (column 5), and the precision of our SSIF for identifying valid

problematic is-a relations (column 6). For example, for the monotonicity rule, there

were 99 potentially missing is-a obtained; 54 out of 99 were validated as missing is-a

relations, and 6 out of 99 revealed erroneous is-a relations; since the total number of

valid problematic is-a relations is 60, the precision of SSIF according to the mono-

tonicity rule is 60.61% (= 60/99). The precisions according to the intersection rule

and sub-concept rule are 60.49% (= 49/81) and 46.03% (= 29/63), respectively.

Table 4.5: The numbers of potentially missing is-a relations, valid missing is-a
relations, valid erroneous is-a relations, valid problematic is-relations respectively in
the evaluation sample for each condition rule.

Conditional rule No. of potentially No. of valid No. of valid Total no. of valid Precision

missing is-a missing is-a erroneous is-a problematic is-a

Monotonicity rule 99 54 6 60 60.61%

Intersection rule 81 44 5 49 60.49%

Sub-concept rule 63 29 N/A 29 46.03%

Among the evaluation sample, two potentially missing is-a relations were obtained

by both the sub-concept rule and monotonicity rule, and were indeed missing is-

a relations validated by domain experts; 29 potentially missing is-a relations were

obtained by both the monotonicity rule and intersection rule, and 13 of them were

validated as missing is-a relations and one of them revealed an erroneous is-a relation;

one potentially missing is-a relation was obtained by all the three rules and it was

validated as a missing is-a relation. A majority of the valid problematic is-a relations

identified by the monotonicity rule (54 out of 60) and intersection rule (44 out of 49)
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are missing is-a relations. In sum, 120 valid problematic is-a relations were verified by

domain experts, including 110 missing is-a relations and 10 erroneous is-a relations.

Table 4.6 lists ten examples of valid problematic is-a relations in the evaluation

sample verified by domain experts, including both missing and erroneous is-a rela-

tions. For instance, the first example shows a missing is-a relation obtained by the

monotonicity rule: cellular response to ketone (GO:1901655) is a subtype of cellular

response to organic substance (GO:0071310).

Table 4.6: Examples of valid problematic (missing or erroneous) is-a relations veri-
fied by domain experts.

Conditional rule Problematic is-a relation Type

Monotonicity rule cellular response to ketone (GO:1901655) is-a Missing

cellular response to organic substance (GO:0071310)

Monotonicity rule positive regulation of actin filament annealing (GO:0110056) is-a Missing

positive regulation of cytoskeleton organization (GO:0051495)

Monotonicity rule endoplasmic reticulum membrane (GO:0005789) is-a Missing

organelle membrane (GO:0031090)

Monotonicity rule cytosolic oxoglutarate dehydrogenase complex (GO:0045248) is-a Missing

cytosolic tricarboxylic acid cycle enzyme complex (GO:0045246)

Monotonicity rule regulation of sphingolipid biosynthetic process (GO:0090153) is-a Erroneous

regulation of macromolecule biosynthetic process (GO:0010556)

Intersection rule pantothenate catabolic process (GO:0015941) is-a Missing

cellular amide catabolic process (GO:0043605)

Intersection rule sulfolipid biosynthetic process (GO:0046506) is-a Missing

cellular lipid biosynthetic process (GO:0097384)

Intersection rule glucose catabolic process to lactate via pyruvate (GO:0019661) is-a Erroneous

pyridine nucleotide metabolic process (GO:0019362)

Sub-concept rule perinuclear endoplasmic reticulum membrane (GO:1990578) is-a Missing

endoplasmic reticulum membrane (GO:0005789)

Sub-concept rule skeletal muscle cell differentiation (GO:0035914) is-a Missing

muscle cell differentiation (GO:0042692)

The valid problematic is-a relations indicate that the logical definitions of GO

concepts could be further improved. For a valid missing is-a relation, it could be

added to the logical definition of its corresponding subconcept. For example, the
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relation positive regulation of actin filament annealing (GO:0110056) is-a positive

regulation of cytoskeleton organization (GO:0051495) can be directly added to the

logical definition of the subconcept positive regulation of actin filament annealing

(GO:0110056). For a valid erroneous is-a relation, if the subconcept and superconcept

have a direct is-a relation, then the is-a relation can be directly removed from the

logical definition of the subconcept; if the subconcept and superconcept have an

indirect is-a relation, then further investigation is needed to find out the root cause

and make an appropriate correction.

4.3 Discussion

4.3.1 Evaluation metrics

In this work, the performance of SSIF was evaluated in terms of the precision, which

was calculated by dividing the number of true positives by the total number of true

positives and false positives in the evaluation sample. Note that, unlike traditional

classification tasks, it is infeasible to measure actual recall due to the discovery nature

of the quality assurance task, that is, there is lack of reference standard (or ground

truth) that contains false negatives for calculating the recall.

However, one may use cumulative GO changes over different versions as a surrogate

standard for evaluating retrospective recall as introduced in [82]. For instance, SSIF

applied on the 10/03/2018 release of GO, which contained an erroneous is-a relation:

glucose catabolic process to lactate via pyruvate (GO:0019661) is-a pyridine nucleotide

metabolic process (GO:0019362); this relation has been corrected and no longer exists

in the current version. Such changes may serve as a partial reference standard to

compute the retrospective recall.

As an experiment, the 10/07/2019 release and 10/03/2018 release of GO were

compared to create a partial reference standard. There were 1,886 direct is-a relations

which were newly added in the 10/07/2019 release. Among these, 991 were due to the
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introduction of new concepts; 348 were already existent as indirect is-a relations in the

10/03/2018 release; and 107 involved concepts which were not used in this work since

they contained non-alphanumeric characters. Therefore, the set of remaining 440

newly added relations in the 10/07/2019 release is considered as the partial reference

standard for missing is-a relations. Similarly, there were 3,988 direct is-a relations

which were removed from the 10/03/2018 release. Among these, 3,049 were due to

concepts which were either replaced or made obsolete; 370 were indirect is-a relations

in the 10/07/2019 release; 71 involved concepts which contained non-alphanumeric

characters. Therefore, the set of remaining 498 removed relations is considered as the

partial reference standard for erroneous is-a relations.

Among the potentially missing is-a relations suggested by SSIF, 46 were contained

in the partial reference standard. Among the existing is-a relations which were lever-

aged by SSIF to suggest potentially missing is-a relations, 27 were contained in the

partial reference standard. As a result, SSIF achieved a retrospective recall of 7.78%,

i.e., (46+27)/(440+498). In addition, 10 potentially missing is-a relations suggested

by SSIF were indirect is-a relations in the 10/07/2019 release, indicating that they

are also valid suggestions; and 42 indirect is-a relations in the 10/03/2018 release

no longer exist in the 10/07/2019 release, indicating that they are erroneous is-a

relations.

The low value of the retrospective recall is expected since it is calculated purely

based on a partial reference standard obtained through version differences. The actual

recall should be higher than the retrospective recall, which can be seen from the fact

that in the 10/03/2018 release of GO, only 6 out of 110 valid missing is-a relations

verified by domain experts were reflected in the 10/07/2019 release, and only 2 out

of 10 erroneous is-a relations were removed in the 10/07/2019 release. These verified

suggestions will be submitted to the GO Consortium for consideration of including

them in future releases of GO.
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4.3.2 Analysis of false positives

Although SSIF was capable of uncovering problematic is-a relations in GO, it cannot

completely avoid false positives. In other words, there are invalid suggestions made

by SSIF. For example, the sub-concept rule suggested nuclear membrane mitotic

spindle pole body tethering complex (GO:0106084) is a subtype of tethering complex

(GO:0099023). However, this relation is invalid, since tethering complex is defined

as a complex that plays a role in vesicle tethering, while nuclear membrane mitotic

spindle pole body tethering complex is tethering non-vesicle cellular components. Note

that tethering complex has been renamed as vesicle tethering complex in the current

release of GO, in which case SSIF will not make the invalid suggestion of GO:0106084

is-a GO:0099023.

The monotonicity rule suggested negative regulation of renal output by an-

giotensin (GO:0003083) is-a negative regulation of systemic arterial blood pressure

(GO:0003085). This is an invalid is-a relation, because negative regulation of re-

nal output by angiotensin (GO:0003083) is actually a subtype of positive regulation

of systemic arterial blood pressure (GO:0003084). Although this invalid is-a rela-

tion was obtained by an existing is-a relation: regulation of renal output by an-

giotensin (GO:0002019) is a subtype of regulation of systemic arterial blood pressure

(GO:0003073), the latter relation is valid as the two concepts do not specify a qualifier

of positive or negative.

The intersection rule suggested peptide cross-linking via an oxazole or thiazole

(GO:0018157) is-a cellular macromolecule biosynthetic process (GO:0034645). This

potentially missing is-a relation was obtained by two existing is-a relations: peptide

cross-linking via an oxazole or thiazole (GO:0018157) is-a cellular macromolecule

metabolic process (GO:0044260) and peptide cross-linking via an oxazole or thiazole

(GO:0018157) is-a cellular biosynthetic process (GO:0044249). Since biosynthesis is

for the oxazole or thiazole, but not for the macromolecule (which is simply being
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modified), the former relation is invalid while the latter two existing relations are

valid.

As can be seen from Table 4.5, the precision of SSIF according to the sub-concept

rule is lower than that of the monotonicity rule and intersection rule. Through man-

ual review of the false positives obtained by the sub-concept rule, it was found that

there were 11 of the suggested potentially missing is-a relations which already have

a part-of relation in GO. For instance, the sub-concept suggested basal plasma mem-

brane (GO:0009925) is-a plasma membrane (GO:0005886), however, the two concepts

already have a part-of relation.

4.4 Conclusion

In this chapter, SSIF: subsumption-based sub-term inference framework is introduced,

to identify problematic is-a relations in GO. SSIF models GO concepts in a sequence-

based representation, formulates a term-algebra, and leverages three conditional rules

to perform backward subsumption inference, in order to automatically suggest poten-

tially missing is-a relations, which may further reveal erroneous is-a relations. SSIF

achieved a precision of 60.61% according to the monotonicity rule, 60.49% according

to the intersection rule, and 46.03% according to the sub-concept rule.
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CHAPTER 5. Mining Structural-Lexical Patterns to Identify Missing

is-a Relations and Concepts

NLSs represent potentially erroneous structures resulting from multiple inheritance.

The type of the inconsistency that an NLS represents needs to be identified and based

on that a remediation measure needs to be suggested.

For example, Figure 5.1A contains an NLS that was extracted from NCIt. Here

it can be seen that if the two concepts in the upper bound (U1 =Tablet Dosage

Form and U2 =Sustained Release Dosage Form) are combined by taking the union

of their words, it is equal to a lower bound concept (L1 =Sustained Release Tablet

Dosage Form). This means that L1 is semantically more closer to U1 and U2 than

the other concept in the lower bound (L2 = Sustained Release Buccal Tablet Dosage

Form). In such a scenario it would be better to connect L1 and L2 so that L1 is-a L2.

This remediation measure would transform the original NLS into a lattices so that

the structural inconsistency no longer exists. This approach will utilize such lexical

features in NLSs to uncover potential inconsistencies.

Figure 5.1: (A) An NLS with an inconsistency. (B) The suggested remediation for
the NLS in (A): Sustained Release Buccal Tablet Dosage Form IS-A Sustained Release
Tablet Dosage Form.

The terminology quality assurance approach discussed in this chapter leverages
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both structural and lexical information in the NCI thesaurus to systematically detect

potential errors and automatically suggest remediations. Firstly, all NLSs in NCIt is

extracted. Secondly, six structural and lexical patterns in the NLSs is mined, where

each pattern indicates a potential missing hierarchical relation or missing concept in

the NCIt. Finally, human domain experts evaluate a randomly selected sample of the

potential errors detected, as well as the proposed remediation. The 16.12d version of

the NCIt was used in this work.

5.1 Methods

5.1.1 Detecting non-lattice subgraphs

Figure 5.2: (A) An example of An NLS in the NCIt. (B) The suggested remediation
of the NLS in (A): Stage III Nasopharyngeal Carcinoma AJCC v6 is a subclass of
Stage III Nasopharyngeal Carcinoma.

