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Thermoplastic composites have many advantages over thermoset composites such as being 

recyclable, rapidly manufacturable, and more impact resistant. The goal of this thesis is to 

assess the feasibility of using thermoplastic composites in structural applications through 

literature review, mechanical testing, design of a load-bearing hybrid composite-concrete 

structures, and the implementation of thermoplastic composites for tensile reinforcement 

of concrete. The study had four objectives covering the stated goal. 

1. Conduct a literature review to direct thermoplastic material selection 

2. Characterize thermoplastic material mechanical properties using standardized 

mechanical testing 

3. Design a hybrid composite-reinforced concrete beam, and 

4. Develop thermoplastic shear connectors to develop composite action between 

thermoplastic reinforcement and concrete 

Initially, thermoplastics that can be reinforced with E-glass fibers to be used as a structural 

part were investigated. Materials were selected for experimental characterization after 

extensive literature review based on performance, cost and manufacturing methods. Two 
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industry accepted processes were selected for use in fabrication: vacuum infusion, a 

longstanding and highly accepted process traditionally used for the manufacturing of 

thermoset composites; and thermoforming, a fast production process that takes advantage 

of many properties of thermoplastic materials.  

Next, properties of these materials required for structural applications were quantified 

through mechanical testing. These properties include the modulus of elasticity, Poisson’s 

ratio and the ultimate strength in tension, compression and shear in principal material 

directions. Having a complete list of material properties is necessary in composite design. 

A design for a load-bearing composite-concrete beam was developed. In conventional 

construction, steel reinforcing bars are used to carry the tension in a concrete beam, but 

steel is susceptible to corrosion. These hybrid composite-concrete structures rely on the 

transfer of forces (composite action) between the thermoplastic composite, which acts as 

reinforcement, and the concrete section of the beam. The composite action is necessary for 

the composite reinforcement to develop tension through shear flow at the interface.  The 

initial design to demonstrate the use of thermoplastic composites in this manner is the 

fabrication of a simple prismatic beam with the bottom-face reinforced with the composite. 

This provides a simple structure to demonstrate the feasibility of this technology for use in 

structural applications. 

Finally, the ability of the shear connectors developed to produce composite action in the 

proposed beam was experimentally assessed. Hybrid composite-concrete specimens were 

tested in compression to assess the feasibility of shear connectors (studs) to carry the shear 

flow at the interface between the thermoplastic reinforcement and concrete. 
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Conclusions and recommendations are presented in Chapter 5. Recommendations for 

future work include the implementation of small-scale short-beam tests in four-point 

bending to further assess the degree of composite action being generated in the structure. 

Recommendations for future research on more effectively achieving composite action in 

hybrid thermoplastic composite-concrete members is also addressed.
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CHAPTER 1 

INTRODUCTION 

1.1 Project Background 

The U.S. Army Engineer Research and Development Center (ERDC) has an interest in 

investigating methods for low-logistic, rapidly deployable, versatile, load-bearing 

thermoplastic composite-concrete structures. The Advanced Structures and Composites 

Center (ASCC) is working with ERDC to research the feasibility of this technology and 

methods for implementing it. These systems being considered for the future of this 

technology may include beams, decking, columns, and retaining walls. This thesis details 

the research done in exploring the feasibility of using thermoplastic composites as an 

alternative to traditional structural methods of constructing hybrid composite-concrete 

beams as a first step in assessing this technology. 

Additionally, infrastructure is a critical industry in the United States and abroad. In the 

U.S., nearly all money spent on transportation infrastructure comes from federal, state, and 

local governments. The need for investment in American infrastructure was made apparent 

by the 2017 Infrastructure Report Card by the American Society of Civil Engineers 

(ASCE) which gave America’s cumulative infrastructure a D+ score overall [1]. This 

recent and insightful report puts America’s current infrastructure in perspective. The report 

begins with “Our nation is at a crossroads. Deteriorating infrastructure is impeding our 

ability to compete in a thriving global economy, and improvements are necessary to ensure 

our country is built for the future. While we have made some progress, reversing the 

trajectory after decades of underinvestment in our infrastructure requires transformative 

action from Congress, states, infrastructure owners, and the American people.” [1]. The 
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research done in this study explores new technologies that could be used in making the 

necessary infrastructure improvements America needs by adding potential new options for 

bridges and other structures. 

What generates an interest in thermoplastic materials for use in composites over traditional 

thermosetting plastic materials (thermosets)? Before exploring this question, it is necessary 

to define the difference between the two materials. Thermoplastic polymers can be defined 

as materials that reach their melting temperature before their decomposition temperature. 

Thermosetting materials however, reach their decomposition temperature before their 

melting temperature [2]. Further, thermosets can be described as, “materials that are liquid 

or malleable in their initial state but are converted into a solid form. The conversion process 

involves a chemical reaction typically triggered by heat, oxygen, UV light, a reagent 

material or catalyst. Regardless of their initial state, the important thing to remember about 

thermosets is that the conversion process is irreversible.”  [3].  Thermoplastics on the other 

hand can be described as, “materials which melt upon heating, and solidify upon cooling.  

During the molten phase (which usually involves heat and pressure), the materials are 

malleable and can be easily formed into another shape. Upon cooling they become a solid, 

and retain that shape. The melting/solidifying process is fully reversible, and most 

thermoplastic materials can be molded again and again and again.” [3]. More detail on the 

differences between these materials will be explored in this thesis. In addition, the 

properties of thermoplastics make them more amenable to rapid and automated 

manufacturing methods, which are addressed in this study. 

This study was born from a desire to conduct exploratory research into utilizing these 

emerging thermoplastic materials in hybrid structural applications. It was proposed that the 
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thermoplastic materials could be used in similar ways to industry use of thermoset 

composites and even steel construction. The question is, are thermoplastics capable of 

meeting these structural needs? This study ventures to answer that question by exploring 

thermoplastic composite material characteristics, methods for reinforcing concrete in a 

hybrid structure, and developing a novel way to achieve the necessary composite action. 

1.2 Significance of Research & Objectives 

The study of thermoplastic composites as an alternative to traditional thermosets and steel 

construction is important. In conjunction with ERDC the ASCC is working to develop 

feasible methods for the implementation of thermoplastic composite-concrete structures. 

The study is divided into four objectives, which encompass the started goal. 

Study Objectives: 

1. Literature review, material investigation, and selection 

2. Material characterization through standardized mechanical testing 

3. Hybrid composite-concrete load-bearing structural concept design 

4. Assessment of thermoplastic shear connectors to develop composite action 

In the early stages of the conceptual designs, it was decided to focus on the development 

of a small-scale hybrid composite-concrete beam for this feasibility study. Further 

decisions were made in order to focus the objectives of this study. The fiber reinforcement 

chosen for this study was continuous unidirectional E-glass due to its cost-effectiveness 

and good mechanical properties, which can support the reinforcement needs of beams and 

decking in most cases. In addition, two thermoplastic materials were chosen to combine 
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with the E-glass to fabricate the composites for this study. Choosing two thermoplastics 

for the matrix in the composite allows for a multi-point comparison with existing thermoset 

materials such as an epoxy vinyl-ester. The composite constructed from continuous E-glass 

reinforcement and thermoplastic matrix will be referred to as CFRTP for continuous fiber-

reinforced thermoplastic composite. The basic two-dimensional concept design for the 

beam in this study for demonstrating the feasibility of a hybrid thermoplastic composite-

concrete load bearing system is shown in Figure 1.  

 

Figure 1: Elevation View of Composite-Concrete Hybrid Beam Concept 

The beam shown would be constructed with flat composite reinforcement on the bottom 

face of the beam to reinforce the structure in tension, replacing normal steel tension 

reinforcing.  The composite tension reinforcement is mechanically attached to the concrete 

with thermoplastic shear connectors that mimic shear studs used in steel-concrete 

composite beams. Replacing steel as the tension-reinforcement with composites has the 

advantage of eliminating corrosion concerns, and using a mechanical connection 
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eliminates the need for adhesives, which often require rigorous surface preparation, have 

long cure times, and require a secondary process to be performed in the construction. These 

adhesives, which are often used with thermosets, may not be compatible with the 

thermoplastic polymers being explored and increase the construction difficulty 

significantly. The normal weight concrete used in this study had a specified compressive-

strength of at least 41.4-MPa (approx. 6000-psi). 

Significant effort was devoted to the investigation of the connection interface for the 

composite-concrete beam. The major considerations that were taken into account when 

assessing shear connector types were the following. 

 Manufacturability 

 Ease of construction 

 Shear Strength at the Interface 

 Resistance to Pullout 

When taking these four major points into account, it was decided that a purely mechanical 

connection is the best method for optimizing the design since it can be achieved as part of 

the concrete pouring process. This is also consistent with assumptions made when 

designing with traditional steel connectors. Traditional methods for using thermoset 

composites to reinforce concrete rely on adhesive bonds or mechanical fasteners. Adhesive 

bonding requires extensive surface preparation and is difficult to achieve with 

thermoplastics. 

This thesis presents material characterization, concept designs for load-bearing hybrid 

structures, and the development of novel, purely mechanical methods for developing 
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composite action by utilizing the advantages of thermoplastic materials. The exploration 

of thermoplastic materials as potentially feasible options in structural applications 

advances the state-of-the-art by contributing valuable groundwork for their further research 

and potential application.  

1.3 Organization of this Thesis 

This thesis is divided into five chapters, which cover the work done to achieve the study 

objectives. 

 Chapter 1: Introduction, covers the project background and the significance of this 

research and its detailed objectives. 

 Chapter 2: Material Selection & Manufacturing Methods, covers the criteria for 

selection of two thermoplastic materials and the methods for fabricating composites 

with them. 

 Chapter 3: Material Characterization, covers the analysis of physical and mechanical 

properties, generated through standardized test methods to characterize the fabricated 

thermoplastic composites. 

 Chapter 4: Shear Connectors, covers the shear connectors developed, designed, and 

tested in order to develop composite action in the proposed hybrid load-bearing 

structure. 

 Chapter 5: Conclusions & Recommendations, explains how the four thesis objectives 

have been accomplished by presenting the main findings and contributions of the thesis 

with a bullet list of conclusions and the recommendations for the future research. 
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CHAPTER 2 

MATERIAL SELECTION AND MANUFACTURING 

The first objective in this thesis was to conduct literature review, material investigation, 

and selection to assess possible options for using thermoplastics reinforced with continuous 

fibers as tension reinforcement in concrete beams. These materials are called continuous 

fiber-reinforced thermoplastic composite materials (CFRTP) to differentiate them from 

common thermoplastic composites with discontinuous and short-fiber reinforcement. The 

type of fiber reinforcement adopted for this thesis is E-glass fibers due to their lower cost 

compared to other types of fibers (e.g., carbon fibers). 

After the literature review based on performance, cost, and manufacturing methods, two 

CFRTP materials were selected for experimental characterization. These materials were 

fabricated using vacuum infusion, a longstanding and highly accepted process traditionally 

used for manufacturing thermoset composites; and stamp thermoforming, a fast production 

process that takes advantage of the ability of thermoplastic materials to be heated and 

reformed with little to no loss of strength and stiffness. 

2.1 Thermoplastic Composite Material Selection 

A literature review of thermoplastics and an assessment of their properties relevant to 

structural applications including corrosion resistance, amenability to rapid manufacturing, 

impact resistance, high strength-to-weight ratio, and recyclability was undertaken at the 

start of this study. Two thermoplastic materials were chosen based on this review: Elium, 

an acrylic two-part liquid thermoplastic resin, and polyethylene terephthalate glycol 

(PETg) pre-impregnated (prepreg) tapes. 
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A brief overview of some publications reviewed at the beginning of this study pertaining 

to composites is given here. Composites are suitable for both chemical and outdoor 

exposure because they do not rust or corrode. The resin used in composite applications not 

only serves to bind the fiber-reinforcement together but also protects it from the 

environment the material is subjected to [4]. Many thermoplastic composites have good to 

excellent chemical and environmental resistance, the performance of particular polymers 

can be found in literature [5] [6]. 

The high strength-to-weight ratio of composites is a well-known advantage over other 

materials such as steel. This comes from their uniquely high strength and stiffness and low 

density [7]. Examining the stiffness-to-weight ratio of composites it is possible to achieve 

lighter weight structures with the same properties, due to the very low densities of 

thermoplastics, approximately 1/8 to 1/10 that of steel [3]. The impact resistance of 

materials is often linked to its toughness [3]. Thermoplastics in general exhibit high 

toughness due to having high fracture energy values and the ability to absorb energy 

without brittle failure. Thermosetting polymers tend to show more brittleness due to the 

high level of cross-linking in the polymers not is not present with thermoplastics [8] [9]. 

Thermoplastic materials are especially suitable for rapid manufacturing based on their 

ability to be processed from raw material to end use product in fewer steps than would be 

necessary with other options. In addition, thermoplastic materials are often suitable for the 

fabrication of near-net shape manufacturing. Processing technologies used with 

thermoplastics such as stamp forming (pressure molding) and injection molding allow for 

a part to fabricated into its final or net shape in a single operation. Often times processing 

technologies with other materials require multiple steps or several discrete parts to achieve 
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the same thing a single thermoplastic part does [3] [10]. This study has not investigated all 

forms of thermoplastic manufacturing but it is of note that thermoplastic composites are 

not limited to the size of stamp forming presses or other size limiting technologies, 

continuous processing methods such as roll forming or pultrusion. Thermoplastic 

pultrusion is capable of manufacturing long constant cross-section fiber-reinforced 

composites by pulling fibers impregnated with matrix through a die [10]. 

Investigating the cost of thermoplastic composites does not only include the cost of 

material itself, but also the cost to take the raw materials and make them into an end use 

product. Many resources in literature allow for the comparison of different thermoplastic 

resin systems in regard to cost [9] [11] [12] [6], in many cases, the costs of thermoplastic 

materials are lower than other choices [3]. A useful tool for assessing the relative costs of 

thermoplastic polymers is the Tangram Periodic Table [13]. As was previously discussed 

thermoplastic materials can often achieve the same end use product in fewer steps than 

other material options. The ability to reduce the amount of work than needs to go into 

producing a product reduces the cost of making that product, contributing to the potential 

cost savings of using thermoplastic materials [3]. 

A unique feature of thermoplastic composites over thermoset composite technologies is the 

ability to recycle them. Thermoplastics are easily recycled because the polymer chains do 

not degrade when melted down, thermoplastics polymers are held together by van der waal 

forces, which attract molecules to each other. These are broken at lower temperatures than 

ones which damage the chemical bonds between monomers allowing the thermoplastic 

polymer to be melted and reformed repeatedly [14] [15]. A common method of recycling 
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a thermoplastic composite after use is to grind up the composite and reuse the compounds 

through injection molding [16]. 

The particular E-glass fiber materials chosen depend on the fabrication system being used, 

but were selected to be continuous fibers for their relatively high strength and stiffness 

properties. The Elium resin system uses dry E-glass fiber reinforcement suitable for 

vacuum infusion, and PETg prepreg is reinforced with E-glass fiber provided by the 

manufacturer. 

2.1.1 Elium Acrylic Liquid Resin System 

One product, Elium by Arkema, was identified early in the study. Elium is an in-situ 

polymerized infusible thermoplastic resin system, which was chosen due to favorable 

mechanical properties reported by the manufacturer Arkema, its unique recycling abilities, 

and the following manufacturing advantages for vacuum infusing Elium [17]: 

 Viscosity of 100 mPa.s at ambient temperature, which is suitable for infusing structural 

parts 

 Uses the vacuum resin infusion process  

 Manufacturing process compatible with thermoset resin tooling 

 Can be post-thermoformed (heated consolidation, welding, gluing) 

During the literature review, it was found that Elium is the first liquid thermoplastic 

commercialized to be used in similar ways to thermosetting composites. Elium works by 

combining two liquid constituents: the first is a combination of a methyl methacrylate and 

acrylic copolymers, [18] and the second, an organic peroxide activator [19].  When mixed, 

the resin undergoes radical polymerization to produce a thermoplastic which can be 
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combined with a fiber understructure to form a composite [20]. This process can be done 

at room temperature using equipment designed for use with thermosetting resins in vacuum 

infusion, resin transfer molding (RTM), and is a styrene free process [17]. Styrene is a 

common chemical in the composites industry for many reasons; particularly, it is a primary 

ingredient in unsaturated polyester resin. Styrene is a key crosslinking agent in these resin 

systems, however it has a particularly strong odor and is a potentially hazardous material 

[21]. 

The reported viscosity and mechanical properties of the Elium resin system were a major 

contributing factor in the choice to include it as one of the two thermoplastic materials in 

this study. Viscosity is a critical property when infusing composite materials because it 

controls how well the resin flows through the dry fabric part during infusion. This can 

affect the complexity and size of parts that are possible for fabrication. The reported 

Brookfield LVF #2 viscosity at 25 degrees Celsius is 100 mPa.s for Elium 150 [20]. The 

viscosity of Elium is comparable to other liquid resin systems used for vacuum infusion 

and RTM, which are typical in the composites industry. Table 1 gives the reported values 

for a 4 mm neat-resin casting of Elium provided by Arkema [20]. 

  



12 

 

Table 1: Elium Resin Properties of a 4-mm Unfilled Casting [20] 

Technical Property Value ISO Method Used 

Tensile Strength 76 MPa 527 

Tensile Modulus 3.300 MPa 527 

Tensile Deformation 6 % 527 

Compressive Strength 130 MPa 684 

Flexural Strength 130 MPa 178 

Flexural Modulus 3.250 MPa 178 

Specific Gravity 1.19 1183 

Heat Deflection 

Temperature 
109 C 75/A 

Maximum Continuous 

Service Temperature 
85 C - 

Coefficient of Linear 

Expansion 
65 x 10-6 mm/mm/C 2155-1 

Water Uptake (8 days) 0.5 % 62 

Rockwell Hardness (M) 100 2039 

Shore D Hardness 85-90 868 

Fracture Toughness Stress 

Intensity, K1C 

1.2 MPa.m0.5 13586 
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One other feature of this resin system that resulted in its selection is its ability to be recycled 

in two ways. One method is through mechanical recycling, which involves grinding up the 

composite at the end of its life and heating the resulting granules to reform them into new 

parts. This is similar to methods of recycling used with other thermoplastic composites. 

The second is reactive recycling, which also begins with the process of grinding the 

composite parts, followed by heating the fragments in order to recover the constituent 

materials through de-polymerization. Once the initial raw materials have been recovered, 

the monomer can be reused in a variety of ways to make new composites [22]. This method 

of reactive recycling is a unique trait of Elium, which gives composites made with it more 

versatility at the end of their service life. 

The E-glass fiber chosen for the vacuum infusion of Elium panels for mechanical testing 

in this study was E-LR 1208 [23] by VectorPly Performance Composite Reinforcements. 

This stitched E-glass unidirectional (UD) fabric has a weight of 405 g/sq.m (11.95 

oz/sq.yd) with a 31 g/sq.m (0.90 oz/sq.yd) polyester veil. This fabric is ideal for resin 

infusion due to the veil, which aids in resin travel through the composite during the 

fabrication process. The choice of a UD fabric was ideal for coupon testing because the 

results are easily compared with predictions from classical lamination theory (CLT), which 

is widely used in composite design. 

2.1.2 E-glass/PETg Pre-Impregnated Tapes 

The second material in this study, a pre-impregnated (prepreg) unidirectional (UD) tape 

was chosen to utilize available rapid manufacturing of thermoplastic composites using 

heated consolidation. This was done at the ASCC using two common processes: manual 

stamp forming and automated stamp forming. Stamp forming uses heated consolidation to 
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generate laminates from tailored blanks. More details on this process are given in the 

manufacturing sub-section. 

The literature review conducted showed that there are eight major companies which 

produce thermoplastic prepreg tapes in various types. These eight companies are 

Polystrand (PolyOne), TenCate, Barrday, Tohotenax, SGL Group, Porcher, Celanese and 

Vector Systems. Of these eight companies only Polystrand, TenCate, SGL, Celanese and 

Vectorams list the capability to make glass-fiber reinforced tapes. Each of these companies 

offers different polymer capabilities, which are: 

 Polystrand: PETg, PP Homopolymer, PP Copolymer [24] 

 TenCate: PEKK, PAEK, PEEK, PPS, PET, PA6, PP, HDPE [25] 

 SGL Group: Polyamide 6 (Nylon), ** [26] 

 Celanese: ABS, TPU, HDPE, POM, PP, PVDF, PA12, PA6, PES, PBT, PET, PA66, 

PPS, PPA, PEEK [27] 

 Vector Systems: PEEK, PEI, PPS, PP, PE, PC, PET, PES, PBT, (Nylon) PA12, PA11, 

PA6, PA6.10, PA4.1, PEKK) [28] 

** Reports that thermoplastic of choice can be used but does not give specifics. 

When comparing these options as potential choices many factors were taken into 

consideration: formability, balance between amorphous and crystalline structure, 

processing temperature, mechanical properties, and cost-effectiveness. A useful tool that 

was used in the first phase of the selection process is the Tangram Periodic Table of 

Thermoplastics [29], which was used to generate a reduced table for the materials 

considered in this study, shown as Figure 2. 
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Figure 2: Reduced Table Adapted from Tangram Periodic Table of Thermoplastics 

Figure 2 visually represents the level of crystallinity and performance of a variety of 

thermoplastics. One polymer was added to the chart which was not on the Tangram table, 

acrylic, to represent the Elium polymer in reference to other available options. The position 

of Acrylic was based on the available properties provided by Arkema and represents this 

study’s best estimate of its relative performance and crystallinity position. For the purposes 

of this study, a desirable polymer choice would meet the following remaining criteria: 

 Good mechanical properties 

 Readily available and cost-effective  

 Balance of amorphous and crystalline structure 
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 Relatively amenable to processing 

Polymers from the Engineering region of the performance scale and near the middle of the 

crystallinity range on Figure 2 meet the first and third criteria in the bulleted list. Polymers 

in the performance range may have higher mechanical properties but are less cost effective. 

Comparing the available UD tapes from Polystrand, TenCate, SGL Group, and Vector 

Systems to the described area shown as the design envelope on Figure 2, PETg and PA 11 

are are desirable options. 

These two options best meet the balance of crystallinity and are considered engineering 

grade thermoplastics. PETg was chosen because it met the criteria for the second material 

choice in this study and is a polymer identified as of interest to ERDC, our collaborator on 

this project. PETg was viewed as more desirable than PA 11 for this study due to being 

more amorphous and therefore more formable for these initial manufacturing trials. 

The PETg sourced for this study came from Polystrand (PolyOne) and came in two 

different forms; IE 5842 an E-glass/PETg prepreg tape and IE 5842b an E-glass/PETg 

prepreg tape which were used for different phases of the study.  

The first, IE 5842, came on a roll 635-mm (25-inch) wide with the E-glass fiber 

reinforcement running in the length direction. The PETg resin in this prepreg comes in its 

natural form, a green color. This material was used for the initial feasibility trials for 

fabricating PETg/E-glass laminates through stamp forming. 

Once feasibility was shown the second version of the material was acquired, IE 5842b. 

This is the same base material as IE 5842, however the resin is dyed black, as indicated by 

the “b” in the technical designation, rather than being left un-died in its natural color. The 
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IE 5842b material originally came on a roll like IE 5842, but was slit to various widths 

between 50-mm and 150-mm for use with the Dieffenbacher tape layup machine at the 

ASCC. The IE 5842b variation of the material was advantageous for many reasons, which 

are elaborated in the manufacturing sub-section of this chapter. 

The technical properties of both PETg variations procured from Polystrand are taken 

from the provided technical data sheet that is shared for both materials and are given in 

Table 2. 
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Table 2: Technical Properties of IE 5842 Thermoplastic Prepreg [30] 

Technical Property Value Method 

Glass Content 58 wt% ASTM D3647 

Areal Weight 405 g/m2 - 

Thickness 0.3 mm - 

Longitudinal Tensile 

Strength 
571 MPa ASTM D3039 

Longitudinal Tensile 

Modulus 
28.5 GPa ASTM D3039 

Transverse Tensile Strength 1.5 MPa ASTM D3039 

Transverse Tensile Modulus 0.52 GPa ASTM D3039 

Longitudinal Compressive 

Strength 
29.5 MPa ASTM D6641 

Longitudinal Compressive 

Modulus 
0.71 GPa ASTM D6641 

Transverse Compressive 

Strength 
5.5 MPa ASTM D6641 

Transverse Compressive 

Modulus 
0.26 GPa ASTM D6641 

In-Plane Shear Strength 21 MPa ASTM D7078 

In-Plane Shear Modulus 0.21 GPa ASTM D7078 

Transverse Shear Strength 6.7 MPa ASTM D7078 

Transverse Shear Modulus 0.17 GPa ASTM D7078 

Flexural Strength 602 MPa ASTM D790 

Flexural Modulus 4.18 GPa ASTM D790 

In-Plane Poisson’s Ratio 0.27 ASTM D3039 
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During this study, an independent investigation was undertaken at the ASCC to further 

investigate the properties of commercially available thermoplastic materials [31], which 

was beneficial in supplementing the review done for this study during material selection. 

Polyethylene terephthalate (PET) has homogenous monomers that are arranged in a semi-

crystalline fashion, a highly ordered and closely packed solid-state molecular structure 

[31]. Glycolized polyethylene terephthalate (PETg) is a co-polyester created to be more 

amorphous and formable than the base polymer PET. 

A summary of the advantages of PETg polymer as a matrix for composites is given below. 

 Competitive engineering mechanical properties 

 Availability and cost-effectiveness 

 Balance between amorphous and crystalline structure 

 Relatively low processing temperatures 

In addition, PETg can be used in injection molding, extrusion blow molding, and 3D 

printing due to its amorphous nature. Due to its amorphous nature, PETg is a forgiving 

material for 3D printing, and is rated as equally easy to print as PLA, which is often 

considered the easiest material to print [32]. As 3D printing grows in interest and becomes 

more versatile, the ability to use this polymer in fiber-reinforced thermoplastics as well as 

print it in filament form could be of interest.  

2.2 Manufacturing Methods 

Both thermoplastic materials chosen were manufactured with E-glass reinforcing fibers. 

Elium composites were fabricated in a vacuum infusion process similar to what is 
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traditionally done with thermosets. Whereas PETg composites were formed through stamp 

forming of prepreg tapes. 

2.2.1 Vacuum Infusion Consolidation 

The vacuum infusion process is widely accepted in the composites industry and has a 

straightforward setup, which requires minimal lab equipment. Figure 3 displays a setup 

showing the key components of the process. First, dry E-glass fibers are placed on an 

aluminum or glass surface treated with a mold release agent. Then a non-stick layer—

referred to as ‘peel-ply’ – is applied to the top of the glass to prevent the part from sticking 

to the bag. Flow media is placed on top of the peel-ply to assist in resin travel as well. Then 

lines are put in place for the vacuum pump and resin inlet (as shown), and the part is 

enclosed in a bag and pulled under a vacuum. 

 

Although this process is labor-intensive, it has a variety of advantages, which are outlined 

in the following bulleted list. 

 Infusion allows for the fabrication of large parts 

 Infusion can be done over a mold or specified shape 

 Parts can be made with various weights of dry fabrics 

Figure 3: Vacuum Infusion Fabrication Setup 
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 External heating or consolidation under pressure is not required 

Elium has the unique ability as an in-situ two-part thermoplastic to be used with existing 

thermosetting fabrication processes. Since Elium is fabricated using two parts, a monomer 

and a peroxide activator, it is uniquely suited to existing thermosetting fabrication 

processes, such as vacuum infusion. As part of testing the feasibility of Elium it was 

decided that the infusions for acquiring mechanical properties would be repeated with a 

common thermoset as the resin in order to show that Elium is suitable for similar 

applications. Derakane 610-C by Ashland was chosen as the thermosetting resin system 

because it is commonly used in structural applications and is familiar to the ASCC. The 

use of this system allowed for the knowledge and skill acquired through using thermosets 

to be used in the fabrication of Elium. 

Many properties of a resin system affect how well it will perform in a variety of ways. For 

vacuum infusion, one of the most important properties is the viscosity of the resin since 

this controls how easily the resin will flow through the part during the infusion process. 

Important performance properties are the strength, modulus, and heat deflection 

temperature. Some of these common properties of the two discussed infusible resin systems 

are reported in Table 3. The properties chosen in this table are ones reported on both the 

technical data sheets for Elium 150 and a comparable engineering thermoset resin system 

Derakane 610-C.  
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Table 3: Common Properties of Two Infusible Resin Systems 

Property Elium 150 [20] 
Derakane 610-C 

[33] 

Elium Method 

Derakane Method 

Viscosity (25 C) 100 mPa.s * 130 mPa.s ** 
Brookfield 

(LVF*, LVT**) 

Specific Gravity 1.19  1.07 - 

Tensile Strength 76 MPa 71 MPa 
ISO 527 

ASTM D638 

Tensile Modulus 3300 MPa 3530 MPa 
ISO 527 

ASTM D638 

Compressive 

Strength 
130 MPa - ISO 684 

Flexural Strength 130 MPa 129 MPa 
ISO 178 

ASTM D790 

Flexural Modulus 3250 MPa 3920 MPa 
ISO 178 

ASTM D790 

Heat Deflection 

(Distortion) 

Temperature 

109 C 76 C 
ISO 75/A*** 

ASTM D648 

*** ISO 75 reported for both resin systems, A only specified for Elium.  

It should be noted that the Elium 150 sheet specifies only ISO standards whereas the 

Derakane 610-C sheet specifies both ISO standards and analogous ASTM standards. 

Several iterations of Elium composite panels were vacuum infused at the ASCC as a part 
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of this study. This was necessary because of the lack of familiarity with the Elium 150 resin 

system at the start of this study. 

The first panels made with Elium were unidirectional because that is the most suitable for 

mechanical testing to find base properties of a composite for use with classical lamination 

theory (CLT). These early UD panels experienced warping as the resin polymerized due to 

the shrinking which occurs during this process. The first round of material testing with 

Elium dealt with this shrinking by having a 90-degree layer on the surface of the composite 

and post curing the panels after infusion at 80 degrees Celsius for four hours [20]. As more 

experience was acquired with Elium and the vacuum infusion process, fully unidirectional 

panels could be fabricated without noticeable warping effects from shrinkage during 

polymerization. Mechanical testing was done with both the original [90, 0, 0, 0]S panels 

and the later iteration [0]10 panels of E-glass/Elium composite. The results of this testing 

are discussed in chapter three of this thesis. 

Fully UD vacuum infusions were also done using Derakane 610-C as a part of this study. 

This was done in order to facilitate a fair comparison between the thermoplastic Elium 

resin system and a thermosetting resin system. Infusions with both resin systems used for 

comparison were done in close proximity to each other using the same fabrication methods 

and glass fiber reinforcement. 
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Figure 4 show a typical UD infusion setup conducted at the ASCC. The second phase of 

vacuum infused coupon testing conducted was done in this manner to get the most 

comparable results from the two resin systems. 

Note that in these infusions, the resin line is in the center of the part and the vacuum lines 

are on two sides. This is advantageous because if there is a leak in the setup it will be pulled 

to the side outside of the composite part. This is done because it provides a more complete 

wet out in the part during the infusion. 

Figure 5 and Figure 6 show infused composite panels reinforced with 10-layers of E-LR 

1208 UD E-glass fibers 38.1-cm (15-inches) by 53.34-cm (21-inches) in size using Elium 

150  and Derakane 610-C  resin-systems respectively. 

Figure 4: Typical Vacuum Infusion Setup at the ASCC 
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The two infused panels are very similar in nature; cured Elium 150 has a light green color 

whereas Derakane 610-C has a darker, more yellow-green color when cured. The infused 

Elium panel in Figure 5 is seen to be free of internal blemishes though peel ply has stuck 

to the sides of the panel.  The infused Derakane panel in Figure 6 has one blemish shown 

on the right side of the panel, which could be from a variety of things, such as permanent 

marker in the dry glass prior to the infusion. Otherwise this panel did not show any dry 

spots and both were found suitable for creating testing specimens. The area of the black 

blemish on the Derakane panel was not used. Average processing times and parameters for 

the vacuum infusion consolidation process of the two polymer matrix materials into 

composite laminates investigated are shown in Table 4. 

