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Increased expression of extracellular matrix (ECM) proteins in
circulating tumor cells (CTCs) suggests potential function of cancer
cell-produced ECM in initiation of cancer cell colonization. Here, we
showed that collagen and heat shock protein 47 (Hsp47), a chaperone
facilitating collagen secretion and deposition, were highly expressed
during the epithelial-mesenchymal transition (EMT) and in CTCs.
Hsp47 expression induced mesenchymal phenotypes in mammary
epithelial cells (MECs), enhanced platelet recruitment, and promoted
lung retention and colonization of cancer cells. Platelet depletion
in vivo abolished Hsp47-induced cancer cell retention in the lung,
suggesting that Hsp47 promotes cancer cell colonization by enhanc-
ing cancer cell–platelet interaction. Using rescue experiments and
functional blocking antibodies, we identified type I collagen as the
key mediator of Hsp47-induced cancer cell–platelet interaction. We
also found that Hsp47-dependent collagen deposition and platelet
recruitment facilitated cancer cell clustering and extravasation
in vitro. By analyzing DNA/RNA sequencing data generated from
human breast cancer tissues, we showed that gene amplification
and increased expression of Hsp47 were associated with cancer
metastasis. These results suggest that targeting the Hsp47/collagen
axis is a promising strategy to block cancer cell–platelet interaction
and cancer colonization in secondary organs.

extracellular matrix | cancer metastasis | epithelial-mesenchymal
transition | breast cancer | circulating tumor cell

Metastasis is the cause of 90% of cancer-related deaths in
breast cancer patients (1). Therefore, understanding how

cancer cells spread and colonize distant organs is crucial for
identifying novel strategies to halt cancer progression and im-
prove cancer treatment. Cancer metastasis is a multistep process
involved in detachment from the primary tumor, survival in cir-
culation, colonization, and formation of macrometastases in
secondary organs (2). Once cancer cells enter the circulation
system, they encounter a variety of environmental stressors, such
as detachment from the extracellular matrix (ECM) substrate,
shear force, oxidative stress, and attack from immune cells (3, 4).
Only a small number of cancer cells can survive in circulation
and establish metastasis lesions (5, 6). How circulating tumor
cells (CTCs) overcome environmental stress and initiate this
colonization is not clearly understood.
The epithelial-mesenchymal transition (EMT) is an important

cellular event that contributes to cancer metastasis (7, 8). The
EMT process, characterized by the loss of epithelial characteristics
and acquisition of mesenchymal phenotypes, is induced by a
number of cytokine and transcription factors, including trans-
forming growth factor (TGF)-β, Twist, Snail, and Slug, during
tumor progression (9). The EMT enhances cancer cell migration
and invasion and also promotes cancer cell colonization at distant
organs (9, 10). Single-cell sequencing data has demonstrated that
CTCs exhibit increased expression of EMT-related genes (11, 12).
It has been proposed that activation of the EMT program
enhances cancer cell survival in circulation and facilitates cancer

cell recolonization at the distal sites; however, the exact function
of mesenchymal phenotypes in CTCs remains to be determined.
ECM is a determinant in the tumor microenvironment that

controls cancer development and progression (13, 14). Stromal
cells, such as cancer associate fibroblasts (CAFs), are considered
the major source of ECM in tumor tissue; interestingly, cancer
cells also deposit a significant quantity of ECM proteins (15–20).
Cancer cell-produced ECM molecules, such as tenascin-C, are
the important components of metastatic niches and facilitate
cancer cell colonization during metastasis (15, 18, 19). We re-
cently identified heat shock protein 47 (Hsp47) as a hub of the
ECM transcription network (20, 21). Binding of Hsp47 to col-
lagen facilitates collagen secretion and deposition (22). The
Hsp47 gene locates at 11q13, a region often amplified in cancer
(23). In addition, increased Hsp47 expression is associated with
advanced cancer stage, shortened recurrence-free survival, and
metastasis (20, 24). This evidence suggests that Hsp47 may
contribute to cancer progression.
In this study, we show that expression of Hsp47 and collagen

are induced during the EMT. Hsp47 expression enhances cancer
cell–platelet interaction by inducing collagen deposition in breast
cancer cells and subsequently promotes cancer cell clustering
and colonization at distant sites. These results reveal the molec-
ular mechanism by which the EMT enhances cancer cell–platelet
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Cancer cell–platelet interaction is crucial for cancer metastasis;
however, how this interaction is regulated remains largely
unknown. We have identified Hsp47 as an EMT inducer and
showed that Hsp47 and its dependent collagen secretion en-
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induced cancer cell–platelet interaction enhanced cancer cell
clustering, which is crucial for cancer cell colonization at distant
sites. We also found that Hsp47 gene amplification and ex-
pression were associated with breast cancer metastasis. These
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mesenchymal phenotypes in cancer cells contribute to breast
cancer metastasis.
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interaction, and identifies a previously unreported function of the
Hsp47/collagen axis in breast cancer metastasis.

Results
Hsp47 Expression Promotes the EMT and Cancer Cell Stemness. ECM
remodeling is necessary for cancer development and progression
(13, 14). We previously identified an ECM transcriptional net-
work in human breast cancer tissues, the expression of which is
induced during cancer development (20). Hsp47, one hub of the
ECM network, promotes tumor invasion and collagen deposition
in the xenograft model (20). The EMT is accompanied by ECM
remodeling and cell invasion; therefore, we asked whether expres-
sion of Hsp47 and ECM network genes are associated with the
EMT process. By analyzing gene expression profiles generated from
mammary epithelial cells (MECs) that had undergone the EMT
(Twist- or Snail-induced), we found that ECM network genes, such
as COL1A1, COL1A2, and COL4A1, were induced during the
EMT process (Fig. 1A). Transcription and protein expression of
Hsp47 were also significantly increased in Twist- or Snail-induced
EMT cells (Fig. 1 B–D and SI Appendix, Fig. S1 A–C).
To determine whether Hsp47 expression is functionally im-

portant for the EMT process, we isolated primary MECs from
MMTV-Cre:Hsp47+/lox and MMTV-Cre:Hsp47lox/lox mice and
cultured them on plastic. We found that Hsp47-positive MECs
acquired mesenchymal phenotypes after 4 to 5 d. Interestingly,
Hsp47−/− MECs maintained their epithelial phenotypes and
E-cadherin expression much longer than Hsp47-positive cells (Fig.
1E). Western blot analysis data further confirmed that compared
with Hsp47-positive cells, Hsp47−/− epithelial cells had higher ex-
pression levels of the epithelial cell marker E-cadherin and lower
expression levels of mesenchymal markers such as N-cadherin and
vimentin (Fig. 1F). Silence of Hsp47 in HMLE cells also inhibited
TGF-β–induced EMT (SI Appendix, Fig. S1D and E). Interestingly,
the addition of exogenous type I collagen only partially rescued
EMT phenotypes in Hsp47-silenced cells (SI Appendix, Fig. S1 D
and E), suggesting that other Hsp47 substrates also contribute to
this process. In the gain-of function experiments, introducing ex-
ogenous Hsp47 in MCF10A and HMLE cells increased protein
levels of N-cadherin, vimentin, and Snail and reduced expression of
E-cadherin (Fig. 1G and SI Appendix, Fig. S1F). Hsp47 expression
in MCF10A cells also enhanced EMT phenotypes, such as cell
invasion and migration (SI Appendix, Fig. S1 G and H).
Importantly, by analyzing gene expression profiles in The Cancer