As explained in Chapter 2, an NLS [31] can be obtained by a given non-lattice pair

p = (c1, c2) and its maximal common descendants mcd(p) by first reversely computing

the minimal common ancestors of the maximal common descendants, mca(mcd(p));

then accumulating the concepts and the edges between (including) any concept in

mca(mcd(p)) and any concept in mcd(p).

In this work, first the NCIt distribution file “ThesaurusInferred.owl” is parsed

56



to extract all the concepts and their labels, as well as hierarchical IS-A relations.

Then the computational pipeline implemented in previous work [31] is leveraged to

exhaustively detect NLSs in the NCIt. Each resulting NLS consists of five compo-

nents: concepts in the lower bounds, concepts in the upper bounds, concepts in the

NLS, IS-A relationships in the NLS, and the size of the NLS. Figure 5.2A shows an

NLS of size 6 in the NCIt, where Stage III Pharyngeal Cancer and Nasopharyngeal

Carcinoma are the concepts in the upper bounds, and Stage III Nasopharyngeal Car-

cinoma AJCC v6 and Stage III Nasopharyngeal Carcinoma are the concepts in the

lower bounds.

5.1.2 Mining structural and lexical patterns in non-lattice subgraphs

Since manual review of all NLSs to discover potential errors is labor-intensive and

time-consuming, the lexical information (concept labels) are further taken into ac-

count to automatically identify structural and lexical patterns in NLSs. Each pattern

indicates certain type of errors and suggests a potential remediation.

For lexical information, the label of a concept is considered as a set of words in

lower case. For example, the concept label Stage III Pharyngeal Cancer is considered

as a set of words {stage, iii, pharyngeal, cancer}. For structural information, given an

NLS, Ui is used to denote the set of words for a certain concept in the upper bounds,

and Lj is used to denote the set of words for a certain concept in the lower bounds.

Six patterns are defined taking into account of such lexical and structural

information in the NCIt: Containment, Union, Intersection, Union-Intersection,

Inference-Contradiction, and Inference-Union. The Containment, Union, Intersec-

tion, and Union-Intersection patterns were initially proposed in previous work [31] for

SNOMED CT. The Inference-Contradiction and Inference-Union patterns are newly

proposed in this work, incorporating inference into the structural and lexical infor-

mation.
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5.1.2.1 Containment

An NLS is defined as exhibiting a containment pattern [31], if the set of words for

one concept Ui in the upper bounds is contained in the set of words for another concept

Uj in the upper bounds, or the set of words for one concept Li in the lower bounds is

contained in the set of words for another concept Lj in the lower bounds. That is, Ui ⊂

Uj, or Li ⊂ Lj. This pattern may suggest a missing IS-A relation between the two

concepts in the upper bounds (or lower bounds), that is, Uj IS-A Ui (or Lj IS-A Li).

Consider the example in Figure 5.2A, L1 = {stage, iii, nasopharyngeal, carcinoma}

in the lower bounds is contained in L2 = {stage, iii, nasopharyngeal, carcinoma, ajcc,

v6} in the lower bounds. This indicates a potential missing hierarchical relation:

L2 IS-A L1, with L2 more specific than L1. The suggested correction is to add the

relation Stage III Nasopharyngeal Carcinoma AJCC v6 is a subclass of Stage III

Nasopharyngeal Carcinoma (highlighted as a red edge in Figure 5.2B).

For the containment pattern, NLSs with concepts involving negation words such

as no, not, without, absence are not considered, since those would incorrectly suggest

a missing hierarchical relation between a concept with negation and a concept without

negation.

5.1.2.2 Union

An NLS is defined as exhibiting a union pattern [31], if the union of the sets of

words for two concepts Ui and Uj in the upper bounds is equal to the set of words

for some concept Lk in the lower bounds, that is, Ui ∪ Uj = Lk. This pattern may

suggest a missing IS-A relation between other concepts in the lower bounds and Lk.

For instance, in Figure 5.3A, the union of U1 = {testicular, non-seminomatous, germ,

cell, tumor} and U2 = {malignant, testicular, germ, cell, tumor} in the upper bounds

is equal to L1 = {malignant, testicular, non-seminomatous, germ, cell, tumor} in

the lower bound. This indicates a potential missing IS-A relation between the other
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concept Childhood Testicular Yolk Sac Tumor in the lower bounds and L1. That is,

Childhood Testicular Yolk Sac Tumor IS-A Malignant Testicular Non-Seminomatous

Germ Cell Tumor (highlighted as a red edge in Figure 5.3B).

Figure 5.3: (A) An NLS exhibiting the Union pattern. (B) The suggested reme-
diation of the NLS in (A): Childhood Testicular Yolk Sac Tumor IS-A Malignant
Testicular Non-Seminomatous Germ Cell Tumor.

5.1.2.3 Intersection

An NLS is defined as exhibiting an intersection pattern [31], if the intersection

of the set of words for two concepts Li and Lj in the lower bounds is equal to the

set of words for some concept Uk in the upper bound, that is, Li ∩ Lj = Uk. This

pattern may suggest a missing IS-A relation between Uk and other concepts in the

upper bounds. For instance, in Figure 5.4A, the intersection of L1 = {splenic, t,

lymphoblastic, lymphoma} and L2 = {splenic, b, lymphoblastic, lymphoma} in the

lower bounds is equal to U1 = {splenic, lymphoblastic, lymphoma} in the upper

bound. This indicates a potential missing IS-A relation between U1 and the other

concept Aggressive Non-Hodgkin Lymphoma in the upper bound. That is, Splenic

Lymphoblastic Lymphoma IS-A Aggressive Non-Hodgkin Lymphoma (the red edge in

Figure 5.4B).
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Figure 5.4: (A) An NLS exhibiting the Intersection pattern. (B) The suggested
remediation of the NLS in (A): Splenic Lymphoblastic Lymphoma IS-A Aggressive
Non-Hodgkin Lymphoma.

5.1.2.4 Union-Intersection

An NLS is defined as exhibiting an union-intersection pattern [31], if the union

of the set of words for two concepts Ui and Uj in the upper bounds is equal to the

intersection of the set of words for two concepts Ls and Lt in the lower bounds, that is,

Ui ∪Uj = Ls ∩Lt. This pattern may suggest a missing intermediary concept between

the two concepts (Ui and Uj) in upper bounds and the two concepts (Ls and Lt) in the

lower bounds. For example, in Figure 5.5A, the union of U1 = {localized, carcinoma}

and U2 = {adult, liver, carcinoma} is equal to the intersection of L1 = {localized,

non-resectable, adult, liver, carcinoma} and L2 = {localized, resectable, adult, liver,

carcinoma}, that is, Ui ∪ Uj = Ls ∩ Lt = {localized, adult, liver, carcinoma}. This

indicates a potential missing concept Localized Adult Liver Carcinoma (green node

in Figure 5.5B), which represents the features that are common to Ls and Lt in the

lower bounds and inherited from Ui and Uj in the upper bounds.

It is worth noting that if Ui ∪Uj = Ls ∩Lt happens to be equal to Ls or Lt, then

the NLS falls into the union pattern as well; if it happens to be equal to Ui or Uj,

then the NLS falls into the intersection pattern as well. In such cases, the suggestion

for union pattern or intersection pattern is adopted, since no intermediary concept is

needed.
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Figure 5.5: (A) An NLS exhibiting the Union-Intersection pattern. (B) The sug-
gested remediation of the NLS in (A): adding a missing concept Localized Adult Liver
Carcinoma.

5.1.2.5 Inference-Contradiction

Given An NLS G, two types of concept pairs appearing in G are defined: related

and unrelated. A pair of concepts (Ci, Cj) in G is called related if Ci is a subclass or

descendant of Cj; otherwise, (Ci, Cj) is called unrelated. For instance, in Figure 5.6A,

the concept pair (Anaplastic Cell, Neoplastic Large Cell) is related; while the concept

pair (Anaplastic T-Lymphocyte, Neoplastic Large T-Lymphocyte) is unrelated.

Suppose R is the set of all related concept pairs in G, and R is the set of all

unrelated concept pairs in G. A set-difference-based inference operation is performed

to derive contradiction in the following way. For each related concept pair (Bd, Ba)

in R, if Bd − (Bd ∩ Ba) 6= ∅ and Ba − (Bd ∩ Ba) 6= ∅, an inferred term pair
(
Bd −

(Bd ∩ Ba), Ba − (Bd ∩ Ba)
)

can be derived. Similarly, for each unrelated concept

pair (Ni, Nj) in R, if Ni − (Ni ∩ Nj) 6= ∅ and Nj − (Ni ∩ Nj) 6= ∅, an inferred

term pair
(
Ni − (Ni ∩ Nj), Nj − (Ni ∩ Nj)

)
can be derived. If there exists some

common term pair that can be derived from both a related pair in R and an unrelated

pair in R, then, that NLS is said to be exhibiting inference-contradiction pattern.

For instance, in Figure 5.6A, the related concept pair (Anaplastic Cell, Neoplastic

Large Cell) derives a term pair (Anaplastic, Neoplastic Large); while the unrelated

concept pair (Anaplastic T-Lymphocyte, Neoplastic Large T-Lymphocyte) derives the
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same term pair (Anaplastic, Neoplastic Large). This pattern may suggest a potential

missing IS-A relation between the unrelated concept pair: Anaplastic T-Lymphocyte

IS-A Neoplastic Large T-Lymphocyte (the red edge in Figure 5.6B).

Figure 5.6: (A) An NLS exhibiting the Inference-Contradiction pattern. (B) The
suggested remediation of the NLS in (A): Anaplastic T-Lymphocyte IS-A Neoplastic
Large T-Lymphocyte.

Figure 5.7: (A) An NLS exhibiting the Union, Inference-Contradiction, and
Inference-Union patterns. (B) The suggested remediation of (A): Mucinous Bron-
chioloalveolar Carcinoma IS-A Lung Mucinous Adenocarcinoma.

5.1.2.6 Inference-Union

An NLS is defined as exhibiting an inference-union pattern, if the union of the

set of words for some concept Us in the upper bounds and the intersection of the
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set of words for two concepts Li and Lj in the lower bounds is equal to the set of

words for some concept Lk in the lower bounds, that is, Us ∪ (Li ∩ Lj) = Lk. This

may suggest a missing IS-A relation between other concepts in the lower bounds

and Lk. For instance, in Figure 5.7A, the intersection of L1 = {lung, mucinous,

adenocarcinoma} and L2 = {mucinous, bronchioloalveolar, carcinoma} in the lower

bounds is {mucinous}, whose union with U1 = {lung, adenocarcinoma} is equal to

L1 = {lung, mucinous, adenocarcinoma}. This indicates a potential missing IS-A

relation between the other concept L2 in the lower bounds and L1. That is, Mucinous

Bronchioloalveolar Carcinoma IS-A Lung Mucinous Adenocarcinoma (the red edge in

Figure 5.7B).

5.1.2.7 Non-lattice subgraphs with multiple patterns

NLSs exhibiting multiple patterns among the above-mentioned six patterns are

also investigated. For instance, the NLS in Figure 5.2A exhibits both containment and

inference-union patterns, and both patterns suggest a missing IS-A relation: Stage III

Nasopharyngeal Carcinoma AJCC v6 IS-A Stage III Nasopharyngeal Carcinoma. The

NLS in Figure 5.7A is following three patterns: union, inference-contradiction, and

inference-union, and all these patterns suggest a missing relation between Mucinous

Bronchioloalveolar Carcinoma and Lung Mucinous Adenocarcinoma.

5.1.3 Evaluation

For evaluation, small NLSs (size of 4, 5, and 6) are considered due to two reasons.

One is that small ones are relatively easy to visually inspect by domain experts. The

other reason is that small NLSs may be contained in larger ones, and fixing errors in

small ones will automatically eliminate the same errors propagated in the larger ones

(although there might be other errors in the larger ones).

To evaluate the performance of applying different patterns in small NLSs to au-
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tomatically detect real errors in NCIt and suggest corrections, 25 NLSs with a single

pattern, and 25 ones with multiple patterns, were randomly selected. These 50 sam-

ple NLSs as well as their suggested remediations were rendered in scalable vector

graphics and provided to experts for evaluation.
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Table 5.1: Number of NLSs exhibiting each of the 24 patterns.