Figure 5: Infused UD Elium 150 Panel Figure 6: Infused UD Derakane 610-C Panel 
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Table 4:  Processing Times & Parameters for Two Polymer Systems [20] [33] 

Polymer Matrix 

System 

Infusion open 

time (minutes) 

Infusion peak 

time (minutes) 

Post-Cure 

time (hours) 

Post-Processing 

temperature (C) 

Thermoset Vinyl 

ester 

29* 56 24 60 

Thermoplastic 

Acrylic 

20 33 4 80 

* The infusion open time cited for the thermoset vinyl ester is the gel time given. 

In Table 4 the infusion open time is defined as the time in which the viscosity of the resin 

is low enough for it to be inserted into the part. Demolding of the parts can be done at 

various times after the infusion peak depending on the system. Elium 150 can be demolded 

5-10 minutes after the infusion peak has been reached [20]. A safe time past peak is not 

given for the Derakane 610-C in the technical data sheet. The results of composite 

laminates made using the two polymer matrix systems used in this study and E-LR 1208 

unidirectional E-glass as reinforcement are given in Table 5. 

Table 5: Composite Laminate Results from Two Polymer Systems 

Polymer Matrix 

System 

Number 

of Layers 

Density 

[34] 

(g/cm3) 

Average 

thickness 

(mm) 

Fiber 

weight 

fraction 

Fiber 

volume 

fraction 

Derakane 610-C 10 1.75 4.23 55.62 % 38.27 % 

Elium 150 10 1.80 4.37 53.48 % 37.87 % 

 



27 

 

The density was found by water displacement using ASTM D792-13. The fiber weight 

fraction (𝑊𝑓) and fiber volume fraction (𝑉𝑓) reported are calculated values found by using 

equations 1 and 2. 

𝑊𝑓 =
𝑀𝑎𝑠𝑠 𝑜𝑓 𝐹𝑖𝑏𝑒𝑟𝑠

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
 Equation 1 

𝑉𝑓 =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐹𝑖𝑏𝑒𝑟𝑠

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
 Equation 2 

The mass of fibers used in equation 1 was measured in the lab prior to infusion as well as 

the mass of composite. The volume of fibers used in equation 2 was found using the known 

density of E-glass fibers which is 2.54 g/cm3 and the volume of composite which was 

measured. All calculated density, fiber weight fraction and fiber volume fraction values 

presented in Chapter 2 of this study were determined in this way. 

2.2.2 Manual Stamp Thermoforming 

The second manufacturing method selected for investigation is manual stamp forming. 

This method used a heated hydraulic consolidation press with a capacity of 650-tonnes 

(700-US tons), shown in -, that measures 0.914-meters (3-feet) by 0.914-meters (3-feet). 

This press was used for forming the selected E-glass/PETg prepreg UD tapes. This was the 

first work done with this method during this study and there were several challenges to this 

process, including migration of fibers from their original orientation in the material (fiber 

wash), uneven or incomplete consolidation, and entrapped air in the part. 
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Figure 7: Manual Stamp Forming Press 

Several iterations of this process were conducted, with Trial 1-3 introducing a frame around 

the tapes to reduce fiber wash, some variations in dwell time, and increased pre-

consolidation pressure in Trials 1-5 and 1-6 to force out entrapped air between the layers 

of prepreg. The quality of parts was increased dramatically with these modifications. 

The initial manual stamp forming efforts are referred to as Trail 1. – shows a consolidated 

E-glass/PETg laminate made with Trial 1-6 parameters, the most successful from these 

trials. Several problems still existed, however the quality of the parts was improved through 

the trial iterations. Some observations on this method are given. 
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Figure 8: Trial 1-6 Consolidated Laminate (IE 5842) 

Trial Observations: 

 Prolonged heating under pressure causes the fibers to migrate out of alignment in the 

flowing thermoplastic. This is called fiber wash and occurs even when the composite 

is in a containment frame 

 Since the prepreg tapes are naturally curled because they are stored on a roll, it is 

difficult to force air trapped between layers out of the composite. 

 The total fabrication time per laminate is very long in comparison to other fabrication 

methods discussed later in this section. 

Due to these trial observations and the slow nature of this method of heated consolidation, 

the study moved to a second method of composite fabrication, which resulted in 

substantially better results. The parameters used to fabricate PETg composite laminates 

from IE 5842 prepreg tapes are summarized in Table 6. For each manufacturing trial 
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multiple iterations of fabrication were conducted, and the trial iteration is indicated by the 

second number in the trial identifier. 

Table 6: Manual Stamp Forming Parameters for IE 5842 PETg Prepreg Tapes 

Trial 

Number 

Press 

Temp

(ºC) 

Pre-

Consolidation 

Dwell Time 

(minutes) 

Pre-

Consolidation 

Pressure 

(kPa) 

Heated 

Stamping 

Dwell 

Time 

(minutes) 

Cooling 

Stamping 

Dwell 

Time 

(minutes) 

Stamping 

Pressure 

(kPa) 

Trial 

1-1 
213 - - 45 100 758 

Trial 

1-2 
213 15 137 5 100 757 

Trial 

1-3 
216 20 137 5 100 757 

Trial 

1-4 
216 45 137 5 100 757 

Trial 

1-5 
216 * * 30 100 759 

Trial 

1-6 
216 15 2758 5 100 757 

* The pre-consolidation phase for Trial 1-5 was a multi-step process as follows: 20 seconds 

at 173.06 kPa, 20 seconds at 344.05 kPa, 20 seconds at 517.11 kPa, 20 seconds at 690.17 

kPa, 40 seconds at 1378.95 kPa, 40 seconds at 2069.12 kPa, 45 seconds at 2757.9 kPa, a 

final step of 40 seconds at 1378.95 kPa. 
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Trial 1-6 the final iteration of manual stamp forming, incorporated a large change in pre-

consolidation pressure as indicated. This large change in pre-consolidation pressure was 

done based on institutional knowledge on manual stamp forming at the ASCC. The 

increased pre-consolidation pressure was used to force entrapped air from between the 

layers of prepreg out of the part. Trial 1-5 and 1-6 introduced two variations of this and 

they both saw a significant decrease in the white haze, which can be seen in Figure 8 around 

the edges of the part from entrapped air.  

Table 7 shows the calculated properties of the composite fabricated in Trial 1-6 of manual 

stamp forming.  

Table 7: Manual Stamp Forming Results for Trial 1-6 

Processing 

Trial Number 

Number 

of Layers 

Density 

(g/cm3) 

Average 

thickness 

(mm) 

Fiber 

weight 

fraction 

Fiber volume 

fraction 

Trial 1-6 10 2.01 1.87 70.03 % 55.50 % 

 

2.2.3 Automated Stamp Thermoforming 

The third manufacturing process in this study is thermoforming through automated stamp 

forming. This process is favored for its unique thermoforming capabilities and represents 

an industry standard for thermoplastic material fabrication. It uses heat and pressure with 

a desired dwell time to form multiple pre-impregnated layers of thermoplastic material into 

a complete laminate. 
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The University of Maine (UMaine) has formed the Consortium for Manufacturing 

Innovation in Structural Thermoplastics (CMIST) to develop a thermoplastic composites 

technology roadmap [35]. This roadmap has identified key applications for structural 

thermoplastics by linking market drivers and value streams with projects. UMaine’s ASCC 

has established the Alfond Advanced Manufacturing Laboratory for Structural 

Thermoplastics, which is a state-of-the-art automated manufacturing cell for the stamp-

thermoforming process.  

The automated thermoforming line in this lab contains a Dieffenbacher Fiber Forge Relay 

2000 automated tape layup machine, a Techni-Modul infrared (IR) oven, and a 650 tonne 

Utah Hydraulic press with automated transport capability between machines. 

The first step in the automated thermoforming line is the Dieffenbacher Fiber Forge Relay 

2000 automated tape layup machine shown in Figure 9. This machine uses a translating 

and rotating table as a construction surface to place slit thermoplastic tapes between 50 mm 

Figure 9: Dieffenbacher Fiber Forge Relay 2000 Tape Layup Machine 



33 

 

and 150 mm pulled off the material creel in desired orientations, and then uses a bank of 

ultrasonic welders to spot weld the tapes together to form what is called a tailored blank. 

Once the tailored blank is completed it can be transported via robotic arm from the tape 

layup machine to the next part of the automated thermoforming process. 

The second step in the process is heating the tailored blank in the Techni-Modul infrared 

(IR) oven shown in Figure 10. The robot arm, which is also shown, moves the tailored 

blank from the tape layup machine onto the IR oven tray, which closes into the oven and 

heats the part under the desired conditions. Then the oven tray opens and the robotic arm 

moves the heated blank into the hydraulic press to be consolidated. 

The robot arm moves the heated tailored blank into the 650 metric ton Utah hydraulic press 

shown in Figure 11 and moves out of the way. The stamping press then rapidly moves 

down to apply pressure and cool the part. The pressure and temperature of the press can be 

controlled to provide the processing parameters desired for this step. Once the pressing 

portion of the process is completed and the part is cooled, the automated stamp forming 

Figure 10: Techni-Modul Infrared (IR) Oven 
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process is finished. For all processing trials of automated stamp forming conducted as a 

part of this study if a stamping temperature is not given in the processing parameters it was 

the ambient temperature of the lab, approximately 25 degrees Celsius. 

Several iterations of fabrication were conducted before mechanical testing was performed. 

The first trials and initial mechanical testing were done using Polystrand IE 5842 PETg 

prepreg tape which has the resin in its natural green color. 

The first composite laminate fabricated by automated stamp forming process is shown as 

Figure 12. Many improvements were made after this original consolidation which will be 

outlined in this section. The original PETg material acquired was not slit for use on the 

automated tape layup machine because feasibility trials were desired before the study 

committed to this material choice.  

Figure 11: 650 Metric Ton Utah Hydraulic Press 
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Therefore, parts fabricated using natural PETg were laid up by hand then processed on 

aluminum caul sheets coated in non-stick Teflon and heated in the IR-oven. Then the 

automated robot arm transported the caul sheets with the material into the stamp forming 

press, which cools the part under the desired pressure in the IR-oven and stamp forming 

press. These first trials done using automated thermoforming are referred to as Trial 2. It 

can be seen in the Trial 2-1 part that significant burning of material occurred on the ends 

of the part where the glass-fiber was more exposed. In addition, resin flowed out of the 

sides of the aluminum caul sheets and gathered on the left and right edges. This would 

significantly affect the resin content in the usable part area, which is not desirable. Table 8 

shows the progression of processing parameters used during Trial 2.  

  

Figure 12: Trial 2-1 IE 5842 Thermoformed Part 
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Table 8: Automated Thermoforming Trial 2 Processing Parameters 

Processing 

Trial 

Number 

Material 

System 

Number 

of layers 

IR-Oven 

Temperature 

(Celsius) 

IR-Oven 

Dwell 

Time 

(seconds) 

Stamping 

Pressure 

(kPa) 

Stamping 

Time 

(seconds) 

Trial  

2-1 
IE 5842 10 232 200 1380 30 

Trial  

2-2 
IE 5842 10 216 175 1380 30 

 

When processing material in the automated stamp forming line at the ASCC the operator 

needs to set the zones in the IR-oven in order to control the heat output in that area of the 

oven. For Trial 5 the IR-Oven zones were all set to 100%. Table 9 shows the calculated 

results of Trial 2-2 from the first trial of automated stamp forming done as a part of this 

study. 

Table 9: Automated Stamp Forming Results for Trial 2-2 

Processing 

Trial Number 

Number 

of Layers 

Density 

(g/cm3) 

Average 

thickness 

(mm) 

Fiber weight 

fraction 

Fiber 

volume 

fraction 

Trial 2-2 10 1.86 2.34 53.85 % 39.47 % 

 

The first change from Trial 2 to Trial 3 was developing a method for pre-consolidation of 

the PETg prepreg tapes in a convection oven to increase fiber alignment in the final 
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consolidated plates. This step was necessary in order to relax the tapes, which come off a 

roll of material and therefore curl easily before they are consolidated. 

In order to create a successful pre-consolidation process several iterations with varying 

processing were attempted. It was found that the most effective processing steps were: 

 Heat oven to 150 degrees Celsius 

 Place plies (pre-preg sheets) in the oven one at a time 

 Heat sheet for about 1 minute and remove 

This version of the pre-consolidation process was used when preparing the trial 3 PETg for 

consolidation in the automated stamp forming process. 

After pre-consolidation the automated thermoforming unit was used to rapidly heat the 

PETg tape in the IR-Oven and consolidate it in the hydraulic press to form the final 

laminate. Another change that was made is that the exposed face of the aluminum caul 

sheets used to transport the material were painted with a black paint. In order to reduce 

reflections off the metal surface that disrupted the pyrometers which is suspected to have 

caused issues with burning when fabricating the Trial 2 parts. 

The first goal in investigating the feasibility of using E-glass/PETg composite as a 

structural reinforcement was preparing UD specimens for testing to ascertain mechanical 

properties.  
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Figure 13  shows the consolidated E-glass/PETg laminate fabricated through automated 

stamp forming with manual tailored blanks. Manual tailored blanks are generated by pre-

consolidating the layers of IE 5842 enough to take the curl out of the layers from being 

stored on the roll and tack them to each other. After pre-consolidation in a convection oven, 

the blank was processed in the same fashion as the Trial 2 blanks with the modifications 

outlined previously. The blank was still unrestrained while in the oven and press which 

explains the small amount of fiber wash seen on the edges of the panel in Figure 13. Table 

10 shows the processing parameters used to generate these UD laminates. The IR-Oven 

settings used for Trial 3 are shown in Table 11 and Table 12 shows the calculated results 

of Trial 3-1 from the automated stamp forming done as a part of this study. Panels 

fabricated in this way were tested using standardized methods, the results of which are 

presented in chapter 3 of this thesis. 

Figure 13: Improved UD PETg Thermoformed Panel 
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Table 10: IE 5842 Automated Thermoforming Trial 3 Processing Parameters 

Processing 

Trial 

Number 

Material 

System 

Number 

of layers 

IR-Oven 

Temperature 

(Celsius) 

IR-Oven 

Dwell 

Time 

(seconds) 

Stamping 

Pressure 

(kPa) 

Stamping 

Time 

(seconds) 

Trial  

3-1 
IE 5842 10 218.3 435 1380 60 

 

Table 11: Trial 3 IR Oven Settings 

IR Oven - Coefficient Value (%) 

Zone 1 Upper 50 

Zone 2 Upper 50 

Zone 3 Upper 30 

Zone 4 Upper 5 

Zone 5 Upper 30 

Zone 1 Lower 65 

Zone 2 Lower 55 

Zone 3 Lower 30 

Zone 4 Lower 5 

Zone 5 Lower 65 

 

Table 12: Automated Stamp Forming Results for Trial 3-1 

Processing 

Trial Number 

Number 

of Layers 

Density 

(g/cm^3) 

Average 

thickness 

(mm) 

Fiber 

weight 

fraction 

Fiber volume 

fraction 

Trial 3-1 10 1.77 2.35 57.92 % 40.27 % 
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After creating panels for cutting coupons for mechanical testing the next phase of this study 

was to fabricate panels to be used for testing friction-welding parameters. 

Figure 14 shows a 15.9-cm (6.25-inch) by 35.6-cm (14.0-inch) UD pre-consolidated panel 

of PETg prepreg tapes, which represents the fourth trial with this material. The desired 

thickness of the consolidated panel after processing was meant to be approximately 6.35-

mm (0.25-inch), which was achieved with 35-layers of prepreg tape. 

In order to solve the fiber wash seen in the UD panels for mechanical testing shown in 

Figure 13, an aluminum frame was used in order to restrain the edges of the material during 

Figure 14: Pre-Consolidated PETg Prepreg in 

Aluminum Consolidation Frame 
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consolidation. The frame acts as a boundary to restrain resin flow and helps keep the fibers 

in alignment. 

The pre-consolidation process for Trial 4 differs from that used for Trial 3 because of the 

increased thickness of the panel. The processed used for trial 4 was as follows: 

 Heat oven to between 150 & 175 Celsius 

 Place plies in the oven up to five at a time 

 Place parchment paper and a 50 lb weight on the material in the aluminum frame 

 Heat sheet for about 25 minutes and remove 

Table 13 shows the Trial 4 friction-welding unidirectional panel processing parameters 

used for this study. The IR-Oven settings used for Trial 4 are shown in Table 14. Fiber 

weight and volume fractions were not found for Trials 4-1 and 4-2 because they were not 

used for mechanical testing and were simply thicker laminates made from IE 5842 used in 

Trial 3-1. 
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Table 13: IE 5842 Automated Thermoforming Trial 4 Processing Parameters 

Processing 

Trial 

Number 

Material 

System 

Number 

of 

layers 

Design 

thickness 

(mm) 

IR-Oven 

Temp-

erature 

(ºC) 

IR-

Oven 

Dwell 

Time 

(s) 

Stamping 

Pressure 

(kPa) 

Stamping 

Time (s) 

Trial 4-1 IE 5842 35 6.35 218.3 690 2760 60 

Trial 4-2 IE 5842 18 3.175 218.3 345 2760 60 

 

Table 14: Trial 4 IR Oven Settings 

IR Oven - Coefficient Value (%) 

Zone 1 Upper 50 

Zone 2 Upper 30 

Zone 3 Upper 30 

Zone 4 Upper 0 

Zone 5 Upper 0 

Zone 1 Lower 95 

Zone 2 Lower 95 

Zone 3 Lower 85 

Zone 4 Lower 0 

Zone 5 Lower 0 

 

With manufacturing feasibility proven on the automated stamp forming line with IE 5842 

PETg the ASCC acquired IE 5842b, a dyed black version of IE 5842, in order to use the 

automated tape layup machine to generate the tailored blanks, fully utilizing the automated 

process. In addition, this material eliminates the need for pre-consolidating the material 
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prior to heating and consolidating it by using the tape layup machine to adhere the layers 

together, which further automated and shortened the fabrication process. 

The IE 5842b material was slit into various widths between 50-mm and 150-mm for use 

on the tape layup machine. The most common width used was 50.8-mm (2-inch). The 

panels processed for this study in this way are considered Trial 5. 

When operating the tape layup machine a critical component is the ultrasonic welding of 

the individual tapes to each other in order to form them into a tailored blank. This holds 

the layers together until they can be heated and consolidated. The ultrasonic welder settings 

used for trial 5 are shown in Table 15 as taken from TailorGen, the software used for 

operating the tape layup machine. 
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Table 15: TailorGen Welding Parameters for Trial 5 Processing 

Weld Only 
Time Increment 

(ms) 

Energy Increment 

(%) 

Actual Time 

(ms) 

Actual 

Energy (%) 

 1.5 1.5 65.0 65.0 

 1.5 1.5 66.5 66.5 

X 1.5 1.5 66.5 66.5 

X 1.5 1.5 66.5 66.5 

 1.5 1.5 68.0 68.0 

 1.5 1.5 69.5 69.5 

 1.5 1.5 71.0 71.0 

 1.5 1.5 72.5 72.5 

 1.5 1.5 74.0 74.0 

 1.5 1.5 75.5 75.5 

X 1.5 1.5 75.5 75.5 

X 1.5 1.5 75.5 75.5 

X 1.5 1.5 75.5 75.5 

X 1.5 1.5 75.5 75.5 

X 1.5 1.5 75.5 75.5 

 

Once the tailored blanks have been created on the tape layup machine, the part was heated 

in the IR-Oven and then consolidated in the stamp forming press. Table 16 shows the Trial 
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5 concrete-CFRTP stud panel processing parameters used for this study. The IR-Oven 

settings used for Trial 5 are shown in Table 17. Table 18 shows the calculated results of 

Trial 5-1 from the automated stamp forming done as a part of this study. 

Table 16: IE 5842b Trial 5 Concrete-CFRTP stud Panel Processing Parameters 

Trial 

Number 

Material 

System 

Number 

of layers 

IR-Oven 

Temperature 

(Celsius) 

IR-Oven 

Dwell 

Time 

(seconds) 

Stamping 

Pressure 

(kPa) 

Stamping 

Time 

(seconds) 

Trial 5-1 IE 5842b 8 218.3 30 2760 60 

 

Table 17: Trial 5 IR Oven Settings 

IR Oven - Coefficient Value (%) 

Zone 1 Upper 50 

Zone 2 Upper 50 

Zone 3 Upper 30 

Zone 4 Upper 5 

Zone 5 Upper 30 

Zone 1 Lower 65 

Zone 2 Lower 55 

Zone 3 Lower 30 

Zone 4 Lower 5 

Zone 5 Lower 65 
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Table 18: Automated Stamp Forming Results for Trial 5-1 

Trial Number 
Number of 

Layers 

Density 

(g/cm^3) 

Average 

thickness 

(mm) 

Fiber 

weight 

fraction 

Fiber 

volume 

fraction 

Trial 5-1 8 1.75 2.04 55.75 % 38.47 % 

 

Once the panels are fully processed and consolidated into a composite laminate they need 

to be trimmed in order to be used as concrete-CFRTP stud panels. The concrete-CFRTP 

stud test will be described in detail during chapter 4 of this study. When processing the IE 

5842b material several observations were made which were new to automated stamp 

forming of tailored blanks made on the tape layup machine. The observations from Trial 5 

are as follows: 

 Edges of parts must be trimmed off 

 Welds were still visible after consolidation 

 Gaps occurred between the tapes 

Figure 15 shows a consolidated full concrete-CFRTP stud panel to illustrate the gaps that 

occurred between the tapes. 
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Figure 15: IE 5842b Consolidated Concrete-CFRTP stud Tailored Blank 

The material selection and manufacturing trials done for this study advanced the 

knowledge and capabilities for processing thermoplastics at the ASCC by proving the 

feasibility of processing amorphous thermoplastic materials. From the manufacturing trials 

done in this study, it is apparent that automated stamp forming with tailored blanks made 

on the tape layup machine is the most time effective process for fabricating consolidated 

composite laminates. A unique phenomenon was also discovered in the processing of IE 

5842b material, which is that the edges of the tapes shrink during heating. Future 

investigating was done on the causes of tape shrinking by Benjamin Smith, a Graduate 

Research Assistant at the ASCC. 
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With the tape shrinking solved on the automated stamp forming line by pre-heating the 

tailored blanks in the press in order to bond the surface layers together Trial 6 was 

conducted to fabricate unidirectional laminates from IE 5842b material to verify similar 

results were obtained to that of Trial 3. Table 19 shows the processing parameters used to 

generate these UD laminates. The IR-Oven settings used for Trial 6 are shown in Table 20 

and Table 21 shows the calculated results of Trial 6-1 from the automated stamp forming 

done as a part of this study. 

Table 19: IE 5842b Automated Thermoforming Trial 6 Processing Parameters 

Trial 

Number 

Material 

System 

Number 

of layers 

IR-Oven 

Temp. 

(ºC) 

IR-Oven 

Dwell 

Time (s) 

Stamp 

Pressure 

(kPa) 

Stamp 

Temp. 

(ºC) 

Stamp 

Time 

(s) 

Trial  

6-1 

IE 

5842b 
10 223.9 30 1380 76.67 60 

Table 20: Trial 6 IR Oven Settings 

IR Oven - Coefficient Value (%) 

Zone 1 Upper 50 

Zone 2 Upper 50 

Zone 3 Upper 30 

Zone 4 Upper 5 

Zone 5 Upper 30 

Zone 1 Lower 65 

Zone 2 Lower 55 

Zone 3 Lower 30 

Zone 4 Lower 5 

Zone 5 Lower 65 
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Table 21: Automated Stamp Forming Results for Trial 6-1 

Processing 

Trial Number 

Number 

of Layers 

Density 

(g/cm^3) 

Average 

thickness 

(mm) 

Fiber 

weight 

fraction 

Fiber volume 

fraction 

Trial 6-1 10 1.75 2.41 56.38 % 38.83 % 

 

The mechanical properties found from standardized testing done on these materials are 

discussed in chapter 3 along with comparison to predictions from CLT using constitutive 

properties if the thermoplastic materials presented in this chapter. 

2.3 Summary of Constitutive Material Properties 

For the materials selected in this study a summary of their constitutive elastic behavior and 

strength properties in Table 22 for matrix properties and Table 23 for fiber properties. 

These properties, necessary for use with micromechanics to predict the elastic and strength 

properties. A comparison of predicted composite properties using these material properties 

is compared to the experimental values collected for composites in chapter 3.  
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Table 22: Summary of Matrix Material Properties 

Property (units) PETg Resin Elium Resin Derakane Resin 

Elastic Modulus 

 𝐸𝑚 (GPa) 
2.2 [36] 3.3 [20] 3.5 [33] 

Longitudinal Tensile 

Strength, 𝐹𝑚𝑡 (MPa) 
53 [36] 76 [20] 71 [33] 

Longitudinal 

Compressive Strength  

𝐹𝑚𝑐  (MPa) 

55 [36] 130 [20] 127 [7] 

Poisson’s Ratio νm (-) - - 0.35 [7] 

 

Table 23: Summary of Fiber Material Properties 

Fiber Material 

Longitudinal 

Elastic Modulus 

𝐸𝑓 (GPa) 

Longitudinal 

Tensile Strength 

𝐹𝑓𝑡 (MPa) 

Poisson’s Ratio 

νf (-) 

E-glass 73 [7] 3450 [7] 0.23 [7] 

 

The technical documentation used for the thermoplastic resin-systems chosen for this study 

did not provide Poisson’s ratios. This is a necessary material property for micromechanics 
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analysis therefore a typical thermoplastic value for PEI of 0.37 from Barbero [37] was 

assumed for both PETg and Elium resin. 

2.4 Conclusions 

From the literature review, material selection, and manufacturing trials conducted in this 

study objective 1 of this study was completed. The following conclusions presented in a 

bullet list were made from the work conducted: 

 Elium 150 presents a unique thermoplastic option for composites as it utilizes widely 

accepted fabrication techniques developed for use with industry accepted thermosetting 

polymer resin-systems. 

 Limited options are available for amorphous engineering grade thermoplastic prepreg 

tapes reinforced with glass fibers. 

 PETg prepreg tapes are a potentially suitable option for structural applications based 

on competitive mechanical properties, availability, cost effectiveness, and relatively 

low processing temperatures for an engineering grade thermoplastic. 

 Manufacturing of fiber-reinforced thermoplastic composites is feasible through both 

vacuum infusion using the Elium 150 resin-system and stamp forming of PETg prepreg 

tapes. 

 Automated stamp forming of PETg prepreg tapes achieved higher quality results with 

reduced manufacturing time compared to manual stamp forming. 
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CHAPTER 3 

MATERIAL CHARACTERIZATION 

The standardized material level testing for this study was conducted at the ASCC to 

characterize the two selected thermoplastic materials and an infusible thermosetting 

composite for comparison. These composites were characterized using ASTM 

standardized test methods, which are outlined in this report. 

3.1 Characterization of Thermoplastic Composites for Structural Applications 

The most important design properties are often in the longitudinal direction of a 

unidirectional laminate, also referred to as the fiber-direction. This is the direction along 

which all the fiber tows are oriented in a unidirectional specimen, and is the direction of 

the greatest stiffness and greatest tensile and compressive strength. In some cases, the 

properties transverse or perpendicular to the fiber direction are of interest as well.  

3.1.1 Mechanical Properties of Composite Laminas and Laminates 

The longitudinal and transverse properties make up the base properties of a composite 

lamina and can be used in design in conjunction with micromechanics and macromechanics 

theories for composites analysis [7] [37]. Micromechanics uses the properties of 

constituent materials to provide an analytical estimate of lamina strengths and stiffnesses. 

Classical lamination theory (CLT), which implements macromechanics, uses the strength 

and stiffness of individual lamina to predict the properties of a multidirectional laminate. 

Figure 16 shows the commonly used coordinate axes for composite laminas and laminates 

where longitudinal (0-degree) corresponds to the fiber-direction and transverse (90-degree) 
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is perpendicular to the fiber-direction for a lamina and correspond to the x-direction and y-

direction respectively for a laminate. For a composite laminate, the bias-direction is defined 

as the direction 45-degrees from the longitudinal direction. It should also be noted that 

sometimes testing multi-directional laminates, especially off-axis laminates, could be of 

interest to characterize these laminates for specific scenarios [7].  

 

The common nomenclature used for describing the mechanical properties in the 

longitudinal and transverse directions for a thin composite lamina subjected to in-plane 

stresses are given in the following bulleted lists. 

The in-plane elastic properties are: 

 Elastic modulus in the longitudinal direction in tension (𝐸1𝑡) 

 Elastic modulus in the longitudinal direction in compression (𝐸1𝑐) 

 Elastic modulus in the transverse direction in tension (𝐸2𝑡) 

Figure 16: Coordinate Systems for a Composite Lamina and Laminate 
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 Elastic modulus in the transverse direction in compression (𝐸2𝑐) 

 Elastic modulus in shear in the x-y plane (𝐺12) 

 Poisson’s ratio in the x-y plane (ν12) 

The in-plane strength parameters are: 

 Longitudinal tensile strength (𝐹1𝑡) 

 Longitudinal compressive strength (𝐹1𝑐) 

 Transverse tensile strength (𝐹2𝑡) 

 Transverse compressive strength (𝐹2𝑐) 

 In-plane shear strength (𝐹6) 

Theoretically 𝐸1𝑡 equals 𝐸1𝑐and 𝐸2𝑡 equals 𝐸2𝑐, however experimentally these values can 

vary. In addition, the fiber volume fraction (𝑉𝑓) is an important property, and is found 

through theoretical calculations or experimentally using burn-off tests for E-glass 

reinforced composites. 

3.1.2 Experimental Methodology and Equipment 

The objective of the material testing conducted for this thesis was to characterize the 

principal properties of the laminates through the testing of unidirectional specimens to get 

lamina properties for design use with classical lamination theory. Additionally, selected 

specialized testing was conducted to support the use of thermoplastic composites in beam 

or panel webs and other specific structural areas in future applications. This testing was 

done in accordance with the principles described in the desired mechanical properties 

section of the introduction. 
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Repeatable testing is important in material characterization. Coupon level testing was 

conducted on pristine specimens using the following standards. 

 ASTM D3039-14 Standard Test Method for Tensile Properties of Polymer Matrix 

Composite Materials [38] with standard-sized specimens 

 ASTM D3039-14 Standard Test Method for Tensile Properties of Polymer Matrix 

Composite Materials [38] with notched specimens (denoted as the modified N2 

specimen) [39] 

 ASTM D6641-14 Standard Test Method for Compressive Properties of Polymer Matrix 

Composite Materials Using a Combined Loading Compression (CLC) Test Fixture [40] 

 ASTM D7078-12 Standard Test Method for Shear Properties of Composite Materials 

by V-Notched Rail Shear Method [41] 

 ASTM D792-13 Standard Test Method for Density and Specific Gravity  

(Relative Density) of Plastics by Displacement [42] 

 ASTM D3171-15 Standard Test Methods for Constituent Content of Composite 

Materials [43] 

The tension, compression, and shear tests outlined above were performed on a 100-kN 

(22.5kip) Instron load frame equipped with hydraulic wedge grips. Instron data including 

applied force and actuator position were recorded at 100-Hz.  A summary of the specimen 

dimensions and tolerances used during testing at the ASCC is given in Table 24. 



56 

 

Table 24: Specimen Dimensions and Tolerances Summary 

Standard 

Used 

Property 

Type 

Laminate 

Architecture 

Type 

Dimension 
Measurement 

(mm) 

Tolerance 

(mm) 

ASTM 

D3039 

[38] 

Tension Unidirectional* 

Length 

Width 

Thickness 

250 

25 

Ply-

Thickness 

Dependent 

See 

Standard 

±1% of 

Width 

±4% of 

Thickness 

Modified 

N2 

[39] 

Tension Off-axis Refer to [39] 
See ASTM 

D3039 

ASTM 

D6641 

[40] 

Compression 

Unidirectional* 

(Or) 

Off-axis 

Length 

Width 

Thickness 

140 

12 

Ply-

Thickness 

Dependent 

±0.01 

12 nominal 

 

ASTM 

D7078 

[41] 

Shear 

Unidirectional* 

(Or) 

Off-axis 

Length 

Notch 

Height 

Width 

Thickness 

56 

30.6 

 

76 

Ply-

Thickness 

Dependent 

±2.5 

±0.75 

 

±2.5 

Note *: These specimens may be completely unidirectional or mostly unidirectional in 

nature, some specimens will have almost all unidirectional fibers with a ninety-degree 

outer layer. 
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The Modified N2 notched specimens for tension testing use a specific geometry for a 

tension coupon [39].  The advantage of the Modified N2 coupon is that it increases the 

development length of the fibers in the composite coupon so the test will get the true 

strength of the composite in fiber dominated failure instead of a much lower strength if 

failure is driven by the matrix. Under-engaged fibers in tension testing is discussed in 

subsection 6.4 of ASTM D3039, which states that “Premature failure and lower stiffnesses 

are observed as a result of edge softening in laminates containing off-axis plies. Because 

of this, the strength and modulus for angle ply laminates can be drastically 

underestimated.” [38]. 