Genome Atlas (TCGA) human breast cancer datasets, we found
that mRNA levels of Hsp47 (SERPINH1) significantly correlated
with the levels of EMT regulators and EMT markers, including
TWIST1, SNAI1, FN1, and CDH2 (Fig. 1 H–J and SI Appendix,
Fig. S1I). Therefore, Hsp47 expression may contribute to activa-
tion of the EMT program during breast cancer progression.
Tumor-initiating cells (TICs) are cancer cells with stem cell

characteristics that drive cancer development and metastasis. The
EMT is a cellular event that enhances cancer cell stemness (7, 8).
By comparing gene expression profiles generated from a TIC-
enriched tumorsphere and matched primary tumor cells (25), we
found that transcription of the Hsp47 gene and many collagen
genes was induced in tumorspheres (Fig. 1 K and L). Results from
the tumorsphere formation assay showed that silencing Hsp47
significantly reduced tumorsphere formation efficiency in triple-
negative breast cancer (TNBC) cells (Fig. 1M). Knockdown of
Hsp47 also inhibited colony formation of MDA-MB-231 cells (SI
Appendix, Fig. S1 J–M). These results suggest that Hsp47 expres-
sion enhances cancer cell stemness.

Hsp47 Expression Enhances Cancer Cell Colonization and Metastasis.
Activation of the EMT program has been detected in CTCs (11).
By analyzing mRNA levels of ECM network genes and Hsp47 in
CTCs and primary tumor cells (26), we found that expression
levels of Hsp47 and collagen genes, such as COL1A1, COL1A2,

and COL4A1, were up-regulated in CTCs (Fig. 2 A and B). We
asked whether Hsp47 expression contributes to cancer cell coloni-
zation and metastasis. Control and Hsp47-silenced MDA-MB-231/
luc cells (SI Appendix, Fig. S2 A and B) were injected via tail vein
into female mice with severe combined immunodeficiency (SCID).
In vivo imaging system (IVIS) analysis and hematoxylin and eosin
(H&E) staining results showed that Hsp47 expression was required
for breast cancer cell colonization in the lung and other organs (Fig.
2 C–E and SI Appendix, Fig. S2C). Using the 4T1 orthotopic
mammary tumor model, we confirmed that silencing Hsp47 sig-
nificantly suppressed breast cancer metastasis (Fig. 2 F and G and
SI Appendix, Fig. S2D).
To understand how the EMT and Hsp47 expression contribute

to CTC colonization, we injected control, Twist-expressing, and
Hsp47-expressing MCF10A/green fluorescent (GFP) cells in tail
veins and analyzed retention of the GFP-positive cells in lungs at
4 h after injection. We found that Twist-induced EMT signifi-
cantly enhanced MCF10A cell adhesion in lungs (Fig. 2 H and I).
Expression of Hsp47 also promoted adhesion of MCF10A cells in
lungs shortly after tail vein injection (Fig. 2 J and K). In contrast,
silence of Hsp47 in 4T1 cells (4 h after tail vein injection) or
MDA-MB-231 cells (4 h and 24 h after tail vein injection) sig-
nificantly reduced lung retention of cancer cells (Fig. 2 L and M).
These results suggest that Hsp47-induced mesenchymal pheno-
types are crucial for initiation of CTC colonization.

Cancer Cell–Platelet Interaction Is Required for Hsp47-Dependent
Lung Colonization. Cancer cells in circulation directly interact
with platelets, red blood cells, and immune cells. Accumulated ev-
idence suggests that platelet–cancer cell interaction plays an im-
portant role in cancer metastasis (27). We wondered whether
platelets are involved in Hsp47-induced cancer cell lung coloniza-
tion. Lung tissue sections from the short-term tail vein injection
experiments were stained with antibody against CD41, a cell surface
marker for platelets. An increased accumulation of platelets was
detected around Hsp47-high MECs (Hsp47-expressing MCF10A
cells or MDA-MB-231 control cells) compared with Hsp47-low
MECs (control MCF10A cells or shHsp47 MDA-MB-231 cells)
(Fig. 3 A and B). To perform the in vitro cancer cell–platelet binding
assay, we isolated platelets from mouse blood and showed that
isolated platelets were resting (SI Appendix, Fig. S3A). We
found that Twist-induced EMT enhanced platelet recruitment
in MCF10A cells (Fig. 3C and SI Appendix, Fig. S3B). HMLE
clones with activated the EMT program and high Hsp47 ex-
pression were also more active in recruiting platelets compared
with control clones (SI Appendix, Fig. S3 C–E). Importantly,
introducing exogenous Hsp47 in MCF10A induced platelet
recruitment (Fig. 3C and SI Appendix, Fig. S3B), while silencing
Hsp47 in MDA-MB-231 cells significantly inhibited cancer
cell–platelet interaction (Fig. 3 D and E).
To further determine the function of platelet recruitment in

Hsp47-induced cancer cell colonization, we depleted platelet in
mice using anti-GPIb antibody (SI Appendix, Fig. S3F) (28).
Platelet depletion almost completely abolished Hsp47-induced
lung retention of MCF10A cells (Fig. 3 F and G). Although
MCF10A cells are nonmalignant and cannot form metastases in
lungs, these results show that Hsp47-induced platelet recruitment is
crucial for MEC adhesion or retention in the lung, the first step in
cancer cell lung colonization. In addition, silencing Hsp47 failed to
reduce initiation of colonization of MDA-MB-231 cells in platelet-
depleted mice (Fig. 3 H and I). Therefore, EMT-associated Hsp47
expression induces cancer cell–platelet interaction, which is crucial
for the initiation of cancer cell colonization.

Type I Collagen Mediates Hsp47-Dependent Platelet Recruitment and
Cancer Cell Colonization. Next, we explored the molecular mech-
anism by which Hsp47 induces platelet recruitment and lung
colonization. Type I and IV collagens are the most abundant fibrillar
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Fig. 1. Hsp47 expression induces the EMT and enhances cancer cell stemness. (A and B) Heatmap and box plot showing ECM network gene levels in control
cells (MCF10 and HMLE) and cells undergoing the EMT (MCF10A-Snail, HMLE-Twist, and HMLE-Snail). The data were log2-transformed andmean-centered. Control, n=
6; EMT, n = 9; rank-sum test. (C) Real-time PCR data showing SerpinH1 levels in HMLE control cells and EMT cells (HMLE-Twist and HMLE-Snail). Results are presented as
mean ± SEM. n = 4. **P < 0.01, independent Student’s t test. (D) Western blot analyses of Hsp47, FN, and E-Cad expression in control, Twist-expressing, and Snail-
expressing HMLE cells. (E) Phase images and IF staining images (E-cadherin, green; nuclei, blue) of primary MECs fromMMTV-Cre:Hsp47+/lox and MMTV-Cre:Hsp47lox/lox