Pattern No. of non-lattice No. of small non-lattice

subgraphs subgraphs (size of 4-6)

Containment 159 84

Union 7 3

Intersection 430 166

Union-Intersection 24 2

Inference-Contradiction 37 3

Inference-Union 21 12

Inference-Contradiction, Containment 3 1

Inference-Union, Containment 19 13

Inference-Contradiction, Inference-Union 12 9

Intersection, Containment 2 1

Intersection, Inference-Contradiction 33 9

Union, Inference-Union 1 0

Inference-Contradiction, Union-Intersection 1 0

Intersection, Inference-Union 3 0

Inference-Union, Inference-Contradiction, Containment 14 7

Intersection, Inference-Union, Containment 2 1

Union, Inference-Union, Inference-Contradiction 7 4

Union, Intersection, Inference-Union 13 12

Intersection, Inference-Contradiction, Containment 2 0

Union, Union-Intersection, Inference-Union, Containment 6 4

Union, Intersection, Inference-Union, Inference-Contradiction 5 3

Intersection, Inference-Contradiction, Containment, Union-Intersection 1 0

Intersection, Inference-Union, Inference-Contradiction, Containment 2 0

Union, Union-Intersection, Inference-Union, Inference-Contradiction, Containment 5 3

Total 809 337
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5.2 Results

5.2.1 Non-lattice subgraphs exhibiting structural and lexical patterns.

A total of 8,143 NLSs were identified in the NCIt (version 16.12d), among which 809

exhibits a single pattern or multiple patterns. Of these 809 NLSs, 678 were found

exhibiting a single lexical pattern, 131 exhibiting multiple patterns. Of the 809 NLSs,

337 were small ones (size of 4, 5, and 6), among which 270 exhibited a single pat-

tern, 67 exhibited multiple patterns. Table 5.1 shows the numbers of both NLSs and

small NLSs exhibiting different combinations of patterns (six single pattern, eighteen

multiple patterns). For instance, there were 159 non-lattice subgraphs exhibiting a

single containment pattern (the first row in Table 5.1), and 5 non-lattice subgraphs

exhibiting multiple patterns: union, union-intersection, inference-union, inference-

contradiction, and containment (the last row in Table 5.1). Figure ?? shows an

example of non-lattice subgraph with these five patterns. For the 678 non-lattice

subgraphs with a single pattern, the intersection pattern accounted for the largest

proportion (430 non-lattice subgraphs). For the 131 non-lattice subgraphs with mul-

tiple patterns, the intersection and inference-contradiction patterns accounted for the

largest proportion (33 non-lattice subgraphs).
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Table 5.2: Numbers of small NLSs evaluated by domain experts in terms of patterns, as well as numbers of correct suggestions
verified by experts.

Pattern No. of non-lattice No. of NLSs with Precision

subgraphs correct suggestions

Containment 7 6 85.7%

Union 1 1 100%

Intersection 14 2 14.3%

Union-Intersection 1 1 100%

Inference-Contradiction 1 1 100%

Inference-Union 1 0 0%

Inference-Contradiction, Containment 1 1 100%

Inference-Union, Containment 4 3 75%

Inference-Contradiction, Inference-Union 3 3 100%

Intersection, Containment 1 1 100%

Intersection, Inference-Contradiction 3 2 66.7%

Inference-Union, Inference-Contradiction, Containment 2 2 100%

Intersection, Inference-Union, Containment 1 0 0%

Union, Inference-Union, Inference-Contradiction 2 2 100%

Union, Intersection, Inference-Union 4 4 100%

Union, Union-Intersection, Inference-Union, Containment 2 2 100%

Union, Intersection, Inference-Union, Inference-Contradiction 1 1 100%

Union, Union-intersection, Inference-Union, Inference-Contradiction, Containment 1 1 100%

Total 50 33 66%
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5.2.2 Evaluation

Of the 50 sample NLSs evaluated by domain experts, 33 were verified to contain errors

and make correct suggestions (33/50 = 66%). Among these 33 correct cases, 32 were

missing hierarchical relations and one was a missing intermediary concept. Table

5.2 presents the numbers of evaluated NLSs exhibiting each combination of patterns,

and the numbers of correct suggestions confirmed by domain experts. Of the 25

evaluated NLSs with a single pattern, 11 were verified correct (11/25 = 44%). Of the

25 evaluated NLSs with multiple patterns, 22 were verified correct (22/25 = 88%).

This illustrates that NLSs with multiple patterns achieved a better performance than

those with a single pattern in terms of precision.

5.3 Discussion

In this Chapter, NLSs in NCIt are investigated based on six structural and lexical

patterns, with each pattern automatically suggesting a potential missing hierarchical

relation or missing concept. This pattern-based approach leveraging both structural

and lexical information is scalable and applicable to other terminologies for quality

assurance work, since it generally takes concepts (as well as concept labels) and

hierarchical relations of a terminology as the input, and generates erroneous NLSs

and potential corrections as the output.

5.3.1 Analysis of failure cases

For the single-pattern NLSs evaluated in Table 5.2, the suggestions made by the in-

tersection pattern turned out to have a low precision (2/14 = 14.3%). Figure 5.8A

shows An NLS exhibiting the intersection pattern: {gestational, choriocarcinoma} ∩

{ovarian, choriocarcinoma} = {choriocarcinoma}. However, its automatic sugges-

tion in Figure 5.8B is not correct. That is, Choriocarcinoma is NOT a subclass of
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Malignant Female Reproductive System Neoplasm, since Choriocarcinoma can be a

malignant female reproductive system neoplasm, but it can also arise in the male

testis. Another example of wrongly suggested case by the containment pattern is:

{osteoma} ⊂ {osteoid, osteoma}. However, despite the similarity in names, Osteoid

Osteoma and Osteoma are two completely different types of tumor, and Osteoid Os-

teoma is thus NOT a subclass of Osteoma.

Figure 5.8: (A) An NLS exhibiting an Intersection pattern. (B) The wrongly
suggested remediation of (A).

5.3.2 Comparison with previous work.

The hybrid approach to mining structural-lexical patterns in NLSs were initially pro-

posed in previous work [31] for quality assurance of SNOMED CT, where four patterns

were studied: containment, union, intersection, and union-intersection. In this work,

these four patterns were applied to NCIt, and two new patterns were further proposed

with implicit inference: inference-contradiction and inference-union. In addition, only

single-pattern NLSs were investigated in previous work [31], while in this work, in ad-

dition to NLSs with a single pattern, those with multiple patterns were also studied.

NLSs in NCIt with multiple patterns turned out to have a higher error detection and

correction precision than those with a single pattern (see Table 5.2). For SNOMED

CT [31], the overall precision of the four patterns (by single pattern) was 59%. For

the NCIt in this work, the overall precision of the six patterns (by both single pattern

69



and mixed patterns) is 66%.

5.4 Conclusions

In this chapter, a hybrid approach was investigated to identify potential errors in the

NCI Thesaurus and to automatically suggest remediations, by mining structural and

lexical patterns in non-lattice subgraphs. An evaluation based on a random sample

of inconsistencies performed by a domain expert revealed that this method achieves

a precision of 66% in identifying inconsistencies correctly. Therefore, this approach

is an effective way for error detection and correction in the NCI Thesaurus, and is

applicable to other biomedical terminologies for quality assurance purposes.
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CHAPTER 6. Leveraging Enriched Lexical Attributes of Concepts in

Non-Lattice Subgraphs to Audit is-a Relations

In Chapter 5, it was shown that analyzing lexical features in concept labels in NLSs

is a promising way to identify missing hierarchical relations and missing concepts

in NCIt. In this chapter a structural-lexical approach based on NLSs and derived

lexical attributes of concepts is discussed. This approach generates enriched lexical

attributes for each concept so that more general lexical features will be combined

with the concept’s own lexical attributes to identify missing hierarchical relations as

well as erroneous hierarchical relations in NCIt.

6.1 Methods

First, all the NLSs in the 19.01d release of NCIt are extracted [68]. Then the lexical

attributes of concepts in NLSs are constructed by two ways: (1) inheriting lexical

attributes from ancestors within NLSs; and (2) inheriting lexical attributes from all

the ancestors. Based on the lexical attributes, potential missing hierarchical relations

between concepts is identified. A random sample of missing relations is evaluated by

a domain expert to verify their correctness.

6.1.1 Constructing lexical attributes of concepts

Two lexical sources are leveraged to construct the set of lexical attributes for each

concept in an NLS. Firstly the lexical attributes of the concept itself is considered.

The second source relies on the lexical attributes of the concept’s ancestors. The

second source is obtained in two ways.

1. Inheriting lexical attributes from ancestors within the NLS:

In this way, the concept’s ancestors that reside within the NLS are considered

to enrich the lexical attributes of a particular concept in the NLS. Note that
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all the direct and indirect ancestors of a concept are considered. Therefore, the

transitive closure of the hierarchical relation within the NLS is computed to

obtain indirect (transitive) ancestors.

2. Inheriting lexical attributes from all the ancestors:

In this way, all the concept’s ancestors in the terminology are considered without

limiting to the NLS. To obtain indirect (transitive) ancestors, the transitive

closure of the hierarchical relation in the entire terminology is computed.

These two ways are compared later in the chapter in Section 6.2. Using the two

sources, a set of lexical attributes Lc for each concept c in an NLS is constructed as

follows.

• Load Lc with the set of words contained in the preferred name of c.

• For each ancestor a of c, add the set of words contained in the preferred name

of a to Lc. Note that a could be an ancestor within the NLS or an ancestor

external to the NLS depending on which way is used as discussed above.

Figure 6.1: An NLS of size 4 and its remediation. The suggested remediation here
is a missing hierarchical relation: “C21663: Fibroadenoma of the Mouse Mammary
Gland” IS-A “C21665: Adenoma of the Mouse Mammary Gland”. This can be
obtained by both ways: inheriting lexical attributes from ancestors within the NLS
and from all the ancestors.
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The construction process is demonstrated using the NLS shown in Figure 6.1, con-

sidering ancestors within the NLS. For each concept c in the NLS, a set of attributes is

constructed Lwc as follows. First, Lwc is initialized with the lexical attributes obtained

from c’s preferred name:

Lw1 = {mouse, adenoma}

Lw2 = {benign, neoplasms, of, the, mouse, mammary, gland}

Lw3 = {adenoma, of, the, mouse, mammary, gland}

Lw4 = {fibroadenoma, of, the, mouse, mammary, gland}

If the above sets are enriched with the lexical attributes of the ancestors within

the NLS, then the resulting attribute sets for each concept c (Lwc) are as follows

(newly added attributes are underlined):

Lw1 = {mouse, adenoma}

Lw2 = {benign, neoplasms, of, the, mouse, mammary, gland}

Lw3 = {adenoma, of, the, mouse, mammary, gland, benign, neoplasms}

Lw4 = {fibroadenoma, of, the, mouse, mammary, gland, adenoma, benign,

neoplasms}

If the lexical attributes of all the ancestors in the terminology is used, then the

resulting attribute sets for each concept c (Lac) are as follows:

La1 = {mouse, adenoma, murine, organism, benign, epithelial, diagnosis,

neoplasm, experimental, neoplasms, cell}

La2 = {benign, neoplasms, of, the, mouse, mammary, gland, integumentary,

organism, diagnosis, experimental, murine, disorder, system, neoplasm}
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La3 = {adenoma, of, the, mouse, mammary, gland, integumentary, organism,

diagnosis, epithelial, experimental, cell, murine, disorder, system, benign,

neoplasm, neoplasms}

La4 = {fibroadenoma, of, the, mouse, mammary, gland, integumentary,

organism, diagnosis, epithelial, experimental, cell, murine, disorder, system,

adenoma, benign, neoplasm, neoplasms}

6.1.2 Detecting missing relations

For a pair of concepts c1 and c2 in an NLS that are not connected by a hierarchical

relation, if c2’s lexical attributes Lc2 is a proper subset of the c1’s lexical attributes

Lc1 , then c1 IS-A c2 (i.e. c1 is the more specific concept) is suggested. After obtaining

all such potential missing relations in an NLS, the redundant relations that can be

inferred by others are removed. For example, if two relations a IS-A b and a IS-A c

are suggested for a particular NLS where b IS-A c already exists in the NLS, then a

IS-A c is considered as redundant, since it can be inferred transitively through a IS-A

b and b IS-A c. Therefore, a IS-A c is removed from the list of suggestions.