Examples of the setups used in the ASCC to perform the tests described above are shown 

in Figure 17, which displays ASTM 3039 [38], ASTM 6641 [40], and ASTM 7078 [41] 

from left to right respectively.  

 

Figure 17: ASTM Standard Test Fixture Setups 
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Data for determining the modulus (strain measurements) were recorded using three-

dimensional (3D) digital image correlation (DIC) techniques that rely on photogrammetry. 

Photogrammetry was developed to create maps from aerial photographs [44]. Cameras 

measure digitized light intensity values in a rectangular array of pixels. The correlation 

process for this is well documented for 3D DIC [45] [46] [47]. The DIC system uses 

cameras with either 8-mm, 12-mm or 50-mm focal lengths depending on the desired 

volume  to capture and ARAMIS [48] software to process the images of test specimens 

painted with a random speckle pattern over a background of white paint to calculate strain 

measurements. Calibration of the cameras for testing was done using a series of photos of 

a specified calibration object for the chosen volume at precisely measured distances. As 

part of post-processing, the data after testing all samples were classified by failure type 

using the designations stated in the respective standard for each test. 

Appendix A provides equipment calibration information for the ASCC facilities used,  

Appendix B provides technical data sheets for materials used in this study, and 

Appendix C provides the laminate analysis code used for calculations in this thesis. 

3.2 Material Testing Results 

Two thermoplastic materials were selected for characterization: Elium acrylic, and PETg 

prepreg tapes. Two types of PETg prepreg tapes were tested; IE 5842 natural colored tapes, 

and IE 5842b black colored tapes. 

3.2.1 Thermoplastic Material Feasibility Testing  

The first coupon-level testing assessed the feasibility of using the selected continuous fiber 

reinforced thermoplastic (CFRTP) composites in structural applications. The E-
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glass/Elium composite laminates tested for this initial data had a fiber architecture of [90 

0 0 0]S which is not ideal for material characterization. This multi-directional architecture 

was chosen to mitigate warping, which was observed during fabrication of laminates. The 

90-degree layer was found to provide enough transverse stiffness to overcome this warping 

effect. The E-glass/PETg composite laminates tested for this initial data had a fiber 

architecture of [0]10 which is ideal for material characterization. 

Original testing done with Elium did not use a unidirectional laminate due to fabrication 

issues in the vacuum infusion process. During early fabrication trials warping was common 

in the panels fabricated due to the high rate of shrinking experience in the resin during 

curing. This was alleviated by introducing a 90-degree layer into the laminate by rotating 

one layer the Vector Ply E-LR 1208 [23] unidirectional E-glass on each outside face of the 

panel to provide transverse strength to reduce warping. The original results collected are 

shown in Table 25. 
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Table 25: Feasibility E-glass/Elium Composite Mechanical Property Results 

Properties with coefficient of variation (COV) E-glass/ Elium 

Fiber Volume Fraction, 𝑉𝑓 (%) 41.2 (1.9%) 

Longitudinal Tensile Strength, 𝐹𝑥𝑡 (MPa) 687 (1.6%) 

Longitudinal Compressive Strength, 𝐹𝑥𝑐 (MPa) 573 (8.6%) 

In-Plane Shear Strength, 𝐹𝑥𝑦 (MPa) 57.58 (2.4%) 

Longitudinal Tensile Elastic Modulus, 𝐸𝑥𝑡 (GPa) 24.1 (6.11%) 

Longitudinal Compressive Elastic Modulus, 𝐸𝑥𝑐 (GPa) 25.6 (9.0%) 

In-Plane Shear Elastic Modulus, 𝐺𝑥𝑦 (GPa) 3.48 (11.5%) 

Poisson’s Ratio, νxy (-) 0.116 (103%) 

Longitudinal Ultimate Tensile Strain, εxt
u (µε) 30,500 (0.48%) 

Longitudinal Ultimate Compressive Strain, εxc
u (µε) 24,400 (14.7%) 

Longitudinal Ultimate In-Plane Shear Strain, εxy
u (µε) 210,000 (17.2%) 

Average Composite Panel Thickness, t (mm) 3.3 

Note: COV percentages reported with respective measured value in parenthesis. 

Figure 18 through Figure 20 show the tension, compression and in-plane shear stress strain 

responses from the testing of the Elium feasibility coupons respectively. Figure 20 and all 

following in-plane shear stress-strain response figures show a dotted vertical line at 5% 

strain where the strength was calculated or no dotted line if 5% strain was not reached and 

the ultimate load was used per ASTM D7078 recommendation.  
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Table 26 shows the type of failure as classified using the respective ASTM standard and 

the number of failures per failure type. 

 

Figure 18: Feasibility E-glass/Elium Long. Tension 

Stress-Strain Response 

 

Figure 19: Feasibility E-glass/Elium Long. Compression 

Stress-Strain Response 

 

Figure 20: Feasibility E-glass/Elium In-Plane Shear Stress-Strain Response 
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Table 26: Feasibility E-glass/Elium Failure Types 

Specimen Type 
ASTM D3039 

Tension [38] 

ASTM D6641 

Compression [40] 

ASTM D7078 

In-Plane Shear [41] 

Failure Type XGM, OAV BGM HGN 

Number of Failures 4, 2 10 7 

 

Figure 21 illustrates failure mode explosive-gage-middle (XGM) exhibited by all the valid  

feasibility Elium tension samples tested. Figure 22 shows failure mode brooming-gage-

middle (BGM) exhibited by all the compression samples tested. Figure 23 shows failure 

mode horizontal cracking-gage-between notches (HGN) seen by all the in-plane shear 

samples tested. The other-at grip/tab-various (OAV) tension failures were not shown 

because it was a grip failure, not a valid failure in the composite specimen. 

 

Figure 21: Feasibility E-glass/Elium XGM Failure Long. Tension Sample 

 

Figure 22: Feasibility E-glass/Elium BGM Failure Long. Compression Sample 
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Figure 23: Feasibility E-glass/Elium HGN Failure In-Plane Shear Sample 

 

The second material system chosen for this study, PETg in the form of prepreg 

unidirectional E-glass tapes was tested to assess feasibility as well. The tapes tested were 

IE 5842 sourced from Polystrand. Additional material testing of stamp formed PETg-

composites fabricated with IE 5842 was done to support design concepts for specimens in 

this study.  In addition to the unidirectional samples, a bias layup of +/-45-degree layers 

was tested to provide information on the performance of off-axis fibers typically used to 

carry shear. Table 27 shows the data collected from PETg-composite material 

characterization for all three sets of tests. 
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Table 27: Feasibility E-glass/PETg Composite Mechanical Property Results 

Properties with COV 
Longitudinal 

(x-direction) 

Transverse 

(y-direction) 

Bias 

 (+/-45-degree) 

Fiber Volume Fraction 

 

𝑉𝑓 (%) 

38.91 

(2.6 %) 
- - 

Tensile Strength 

(MPa) 

761 

(6.4 %) 

17.97 

(8.71 %) 

65.0 

(6.42 %) 

Compressive Strength 

(MPa) 

333 

(5.15 %) 

49.3 

(2.94 %) 

55.6 

(5.42 %) 

In-Plane Shear Strength 

(MPa) 

23.2 

(12.4 %) 
- - 

Tensile Elastic Modulus 

(GPa) 

31.1 

(4.18 %) 

4.46 

(8.35 %) 

4.80 

(5.02 %) 

Compressive Elastic Modulus 

(GPa) 

31.6 

(9.17 %) 

5.78 

(4.54 %) 

4.80 

(21.2 %) 

In-Plane Shear Elastic Modulus 

(GPa) 

1.43 

(9.99 %) 
- - 

Poisson’s Ratio 

(-) 

0.344 

(3.04 %) 

0.063 

(31.4 %) 
0.168 (23.2%) 

Ultimate Tensile Strain 

(µε) 

27,000 

(10.96 %) 

4,140 

(9.04 %) 

80,600 

(36.4 %) 

Ultimate Compressive Strain 

(µε) 

11,000 

(2.79 %) 

16,400 

(14.5 %) 

230,000 

(19.7 %) 

Ultimate In-Plane Shear Strain 

(µε) 

55,500 

(35.9 %) 
- - 

Average Composite Panel 

Thickness (mm) 
2.35 - - 

Note: COV percentages reported with respective measured value in parentheses. 
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The results from the feasibility trial are favorable based on comparison to thermoset 

composite properties in literature and indicate that both composite laminate types could be 

used in structural applications. From the results, it was seen that the Elium composite has 

10 % less tensile strength than the E-glass/PETg material, but has 42 % more compressive 

strength and a 67 % greater shear strength.  

Figure 24 through Figure 30 show the tension, compression and in-plane shear stress strain 

responses from the testing of the PETg feasibility coupons, respectively. Table 28 shows 

the type of failure as classified using the respective ASTM standard and the number of 

failures per failure type.  

 

 

Figure 24: Feasibility E-glass/PETg Long. Tension 

Stress-Strain Response 

 

Figure 25: Feasibility E-glass/PETg Trans. Tension 

Stress-Strain Response 
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Figure 26: Feasibility E-glass/PETg Bias Tension 

Stress-Strain Response 

 

Figure 27: Feasibility E-glass/PETg Long. Compression 

Stress-Strain Response 

 

 

Figure 28: Feasibility E-glass/PETg Trans. Compression 

Stress-Strain Response 

 

Figure 29: Feasibility E-glass/PETg Bias Compression 

Stress-Strain Response 
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Figure 30: Feasibility E-glass/PETg In-Plane Shear Stress-Strain Response 

Table 28: Feasibility E-glass/PETg (IE 5842) Sample Failure Types 

Specimen 

Orientation 
Specimen Type 

ASTM D3039 

Tension 

[38] 

ASTM D6641 

Compression 

[40] 

ASTM D7078 

In-Plane Shear 

[41] 

Longitudinal 

Failure Type 
XGM, LGT, 

SGM 
BGM, HIT VGN 

Number of 

Failures 
5, 1, 2 4, 1 8 

Transverse 

Failure Type LGT HAT, HIT - 

Number of 

Failures 
7 4, 1 - 

Bias 

(45-degree) 

Failure Type * TGM - 

Number of 

Failures 
7 7 - 

*Note: The tension coupon used for the web-orientation was not an ASTM standard 

coupon, but was the modified N2 coupon introduced earlier in this chapter. Therefore, 

failure types could not be given. 



68 

 

For the feasibility testing of stamp formed E-glass/PETg composites there were consistent 

failure modes for each type of coupon in each of the specimen-orientations except for 

longitudinal tension testing which saw three different failure types. The XGM sample 

example is on top, the lateral-gage-top (LGT) sample example is in the middle, and the 

long-splitting-gage-middle (SGM) sample is shown on the bottom. The transverse tension 

samples all failed in the same mode, LGT, as shown in Figure 32. The bias tension samples 

tested used the modified N2 type coupon, which is not an ASTM standard coupon type but 

is well documented in [39]. Therefore, these samples were not given a failure classification; 

however, they all shared the failure mode shown in Figure 33. The longitudinal 

compression samples had the same failure mode as the Elium feasibility samples tested 

(refer to Figure 22 to see this failure mode). The transverse compression samples failed in 

the through-thickness-at grip/tab-top (HAT) type failure shown in Figure 34 for a 

unidirectional Elium transverse compression sample that better displayed this failure type. 

The bias compression samples had transverse shear-gage-middle (TGM) type failure like 

the longitudinal samples but showed much higher strain to failure. The in-plane shear 

samples all failed in the same mode shown in Figure 35. The through-thickness-inside 

grip/tab-top (HIT) compression failures were not counted, as they are not characterized as 

acceptable failure modes. 



69 

 

 

Figure 31: E-glass/PETg UD Multiple Failures Long. Tension Samples 

 

Figure 32: E-glass/PETg UD Failed Trans. Tension Sample 
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Figure 33: E-glass/PETg Bias Modified N2 Tension Sample 

 

Figure 34: E-glass/Elium UD HAT Failure Trans. Compression Sample 

 

Figure 35: E-glass/PETg UD VGN Failure In-Plane Shear Sample 

 

From these results based on comparing them to other glass reinforced composites in 

literature both material systems were shown to have comparable mechanical properties 
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showing them to be feasible as structural reinforcement in a hybrid composite-concrete 

structure. Therefore, more in depth and refined testing was done as detailed next. 

3.2.2 Thermoplastic Composite Material Characterization 

In the second phase of coupon tests, both the longitudinal and transverse properties of 

Elium were assessed in order to find the properties of a truly unidirectional Elium panel to 

be used with CLT for composite design. Original fabrication methods made this difficult 

due to warping effects, however lessons learned from experience with the Elium 150 resin 

made it possible for later iterations of panels to be made with [0]10 fiber architecture. The 

infusion conducted for this testing used E-LR 1208 E-glass fabric.  

3.2.2.1 Comparison of Experimental Mechanical Properties 

Longitudinal and transverse properties derived from material testing of Elium, IE 5842 

PETg, and Derakane E-glass are compared in Table 29 and Table 30 respectively, followed 

by a discussion of the experimental properties. Following the comparative discussion of 

experimental mechanical properties collected in this study comparison to micromechanics 

predictions calculated analytically from the constitutive material properties is given. 

Micromechanics predictions were done using both the Halpin-Tsai method and Mori-

Tanaka method for comparison to experimental results. 
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Table 29: Comparison of Longitudinal Thermoplastic Properties to a Thermoset 

Properties and COV 
E-glass/ 

Elium 

E-glass/ 

PETg 

E-glass/ 

Vinyl ester 

Fiber Volume Fraction𝑉𝑓 (%) 
43.2  

(1.4 %) 

36.4 

(3.0 %) 

40.0  

(4.3 %) 

Tensile Strength 

  𝐹1𝑡 (MPa) 

741 

(6.54 %) 

623 

(10.2 %) 

835 

(4.23 %) 

Tensile Elastic Modulus 

  𝐸1𝑡 (GPa) 

33.15 

(1.07 %) 

28.2 

(3.65 %) 

33.37 

(1.31 %) 

Compressive Strength 

 𝐹1𝑐 (MPa) 

634 

(2.16 %) 

310 

(17.7 %) 

539  

(15.8 %) 

Compressive Elastic Modulus 

 𝐸1𝑐 (GPA) 

33.8 

(6.40 %) 

23.5 

(14.68 %) 

30.1 

(9.93 %) 

In-Plane Shear Strength 

 𝐹6 (MPa) 

42.0 

(7.01 %) 

28.8 

(5.25 %) 

42.2 

(2.32 %) 

In-Plane Shear Elastic Modulus 

 𝐺12 (GPa) 

3.21 

(6.75 %) 

1.48 

(18.9 %) 

3.50 

(4.65 %) 

Poisson’s Ratio  

ν12 (-) 

0.313 

(1.68 %) 

0.353 

(2.52 %) 

0.31 

(1.79 %) 

Ultimate Tensile Strain  

ε1t
u (µε) 

23,600 

(8.57 %) 

23,300 

(12.8 %) 

27,000 

(8.2 %) 

Ultimate Compressive Strain  

ε1c
u (µε) 

18,100 

(5.15 %) 

12,300 

(15.2 %) 

18,100 

(14.6 %) 

Ultimate In-Plane Shear Strain  

ε1y
u (µε) 

22,700 

(20.1 %) 

49,800 

(25.0 %) 

18,700 

(9.93 %) 

Note: COV percentages reported with respective measured value in parenthesis. 
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Table 30: Comparison of Transverse Thermoplastic Properties to a Thermoset 

Properties and COV 
E-glass/ 

Elium 

E-glass/ 

PETg 

E-glass/ 

Vinyl ester 

Tensile Strength 

 𝐹2𝑡 (MPa) 

29.2 

(32.1 %) 

14.5 

(17.7 %) 

41.7 

(3.11 %) 

Tensile Elastic Modulus 

 𝐸2𝑡 (GPa) 

8.38 

(11.51 %) 

4.43 

(10.9 %) 

9.23 

(3.83 %) 

Compressive Strength 

 𝐹2𝑐 (MPa) 

134 

(3.14 %) 

65.0 

(6.92 %) 

122 

(2.58 %) 

Compressive Elastic Modulus 

 𝐸2𝑐 (GPa) 

9.04 

(9.48 %) 

4.98 

(13.9 %) 

11.2 

(6.19 %) 

In-Plane Shear Strength 

 𝐹6 (MPa) 

58.9 

(1.07 %) 

31.1 

(4.02 %) 

58.6 

(3.15 %) 

In-Plane Shear Elastic Modulus 

 𝐺21 (GPa) 

3.25 

(5.30 %) 

1.53 

(6.67 %) 

3.29 

(3.07 %) 

Poisson’s Ratio  

ν21 (-) 

0.069 

(24.0 %) 

0.823 

(11.4 %) 

0.084 

(3.92 %) 

Ultimate Tensile Strain  

ε2t
u (µε) 

3,900 

(20.6 %) 

3,400 

(16.4 %) 

5,000 

(2.88 %) 

Ultimate Compressive Strain  

ε2c
u (µε) 

31,500 

(14.8 %) 

24,700 

(32.1 %) 

12,900 

(6.41 %) 

Ultimate In-Plane Shear Strain  

ε2x
u (µε) 

245,000 

(46.3 %) 

251,000 

(23.3 %) 

143,000 

(63.9 %) 

Avg. Composite Panel Thickness 

t (mm) 
4.4 2.4 4.3 

Note: COV percentages reported with respective measured value in parenthesis. 
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The mechanical testing results presented in Table 29 show that of the two thermoplastic 

composites tested the E-glass/Elium composite was 16% stronger in longitudinal tension, 

51% stronger in longitudinal compression, and 31% stronger in in-plane shear than the IE 

5842b E-glass/PETg. In addition the Elium composite was 15% stiffer in tension, 30% 

stiffer in compression, and 54 % stiffer in shear. Overall, the Elium composite, which was 

fabricated through vacuum infusion performed better than the E-glass/PETg composite. 

This could be an artifact of the higher 𝑉𝑓 achieved with the Elium composite, the type of 

glass used in the composites, Elium composites used E-LR 1208 from VectorPly and IE 

5842b used an E-glass pre-combined with the matrix by the tape manufacturer. 

Normalizing the longitudinal tensile strength and modulus to a 𝑉𝑓 of 40% for comparison 

to the Derakane results by multiplying the experimental results by 40% over their 

respective experimental 𝑉𝑓 value resulted in strength and modulus values of 686-MPa and 

30.7-GPa respectively for Elium, and 685-MPa and 31.0-GPa for PETg. This normalization 

brought the two thermoplastic results much closer to each other. Both the Elium and PETg 

composites were approximately 18% weaker in strength and 7% less stiff than the 

Derakane composite when normalized in this way. Similar normalizations were done on 

thermoplastic composites tested in compression in Warren [2], the amorphous PETg 

compression results in that study showed a longitudinal compressive strength of 483.8-

MPa with a  𝑉𝑓 of 55%. Normalizing that result to a  𝑉𝑓 of 40% for comparison to the PETg 

tested in this study the strength was 351-MPa, which is 3% higher than the normalized 

result of 341-MPa from this study. 

Normalizing the longitudinal compressive strength and modulus to a  

𝑉𝑓of 40% for comparison in the same way as was done for longitudinal tension. The 
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resulting strength and modulus values were 587-MPa and 31.3-GPa respectively for E-

glass/Elium, and 341-MPa and 25.8-GPa respectively for E-glass/PETg. This 

normalization brought the E-glass/Elium results closer to the E-glass/Derakane results; 

however, the E-glass/PETg results are still significantly lower than the other two 

composites. 

Comparing the longitudinal properties of the two thermoplastic composites to the 

thermoset vinyl ester Derakane, both thermoplastics were weaker in tension, though the 

Elium composite was closer in strength and had nearly the same stiffness. In compression, 

the Elium composite was stronger than Derakane, which was stronger than the PETg 

composite. It should be noted that compression samples might experience bending effects 

during testing, which could result in lower strength and modulus from the experiment. In 

addition, the volume used to capture ARAMIS data on the sample for a D6641 compression 

test is small in comparison to the other tests, which can lead to difficulties collecting 

accurate strain data. These factors may contribute to the low compressive strength seen by 

the E-glass/PETg samples as well as the differences in the longitudinal tensile and 

compressive elastic modulus, which should be the same theoretically. Another factor which 

is likely to have contributed to the low compressive strength of the E-glass/PETg samples 

is the low compressive strength of 55-MPa for PETg polymer compared to 130-MPa for 

Elium acrylic polymer, and 127-MPa for Derakane epoxy vinyl ester polymer. The in-plane 

shear strengths and elastic moduli of the Elium and Derakane CFRTP composites were 

very close; however, the PETg composite did not perform as well. The transverse 

properties in Table 30 followed the same comparative trend as the longitudinal properties. 

Figure 36 through Figure 38 show the stress-strain responses for tension, compression, and 
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in-plane shear for a representative sample from testing done on E-glass/Elium, E-

glass/Derakane, and E-glass/PETg composites respectively. 

 

Figure 36: Tensile Stress-Strain Response of Representative Samples 

 

Figure 37: Compressive Stress-Strain Response of Representative Samples 
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Figure 38: In-Plane Shear Stress-Strain Response of Representative Samples 

 

The fact that the two vacuum infused composites, Elium and Derakane, used for this study 

performed in a similar nature is reasonable given that they both used the same E-glass 

reinforcement when infused and the majority of the failures seen in testing were fiber-

dominated failures. This further reinforces that based on strength and stiffness, the Elium 

150 resin-system is suitable option for circumstances where an infused thermoset 

composite would traditionally be of interest. 

3.2.2.2 Composite Predictions of Elastic and Strength Properties 

As a method to provide context for the experimental results, composite micromechanics 

theory was used to predict values for the unidirectional laminates tested by predicting the 

analytical properties of a single unidirectional lamina. The properties of the glass-fibers 

and polymer matrices used were summarized in Table 22 and Table 23 in chapter 2. The  

𝑉𝑓 used for this analysis were assumed to match the ones observed from experiments in 

order to make the predictions as comparable as possible. The fracture toughness mode I 
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and II values were assumed to be 𝐺𝐼𝑐 = 334
𝐽

𝑚2 [37] and 𝐺𝐼𝐼𝑐 = 456
𝐽

𝑚2  [37] respectively 

for an E-glass/Polyester because values were not known for the material used in this study. 

Two types of micromechanics analysis were performed to calculate analytical results for 

comparison with the experimental results. The elastic behavior was predicted analytically 

in two ways: using the Rule of Mixtures and Halpin-Tsai method [7] [37] (shown in 

equations 3 through 4 and 5 through 10 respectively), the Poisson’s ratio out of plane was 

found using an isotropic relationship [7], and the Mori-Tanaka method [49] [50] (shown in 

equations 12 through 31). Then micromechanics analysis was performed to analytically 

predict the strength of the composite laminas based on constitutive properties and 

calculated elastic behavior [7] [37] (shown in equations 32 through 40). 

Longitudinal elastic properties for continuous fiber composites (loaded in the direction of 

fibers, i.e. 1-direction) are dominated by the fibers because they are typically stronger, 

stiffer, and have lower ultimate strain than the matrix. If a perfect bond between fibers and 

matrix is assumed then the longitudinal strains are uniform throughout the composite 

leading to the Rule of Mixtures equations for longitudinal elastic modulus (𝐸1) and in-

plane Poisson’s ratio (𝜈12) shown in equations 3 and 4 respectively [7].  

𝐸1 = 𝐸𝑓𝑉𝑓 + 𝐸𝑚(1 − 𝑉𝑓) Equation 3 

𝜈12 = 𝜈𝑓𝑉𝑓 + 𝜈𝑚(1 − 𝑉𝑓) Equation 4 

Transverse elastic properties for continuous fiber composites (loaded perpendicular to the 

direction of fibers, i.e. 2-direction) are influenced by a nonuniform stress-state in the matrix 

surrounding the fibers in the composite. The transverse elastic modulus (𝐸2) is dominated 
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by the matrix and can be estimated using the Halpin-Tsai semiempircal relation, which 

uses an elastic modulus parameter (𝜂𝐸) combined with an equation for the transverse 

elastic modulus (𝐸2) shown in equations 5 and 6 respectively [7]. The Halpin-Tsai method 

uses a curve fitting parameter (𝜉), which was assumed to be 2 for circular fibers [37] for 

all analysis done in this study. 

𝜂𝐸 =

𝐸𝑓

𝐸𝑚
− 1 

𝐸𝑓

𝐸𝑚
+ 𝜉

  Equation 5 

𝐸2 =
𝐸𝑚(1 +  𝜉𝜂𝐸𝑉𝑓)

1 − 𝜂𝐸𝑉𝑓
 Equation 6 

Similar to the transverse elastic properties the in-plane shear elastic properties are 

dominated by the matrix (loaded under in-plane shear, i.e. shear in the 1-2 plane) [7]. 

Halpin-Tsai semiempirical relationships are known for calculating both the in-plane and 

out-of-plane shear modulus. This method uses a shear modulus parameter (𝜂𝐺) combined 

with an equation for the in-plane shear modulus (𝐺12) [7] [37], and a shear modulus 

parameter 4 (𝜂4) combined with an equation for out-of-plane (intralaminar) shear modulus 

(𝐺23) [37] shown in equations 7 through 10 respectively. 

𝜂𝐺 =

𝐺𝑓

𝐺𝑚
− 1 

𝐺𝑓

𝐺𝑚
+ 𝜉

 Equation 7 

𝐺12 =
𝐺𝑚(1 +  𝜉𝜂𝐺𝑉𝑓)

1 − 𝜂𝐺𝑉𝑓
 Equation 8 
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𝜂4 =

3 − (4𝜈𝑚 +
𝐺𝑚

𝐺𝑓
)

4(1 − 𝜈𝑚)
 

Equation 9 

𝐺23 =
𝐺𝑚(𝑉𝑓 + 𝜂4𝑉𝑚)

𝜂4𝑉𝑚 +
𝑉𝑓𝐺𝑚

𝐺𝑓

 
Equation 10 

In a transversely isotropic material i.e. a unidirectional composite lamina an isotropic 

relationship can be used to relate the Poisson’s ratio and shear modulus in the plane of 

isotropy i.e. the 2-3 plane [7]. Equation 11 shows the application of this relationship to 

solve for the out-of-plane transverse Poisson’s ratio (𝜈23). 

𝜈23 =
𝐸2

2𝐺23
− 1 Equation 11 

An alternative to the previous methods discussed to get the elastic properties of a composite 

is the Mori-Tanaka method. The Mori-Tanaka method employs a mean field approach, 

which relates the microscale stresses and strains in the fiber and matrix to the average 

microscale stresses and strains through the phase concentration tensors [51]. 

The equations for the Mori-Tanaka method are commonly expressed in terms of the Hill’s 

elastic moduli which use the elastic properties of the base materials shown in equations 12 

through 16 for the fibers and equations 17 through 21 for the matrix [51] [49] [50]. 

𝑘𝑓 = (
4

𝐸𝑓
−

1

𝐺𝑓
−

4𝜈𝑓
2

𝐸𝑓
)

−1

 
 

Equation 12 

𝑙𝑓 = 2𝜈𝑓𝑘𝑓 Equation 13 

𝑚𝑓 = 𝐺𝑓 Equation 14 
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𝑛𝑓 = 𝐸𝑓 +
𝑙𝑓
2

𝑘𝑓
 

 
Equation 15 

𝑝𝑓 = 𝐺𝑓  Equation 16 

𝑘𝑚 =
𝐸𝑚

(2 − 2𝜈𝑚 − 4𝜈𝑚
2 )

 
 

Equation 17 

𝑙𝑚 = 2𝜈𝑚𝑘𝑚  Equation 18 

𝑚𝑚 =
𝐸𝑚

2(1 + 𝜈𝑚)
 

 
Equation 19 

𝑛𝑚 = 𝐸𝑚 +
𝑙𝑚
2

𝑘𝑚
 

 
Equation 20 

𝑝𝑚 =
𝐸𝑚

2(1 + 𝜈𝑚)
 

 
Equation 21 

Next the effective Hill’s elastic moduli are found for a unidirectional fiber reinforced 

composite using equations 22 through 26 [51] [49] [50]. 

𝑘 =
𝑉𝑓𝑘𝑓(𝑘𝑚 + 𝑚𝑚) + 𝑉𝑚𝑘𝑚(𝑘𝑓 + 𝑚𝑚)

𝑉𝑓(𝑘𝑚 + 𝑚𝑚) + 𝑉𝑚(𝑘𝑓 + 𝑚𝑚)
 

 
Equation 22 

𝑙 =
𝑉𝑓𝑙𝑓(𝑘𝑚 + 𝑚𝑚) + 𝑉𝑚𝑙𝑚(𝑘𝑓 + 𝑚𝑚)

𝑉𝑓(𝑘𝑚 + 𝑚𝑚) + 𝑉𝑚(𝑘𝑓 + 𝑚𝑚)
 

 
Equation 23 

𝑚 =
𝑚𝑚𝑚𝑓(𝑘𝑚 + 2𝑚𝑚) + 𝑘𝑚𝑚𝑚(𝑉𝑓𝑚𝑓 + 𝑉𝑚𝑚𝑚)

𝑘𝑚𝑚𝑚 + (𝑘𝑚 + 2𝑚𝑚)(𝑉𝑚𝑚𝑓 + 𝑉𝑓𝑚𝑚)
 

 
Equation 24 

𝑛 = 𝑉𝑚𝑛𝑚 + 𝑉𝑓𝑛𝑓 +
(𝑙 − 𝑉𝑓𝑙𝑓 − 𝑉𝑚𝑙𝑚)(𝑙𝑓 − 𝑙𝑚)

𝑘𝑓 − 𝑘𝑚
 

 
Equation 25 
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𝑝 =
2𝑉𝑓𝑝𝑚𝑝𝑓 + 𝑉𝑚(𝑝𝑚𝑝𝑓 + 𝑝𝑚

2 )

2𝑉𝑓𝑝𝑚 + 𝑉𝑚(𝑝𝑓 + 𝑝𝑚)
 

 
Equation 26 

From the effective Hill’s elastic moduli the effective engineering properties of a composite 

can be found using equations 27 through 31 [51] [49] [50]. 

𝐸1 = 𝑛 −
𝑙2

𝑘
 

 
Equation 27 

𝐸2 =
4𝑚(𝑘𝑛 − 𝑙2)

(𝑘 + 𝑚)𝑛 − 𝑙2
 

 
Equation 28 

𝜈12 =
𝑙

2𝑘
 

 
Equation 29 

𝐺12 = 𝑝  Equation 30 

𝐺23 = 𝑚  Equation 31 

Analytically solving for the theoretical strength properties of composite materials is also 

important. The longitudinal tensile strength i.e. tensile strength in the 1-direction (𝐹1𝑡) is 

found either by equation 32 for fiber-dominated failure or equation 33 for a matrix 

dominated failure [7]. The longitudinal compressive strength i.e. compressive strength in 

the 1-direction is found by equations 34 and 35, which are a lamina compressive strength 

factor (𝜒 ) and the equation for the longitudinal compressive strength (𝐹1𝑐) respectively 

[37]. 

𝐹1𝑡 = 𝐹𝑓𝑡 [𝑉𝑓 +
𝐸𝑚

𝐸𝑓
𝑉𝑚] 

 
Equation 32 
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𝐹1𝑡 = 𝐹𝑚𝑡 [𝑉𝑓

𝐸𝑚

𝐸𝑓
+ 𝑉𝑚] 

 
Equation 33 

𝜒 =
𝐺12𝛼𝜎

𝐹6
 

 
Equation 34 

𝐹1𝑐 = 𝐺12(1 + 4.76𝜒)−0.69  Equation 35 

The transverse tensile strength i.e. tensile strength in the 2-direction was found using 

equations 36 and 37, which are a lamina tensile strength factor (𝛬22
0 ) and the equation for 

transverse tensile strength (𝐹2𝑡) respectively [37]. The transverse compressive strength i.e. 

the compressive strength in the 2-direction (𝐹2𝑐) was found using equation 38 [37]. 