mice cultured in 2D for 5 d. (Scale bar: 25 μm.) (F) Western blot analyses of Hsp47 and EMTmarkers (N-cadherin, E-cadherin, vimentin) expression in primary MECs from
MMTV-Cre:Hsp47+/lox and MMTV-Cre:Hsp47lox/lox mice cultured for 5 d. (G) Western blot analyses of expression of Hsp47 and EMT markers (N-cadherin, E-cadherin,
vimentin, Snail) in Hsp47-expressing MCF10A cells/HMLE cells. (H–J) Coexpression of Hsp47 (SERPINH1) with EMT regulators TWIST1, SNAI1, and EMT marker CDH2
assessed by Spearman correlation analysis in human breast cancer tissue samples (TCGA, provisional; n = 960). (K and L) Heatmap and boxplot showing ECM network
gene expression in tumorspheres and matched primary tumors (GSE7515). The gene expression values were derived from a published microarray dataset. The data
were log2-transformed andmean-centered. Primary tumor, n = 11; tumorsphere, n = 15. (M) Quantification of tumorsphere formation efficiency in control and Hsp47-
silenced Hs578T cells and MDA-MB-231 cells. n = 3. Results are presented as mean ± SEM; *P < 0.05; **P < 0.01, independent Student’s t test.
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Fig. 2. Hsp47 is required for cancer cell lung colonization and metastasis. (A) Heatmap showing expression of ECM network genes in primary cancer cells and
CTCs (GSE51372). (B) Boxplot showing Hsp47 mRNA levels in primary cancer cells and CTCs. CTCs, n = 75; primary tumor, n = 20. (C–E) IVIS, H&E images, and
quantification showing colonization of MDA-MB-231 cells in lungs at 4 wk after injection. Mice were injected with 1 × 106 control and Hsp47-silenced MDA-
MB-231/luc cells from tail vein. (Scale bar: 100 μm.) n = 5; independent Student’s t test. (F and G) Lung metastasis lesions (2 wk after primary tumor removal) of
control and Hsp47-silenced 4T1 cells were assessed by H&E staining in the orthotopic mammary tumor model. (Scale bar: 100 μm.) (H and I) Fluorescence
microscopy images and quantification of control and Twist-expressing MCF10A/GFP cell adhesion in the lung. Lungs were collected at 4 h after tail vein
injection. (Scale bar: 40 μm). n = 3; independent Student’s t test. (J and K) Images and quantification of control and Hsp47-expressing MCF10A/GFP cell
retention in the lung. (Scale bar: 40 μm.) n = 3; independent Student’s t test. (L and M) Images and quantification of control and Hsp47-silenced 4T1/GFP cell
or MDA-MB-231/GFP cell colonization in the lung. The lungs were collected at 4 h or 24 h after tail vein injection. (Scale bar: 40 μm.) n = 3 in L, n = 5 in M.
Results are presented as mean ± SEM. **P < 0.01; *P < 0.05, independent Student’s t test.
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and basement membrane collagens, both of which were induced
during the EMT and highly expressed in CTCs (Figs. 1A and 2A).
Immunofluorescence images showed increased deposition of type I
and IV collagen on the surface of Hsp47-expressing MCF10A
spheroids (Fig. 4A), while silencing Hsp47 reduced type I and IV
collagen deposition in MDA-MB-231 cells (Fig. 4B). Soluble colla-
gen I and collagen IV were also increased in conditioned medium
from Hsp47-expressing MCF10A cells compared with that from
control cells (Fig. 4C).

To determine whether these two types of collagen mediate
Hsp47 function in regulating platelet recruitment, we performed a
series of in vitro and in vivo rescue experiments. Hsp47-silenced
MDA231 cells were coated with type I or type IV collagen, then
incubated with purified platelets. Interestingly, only type I collagen
rescued cancer cell–platelet interaction in Hsp47-silenced cells
(Fig. 4 D and E and SI Appendix, Fig. S4). Therefore, fibrillar
collagen produced by cancer cells may be more potent in inducing
platelet recruitment. Integrin α2β1 and glycoprotein VI (GPVI)
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Fig. 3. Hsp47 enhances cancer cell–platelet interaction. (A) IF images (platelets, red; MCF10A, green; nuclei, blue) and quantification data showing the
recruitment of platelets by control and Hsp47-expressing MCF10A/GFP cells in lung at 4 h after tail vein injection. (Scale bar: 40 μm.) n = 3; independent
Student’s t test. (B) IF images (platelets, red; MDA-MB-231, green; nuclei, blue) and quantification data showing the recruitment of platelets by control and
Hsp47-silenced MDA-MB-231/GFP cells in the lung at 4 h after tail vein injection. (Scale bar: 40 μm.) n = 3; independent Student’s t test. (C) FACS analysis of
mouse platelet binding in control, MCF10A-Twist, and Hsp47-expressing MCF10A cells; n = 5; independent Student’s t test. (D) FACS analysis of mouse platelet
binding in control and shHsp47 MDA-MB-231 cells; n = 4; independent Student’s t test. (E) IF images (platelets, green; DAPI, blue) and quantification data of
mouse platelet binding in control and shHsp47 MDA-MB-231 cells cultured on plastic. (Scale bar: 25 μm.) n = 3; independent Student’s t test. (F and G) IF
images (MECs, green; DAPI, blue) and quantification of control and Hsp47-expressing MCF10A/GFP cell adhesion in the lung from mice pretreated with IgG/
anti-GP1b antibody. Mice were injected with 1 × 106 MCF10A/GFP cells in the tail vein, and lungs were collected at 4 h after injection. (Scale bar: 80 μm.) n = 4;
independent Student’s t test. (H and I) IF images (MECs, green; DAPI, blue) and quantification of control and shHsp47 MDA-MB-231 cell retention in the lung.
Mice were pretreated with IgG/anti-GP1b antibody 4 h before MDA-MB-231 cell injection. Mice were injected with 1 × 106 MDA-MB-231/GFP cells in the tail
vein and lungs were collected at 4 h after injection. (Scale bar: 80 μm.) n = 3. Results are presented as mean ± SEM. **P < 0.01; *P < 0.05; n.s., not significant,
independent Student’s t test.
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have been identified as collagen receptors in platelets (29, 30), and
collagen-platelet interaction can be inhibited with integrin α2β1-
or GPVI-blocking antibodies (JAQ1) (31, 32). We found that
incubation of platelets with these two blocking antibodies abol-
ished Hsp47-induced platelet recruitment in MCF10A cells (Fig. 4
F and G).
To determine in vivo function of collagen deposition in cancer

cell colonization, control and Hsp47-silenced MDA-MB-231/GFP
cells were coated with type I collagen before tail vein injection. We

found that treatment with collagen at least partially rescued Hsp47-
silenced cancer cell retention in the lung (Fig. 4 H and I) but only
slightly increased lung retention of control MDA-MB-231 cells. In
another experiment, mice were treated with JAQ1 antibody before
injection of Hsp47-expressing MCF10A/GFP cells. Treatment with
JAQ1 antibody significantly reduced Hsp47-induced MCF10A cell
adhesion in the lung (Fig. 4 J and K). These results suggest that
Hsp47-dependent collagen deposition by cancer cells is crucial for
the initiation of cancer cell colonization.