For instance, considering ancestors within NLS, for concepts 3 and 4 in Figure 6.1,

Lw3 = {adenoma, of, the, mouse, mammary, gland, benign, neoplasms} is a proper

subset of Lw4 = {fibroadenoma, of, the, mouse, mammary, gland, adenoma, benign,

neoplasms}. Also, considering all the ancestors, La3 = {adenoma, of, the, mouse,

mammary, gland, integumentary, organism, diagnosis, epithelial, experimental, cell,

murine, disorder, system, benign, neoplasm, neoplasms} is a proper subset of La4 =

{fibroadenoma, of, the, mouse, mammary, gland, integumentary, organism, diagnosis,

epithelial, experimental, cell, murine, disorder, system, adenoma, benign, neoplasm,

neoplasms}.

Hence, it is suggested that concept 4 should be more specific than 3, i.e. Fibroade-

noma of the Mouse Mammary Gland IS-A Adenoma of the Mouse Mammary Gland.
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As discussed above, this can be obtained by both considering ancestors within the

NLS and all the ancestors.

Figure 6.2: An NLS of size 6 and its remediation. The suggested remediation here
is a missing hierarchical relation: “C4887: Metastatic Malignant Neoplasm in the
Trachea” IS-A “C4571: Malignant Respiratory Tract Neoplasm”. This can only be
obtained by considering the ancestors within the NLS for enriching lexical attributes.

Figure 6.2 contains a size-7 NLS with a potential missing hierarchical relation:

“C4887: Metastatic Malignant Neoplasm in the Trachea” IS-A “C4571: Malignant

Respiratory Tract Neoplasm” which can be obtained only by considering ancestors

within the NLS for constructing lexical attributes.

Figure 6.3 contains a size-11 NLS with a potential missing hierarchical relation:

“C5270: Cerebellar Papillary Meningioma” IS-A “C3569: Malignant Cerebellar Neo-

plasm” which can be only obtained by considering all the ancestors for constructing

lexical attributes. This is because inheriting lexical attributes from ancestors within

the NLS yields Lw11 = {malignant, cerebellar, neoplasm, infratentorial, brain, in-

tracranial, central, nervous, system} which is not a proper subset of Lw10= {cerebellar,

papillary, meningioma, grade, iii, malignant, neoplasm}. However, when all the an-

cestors are considered, La11 = {malignant, cerebellar, neoplasm, disorder, central,

system, nervous, infratentorial, intracranial, brain} is a subset of La10 = {cerebellar,

papillary, meningioma, infratentorial, intracranial, brain, cell, malignant, disorder,

system, central, meningeal, nervous, grade, iii, neoplasm, meningothelial}.
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Figure 6.3: An NLS of size 11 and its remediation. The suggested remediation here
is a missing hierarchical relation: “C5270: Cerebellar Papillary Meningioma” IS-A
“C3569: Malignant Cerebellar Neoplasm”. This can only be obtained by considering
all ancestors for enriching lexical attributes.

6.1.3 Filtering

Three kinds of filtering are performed to avoid generating erroneous suggestions of

potential missing IS-A relations: stop word filtering, antonym filtering, and position

filtering.

6.1.3.1 Stop word filtering

Consider the concepts “C4013: Malignant Head and Neck Neoplasm” and “C3260:

Neck Neoplasm”. These two satisfy all the requirements to be candidates for a sug-

gestion of a missing hierarchical relations in the form of “C4013: Malignant Head and

Neck Neoplasm” IS-A “C3260: Neck Neoplasm”. However, upon close observation,

it can be seen that this suggestion is wrong since it gives the idea of Head Neoplasm

is a subtype of Neck Neoplasm. Existence of such stop words in concepts make them

more prone to generate erroneous missing hierarchical relation suggestions. There-
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fore, If a concept contains such stop words, no suggestions will be made. Moreover,

such concepts will be not considered to enrich lexical attributes of other concepts.

That is, if a concept with stop words exists as an ancestor of another concept, the

lexical attributes of the latter is not enriched with the former. The stop words used to

perform this filtering are: “and”, “and/or”, “or”, “no”, “not”, “without”, “due to”,

“secondary to”, “except”, “by”, “after”, “able”, “removal”, “replacement”, “NOS”,

where “NOS” represents “Not Otherwise Specified”.

6.1.3.2 Antonym filtering

If the constructed enriched lexical attributes of a particular concept contains an

antonym pair, such concepts are more prone to erroneous suggestions as well. For

example, consider the concepts “C60996: Malignant Epithelial Small Polygonal Cell”

with attributes {small, cytoplasm, with, large, abundant, polygonal, epithelial, neo-

plastic, cell, malignant} and “C36822: Malignant Epithelial Large Cell” with at-

tributes {large, epithelial, neoplastic, cell, malignant}. Even though attributes of

C60996 is a proper subset of C36822, suggesting a hierarchical relation between these

two is obviously not accurate since C60996 is discussing small cells and C36822 is

discussing large cells (note that “small” and “large” is an antonym pair). Therefore,

after obtaining the set of attributes, the set is checked to ensure that it does not

contain an antonym pair. The antonym pairs are obtained from WordNet [83].

6.1.3.3 Position filtering

For concepts with short names, they may appear as a part of other concepts’ names

in various positions (e.g., beginning, middle, or end). For concepts whose names are

not appearing at the end of other concepts’ names, it is likely to suggest incorrect

missing IS-A relations. For instance, concept “Fentanyl” appears at the beginning of

concept “Fentanyl Citrate Pectin-Based Nasal Spray”, and the subset inclusion may

wrongly suggest “Fentanyl Citrate Pectin-Based Nasal Spray” IS-A “C494:Fentanyl”.
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Therefore, such cases are filtered out by assigning a constraint such that the shorter

concept should always appear at the end of the the longer concept.

6.1.4 Evaluation

To evaluate the performance of this approach in accurately identifying missing hi-

erarchical relations, a sample of missing hierarchical relations is randomly selected

from the overall results for evaluation. These samples were provided to a domain

expert. Existing erroneous hierarchical relations in NCIt may help derive incorrect

suggestions for missing hierarchical relations. Therefore, for the potential missing re-

lations identified as incorrect by the domain expert, in a second round of evaluation,

the domain expert was provided with existing hierarchical relations that were used to

derive the incorrect ones. If the domain expert disagrees with the existing relation as

well, then it was marked as an incorrect existing hierarchical relation. For instance,

the NLS in Figure 6.4 denotes such a scenario. “C3779: Giant Cell Carcinoma”

should not be a subtype of “C3780: Large Cell Carcinoma”. The existence of this

relation derives the incorrect suggestion of “C4452: Lung Giant Cell Carcinoma”

IS-A “C4450: Lung Large Cell Carcinoma”.

Figure 6.4: An NLS of size 8 and its remediation. The suggested remediation
here is an incorrect hierarchical relation: C3779: Giant Cell Carcinoma should not
be a subtype under C3780: Large Cell Carcinoma. This can be obtained by both
considering ancestors within the NLS and all ancestors for enriching lexical attributes.
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6.2 Results

6.2.1 Summary results

A total of 9,512 NLSs were extracted from the 19.01d version of NCIt with sizes

ranging from 4 to 644. Out of these, this approach identified 547 NLSs with poten-

tial missing hierarchical relations. These NLSs contained a total of 1,022 potential

missing hierarchical relations (note that an NLS may contain more than one missing

hierarchical relation). It can be seen from Table 6.1 that 441 out of 547 NLSs can be

identified by the way of inheriting lexical attributes from ancestors within NLS and

suggests 925 potential missing IS-A relations; and 422 out of 547 can be identified

by the way of inheriting lexical attributes from all the ancestors and suggests 847

potential missing IS-A relations. The two ways identified 750 potential missing IS-A

relations in common.

Table 6.1: The number of NLSs and the number of potential missing hierarchical
relations suggested in those NLSs.

Type # of NLSs # of potential missing IS-A

Inheriting lexical attributes
from ancestors within NLS

441 925

Inheriting lexical attributes
from all the ancestors

422 847

6.2.2 Evaluation

The evaluation sample contained 100 potential missing relations observed in 83 NLSs

identified by this approach. The domain expert concluded 85 (85%) of missing hier-

archical relations are valid. Table 6.2 shows 15 examples of valid missing hierarchical

relations in the form of subconcept and superconcept, for instance, “C7155: Primary

Central Chondrosarcoma” IS-A “C3737: Mesenchymal Chondrosarcoma”. For the 15
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invalid ones, the domain expert further inspected the existing hierarchical relations

that were used to derive the invalid ones and verified that 8 of them were actually

incorrect. Table 6.3 lists five examples of incorrect existing relations. For example,

“C66775: Borderline Ovarian Mucinous Adenofibroma” should not be a subtype of

“C4934: Benign Female Reproductive System Neoplasm”, since the word “borderline”

indicates that it is on the borderline between benign and malignant, and may exhibit

malignant behavior.

The evaluation result are summarized in Table 6.4 according to the two ways

of inheriting lexical attributes. Among 100 NLSs, 90 were identified by the way of

inheriting lexical attributes from ancestors within NLS suggesting 76 correct missing

IS-A relations (a precision of 84.44%); and 82 were identified by the way of inheriting

lexical attributes from all the ancestors suggesting 73 correct missing IS-A relations

(a precision of 89.02%).

6.3 Discussion

This chapter presents a structural-lexical approach to audit NCIt based on enriched

lexical attributes of concepts in NLSs. The results indicate that most missing IS-A

relations can be commonly obtained by considering ancestors within the NLSs and

all the ancestors to enrich the lexical attributes. The former way identified more

potential missing IS-A relations than the the latter did, while the latter achieved a

better precision than the former did.

6.3.1 Analysis of failure cases

The primary focus of this work was to identify missing hierarchical relations in NCIt.

Upon observation of the false positives, it could be noted that a majority of them

(53%) occur due to the existing erroneous hierarchical relations in NCIt. For ex-

ample, in Figure 6.4, Giant Cell Carcinoma is categorized as a subtype of Large
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Table 6.2: Fifteen examples of valid missing hierarchical relations obtained by this
approach.

Subconcept Superconcept

C7155: Primary Central Chondrosar-
coma

C3737: Mesenchymal Chondrosarcoma

C5270: Cerebellar Papillary Menin-
gioma

C3569: Malignant Cerebellar Neoplasm

C6430: Thymic Carcinoid Tumor C3773: Neuroendocrine Carcinoma

C133894: Stage 0 Small Intestinal Ade-
nocarcinoma AJCC v8

C7657: Intestinal Precancerous Condi-
tion

C39863: Adenocarcinoma of Skene
Gland Origin

C6167: Urethral Adenocarcinoma

C15385: Excisional Biopsy C64979: Diagnostic Surgical Procedure

C61145: Adenocarcinoma Cell with
Eosinophilic Cytoplasm

C53644: Malignant Cell with
Eosinophilic Cytoplasm

C121571: Leiomyosarcoma of Deep Soft
Tissue

C9306: Soft Tissue Sarcoma

C6591: Peripheral Neuroblastoma C4961: Malignant Peripheral Nervous
System Neoplasm

C64000: Tubulostromal Adenoma of the
Rat Ovary

C134942: Rat Neoplasms

C3758: Hepatocellular Adenoma C36207: Digestive System Adenoma

C40116: Fallopian Tube Metaplastic
Papillary Tumor

C8429: Papillary Epithelial Neoplasm

C8961: Fundic Gland Polyp C4092: Benign Epithelial Neoplasm

C9374: Adult Brain Meningioma C7710: Adult Brain Neoplasm

C27404: Childhood Central Nervous
System Mature Teratoma

C5591: Benign Childhood Central Ner-
vous System Neoplasm

Cell Carcinoma. However, under the current (2015) WHO classification, Giant Cell

Carcinomas are classified as a separate category of tumor. Therefore, Giant Cell

Carcinoma should not be a subtype of Large Cell Carcinoma. Likewise in a sepa-
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Table 6.3: Five examples of incorrect existing hierarchical relations obtained by this
approach.