𝛬22
0 = 2(

1

𝐸2
−

𝜈12
2 𝐸2

2

𝐸1
3 ) 

 
Equation 36 

𝐹2𝑡 = √
𝐺𝐼𝑐

1.122𝜋 (
𝑡𝑡
4)𝛬22

0
 

 

Equation 37 

𝐹2𝑐 = 𝐹𝑚𝑐𝐶𝑣 [1 + (𝑉𝑓 − √𝑉𝑓) (1 −
𝐸𝑚

𝐸𝑓
)] 

 
Equation 38 

The in-plane shear strength i.e. the shear strength in the 1-2 plane was found using 

equations 39 and 40, which are a lamina shear strength factor (𝛬44
0 ) and the equation for 

in-plane shear strength (𝐹6) respectively [37]. 

𝛬44
0 =

1

𝐺12
 

 
Equation 39 
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𝐹6 = √
𝐺𝐼𝐼𝑐

𝜋 (
𝑡𝑡
4)𝛬44

0
 

 

Equation 40 

 

Table 31 through Table 33 give the analytical predictions from both the Halpin-Tsai [7] 

method and Mori-Tanaka method for the elastic behavior of E-glass/Elium, E-

glass/Derakane, and E-glass/PETg respectively compared to the experimental results 

collected in this study. Table 34 gives the analytically predicted strength properties for the 

three composite materials compared to experimental results. Predicted composite strengths 

from micromechanics were condensed to one table because only some of the strength 

properties use the lamina elastic behavior when calculated. These properties (longitudinal 

compressive strength, transverse tensile strength, and in-plane shear strength) give both the 

results using Halpin-Tsai and Mori-Tanaka predicted lamina elastic properties respectively 

in the table. 
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Table 31: Predicted vs Experimental Elastic Properties (E-glass/Elium Vf = 43.2%) 

Elastic Property 

Halpin-Tsai 

Analytical 

Prediction 

Mori-Tanaka 

Analytical 

Prediction 

Experimental 

Results 

Longitudinal 

Elastic Modulus, 

 𝐸1 (GPa) 

33.4 33.4 
33.2 (tension) 

33.8 (compression) 

Transverse Elastic 

Modulus, 

𝐸2 (GPa) 

9.32 7.66 
8.38 (tension) 

9.04 (compression) 

In-Plane Shear 

Elastic Modulus, 

𝐺12 = 𝐺13 (GPa) 

3.45 2.8 3.21 

Intralaminar Shear 

Elastic Modulus, 

𝐺23 (GPa) 

2.63 2.56 - 

Poisson’s Ratio,  

ν12 = ν13 (-) 
0.31 0.30 0.31 

Poisson’s Ratio  

ν23 (-) 
0.78 0.50 - 
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Table 32: Predicted vs Experimental Elastic Properties (E-glass/Derakane Vf = 40.0%) 

Elastic Property 

Halpin-Tsai 

Analytical 

Prediction 

Mori-Tanaka 

Analytical 

Prediction 

Experimental 

Results 

Longitudinal 

Elastic Modulus, 

 𝐸1 (GPa) 

28 28 
33.4 (tension) 

30.1 (compression) 

Transverse Elastic 

Modulus, 

𝐸2 (GPa) 

5.51 4.6 
9.23 (tension) 

11.2 (compression) 

In-Plane Shear 

Elastic Modulus, 

𝐺12 = 𝐺13 (GPa) 

2.03 1.65 3.50 

Intralaminar Shear 

Elastic Modulus, 

𝐺23 (GPa) 

1.54 1.52  

Poisson’s Ratio,  

ν12 = ν13 (-) 
0.32 0.31 0.31 

Poisson’s Ratio  

ν23 (-) 
0.79 0.52  
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Table 33: Predicted vs Experimental Elastic Properties (E-glass/PETg Vf = 36.4%) 

Elastic Property 

Halpin-Tsai 

Analytical 

Prediction 

Mori-Tanaka 

Analytical 

Prediction 

Experimental 

Results 

Longitudinal 

Elastic Modulus, 

 𝐸1 (GPa) 

31.3 31.3 
28.2 (tension) 

23.5 (compression) 

Transverse Elastic 

Modulus, 

𝐸2 (GPa) 

9.09 7.44 
4.43 (tension) 

4.98 (compression) 

In-Plane Shear 

Elastic Modulus, 

𝐺12 = 𝐺13 (GPa) 

3.41 2.8 1.48 

Intralaminar Shear 

Elastic Modulus, 

𝐺23 (GPa) 

2.61 2.55 - 

Poisson’s Ratio,  

ν12 = ν13 (-) 
0.30 0.30 0.35 

Poisson’s Ratio  

ν23 (-) 
0.74 0.46 - 

 

For all three materials analyzed and tested in this study the Halpin-Tsai and Mori-Tanaka 

methods showed similar behavior in how they predicted the elastic response compared to 

the experimental results. Halpin-Tsai and Mori-Tanaka predict the same value for 

longitudinal elastic modulus; Halpin-Tsai consistently predicts higher values than Mori-

Tanaka for transverse elastic modulus, in-plane shear modulus, intralaminar shear 
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modulus, and Poisson’s ratio in the 2-3 plane. Due to the higher predictions calculated for 

transverse and shear modulus using Halpin-Tsai method, which are used in the 

micromechanics methods for lamina strengths, slightly higher predictions for strength are 

found when used than when using Mori-Tanaka moduli predictions as inputs. 

Table 34: Predicted vs Experimental Strength Properties 

Property 
Micromechanics Prediction or 

Experimental 

E-glass/ 

Elium 

E-glass/ 

PETg 

E-glass/ 

Derakane 

𝑉𝑓 (%) Experimental 43.2 36.4 40.0 

𝐹1𝑡 (MPa) 

Mori-Tanaka 769 672 635 

Halpin-Tsai 769 672 635 

Experimental 741 623 835 

𝐹1𝑐 (MPa) 

Mori-Tanaka 447 312 447 

Halpin-Tsai 515 359 511 

Experimental 634 310 539 

 

 𝐹2𝑡 (MPa) 

Mori-Tanaka 46.5 36.1 45.9 

Halpin-Tsai 51.4 39.5 50.7 

Experimental 29.2 14.5 41.7 

𝐹2𝑐 (MPa) 

Mori-Tanaka 102 42.2 98.9 

Halpin-Tsai 102 42.2 98.9 

Experimental 134 65 122 

 

 𝐹6 (MPa) 

Mori-Tanaka 52 40 52 

Halpin-Tsai 57.8 44.3 57.4 

Experimental 42 28.8 42.2 
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During the feasibility testing conducted on the E-glass/PETg composites specimens were 

tested to get longitudinal, transverse, and bias properties. Figure 39 shows the experimental 

results for longitudinal tension elastic modulus for longitudinal, transverse and bias fiber-

orientations and the corresponding macromechanics prediction for longitudinal elastic 

modulus as it varies with fiber-orientation. Macromechanics predictions were calculated 

twice for this comparison. First, the lamina properties from the properties of the E-glass 

and PETg matrix were used as input, and second the experimental lamina properties 

collected during the material feasibility testing for this study were used as input. 

Micromechanics calculations to predict the lamina properties were done using the rule of 

mixtures and Halpin-Tsai methods given in equations 3 through 10 [7] [37]. 

Macromechanics calculations to get the effective tensile modulus for different fiber 

orientations in a composite lamina was done using equations 41 through 44 [7] [37]. 

[𝑆𝑟𝑒𝑑𝑢𝑐𝑒𝑑] =

[
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= [
𝑆11 𝑆12 0
𝑆21 𝑆22 0
0 0 𝑆66

] Equation 41 

[𝑇] = [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 𝑚2 − 𝑛2

] Equation 42 

[𝑆𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑] =
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] [𝑇] Equation 43 
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𝐸𝑥 =
1

𝑆𝑥𝑥
 Equation 44 

Where: 

 Equations 41 through 43 implement the stress-strain relations for a thin lamina [7] to 

get the reduced compliance matrix, transformation matrix, and transformed compliance 

matrix respectively 

 Theta (θ) is the fiber orientation from the longitudinal-direction, and 𝑚 = cos (𝜃)and 

𝑛 = sin(𝜃) [7] 

 𝐸𝑥 is the effective elastic modulus calculated at the desired theta (θ) orientation of the 

reinforcement fibers, which is 𝐸𝑥𝑡 for effective tensile elastic modulus. 

 

Figure 39: Comparison of Long. Elastic Modulus for Various Fiber-Orientations 
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Figure 39 shows a plot of the effective modulus of elasticity in the x-direction versus the 

fiber-orientation theta for two methods of analytical prediction and three points from 

experimental data taken in this study. Both methods of macromechanics predictions show 

the same type of behavior as the modulus varies with fiber-orientation. However, since the 

method using experimental lamina properties exactly matches the longitudinal and 

transverse specimen values the domain of the curve is slightly different, but has the same 

shape as the calculated lamina properties prediction. The calculated lamina property 

prediction shows a lower value for the longitudinal (0-degree) modulus of elasticity in 

tension by 9 % and a higher value for the transverse (90-degree) modulus of elasticity in 

tension by 14 %. For the bias modulus of elasticity in tension, macromechanics with 

calculated lamina properties overestimates its value by 4 % and macromechanics with 

experimental properties underestimates its value by 11 %. 

3.2.2.3 Unidirectional E-glass/Elium Test Results 

Table 29 and Table 30 in section 3.2.3.1 Comparison of Mechanical Properties shows the 

detailed E-glass/Elium composite material mechanical property numerical results. The 

composite panels used for this testing were observed to have an average thickness of 4.4-

mm. Figure 40 through Figure 45 show the longitudinal and transverse tension, 

compression, and in-plane shear stress-strain responses for the unidirectional E-

glass/Elium tested and Table 35 shows the failure classifications for the unidirectional E-

glass/Elium specimens tested. 
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Figure 40: E-glass/Elium UD Longitudinal Tension 

Stress-Strain Response 

 

Figure 41: E-glass/Elium UD Transverse Tension 

Stress-Strain Response 

 

 

Figure 42: E-glass/Elium UD Longitudinal Tension 

Stress-Strain Response 

 

Figure 43: E-glass/Elium UD Transverse Compression 

Stress-Strain Response 
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Figure 44: E-glass/Elium UD In-Plane Shear (Gxy) 

Stress-Strain Response 

 

Figure 45: E-glass/Elium UD In-Plane Shear (Gyx) 

Stress-Strain Response 

 

Table 35: Detailed E-glass/Elium UD Sample Failure Types 

Specimen 

Orientation 
Specimen Type 

ASTM D3039 

Tension 

[38] 

ASTM D6641 

Compression 

[40] 

ASTM D7078 

In-Plane Shear 

[41] 

Longitudinal 

Failure Type DGM, OAV BGM, CIT VSA 

Number of 

Failures 
3, 5 2, 3 5 

Transverse 

Failure Type LGT, LAT HAT HGN 

Number of 

Failures 
5, 3 5 5 

 

The longitudinal tension samples tested all shared the same failure type, edge delamination-

gage-middle (DGM) that is shown in Figure 46. Failure type LGT exhibited by the 
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transverse tension samples is shown previously in Figure 32. In addition failure type BGM 

exhibited by the longitudinal compression samples was shown in Figure 22. Figure 34 

shows failure type HAT, which was exhibited by all the transverse compression samples 

tested for this material. Figure 47 shows the vertical cracking-side region-adjacent to 

notches (VSA) failure seen by all the Gxy orientation in-plane shear samples tested for the 

unidirectional E-glass/Elium. This not the typical failure mode seen in these samples at the 

ASCC, however due to the relative vertical weakness of the matrix between the fiber toes 

running from top to bottom it was viewed as acceptable. All of the Gyx in-plane shear 

samples tested of this material experienced failure type HGN previously shown in Figure 

23. The OAV and lateral-at grip/tab (LAT) tension failures, and end-crushing-inside 

grip/tab-top (CIT) compression failures were not used when characterizing the material 

because they are not considered valid failures. 

 

 

Figure 46: E-glass/Elium UD DGM Failure Long. Tension Sample 



95 

 

 

Figure 47: E-glass/Elium UD VSA Failure (Gxy) In-Plane Shear Sample 

 

3.2.2.4 Unidirectional E-glass/Derakane Test Results 

To assess the feasibility of the thermoplastic composites in this study for structural 

applications, a traditionally infused thermoset Derakane 610-C was used to create samples 

for testing in order to have a baseline to compare the thermoplastic composites against 

examples against. Derakane 610-C is an industry accepted resin-system by for use in 

structural composites and was familiar to the ASCC. The mechanical property testing 

results for the unidirectional 10-layer E-Glass/Derakane samples are shown in Table 29 

and Table 30 in section 3.2.3.1 Comparison of Mechanical Properties. 

Figure 48 through Figure 53 show the longitudinal and transverse tension, compression 

and in-plane shear stress-strain responses for the unidirectional E-glass/Derakane 

thermoset composite tested. Table 36 shows the failure types and number of coupons tested 

for the unidirectional E-glass/Derakane composites tested for this study. 
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Figure 48: E-glass/Derakane UD Long. Tension Stress-

Strain Response 

 

Figure 49: E-glass/Derakane UD Trans. Tension Stress-

Strain Response 

  

 

Figure 50: E-glass/Derakane UD Long. Compression 

Stress-Strain Response 

 

Figure 51: E-glass/Derakane UD Trans. Compression 

Stress-Strain Response 
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Figure 52: E-glass/Derakane UD In-Plane Shear (Gxy) 

Stress-Strain Response 

 

Figure 53: E-glass/Derakane UD In-Plane Shear (Gyx) 

Stress-Strain Response 

  

Table 36:  E-glass/Derakane UD Failure Types 

Specimen 

Orientation 
Specimen Type 

ASTM D3039 

Tension 

[38] 

ASTM D6641 

Compression 

[40] 

ASTM D7078 

In-Plane Shear 

[41] 

Longitudinal 

Failure Type 
XGR, DGT, 

OAV 
BGM VGN, VSE 

Number of 

Failures 
1, 2, 4 10 5, 1 

Transverse 

Failure Type LGT HAT HGN 

Number of 

Failures 
5 5 5 

 

Figure 54 shows the two types of failures seen by E-glass/Derakane longitudinal tension 

composite samples that were tested. The top sample showed explosive-gage-right (XGR) 
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type failure similar to the XGM failure seen in other longitudinal tension samples in this 

study. The bottom samples showed edge delamination-gage-top (DGT) type failure, which 

is similar to DGM type failure seen in other samples. The four tension samples with the 

OAV failure mode indicating the grips failed and not the specimen were not used because 

they are not a valid failure mode. 

 

Figure 54: E-glass/Derakane UD Multiple Failures Long. Tension Samples 

The transverse tension samples exhibited LGT type failure as was shown in Figure 32. The 

longitudinal and transverse compression samples showed failure types BGM shown in 

Figure 22 and HAT shown in Figure 34 respectively. The Gxy in-plane shear samples 

showed failure type VGN as previously seen in Figure 35. The vertical cracking-side 

region-top and/or bottom edge (VSE) samples were not shown because this is not a valid 

failure mode. 
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3.2.2.5 Unidirectional E-glass/PETg Test Results 

The fully automated thermoforming process used for the final phases of manufacturing in 

this study uses IE 5842b instead of the original PETg material, IE 5842, that was used for 

the feasibility testing. The only difference in these two materials is that IE 5842b is dyed 

black. However to reflect improvements in manufacturing and verify the new material 

properties unidirectional coupons 10-layer unidirectional samples were made with IE 

5842b and tested. The mechanical properties from these tests is shown in Table 29 and 

Table 30 in section 3.2.3.1 Comparison of Mechanical Properties. 

 

Figure 55 through Figure 60 show the longitudinal and transverse tension, compression, 

and in-plane shear stress-strain response of the coupons tested. Table 37 shows the failure 

types and number of failures for the IE 5842b E-glass/PETg samples tested. 

 

 

Figure 55: E-glass/PETg UD Long. Tension Stress-

Strain Response 

 

Figure 56: E-glass/PETg UD Trans. Tension Stress-

Strain Response 
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Figure 57: E-glass/PETg UD Long. Compression Stress-

Strain Response 

 

Figure 58: E-glass/PETg UD Trans. Compression 

Stress-Strain Response 

 

 

Figure 59: E-glass/PETg UD In-Plane Shear (Gxy) 

Stress-Strain Response 

 

Figure 60: E-glass/PETg UD In-Plane Shear (Gyx) 

Stress-Strain Response 
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Table 37: IE 5842b E-glass/PETg UD Failure Types 

Specimen 

Orientation 
Specimen Type 

ASTM D3039 

Tension 

[38] 

ASTM D6641 

Compression 

[40] 

ASTM D7078 

In-Plane Shear 

[41] 

Longitudinal 

Failure Type DGM, OAV BGM, HAT VGN 

Number of 

Failures 
5, 3 7, 3 7 

Transverse 

Failure Type LGT HAT HGN 

Number of 

Failures 
6 8 5 

 

The failure modes exhibited by the longitudinal and transverse tension samples were DGM 

shown in Figure 46 and LGT shown in Figure 32 respectively. The failure modes seen by 

the longitudinal and transverse compression samples were BGM shown in Figure 22 and 

HAT shown in Figure 34 respectively. The failure modes seen by the in-plane shear 

samples were previously shown in Figure 35 and Figure 23 respectively. The tension 

samples with failure type OAV were not used because this is not a valid failure mode. 

3.2.2.6 Beam Layup E-glass/PETg Test Results 

To support the design discussed in Chapter 4 of this thesis for a hybrid composite-concrete 

structure a fiber architecture was developed for a beam specimen. Consolidated laminates 

of the beam layup, [+/- 45 90 0]S, using IE 5842b material, were stamp formed and tested 

to compare against results found by using the unidirectional IE 5842b E-glass/PETg 

material characterization and classical lamination theory [7] [37]. Composite 
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macromechanics techniques were used to implement the unidirectional testing results as 

lamina input parameters to develop effective engineering properties for the beam layup 

multidirectional laminate to estimate strengths and stiffnesses based on first and second-

ply failure. The results are shown in Table 38. 
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Table 38: E-glass/PETg [+/- 45 90 0]s Composite Mechanical Property Results 

Properties with COV 
Experimental 

Results 

CLT Results 

First-Ply 

Failure 

CLT Results 

Second-Ply 

Failure 

Fiber Volume Fraction, 𝑉𝑓 (%) 41.1 (1.6 %) - - 

Tensile Strength, 𝐹𝑥𝑡 (MPa) 223 (11.6 %) 39.5 152 

Compressive Strength, 𝐹𝑥𝑐 (MPa) 106 (10.9 %) 133 143 

In-Plane Shear Strength, 𝐹𝑥𝑦 (MPa) 90.8 (13.9 %) 29.5 36.1 

Tensile Elastic Modulus, 𝐸𝑥𝑡 (GPa) 10.9 (8.67 %) 12.1 13.0 

Compressive Elastic Modulus, 

𝐸𝑥𝑐 (GPa) 
10.7 (9.71 %) 12.1 13.0 

In-Plane Shear Elastic Modulus, 

𝐺𝑥𝑦 (GPa) 
5.20 (2.79 %) 4.5 5.5 

Poisson’s Ratio, νxy (-) 0.32 (3.54 %) 0.338 0.655 

Longitudinal Ultimate Tensile 

Strain, εxt
u (µε) 

24,200 

(8.34 %) 
- - 

Longitudinal Ultimate Compressive 

Strain, εxc
u (µε) 

11,300  

(14.2 %) 
- - 

Longitudinal Ultimate In-Plane Shear 

Strain, εxy
u (µε) 

20,800 

(13.1 %) 
- - 

Average Composite Thickness, t (mm) 2.0 - - 

Note: COV percentages reported with respective measured value in parenthesis. 
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The results from CLT have been presented twice, once for first-ply failure and again for 

second-ply failure. First-ply failure results predict that the 90-degree layer fails first with a 

tensile strength that is 18 %, a compressive strength of 125 %, and an in-plane shear 

strength of 87 % of what was seen experimentally. From this first-ply failure was more 

conservative in both the tension and in-plane shear modes, but less conservative in the 

compression mode. Second-ply failure results predict that the bias (45) layers would fail 

next predicting a tensile strength of 68 %, a compressive strength of 135 %, and an in-plane 

shear strength of 106 % of what was seen experimentally. The tensile strength prediction 

from second-ply failure is closer to the experimental result observed than first ply failure, 

which could be due to how the experiment was conducted. Comparing the CLT results to 

the experimental results higher experimental results could be because first and second ply 

failures do not imply laminate failure; the laminate may still have significant additional 

capacity beyond some plies failing. 

Samples tested at the ASCC were tested until a large drop in the load the sample could 

carry was experienced during testing. This yielded results which showed visually the +/- 

45-degree layers on the surface of the composite failing. However, these layers could have 

failed before the end of the test which could explain the higher experimental tensile 

strength results as this would mean the 0-degree layers continued to be loaded during 

testing past second-ply failure. This can be seen in Figure 64 that shows a failed tension 

sample for the mechanical testing that was conducted. 

Figure 61 through Figure 63 show the longitudinal tension, compression, and in-plane 

shear stress-strain responses of the beam specimens tested respectively. From the beam 
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layup specimens tested. Table 39 shows the type of failure as classified using the respective 

ASTM standard and the number of failures per failure type. 

 

Figure 61: E-glass/PETg [+/- 45 90 0]s Long.  

Tension Response 

 

Figure 62: E-glass/PETg [+/- 45 90 0]s Long. 

Compression Response 

 

 

Figure 63:  E-glass/PETg  [+/- 45 90 0]s In-Plane Shear Response 
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Table 39: IE 5842b E-glass/PETg [+/- 45 90 0]s Failure Types 

Specimen Type 
ASTM D3039 

Tension [38] 

ASTM D6641 

Compression [40] 

ASTM D7078 

In-Plane Shear [41] 

Failure Type AGM, GIT BGM HGN, AMV 

Number of Failures 4, 6 8 3, 2 

 

An example of each valid failure type for each of the three specimen types tested for the 

beam layup are shown in Figure 64 through Figure 66 these illustrate the most non-

unidirectional samples tested as a part of this study. Figure 64 illustrates failure type 

angled-gage-middle (AGM) seen in all valid beam layup tension samples tested. Figure 65 

shows failure type BGM seen by all beam layup compression samples tested. Figure 66 

shows failure type HGN seen in all beam layup in-plane shear samples tested. The tensile 

samples and in-pane shear samples with the grip/tab-inside grip/tab-top (GIT) and angled-

multiple areas-various (AMV) failure modes respectively were not used because this is not 

a valid failure mode. 

 

 

 Figure 64: E-glass/PETg [+/- 45 90 0]s Failed Tension Sample 
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3.3 Conclusions and Recommendations 

From the standardized mechanical testing conducted to meet object two during this study, 

the following conclusions were made about the relative strengths and moduli of the Elium, 

PETg, and Derakane composites tested. 

For strengths in the longitudinal direction: 

 The average tensile strength was 835-MPa for Derakane, 741-MPa for Elium, and 623-

MPa for PETg, which are 11 % and 25 % lower than Derakane respectively. 

 The average compressive strength was 634-MPa for Elium, 539-MPa for Derakane, 

and 310-MPa for PETg, which are 15 % and 51 % lower than Elium respectively. 

Figure 65: E-glass/PETg [+/- 45 90 0]s Failed Compression Sample 

Figure 66: E-glass/PETg [+/- 45 90 0]s Failed  

In-Plane Shear Sample 
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 The average in-plane shear strength was 42.2-MPa for Derakane, 42.0-MPa for Elium, 

and 28.8-MPa for PETg, which are less than 1 % and 32 % lower than Derakane 

respectively. 

For moduli in the longitudinal direction: 

 The average tensile elastic modulus was 33.37-GPa for Derakane, 33.15-GPa for 

Elium, and 28.2-GPa for PETg, which are 1 % and 15 % lower than Derakane 

respectively. 

 The average compressive elastic modulus was 33.8-GPa for Elium, 30.1-GPa for 

Derakane, and 23.5-GPa for PETg, which are 11 % and 30 % lower than Elium 

respectively. 

 The average in-plane shear elastic modulus was 3.50-GPa for Derakane, 3.21-GPa for 

Elium, and 1.48-GPa for PETg, which are 8 % and 58 % lower than Derakane 

respectively.  

From these results, it is clear that the infused Elium and Derakane composites perform 

similarly in the longitudinal direction for strength and stiffness. The PETg composite 

performs close to these in tension, but worse in compression and in-plane shear. From these 

results, the thermoplastic composites perform well in comparison to the industry accepted 

structural thermoset, Derakane, especially when loaded in tension. This shows that the 

thermoplastic composites are feasible for hybrid composite-concrete applications where 

they would be used as tension reinforcing for the concrete. 

From the testing conducted in this study, the following recommendations are given: 
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 Manufacturing methods be examined to find reasons for the low  

𝑉𝑓fractions seen in the composite panels that were fabricated and tested. 

 Examine more crystalline thermoplastics such as Nylon or PET for their mechanical 

properties to see if they are feasible for use in structural applications. 

 Examine inter-laminar properties for further characterization of thermoplastic 

materials.  
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CHAPTER 4 

SHEAR CONNECTORS 

4.1 Purpose 

Shear connectors mechanically connect the continuous fiber-reinforced thermoplastic 

(CFRTP) tension reinforcement plate to the concrete cross-section. This mechanical 

connection transfers shear between the concrete and the CFRTP reinforcement plate, 

effectively reducing or preventing slip at the interface between the two materials and 

developing tension in the CFRTP material through composite action. The following sub-

sections address details of the mechanical shear connection as well as the investigation of 

friction welded shear studs and vacuum infused shear studs: design, manufacturing, and 

strength and stiffness testing. 

4.2 Hybrid Reinforced-Concrete Structures 

The shear connector designs chosen in this study take existing knowledge and concepts 

from steel-concrete construction methods and apply the same principles to the CFRTP-

concrete load-bearing system. This section provides background information on routinely 

used steel shear studs to establish basic concepts. Following this, current methods of fiber-

reinforced polymer (FRP) tension reinforcing for concrete beams are briefly reviewed. 

Building on this information, the remaining sections focus on the friction welded and 

infused thermoplastic shear studs developed in this study. 
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4.2.1 Hybrid Steel-Concrete Structures 

The hybrid structure takes advantage of both material systems to achieve a stronger and/or 

stiffer structure than possible with either of the separate constituents. One of the most 

common structural systems for bridges, decking, columns, and retaining walls is steel-

concrete hybrid construction.  

The example of the composite action between a steel beam and concrete slab in bending is 

used to illustrate the function of shear studs because it closely resembles the application of 

the CFRTP-concrete hybrid system developed in this study. Headed mechanical shear 

studs, which can transfer shear and resist pullout from the concrete, are widely used in 

steel-concrete structures. 

Drawn arc welding is used to attach the shear studs to the top flange in the beam [52] [53]. 

An example of this process on a bridge is shown in Figure 67 [54]. This process is partially 

automatable, but often labor intensive and done on site. 
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Figure 67: Drawn Arc Stud Welding [54] 

This method is effective because it creates a strong bond between the steel flange and the 

shear stud due to the T-shaped cross-section of the welded stud. Figure 68 illustrates a 

typical T-shaped cross-section that could be used in this application. The stud not only 

generates composite action through the shaft of the stud but also resists the stud pulling out 

of the concrete deck through the hat section at the top of the T-shape. 
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4.2.2 Hybrid Thermoset FRP-Concrete Structures 

Another important hybrid system is a composite-concrete system. The majority of existing 

implementations use thermoset composites and are a repair or strengthening method, not a 

form of new construction. In concrete-FRP hybrid structures, thermoset FRP is attached to 

the concrete to assist in carrying the tension. Two methods that exist for adhering the 

external FRP to concrete are externally bonded thermoset FRP (EB-FRP), which is an 

accepted technology, and mechanically fastened thermoset FRP (MF-FRP), which is less 

common. Both methods are an alternative to traditional external reinforcement techniques 

for reinforced-concrete (RC) structures, which include steel plate bonding and steel or 

concrete column jacketing. FRP has several advantages over these more traditional 

methods, including: 

 Resistance to electrochemical corrosion 

Figure 68: T-Hat Cross-Section SOLIDWORKS 

Model 
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 Electromagnetic inertness 

 Excellent durability in numerous harsh environmental conditions 

 High strength to weight ratios (up to five times that of steel) 

 Mechanical properties which can be tailored to specific applications 

These advantages make thermoset FRP composites good candidates for retrofitting 

concrete structures [55] [56]. 

4.2.2.1 Externally Bonded Thermoset FRP 

EB-FRP method of retrofitting RC structures involves using an adhesive to bond an 

external thermoset FRP plate to the structure in order to add flexural strength. Early studies 

were done to assess the static strength of RC beams retrofitted by gluing glass-fiber-

reinforced-plastic (GFRP) to the tension-reinforcement. The results of this study showed 

that the flexural strength of RC beams can be noticeably increased by the addition of 

externally bonded glass-fiber-reinforced polymer (GFRP) to the tension face [57]. That 

experimental study was followed by an analysis and parametric study on RC beams 

strengthened with FRP plates [58]. Numerous additional studies have discussed how EB-

FRP can be used in civil infrastructure applications and their effectiveness [59] [60] [61] 

[62]. 

EB-FRP is widely accepted for strengthening RC structures based on this foundational and 

continued research. The American Concrete Institute (ACI) and the American Association 

of Highway and Transportation Officials (AASHTO) have both published guidelines for 

the design and use of EB-FRP as flexural reinforcement [63] [64]. 
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Some drawbacks of using EB-FRP for strengthening RC structures are the need for careful 

surface preparation in order to achieve good adhesion when bonding the FRP, lengthy 

adhesive cure times, and the additional attention required to reinforcement termination due 

to peeling stresses, which can develop at the bond line [65]. These drawbacks led to the 

exploration of MF-FRP. 

4.2.2.2 Mechanically Fastened Thermoset FRP 

The goal of using mechanically fastened thermoset FRP (MF-FRP) is the same as that of 

using EB-FRP, but MF-FRP achieves the bond between RC structure and FRP with a 

mechanical connection as opposed to an adhesive bond.  This can serve to eliminate the 

drawbacks of surface preparation and long adhesive cure times. When considering the use 

of MF-FRP, it is important to consider the imperfect bond, or slip, between the FRP and 

concrete that can happen [65]. Several studies have investigated the use of MF-FRP in the 

strengthening of RC structures and have found it an effective method. Several methods of 

mechanical fastening have been used, such as powder-actuated fasteners and expansion 

anchors [66], large diameter concrete screws [67], commercially available SafStrip® [68] 

material attached with powder-actuated fasteners and threaded fasteners [69], and epoxy 

anchors [65]. 

4.2.3 Hybrid Thermoplastic FRP-Concrete Structures 

The selection of a shear connection for this study was based on the desire to achieve a 

purely mechanical connection and utilize the advantages of thermoplastic materials. A 

literature review was conducted on joining methods that could be used with thermoplastic 

materials in order to assess which method could best achieve the mechanical connection. 
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The following methods were investigated as a part of the literature review: 

 Friction welding 

 Heated tool welding 

 Ultrasonic welding 

 Mechanical fastening 

 Vacuum infusion 

Based on its advantages, friction welding was chosen. Because shear studs are generally 

circular in cross-section, the method of friction welding chosen was spin welding. Spin 

welding has the following advantages [70] [71]. 

 Simple setup 

 High energy efficiency 

 Rapid heating and cooling times 

 Suitable for automation 

 No introduction of foreign materials (adhesives, solvents, etc.) 

 Suitability to small and large parts 

 High weld quality and reproducibility 

With a manufacturing method selected, further literature review was conducted so the 

process could be more deeply understood and welding parameters could be selected. These 

phases are illustrated on the temperature versus time plot shown as Figure 69 [71]. 

The process of spin welding can be summarized by the following four phases. 
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 Phase I, heat is generated by solid friction through spinning the rod at a desired 

speed under a desired pressure 

 Phase II, the plastic is melted and the heating mechanism changes from solid 

friction to shear dissipation 

 Phase II, the steady-state phase where heat-loss and heat-generation are in 

equilibrium 

 Phase IV, the rotation is brought to a stop and the forging pressure is applied as the 

polymer solidifies 

 

Four parameters drive the spin welding process: spinning velocity (rotational linear speed), 

welding pressure (the pressure applied during phases I through III), forging pressure (the 

pressure applied during phase IV), and welding time (time for phases I through III) [70].  