10A ctrl 10A Hsp47 231 shctrl 231 shHsp47
C

ol
 I

C
ol

 IV

0

1 0

2 0 

3 0

0

10

20

30

0

3

6

9

12

15

10A Hsp47+IgG

10A Hsp47+JAQ1

231 shHsp47

231 shHsp47+ Col I

ctrl Hsp47

Ponceau S

Ponceau S

Col I

Col IV

MCF10A

KDa
130-

250-

C
D

41
- p

os
itiv

e 
C

el
ls **

shHsp47+Col I

shHsp47+Col IV shctrl

shHsp47+Col I

shHsp47

shHsp47

C
D

41
-p

os
itiv

e

Hsp47+IgG

Hsp47+JAQ1ctrl
C

D
41

- p
os

itiv
e

C
D

4 1
-p

os
i tiv

e

20

16

12

8

4

0
ctrl

Hsp47+IgG

Hsp47+anti-α
2β1

** ** ****

**

**
C

ol
 I

C
ol

 IV

(%
)

   
C

el
ls

(%
)

   
C

el
ls

(%
)

   
C

el
ls

(%
)

1.0 1.53

1.471.0

231 shctrl

231 shctrl + Col I

shctrl

shctrl
 +Col I

n. s.

R
el

at
iv

e 
C

el
l N

o.
 / 

lu
ng

 s
ec

tio
n 1.5

1.2

0.9

0.6

0.3

0

2.5

2.0

1.5

1.0

0

0.5

R
el

at
iv

e 
C

el
l N

o.
 / 

lu
ng

 s
ec

tio
n *

shHsp47+Col I

shHsp47
0R

el
at

iv
e 

C
el

l N
o.

 / 
lu

ng
 s

ec
tio

n 

Hsp47+IgG

Hsp47+JAQ1

1.2

0.9

0.6

0.3

**

4 h after injection 4 h after injection4 h after injection

A B C

D E F G

H I KJ
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n = 5; independent Student’s t test. Results are presented as mean ± SEM. n.s., not significant; **P < 0.01; *P < 0.05.
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Hsp47-Dependent Platelet Recruitment Enhances Cancer Cell
Clustering and Extravasation. Cancer cells in circulation have been
detected as single cells or CTC clusters, and CTC clustering pro-
motes cancer colonization and metastasis (33–35). Based on our
observation that incubation with platelets induced cancer cell clus-
tering in the platelet-binding experiment, we asked whether the
Hsp47/collagen axis and its dependent platelet recruitment contrib-
ute to cancer cell clustering. Silencing Hsp47 in MDA-MB-231 cells
moderately reduced cancer cell clustering in the absence of
platelets in vitro (Fig. 5 A and B). Surprisingly, platelet incubation
significantly enhanced cancer cell clustering in control MDA-MB-
231 cells but only slightly increased clustering in the Hsp47-silenced
cells (Fig. 5 A and B). We also found that preincubating Hsp47-
silenced cells with type I collagen at least partially recovered
platelet-induced clustering (Fig. 5C and SI Appendix, Fig. S5A).
Importantly, by analyzing RNA-seq data generated from CTC
samples isolated from breast cancer patients (34), we found that
higher expression levels of Hsp47 and COL1A1 in CTC clusters
compared with single CTCs (Fig. 5 D and E). Therefore, Hsp47/
collagen axis-induced platelet recruitment may contribute to CTC
clustering or to maintenance of CTC cluster integrity in vivo.
Extravasation is a necessary step for CTCs to initiate coloni-

zation. Platelet binding and activation enhance cancer cell ex-
travasation and formation of the premetastatic niche (36). We
performed transendothelial migration assay with human lung mi-
crovasculature endothelial cell (HMVEC-L) and human umbilical
vein cell (HUVEC) monolayers (SI Appendix, Fig. S5B). We showed
that expression of Hsp47 in MCF10A cells increased platelet-
induced transendothelial migration (Fig. 5 F–H), and this increase
was blocked by the JAQ1 antibody (Fig. 5G andH and SI Appendix,
Fig. S5C) or integrin α2β1 antibody (SI Appendix, Fig. S5 D and E).
In addition, transendothelial migration of control MDA-MB-231
cells, but not of Hsp47-silenced cells, was significantly enhanced
after incubation with platelets (Fig. 5I). Pretreatment with type I
collagen rescued transendothelial migration in Hsp47-silenced
MDA231 cells (Fig. 5 J and K and SI Appendix, Fig. S5 F and G).
These data suggest that activation of the Hsp47/collagen axis pro-
motes cancer cell extravasation by inducing platelet recruitment.

Hsp47 Expression and Gene Amplification in Human Breast Cancer
Tissues. The Hsp47 gene (SERPINH1) locates at a region often
amplified in cancer. Amplification of the Hsp47 gene was identified
in 6% human breast cancer tissues and in 11% metastatic breast
cancer tissues (Fig. 6 A and B). Importantly, increased Hsp47 ex-
pression in tumor tissue correlated with short distant recurrent-free
survival in breast cancer patients (Fig. 6C and SI Appendix, Fig.
S6A). These results indicate that gene amplification and increased
expression of Hsp47 are associated with cancer metastasis.
Activation of the EMT program has been detected in basal-

like cells and TNBC cells (37). TNBC cells are also associated
with a high incidence of cancer metastasis and poor prognosis
(38). Using immunohistochemistry (IHC) analysis of a human
breast cancer tissue array containing 217 samples, we showed
that Hsp47 protein levels were significantly higher in TNBC cells
compared with other subtypes (Fig. 6 D and E). Consistent with
data from human breast cancer tissue, our previous study found
higher Hsp47 mRNA levels in basal-like breast cancer cell lines
compared with the luminal subtype (20). In the present study, we
found increased Hsp47 protein expression in basal cancer cell lines
compared with luminal cancer cell lines (Fig. 6 F andG); increased
secretion and deposition of type I collagen have also been detected
in basal cancer cell lines (39).
We showed that Hsp47 expression is crucial for the initiation of

cancer cell colonization. To further elucidate the role of Hsp47 in
the late stage of cancer cell colonization, we introduced an in-
ducible Hsp47 silencing system in MDA-MB-231 cells. Hsp47 ex-
pression was knocked down from 24 h or 7 d after tail vein injection
(SI Appendix, Fig. S6B). We found that silencing Hsp47 at the late

stage of cancer cell colonization also inhibited tumor lesion for-
mation in lungs (Fig. 6 H–J). These results suggest that increased
Hsp47 expression in cancer cells contributes to both the initiation
of cancer cell colonization and the formation of macrometastases.