Subconcept Superconcept

C66775: Borderline Ovarian Mucinous
Adenofibroma

C4934: Benign Female Reproductive
System Neoplasm

C33149: Muscularis Mucosa C32209: Bladder Tissue

C4826: Central Nervous System Neu-
roblastoma

C3568: Malignant Brain Neoplasm

C38157: Metachronous Osteosarcoma C4968: Secondary Malignant Neoplasm

C39951: Testicular Fibroma C3709: Epithelial Neoplasm

Table 6.4: The precision of this approach in two ways to identify missing hierarchical
relations based on the evaluation performed by the domain expert.

Type # of suggested # of correct Precision

missing IS-As suggestions

Inheriting lexical attributes
from ancestors within NLS

90 76 84.44%

Inheriting lexical attributes
from all the ancestors

82 73 89.02%

rate case, this approach inaccurately identified “C39951: Testicular Fibroma” IS-A

“C4092: Benign Epithelial Neoplasm” as a missing relation. However, it could be

seen that this was obtained due to the erroneous existing relation “C39951: Testic-

ular Fibroma” IS-A “C3709: Epithelial Neoplasm”, since a Testicular Fibroma does

not arise from Testicular Epithelium, but from the Stroma.

Next an example of the false positive cases which are not due to the exist-

ing erroneous hierarchical relations in NCIt is discussed. This method suggests

“C115093: Recurrent Oropharyngeal Undifferentiated Carcinoma” as a subtype of

“C9268: Recurrent Malignant Nasopharyngeal Neoplasm” since it inherits lexical

attribute “malignant” from an ancestor “C150531: Recurrent Malignant Pharyn-

geal Neoplasm” and inherits lexical attribute “nasopharyngeal” from another ances-
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tor “C4107: Nasopharyngeal Type Undifferentiated Carcinoma”. However, “C4107:

Nasopharyngeal Type Undifferentiated Carcinoma” indicates that it looks like na-

sopharyngeal carcinoma under the microscope, but is not a nasopharyngeal carci-

noma. Oropharyngeal carcinoma and nasopharyngeal carcinoma behave differently

biologically, with nasopharyngeal carcinoma having a worse prognosis, and they are

caused by different types of virus (HPV in oropharyngeal carcinoma, and EBV in

nasopharyngeal carcinoma). Therefore, this suggestion is incorrect since this ap-

proach is incapable of capturing the subtle difference between “nasopharyngeal” and

“nasopharyngeal type”.

6.3.2 Comparison with previous work

In Chapter 5, six lexical patterns in NLSs were used to identify missing hierarchical

relations in NCIt. One of the patterns was “Containment”, where hierarchical re-

lations were suggested if the set of words of a concept is a subset of another. The

“Containment” pattern was restricted to lower and upper bounds of the NLS while in

this work there is no such restriction. Also, only the lexical attributes of the preferred

term were considered in Chapter 5, while in this Chapter, the lexical attributes of

the ancestor terms of the concept is also leveraged. Furthermore, three filtering steps

are performed to avoid obtaining incorrect suggestions.

The structural-lexical approach based on enriched lexical attributes was first in-

troduced by Cui et al. [32] to audit SNOMED CT. While this approach is similar to

theirs, a number of additional steps are performed to improve performance and cov-

erage. Firstly an entire NLS is not skipped if it contains stop words or antonym pairs

as was done previously [32]. Rather, a much fine-grained filtering is performed by

considering stop words and antonym pairs at the concept level, not at the NLS level.

Additionally, an issue mentioned in Cui et al.’s work regarding incorrect suggestions

when the set of words of a concept is a subset of another concept’s set of words is
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addressed in this Chapter. More importantly, this Chapter introduces another way to

enrich the lexical attributes of a concept: by considering all its ancestors (not only the

ancestors within the NLS). This way was actually found to have a higher precision.

Moreover, no restriction are set on the sizes of NLSs for evaluation in this work, while

the evaluation was limited to small (size 4,5, and 6) NLSs in the previous work.

6.4 Conclusion

In this Chapter, a structural-lexical auditing approach based on enriched lexical at-

tributes of concepts in non-lattice subgraphs was applied to suggest potential miss-

ing hierarchical relations in the National Cancer Institute thesaurus. This approach

achieved a precision of 84.44% by inheriting lexical attributes from ancestors within

NLSs, and a precision of 89.02% by inheriting lexical attributes from all the ancestors

in the entire terminology, indicating the effectiveness of this approach. This approach

could be generally applied to any biomedical terminology for quality assurance pur-

poses.
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CHAPTER 7. Identifying Similar Non-Lattice Subgraphs to Avoid

Redundant Analysis

Chapters 5 and 6 discuss two NLS-based methods that are used to uncover missing

is-a relations, erroneous existing is-a relations and missing concepts in terminolo-

gies. In both the chapters, a random sample of potential inconsistencies found by

the methods are forwarded to domain experts for evaluation. Such potential incon-

sistencies obtained by auditing algorithms need to be reviewed by domain experts

before incorporating their suggestions to the terminology. Domain experts will need

to spend significant amount of time reviewing them to see whether the inconsistencies

as well as the remediations are correct or not. Because of this, it is desirable to avoid

handing them over similar inconsistencies which would cause redundant analysis.

Therefore, this chapter focuses on identifying similar NLSs so that redundant

analysis could be avoided. This is performed in two aspects: structural similarity and

concept similarity. For structural similarity the graph structure of each NLS will be

checked to see whether they are similar. For concept similarity, the corresponding

concepts in each NLS are checked to see whether are similar.

For example, Figure 7.1 (above) shows two NLSs X and Y in the Gene Ontol-

ogy (GO). X and Y have identical graph structures and similar concept labels in

corresponding positions in the structures. Not only do they appear similar, from Fig-

ure 7.2 it can also be seen that their definitions are very similar as well. According

to Chapter 5, both of these two NLSs fall into the lexical pattern union (e.g., in NLS

X, the union of the set of words of X1 and X2 is equal to the set of words of X4,

which may indicate a missing subtype relation between X3 and X4). Thus, automatic

remediations can be suggested to fix them (see Figure 7.1, below). It can be seen

that the remediations for NLSs X and Y are similar: a missing is-a relation between

the two bottom concepts (bottom left is-a bottom right).
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Figure 7.1: Above: two similar NLSs X and Y with the same structure and similar concept labels. Below: similar
remediations for X and Y by adding a missing is-a relation (in red) between the bottom left concept and the bottom right
concept.
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Figure 7.2: Definitions of the concepts of NLSs X and Y in Figure 7.1.
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Figure 7.3 contains another two similar NLSs: A and B. Their definitions shown

in Figure 7.4 appear similar as well. It should be noted that a remediation has not

yet been found to fix either of these NLSs. Hence, when a remediation is found to

fix one of them, it is highly possible that the same remediation would work for the

other one as well. Therefore, identifying such similar NLSs may remove the need for

redundant analysis which would lessen a great deal of manual work.

Figure 7.3: Two similar NLSs with the same structure and similar concept labels.
Remediations for these NLSs are yet unknown.

88



Figure 7.4: Definitions of the concepts of NLSs A and B in Figure 7.3.
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7.1 Methods

The 02/12/2018 release of GO was used in this work to extract NLSs. For two NLSs

to be considered similar, this approach measures similarity in terms of two fronts:

structural and semantic. If two NLSs are isomorphic to each other, then they satisfy

the structural requirement. If the corresponding concepts between the two isomorphic

NLSs are semantically similar, then they satisfy the semantic requirement.

7.1.1 Non-lattice subgraph isomorphism

Two graphs are said to be isomorphic if: (1) they contain the same number of vertices

and edges, (2) the edge connectivity between the two graphs is identical. Formally,

two graphs G and H with vertices Vn = {1, 2, 3, ..., n} are isomorphic if there exists

a permutation p of Vn such that u, v is in the set of graph edges E(G) iff p(u), p(v)

is in the set of graph edges E(H) [84]. For example, Figure 7.3A and Figure 7.3B

are isomorphic since they have the same number of vertices (four concepts each) and

edges (for relations each) and also the concepts connected by relations in both the

graphs are the same (e.g. A3 to A1 relation in A is similar to B3 to B1 relation in

B). An algorithm called VF2 [85] was used here to compute isomorphic NLSs. VF2

is an algorithm for graph isomorphism and subgraph isomorphism which is capable

of dealing with large graphs.

There could be multiple vertex mappings between two isomorphic graphs. For

example, isomorphic NLSs in Figure 7.3A and Figure 7.3B have the following four

different mappings between their vertices.

• A1:B1, A2:B2, A3:B3, A4:B4

• A1:B2, A2:B1, A3:B3, A4:B4

• A1:B1, A2:B2, A3:B4, A4:B3

• A1:B2, A2:B1, A3:B4, A4:B3
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Therefore, for vertex A1 in Figure 7.3A, the corresponding vertex in Figure 7.3B can

be either B1 or B2. All the possible mappings between two isomorphic NLSs are

taken into account when calculating the semantic similarity.

7.1.2 Semantic similarity of non-lattice subgraphs

For two isomorphic NLSs to be semantically similar, their concepts must be semanti-

cally similar. For example, in Figure 7.3, concept A1 (intrinsic component of organelle

membrane) in NLS A and concept B1 (extrinsic component of organelle membrane)

in NLS B appear similar with a word difference: intrinsic versus extrinsic.

To measure the similarity between two concepts, Doc2Vec model is used. Doc2Vec

or paragraph vector is an unsupervised framework that learns continuous distributed

vector representations for pieces of texts [86]. This method is applicable for vari-

able length texts from phrases, sentences to even documents. The idea is similar to

Word2Vec model which can be used to compute continuous vector representations of

words [87].

First a Doc2Vec model is trained considering all the concept labels in GO as

inputs using the open source library Deeplearning4j [88]. Then a vector representation

could be obtained for any concept label as needed. When comparing two concept

labels, their vector representation are obtained from the Doc2Vec model and then

the cosine similarity between the two vectors is computed. Because it is trained using

all the concept labels in GO, the Doc2Vec model will allow to make more meaningful

comparisons rather than simply comparing concepts based on the words in their

labels.

To compute the similarity score between the two NLSs, the average of the cosine

similarity scores between all the corresponding concepts of the two NLSs is taken.

Since two NLSs may have multiple mappings, similarity scores are computed for all

possible mappings of the two NLSs and the maximum score is taken. For example,
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the cosine similarity scores for the mapping A1:B1, A2:B2, A3:B3, A4:B4 between the

two NLSs in Figure 7.3A and Figure 7.3B are as follows:

CosineSimilarity(A1, B1) = 0.9129, CosineSimilarity(A2, B2) = 0.8184,

CosineSimilarity(A3, B3) = 0.8369, CosineSimilarity(A4, B4) = 0.8384.

Averaging these cosine similarity scores yields a similarity score of 0.8517 for the

mapping. However, there are three more concept mappings for these two NLSs and

their similarity scores have to be computed as well to select the maximum one.

Table 7.1: Different concept mappings and similarity scores for NLSs in Figure 7.3A
and Figure 7.3B.

Concept mapping Similarity score

A1:B1, A2:B2, A3:B3, A4:B4 0.8517

A1:B2, A2:B1, A3:B3, A4:B4 0.6804

A1:B1, A2:B2, A3:B4, A4:B3 0.6514

A1:B2, A2:B1, A3:B4, A4:B3 0.8226

Table 7.1 presents similarity scores for the four mappings that the two NLSs

have. It can be seen that the mapping A1:B1, A2:B2, A3:B3, A4:B4 has the highest

similarity score 0.8517. Therefore, the similarity score of the two NLSs is set to this

maximum value and only this mapping with maximum score will be considered for

further analysis.

In summary, for a given input NLS, this method first identifies all the isomorphic

NLSs for the input NLS, and then iterates through them to find the similarity score

between each of them and the input NLS. Based on the observations on a sample set,

isomorphic NLSs with a similarity score greater than or equal to 0.85 is considered

to be similar to the input NLS in this work.
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7.2 Results

7.2.1 Summary results

A total of 24,517 NLSs were extracted from the 02/12/2018 release of GO. This

method was applied to obtain similar subgraphs for 2,368 NLSs belonging to 10

different structures shown in Figure 7.5. These 10 structures were the ones having

the highest number of NLSs. Table 7.2 presents the number of NLS for each structure

and the number of NLSs that have at least one similar NLS for each structure. For

example, structure (i) in Figure 7.5 is of size 4 and has 594 NLSs. 218 of those were

found to be having at least one similar NLS. Overall, 910 (38.43%) out of the 2,368

NLSs were found to be having at least one similar NLS. Figure 7.6 contains 8 similar

NLSs obtained for an input NLS and their similarity scores.
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Figure 7.5: Ten different structures of NLSs.
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Table 7.2: The number of NLSs in each structure in Figure 7.5 as well as the number
of NLSs having at least one similar NLS for each structure.