Figure 69: Friction Welding (Spin Welding) Phases 
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Specific welding parameters were not found for use with PETg, the thermoplastic being 

used in this study. Therefore, a study was necessary in order to select suitable parameters 

inside the ranges give in the literature. Three sources were used to define the suitable ranges 

for parameter settings. 

Fusion Bonding/Welding of thermoplastic composites [70]: 

 Spinning velocity: 1 – 20 meters per second (m/s) 

 Welding pressure: 80 – 150 kilopascals (kPa) 

 Forging pressures: 100 – 300 kilopascals (kPa) 

 Welding time: 1 – 20 seconds (s) 

Handbook of Plastics Joining [71]: 

 Spinning velocity: 200 – 14000 rotations per minute (rpm) 

 Welding pressure: N/A 

 Forging pressures: Ensure intimate contact between parts 

 Welding time: 0.5 –  4 seconds (s)* 

Advances in fusion bonding techniques for joining thermoplastic matrix composites [72]. 

 Spinning velocity: 1 – 20 meters per second (m/s) 

 Welding pressure: 50 – 150 kilopascals (kPa) 

 Forging pressures: 100 – 300 kilopascals (kPa) 

 Welding time: 1 – 20 seconds (s) 

*Handbook specifies that for materials with higher melting temperatures, longer welding 

times will be required due to the need for higher energy input. In addition, 1 – 2 seconds 
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are described apart from the traditional four phases for the rotational speed to be achieved 

[71]. 

Table 40 shows the testing matrix generated based on the recommendations in literature 

and the properties of the PETg thermoplastic being used. The test matrix uses a four-factor, 

two-level model to cover the entire parameter space chosen. 
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Table 40: Friction Welding TP Stud Shear Test Matrix 

Sample 

# 

Welding Pressure 

(kPa) 

 Forging Pressure 

(kPa) 

Time 

(s) 

Velocity 

(m/s) 

1 50 100 15 10 

2 50 100 15 15 

3 50 100 20 10 

4 50 100 20 15 

5 50 300 15 10 

6 50 300 15 15 

7 50 300 20 10 

8 50 300 20 15 

9 150 100 15 10 

10 150 100 15 15 

11 150 100 20 10 

12 150 100 20 15 

13 150 300 15 10 

14 150 300 15 15 

15 150 300 20 10 

16 150 300 20 15 

Note: A tachometer was used to correlate velocity to router speed setting. 
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Weld times were selected at the upper end of the range of the suggested parameters for the 

following reasons. 

 The relatively high melting temperature of PETg, 250 degrees Celsius [73], 

compared to commodity thermoplastics, which can a range from low melting 

temperatures of 110 degrees Celsius [74] for low-density polyethylene (LDPE), to 

160 degrees Celsius [75] for polypropylene (PP), to higher ones of 212 degrees 

Celsius [76] for polyvinyl chloride (PVC),  that are more commonly friction 

welded. 

 The inability of our custom welder to reach velocities in the upper suggested range. 

 To ensure complete heating of the solid part to avoid the generation of residual 

stresses from non-uniform heating [70]. 

4.2.3.1 Unreinforced Shear Stud attached by Friction Welding 

The first type of shear stud explored in this study was the friction welded shear stud. 

Friction welding was chosen as the primary method to explore because it takes advantage 

of two aspects of thermoplastic materials: their ability to be melted and reformed with the 

same properties, and their amenability to automated manufacturing. The latter benefit was 

realized through friction (spin) welding that takes advantage of the traditionally cylindrical 

shape of a shear stud, which was maintained for this design. 

The cross-section chosen for this design mimics that used for steel-concrete construction: 

a cylindrical cross-section with a larger diameter head on top to give a T-shaped cross-
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section. Spacing limitations for shear studs from the edges of the concrete and from stud 

to stud were based on AASHTO specifications for steel-concrete construction [77]. 

Figure 70 shows the concept design of the circular friction welded stud being investigated 

for this study with dimensions given in millimeters (mm). The shaft of the neat resin stud 

was chosen to be 57.15-mm (2.25-inches) to ensure the stud met the AASHTO [77] height 

requirement of 50.8-mm (2-inches) after welding, and the diameter of the circular stud was 

chosen to be 12.7-mm (0.5-inches). Pull out resistance for this initial design would be done 

by fastening a washer to the top of the stud using a self-tapping screw. This is shown as 

the 19.05-mm (0.75-inch) diameter cross-section on top of the stud shaft. This process 

could easily be automated for rapid installation of shear studs with pull out resistance. 

Using neat-resin studs, the mechanical connection has the following advantages and 

Figure 70: 2D Friction Welded 

Stud Concept Design (mm) 
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disadvantages, which were considered when selecting the stud for friction welding in this 

study. 

Advantages Disadvantages 

 Resin rich welding interface 

 Easier to generate complete bond 

at the welding interface 

 Available from multiple suppliers 

in a variety of diameters 

 Process is fast and automatable 

 

 Shaft only as strong as neat-resin 

 Only available from suppliers in 

rods with a constant cross-section 

 Secondary process needed to 

facilitate pull out resistance 

4.2.3.2 Reinforced Shear Stud attached by Friction Welding 

Another type of shear stud considered for friction welding as a part of this study was 

reinforced shear studs. This still takes advantage of thermoplastic material properties like 

the neat-resin studs by utilizing the melting of reforming of the resin, and could easily be 

designed into an automated process to mimic steel connectors. These studs would be 

similar to the neat-resin studs with potential strength advantages from the introduction of 

fiber-reinforcement. A custom fabrication method would need to be developed to make 

these studs, which could integrate more complex geometries beyond the straight rod 

available off-the-shelf for neat-resin PETg. 
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Friction welding reinforced shear studs could have the advantage of fiber interaction at the 

interface between the shear stud and CFRTP reinforcement. If this interaction was 

developed enough the fibers could provide more strength and stiffness for increased 

composite action. A possible disadvantage of this is deceased strength of the welded bond. 

The introduction of fiber reinforcement or other fillers at the weld interface may have an 

effect on the weld strength by decreasing the amount of polymer available for welding [71]. 

One method of custom fabrication was considered as part of this study that was not 

included in the scope of work. This was the creation of reinforced Elium shear studs 

fabricated through vacuum infusion. The method discussed involved coating a PVC pipe 

in a mold release agent, then filling it with fiber-reinforcement and bagging it in a vacuum 

infusion setup as discussed in chapter 2. Then the resin could be infused into the mold with 

circular cross-section, and once the resin cured, reinforced shear studs could be cut to 

length for friction welding. 

4.2.3.3 Friction Welded Shear Stud Selection 

Based on the relative advantages and disadvantages and recognizing that successfully 

completing this initial study would require straightforward shear stud fabrication, neat-

resin shear studs were chosen for this initial study. It is recommended that future studies 

investigate the use of fiber-reinforced shear studs to assess any strength benefits. 

4.2.3.4 Fiber-Reinforced Shear Stud by Resin Infusion 

The second type of shear stud chosen for this study was vacuum infused shear studs. This 

was chosen because it is similar to what is done in industry with thermosetting composites, 

and is possible because Elium is a thermoplastic liquid resin-system. Vacuum infused studs 
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also have the advantage of fiber-reinforcement in the shaft, which can be extended into the 

tension reinforcement, increasing shear strength at the stud-plate interface. 

In order to fabricate the vacuum infused shear studs, it was decided to co-infuse the studs 

with the reinforcement plates in order to achieve a strong interaction between the fiber-

reinforced shear stud and the reinforcement plate. The 2D concept design chosen for the 

circular stud has a fluted shape as shown in Figure 71. The smaller top radius of 9.525-mm 

(0.375-inches) will allow the concrete to flow around the stud but still allow for resistance 

to pull out. The bottom radius of 19.05-mm (0.75-inches) is larger in order to maximize 

the transfer of forces between the shear stud and the plate or minimize the shear stresses 

experienced. The shaft at the center of the stud was chosen to be 12.7-mm (0.5-inches), the 

same as the friction welded studs. The total height of the stud was designed to be 50.8-mm 

(2-inches) to meet AASHTO guidelines [77] for the height of steel shear studs, which were 

followed in this research. 

 

 

 

 

 

 

Figure 71: 2D Infused Shear Stud Concept Design (mm) 
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4.2.4 AASHTO Shear Stud Design & Spacing 

For the purposes of this study in conjunction with Benjamin Smith, another Graduate 

Research Assistant at the ASCC, the AASHTO LRFD Bridge Design Specifications [77] 

for steel shear studs was used to select two stud spacings for a composite-concrete beam. 

The guidelines for steel shear studs were assumed to apply to the thermoplastic shear studs 

being explored in this study. 

Since the stud size being used in this study was limited by the friction welder to 12.7-mm 

(0.5-inches) in diameter it was adopted for use with the guidelines for stud spacing choices. 

For these tests two rows of studs were chosen, which resulted in a suitable beam-width of 

127-mm (5-inches). Assuming the beam to have a relatively short span to depth ratio of 12 

in an effort to increase the concrete shear strength in the beam and adhering to the 

manufacturing limits of the ASCC automated stamp forming press the resulting beam 

length would be 1524-mm (60-inches) with a depth of 127-mm (5-inches). This small-scale 

proposed beam specimen would allow the CFRTP reinforcement plate to be manufactured 

in house on the automated stamp forming line used during this study. 

The required center-to-center spacing along the span of the beam (longitudinal) was at least 

six stud diameters, but no more than 610-mm (24-inches). Two beam specimen designs for 

use with PETg friction welded shear studs were developed. The first had the minimum stud 

spacing (pitch) of 76.2-mm (3-inches) resulting in 40 studs per beam in order to observe 

the maximum strength achievable while following the guidelines. For the second beam, a 

pitch of 152.4-mm (6-inches) was chosen in order to observe the effects of varying this 

parameter on the specimen performance. 
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The transverse (perpendicular to the span) center-to-center stud spacing was required to be 

at least four stud diameters, using the chosen stud diameter this was 50.8-mm (2-inches). 

The shear studs were also required to penetrate the concrete by at least 50.8-mm (2-inches) 

and have 50.8-mm (2-inches) of concrete to cover them. All studs were also required to be 

at least 25.4-mm (1-inch) inside of the beam from each edge panel to the stud edge. 

For the purposes of this study, the beams were not fabricated but the concrete-CFRTP stud 

specimens discussed in section 4.4.3 were designed to simulate the PETg friction welded 

studs in concrete-CFRTP stud with these two stud spacing designs. E-glass fiber/Elium 

shear studs were only tested using the larger stud spacing due to the time-consuming nature 

of their fabrication.  

4.3 Manufacturing 

4.3.1 Friction Welding Methods 

Two welding methods were developed in support of this project. The first was welding on 

an Instron test frame to facilitate a highly controlled environment for parameter selection 

and the second mobile welding for welding to larger objects and mimics a possible method 

that could be implemented in the field. 
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4.3.1.1 Feasibility Welding Trial 

Preliminary tests were conducted with a drill press to spin the pure resin PETg rods spun 

into a pure resin PETg plate in order to verify the feasibility of the friction welding process. 

Figure 72 is a photo of a cross-section of PETg rods friction welded to a PETg plate. 

These preliminary tests indicated that it is feasible to manufacture thermoplastic shear studs 

using this method. Figure 72 shows that the rods embedded in the plate. Although the studs 

successfully bonded to the plate, the interface between the two components is still visible 

and the penetration tapers off as the cross-section moves from the center of the stud toward 

the outer edge. It is also clear that the material pushed from the penetrated portion of the 

stud collected on the surface around the stud as heat and pressure was applied.  

The next step in evaluating this application of friction welding was to develop a more 

controlled method of installing shear studs using friction welding that would allow for a 

study on the effect of processing parameters. This study of welding parameters was done 

in an Instron testing frame in order to control the welding pressures. 

4.3.1.2 Instron Testing Frame Welding 

A spin welding apparatus was developed using a DeWalt router for spinning the 

thermoplastic shear stud and an Instron hydraulic test frame with a 9-kN load cell to control 

Figure 72: Cross-Section of Feasibility Weld 
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the pressure applied during welding and forging. Figure 73 shows the Instron welding setup 

developed at the ASCC. 

 

Figure 73: Instron Welding Setup 

The CFRTP reinforcement plate was gripped in the top of the fixture and a thermoplastic 

stud inserted into the router collet pointing up. The router as shown was mounted upside 

down such that the Instron could control the pressure from the hydraulic actuator mounted 

in the top of the test frame. 

Test samples made using this apparatus were done with neat-resin PETg plates, neat-resin 

PETg rod and a manual switch to turn the router on and off in order to prove feasibility. 

Once feasibility was proved a LabView program was written to control a relay that turned 

the router on and off in a more repeatable way. The Instron was then programmed using 

the WaveMatrix software environment to control welding pressure, forging pressure, and 

time without the need for the operator to control the transitions between phases in the 

process. 
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The first trials conducted using the Instron friction welder used neat-resin PETg rods and 

plates. Neat-resin was chosen for initial trials to avoid complications from interactions with 

fiber-reinforcement at the welding interface. Figure 74 shows a specimen welded using 

neat resin PETg for the rod and plate. 

 

  

Figure 74: Initial Instron 

Welding Trial Specimen with 

neat-resin PETg 

Figure 75: Failed Initial Instron Welding Trial Specimen 
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These initial samples were tested but did not fail the shear stud. The mode of failure was 

cracking across the neat-resin plate near the weld point as shown in Figure 75. On the right 

side of the failed specimen, the plate can be seen as failed as opposed to the stud. At this 

point testing moved to spin welding neat-resin studs to CFRTP plates, shown in Figure 76. 

The CFRTP plates used, as described in chapter 2, were purely unidirectional IE 5842 

material. Two plate thicknesses were used when friction welding to IE 5842 material: 6.35-

mm (0.25-inch) and 3.175-mm (0.125-inch) plates. All test results reported in this thesis 

used 6.35-mm reinforcement plates for welding. 3.175-mm plates were used for trials and 

practice to save on material preparation and usage. 

4.3.1.3 Mobile Device Welding 

A mobile welding unit was constructed in order to mimic the process done on the Instron 

in a way that was more suitable for large parts and is closer to a device that could be used 

Figure 76: Instron 

Welded Specimen with 

CFRTP Plate 
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in the field for friction welding in a similar application. The mobile welding setup is shown 

in Figure 77. 

 

Figure 77: Mobile Device Welding Setup 

The mobile welder uses the same DeWalt router as the Instron welder, but the mobile 

welder applies the stud to the CFRTP from the top instead of from the bottom. The mobile 

setup has the router mounted to a carriage, which is on linear rails, so that the router can 

move up and down freely. The carriage and router weigh more than the load necessary for 

the desired pressure, so a counter-weight system was built in order to control the pressure 

applied to the stud during welding. The spinning time for the router was controlled using 

an Arduino programmed with preset times. Welding a single stud with the mobile welding 

unit took approximately 1-minute when done by a trained operator. 
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Welding trials using the mobile device including using both unidirectional IE 5842 material 

as was used with the Instron welder and IE 5842b material in the beam layup discussed in 

chapter 3 of this thesis. Figure 78 and Figure 79 show the mobile welded studs to IE 5842 

and IE 5842b respectively. 

 

Figure 78: Mobile Welded Stud to IE 5842 

 

Figure 79: Mobile Welded Stud to IE 5842b 

 

4.3.2 Vacuum Infusion of Reinforced Shear Studs 

A fiber-reinforced shear stud made with a liquid acrylic thermoplastic (Elium) that can be 

vacuum infused on the CFRTP plate was also explored. While labor intensive compared to 

friction welding, vacuum infusion allows for designed fiber reinforcement of the shear 

studs as described in the design sub-section. Figure 71 shows the concept of a vacuum 

infused shear stud that was implemented. 
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The first step in developing this fabrication method was to establish a feasible infusion 

method and reinforcement architecture. It was decided that the studs would be co-infused 

with the reinforcement plate in wooden molds. The wooden mold tool was fabricated in 

two halves so it could be split for removal from the finished studs. A model of one half of 

the mold is shown in Figure 80. 

 

Figure 80: Vacuum Infused Shear Stud Mold (Half) Concept Design 

The height of the infused shear stud was chosen to be 50.8-mm (2-inches) and the shaft 

diameter to be 12.7-mm (0.5-inches) to be consistent with the height design of the spin 

welded shear studs. The actual mold constructed was originally made of wood as a proof 

of concept but was replaced by one made of 60-lb high-density foam to add durability for 

repeated use. 

The infusions were setup on a plate made of E-LR 1208 fabric with fiber architecture of 

[+/-45 90 0]s to match the beam-layup designed for the end use of this feasibility study. 

The studs were then made of 19 grams of E-BX 2400 double bias E-glass fabric [78] that 
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was rolled until the shaft would fit in the 12.7-mm (0.5-inch) diameter shaft. Figure 81 

shows the rolled fabric. 

 

Figure 81: Rolled E-BX 2400 Double Bias E-glass [78] for Infused Stud 

Once the fabric was rolled, the shaft portion for the mold was held together with heat-

shrink tape and the ends were flared out to fill out the radii in the mold as shown in Figure 

71. The top radius was chosen to be 9.525-mm (0.375-inches) in order to provide pull out 

resistance while still leaving room for the wet concrete to fully form around the shear stud. 

The bottom radius was 19.05-mm (0.75-inches) in order to provide increased shear strength 

beyond the capability of the stud shaft alone. An advantage of vacuum infusion is that these 

radii can be tailored to suite design needs. 

Each infusion was done with two molds, which each help four studs. This allowed for each 

infusion to create an entire concrete-CFRTP stud sample that is discussed in section 4.4.3. 

The end product of an infusion is shown in Figure 82. This shows the results of half of an 

infusion. 



136 

 

 

Figure 82: E-glass/Elium Shear Stud Infusion Result 

Figure 83 shows two different views of Elium shear studs that were fabricated and not used 

in testing. These shear studs were used when practicing fabrication techniques and have a 

smaller upper radius than the studs tested in the concrete-CFRTP stud configuration but 

still give an accurate example of the general appearance of the E-glass/Elium shear studs 

when untested. 

  

Figure 83: Untested Vacuum Infused Elium Shear Studs 
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4.4 Strength and Stiffness Testing 

Two types of strength and stiffness testing were conducted. TP stud shear testing was used 

to determine optimum parameters inside of the recommended parameter ranges from 

literature for friction spin welding of PETg studs to CFRTP.  Concrete-TP stud and 

Concrete-CFRTP stud testing of both friction spin welded PETg and vacuum infused E-

glass fiber/Elium shear studs embedded in concrete was conducted to find better design 

values for hybrid structural design. Vacuum infused E-glass fiber/Elium shear studs were 

only tested in the concrete-CFRTP stud configuration because there were no welding 

parameters to explore. 

Strength and stiffness testing were conducted on samples using the test matrix shown in 

Table 40 in section 4.2.3 in order to select effective welding parameters. Three phases of 

TP stud shear testing were conducted in preparation for the concrete-CFRTP stud test of 

PETg samples. 

4.4.1 TP Stud Shear Custom Test Fixture 

A specialized setup was needed to assess the strength and stiffness of the friction welded 

specimens fabricated for assessing effective welding parameters. Figure 84 shows the 

custom fixture and Figure 85 and Figure 86 show example friction welded specimens. 
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Figure 84: TP Stud Shear Testing Custom Fixture 

 

Figure 85: Double TP Stud Shear Specimen (front) 

 

Figure 86: Double TP Stud Shear Specimen (side) 

The fixture is designed to pull the specimens in tension or push them in compression in 

order to load the shear studs welded to the IE 5842 CFRTP to assess their strength and 

observe a relative stiffness. The fixture outer plates are bolted together at the bottom and 

gripped into the Instron test frame. The friction-welded specimen is aligned in the holes of 

the outer plates and the CFRTP is gripped into the Instron upper grip. In this configuration 

when the actuator is moved, the studs are loaded in either tension or compression. The 

custom fixture can be used in double-lap shear with a stud on each side or in single-lap 

shear with a stud only on one side. All TP stud shear tests were run in a 100-kN Instron 

hydraulically actuated test frame in position control with a data collection rate of 0.1 kHz. 

4.4.2 Testing of Instron Welded Studs in Double TP Stud Shear Loading 

The first tests done to characterize the samples defined in the Table 40 test matrix used a 

symmetric TP stud shear test configuration with a stud on each side of the CFRTP 



139 

 

reinforcement plate. This was chosen in order to have a symmetric test specimen to avoid 

potential asymmetric effects that could be seen in single TP stud shear test such as the 

effects of secondary bending. 

Seventeen double TP stud shear samples we tested and the data analyzed to calculate the 

stud strength as shown in Equation 45, ductility of the studs (difference in stud deformation 

between peak load and when the load dropped to 60% of peak over the defamation at peak 

load) as shown in Equation 46, and whether or not both studs were failed. These results are 

reported in Table 41. 

𝑆𝑡𝑢𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑

2 ∗ 𝐴𝑟𝑒𝑎
 Equation 45 

𝐷𝑢𝑐𝑡𝑖𝑙𝑖𝑡𝑦 =
𝐴𝑃0.6 − 𝐴𝑃𝑃𝑒𝑎𝑘

𝐴𝑃𝑃𝑒𝑎𝑘
 Equation 46 

 

 Peak Load is defined as the maximum load seen during the test. 

 Area is defined as the cross-sectional area of the stud. 

 The “2” in the denominator accounts for there being two studs. 

 𝐴𝑃0.6 is defined as the position of the Instron actuator when the load dropped to 

60% of the peak and the data is stopped because the specimen is considered failed. 

𝐴𝑃𝑃𝑒𝑎𝑘 is defined as the position of the Instron actuator at the peak load in the data. 
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Table 41: Double TP Stud Shear Specimen Results 

Sample Number Stud Strength 

(MPa) 

Specimen Ductility  

(%) 

Studs Shared 

Load 

Simultaneously 

Sample 1 13.5 26  

Sample 2 14.1 97  

Sample 3 27.4 4.5 X 

Sample 4 12.4 66 X 

Sample 5 11.7 2.1  

Sample 6 13.4 3.1  

Sample 7 10.7 9.2 X 

Sample 8 15.9 19  

Sample 8-2 27.3 7.1 X 

Sample 9 17.3 46  

Sample 10 26.6 99 X 

Sample 11 23.9 49 X 

Sample 12 14.4 11  

Sample 13-2 17.9 11  

Sample 14 21.6 5 X 

Sample 15 14.4 11  

Sample 16 23.4 26.6  
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Table 41 reports whether the studs shared the load simultaneously, which was established 

from the data based on the behavior shown. Figure 87 shows the two types of behavior that 

were used to establish load sharing. 

 

Figure 87: Load-Deformation of Studs in Double TP Stud Shear Loading 

Sample 11 displays simultaneous load sharing by both of the studs. Sample 2 did not 

display simultaneous load sharing by the studs. In sample 2, there are clearly two 

independent peaks at approximately the same load showing that the studs were most likely 

broken one at a time. The data often showed that studs that did exhibit load sharing carried 

about twice the load of those without load sharing. 
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Based on the way strength per stud and ductility are calculated as shown in Equations 3 

and 4 respectively for samples that do not have load sharing, these values may be 

misleading. Due to the lack of load sharing caused by the difficulty in aligning the studs 

well enough to consistently engage both studs simultaneously, it was decided to conduct 

more testing with asymmetric single TP stud shear samples. 

Figure 88 and Figure 89 show side 1 and side 2 of a failed Instron welded double TP stud 

shear specimen respectively. There were two types of failure modes for double TP stud 

shear specimens. Mode 1, which occurred when the studs shared the load simultaneously 

or if the test was run past the first stud, resulting in both studs breaking and shearing off, 

as seen in Figure 89. Mode 2 occurred when the load was not shared simultaneously by 

both studs and the test was not run past the first stud failing. 

 

Figure 88: Failed Instron Welded 

Double TP Stud Shear Specimen 

(side 1) 

 

Figure 89: Failed Instron Welded  

Double TP Stud Shear Specimen (side 2) 

All the studs that sheared exhibited the same type of failure at the stud-plate interface. As 

can be seen in Figure 89 the studs failed at the interface between the PETg matrix and the 

top layer of fibers. This exposed those fibers, which can be seen where the stud was as 

white, and some fiber residue can be seen on the shear off stud where it was welded on. 
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This shows the weak point was not the weld between the PETg neat-resin stud and the 

PETg matrix on the composite plate, but that it was between the PETg and the fiber-

reinforcement at the weld interface. 

4.4.3 Testing of Instron Welded Studs in Single TP Stud Shear Loading 

The second batch of testing to characterize the studs defined in the Table 40 was done using 

a single TP stud shear configuration. Eighteen single TP stud shear samples we tested and 

the data analyzed to calculate the stud strength as shown in Equation 5 and ductility as 

shown in Equation 4. The test results are summarized in Table 42. 

𝑆𝑡𝑢𝑑 𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
𝑃𝑒𝑎𝑘 𝐿𝑜𝑎𝑑

𝐴𝑟𝑒𝑎
 Equation 47 

 

 Peak Load is defined as the maximum load seen during the test. 

 Area is defined as the cross-sectional area of the stud. 

  



144 

 

Table 42: Single TP Stud Shear Specimen Results 

Specimen Name Strength per Stud (MPa) Ductility (%) 

Specimen 1 17.3 11 

Specimen 2 25.7 11 

Specimen 3 25.8 220 

Specimen 4 16.1 11 

Specimen 5 29.4 190 

Specimen 6 24.7 8.0 

Specimen 7 15.6 2.1 

Specimen 8 18.8 2.0 

Specimen 9 17.9 42 

Specimen 10 11.7 12 

Specimen 11 28.4 280 

Specimen 12 20.7 18 

Specimen 13-3 7.62 42 

Specimen 14-2 25.2 44 

Specimen 14-3 24.3 24 

Specimen 15 26.8 35 

Specimen 15-3 23.0 2.6 

Specimen 16-2 25.1 110 
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All single TP stud shear specimens manufactured using the Instron welder and tested at the 

ASCC shared the same failure mode. Figure 90 shows an example of this failure mode. It 

was observed that the failures all occurred at the interface between the PETg thermoplastic 

matrix and the fibers. The top layer of fibers, seen as white had the PETg matrix pulled off 

them by the stud during failure. This shows that the weakest link was the interface between 

the thermoplastic resin and the reinforcement fibers matching what was observed with the 

double TP stud shear specimens. In some specimens, the stud pulled off from the top layer 

of fibers but also cracked the neat-resin stud when shearing off. 

 

Figure 90: Failed Instron Welded Single TP Stud Shear Specimen 

Based on the data collected the specimens can be classified as ones with a desirable strength 

of above 23.4-MPa and relatively high ductility in comparison to the other specimens 

collected. The reported shear strength of PETg neat-resin is 62.1-MPa (9000-psi) [36], 

which is 2.7 times more than  the shear strength of the friction welded neat-resin stud. This 

could be due to the E-glass reinforcement that the neat-resin stud is interacting with at the 

weld interface, which effectively reduces the available area for bonding the shear stud resin 
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to the CFRTP resin [71]. In regards to ductility the specimens can be classified as ductile 

and brittle, Figure 91 shows an example of each of these behaviors. 

 

Figure 91: Single TP Stud Shear Ductility Comparison 

Specimen 2 shown in blue represents a brittle behavior in regards to the calculated ductility 

whereas specimen 11 represents a ductile behavior. For the purposes of selecting welding 

parameters for construction of the assemblies, behavior that is more ductile is desirable. 

Ductility in the shear studs theoretically helps the assemblies share the load across all the 

studs, which is expected to increase beam strength and ductility. 

Next, the parameter set was narrowed to two samples in order to select what set of welding 

parameters would be used in the assemblies. From the single TP stud shear data collected, 
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specimens 5 and 11 were chosen for further testing due to their high strength and ductility. 

Figure 92 shows the single TP stud shear results for specimens 5 and 11. 

 

Figure 92: Load-Deformation of Studs in Single TP Stud Shear 

With the specimen types narrowed down to two choices samples needed to be made on the 

mobile welding unit designed for welding the assemblies in order to verify suitable welds 

could be made using that system. 

4.4.4 Testing of Mobile Welded Studs Single TP Stud Shear Loading 

Initial tests were done with mobile welder before the counter-weight system was installed 

and based on the results of these initial tests specimen type 5 was chosen for further 

verification and potential use in the assemblies. Four samples were made using the mobile 
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welder and a counter weight system using the parameters for specimen type 5 using the 

beam-layup as the CFRTP. The results from these tests are shown in Table 43. 

Table 43: Single TP Stud Shear Mobile Welder Specimen Type 5 Sample Results 

Specimen Name Strength per Stud (MPa) Ductility (%) 

M2 1b 25.6 210 

M2 2b 25.4 160 

M2 3b 25.6 51 

M2 4b 24.9 47 

 

From the four samples tested, the average strength per stud was calculated to be 25.4-MPa 

with a coefficient of variation of 1.3 % and the average ductility was calculated to be 117 

% with a coefficient of variation of 53 %. Figure 93 shows a load versus actuator position 

plot for the four specimen type 5 samples made with the mobile welding unit that were 

tested in single TP stud shear. 
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Figure 93: Type 5 Mobile Welder Single TP Stud Shear Results 

These results viewed as favorable because they exceed the desired design strength per stud 

of 23.4-MPa and show reasonable, although highly variable, ductility. Figure 94 shows an 

example of the failure mode seen in the mobile welded single TP stud shear samples to the 

Figure 94: Failed Mobile Welded Single 

TP Stud Shear Specimen 
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IE 5842b beam layup. The failure mode for these specimens were all the same as shown 

but differed from the other TP stud shear testing specimens tested. These samples were run 

in displacement control until the load dropped below 60% of the peak load seen during the 

test. It can be seen that the studs were being deformed in bearing just above the weld 

interface. This difference in failure modes could be due to the different fiber-architecture 

for the CFRTP reinforcement in these specimens. All other TP stud shear specimens were 

welded to unidirectional fibers oriented in the longitudinal direction whereas these 

specimens were being welded to a layer with the fibers off-axis by 45-degrees from the 

longitudinal direction. 

4.4.5 Testing in  Concrete-TP Stud and Concrete-CFRTP Stud Configurations 

The final step in assessing the feasibility of thermoplastic composites for use in load-

bearing hybrid structures as explored in this study is to assess the degree of composite 

action achieved by the shear transfer methods chose. This was done through the 

implementation of a concrete-TP and concrete-CFRTP stud test. 

4.4.5.1 Specimen Design 

The concrete-TP and concrete-CFRTP stud specimens were designed to load the studs in 

pure shear in a symmetric configuration based on what was done by Cho, et al [2]. The 

purpose of this test was to assess the capacity of the friction welded shear studs in a pure 

shear configuration embedded in concrete as would be done in a composite-concrete load 

bearing system. Table 44 shows the test matrix chosen for the concrete-TP and concrete-

CFRTP stud samples in this study. The IE 5842b specimens have two spacings based on 

the proposed design of a thermoplastic composite-concrete hybrid beam discussed in 
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section 4.2.5. Only the larger spacing of 152.4-mm (6-inches) was chosen for the Elium 

concrete-CFRTP stud samples due to the time intensive nature of their fabrication. 

Table 44: Concrete-TP/CFRTP Stud Test Matrix 

IE 5842b (PETg) Elium 150 

76.2-mm (3-inch)  

stud spacing 

(minimum from AASHTO) 

152.4-mm (6-inch) 

stud spacing 

152.4-mm (6-inch) 

stud spacing 

 

Figure 95  shows the concept design for the 76.2-mm spacing direct shear specimen. The 

concrete-TP and concrete-CFRTP stud specimens were designed to have the studs fully 

embedded in concrete to simulate pure shear in a hybrid structure. To ensure this for the 

76.2-mm specimens there was 25.4-mm of concrete above the studs vertically, 76.2-mm 

below them and 101.6-mm from the CFRTP plate horizontally out. For the 152.4-mm 

specimens there is 76.2-mm of concrete above the studs vertically, 127-mm below them 

Figure 95: Concrete-CFRTP Stud 76.2-mm Concept Design 
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and 101.6-mm from the CFRTP horizontally out. For both specimen types, the CFRTP had 

25.4-mm of clearance to travel down on the bottom of the specimen and 25.4-mm of 

clearance above the specimen to engage it for loading. 

4.4.5.2 Specimen Manufacturing 

The concrete-TP stud specimens were made with the same CFRTP reinforcement proposed 

as the beam specimen design and had shear studs friction welded on in the same way with 

self-tapping screws and washers for pullout resistance. 