Discussion
Clinical evidence and data from mouse tumor models strongly
support the “seed and soil” hypothesis that cancer metastasis
requires favorable interactions between metastatic tumor cells
(the “seed”) and the tissue microenvironment (the “soil”) (40).
Recent advances in TICs and CTCs have provided additional
insight into the “seed” metastatic cancer cells (41, 42). Here we
show that CTCs and the TIC-enriched cell population exhibit
increased expression of chaperone protein Hsp47 and its target
collagen. Increased expression of Hsp47 and Hsp47-dependent
collagen deposition are crucial for cancer cell–platelet in-
teraction and platelet-dependent cancer cell colonization in the
lung (Fig. 6K). These results suggest that metastatic cancer cells
can produce and carry the “soil” (i.e., collagen) when traveling
from primary tumors to distal sites, and that the self-deposited
collagen is crucial for cancer cell colonization at distant organs.
EMT and mesenchymal-epithelial transition dynamics play a

critical role in cancer metastasis. The EMT induces cancer cell
invasion and contributes to cancer metastasis at an early stage
(7). Expression of Hsp47 mRNA is induced during the EMT and
is associated with EMT markers in human breast cancer tissues,
suggesting that Hsp47 expression is regulated at the transcription
level. Nevertheless, we cannot rule out the possibility that Hsp47
is also regulated at the protein level (translation or protein sta-
bility) during the EMT. We previously showed that miR-29 is a
negative regulator of Hsp47 (20). Down-regulation of miR-29
may contribute to Hsp47 induction during the EMT. Deletion of
Hsp47 in MECs inhibited the EMT and suppressed the mesenchy-
mal phenotypes, including collagen deposition, cell migration, and
invasion. The EMT is relevant to the acquisition and maintenance of
stem cell-like characteristics and is sufficient to endow differentiated
normal and cancer cells with stem cell properties (43, 44).
The function of collagen signaling in the EMT is well character-

ized. Type I collagen and its receptor discoidin domain-containing
receptor 2 (DDR2) can promote the EMT by enhancing Snail sta-
bility (45). Increased collagen expression or deposition is associated
with poor prognosis in breast cancer patients (46, 47). In-
hibition of collagen production and cross-linking represses
cancer progression and metastasis (48, 49). Interestingly, ex-
ogenous type I collagen can only partially rescue EMT phe-
notypes in Hsp47-silenced cells. We recently identified DDR2
as a target of Hsp47 (50). DDR2 may also contribute to Hsp47-
induced mesenchymal phenotypes.
Single-cell sequencing data have shown increased expression

of the EMT and stemness markers in CTCs (12). It has been
postulated that activation of the EMT program facilitates CTC
generation and enhances cancer cell survival in the circulation
system (7, 51). We found that Twist-induced EMT significantly
enhanced MEC–platelet interaction, platelet-dependent extrav-
asation, and MEC retention in the lung. Platelets are originally
derived from megakaryocytes in the bone marrow (52), and one
of their functions is to prevent bleeding and reduce blood loss in
the event of vascular injury (53). Platelet count is associated with
metastasis and poor prognosis in cancer patients (54, 55). The
long-term use of low-dose antiplatelet drugs, such as aspirin, in-
hibits cancer metastasis and significantly reduces cancer incidence
(56, 57). Our data show that Hsp47-induced mesenchymal phe-
notypes enhance CTC colonization by inducing cancer cell–
platelet interaction. It has been reported that incubation of
platelets with cancer cells induces the release of TGF-β, which
subsequently activates the TGF-β/Smad and nuclear factor kappa-
light-chain-enhancer of activated B cells pathways in cancer cells
and promotes their transition to an invasive mesenchymal-like
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Fig. 5. Hsp47-dependent platelet recruitment enhanced cancer cell clustering and extravasation. (A and B) Images and quantification of cells clustering in
control or Hsp47-silenced MDA-MB-231/GFP cells in the presence or absence of mouse platelets. (Scale bar: 100 μm.) n = 6, independent Student’s t test. (C) Quanti-
fication of cell clustering in control or Hsp47-silenced MDA-MB-231/GFP cells in the presence or absence of mouse platelets. Cells were treated with collagen I (0, 4, or
40 μg/mL) before platelet incubation. n = 6; one-way ANOVA. (D and E) Quantification of Hsp47 and ColA1 mRNA levels in single CTCs and CTC clusters based on the
RNA-seq data generated from breast cancer patient CTC samples. n = 78 (CTC cluster) and 94 (single CTC) (GSE111065). (F and G) Images and quantification of MCF10A
extravasation in the HMVEC-L transendothelial migration assay. Control or Hsp47-expressing MCF10A/GFP cells were incubated with IgG/JAQ1 antibody- treated
platelets before the assay. (Scale bar: 100 μm.) n = 3; one-way ANOVA. (H) Quantification of MCF10A extravasation in the HUVEC transendothelial migration assay.
Control or Hsp47-expressing MCF10A/GFP cells were incubated with IgG/JAQ1 antibody-treated platelets before the assay. (Scale bar: 100 μm.) n = 5; one-way ANOVA.
(I) Quantification ofMDA-MB-231 cell extravasation in the HMVEC-L transendothelial migration assay. Control or Hsp47-silencedMDA-MB-231/GFP cells were incubated
with or without mouse platelets before being plated in transendothelial assay chambers. (Scale bar: 100 μm.) n = 8; independent Student’s t test. (J and K) Quanti-
fication of cancer cell extravasation in HMVEC-L and HUVEC transendothelial migration assay. Control or Hsp47-silenced MDA-MB-231/GFP cells were treated with
collagen I (0 or 4 μg/mL) before platelet incubation. n = 3. Results are presented as mean ± SEM. **P < 0.01; *P < 0.05; n.s., not significant, one-way ANOVA.
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Fig. 6. Hsp47 gene amplification and expression are associated with human breast cancer metastasis. (A and B) Hsp47 gene (SERPINH1) amplification in
invasive breast carcinoma (n = 963) and metastatic breast cancer (n = 237). Data were from TCGA and the Metastatic Breast Cancer Project (provisional,
October 2018). (C) Kaplan–Meier analysis showing the association of Hsp47 expression with distant recurrence-free survival in breast cancer patients. n =
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phenotype (58). Therefore, a positive feedback loop may exist
between cancer cell–platelet interaction and EMT induction.
Expression levels of Hsp47 and ECM network genes are up-

regulated in CTCs compared with primary tumors. Hsp47 ex-
pression in MECs induced platelet recruitment, which is crucial
for the initiation of lung colonization of cancer cells. Secretion/
deposition of collagen I and IV are both regulated by Hsp47 in
breast cancer cells (20); interestingly, we found that cancer cell–
platelet interaction is mediated mainly by type I collagen. During
vascular injury, platelets directly interact with subendothelial col-
lagen, triggering the formation of a hemostatic plug (59). Using
the platelet-specific deletion mouse model, a recent study shows
that Hsp47 on platelet surface enhances GPVI-collagen binding
and platelet activation (60). It is not clear whether platelet-derived
Hsp47 contributes to cancer cell–platelet interaction. Tissue factor
(TF), an initiator of the extrinsic coagulation cascade, is expressed
in breast cancer tissue and plays important roles in cancer pro-
gression and metastasis (61). However, induction of TF expression
has not been detected during the EMT and in CTCs, and TF is
unlikely to serve as the downstream target of Hsp47 to promote
the EMT-related cancer cell–platelet interaction.
It has been reported that only small number of CTCs can

survive and colonize in the secondary organs; the majority of
cancer cells die after tail vein injection (62). Platelet binding and
activation enhances cancer cell survival in the circulation and
facilitates extravasation and formation of a premetastatic niche
(4). We found that silencing Hsp47 expression significantly re-
duced cancer cell numbers in lung after 24 h, suggesting that
Hsp47-induced platelet recruitment contributes to extravasation
and initial colonization of cancer cells. In coculture experiments,
we showed that Hsp47-induced platelet recruitment enhanced
the extravasation of MECs. ATP has been identified as a key
mediator of platelet-induced extravasation (36). A recent study
showed that the COX-1/TXA2 pathway in platelets is required
for the aggregation of platelets on cancer cells and formation of
the premetastatic niche (63). Platelet activation also induces the
release of platelet-derived factors, including TGF-β, vascular
endothelial growth factor, and platelet-derived growth factor.
The functions of these growth factors in cancer invasion, an-
giogenesis, and metastasis have been well characterized. It is
important to determine whether the Hsp47/collagen axis induces
these pathways and the release of platelet-derived factors, and
subsequently promotes formation of the premetastatic niche.
Cancer cells in circulation have been detected as single CTCs or