NLS structure Size Number of NLSs NLSs with at least
one similar NLS

(i) 4 594 218
(ii) 5 432 156
(iii) 6 120 46
(iv) 6 406 165
(v) 6 107 36
(vi) 5 227 99
(vii) 5 135 63
(viii) 8 103 55
(ix) 7 105 28
(x) 7 139 44
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Figure 7.6: Similar NLSs and similarity scores for an input NLS.
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Figure 7.7: Similar NLSs for an input NLS and the patterns observed between them.
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7.2.2 Patterns among similar non-lattice subgraphs

Some interesting patterns were noted among similar NLSs. Figure 7.7 contains two

similar NLSs obtained for an input NLS. Note that all the concepts between the

input NLS and the similar NLS C differs in one word: catabolic versus biosynthetic.

Likewise for the similar NLS D, the difference is catabolic versus metabolic. From 811

such pairs of similar NLSs, a list of high frequent patterns were obtained which can be

found in Table 7.3. For instance, the {positive ⇔ negative} pattern is observed in 136

similar NLS pairs, while {negative ⇔ -} is observed in 119. The latter is obtained by

concept pairs such as negative regulation of fatty acid transport and regulation of fatty

acid transport where all the words of one concept is contained in another concept.

Such frequently observed patterns may help understand common problems that occur

in different areas in a terminology.

Table 7.3: The patterns observed between similar NLSs and their frequencies.

Pattern Frequency
positive ⇔ negative 136
negative ⇔ - 119
positive ⇔ - 105
metabolic ⇔ biosynthetic 56
catabolic ⇔ biosynthetic 37
catabolic ⇔ metabolic 33
cellular ⇔ - 10
negative regulation of ⇔ - 8
positive regulation of ⇔ - 6

7.3 Discussion

In this chapter, an approach to identify similar NLSs to a given input NLS was

investigated. First the isomorphic NLSs to the input NLS are identified. Then, a

similarity score is computed to measure the degree of similarity between the input

NLS and an isomorphic NLS based on their concept labels. A threshold (0.85) for
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the similarity score is set for two NLSs to be considered similar.

7.3.1 Analysis of failure cases

The goal of this work was to identify similar NLSs with possibly similar inconsisten-

cies so that redundant analysis to fix them could be avoided. However, this approach

sometimes incorrectly identifies some NLSs to be similar to an input NLS. For in-

stance, Figure 7.8 contains two NLSs which are somewhat different from each other.

However, their similarity score was found to be 0.8609 which is above the threshold

that was set. Here, the problem may be due to two NLSs sharing two concepts effec-

tively increasing the similarity score. An obvious solution would be to increase the

threshold, but in such a scenario some similar NLSs may be missed. For example, in

Figure 7.3, the calculated similarity score is only 0.8517 even though by observation

they appear to be very similar to each other. If the threshold is increased, such cases

may go unidentified.

Figure 7.8: A somewhat dissimilar NLSs obtained for an input NLS.

7.4 Conclusion

In this chapter, a novel structural-semantic approach was investigated to obtain simi-

lar NLSs for a given input NLS. This approach first identified all the isomorphic NLSs
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for the input NLS. Then the similarity between each corresponding concept label in

the two NLSs was computed by converting them to vectors and calculating the cosine

similarity. A Doc2Vec model was trained by all the GO concept labels and it was

used to convert concept labels to vectors. The similarity scores obtained between

corresponding concepts in two NLSs were averaged to get the similarity score for the

two NLSs. NLSs which are isomorphic to the input NLS and having a similarity score

equal to or greater than 0.85 were considered to be similar to the input. Patterns

exhibited in similar NLSs were also observed. This approach is useful to avoid redun-

dant analysis of similar NLSs. This approach is general and may be applied to other

biomedical terminologies for identifying similar NLSs.
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CHAPTER 8. A Deep Learning Approach to Identify Missing is-a

Relations

In this chapter, a deep learning-based approach is introduced to identify missing hier-

archical (is-a) relations in two leading biomedical terminologies: NCIt and SNOMED

CT. The aim is to learn from the existing terminology to predict missing is-a relations.

Chapter 5 discusses an approach that leverage lexical patterns that are identified

between concepts in non-lattice subgraphs to suggest missing is-a relations. One such

pattern is the containment pattern where a missing is-a relation is suggested if the

set-of-words of one concept is a proper subset of the set-of-words of another concept.

However, in the Disease, Disorder or Finding sub-hierarchy of the 19.01d release

of NCIt, there are only 168 potential missing is-a relations exhibiting containment

pattern in NLSs. In contrast , there are 15,764 potential cases exhibiting containment

pattern outside NLSs. These are worth being investigated so that additional cases of

missing is-a relationships could be identified.

However, NLSs already point to erroneous substructures within a terminology

and this fact may help the containment pattern in obtaining a higher precision. Sim-

ilarly high precisions may not be guaranteed when containment is used outside NLSs.

This situation was observed when the containment pattern was applied outside NLSs.

For instance, Table 8.1 displays 5 examples of possible invalid missing is-a relations

suggested by the containment pattern when applied exhaustively without restrict-

ing to NLSs. As an example, Soft Tissue Sarcoma, Excluding Rhabdomyosarcoma

(C148457) should not be a subclass of Rhabdomyosarcoma (C3359). In Chapter 4, a

conditional rule called Sub-concept rule is introduced which is exhaustively applied

with some additional constraint to filter out such false positives. However, the sub-

concept rule only considered specific cases of containment and its precision was still

found to be 46.03%.
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So, it is evident that further steps are needed to obtain the valid missing is-a

relationships while filtering out false positives obtained by containment. Therefore,

in this work, a deep learning approach is investigated to automatically learn from

existing relations in terminologies to identify cases where the containment pattern

correctly makes is-a relation suggestions and cases where it produce erroneous sug-

gestions. Graph Neural Network (GNN) models are trained for NCIt and SNOMED

CT with existing is-a relations and non-relations that exhibit containment. Each

model is evaluated on evaluation sets generated by considering a newer release of

each terminology as a reference standard.

Table 8.1: Possible invalid missing is-a relations obtained by containment pattern
when it is exhaustively applied.

Potential Child Potential Parent

Soft Tissue Sarcoma, Excluding Rhab-
domyosarcoma (C148457)

Rhabdomyosarcoma (C3359)

Not Recovered or Not Resolved
(C49494)

Recovered or Resolved (C49498)

Grade 5 Bladder Infection Documented
Clinically or Microbiologically with
Grade 3 or 4 Neutrophils, CTCAE
(C59894)

Grade 3 Bladder Infection Documented
Clinically or Microbiologically with
Grade 3 or 4 Neutrophils, CTCAE
(C59422)

Grade 2 Lymphatic Infection Docu-
mented Clinically or Microbiologically
with Grade 3 or 4 Neutrophils, CTCAE
(C59281)

Grade 4 Lymphatic Infection Docu-
mented Clinically or Microbiologically
with Grade 3 or 4 Neutrophils, CTCAE
(C59753)

Adenocarcinoma in Adenomatous Polyp
(C7676)

Adenomatous Polyp (C3764)
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8.1 Methods

8.1.1 The architecture of the model

A GNN architecture is used in this work to address the challenges posed by irreg-

ularities in graph data such as each node having a variable number of neighbors,

and the inability of the traditional neural network architectures to cope with such

data [89, 90]. GNNs learn features for each node in a graph by performing neigh-

borhood aggregation: nodes aggregating information from their neighbors. Based on

neighborhood aggregation scheme, there exists different types of GNNs. A Graph

Convolutional Network (GCN), a type of GNNs was used in this work [91]. Architec-

ture of the model is given in Figure 8.1. There are two GCN layers followed by three

Fully-Connected (FC) layers in the model. Input to the first GCN layer is a graph

with feature embeddings for each of its nodes. Output of the second GCN layer is also

a graph with the same structure, but different node embeddings that are learnt by

neighborhood aggregation at both GCN layers. The Parametric Rectified Linear Unit

(PReLU) activation function is used in both the GNN layers. Then, the Hadamard

product of the feature embeddings of the pair of concepts which are trained to predict

the existence/non-existence of a relation is obtained from the output of the second

GNN layer and is passed on to the first FC layer. The first two FC layers also has

PReLU activation function. The final FC layer has Sigmoid activation function. The

first two FC layers also use Batch normalization and Dropouts (0.5). The output of

the sigmoid is a confidence of the concept pair having an is-a relation.
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Figure 8.1: The architecture of the GNN-based classifier.
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8.1.2 Sample generation

Since this is a supervised learning task, the models have to be trained using labeled

data. Training samples are generated from existing relations (concept-pairs that has

an is-a relation, considered as positive samples) and existing non-relations (concept-

pairs that does not have an is-a relation considered as negative samples) of 18.09d

release of NCIt Disease, Disorder or Finding sub-hierarchy and Clinical Finding sub-

hierarchy of SNOMED CT 2019 March US edition.

8.1.2.1 Sample generation for National Cancer Institute thesaurus

There exists 35,899 concepts in the Disease, Disorder or Finding Subhierarchy of

the 18.09d release of NCIt. Between those concepts, there are 18,607 is-a relations

and 16,211 non-relations exhibiting containment pattern.

To evaluate this model, an evaluation set was created leveraging the newer 18.10e

release of NCIt as a reference standard as follows. The Disease, Disorder or Finding

sub-hierarchy of the 18.10e release of NCIt had 18,793 existing is-a relations exhibit-

ing containment. Out of those, 52 were non-relations in the 18.09d release (i.e. valid

missing is-a relations exhibiting containment in the 18.09d release). These are consid-

ered as the positive samples in the evaluation set. The 18.10e release also has 15,831

non-relations exhibiting containment. Out of these, 468 (52*9) negative samples are

randomly picked taking into account that they are also existing as non-relations in

the 18.09d release. More negative samples are picked to simulate a real world case

where most of the samples eventually classified by the trained model would not be

valid missing is-a.

Training samples are constructed as follows. To construct the negative samples for

the training set, the samples in the evaluation set as well as non-relation in NLSs are

removed from the total 16,211 non-relations exhibiting containment. NLS samples

are removed as they are more likely to be missing is-a relations and hence, including

105



them as negative samples may affect the performance of the model. After removing

those, 15,499 negative training samples were obtained. The same number of positive

samples (existing is-a relations) were randomly picked from the total 18,607 existing

is-a relations so that the training set is balanced. Hence, the training set for NCIt is

of size 30,998.

8.1.2.2 Sample generation for SNOMED CT

The evaluation set and the training samples for SNOMED CT were created sim-

ilarly to NCIt. Between the 117,626 concepts in the 2019 March US edition of

SNOMED CT, there exists 23,978 is-a relations and 10,885 non-relations exhibiting

containment pattern. The SNOMED CT evaluation set was constructed using the

2019 September US edition as a reference standard. The newer release has introduced

162 new is-a relations exhibiting containment, which are considered as positive sam-

ples in the evaluation set. Out of the 10,820 non-relations exhibiting containment

in the newer release, 648 (162*4) are randomly picked as negative samples in the

evaluation set. Hence, the evaluation sample will be of size 810.

Training samples for SNOMED CT are obtained as follows. The samples in the

evaluation set as well as samples in NLSs are removed from a total 10,885 non-relations

exhibiting containment and 8,616 negative training samples are obtained. The same

number of positive samples are randomly picked from the total 23,978 existing is-a

relations to avoid data imbalance. Therefore, the size of the entire training set for

SNOMED CT is 17,232.

8.1.3 Enclosing subgraph generation for samples

For each concept in a sample, a context is defined with its ancestors reachable by two

hops (includes parents and grandparents). The concept-pair of the sample together

with their contexts generate a subgraph from the terminology. This enclosing sub-
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graph includes all the concepts in the contexts of the concept-pair in the sample and

the is-a relations between them.