Figure 96 shows a 152.4-mm spacing finished concrete-CFRTP stud plate on the left and 

a top-down view of the plate installed in the formwork pre-concrete pour on the right to 

illustrate how the specimens were assembled in order for the studs to be embedded in 

concrete to be tested as desired in pure shear. 
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Each concrete-TP stud specimen was made of two CFRTP plates with four studs welded 

on one side at the desired spacing to mimic the beam specimen spacing. Then the plates 

were glued using Pliogrip adhesive to a frame of Garolite G-10 cut so that it only covered 

the outside 25.4-mm of the CFRTP plate and did not touch the backside of the shear stud 

locations. The end configuration shown in Figure 96 has the concrete-TP stud plates back 

to back adhered to the G-10 frame such that 101.6-mm of concrete would be cast on each 

side of the CFRTP effectively embedding the studs in the concrete.     

Figure 97 shows the neat-resin shear studs were fabricated using 57.15-mm (2.25-inch) 

long rods of neat-resin PETg sourced from McMaster-Carr. Once the shear studs were 

friction welded onto the concrete-TP stud specimens using the mobile welder and the 

specimen type 5 settings a 19.05-mm (0.75-inch) diameter stainless steel washer was 

Figure 96: Concrete-TP Specimen Plate & Formwork 
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placed on top and a 25.4-mm (1-inch) self-tapping screw was fastened into a pilot hole 

drilled into the top of the studs prior to welding. The shear stud fabricated as shown in 

Figure 97 follows the design outline in Figure 70. 

The Elium concrete-CFRTP stud specimens were fabricated through vacuum infusion at 

the ASCC using the Elium 150 resin system as described in the specimen design section 

4.3.2. The end result of the infusions follows the same dimensions as the 152.4-mm (6-

inch) spacing IE 5842b samples and is shown in section 4.3.2 as Figure 82. The final 

specimens were prepared in the same manner as the concrete-TP stud specimens. 

4.4.5.3 Test Setup & Instrumentation 

The concrete-TP stud tests of both the 76.2-mm and 152.4-mm spaced PETg samples were 

conducted in a 100-kN Instron servo-hydraulic test frame with a 100-kN load cell.  The 

setup, shown in Figure 98, was designed to load the samples in compression such that the 

shear studs would be engaged in pure shear embedded in the concrete. The concrete blocks 

Figure 97: Neat-Resin Shear Stud 
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were placed on 3.175-mm thick neoprene pads and restrained at the bottom with angled 

metal and c-clamps to prevent the concrete from wedging out during testing. The CFRTP 

plate at the top of the specimen was covered with a 6.35-mm thick piece of neoprene 

contained in an aluminum c-channel sized to fit around the CFRTP center plate. A  steel 

plate to distribute load across the c-channel was placed on the CFRTP and a self-leveling 

ball placed on top and the system closed between the two T-plates gripped in the Instron 

wedges. An anti-rotation post was installed on the Instron test frame to prevent the actuator 

from spinning during testing. 

Instrumentation for the concrete-TP and concrete-CFRTP stud tests included collection of 

load and actuator position data from the Instron 100-kN hydraulic test frame and two LDTs 

Figure 98:  Concrete-TP Stud Testing Setup 
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to collect the relative movement of the CFRTP to the concrete blocks. The LDTs were 

mounted on opposite sides of the specimen on the concrete and the probe was measuring 

against a wooden mount fixed to opposite sides of the CFRTP plate. 

  

Figure 99: Elium Concrete-CFRTP Stud Configuration 1 (left) & 2 (right) 

Due to complications during testing of the concrete-CFRTP stud samples, which will be 

elaborated on in section 4.4.3.4, specimens 2, 3, and 5 were tested in two configurations. 

Configuration 1 shown in Figure 99 was identical to the configuration of the 152.4-mm (6-

inch) IE 5842 specimens with two exceptions. One, the tests were conducted on both a 

100-kN (22.5-kip) Instron test frame and a 245-kN (55-kip) Instron test frame. Two, the 

original restraining mechanism for the concrete was four pieces of steel-angle clamped 

down to keep the concrete from wedging out during the test. This was found to be 

insufficient for the higher loads being seen in the concrete-CFRTP stud specimens. 
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Therefore, it was replaced with two metal plates held together with threaded rod and nuts, 

which allowed the concrete to be held tightly but did not introduce too much friction into 

the system since the nuts were installed finger tight. Configuration 2 shown in Figure 99 

was created in order to counteract buckling that was observed in the top flange of the 

sample that was in compression during testing. Configuration 2 was the same as 

configuration 1 except that the two samples tested this way both were cut in half between 

the studs in the middle such that the specimen would have 4-studs instead of 8-studs. This 

was necessary to reducing the specimen capacity. The first sample used the top flange as 

originally designed, but still experienced buckling. The second sample had the top flange 

reduced in height by 12-mm in an effort to increase the load before buckling 

4.4.5.4 Predicted Fiber-Reinforced Thermoplastic Shear Stud Results 

Using the same laminate analysis code that was used to predict in-plane properties of 

coupon specimens in chapter 3 a simplified approximation can be made for the strength of 

a fiber-reinforced shear stud. The lamination theory method used combined the use of 

micromechanics to calculate lamina properties from the properties of the raw fiber and 

matrix materials and macromechanics to calculate the effective laminate properties. 

The predicted in-plane shear strength of both an Elium and PETg shear stud reinforced 

with ± 45-degree biaxial E-glass was calculated.  The following assumptions were used for 

the calculations. 

Assumptions: 

 Shear stud failure occurs through in-plane shear of the double bias layer of composite 

at the shear plane where the stud meets the CFRTP reinforcement plate. 
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 Fiber interaction sufficient for failure in the stud in this layer occurs between the stud 

and CFRTP reinforcement plate 

 Fibers at the failure layer in the stud are perfectly aligned at ± 45-degrees and evenly 

distributed 

 Failure does not occur at the matrix layer between the stud and the CFRTP 

reinforcement plate 

 Fabrication method has no effect on the shear stud strength 

 Two layers of fibers  each with a thickness of 4-mm are fully engaged and contribute 

to the strength of the stud, both a 45 and -45-degree layer 

 Fiber volume fraction (𝑉𝑓) calculated to be 58.9 % from the mass of fabric used and 

volume of E-glass/Elium shear stud that was fabricated as a part of this study 

 Fiber volume fraction (𝑉𝑓) is consistent throughout the entire shear stud 

 In-plane shear strength determines failure strength not inter-laminar shear between the 

stud and CFRTP reinforcement plate 

Using E-glass reinforcement properties from literature [7] and properties for the Elium 150 

resin-system [20] presented in Table 1 the prediction for shear stud strength of an E-

glass/Elium shear stud was 54.3-MPa. Changing the matrix properties to ones for PETg 

polymer from literature [36] the prediction for shear stud strength was 42.1-MPa. These 

predicted values are compared to the experimental results in the discussion of results sub-

section of this chapter. Potential limitations of this simplified analysis to get a stud strength 

prediction are including in the following bullet list. 



159 

 

 The failure mode may be dominated by the matrix and not engage the two-layers of 

fibers to the effective capacity predicted by CLT 

 The amount of fibers necessary to generate fiber engagement between the reinforced 

shear stud and CFRTP reinforcement plate is unknown 

 The fibers may not be perfectly aligned at ± 45-degrees or evenly distributed 

 Fabrication method could have an effect on the strength of the stud based on how it 

bonds the stud to the CFRTP reinforcement and if it damages the fibers during stud 

installation 

 The Fiber volume fraction (𝑉𝑓) may not be consistent throughout the shear stud 

 Inter-laminar properties may drive the stud failure as opposed to in-plane failure 

4.4.5.5 Tabulated Numerical Results 

Results from the concrete-TP stud test conducted to assess the capacity of the IE 5842b 

friction welded neat-resin shear studs embedded in concrete and loaded in pure shear are 

given in Table 45. 

The connection stiffness values reported in Table 45 and Table 46 were calculated by 

finding the average of the points from LDT1 and LDT2 at 30 % and 50 % of the peak load. 

Then finding the slope from the averaged points. 
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Table 45: IE 5842b Friction Welded Concrete-TP Stud Test Results 

Specimen 

Name 

Stud 

Spacing 

Stud Shear Stress 

at Peak Load 

(MPa) 

LDT1 

Peak 

(mm) 

LDT2 

Peak 

(mm) 

Stiffness per 

Stud 

(kN/mm) 

PETg 3-1 76.2-mm 21.8 0.43 0.50 8.75 

PETg 3-2 76.2-mm 18.4 0.16 0.41 12.6 

PETg 3-3 76.2-mm 25.8 0.80 0.43 7.19 

PETg 3-5 76.2-mm 23.9 0.48 0.32 7.14 

PETg 6-2 
152.4-

mm 
17.9 0.45 0.57 5.76 

PETg 6-3 
152.4-

mm 
19.0 0.54 0.45 6.21 

PETg 6-5 
152.4-

mm 
25.0 0.35 0.54 9.43 

 

Results from the concrete-CFRTP stud tests conducted to assess the capacity of the E-

glass/Elium vacuum infused fiber-reinforced shear studs embedded in concrete and loaded 

in pure shear are given in Table 46. Specimen 6-2 and 6-3 each had 4-studs and specimen 

6-4 and 6-5 each had 8-studs. When calculating the stud shear stress at peak load for the 

E-glass/Elium shear studs the peak load from the test was divided by the number of studs 

and the area of a stud shaft, which had a diameter of 12.7-mm (0.5-inches) the same as the 

PETg neat-resin studs. 
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Table 46: E-glass/Elium 150 Infused Concrete-CFRTP Stud Test Results 

Specimen 

Name 

Stud 

Spacing 

Stud Shear Stress 

at Peak Load 

(MPa) 

LDT1 

Peak 

(mm) 

LDT2 

Peak 

(mm) 

Stiffness per 

Stud 

(kN/mm) 

E-glass/Elium 

6-2 
- 164 1.13 -0.03 32.0 

E-glass/Elium 

6-3 
- 185 0.45 0.96 20.8 

E-glass/Elium 

6-4 

152.4-

mm 
64.4 0.28 0.27 32.3 

E-glass/Elium 

6-5 

152.4-

mm 
109 0.40 0.55 32.4 

 

As shown in Figure 71 in section 4.2.3.4, the E-glass/Elium shear studs were infused with 

a radius at the bottom of the stud of 19.05-mm (0.75-inch). This was done to increase the 

capacity of the studs by increasing the effective shear plane area, where the stud interfaces 

with the CFRTP reinforcement. This provides a larger area for the transfer of forces beyond 

the stud shaft diameter and creates a smooth transition from the CFRTP plate up to the 

shaft of the shear stud; potentially reducing stress concentrations that could occur at the 

sharp transition between a CFRTP plate and a straight-shafted stud, like the PETg neat-

resin studs. The ability to infuse the shear studs to a designed shape in a mold is an 

advantage of the vacuum infusion process. 
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4.4.5.6 Concrete-TP and Concrete-CFRTP Stud Graphical Results 

Figure 100 and Figure 101 show graphics including sub-plots of load vs. LDT position and 

load vs. actuator position for the IE 5842b friction welded neat-resin stud PETg 76.2-mm 

specimen 3-1 and PETg 152.4-mm specimen 6-3 respectively. 

 

Figure 100: Concrete-TP Stud 76.2-mm Specimen 3-1 Results 

All four 76.2-mm spacing samples exhibited similar behavior to what is shown in Figure 

100. Results show that LDT1 & LDT2 have similar slopes and end relatively close to each 

other but that the shear studs do not exhibit the same ductility that was seen in the TP stud 
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shear testing. This could be due to the close confinement of the concrete around the studs 

in concrete-TP stud configuration. 

 

Figure 101: Concrete-TP Stud 152.4-mm Specimen 6-3 Results 

All four 152.4-mm spacing samples exhibited similar behavior to what is shown in Figure 

101. Results shown that LDT1 & LDT2 have similar slopes and end relatively close to each 

other but that the shear studs do not exhibit the same ductility that was seen in the TP stud 

shear testing. 
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Figure 102 and Figure 103 show the two halves from one side of a failed PETg concrete-

TP stud specimen. All seven of the PETg concrete-TP stud specimens shared the same 

failure mode. One side of the specimen broke all four studs while the other side remained 

unbroken. In the same fashion as the IE 5842 double and single-lap shear specimens the 

studs failed at the interface between the top layer or two of the fibers on the CFRTP and 

the stud. In the concrete-TP stud samples this was more evident because there were more 

studs attached to the CFRTP. 

 

Figure 102: Failed PETg Concrete-TP Stud 

Specimen (CFRTP side) 

 

Figure 103: Failed PETg Concrete-TP Stud 

Specimen (Concrete side) 

Four E-glass/Elium concrete-CFRTP stud samples with vacuum infused fiber-reinforced 

shear studs were tested, one using the original configuration, specimen 4, one using 

configuration 1, specimen  5 and two using configuration 2, specimens 2 and 3.  Figure 

104 and Figure 105 show graphics including sub-plots of load vs. LDT position and load 

vs. actuator position for the first samples tested 4 & 5 respectively. 
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Specimen 4 was tested in the original configuration used with the IE 5842b concrete-TP 

stud samples. It was loaded up to approximately 66-kN (14.9-kips) when the wedging 

forces from the concrete blocks broke the adhesive bond that holds the two sides of the 

sample together in the center. Based on this configuration 1 was devised in order to better 

confine the concrete to counteract the larger wedging forces being experienced at higher 

loads. 

Figure 104 shows the results of testing specimen 4 until the adhesive bond in the sandwich 

composite was broken. The ultimate load reached by this sample does not show the ultimate 

strength of the studs, and the LDT data near the end of the test is not indicative of the 

performance of the shear studs as the LDTs were affected by the bending of the concrete 

and the sandwich panel breaking in the center. 
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Figure 104: E-glass/Elium Concrete-CFRTP Stud Specimen 4 (8-Studs) 

Specimen 5 was first tested in a 100-kN (22.5-kip) Instron test frame, however the sample 

reached the frame’s load capacity so testing was moved to a 245-kN (55-kip) Instron test 

frame. Figure 105 shows the results from testing specimen 5 the second time. The failure 

mode seen by this specimen was buckling of the exposed top portion of the composite, 

shown in Figure 106. The sandwich composite used in the center of the concrete-CFRTP 

stud specimen that the studs were infused onto failed at the interface where it was no longer 

supported by the concrete. The ultimate load reached for specimen 5 does not show the 

ultimate strength of the studs but only represents a lower-bound since the studs were not 

the failure point of the specimen. The load vs. LDT position plot showed approximately 

linear behavior. 
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Figure 105: Elium Concrete-CFRTP Stud Specimen 5 (8-Studs)  

 

Figure 106: Elium Concrete-

CFRTP Stud Specimen 5 

Failure Mode 
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Specimen 3 was cut in half at the center point between the two sets of studs in order to 

reduce the number of studs from eight to four, in an effort to make breaking the specimens 

more achievable. This change shown in Figure 107 made the overall dimensions of the 

specimen similar to the 76.3-mm (3-inch) spacing IE 5842b concrete-CFRTP stud 

specimens. Figure 108 and Figure 109 are plots of load vs. LDT position and load vs. 

actuator position for configuration 2, specimens 3 & 2 respectively. 

The failure mode of specimen 3 was the same as specimen 5, column buckling of the 

sandwich composite just above the concrete. Figure 108 shows the specimen 3 results for 

the test run on the 245-kN (55-kip) Instron test frame until the specimen failed. The same 

as specimen 5, specimen 3 does not represent the ultimate strength of the studs based on 

the failure mode seen, but the load vs. LDT data is also approximately linear. 

Figure 107: Untested Configuration 2 

Specimen 
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Figure 108: Elium Concrete-CFRTP Stud Specimen 3 (4-Studs) 

Specimen 2 was tested using configuration 2 the same as specimen 3, but was prepared 

slightly differently. Like specimen 3, it was cut in half between the studs on the water-jet 

to separate the top four studs from the bottom to reduce the necessary load to fail the shear 

studs. However, the top column was also cut in an effort to increase the loads achievable 

before buckling occurred. The height of the top column of the sandwich composite was 

reduced by 12-mm (approximately 0.5-inches), which was about half of its height. 

The failure mode of specimen 2 was the same as specimens 3 & 5, column buckling of the 

sandwich composite just above the termination of the concrete. The higher loads desired 

by shortening the portion of CFRTP outside the concrete in this configuration were not 
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achieved in testing. The ultimate load reached by specimen 2 does not represent the 

ultimate capacity of the shear studs due to the failure mode achieved, but the LDT data 

shows an approximately linear behavior for one LDT. From the load vs. LDT position data 

specimen 2 appears to have been loaded unevenly, it is clear that one LDT moved 

approximately twice as far as the LDTs in previous specimens and the other LDT showed 

almost no displacement. 

 

Figure 109: Elium Concrete-CFRTP Stud Specimen 2 (4-Studs) 

No conclusive ultimate strength values were found from the Elium concrete-CFRTP stud 

specimens based on the failure modes seen in testing. The results will be discussed further 

in section 4.5. 
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4.5 Discussion of Experimental Results 

The experimental results from the concrete-TP and concrete-CFRTP stud tests of both 

friction welded neat-resin PETg studs to IE 5842b CFRTP and the co-infused Elium shear 

studs and reinforcement plate are presented for comparison in Table 47. 

The E-glass/Elium specimens could not be loaded to failure. However, since the load vs. 

LDT position plots of the samples is approximately linear during the tests an average 

stiffness can be calculated. The stud shear stress at peak load results reported are calculated 

using the peak load achieved during the test and the area of the stud shafts, therefore both 

the PETg neat-resin shear studs and the E-glass fiber reinforced Elium studs use their stud 

shaft diameter of 12.7-mm (0.5-inches) when calculating their strength. Due to the varying 

number of studs in the E-glass/Elium concrete-CFRTP stud tests all stiffness values from 

the concrete-CFRTP stud tests are reported per stud in order to make comparison of values 

easier. 
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Table 47: Concrete-TP and Concrete-CFRTP Stud Comparison 

Value 
PETg 76.2-mm 

Spacing 

PETg 152.4-mm 

Spacing 

Elium 152.4-mm 

Spacing 

Mean Peak Load per 

Stud 
2.90 kN 2.66 kN  16.8 kN 

Mean Stud Stress at 

Peak Load 
22.5 MPa 20.6 MPa 131 MPa* 

Stud Stress at 

Peak Load  COV 
14.2 % 18.3 % 41.7 % 

Mean LDT1 

Peak Position 
0.47 mm 0.45 mm 0.57 mm 

Mean LDT2 

Peak Position 
0.42 mm 0.52 mm 0.44 mm 

LDT1 Peak Position 

COV 
56.3 % 21.7 % 67.8 % 

LDT2 Peak Position 

COV 
18.5 % 12.4 % 96.2 % 

Mean Stiffness per 

Stud 
8.93 N/mm 7.14 N/mm 

26.5 N/mm** 

32.4 N/mm*** 

Stiffness COV 28.9 % 28.0 % 
29.8 %** 

0.27 %*** 

*Note: This strength value is a lower-bound, not the ultimate strength of a failed stud 

**Note: Values for the configuration 2 specimens with 4-studs (specimen 2 & 3) 

***Note: Values for original and configuration 1 specimens with 8-studs (specimen 4 & 

5) 
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From these results, the peak values for LDTs from all three different tests show the amount 

of relative movement between the thermoplastic composite sandwich panel the and the 

concrete was approximately the same. It is also notable that all the neat-resin studs showed 

very little ductility, achieving high loads with less than 1-mm of relative movement 

between the composite reinforcement and the concrete. Concrete-CFRTP specimens did 

not reach peak loads so an assessment of the total ductility to failure cannot be made. 

However, this does show that the thermoplastic shear studs used did generate composite 

action by demonstrating that they limited slip at the CFRTP-concrete interface under 

increasing load until failure of the specimen. The E-glass/Elium studs exhibited a higher 

ability to limit slip compared to the neat-resin PETg studs under the loads that were 

achieved. 

Comparing the results from the two PETg spacing concrete-TP stud samples showed that 

the PETg 76.2-mm (3-inch) spacing was 9 % stronger and 25 % stiffer than the 152.4-mm 

(6-inch) spacing. The four E-glass/Elium concrete-CFRTP stud samples were separated 

into two groups for stiffness comparisons: group 1 was specimen 2 & 3, which had 4-studs 

each with a mean stiffness per stud of 26.5-N/mm, group 2 1was specimen 4 & 5, which 

had 8-studs each with a mean stiffness per stud of 32.4-N/mm. The group 2 E-glass/Elium 

samples had a 22 % greater stiffness per stud than the group 1 samples. 

The  seven PETg concrete-TP stud samples yielded a mean peak load per stud of 2.8-kN, 

a mean stud stress at peak load of 21.7-MPa, and mean stiffness per stud of 8.15 N/mm. 

The four E-glass/Elium concrete-CFRTP stud samples yielded a mean peak load per stud 

of 16.6-kN, a mean stud stress at peak load of 131-MPa and a mean stiffness per stud of 

29.4 N/mm. The E-glass/Elium shear studs exhibited 6 times the stress at peak load and 



174 

 

3.6 times the stiffness per stud of the PETg neat-resin studs. There are two major factors 

which could be contributing to this, one, the E-glass fiber-reinforcement present in the stud 

and at the interface between the stud and the CFRTP plate, and two, the increased area at 

the shear plane between the stud and CFRTP from the fluted shape incorporated in the E-

glass/Elium stud. 

The E-glass/Elium had a predicted shear strength of 54.3-MPa, which is 58 % lower than 

the mean stud stress at peak load of 131-MPa from the concrete-CFRTP stud test. This 

could be because the E-glass/Elium studs in the concrete-CFRTP stud test had a radius of 

19.05-mm (0.75-inch) at the bottom extending the stud and its fiber-reinforcement beyond 

the stud shaft diameter that was used to calculate the experimental stud stress at peak load. 

The predicted stud shear strength of an E-glass/PETg stud was 42.1-MPa using the same 

analysis method used to predict the E-glass/Elium value. If the shear stud strength is 

improved by the fibers the prediction shows a 48 % increase in strength over the 21.7-MPa 

strength observed from the PETg concrete-TP stud tests conducted. If the fiber-

reinforcement in the shear stud can engage with the fiber-reinforcement in the CFRTP 

plate, an improvement in stud strength like the prediction shows could occur. However, 

literature review conducted in this study found that for some fabrication methods such as 

friction welding the introduction of materials at the welding interface other than the 

thermoplastic polymer could decrease the bond strength by decreasing the amount of 

polymer available for bonding [71]. 

A comparison of the PETg concrete-TP stud test results to the TP stud shear testing done 

was also of interest. The concrete-TP stud tests yielded a mean peak load per stud and stud 

stress at peak load average results of 2.9-kN and 22.5-MPa for the 76.2-mm (3-inch) 
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spacing, and 2.66-kN and 20.6-MPa for the 152.4-mm (6-inch) spacing respectively. The 

single-lap shear tests of specimen type 5 fabricated using the mobile welder system yielded 

an mean peak load of 3.2-kN for a single stud and stud stress at peak load of 25.4-MPa. 

From these results, it is seen that the concrete-TP stud samples resulted in 11.4 % lower 

stress at peak for the 76.2-mm spacing samples and 18.9 % lower stress at peak for the 

152.4-mm spacing samples when compared to the single-lap shear results prepared in the 

same way. The ductility results from the concrete-TP stud testing if calculated the same as 

for the TP stud shear testing show approximately zero ductility, which is not consistent 

with the TP stud shear testing. This shows that the concrete-TP stud testing has more 

potential for evaluating the ductility of potential thermoplastic studs in hybrid applications. 

The proposed beam-layup had a tensile strength from experiments of 223-MPa, and since 

the concept hybrid beam design has a width of 127-mm (5-inches) and a thickness of 1.6-

mm (0.06-inches) the maximum tensile load of the beam tension reinforcement would be 

45.3-kN. Comparing this maximum tensile load to the mean load per stud from the 

concrete-TP and concrete-CFRTP stud tests, seventeen PETg studs or three E-glass/Elium 

studs would be necessary to transfer an equivalent load by shear. Making the same 

comparison with a typical steel stud with the same shaft diameter of 12.7-mm (0.5-inches), 

which would have a strength of 414-MPa (60-ksi), the failure load for a single stud would 

be 52.5-kN meaning one stud could take more load than the beam reinforcement. 

Photos were taken of both the neat-resin PETg shear studs and the Elium vacuum infused 

shear studs after testing to show that the studs were uniformly embedded in concrete. 

Figure 110 shows that the small aggregate concrete used and the size of the studs and 

washers for pull out resistance were suitable for a hybrid composite-concrete application.  
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Figure 110: PETg  Neat-resin PETg Shear Studs Embedded in Concrete 

The vacuum infused Elium fiber-reinforced shear studs cast in concrete for concrete-

CFRTP stud testing were not brought to their ultimate capacity as discussed in the graphical 

results due to unexpected failure in the CFRTP prior to stud failure. Figure 111 shows two 

different views of Elium shear studs that were tested in concrete-CFRTP stud and then had 

the concrete partially broken away to inspect the condition of the studs post-test. The studs 

clearly were fully encased in concrete, and there is no evidence of stud pull out. There is 

also no substantial visible damage to the shear studs from testing. 

  

Figure 111: E-glass/Elium Shear Studs Embedded in Concrete 
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Figure 112 shows two different views of Elium shear studs removed from a different 

concrete-CFRTP stud specimen that was tested. These shear studs also show no visible 

damage from loading during testing when compared with the untested studs in Figure 83. 

This further reinforces the conclusion that the results from the concrete-CFRTP stud test 

represent a lower bound for the capacity of the E-glass/Elium studs. 

  

Figure 112: Tested E-glass/Elium Shear Studs (Broken out of Concrete) 

4.6 Redesigned E-glass/Elium Concrete-CFRTP Stud Specimen 

Due to the failure modes of the E-glass/Elium concrete-CFRTP stud specimens that 

occurred in this study a new specimen design was created in order to facilitate possible 

future work to find the failure strength of an E-glass/Elium shear stud. 

Using CLT and transformed section analysis, a sandwich composite design was iteratively 

developed with Euler buckling theory in order to make the CFRTP panel used in concrete-

CFRTP stud test stronger to avoid the buckling/crushing failure mode seen in the 

specimens tested as a part of this study. For this analysis, the failure strength of the E-

glass/Elium shear studs was assumed to be 30-MPa using the entire shear plane area, not 
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just the stud shaft area. This was done for easier comparison with the reported TP stud 

shear testing strength of 22-MPa for an Elium composite reported in the technical data 

sheet provided by Arkema [20]. The stud configuration was assumed to be the same as the 

4 stud samples made in this study. Using the same shaped stud but changing the total lower 

radius was changed to 15.9-mm (0.625-inches), by varying the bottom flute radii from 19-

mm (0.75-inch) to 9.5-mm (0.38-inch) in order to reduce the cross-sectional area to make 

stud failure feasible at lower loads. Then a factor of safety on the load was used to calculate 

the critical load for Euler buckling were done using Equation 48 [37]. 

𝑃𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝜋2(𝐸𝐼)

(𝐾𝐿)2
 

Equation 48 

The critical load (Pcritical) necessary to prevent buckling is related to the specimen service 

load, which is the load necessary to fail the E-glass/Elium shear studs is based on the failure 

assumption of 30 MPa, 4 studs with shear plane cross-sectional area of 794 mm2 per stud 

and a factor of safety of 2 on the load. This results in a critical load of 190.6 kN (42.92-

kips) based on the specimen service load assumptions. For the direct shear configuration 

the end restraint coefficient, K, was assumed to be 0.7 for a pinned-clamped boundary 

condition.  The remaining unknowns in Equation 6 are the modulus E, the moment of 

inertia (I), and the height (L) of the specimen in question, which is 25.4-mm (1-inch) for 

this specimen. The unknown EI, which was determined using transformed section analysis 

and CLT to design a sandwich composite made of outer skins of E-glass/Elium composite 

to which the studs are infused with an inner core of Garolite G10 for the situation defined, 

was found to be 6.11-Nm2. 
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With the flexural modulus of G10 known to be 18.6-GPa [79], CLT was used to generate 

properties of defined E-glass/Elium laminates, combined with transformed section analysis 

in order to find the moment of inertia of the composite when transformed to have a single 

modulus. By iteration am E-glass/Elium laminate of fiber-architecture [45 -45 0 0 0 0 0]S 

with a flexural modulus of 49.4 GPa was found to be suitable to resist buckling and also 

provide enough compressive strength, 301-MPa, to prevent CFRTP crushing under the 

expected compressive loads. 

E-glass/Elium concrete-CFRTP stud specimens with four reinforced shear studs per 

specimen as described  above should be capable of failing the shear studs loaded in 

compression if the failure strength assumptions used hold true in experiments. 

Another possible method for testing the E-glass/Elium studs is in single shear in a 

configuration similar to that used by Brena et al. [80], which pulls the FRP in tension as 

opposed to pushing it in compression eliminating the possibility of buckling. Figure 113 

shows a diagram based on the Brena et al. setup that could be used to test the E-glass/Elium 

studs infused to a CFRTP plate. 

 

Figure 113: Stud Single Shear Test Setup (Adapted from Brena et al. [80]) 
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This setup tests the stud in single shear with the CFRTP in tension and the concrete 

confined by a buttress on the actuator side and fastened down to the test frame on the 

backside. In this configuration, the CFRTP is in tension as it would be in the proposed 

beam specimen. This test configuration could pose challenges such as how to properly 

restrain the concrete and apply a horizontal force to put the CFRTP in tension, which would 

need to be overcome in order to implement it. 

4.7 Conclusions and Recommendations 

The exploration of shear connectors conducted in this study involved the development of 

two shear stud systems. The first was friction welded, neat-resin PETg shear studs to the 

reinforcing plate and the second was fiber-reinforced shear studs that were vacuum-infused 

with the reinforcement plate in a mold using the Elium 150 resin system. 

Both shear stud systems were successfully manufactured and tested. Manufacturing of the 

two stud systems showed that the neat-resin PETg studs could be rapidly manufacturing at 

about 1-minute per weld, but the E-glass/Elium studs were labor and material intensive to 

vacuum infuse. The results and conclusions from testing of the shear stud in this study are 

presented in the following lists. The first summarizes the conclusions from TP stud shear 

testing of neat-resin PETg studs, and the second discusses the results from concrete-TP 

stud testing of the neat-resin PETg and concrete-CFRTP testing of fiber-reinforced Elium 

shear studs embedded in concrete. 

From the literature review of the friction welding of thermoplastics a range of potentially 

suitable parameters was found and a test matrix of 16 specimen types was developed in 

order to assess which set of parameters was suitable for the friction welding of neat-resin 
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PETg studs. The sables were first fabricated using an Instron welding device to ensure a 

highly controllable environment for parameters and then later fabricated using a mobile 

welding device designed to mimic the Instron welding device but be able to weld to larger 

objects. All TP stud shear testing specimens were tested in TP stud shear testing in a custom 

fixture designed to engage the studs to assess their strength and ductility.  

 Double TP stud shear testing of friction welded neat-resin PETg shear studs fabricated 

using the Instron welding device required further verification because the specimens 

did not reliably load both studs. 

 Single TP stud shear testing of friction welded neat-resin PETg shear studs fabricated 

using the Instron welding device was conducted to eliminate issues with load sharing 

between studs in the double TP stud shear configuration in order to select welding 

parameters suitable for use with PETg neat-resin shear studs. 

 Single TP stud shear testing of friction welded neat-resin PETg shear studs fabricated 

using the mobile welding device and specimen type 5 parameters resulted in a stud 

stress at peak load of 25.4-MPa, which was lower than the 29.4-MPa seen with the 

Instron welded samples. These result were considered reasonably close to each other. 

With suitable welding parameters selected and a mold developed for the infusion of E-

glass/Elium shear studs the next phase of shear stud testing implemented was concrete-TP 

and concrete-CFRTP stud testing of multiple studs embedded in concrete. These specimens 

were designed based on potential spacings chosen from AASHTO guidelines for steel shear 

studs [77] and were meant to assess the capacity of the studs in pure shear. Eleven direct 

shear samples were tested, seven PETg samples and four E-glass/Elium samples. The 
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results from concrete-TP and concrete-CFRTP stud testing are presented in the following 

list: 

 Four 76.2-mm (3-inch) spacing PETg samples were successfully tested and showed a 

mean peak load of 2.90-kN per stud, mean stud stress at peak load of 22.5-MPa, and 

mean stiffness per stud of 8.93-N/mm. 