CTC clusters containing 2 to 50 cells (33). Studies in mouse
models indicate that CTC clusters have 20- to 50-fold greater
metastatic potential (33). Clinical evidence also suggests a link
between CTC clusters and worse clinical outcomes (64, 65). Pla-
koglobin, a cell–cell junction protein highly expressed in CTC
clusters, contributes to cluster formation and integrity in the blood
(33). Interestingly, we found that expression of Hsp47 was sig-
nificantly higher in CTC clusters compared with single CTC cells
in clinical samples. Hsp47/collagen-induced platelet recruitment
enhanced cancer cell clustering in vitro. It has been proposed that
CTC clusters are derived from primary tumors or from the ag-
gregation/proliferation of single CTCs; however, current evidence
does not support the concept that CTC clusters form by aggre-
gation of single CTCs (33). Platelets and platelet-derived micro-
particles are detected in primary tumors (66); therefore, Hsp47/
collagen-induced platelet recruitment may facilitate cancer cell
clustering in the primary tumor or maintain the integrity of CTC
clusters in circulation. Cancer cells and CAFs both produce sig-
nificant amounts of collagen and other ECM proteins in primary
tumor tissue, and CAF-derived collagen may also contribute to
platelet recruitment and activation in primary tumor tissue.
Our study provides insight into how mesenchymal phenotypes

in CTCs induce platelet recruitment and enhance cancer cell
colonization. We have identified the Hsp47/collagen axis as a

critical regulator of the cancer cell–platelet interaction. Collagen is
not an ideal druggable target; however, small-molecule compounds
that inhibit Hsp47–collagen interaction have been characterized
recently (67). Therefore, targeting the Hsp47/collagen axis is a
potential strategy to inhibit cancer cell colonization and metastasis.

Materials and Methods
Fluorescence-Activated Cell Sorting of Platelet Recruitment. To analyze cancer
cell-platelet interaction, CD41 (platelet marker) levels on tumor cells were
examined by fluorescence-activated cell sorting (FACS) analysis. Mouse platelets
were freshly preparedbefore incubationwith cancer cells. Bloodwas collected from
abdominal aortas of isofluorane-anesthetized mice using 1/7th volume of ACD
(85 mM trisodium citrate, 83 mM dextrose, and 21 mM citric acid) as an antico-
agulant (68). Platelets were then washed once with CGS (0.12 M sodium chloride,
0.0129 M trisodium citrate, and 0.03 M D-glucose, pH 6.5) and resuspended in 3 ×
108/mL and incubated for 1 h at room temperature before use. Platelet aggre-
gation was measured with a CHRONO-LOGModel 700Whole Blood/Optical Lumi-
Aggregometer at 37 °C with stirring (1,000 rpm). Tumor cells were trypsinized and
resuspended as 1 × 106 cells in 200 μL of Tyrode’s buffer (120 mM NaHCO3,
138 mM NaCl, 5.5 mM glucose, 2.9 mM KCl, 2 mM MgCl2, 10 mM Hepes, and
0.42 mM Na2HPO4, pH 7.4), then incubated with 400 μL of 3 × 108/mL mouse
platelets at 37 °C for 60 min. After incubation with platelets, samples were fixed in
2% paraformaldehyde at room temperature for 20 min and then stained with
CD41-fluorescein isothiocyanate (FITC) Ab (BD Biosciences; 553848) at room tem-
perature for 40 min, protected from light. FACS analysis was done with a BD LSR II
flow cytometer, and data were analyzed by CellQuest Pro (BD Biosciences). Gates
were set according to unstaining control and single color controls for FITC.

Clustering Assay. Control or shHsp47 lentivirus-infected MDA-MB-231/GFP
cells (1 × 105) were preincubated with or without 4 μg/mL or 40 μg/mL
type I collagen for 30 min at room temperature. After incubation, cells were
centrifuged at 1,000 rpm for 3 min and suspended in 300 μL of Tyrode’s
buffer, then incubated with or without 100 μL mouse platelets in non-
adherent 24-well culture plates for 60 min at 37 °C. Images were obtained
with a Nikon microscope, and the number of cell clusters was quantified.

Transendothelial Migration Assay.HUVEC or HMVEC-L (5 × 104 cells/well) were
plated on the 8-μm-pore polycarbonate membrane insert (Transwell; Corn-
ing) and cultured for 2 to 3 d to confluence. MDA-MB 231/GFP cells (1 ×
105 cells per well) in 300 μL of DMEM/F12 medium with 10% FBS with or
without platelet/collagen I pretreatment were added on the upper chamber.
An additional 500 μL of DMEM/F12 medium with 10% FBS medium was
added to the lower chamber each well. Cells were incubated at 37 °C for 24 h
and fixed by 100% methanol. Cells were removed from the upper chamber
by gently wiping the upper surface of the membrane with a cotton swab.
MDA-MB 231/GFP cells invaded through the HUVEC layer were imaged with
a Nikon microscope, and invaded cells were quantified.

In Vivo Xenograft Experiments. Six-week-old female SCID mice were randomly
grouped and injected with 1 × 106 malignant or nonmalignant MECs via tail
vein or in mammary fat pads. All procedures were performed in accordance
with the guidelines of the Division of Laboratory Animal Resources at the
University of Kentucky.

Patient Survival Analysis and Other Statistical Analysis. To address the clinical
relevance of enhanced Hsp47 expression, we assessed the association be-
tween mRNA levels of Hsp47 and patient survival using the published
microarray data generated from 1,746 human TNBC tissue samples (69).
Tumor samples were split into 2 equal-sized groups of low and high Hsp47
expression based on mRNA levels. Significant differences in overall survival
time were assessed using the Cox proportional hazard (log-rank) test.

All experiments were repeated at least twice. Results were reported as
mean ± SEM; the significance of difference was assessed by the χ2 test, in-
dependent Student’s t test, or one-way analysis of variance (ANOVA) with
SigmaPlot 12.3 (Systat Software). P < 0.05 represents statistical significance,
and P < 0.01 represents sufficiently statistical significance. All reported
P values are derived from two-tailed tests.

More detailed information about the materials and methods of this study
are provided in SI Appendix.

Data Availability Statement. All data in this manuscript are freely available.
The gene expression data generated from this study have been deposited in
the Gene Expression Omnibus (GEO) database, https://www.ncbi.nlm.nih.gov/
geo (accession no GSE143349) (70).