Figure 8.2 denotes an enclosing subgraph obtained for the positive sample con-

cepts: Benign Cutaneous Fibroblastic Neoplasm (C6806) and Cutaneous Fibroblastic

Neoplasm (C4634) in NCIt. Similarly Figure 8.3 denotes a subgraph obtained for the

negative sample concepts: Recurrent Nasal Cavity and Paranasal Sinus Squamous

Cell Carcinoma (C115443) and Paranasal Sinus Squamous Cell Carcinoma (C8193)

in NCIt.

The enclosing subgraphs of negative samples are further processed as follows.

First, an is-a relation is artificially introduced between the concept-pair. This is

important so that the positive and negative samples will have the same link existence

information and the classifier will not optimize on this part of information to classify.

Next, any is-a relations in the subgraph that could be inferred with the introduction

of the above mentioned is-a relation is removed. Such redundant relations does not

exists in the terminology and hence, the classifier may optimize on this information to

separate negative samples from positives. Figure 8.4 denotes the resultant enclosing

subgraph after the two processing steps. An is-a relations is added between the

concepts-pair Recurrent Nasal Cavity and Paranasal Sinus Squamous Cell Carcinoma

(C115443) and Paranasal Sinus Squamous Cell Carcinoma (C8193). This makes the

is-a relation between concepts Recurrent Nasal Cavity and Paranasal Sinus Squamous

Cell Carcinoma (C115443) and Nasal Cavity and Paranasal Sinus Squamous Cell

Carcinoma (C68611) redundant, and hence, it is removed.

Similarly, Figure 8.5 denotes an enclosing subgraph obtained for the positive

sample concepts: Congenital dilatation of lobar intrahepatic bile duct with obstruc-

tion (97961000119108) and Congenital dilatation of lobar intrahepatic bile duct

(111331000) in SNOMED CT. Figure 8.6 denotes a subgraph obtained for the neg-

ative sample concepts: Double orifice of mitral valve (253402005) and Double mitral
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Figure 8.2: Subgraph formed by NCIt positive sample concepts: Benign Cuta-
neous Fibroblastic Neoplasm (C6806) and Cutaneous Fibroblastic Neoplasm (C4634)
together with the concepts in their context.

Figure 8.3: Subgraph formed by NCIt negative sample concepts: Recurrent Nasal
Cavity and Paranasal Sinus Squamous Cell Carcinoma (C115443) and Paranasal
Sinus Squamous Cell Carcinoma (C8193) together with the concepts in their context.

valve (78196008) in SNOMED CT. Figure 8.7 denotes the resultant enclosing sub-

graph after the artificial edge introduction. Notably, redundant edges does not exists

after artificial edge introduction in this enclosing subgraph.
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Figure 8.4: Subgraph in Figure 8.3 after artificial edge introduction and redundant
edge removal.

Figure 8.5: Subgraph formed by SNOMED CT positive sample concepts: Congen-
ital dilatation of lobar intrahepatic bile duct with obstruction (97961000119108) and
Congenital dilatation of lobar intrahepatic bile duct (111331000) together with the
concepts in their context.

8.1.4 Embeddings for concepts

As mentioned above, each node in the graph passed as the input to the first GCN

layer, should have a feature embedding to represent it. Each node in the input graph
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Figure 8.6: Subgraph formed by SNOMED CT negative sample concepts: Double
orifice of mitral valve (253402005) and Double mitral valve (78196008) together with
the concepts in their context.

Figure 8.7: Subgraph in Figure 8.6 after artificial edge introduction.
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is a terminology concept and the feature embeddings for it is obtained from a doc-

ument that is constructed considering the ancestors of the concept. The document

is constructed for NCIt as follows. First, the label of the concept is included in the

document. Next the ancestors of the concept is included describing the is-a relation

that has it with the concept. For example, consider the document constructed for the

NCIt concept Acquired Immunodeficiency Syndrome (C2851) in Table 8.2. First the

label itself has been inserted in the document. Since the concept Disease or Disorder

(C2991) is an ancestor of the concept, the sentence Acquired Immunodeficiency Syn-

drome IS-A Disease or Disorder is included. This is repeated for all the ancestors of

the concept.

Table 8.2: The description document for the NCIt concept Acquired Immunodefi-
ciency Syndrome (C2851).

Acquired Immunodeficiency Syndrome. Acquired Immunodeficiency Syndrome IS-
A Disease or Disorder. Acquired Immunodeficiency Syndrome IS-A Disease, Dis-
order or Finding. Acquired Immunodeficiency Syndrome IS-A Disorder by Site.
Acquired Immunodeficiency Syndrome IS-A Immune System Disorder. Acquired
Immunodeficiency Syndrome IS-A Immune System and Related Disorders. Ac-
quired Immunodeficiency Syndrome IS-A Immunodeficiency Syndrome. Acquired
Immunodeficiency Syndrome IS-A Syndrome. Acquired Immunodeficiency Syn-
drome IS-A T-Cell Immunodeficiency.

Document are constructed slightly differently for SNOMED CT. In addition to

the label of the concept and the ancestors of the concept, the attribute relations of the

concept and the attribute relations of the ancestors of the concept are also mentioned

in the document. For example, Table 8.3 shows a document created for the SNOMED

CT concept Accidental poisoning caused by acetylene (216830005). Since Acetylene

(79778003) is connected to to the concept by the attribute relation Causative agent

(246075003), the sentence Accidental poisoning caused by acetylene Causative agent

Acetylene is included in the document.

For each terminology, Such documents are created for all the concepts in the
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Table 8.3: The description document for the SNOMED CT concept Accidental
poisoning caused by acetylene (216830005).

Accidental poisoning caused by acetylene. Accidental poisoning caused by acety-
lene IS-A Accidental poisoning. Accidental poisoning caused by acetylene IS-A
Clinical finding. Accidental poisoning caused by acetylene IS-A Disease. Acciden-
tal poisoning caused by acetylene IS-A Poisoning. Accidental poisoning caused
by acetylene IS-A Poisoning caused by chemical substance. Accidental poisoning
caused by acetylene IS-A SNOMED CT Concept. Accidental poisoning caused by
acetylene Causative agent Acetylene. Accidental poisoning caused by acetylene
Causative agent Chemical.

sub-hierarchy. Then, a Doc2Vec model is trained to obtain embeddings for each

concept document. Doc2Vec is an unsupervised framework that learns fixed-length

feature representations from variable-length pieces of texts [86]. A window size of

5 was set, a vector size of 100 was used, and the model was trained for 100 epochs

using the distributed bag of words training algorithm of Doc2Vec. These pre-trained

embeddings will be assigned to the corresponding concept node of the graph before

feeding into the first GCN layer.

8.1.5 Training the model

The model was implemented in PyTorch using the graph neural network package

Deep Graph Library [92]. The experiments were performed using the computational

resources of the NIH HPC Biowulf cluster [93] as well the GPU cluster at School

of Biomedical Informatics, University of Texas Health Science Center at Houston.

Particularly, NVIDIA Tesla K20X, P100 and V100 GPUs were used for experiments.

Binary Cross Entropy was the loss function used and the optimizer used was Adam.

A learning rate of 0.0001 and a batch size of 16 was used.

A 10% of samples are randomly picked from the training set as a validation set

to evaluate the model at the end of each epoch. Early stopping was performed where

the model with the best performance on the validation set (in terms of validation

loss) was picked out of a maximum of 50 epochs.
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8.1.6 Applying the trained model to the evaluation set

As mentioned earlier, the evaluation set for each terminology was constructed by

leveraging a newer release of the terminology as a reference standard. The enclosing

subgraphs for these samples are generated in the evaluation set similar to how the

subgraphs for negative samples are generated. That is by including all concepts in

the contexts of the concept pair, introducing the artificial edge and then removing

redundant relations. Then, this subgraph is passed on to the trained model which

will classify the input to either a missing is-a relation or a non-relation.

8.2 Results

The performance of the model trained for NCIt is given in Table 8.4 and the model

trained for SNOMED CT is given in Table 8.5. The performance is compared with

the results obtained by the containment pattern if it is applied on the evaluation set.

For example for NCIt, since all these samples are exhibiting containment, recall of the

containment pattern would be 1. However, since only 52 out of 520 are valid missing

is-a relations, the precision is 0.1. Therefore, the F1 score of containment pattern is

0.18. In contrast, the GNN model has a precision of 0.5, a recall of 0.75, and a F1

score of 0.6.

Table 8.4: The performance of the NCIt GNN model compared with containment
pattern.

Containment pattern NCIt GNN model

Precision 0.1 0.5

Recall 1 0.75

F1 score 0.18 0.6

Tables 8.6, 8.7, 8.8 and 8.9 displays examples for true positives, true negatives,

false negatives, and false positives respectively obtained by the NCIt model. Similarly,
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Table 8.5: The performance of the SNOMED CT GNN model compared with con-
tainment pattern.

Containment pattern SNOMED CT GNN model

Precision 0.2 0.51

Recall 1 0.64

F1 score 0.33 0.56

Tables 8.10, 8.11, 8.12 and 8.13 shows examples for true positives, true negatives, false

negatives, and false positives respectively obtained by the SNOMED CT model.

Table 8.6: True positives: valid missing is-a relations identified by NCIt model.

Child Parent

Malignant Bone Neoplasm (C4016) Malignant Neoplasm (C9305)

Metastatic Extraskeletal Myxoid Chon-
drosarcoma (C8804)

Metastatic Chondrosarcoma (C8779)

Malignant Urinary System Neoplasm
(C9297)

Malignant Neoplasm (C9305)

Benign Central Nervous System
Mesenchymal, Non-Meningothelial
Neoplasm (C6757)

Benign Nervous System Neoplasm
(C4789)

Localized Malignant Gallbladder Neo-
plasm (C35676)

Localized Malignant Neoplasm (C8576)

8.3 Discussion

In this Chapter, a deep learning approach was investigated to identify valid missing

is-a relations exhibiting containment pattern. This is important because containment

pattern was observed to produce a lot of false positives when applied exhaustively

without restricting to NLSs.
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Table 8.7: True negatives: non-relations identified by NCIt model.

Child Parent

Grade 1 Phantom Pain, CTCAE
(C144330)

Grade 1 Pain, CTCAE (C144309)

Esophageal Squamous Cell Carcinoma
Location Category Lower (C133395)

Squamous Cell Carcinoma (C2929)

Early Relapse of Acute Lymphoblastic
Leukemia (C123401)

Acute Lymphoblastic Leukemia (C3167)

Stage II Splenic Marginal Zone Lym-
phoma (C5092)

Splenic Lymphoma (C48873)

Ovarian Dermoid Cyst with Sebaceous
Carcinoma (C40004)

Sebaceous Carcinoma (C40310)

Table 8.8: False negatives: Valid missing is-a relations not identified by NCIt model.

Child Parent

Benign Nasal Cavity Neoplasm (C4603) Benign Neoplasm (C3677)

Malignant Bone Marrow Neoplasm (C35501) Malignant Neoplasm (C9305)

Benign Paranasal Sinus Neoplasm (C8532) Benign Neoplasm (C3677)

Benign Oral Neoplasm (C7608) Benign Neoplasm (C3677)

Benign Ear Neoplasm (C8417) Benign Neoplasm (C3677)

Table 8.9: False positives: Non-relations not identified by the NCIt model.

Child Parent

Blast Phase Chronic Myelogenous
Leukemia, BCR-ABL1 Positive (C9110)

Chronic Phase Chronic Myelogenous
Leukemia, BCR-ABL1 Positive (C3175)

Thymus Neoplasm (C3412) Neoplasm (C3262)

Generalized Thyroid Hormone Resis-
tance (C131816)

Hormone Resistance (C147564)

Maximal Pericardial Effusion Width
(C139048)

Pericardial Effusion (C3319)

Rectal Carcinoma Metastatic in the
Liver (C136240)

Metastatic Liver Carcinoma (C154088)
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Table 8.10: True positives: valid missing is-a relations identified by SNOMED CT
model.

Child Parent

Echinococcosis of liver (26103000) Echinococcosis (74942003)

Chronic ulcerative colitis (444546002) Chronic colitis (54597004)

Subperiosteal abscess of orbit of left eye
(15697441000119106)

Subperiosteal abscess of orbit
(427692005)

Congenital stricture of anus with fistula
(204724007)

Congenital fistula of anus (253774006)

Disorder of nail due to another disorder
(16003151000119100)

Disorder of nail (17790008)

Table 8.11: True negatives: non-relations identified by SNOMED CT model.