 Three 152.4-mm (6-inch) spacing PETg samples were successfully testing and showed 

a mean peak load of 2.66-kN per stud, mean stud stress at peak load of 20.6-MPa, and 

mean stiffness per stud of 7.14-N/mm. 

 Four E-glass/Elium concrete-CFRTP stud samples were tested but did not failed the 

shear studs, the failure mode of all four tests was CFRTP buckling/crushing of the plate 

the studs were infused to. A redesigned specimen was presented as potential option for 

future work. 

 The results from the E-glass/Elium concrete-CFRTP stud tests conducted until plate 

buckling/crushing showed a mean peak load of 16.8-kN per stud, a mean stud stress at 

peak load of 130-MPa, and a mean stiffness per stud of 29.4-N/mm. 

The stud stress at peak load, stiffness per stud, and visual study conducted showed that the 

E-glass/Elium shear studs provided more composite action than the PETg studs, and had 

residual strength at the completion of testing. The concrete-TP and concrete-CFRTP stud 

tests best represent the physical situation the thermoplastic shear studs would be subjected 

to in a hybrid composite-concrete beam. This type of testing is useful for not only assessing 

the strength of a shear stud but also the potential ductility that may be expected in a hybrid 

structure. TP stud shear testing of neat-resin PETg studs showed similar strength values for 
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the shear studs but indicated much higher ductility that was seen when the studs were 

embedded in concrete. 

Based on the work done in this study the following recommendations are given: 

 Other methods of thermoplastic shear transfer such as friction welded thermoplastic 

studs with fiber-reinforcement or additional mechanical fastening, stamp formed stock 

material cut on a CNC, or a thermoplastic composite rod in bearing be explored in order 

to expand the applications of thermoplastic reinforcement in structural design. 

 Ultimate strength of a fiber-reinforced Elium shear stud fabricated through vacuum 

infusion be explored using the redesigned specimen as potential future work with the 

understanding that vacuum infused thermoplastic studs are labor intensive to fabricate.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This thesis focused on a preliminary assessment of the feasibility of using thermoplastic 

composites in hybrid composite-concrete structures. Research included characterizing the 

mechanical properties two CFRTP materials, an assessment of spin-welding thermoplastic 

shear studs, and testing thermoplastic shear studs in both tension-shear and in compression-

shear when embedded in concrete. 

This study has established that the assessed CFRTP composites are feasible to manufacture 

and have suitable mechanical properties for use in structural elements based on the 

standardized testing of unidirectional E-glass/Elium and E-glass/PETg thermoplastic 

composites. The manufacturing of thermoplastic shear studs for hybrid CFRTP-concrete 

members proved to be challenging, especially the infused shear studs that are time 

consuming to manufacture. Additional details regarding these conclusions are provided in 

the remainder of this chapter along with recommendations for future work. 

5.1.1 CFRTP Manufacturing Feasibility & Mechanical Properties 

Two thermoplastic materials were selected for exploration in this study, Elium 150 an 

infusible acrylic thermoplastic and PETg in the form of prepreg thermoplastic tapes. 

Manufacturing feasibility was proven with Elium 150 through vacuum infusion an industry 

accepted fabrication process commonly used with thermoset resin-systems. For PETg 

prepreg tapes it was proven with manual and automated stamp forming. Automated stamp 



185 

 

forming was chosen for its ability to produce composites with minimal fiber wash, 

reapeatability and rapid manufacturing times. This selection of materials based on literature 

review and proof of manufacturing feasibility completed objective one of this study. 

Standardized mechanical testing was done to acquire properties of unidirectional 

thermoplastic composite reinforced with E-glass in order to assess their suitability for used 

as structural elements in hybrid concrete-FRP systems. Tests were conducted in both the 

longitudinal and transverse material directions in accordance with ASTM D3039 [38] for 

tensile properties, ASTM D6641 [40] for compressive properties, and ASTM D7078 [41] 

for in-plane shear properties using composite panels manufactured in-house at the ASCC. 

The longitudinal and transverse data collected was presented in Table 29 and Table 30 in 

chapter 3. 

E-glass/Elium unidirectional composites were fabricated through vacuum infusion of the 

Elium 150 [20] liquid-resin system and E-LR 1208 [23] unidirectional E-glass. Coupon 

specimens were cut from these composite panels. 

 The E-glass/Elium composite had a fiber volume fraction of 43.2 % compared to 40.0 

% for E-glass/vinyl ester. 

 The normalized longitudinal tensile modulus and longitudinal tensile strength of E-

glass/Elium are 30.7-GPa and 686-MPa respectively compared to 33.37-GPa and 835-

MPa for E-glass/vinyl ester. 

 The E-glass/Elium normalized longitudinal compressive strength and modulus are 587-

MPa and 31.3-GPa respectively compared to 539-MPa and 30.1-GPa for E-glass/vinyl 

ester. 
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 The E-glass/Elium in-plane shear strength and modulus are 42.0-MPa and 3.21-GPa 

respectively compared to 42.2-MPa and 3.50-GPa for E-glass/vinyl ester. 

E-glass/PETg unidirectional composites were fabricated through automated stamp forming 

of IE 5842b [30] prepreg fiber-reinforced thermoplastic composite tapes. Coupon 

specimens were cut from these composite panels manufactured at the ASCC. 

 The E-glass/PETg composite had a fiber volume fraction of 36.4 % compared to 40.0 

% for E-glass/vinyl ester. 

 The normalized longitudinal tensile modulus and longitudinal tensile strength of E-

glass/PETg are 31.0-GPa and 685-MPa respectively compared to 33.37-GPa and 835-

MPa for E-glass/vinyl ester. 

 The E-glass/PETg normalized longitudinal compressive strength and modulus are 341-

MPa and 25.8-GPa respectively compared to 539-MPa and 30.1-GPa for E-glass/vinyl 

ester. 

 The E-glass/PETg in-plane shear strength and modulus are 28.8-MPa and 1.48-GPa 

respectively compared to 42.2-MPa and 3.50-GPa for E-glass/vinyl ester. 

The following conclusions were made about the thermoplastic materials selected in chapter 

2 from the mechanical testing conducted as a part of this study: 

 Elium thermoplastic composites perform on par with the Derakane thermoset 

composites in strength and stiffness, showing that it is feasible to infuse a thermoplastic 

composite for structural applications. 
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 PETg composites performed on par with the Derakane composites in tensile properties, 

but were weaker in compression and in-plane shear, showing it is feasible to produce a 

thermoplastic composite through automated stamp forming for structural applications. 

 PETg composites fabricated and tested in this study did show some limitations in 

compression and in-plane shear but performed well in tension. 

The mechanical testing conducted during this study completed objective 2 of this thesis 

and supported objective 3 by providing critical thermoplastic composite material 

information for calculations and design.  

5.1.2 Thermoplastic Shear Stud Feasibility 

The shear connectors explored in this study were friction welded neat-resin PETg shear 

studs and vacuum infused Elium fiber-reinforced shear studs. These two systems were 

chosen for their particular advantages. The neat-resin PETg shear studs were chosen for 

their novel ability to be welded and the resulting potential for a highly automated and rapid 

process, which could be scaled up and applied in the field if desired. The Elium shear studs 

were chosen for the relative ease with which they could be fiber-reinforced and their shape 

tailored to fit a desired design. In addition, they were most suitable for use with the infusible 

Elium 150 resin-system. 

Initial testing was done in TP stud shear to assess the strength and stiffness of friction 

welded shear studs with different welding settings during fabrication. This resulted in 

choosing 50-kPa for a welding pressure, 300-kPa for a forging pressure, 15-seconds for 

welding time, and a welding velocity of 10 m/s. 
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A mobile welding device mimicking the function of the Intron welding device was 

developed in order to weld shear studs to larger structures and to demonstrate a prototype 

of a system that could be implemented on a larger scale in the field. Four samples were 

made with the final iteration of the mobile welding unit using the parameters chosen from 

the lap shear study, which were tested in the custom fixture to verify the results were 

consistent with what was seen with the samples fabricated on the Instron welding device. 

These samples yielded an average shear strength per stud of 25.4-MPa and showed 

reasonable ductility during testing. This was lower than the 29.4-MPa seen with the Instron 

welded sample with the sample welding parameters but was considered reasonable for this 

feasibility study. 

The next phase of shear stud testing implemented was concrete-TP and concrete-CFRTP 

stud testing which created samples based off AASHTO spacing guidelines for steel shear 

studs with multiple studs embedded in concrete to be tested in compression. This was done 

to assess stud performance in a situation more like what would be seen in a hybrid structure. 

Four types of samples were tested in the concrete-TP and concrete-CFRTP stud 

configuration.  

The four concrete-TP 76.2-mm (3-inch) spacing samples achieved a mean peak load per 

stud of 2.90-kN, a mean strength per stud of 22.5-MPa, and a mean stiffness per stud of 

8.93-N/mm. The three concrete-TP 152.4-mm (6-inch) spacing samples achieved a mean 

peak load per stud of 2.66-kN, a mean strength per stud of 20.6-MPa, and a mean stiffness 

per stud of 7.14-N/mm. All four E-glass/Elium concrete-CFRTP stud samples were tested 

but did not achieve the desired failure mode of shearing off the studs embedded in concrete. 

The CFRTP reinforcement plates to which the studs were infused were not sufficiently 
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strong to resist buckling/crushing above the concrete where the load was applied under the 

higher load conditions achieved by these samples. The results from the tests conducted 

until plate buckling/crushing occurred showed a mean peak load per stud of 16.8-kN, a 

mean strength per stud of 130-MPa, and a mean stiffness per stud of 26.5-N/mm for the 

samples with 4 total studs and 32.4-N/mm for the samples with 8 total studs. 

Comparing the PETg concrete-TP and E-glass/Elium concrete-CFRTP stud samples, it is 

clear that the E-glass/Elium samples are significantly stronger and stiffer. The Elium 

concrete-CFRTP stud samples had an 82 % higher stress at peak load  and were 70 % stiffer 

than the 76.2-mm (3-inch) spacing PETg concrete-CFRTP stud samples, which performed 

better than the 152.4-mm (6-inch) spacing ones. Many factors may be contributing to this 

result such as the fiber-reinforcement used in the infusion of the studs and the 

implementation of radii at the bottom of the samples giving them a larger area in the shear 

plane at the plate interface than the shaft of the stud alone. 

The results of this study show that the thermoplastic shear studs did generate at least partial 

composite action between the CFRTP and concrete. The specimen design work based on 

spacings and shear stud sizes from AASHTO for the two shear studs systems chosen 

completed objective 3 of this thesis. The TP stud shear testing and concrete-TP/CFRTP 

stud tests completed objective 4 by demonstrating that the studs are capable of generating 

at least partial composite action.  
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5.2 Recommendations for Future Work 

Based on the findings of this study, future work on thermoplastic concrete reinforcing 

materials with thermoplastic shear connectors and other structural applications is 

recommended as detailed in the following sub-sections. 

5.2.1 Thermoplastic Composite Materials 

This study worked with thermoplastic polymers on the more amorphous end of the 

engineering polymers spectrum as described in chapter 2. Now that manufacturing 

feasibility has been shown for the easier to form amorphous PETg material, future work 

should be done with more crystalline engineering grade thermoplastic polymers such as 

Nylon 6, 11, and polyethylene terephthalate (PET).  

TenCate performance composites offers UD prepreg composite tapes for both Nylon 6 [81] 

and PET [82]. These materials could be explored for use as structural reinforcement based 

on their higher heat deflection temperatures, increased chemical and solvent resistance, and 

acceptable overall strength properties. However, these thermoplastics are semi-crystalline 

and could be more difficult to form than an amorphous polymer. 

For composite structural design, not only in-plane mechanical properties are of interest, 

out-of-plane properties of these materials are also of interest in the future for situations 

when a shear connector or other part of the system could induce out-of-plane loading on 

the composite. In addition, durability and fatigue of structural materials is essential for 

designing real world systems, which often have design lifetimes of upwards of 100 years. 
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The characterization of new materials, durability testing, and fatigue testing would enhance 

the community’s knowledge of these materials, open up new opportunities for design, and 

further the structural applications of thermoplastic materials. In addition, exploration of the 

formability of semi-crystalline polymers is of interest to determine their ability to be used 

with certain thermoplastic manufacturing processes such as automated stamp forming. 

5.2.2 Thermoplastic Composite Shear Connectors 

Based on the work done in this study three new thermoplastic shear connector options are 

recommended for exploration. 

1. Friction welded shear studs could be reinforced further by screwing a mechanical 

fastener down from the top or up from the bottom through the CFRTP reinforcement. 

This has the potential to increase the stud strength and stiffness while still being 

automatable. Screwing a fastener in from the bottom has the potential to engage both 

the welded bond on the shear stud but also the fastener in bearing with the CFRTP 

reinforcement plate. 

2. Fiber-reinforced shear studs infused with Elium could be created in mold to included 

radii at the top and bottom to provide pull out resistance and assist in shear transfer at 

the interface between the stud and CFRTP plate respectively then friction welded to 

explore the effect of fiber-reinforcement on friction welded shear studs. 

3. Additional methods could be explored to decrease the fabrication time of infusible 

thermoplastic shear studs such as optimizing the co-infusion process, exploring 

infusing the studs individually, or investigating resin transfer molding (RTM). 
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4. Fiber-reinforced stock material in simple or off-the-shelf shapes could be stamp formed 

onto CFRTP plates and then cut on a CNC machine into a desired shape to lock with 

concrete and provide shear transfer or pull out resistance depending on the design 

needs. The ability for fibers to intermingle would generate higher strengths for this 

application. 

5. A mechanical fastener could be fixed through the CFRTP to use the bearing strength 

of the composite to increase the capacity of the shear connection beyond a welded 

connection. This would also require, investigating the bearing strength of thermoplastic 

composite materials. 

Additional work could also be conducted to explore the effect of fiber-reinforcement in 

thermoplastic shear studs. A finite element analysis would contribute to the understanding 

of stress concentrations at the interface between the stud and the reinforcement, could help 

size potential radii on the top and bottom, and assess shaft diameter sizes for different 

applications. Part of this additional work could include testing of the redesigned E-

glass/Elium concrete-CFRTP stud specimen discussed in chapter 4. 

5.2.3 Small-Scale Beam Testing 

This study showed that the stepping stones necessary for the construction of a simple small-

scale thermoplastic composite-concrete hybrid structure are feasible. Future work using the 

findings of this study should include the use of an IE 5842b CFRTP flat plate using the 

beam-layup discussed with neat-resin thermoplastic shear studs to reinforce the tension 

face of a prismatic concrete beam. The beam as shown in Figure 114 would be constructed 

with flat composite reinforcement on the bottom face of the beam to reinforce the structure 
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in tension, replacing normal steel tension reinforcing.  The composite tension 

reinforcement would be mechanically attached to the concrete with the friction welded 

neat-resin PETg shear connectors explored in this study that mimic shear studs used in 

steel-concrete composite beams. 

 

Figure 114: Proposed Beam Specimen Concept Design 

Beam specimens made in this configuration could use the two spacing options of 76.2-mm 

(3-inches) and 152.4-mm (6-inches) center-to-center along the span discussed in chapter 4 

based on the AASHTO guidelines for shear connectors. 

5.2.4 Develop Optimal Cross-Sections 

Flat plates do not take full advantage of thermoforming possibilities and techniques or the 

full potential of the thermoplastic composites being used. Three-dimensional shapes could 

be developed in the future, such as a double sheet pile or U-shaped cross-section, in order 

to take advantage of geometric shapes to carry larger loads and add the possibility of stay-

in-place formwork that could carry wet concrete loads. These types of shapes could be 
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developed using the stamp forming process in a mold in order to explore their feasibility 

and capacity, then, if desired, further developed to use a pultrusion process in order to make 

longer continuous cross-sections which could be used for bridges, decking, columns and 

retaining walls. 

5.2.5 Explore Other Structural Applications of Thermoplastics 

Beyond CFRTP tension face reinforcement and the development of optimal cross-sections 

already discussed, other structural applications of thermoplastics may be of interest in the 

future. Structural elements such as rebar and stirrups are currently made of steel, which is 

effective but has many disadvantages such as susceptibility to corrosion and difficulty to 

form into shapes at the construction site. Fiber-reinforced thermoplastic rod could be 

fabricated in long straight pieces, which would be a highly automated process producing 

something that is space efficient to ship and store. These straight pieces could be made 

with surfaces designed to transfer forces between the thermoplastic and concrete like what 

is currently done with rebar, however thermoplastic is corrosion resistant and formable. 

Then in the field using heat, these could be bent into various shapes to fit the desired 

application such as rebar and stirrups. If feasible, this fiber-reinforced thermoplastic rod 

could be a versatile option for concrete reinforcing. 
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APPENDIX A: CALIBRATION INFORMATION 

 

Equipment at the ASCC used during this study was regularly calibrated; relevant 

calibration information for major testing equipment used is included in Table 48. 

Calibration information is given for the test frames used, load cells are also calibrated with 

the test frame. 

Table 48: Major Testing Equipment Calibration Information 

Equipment ID Description Relevant Calibration Dates 

MTL #1 

(AS 107) 

22.5 kip Instron Servo-Hydraulic 

Actuator 

June 15, 2016 

June 15, 2017 

MTL #2 

(AS 108) 

22.5 kip Instron Servo-Hydraulic 

Actuator 

June 15, 2016 

June 15, 2017 

MTL #3 

(AS 1064) 

22.5 kip Instron Servo-Hydraulic 

Actuator 

June 14, 2016 

June 15, 2017 

June 30, 2018 

MTL #4 

(AS 511) 

5-kip Instron Servo-Hydraulic 

Actuator 

June 30, 2016 

June 20, 2017 

MTL 55-kip 

(AS 2199) 

55 kipP Instron Servo-Hydraulic 

Actuator 
December 6, 2016 

MTL 55-kip LC 55 kip Instron Load Cell December 6, 2016 

2-kip Load Cell 

(AS 511) 
2-kip Instron Load Cell June 15, 2017 

Note: Instron test frame annual calibration includes the LVDT for position control and the load 

cell 
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APPENDIX B: TECHNICAL DATA SHEETS 

 

Appendix B contains the manufacturers materials data sheets for the materials used in this 

milestone. A brief outline is provided in the list below in the order they are given here. 

 B1: Polystrand PETg Online Reference  

 B2: Polystrand IE 5842 Technical Data Sheet  

 B3: Arkema Elium 150 GRP Technical Data Sheet [20] 

 B4: Vector Ply E-LR 1208 Unidirectional E-glass Technical Data Sheet [23] 

 B5: Vector Ply E-BX 2400 Stitched Double Bias E-glass Technical Data Sheet [78] 
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B1: Polystrand PETg Online Reference [24] 
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B2: Polystrand PETg IE 5842 Technical Data Sheet [30] 
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B3: Arkema Elium 150 GRP Technical Data Sheet [20] 
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B4: Vector Ply E-LR 1208 Unidirectional E-glass [23] 
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B5: Vector Ply B-BX 2400 Double Bias E-glass Technical Data Sheet [78] 
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APPENDIX C: CLASSICAL LAMINATION THEORY (CLT) MATLAB CODE 

 

For the purposes of this study classical lamination theory (CLT) code written in the Matlab 

coding environment that utilizes both micro and macro mechanics written by Camerin 

Seigars utilizing resources from classroom lecture, colleagues, journal papers and 

textbooks [7] [37] [49] [50] were used. The code used is given: 

%%*****************************************************************% 
%*                                                                *% 
%*                 LAMINATE ANALYSIS CODE V3.1                    *% 
%*                                                                *% 
%*                 Author: Camerin Seigars                        *% 
%*                 Date:      July 19th, 2016 V1                  *% 
%*                 Revisions: June 9th,  2018 V2                  *% 
%*                            June 22nd, 2018 V3                  *% 
%*                                                                *% 
%******************************************************************% 
function CLT_V3 
%************************************************************% 
%***                  User Instructions                   ***% 
%************************************************************% 
%This code implements both CLT for micromechanics and macromechanics 
%User must define method for inputs, either method 1, which uses 
%micromechanics to calculate the lamina properties or method 2, which 
%uses user input properties for the lamina. 
%If method 1 is used the user must define either Halpin-Tsai or 
%Mori-Tanaka methods for overall technique, other methods may be 

selected 
%if using the Halpin-Tsai method section, if micro method 1 is chosen 

the 
%code defaults to the Halpin-Tsai method, though inside this section of 
%code other choices can be selected. 
%% 
disp('************************************************************** ') 
disp('**************** LAMINATE ANALYSIS CODE V3.1  **************** ') 
disp('************************************************************** ') 
%************************************************************% 
%***                       INPUTS                         ***% 
%************************************************************% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Two Methods of CLT: User Must Choose %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Method 1: User dictates constitutive properties: 
%Set method equal to 1 
%Method 2: User dictates effective/lamina properties: 
%Use specify effective properties section 
%Set method equal to 0 
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method = 1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Two Methods of Micromechanics: User Must Choose %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Method Micro 1: Micromechanics performed using Halpin-Tsai method and 
%rule of mixtures to find lamina properties. 
%Set method equal to 1 
%Method Micro 2: Micromechanics uses Mori-Tanaka method to find lamina 
%properties. 
%Set method equal to 0 
micro = 1; 
%% 
if method 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%% Specify Constitutive Properties of the Base Materials %%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %******************** Method 1 **************************% 
    % Solution strategy showed to me by Ben Smith from Barbero textbook 
    % FRP Input (Don't forget to update h for the thickness % 
    %*************************************% 
    %*** Input Parameters for Method 1 ***% 
    %*************************************% 
    % Fiber Volume Fraction, Vf - % Fibers by Volume in the Composite % 
    %Vf = 0.3891; %E-glass/PETg IE 5842  Trial 3 (natural) 
    %Vf = 0.364;  %E-glass/PETg IE 5842b Trial - (black) 
    Vf = 0.400;  %E-glass/Derakane 610-C Vacuum infused 
    %Vf = 0.432;  %E-glass/Elium 150 Vacuum infused 
    % Solve for percent matrix by volume % 
    Vm = 1 - Vf; 
    %Assumes no voids in the composite. 
    %******************************************% 
    % Fiber-reinforcement Base Material Inputs % 
    %******************************************% 
    %All inputs should be in Pascals,(Pa) 
    %Note: This code assumes the fiber material to be isotropic 
    Fft = 3450*10^6; 
    %Set for E-glass Strength         (Daniel 2nd Edition) 
    Ef  = 73*10^9; 
    %Set for E-glass Modulus          (Daniel 2nd Edition) 
    nuf = 0.23; 
    %Set for E-glass Poisson's Ratio  (Daniel 2nd Edition) 
    %E-glass properties from Daniel 2nd Edition, Table A.2, which 

contains 
    %the mechanical and thermal properties of representative fibers 
    %*****************************% 
    % Matrix Base Material Inputs % 
    %*****************************% 
    %All inputs should be in Pascals,(Pa) 
    %*** Elium 150 Thermoplastic Resin-System ***% 
    Fmt = 76*10^6; 
    %Set for Elium Longitudinal Tensile Matrix Strength 
    Fmc = 130*10^6; 
    %Set for Elium Longitudinal Compressive Matrix Strength 
    Em  = 3300*10^6; 
    %Set for Elium Longitudinal Matrix Elastic Modulus 
    %Used the Elium 150 GFRP Technical Data Sheet from Arkema 
    %*** PETg Thermoplastic Polymer - Vivak Data Sheet ***% 
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%     Fmt = 53*10^6; 
%     %Set for PETg Longitudinal Tensile Matrix Strength 
%     Fmc = 55*10^6; 
%     %Set for PETg Longitudinal Compressive Matrix Strength 
%     Em  = 2206*10^6; 
%     %Set for PETg Longitudinal Matrix Elastic Modulus 
    % Poisson's Ratio of PEI Thermoplastic Matrix % 
    num = 0.37;       %Set for PEI from Barbero 
    %Used because no value was known for Elium or PETg 
    %*** Derakane 610-C Thermosetting Resin-System ***% 
%     Fmt = 71*10^6; 
%     %Set for Derakane Longitudinal Tensile Matrix Strength 
%     Fmc = 127*10^6; 
%     %Set for Derakane Longitudinal Comp. Matrix Strength 
%     Em  = 3500*10^6; 
%     %Set for Derakane Longitudinal Matrix Elastic Modulus 
%     num = 0.35; 
%     %Set for Derakane from Daniel 2nd Edition 
    %Used Derakane 610-C Technical Data Sheet from Ashland & Daniel 

book 
    %**************************************% 
    %*** Method 1 Specific Calculations ***% 
    %**************************************% 
    % Calculate Shear Moduli for Fibers and Matrix % 
    %Assumes the fiber and matrix materials are isotropic 
    % Shear Modulus of Fibers,(Pa) % 
    Gf = Ef/2/(1 + nuf); % (Gere and Goodno Equation 1-22) 
    % Shear Modulus of Matrix,(Pa) % 
    Gm = Em/2/(1+num);   % (Gere and Goodno Equation 1-22) 
    %*******************************% 
    %* Lamina Modulus Calculations *% 
    %*******************************% 
    if micro 
        %******************% 
        %* Method Micro 1 *% 
        %******************% 
        %*************************************% 
        %*** Rule of Mixtures Calculations ***% 
        %*************************************% 
        % Longitudinal Modulas of the lamina, E1,(Pa) % 
        E1   = Ef*Vf+Em*Vm; 
        %(Daniel Equation 3.23 and Barbero Equation 4.24) 
        % Longitudinal In-plane Poisson's Ratio, nu12,(-) % 
        nu12 = nuf*Vf+num*Vm; 
        %(Daniel Equation 3.24, uses same assumptions as for E1) 
        %********************************% 
        %*** Halpin-Tsai Calculations ***% 
        %********************************% 
        %Curve-fitting parameter, usually between 1 and 2,(Daniel) 
        %Can be obtained from experiements,(Daniel) 
        %Assume zeta equals 1 for hexagonal arrays (glass and carbon 
        %composites with high fiber volume ratios,(Daniel). 
        %zeta = 1; 
        %Assume zeta equals 2 for square arrays (boron 

composite),(Daniel) 
        %Assume zeta equals 2 for circular or square fibers,(Barbero) 
        zeta = 2; 
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        %Assume zeta as follows for rectangular fibers,(Barbero) 
        %Dimensions of the fiber cross-section: 
        %a = 1; 
        %b = 1; 
        %zeta = (2*a)/b; 
        % Calculate EtaE, for the Halpin-Tsai Method % 
        %Uses the zeta parameter defined above 
        etaE = (Ef/Em-1)/(Ef/Em+zeta); 
        %(Daniel Equation 3.35 and Barbero Equation 4.31) 
        %The two books show different forms of the same equation. 
        %Transverse modulus of the lamina, E2,(Pa) % 
        E2 = Em*(1+zeta*etaE*Vf)/(1-etaE*Vf); 
        %(Daniel Equation 3.35 and Barbero Equation 4.31) 
        % In-plane shear modulus, G12,(Pa) % 
        %Select In-Plane Shear Method 1 
        %Method 1: User selects the default method, Halpin-Tsai 
        %shear = 1; 
        %Method 2/3: Moves to next if/else to select other method 
        %shear = 0; 
        shear = 1; 
        if shear 
            %Assumes isortropic fibers,(Daniel 3.49) 
            % Halpin-Tsai % 
            %Calculate EtaG, for the Halpin-Tsai Method 
            %Uses zeta parameter defined above 
            etaG = (Gf-Gm)/(Gf+(zeta*Gm));              % (Daniel 3.50) 
            G12  = Gm*(1+(etaG*zeta*Vf))/(1-(etaG*Vf)); % (Daniel 3.50) 
        else 
            %Select 2/3 In-Plane Shear Method % 
            %Method 2: User has selected the cylindrical assemblage 

model 
            %shear2 = 1; 
            %Method 3: User has selected the rule of mixtures method 
            %shear2 = 0; 
            shear2 = 1; 
            if shear2 
                %Cylindrical Assemblage Model (or) 
                %Self-Consistent Field Model: 
                G12 = Gm*((1+Vf)+(1-Vf)*Gm/Gf)/((1-Vf)+(1+Vf)*Gm/Gf); 
                %(Barbero Equation 4.37 (or) Daniel 3.52) 
                %Two books show different forms of the same equation if 
                %isotropic fibers are assumed, i.e, G12f = Gf. 
            else 
                % Rule of Mixtures % 
                G12 = (Gf*Gm)/((Vf*Gm)+(Vm*Gf)); 
            end 
        end 
        % Intralaminar (Transverse) Shear Modulus Calculation % 
        %Semi-empirical stress partitioning parameter technique 
        %Parameter eta4 
        eta4 = (3-((4*num)+(Gm/Gf)))/(4*(1-num));        % (Barbero 

4.45) 
        % Intralaminar Shear Modulus, G23,(Pa) % 
        G23  = Gm*(Vf + eta4*(Vm))/(eta4*Vm+(Vf*Gm/Gf)); % (Barbero 

4.45) 
        % Intralaminar Poisson's Ratio, nu23,(-) % 
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        nu23 = (E2/(2*G23))-1;              % Adapted from (Daniel 

3.42) 
        %Derived from the transversely isotropic equation for G23 

defined 
        %in Daniel 2nd edition for composite materials. 
    else 
        %******************% 
        %* Method Micro 2 *% 
        %******************% 
        %********************************% 
        %*** Mori-Tanaka Calculations ***% 
        %********************************% 
        %Adapted from MEE 450 taugh by Senthil Vel (2016) 
        %Assuming isotropic fiber material % 
        %Longitudinal and transverse properties are the same. 
        % Elastic Moduli of Isotropic Fibers % 
        E1f   = Ef; 
        E2f   = Ef; 
        G12f  = Gf; 
        G23f  = Gf; 
        % Poisson's Ratio of Isotropic Fibers % 
        nu12f = nuf; 
        %* Determine Hill's Elastic Moduli for the Fiber *% 
        kf = 1/(4/E2f-1/G23f-4*nu12f^2/E1f); 
        lf = 2*nu12f*kf; 
        mf = G23f; 
        nf = E1f+lf^2/kf; 
        pf = G12f; 
        %* Determine Hill's Elastic Moduli for the Matrix *% 
        km =  Em/(2-2*num - 4*num^2); 
        lm = 2*num*km; 
        mm = Em/(2*(1+num)); 
        nm = Em+lm^2/km; 
        pm = Em/(2*(1+num)); 
        %* Calculate Effective Hill's Elastic Moduli for the Composite 

*% 
        k = (Vf*kf*(km + mm) + Vm*km*(kf + mm))/... 
            (Vf*(km + mm) + Vm*(kf + mm)); 
        l = (Vf*lf*(km + mm) + Vm*lm*(kf + mm))/... 
            (Vf*(km + mm) + Vm*(kf + mm)); 
        m = (mm*mf*(km+2*mm) + km*mm*(Vf*mf+Vm*mm))/... 
            (km*mm + (km + 2*mm)*(Vf*mm+Vm*mf)); 
        n =  Vm*nm + Vf*nf +(l - Vf*lf - Vm*lm)*((lf-lm)/(kf-km)); 
        p = (2*Vf*pm*pf+Vm*(pm*pf+pm^2))/(2*Vf*pm + Vm*(pf+pm)); 
        %* Calculate Effective Engineering Properties for the Composite 