10 of 11 | www.pnas.org/cgi/doi/10.1073/pnas.1911951117 Xiong et al.

D
ow

nl
oa

de
d 

at
 U

N
IV

 O
F

 K
E

N
T

U
C

K
Y

 3
A

D
H

66
64

 o
n 

F
eb

ru
ar

y 
5,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911951117/-/DCSupplemental
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
https://www.pnas.org/cgi/doi/10.1073/pnas.1911951117


ACKNOWLEDGMENTS. We appreciate the technical support provided by the
University of Kentucky Flow Cytometry and Cell Sorting Core Facility; and
the Biospecimen Procurement and Translational Pathology Shared Resource

Facility at the Markey Cancer Center (P30CA177558). This study was supported
by National Cancer Institute Grants 1R01 CA207772, 1R01 CA215095, and 1R21
CA209045 (to R.X.).

1. D. Hanahan, R. A. Weinberg, Hallmarks of cancer: The next generation. Cell 144, 646–
674 (2011).

2. A. W. Lambert, D. R. Pattabiraman, R. A. Weinberg, Emerging biological principles of
metastasis. Cell 168, 670–691 (2017).

3. D. S. Micalizzi, S. Maheswaran, D. A. Haber, A conduit to metastasis: Circulating tumor
cell biology. Genes Dev. 31, 1827–1840 (2017).

4. L. J. Gay, B. Felding-Habermann, Contribution of platelets to tumour metastasis. Nat.
Rev. Cancer 11, 123–134 (2011).

5. E. Rossi et al., M30 neoepitope expression in epithelial cancer: Quantification of apoptosis
in circulating tumor cells by CellSearch analysis. Clin. Cancer Res. 16, 5233–5243 (2010).

6. M. Giuliano et al., Perspective on circulating tumor cell clusters: Why it takes a village
to metastasize. Cancer Res. 78, 845–852 (2018).

7. J. H. Tsai, J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes
Dev. 27, 2192–2206 (2013).

8. A. Puisieux, T. Brabletz, J. Caramel, Oncogenic roles of EMT-inducing transcription
factors. Nat. Cell Biol. 16, 488–494 (2014).

9. R. Kalluri, R. A. Weinberg, The basics of epithelial-mesenchymal transition. J. Clin.
Invest. 119, 1420–1428 (2009).

10. R. Chakrabarti et al., Elf5 inhibits the epithelial-mesenchymal transition in mammary
gland development and breast cancer metastasis by transcriptionally repressing
Snail2. Nat. Cell Biol. 14, 1212–1222 (2012).

11. M. Yu et al., Circulating breast tumor cells exhibit dynamic changes in epithelial and
mesenchymal composition. Science 339, 580–584 (2013).

12. C. L. Chen et al., Single-cell analysis of circulating tumor cells identifies cumulative
expression patterns of EMT-related genes in metastatic prostate cancer. Prostate 73,
813–826 (2013).

13. C. Frantz, K. M. Stewart, V. M. Weaver, The extracellular matrix at a glance. J. Cell Sci.
123, 4195–4200 (2010).

14. P. Lu, V. M. Weaver, Z. Werb, The extracellular matrix: A dynamic niche in cancer
progression. J. Cell Biol. 196, 395–406 (2012).

15. T. Oskarsson et al., Breast cancer cells produce tenascin C as a metastatic niche
component to colonize the lungs. Nat. Med. 17, 867–874 (2011).

16. C. M. Williams, A. J. Engler, R. D. Slone, L. L. Galante, J. E. Schwarzbauer, Fibronectin
expression modulates mammary epithelial cell proliferation during acinar differen-
tiation. Cancer Res. 68, 3185–3192 (2008).

17. A. Naba et al., Thematrisome: In silico definition and in vivo characterization by proteomics
of normal and tumor extracellular matrices. Mol. Cell. Proteomics 11, M111.014647 (2012).

18. G. Xiong, L. Deng, J. Zhu, P. G. Rychahou, R. Xu, Prolyl-4-hydroxylase α subunit 2
promotes breast cancer progression and metastasis by regulating collagen deposition.
BMC Cancer 14, 1 (2014).

19. J. B. Ross, D. Huh, L. B. Noble, S. F. Tavazoie, Identification of molecular determinants of
primary andmetastatic tumour re-initiation in breast cancer.Nat. Cell Biol. 17, 651–664 (2015).

20. J. Zhu et al., Chaperone Hsp47 drives malignant growth and invasion by modulating
an ECM gene network. Cancer Res. 75, 1580–1591 (2015).

21. R. Xu, J. H. Mao, Gene transcriptional networks integrate microenvironmental signals
in human breast cancer. Integr. Biol. 3, 368–374 (2011).

22. Y. Ishida, K. Nagata, Hsp47 as a collagen-specific molecular chaperone. Methods
Enzymol. 499, 167–182 (2011).

23. X. Huang, S. M. Gollin, S. Raja, T. E. Godfrey, High-resolution mapping of the 11q13
amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in
oral cancer cells. Proc. Natl. Acad. Sci. U.S.A. 99, 11369–11374 (2002).

24. Y. J. Kwon et al., Expression patterns of aurora kinase B, heat shock protein 47, and
periostin in esophageal squamous cell carcinoma. Oncol. Res. 18, 141–151 (2009).

25. C. J. Creighton et al., Residual breast cancers after conventional therapy displaymesenchymal
as well as tumor-initiating features. Proc. Natl. Acad. Sci. U.S.A. 106, 13820–13825 (2009).

26. D. T. Ting et al., Single-cell RNA sequencing identifies extracellular matrix gene ex-
pression by pancreatic circulating tumor cells. Cell Rep. 8, 1905–1918 (2014).

27. J. P. Stone, D. D. Wagner, P-selectin mediates adhesion of platelets to neuroblastoma
and small cell lung cancer. J. Clin. Invest. 92, 804–813 (1993).

28. B. Xiang et al., Platelets protect from septic shock by inhibiting macrophage-dependent
inflammation via the cyclooxygenase 1 signalling pathway. Nat. Commun. 4, 2657 (2013).

29. B. P. Nuyttens, T. Thijs, H. Deckmyn, K. Broos, Platelet adhesion to collagen. Thromb.
Res. 127 (suppl. 2), S26–S29 (2011).

30. M. Haemmerle, R. L. Stone, D. G. Menter, V. Afshar-Kharghan, A. K. Sood, The platelet
lifeline to cancer: Challenges and opportunities. Cancer Cell 33, 965–983 (2018).

31. M. W. Miller et al., Small-molecule inhibitors of integrin alpha2beta1 that prevent
pathological thrombus formation via an allosteric mechanism. Proc. Natl. Acad. Sci.
U.S.A. 106, 719–724 (2009).

32. B. Nieswandt et al., Long-term antithrombotic protection by in vivo depletion of
platelet glycoprotein VI in mice. J. Exp. Med. 193, 459–469 (2001).

33. N. Aceto et al., Circulating tumor cell clusters are oligoclonal precursors of breast
cancer metastasis. Cell 158, 1110–1122 (2014).

34. S. Gkountela et al., Circulating tumor cell clustering shapes DNA methylation to en-
able metastasis seeding. Cell 176, 98–112.e14 (2019).