Child Parent

Vascular ring with right aortic arch
and left patent ductus arteriosus
(450314002)

Vascular ring with left aortic arch
(253663007)

Open wound of hip AND thigh with
complication (73602001)

Open wound of hip with complication
(210665002)

Benign neoplasm of urinary bladder
neck (92467002)

Benign neoplasm of neck (92246000)

Traumatic AND/OR non-traumatic
brain injury (127294003)

Traumatic brain injury (127295002)

Deficiency of non-specific cholinesterase
(360619001)

Deficiency of cholinesterase (360607009)

8.3.1 Performance of the model

The performance of the models trained for NCIt and SNOMED CT with respect to

the respective evaluation sets clearly shows that the deep learning-based approach

outperforms the containment pattern. While the containment pattern obtains all the

missing is-a relations which are obtained by the model (recall of 1), it also generates a

lot of false positives (precision of 0.1 for NCIt and 0.2 for SNOMED CT). Comparing
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Table 8.12: False negatives: Valid missing is-a relations not identified by SNOMED
CT model.

Child Parent

Open fracture dislocation of sacroiliac
joint (208198004)

Open dislocation of sacroiliac joint
(22848002)

Congenital single renal cyst
(5941000119101)

Congenital renal cyst
(369071000119105)

Laceration of posterior muscle of thigh
(726240007)

Laceration of thigh (283385000)

Congenital anterior subcapsular polar
cataract (342911000119104)

Congenital anterior polar cataract
(253224008)

Posterior subcapsular polar
senile cataract of right eye
(1078801000119105)

Posterior subcapsular polar senile
cataract (5318001)

Table 8.13: False positives: Non-relations not identified by the SNOMED CT model.

Child Parent

Injury of fascia of adductor muscle of
thigh (726226006)

Injury of thigh (7523003)

Storage disease of the lung (77716004) Storage disease (34420000)

Secondary malignant neoplasm of lymph
nodes of face (94393006)

Secondary malignant neoplasm of face
(94293008)

Open bicondylar fracture of upper end
of right tibia (10836781000119101)

Open fracture of upper end of right tibia
(10817141000119101)

Proliferative diabetic retinopathy with
new vessels elsewhere than on disc
(232022001)

Proliferative diabetic retinopathy with
new vessels on disc (232021008)

the F1 scores it can be seen that the deep learning-based approach is a promising

method to identify valid missing is-a relations exhibiting containment pattern.

It should also be noted that it was assumed that all the samples in the evaluation

sets, obtained from the reference standard terminologies were correct missing is-a re-

lations and non-relations. However, the reference standards may also contain missing

is-a relations and erroneous is-a relations. Hence, some of the false positives and
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false negatives obtained by the models may be valid cases of missing is-a relations

and erroneous is-a relations respectively that exists in the reference standard termi-

nology. Therefore, the real performance of the model is expected to be higher than

the performance obtained from this evaluation set. Note that the real performance

could only be measured by a domain expert evaluation.

8.3.2 Distinction with related work

A thorough search of the relevant literature did not yield any articles that leverage

a deep-learning-based approach that focuses on identifying missing is-a relations in

biomedical terminologies. However, when the broader category of link-prediction in

graphs is considered, Zhang et al. have also investigated a GNN-based approach

that has focused on predicting missing links in graphs. Their approach is rather a

graph classification approach where the model is trained to classify a link based on

its surrounding nodes [94].

8.4 Conclusion

This chapter investigates a deep learning approach based on graph neural networks

to identify valid missing is-a relations among concept-pairs exhibiting containment

pattern in NCI thesaurus and SNOMED CT. A Graph Neural Network model was

trained for each terminology. To train the models, existing is-a relations exhibiting

containment were obtained as positive samples and existing non-relations exhibiting

containment as negative samples. Evaluation sets were generated considering a newer

release of each ontology as a reference standard. Applying the trained model on the

evaluation set, the NCIt model achieved a precision of 0.5, recall of 0.75, and a

F1 score of 0.6 and the SNOMED CT model achieved a precision of 0.51, recall of

0.64, and a F1 score of 0.56. Comparing the performance of the models with the

performance of the containment pattern, it can be seen that this approach based on
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GNNs is a promising method to identify valid missing is-a relations in biomedical

terminologies.
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CHAPTER 9. Conclusions and Future Directions

9.1 Conclusions

Biomedical terminologies serve as knowledge sources for many of biomedical appli-

cations. Inconsistencies existing in biomedical terminologies will propagate to these

downstream application and make them erroneous as well. Therefore, terminology

quality assurance plays an important part in terminological management. Manual

auditing has become nearly impossible due to the size and complexity of modern

biomedical terminologies and hence, automated methods have become highly prefer-

able. This dissertation introduces scalable and systematic methods that leverage the

structural and lexical features of terminologies to audit modern biomedical termi-

nologies. Proposed methods include inference-based methods (Chapters 3 and 4),

non-lattice-based methods (Chapters 5, 6, and 7) and deep learning-based methods

(Chapter 8).

Chapter 3 presents an inference-based method which leverage the inconsistencies

between hierarchically linked and unlinked partial matching concept-pairs to detect

potentially missing or erroneous is-a relations. The terminology concepts are repre-

sented using two models: the set-of-words model and the sequence-of-words model.

Partial matching concept-pairs derive corresponding term pairs. If both a linked and

an unlinked partial matching concept-pairs derive the same term-pair, then, this is

considered as a hierarchical inconsistency. The set-of-words model detected 5,359 po-

tential inconsistencies in the 03/28/2017 release of Gene Ontology and the sequence-

of-words model detected 4,959. An evaluation performed by domain experts showed

that the set-of-words model achieves a precision of 53.78% and the sequence-of-words

model achieves a precision of 57.55% in identifying inconsistencies correctly.

Chapter 4 introduces SSIF: Subsumption-based Sub-term Inference Framework.

SSIF represents each terminology concept in a sequence-based representation utilizing
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part of speech, sub-concepts and antonyms appearing in concept names. SSIF also

introduces a novel term-algebra that utilize the sequence-based representation of con-

cept names. Three conditional rules: monotonicity, intersection, and sub-concept are

introduced for backward subsumption inference. SSIF was applied to the 10/03/2018

release of GO and detected 1,938 potentially missing is-a relations. A domain experts’

evaluation showed that SSIF achieves a precision of 60.61%, 60.49%, and 46.03% for

the monotonicity, intersection, and sub-concept rules, respectively.

Chapter 5 presents a non-lattice-based method where six lexical patterns in non-

lattice subgraphs are mined. Each lexical pattern indicate a specific type of error in

and suggests a particular remediation (potentially missing is-a relations or missing

concepts). The six lexical patterns are: containment, union, intersection, union-

intersection, inference-contradiction, and inference-union. Applying this approach to

16.12d version of NCIt, 809 potential non-lattice subgraphs with these patterns were

detected. An evaluation performed by domain experts revealed that this approach

achieves a precision of 66% in identifying an inconsistency.

Chapter 6 discusses another non-lattice-based method where enriched lexical at-

tributes from ancestors are leveraged to identify is-a relation inconsistencies. Two

types of ancestors are investigated to inherit lexical attributes: ancestors within the

NLS, and all ancestors. If the lexical attributes of once concept is a subset of another,

a potential missing is-a relation is suggested between the two concepts. This approach

identifies a total of 1,022 potentially missing is-a relations in the 19.01d release of

NCIt. A domain expert evaluated a random sample of inconsistencies detected which

revealed that the method achieves a precision of 84.44% when the lexical attributes

are inherited from ancestors within the non-lattice subgraph and 89.02% when they

are inherited from all ancestors.

Similar non-lattice subgraphs may contain similar quality issues. Therefore, ex-

haustive examination of all of them would involve redundant work. Chapter 7 intro-
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duces a hybrid method to identify similar non-lattice subgraphs in a terminology. A

pair of non-lattice subgraphs has to be structurally and semantically similar to be

considered similar. For a given non-lattice subgraph, its structurally identical sub-

graphs are identified by using a graph isomorphism algorithm. A similarity score

is computed between a pair of structurally identical non-lattice subgraphs based on

semantic similarity between their concept names. This is done by converting each

concept name to a vector using the Doc2Vec document embedding model and then

computing the cosine similarity of between the vectors. For a pair of non-lattice sub-

graphs, if they are structurally identical and if their similarity score is above 0.85,

then they are considered to be similar. This method was applied to 10 different struc-

tures of non-lattice subgraphs in the 02/12/2018 release of GO and it was found that

38.43% of these subgraphs have at least one similar subgraph.

Chapter 8 discusses a deep learning-based method to facilitate the suggestion of

missing is-a relations in NCI thesaurus and SNOMED CT. The focus here is on

concept-pairs exhibiting containment pattern (from Chapter 5). Given a pair of con-

cepts exhibiting containment pattern, the model is trained to classify whether they

should have a is-a relation or not. Two models are trained for NCI thesaurus and

SNOMED CT. Positive training samples are existing is-a relations in the terminol-

ogy which exhibit containment pattern. Negative training samples are non-relation

(concept pairs not having an is-a relation) in the terminology exhibiting containment

pattern. For each sample, an enclosing subgraph with ancestors up to two levels is

obtained from the terminology. Such enclosing subgraphs are fed into a graph neu-

ral network model during training. An evaluation for each model is performed by

considering a newer version of each terminology as a reference standard. The model

trained on NCIt achieved a precision of 0.5, a recall of 0.75, and an F1 score of 0.6.

The model trained on SNOMED CT achieved a precision of 0.51, a recall of 0.64 and

an F1 score of 0.56.
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Since all the methods discussed in this dissertation leverage the hierarchical struc-

ture and the features of concept names, which are inherent and fundamental to

biomedical ontologies, they are generally applicable to audit other biomedical termi-

nologies, not only to the terminology to which a method was applied in the particular

chapter.

9.2 Future directions

9.2.1 Inference-based methods in non-lattice subgraphs

Although inference-based methods and non-lattice-based methods were investigated

individually in this dissertation, they were not compared with each other. Inference-

based methods could be applied in non-lattice subgraphs. Since, non-lattice sub-

graphs already point to erroneous substructures within a terminology, doing this will

hypothetically improve the precision of the method. However, such an approach may

also miss a significant number of potential inconsistencies which exists outside of

non-lattice subgraphs. Therefore, a thorough investigation is needed to confirm the

effectiveness of applying inference-based methods in non-lattice subgraphs.

9.2.2 Improvements to the current deep learning approach

In Chapter 8, the evaluation of each model was performed on an evaluation set con-

structed by considering a newer release of each terminology as a reference standard.

One of the drawbacks of this method is that the newer release of the terminology may

also contain missing is-a relations and erroneous is-a relations, which means the pre-

cision, recall, and F1 score obtained by this way are not real scores but retrospective

ones. Real precision, recall and F1 score are expected to be higher than these values.

Therefore, in the future, it is expected that a domain expert evaluation will be

performed on a random sample of potential missing is-a relations obtained. To obtain

all the potential missing is-a relations, the following approach will be undertaken.
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Since the potential missing is-a relations are also found in non-relations, the set of

non-relations will be divided into n sets. At one iteration of training, n− 1 sets will

be used for training and the trained model will be applied on the remaining set to

identify potential missing is-a relations. This will be repeated so that n models will

be trained to find all the potential missing is-a. The n will be picked by trial and

error. To minimize n, experiments should be performed to figure out the minimum

number of samples needed for training a model.

9.2.3 New deep learning approaches

In Chapter 8, the deep learning approach was limited in scope as it only considered

samples exhibiting containment pattern. An interesting future work is to explore

whether this approach could be applied generally without restricting to samples ex-

hibiting containment pattern. Such an approach would be of tremendous value, as

unlike other approaches which focuses on specific types of inconsistencies, this could

potentially be used to uncover many different types of inconsistencies learning from

existing relations.

In Chapter 8, the embedding for each concept was generated by documents con-

structed leveraging the ancestors of the concept. It would be worthwhile to explore

whether pre-trained embeddings from external sources such as PubMed could be uti-

lized for this task [95]. BioWordVec [96] and BioSentVec [97] are two such sources

that can be used.
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