*% 
        % Longitudinal Elastic Modulus, E1,(Pa) % 
        E1 = n - l^2/k; 
        % Transverse Elastic Modulus, E2,(Pa) % 
        E2 = 4*m*(k*n-l^2)/((k+m)*n-l^2); 
        % In-Plane Poisson's Ration, nu12,(-) % 
        nu12 = l/(2*k); 
        % In-Plane Shear Modulus, G12,(Pa) % 
        G12 = p; 
        % Intralaminar Shear Modulus, G23,(Pa) % 
        G23 = m; 
        % Intralaminar Poisson's Ratio, nu23,(-) % 
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        nu23 = E2/(2*G23)-1; 
    end 
    %********************************% 
    %* Lamina Strength Calculations *% 
    %********************************% 
    % Lamina Tensile Strengths % 
    %fiber dominated failure mode,  F1tf 
    %matrix dominated failure mode, F1tm 
    F1tf = Fft*(Vf+Em/Ef*Vm); %(Daniel Equation 5.7) 
    %Longitudinal tensile strength (fiber dominated) 
    F1tm = Fmt*(Ef/Em*Vf+Vm); %(Daniel Equation 5.8) 
    %Longitudinal tensile strength (matrix dominated) 
    %Check for Fiber or Matric Dominated Failure 
    %Based on discussion with Ben Smith and Phil Bean, June 2018 
    F1t = min(F1tf,F1tm);     %Daniel Textbook Section 5.2, pp. 98-100 
    % Fracture Toughness Mode I % 
    GIc = 334; % Set to E-glass/Polyester value,(Barbero Table 1.3) 
    %E-glass/Polyester value of 334 J/m^2 is the default value used 

from 
    %Barbero Table 1.3 if the value is not known for the material 

system 
    %being analyzed. 
    lambda022 = 2*(1/E2-nu12^2*E2^2/E1^3); %(Barbero Equation 4.100) 
    % Transitiion Thickness % 
    ttran = 0.0006; %Set to E-glass/Epoxy,(Barbero Section 4.4.8) 
    % Transverse Tensile Strength % 
    F2t = sqrt(GIc/1.12^2/pi()/(ttran/4)/lambda022); 
    %(Barbero Equation 4.99) 
    % Fracture Toughness Mode II % 
    GIIc = 456; % Set to E-glass/Polyester,(Barbero Table 1.3) 
    %E-glass/Polyester value of 456 J/m^2 is the default value used 

from 
    %Barbero Table 1.3 if the value is not known for the material 

system 
    %being analyzed. 
    lambda044 = 1/G12; % (Barbero Equation 4.114) 
    % In-Plane Shear Strength % 
    F6 = sqrt(GIIc/pi()/(ttran/4)/lambda044); %(Barbero Equation 4.113) 
    % Fiber Misalignment, see Barbero Table 1.3 % 
    alphasigma = 2.97*pi()/180; %Set to E-glass/Epoxy 
    chi = G12*alphasigma/F6; %(Barbero Equation 4.86) 
    % Longitudinal Compressive Strength % 
    F1c = G12*(1+4.76*chi)^-0.69; %(Barbero Equation 4.85) 
    %Adjustment Factor for Voids 
    Cv = 1; 
    %Set to 1 if no voids is assumed, else see Barbero Equation 4.102 
    % Transverse Compressive Strength % 
    F2c = Fmc*Cv*(1+(Vf-sqrt(Vf))*(1-Em/Ef)); %(Barbero Equation 4.105) 
    %% 
else 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %%% Specify Effective Properties of the Composite Material %%% 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %******************* Method 2 *******************************% 
    % Solution strategy presented in Senthil Vel's Composites Class 
    %All inputs should be in Pascals,(Pa) 
    % Young's (Tensile) Modulus in the 1 Direction % 
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    E1=e9; 
    % Poisson's Ration in the 12 Direction % 
    nu12=0.23; 
    % Young's (Tensile) Modulus in the 2 Direction % 
    E2=6.313e9; 
    % Shear Modulus in the 12 Direction % 
    G12=5.949e9; 
    %* Specify Material Strength Data (Pa) *% 
    %* Strength Properties *% 
    % Tensile Strength in the 1 Direction % 
    F1t = 2200 * (10^6); 
    % Compressive Strength in the 1 Direction % 
    F1c = 1700 * (10^6); 
    % Tensile Strength in the 2 Direction % 
    F2t = 55 * (10^6); 
    % Compressive Strength in the 2 Direction % 
    F2c = 220 * (10^6); 
    %Tensile Strength in the 3 Direction % 
    F3t = 0 *(10^6); 
    %Compressive Strength in the 3 Direction % 
    F3c = 0*(10^6); 
    % Shear Strength % 
    F4  = 0 * (10^6); 
    F5  = 0 * (10^6); 
    % Shear Strength % 
    F6  = 70 * (10^6); 
end 
%% 
%************************************************************% 
%***                  Lamina Properties                   ***% 
%************************************************************% 
% Lamina Thickness (h) in meters % 
% Lamina thickness refers to the thickness of a single lamina, or layer 

in 
% the composite layup. Classical lamination theory assumes all layers 

in 
% the composite have the same thickness defined as h. 
h = 0.00044; 
%E-glass/Elium layer thickness from test samples, meters,(m) 
%Vacuum infused Elium 150 resin and E-LR 1208 UD E-glass w/ veil 
%h = 0.00043; 
%E-glass/Derakane layer thickness from test samples, meters,(m) 
%Vacuum infused Derakane 610-C resin and E-LR 1208 UD E-glass w/ veil 
%h = 0.00024 
%E-glass/PETg layer thickness from test samples, meters, (m) 
%Automated stamp formed from Polystrand IE 5842b prepreg tapes 
%% 
%******************************************************% 
%***    Specify the Laminate Fiber-Architecture     ***% 
%******************************************************% 
%* Fiber Orientation of the kth Layer *% 
%Defines the orientations of the fibers in the composite laminate, each 
%lamina has a orientation theta in degrees defined by the ThetaArray. 
ThetaArray = [0]; 
disp(strcat('Fiber-Architecture, Theta Array for Lamina (degrees): ')); 
disp(strcat('[',num2str(ThetaArray),']')); 
%% 
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%**************************************************% 
%*** Tsu-Wu Method Applied Loads for a Laminate ***% 
%**************************************************% 
%These units loads are for the Tsai-Wu based calculations. 
%The Fxt, Fxc, and Fxy calculations use the failure strains and 
%independtly defined unit loads to calculate these values. 
%Units of N given in N/m % 
Nx  = 1; 
Ny  = 0; 
Nxy = 0; 
%Units of M given in Nm/m % 
Mx  = 0; 
My  = 0; 
Mxy = 0; 
%% 
%*******************************************% 
%***    Calculate the Failure Strains    ***% 
%*******************************************% 
%Calculates the failure strains based on lamina strengths and 
%stiffnesses as dictated in one of the two methods. 
e1t = F1t/E1; 
e2t = F2t/E2; 
e1c = F1c/E1; 
e2c = F2c/E2; 
g6u = F6/G12; 
%% 
%**********************************************************% 
%***             Print Effective Properties             ***% 
%**********************************************************% 
disp('****************************') 
disp('***  Lamina Properties:  ***') 
disp('****************************') 
if method 
    disp('*** Micromechanics Used: ***') 
    if micro 
        disp('***  Halpin-Tsai Method  ***') 
        disp('****************************') 
    else 
        disp('***  Mori-Tanaka Method  ***') 
        disp('****************************') 
    end 
else 
    disp('*****************************************') 
    disp('*** Lamina Properties Defined by User ***') 
    disp('*****************************************') 
end 
disp(strcat(['F1t (MPa): ',num2str(round(F1t/1e6,0))])); 
disp(strcat(['F1c (MPa): ',num2str(round(F1c/1e6,0))])); 
disp(strcat(['F2t (MPa): ',num2str(round(F2t/1e6,1))])); 
disp(strcat(['F2c (MPa): ',num2str(round(F2c/1e6,1))])); 
disp(strcat(['F6  (MPa): ',num2str(round(F6/1e6,1))])); 
disp(strcat(['E1  (GPa): ',num2str(round(E1/1e9,1))])); 
disp(strcat(['E2  (GPa): ',num2str(round(E2/1e9,2))])); 
disp(strcat(['G12 (GPa): ',num2str(round(G12/1e9,2))])); 
disp(strcat(['G23 (GPa): ',num2str(round(G23/1e9,2))])); 
disp(strcat(['nu12  (-): ',num2str(round(nu12,3))])); 
disp(strcat(['nu23  (-): ',num2str(round(nu23,3))])); 
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%% 
%***********************************% 
%***        CALCULATIONS         ***% 
%***********************************% 
% Determine the number of layers % 
N = length(ThetaArray); 
% Laminate height in meters,(m) % 
H = N * h; 
%* Evaluate laminate interface locations Z_k *% 
for k = 1:N+1 
    ZCoord(k)=-H/2+(k-1)*h; 
end 
%disp('Z (mm) =');disp(strcat('[',num2str(ZCoord/1e-3),']'));disp(' ') 
%***  Compute the reduced stiffness matrix ***% 
Q = ReducedStiffness(E1,nu12,E2,G12); 
%disp('Q (GPa) =') 
%disp([Q]/1e9) 
%***  Compute the reduced compliance matrix ***% 
S = ReducedCompliance(E1,nu12,E2,G12); 
%disp('S (TPa^-1)=') 
%disp([S]*1e12) 
%*** Compute the off-axis reduced stiffness matrices ***% 
for k = 1:N 
    QBar{k}=OffAxisStiffness(ThetaArray(k),Q); 
    % % %  disp(strcat('QBar{',num2str(k),'} (GPa) =')); 
    % % %  disp(QBar{k}/1e9) 
end 
%*** Compute the off-axis reduced compliance matrix ***% 
for k = 1:N 
    SBar{k} = OffAxisCompliance(ThetaArray(k),S); 
    % % %  disp(strcat('SBar{ ',num2str(k),'} (TPa^-1)=')) 
    % % %  disp(SBar{k}*1e12) 
end 
%*** Compute the Transformation Matric T ***% 
for k = 1:N 
    T{k} = TMatrix(ThetaArray(k)); 
    % % %  disp(strcat('Transformation Matrix{',num2str(k),'}')); 
    % % %  disp(T{k}) 
end 
%*** Compute laminate ABD stiffness matrix ***% 
[A,B,D,ABD,a,b,d,abd]=ComputeABD(QBar,ZCoord); 
%*** Compute the midsurface strains and curvatures ***% 
[Epsilon0,Kappa0] = 

MidsurfaceStrainsCurvatures(abd,Nx,Ny,Nxy,Mx,My,Mxy); 
%disp('Midsurface strains Epsilon0 (micro m/m):') 
%disp(Epsilon0/1e-6) 
%disp('Midsurface curvatures Kappa0 (1/m):') 
%disp(Kappa0) 
% z locations of points where strains and stresses will be evaluated % 
zpoints=linspace(-H/2,H/2,5000); 
%* Evaluated strains, stresses and factor of safety at the various *% 
%*** z locations ***% 
for n = 1:length(zpoints) 
    %Determine the layer that the z location belongs to 
    z = zpoints(n);  %z coordinate 
    k = WhichLayer(ZCoord,z); % layer number 
    %Strains in the x-y coordinate system 
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    StrainsXY= ComputeStrainsXY(Epsilon0,Kappa0,z); 
    EpsilonX(n)=StrainsXY(1); 
    EpsilonY(n)=StrainsXY(2); 
    GammaXY(n)=StrainsXY(3); 
    %Stresses in the x-y coordinate system 
    StressesXY = ComputeStressesXY(StrainsXY,QBar{k}); 
    SigmaX(n)=StressesXY(1); 
    SigmaY(n)=StressesXY(2); 
    TauXY(n)=StressesXY(3); 
    %Stresses in the 1-2 coordinate system 
    Stresses12 = ComputeStresses12(StressesXY, ThetaArray(k)); 
    Sigma1(n)=Stresses12(1); 
    Sigma2(n)=Stresses12(2); 
    Tau12(n)=Stresses12(3); 
    %Calculate factor of safety using the Tsai-Wu failure criterion 
    [Sfa(n), Sfr(n)] = TsaiWu(F1t,F1c,F2t,F2c,F6,Stresses12); 
end 
%*************************************% 
%*** Tsai-Wu Failure Theory Output ***% 
%*************************************% 
%disp('Tsai-Wu Failure Theory Safety Factors:') 
%disp('Minimum factor of safety S_{fa} (actual state of stress):') 
%disp(min(Sfa)) 
%disp('Minimum factor of safety |S_{fr}| (reversed state of stress):') 
%disp(min(abs(Sfr))) 
%% 
%**********************************************************************

% 
%***                          Plotting                              

***% 
%**********************************************************************

% 
% Plot the through-thickness variation of strains % 
% figure(1) 
% plot(EpsilonX/1e-6,zpoints/H); 
% xlabel('\epsilon_{x} ({\mu}m/m) '); 
% ylabel('z/H'); 
% figure(2) 
% plot(EpsilonY/1e-6,zpoints/H); 
% xlabel('\epsilon_{y} ({\mu}m/m) '); 
% ylabel('z/H'); 
% figure(3) 
% plot(GammaXY/1e-6,zpoints/H); 
% xlabel('\gamma_{xy} ({\mu}rad)'); 
% ylabel('z/H'); 
% % Plot the through-thickness variation of stresses % 
% figure(4) 
% plot(SigmaX/1e6,zpoints/H); 
% xlabel('\sigma_{x} (MPa)'); 
% ylabel('z/H'); 
% figure(5) 
% plot(SigmaY/1e6,zpoints/H); 
% xlabel('\sigma_{y} (MPa)'); 
% ylabel('z/H'); 
% figure(6) 
% plot(TauXY/1e6,zpoints/H); 
% xlabel('\tau_{xy} (MPa)'); 
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% ylabel('z/H'); 
% figure(7) 
% plot(Sigma1/1e6,zpoints/H); 
% xlabel('\sigma_{1} (MPa)'); 
% ylabel('z/H'); 
% figure(8) 
% plot(Sigma2/1e6,zpoints/H); 
% xlabel('\sigma_{2} (MPa)'); 
% ylabel('z/H'); 
% figure(9) 
% plot(Tau12/1e6,zpoints/H); 
% xlabel('\tau_{12} (MPa)'); 
% ylabel('z/H'); 
% % Plot the through-thickness variation of factor of safety Sfa % 
% figure(10) 
% plot(Sfa,zpoints/H); 
% xlabel('S_{fa}'); 
% ylabel('z/H'); 
% % Plot the through-thickness variation of factor of safety Sfr % 
% figure(11) 
% plot(abs(Sfr),zpoints/H); 
% xlabel('|S_{fr}|'); 
% ylabel('z/H'); 
%% 
% Calculate the Effective Strengths % 
disp('**************************************') 
disp('*** Effective Laminate Properties: ***') 
disp('**************************************') 
%Output number of layers in the laminate 
disp(strcat(['Number of layers: ','N = ',num2str(N)])); 
%***************************************************% 
%***        Strain Failure Criteria              ***% 
%*** Determine factor of safety to get Fxt       ***% 
%***************************************************% 
%*** Compute the midsurface strains and curvatures ***% 
[Epsilon0,Kappa0] = MidsurfaceStrainsCurvatures(abd,1,0,0,0,0,0); 
% z locations of points where strains and stresses will be evaluated % 
zpoints=linspace(-H/2,H/2,5000); 
% Define initial Factor of Safety (FS) values as zero % 
FS1 = 0; FS2 = 0; FS3 = 0; 
%* Evaluate Strains, Stresses, and FS at zpoints to Find Failure *% 
for n = 1:length(zpoints) 
    %Determine the layer that the z location belongs to 
    z = zpoints(n);  %z coordinate 
    k = WhichLayer(ZCoord,z); % layer number 
    %Strains in the x-y coordinate system 
    StrainsXY= ComputeStrainsXY(Epsilon0,Kappa0,z); 
    %Stresses in the x-y coordinate system 
    StressesXY = ComputeStressesXY(StrainsXY,QBar{k}); 
    %Stresses in the 1-2 coordinate system 
    Stresses12 = ComputeStresses12(StressesXY, ThetaArray(k)); 
    %Strains in the 1-2 coordinate system 
    Strain12 = S*Stresses12; 
    if Strain12(1)<0 
        FS1(n)=e1c/-Strain12(1); 
    elseif Strain12(1)>0 
        FS1(n)=e1t/Strain12(1); 
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    end 
    if Strain12(2)<0 
        FS2(n)=e2c/-Strain12(2); 
    elseif Strain12(2)>0 
        FS2(n)=e2t/Strain12(2); 
    end 
    if Strain12(3)==0 
        FS3(n) = 0; 
    else 
        FS3(n)=g6u/abs(Strain12(3)); 
    end 
end 
FS_tension = min([min(FS1(FS1>0)),min(FS2(FS2>0)),min(FS3(FS3>0))])/H; 
% Display strength based on minimum factor of safety % 
disp(strcat(['Fxt (MPa): ',num2str(round(min(FS_tension)/1e6,0))])); 
%***************************************************% 
%***          Strain Failure Criteria            ***% 
%***   Determine factor of safety to get Fxc     ***% 
%***************************************************% 
%*** Compute the midsurface strains and curvatures ***% 
[Epsilon0,Kappa0] = MidsurfaceStrainsCurvatures(abd,-1,0,0,0,0,0); 
% z locations of points where strains and stresses will be evaluated % 
zpoints=linspace(-H/2,H/2,5000); 
% Define initial Factor of Safety (FS) values as zero % 
FS1 = 0; FS2 = 0; FS3 = 0; 
%* Evaluate Strains, Stresses, and FS at zpoints to Find Failure *% 
for n = 1:length(zpoints) 
    %Determine the layer that the z location belongs to 
    z = zpoints(n);  %z coordinate 
    k = WhichLayer(ZCoord,z); % layer number 
    %Strains in the x-y coordinate system 
    StrainsXY= ComputeStrainsXY(Epsilon0,Kappa0,z); 
    %Stresses in the x-y coordinate system 
    StressesXY = ComputeStressesXY(StrainsXY,QBar{k}); 
    %Stresses in the 1-2 coordinate system 
    Stresses12 = ComputeStresses12(StressesXY, ThetaArray(k)); 
    %Strains in the 1-2 coordinate system 
    Strain12 = S*Stresses12; 
    if Strain12(1)<0 
        FS1(n)=e1c/-Strain12(1); 
    elseif Strain12(1)>0 
        FS1(n)=e1t/Strain12(1); 
    end 
    if Strain12(2)<0 
        FS2(n)=e2c/-Strain12(2); 
    elseif Strain12(2)>0 
        FS2(n)=e2t/Strain12(2); 
    end 
    if Strain12(3)==0 
        FS3 = 0; 
    else 
        FS3(n)=g6u/abs(Strain12(3)); 
    end 
end 
FS_compression = 

min([min(FS1(FS1>0)),min(FS2(FS2>0)),min(FS3(FS3>0))])/H; 
% Display strength based on minimum factor of safety % 
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disp(strcat(['Fxc (MPa): 

',num2str(round(min(FS_compression)/1e6,0))])); 
%***************************************************% 
%***          Strain Failure Criteria            ***% 
%***   Determine factor of safety to get Fxy     ***% 
%***************************************************% 
%*** Compute the midsurface strains and curvatures ***% 
[Epsilon0,Kappa0] = MidsurfaceStrainsCurvatures(abd,0,0,1,0,0,0); 
% z locations of points where strains and stresses will be evaluated % 
zpoints=linspace(-H/2,H/2,5000); 
% Define initial Factor of Safety (FS) values as zero % 
FS1 = 0; FS2 = 0; FS3 = 0; 
%* Evaluate Strains, Stresses, and FS at zpoints to Find Failure *% 
for n = 1:length(zpoints) 
    %Determine the layer that the z location belongs to 
    z = zpoints(n);  %z coordinate 
    k = WhichLayer(ZCoord,z); % layer number 
    %Strains in the x-y coordinate system 
    StrainsXY= ComputeStrainsXY(Epsilon0,Kappa0,z); 
    %Stresses in the x-y coordinate system 
    StressesXY = ComputeStressesXY(StrainsXY,QBar{k}); 
    %Stresses in the 1-2 coordinate system 
    Stresses12 = ComputeStresses12(StressesXY, ThetaArray(k)); 
    %Strains in the 1-2 coordinate system 
    Strain12 = S*Stresses12; 
    if Strain12(1)<0 
        FS1(n)=e1c/-Strain12(1); 
    elseif Strain12(1)>0 
        FS1(n)=e1t/Strain12(1); 
    end 
    if Strain12(2)<0 
        FS2(n)=e2c/-Strain12(2); 
    elseif Strain12(2)>0 
        FS2(n)=e2t/Strain12(2); 
    end 
    if Strain12(3)==0 
        FS3 = 0; 
    else 
        FS3(n)=g6u/abs(Strain12(3)); 
    end 
end 
FS_shear = min([min(FS1(FS1>0)),min(FS2(FS2>0)),min(FS3(FS3>0))])/H; 
% Display strength based on minimum factor of safety % 
disp(strcat(['Fxy (MPa): ',num2str(round(min(FS_shear)/1e6,1))])); 
%****************************************************% 
%***   Laminate Effective Property Calculations   ***% 
%***         Determine Ex, Ey, Gxy, nuxy          ***% 
%****************************************************% 
%* Finds the effective moduli and Poisson's ratio for the laminate *% 
% Calculate Longitudinal Modulus, Ex,(Pa) % 
Ex = (1/H)/abd(1,1); 
disp(strcat(['Ex  (GPa): ',num2str(round(Ex/1e9,2))])); 
% Calculate the Transverse Modulus, Ey,(Pa) % 
Ey = (1/H)/abd(2,2); 
disp(strcat(['Ey  (GPa): ',num2str(round(Ey/1e9,2))])); 
% Calculate the In-Plane Shear Modulus, Gxy,(Pa) % 
Gxy = ABD(3,3)/H; 
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disp(strcat(['Gxy (GPa): ',num2str(round(Gxy/1e9,2))])); 
% Calculate the in plane Poisson's Ratio, nuxy,(-) % 
nuxy = ABD(1,2)/ABD(2,2); 
disp(strcat(['nuxy  (-): ',num2str(round(nuxy,3))])); 
end 
%% 
%******************************************************% 
%***             Reduced Compliance Matrix          ***% 
%******************************************************% 
function S = ReducedCompliance(E1,nu12,E2,G12) 
S11 = 1 / E1; 
S12 = -nu12 / E1; 
S22 = 1 / E2; 
S66 = 1 / G12; 
S = [S11 S12 0;S12 S22 0; 0 0 S66]; 
end 
%% 
%******************************************************% 
%***             Reduced Stiffness Matrix           ***% 
%******************************************************% 
function Q = ReducedStiffness(E1,nu12,E2,G12) 
nu21 =  (E2 / E1) * nu12; 
Q11 =  E1 / (1 - (nu12 * nu21)); 
Q12 = (nu12 * E2) / (1 - (nu12 * nu21)); 
Q22 = E2 / (1 - (nu12 * nu21)); 
Q66 = G12; 
Q = [Q11 Q12 0;Q12 Q22 0; 0 0 Q66]; 
end 
%% 
%******************************************************% 
%***          Off-axis Stiffness Matrix             ***% 
%******************************************************% 
function QBar = OffAxisStiffness(theta,Q) 
m=cosd(theta); 
n=sind(theta); 
Q11=Q(1,1); Q12=Q(1,2); Q22=Q(2,2); Q66=Q(3,3); 
QBar11 = (Q11 * m^4) + (2 * (Q12 +(2 * Q66)) * m^2 * n^2) + (Q22 * 

n^4); 
QBar12 = ((Q11 + Q22 - (4 * Q66)) * n^2 * m^2) + (Q12 * (n^4 + m^4)); 
QBar16 = ((Q11 - Q12 - (2 * Q66)) * n * m^3) + ((Q12 - Q22 +... 
    (2 * Q66)) * n^3 * m); 
QBar22 = (Q11 * n^4) + (2 * (Q12 + (2 * Q66)) * n^2 * m^2) +... 
    (Q22 * m^4); 
QBar26 = ((Q11 - Q12 - (2 * Q66)) * n^3 * m) + ((Q12 - Q22 +... 
    (2 * Q66)) * n * m^3); 
QBar66 = ((Q11 + Q22 - (2 * Q12) - (2 * Q66)) * n^2 * m^2) +... 
    (Q66 * (n^4 + m^4)); 
QBar =[QBar11 QBar12 QBar16; QBar12 QBar22 QBar26; QBar16 QBar26 

QBar66]; 
end 
%% 
%******************************************************% 
%***         Off-axis Compliance Matrix             ***% 
%******************************************************% 
function SBar = OffAxisCompliance(theta,S) 
m = cosd(theta); 
n = sind(theta); 



229 

 

S11 = S(1,1); S12 = S(1,2); S22 = S(2,2); S66 = S(3,3); 
SBar11 = (S11 * m^4) + (((2 * S12) + S66) * n^2 * m^2) + (S22 * n^4); 
SBar12 = ((S11 + S22 - S66) * n^2 * m^2) + (S12 * (n^4 + m^4)); 
SBar16 = (((2 * S11) - (2 * S12) - S66) * n * m^3) +... 
    (((2 * S12) - (2 * S22) + S66) * n^3 * m); 
SBar22 = (S11 * n^4) + (((2 * S12) + S66) * n^2 * m^2) + (S22 * m^4); 
SBar26 = (((2 * S11) - (2 * S12) - S66) * n^3 * m) +... 
    (((2 * S12) - (2 * S22) + S66) * n * m^3); 
SBar66 = (2 * ((2 * S11) + (2 * S22) - (4 * S12) - S66) * n^2 * m^2)... 
    + (S66 * (n^4 + m^4)); 
SBar =[SBar11 SBar12 SBar16; SBar12 SBar22 SBar26; SBar16 SBar26 

SBar66]; 
end 
%% 
%******************************************************% 
%***            Transformation Matrix               ***% 
%******************************************************% 
function T = TMatrix(theta) 
m = cosd(theta); 
n = sind(theta); 
T = [m^2 n^2 2*m*n; n^2 m^2 -2*m*n; -m*n m*n (m^2)-(n^2)]; 
end 
%% 
%******************************************************% 
%***         Compute ABD Matrices                   ***% 
%******************************************************% 
function [A,B,D,ABD,a,b,d,abd]=ComputeABD(QBar,ZCoord) 
% First calculate A, B and D matices by summing over 
% all the layers 
N = length(ZCoord) - 1; 
A = zeros(3,3); 
B = zeros(3,3); 
D = zeros(3,3); 
for k = 1:N 
    A = A + QBar{k} * ( ZCoord(k+1) - ZCoord(k) ); 
    B = B + QBar{k} * ( ZCoord(k+1)^2 - ZCoord(k)^2 ) * 0.5; 
    D = D + QBar{k} * ( ZCoord(k+1)^3 - ZCoord(k)^3 ) / 3; 
end 
% Next, arrange the A, B and D into a 6x6 ABD stiffness matrix 
ABD = [A B; B D]; 
% Find the laminate [abd] compliance matrix 
abd = inv(ABD); 
% Extract the a, b and d matrices from the [abd] matrix 
a = abd(1:3,1:3); 
b = abd(1:3,4:6); 
d = abd(4:6,4:6); 
end 
%% 
%******************************************************% 
%***  Compute Midsurface Strains and Curvatures     ***% 
%******************************************************% 
function [Epsilon0,Kappa0] = MidsurfaceStrainsCurvatures... 
    (abd,Nx,Ny,Nxy,Mx,My,Mxy) 
% Calculate midsurface strains and curvatures column array 
EpsilonKappaArray =  abd * [Nx; Ny; Nxy; Mx; My; Mxy]; 
% Extract the midsurface strains and curvatures 
Epsilon0 = EpsilonKappaArray(1:3,1); 



230 

 

Kappa0 = EpsilonKappaArray(4:6,1); 
end 
%% 
%***********************************************************% 
%***  Determine the layer number given the z coordinate  ***% 
%***********************************************************% 
function LayerNum = WhichLayer(ZCoord,z) 
%Inputs: 
%  ZCoord is an array of interface locations 
%  z is the z-coordinate of a point 
%Outputs: 
% LayerNum is the layer to which point z belongs to 
% Total number of layers in laminate 
N = length(ZCoord)-1; 
% Check layer by layer to see if ZCoord(k) <= z <= ZCoord(k+1) 
for k = 1:N 
    if (z>= ZCoord(k)) && (z<=ZCoord(k+1)) 
        LayerNum = k; % assign layer number if ZCoord(k) <= z <= 

ZCoord(k+1) 
    end 
end 
end 
%% 
%***********************************************************% 
%***    Compute the strains in the global coordinate     ***% 
%***  system given the midsurface strains and curvatures ***% 
%***********************************************************% 
function StrainsXY= ComputeStrainsXY(Epsilon0,Kappa0,z) 
%Inputs: 
%  Epsilon0 is a 3x1 array of mid-surface strains 
%  Kappa0 is a 3x1 array of mid-surface curvatures 
%  z is the z-coordinate of the location for calculating the strains 
%Outputs: 
%  StrainsXY is a 3x1 array of strains in the x-y coordinate system 
% Array of strains in the x-y coordinate system 
StrainsXY = Epsilon0 + (z * Kappa0); 
end 
%% 
%***********************************************************% 
%***    Compute the stresses in the global coordinate    ***% 
%***  system given the midsurface strains and curvatures ***% 
%***********************************************************% 
function StressesXY = ComputeStressesXY(StrainsXY,QBar) 
%Inputs: 
%  StrainsXY is a 3x1 array of strains in the x-y coordinate system 
%  QBar is a 3x3 of off-axis stiffnesses of layer k 
%Outputs: 
% StressesXY is a 3x1 array of stresses in the x-y coordinate system 
% Array of stresses in the x-y coordinate system 
StressesXY = QBar * StrainsXY; 
end 
%% 
%******************************************************************% 
%*** Compute the stresses in the principal material coordinate  ***% 
%***  system given the midsurface strains and curvatures        ***% 
%******************************************************************% 
function Stresses12 = ComputeStresses12(StressesXY, theta) 
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%Inputs: 
%  StressesXY is a 3x1 array of stresses in the x-y coordinate system 
%  theta is orientation of the fibers in layer k 
%Outputs: 
%  Stresses12 is a 3x1 array of stresses in the 1-2 coordinate system 
T = TMatrix(theta); 
%Transform the stresses from the x-y to the 1-2 coordinate system 
Stresses12 = T * StressesXY; 
end 
%% 
%******************************************************% 
%***            Tsai-Wu failure criteria            ***% 
%***    Determine factors of safety Sfa and Sfr     ***% 
%******************************************************% 
function [Sfa, Sfr]=TsaiWu(F1t,F1c,F2t,F2c,F6,Stresses12) 
%Inputs: 
%  F1t,.., F6 are the lamina strengths 
%  Stresses12 is a 3x1 array of stresses in the 1-2 coordinate system 
%Outputs: 
%  Sfa and Sfr are the factos of safety (actual and reversed-in-sign) 
%Calculate Tsai-Wu Parameters 
f1 = (1 / F1t) - (1  / F1c); 
f11 = 1 / (F1c * F1t); 
f2 = (1 / F2t) - (1 / F2c); 
f22 = 1 / (F2c * F2t); 
f66 = 1 / (F6 * F6); 
%Determine the Coefficients a & b 
a = 

(f11*Stresses12(1)*Stresses12(1))+(f22*Stresses12(2)*Stresses12(2))... 
    +(f66 * Stresses12(3)*Stresses12(3))-

(sqrt(f11*f22)*Stresses12(1)... 
    *Stresses12(2)); 
b = (f1*Stresses12(1))+(f2 * Stresses12(2)); 
%Determine the Factor of Safety 
%******************************************************% 
%***             Factor of Safety, Sfa              ***% 
%******************************************************% 
Sfa = (-b + sqrt((b * b) + (4 * a))) / (2 * a); 
%******************************************************% 
%***        Reversed Factor of Safety, Sfr          ***% 
%******************************************************% 
Sfr = (-b - sqrt((b * b) + (4 * a))) / (2 * a); 
end 
%% 
%************************************************************% 
%***                Vesion 1 Revision Log                 ***% 
%************************************************************% 
% Original V1: Created Code, MEE 450 taught by Prof. Vel, July 19th, 

2016: 
% Original code used lamina input values to conduct macromechanics 
% based analysis for composite materials 
%************************************************************% 
%***                Vesion 2 Revision Log                 ***% 
%************************************************************% 
% Original V2: Micromechanics method addition, June 9th, 2018: 
% Added micromechanics methods to the code based on colaberation with 
% Ben Smith and material from Barbero. 
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% Added necessity for user to define if micromechanics is necessary 
% Added original material section for constituent materials 
%************************************************************% 
%***                Vesion 3 Revision Log                 ***% 
%************************************************************% 
% Original V3: June 22nd, 2018 
% Formatting updates and clarification of comments, prep work for V3.1 
% V3.1: Material Property and Micromechanics update, June 25th, 2018: 
% Added Derakane 610-C to the resin-property section 
% Updated and expanded the Halpin-Tsai calculation sub-section 
% Added Mori-Tanaka method as method choice for micromechanics 
% Added necessity for user to define either Mori-Tanaka or Halpin-Tsai 
% References section added at the end of the code 
% Expansion of G12 analytical methods, three methods under Halpin-Tsai 
% A brief user instructions section was added. 
% Updated labels on output fields to command window. 
% Updated overal code formatting and indentation. 
%% 
%************************************************************% 
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