35. X. Liu et al., Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal
metastasis in patient-derived breast cancer models. Cancer Discov. 9, 96–113 (2019).

36. D. Schumacher, B. Strilic, K. K. Sivaraj, N. Wettschureck, S. Offermanns, Platelet-
derived nucleotides promote tumor-cell transendothelial migration and metastasis
via P2Y2 receptor. Cancer Cell 24, 130–137 (2013).

37. D. Sarrió et al., Epithelial-mesenchymal transition in breast cancer relates to the basal-

like phenotype. Cancer Res. 68, 989–997 (2008).
38. E. A. Rakha, I. O. Ellis, Triple-negative/basal-like breast cancer: Review. Pathology 41,

40–47 (2009).
39. G. Xiong et al., Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and

TNBC chemoresistance. Nat. Commun. 9, 4456 (2018).
40. H. Peinado et al., Pre-metastatic niches: Organ-specific homes for metastases. Nat.

Rev. Cancer 17, 302–317 (2017).
41. M. Y. Kim et al., Tumor self-seeding by circulating cancer cells. Cell 139, 1315–1326 (2009).
42. L. Zhang et al., The identification and characterization of breast cancer CTCs com-

petent for brain metastasis. Sci. Transl. Med. 5, 180ra48 (2013).
43. H. Y. Jung, J. Yang, Unraveling the TWIST between EMT and cancer stemness. Cell

Stem Cell 16, 1–2 (2015).
44. U. Wellner et al., The EMT-activator ZEB1 promotes tumorigenicity by repressing

stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–1495 (2009).
45. K. Zhang et al., The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to

facilitate breast cancer metastasis. Nat. Cell Biol. 15, 677–687 (2013).
46. M. W. Conklin et al., Aligned collagen is a prognostic signature for survival in human

breast carcinoma. Am. J. Pathol. 178, 1221–1232 (2011).
47. L. J. van ’t Veer et al., Gene expression profiling predicts clinical outcome of breast

cancer. Nature 415, 530–536 (2002).
48. J. T. Erler et al., Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow

cell recruitment to form the premetastatic niche. Cancer Cell 15, 35–44 (2009).
49. D. M. Gilkes et al., Collagen prolyl hydroxylases are essential for breast cancer me-

tastasis. Cancer Res. 73, 3285–3296 (2013).
50. J. Chen, S. Wang, Z. Zhang, C. I. Richards, R. Xu, Heat shock protein 47 (HSP47) binds

to discoidin domain-containing receptor 2 (DDR2) and regulates its protein stability. J.
Biol. Chem. 294, 16846–16854 (2019).

51. W. C. Wang et al., Survival mechanisms and influence factors of circulating tumor

cells. BioMed Res. Int. 2018, 6304701 (2018).
52. K. R. Machlus, J. N. Thon, J. E. Italiano, Jr, Interpreting the developmental dance of

the megakaryocyte: A review of the cellular and molecular processes mediating
platelet formation. Br. J. Haematol. 165, 227–236 (2014).

53. H. H. Versteeg, J. W. Heemskerk, M. Levi, P. H. Reitsma, New fundamentals in he-

mostasis. Physiol. Rev. 93, 327–358 (2013).
54. L. A. Tjon-Kon-Fat et al., Platelets harbor prostate cancer biomarkers and the ability

to predict therapeutic response to abiraterone in castration resistant patients. Pros-
tate 78, 48–53 (2018).

55. M. Zhang et al., High platelet-to-lymphocyte ratio predicts poor prognosis and clin-

icopathological characteristics in patients with breast cancer: A meta-analysis. BioMed
Res. Int. 2017, 9503025 (2017).

56. P. Patrignani, C. Patrono, Aspirin and cancer. J. Am. Coll. Cardiol. 68, 967–976 (2016).
57. P. M. Rothwell et al., Effect of daily aspirin on risk of cancer metastasis: A study of

incident cancers during randomised controlled trials. Lancet 379, 1591–1601 (2012).
58. M. Labelle, S. Begum, R. O. Hynes, Direct signaling between platelets and cancer cells

induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer

Cell 20, 576–590 (2011).
59. R. W. Farndale, J. J. Sixma, M. J. Barnes, P. G. de Groot, The role of collagen in

thrombosis and hemostasis. J. Thromb. Haemost. 2, 561–573 (2004).
60. P. Sasikumar et al., The chaperone protein HSP47: A platelet collagen binding protein

that contributes to thrombosis and hemostasis. J. Thromb. Haemost. 16, 946–959 (2018).
61. T. Ueno, M. Toi, M. Koike, S. Nakamura, T. Tominaga, Tissue factor expression in

breast cancer tissues: Its correlation with prognosis and plasma concentration. Br. J.

Cancer 83, 164–170 (2000).
62. M. Labelle, R. O. Hynes, The initial hours of metastasis: The importance of cooperative

host-tumor cell interactions during hematogenous dissemination. Cancer Discov. 2,

1091–1099 (2012).
63. S. Lucotti et al., Aspirin blocks formation of metastatic intravascular niches by inhibiting

platelet-derived COX-1/thromboxane A2. J. Clin. Invest. 129, 1845–1862 (2019).
64. J. M. Hou et al., Clinical significance and molecular characteristics of circulating tumor

cells and circulating tumor microemboli in patients with small-cell lung cancer. J. Clin.

Oncol. 30, 525–532 (2012).
65. V. Murlidhar et al., Poor prognosis indicated by venous circulating tumor cell clusters

in early-stage lung cancers. Cancer Res. 77, 5194–5206 (2017).
66. J. V. Michael et al., Platelet microparticles infiltrating solid tumors transfer miRNAs

that suppress tumor growth. Blood 130, 567–580 (2017).
67. S. Ito et al., A small-molecule compound inhibits a collagen-specific molecular chaperone

and could represent a potential remedy for fibrosis. J. Biol. Chem. 292, 20076–20085 (2017).
68. G. Zhang et al., Distinct roles for Rap1b protein in platelet secretion and integrin

αIIbβ3 outside-in signaling. J. Biol. Chem. 286, 39466–39477 (2011).
69. B. Györffy et al., An online survival analysis tool to rapidly assess the effect of 22,277

genes on breast cancer prognosis using microarray data of 1,809 patients. Breast

Cancer Res. Treat. 123, 725–731 (2010).
70. B. P. Zhou, R. Xu, Snail and Twist expression in HMLE and MCF10A cells. Gene Expression

Omnibus (GEO). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143349. Deposited
9 January 2020.

Xiong et al. PNAS Latest Articles | 11 of 11

M
ED

IC
A
L
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

at
 U

N
IV

 O
F

 K
E

N
T

U
C

K
Y

 3
A

D
H

66
64

 o
n 

F
eb

ru
ar

y 
5,

 2
02

0 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143349

	Hsp47 Promotes Cancer Metastasis by Enhancing Collagen-Dependent Cancer Cell-Platelet Interaction
	Repository Citation
	Authors
	Hsp47 Promotes Cancer Metastasis by Enhancing Collagen-Dependent Cancer Cell-Platelet Interaction
	Notes/Citation Information
	Digital Object Identifier (DOI)


	Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction

