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Vernal pools in the northeastern United States provide essential habitat for pool-breeding 

amphibians and provide resources for other forest-dwelling wildlife. These pools and pool-

breeding amphibians in particular are threatened by land conversion associated with urbanization 

and urban-associated factors. The responses of these amphibians and of birds and mammals 

using vernal pools to intermediate levels of urban development are largely unknown. I used field 

observations and lab experiments to study the amphibians, birds, and mammals associated with 

vernal pools along an urban development gradient in greater Bangor, Maine.   

In Chapter 1, I examined bird and mammal use and assemblage composition at 33 pools, with 

specific focus on the influence of impervious surface as an indicator of urbanization intensity. I 

detected 59 bird and mammal species using pools and the adjacent terrestrial areas. Within-pool 

vegetation and land cover types within 1,000 m of pools likely influenced assemblages with 

increases in impervious cover linked to shifts towards urban-affiliated species.  



 

Chapters 2 focused on the associations between site characteristics in an urbanizing landscape 

and wood frog (Lithobates sylvaticus) larval morphology and survival. Differences in 

morphology were associated with urban land conversion, hydrology, within-pool vegetation, and 

conspecific density. Urbanization was positively associated with greater tadpole survival, 

development rate, and size.  

In Chapter 3, I examined the carry-over effects of larval morphology and site characteristics, 

particularly urban-associated land conversion within 1,000 m, on newly emerged and post-

breeding male wood frogs in 15 pools. Egg density had a salient influence with negative effects 

on larval and froglet responses, and the effects of urban-associated cover near pools at larval and 

adult stages suggest that the carry-over effects of urbanization from larval to froglet stages may 

not persist to adulthood. 

Chapter 4 addresses the effects of urban-associated land conversion and road salt on breeding 

effort of wood frog, spotted salamander (Ambystoma maculatum), and the blue-spotted 

salamander (including the unisexual complex, Ambystoma laterale-jeffersonianum). All three 

taxa responded negatively to tree cover reduction, but had some positive responses that are 

indicative of the removal of breeding pools 300-1,000 m from a study pool resulting in displaced 

adults consolidating breeding in remaining pools. 



iii 
 

PREFACE 

 

This dissertation reflects an effort to better understand responses of animals that use 

vernal pools across an urbanizing landscape with a focus on vernal pool-breeding amphibians. It 

is my hope that the information herein can assist those working to conserve vernal pools and the 

wildlife that use these important natural features. Because the research topic was relatively 

broad, I have studied several taxa and aspects of amphibian ecology. All chapters are “journal 

ready”, whereas appendices either provide supplemental information to chapters (Appendices A-

C) or likely warrant publication (Appendices D-G and I) but for which substantial collaboration 

with other researchers is likely to increase the value of the resulting manuscript. The topics 

addressed in the chapters and appendices and the journals targeted for publication are listed, 

below. 

 Chapter 1 addresses bird and mammal use and assemblage composition. This chapter was 

submitted to Urban Ecosystems and is in review.  

 Chapter 2 focused on the relationship between site characteristics and wood frog larval 

morphology and survival. Ecosphere was the target journal for this chapter. 

 Chapter 3 examined the effects of larval morphology and site characteristics that may 

persist to post-metamorphic stages. This chapter was submitted to Urban Ecosystems and 

is in review. 

 Chapter 4 addresses the effects of urban-associated land conversion and road salt on 

breeding effort of wood frog, spotted salamander, and the blue-spotted salamander. This 

chapter was submitted to Herpetological Conservation and Biology and is in review. 
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 Appendices A-C provide supplemental information to chapters 1-3 and will be included 

as supporting information for submitted manuscripts if determined appropriate by 

journals. 

 Appendix D describes aquatic insect assemblages and examines relationships between 

predatory insects and tadpole morphology. I will work with Dr. Greig to flesh out this 

appendix into a full-fledged manuscript and to determine the most appropriate journal for 

submission.  

 Appendix E examined the changes in Ranavirus infection in wood frog throughout larval 

development and how these changes may relate seasonal shifts in site characteristics. I 

will continue to consult and coordinate with Drs. Matt Gray of the University of 

Tennessee, Emily Hall of Vanderbilt University, and Phillip deMaynadier of the Maine 

Department of Inland Fisheries and Wildlife to refine this manuscript and select a 

targeted journal for publication.   

 Appendix F details detection of Ichthyophonus, a fungal pathogen, in wood frog larvae 

and aquatic insects. This report will be submitted to Dr. David Green at the USGS 

National Wildlife Health Center. I will consult with Dr. Green for his advice on how to 

best disseminate this information to an interested audience.  

 Appendix G assesses the challenges of collecting blood from larval wood frogs for the 

purpose of examining white blood cell profiles. I also report preliminary white blood cell 

profile results for larval wood frog. I will continue to coordinate with Dr. Anne 

Lichtenwalner of the University of Maine and Lynda Leppert, blood analyst, to determine 

an appropriate outlet for dissemination.  
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 Appendix H reports all egg mass counts by site and species for vernal pool-breeding 

amphibians conducted throughout my graduate research. Coordinates of pools are 

provided. Additionally, summary statistics of clutch size (embryos per clutch) are 

reported for wood frog and spotted salamander by pool. This information is not intended 

for publication in another outlet, but is included as a point of reference for those who may 

study any of these pools in the future.  

 Appendix I examined the relationship between road salt and food availability as observed 

during a controlled lab experiment. I plan to incorporate this appendix in a publication 

examining the influence of road salt contamination on wood frog larvae. This publication 

will address the comparative and/or interactive roles of road salt contamination with food 

availability, Ranavirus infection, insect predator pressure, and difference in source pool 

(i.e., population).    
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CHAPTER 1: BIRD AND MAMMAL USE OF VERNAL POOLS ALONG AN URBAN 

DEVELOPMENT GRADIENT 

1.1 Chapter Abstract 

Vernal pools are of conservation concern primarily because of their role as habitat for 

specialized pool-breeding amphibians, but their use by birds and mammals may also be of 

interest, especially from the perspective of the impact of urbanization. We describe camera-

trapped wildlife (CTW) at 38 vernal pools along an urban development gradient in greater 

Bangor, Maine, USA. We detected 20 mammal and 39 bird taxa (29 contacted pool water; 39 

detected at >1 site). Land cover type within 1,000 m (%), within-pool vegetation (%), and 

amphibian egg mass numbers explained a substantial portion of the variance (40.8%) in CTW 

assemblage composition. Submerged vegetation within pools and cover by water and impervious 

surfaces within 1,000 m of pools were key site characteristics defining assemblages. We scored 

the urban-affiliation of taxa and modeled the relationship between weighted assemblage scores 

for each site and impervious cover. Impervious cover within 1,000 m of pools was positively 

(p<0.01) related to site urban-affiliation scores. Use probability for red fox increased and 

snowshoe hare decreased with impervious cover at 1,000 m. These results indicate that within-

pool vegetation and land cover types at 1,000 m influenced bird and mammal assemblages that 

used study pools and greater impervious cover at 100 and 1,000 m was correlated with a shift in 

assemblages from being dominated by urban-avoider to urban-adapted species. We encourage 

land use planners and managers to consider the influence of land use practices within 1,000 m of 

vernal pools on birds and mammals, especially near amphibian breeding pools.  
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1.2 Introduction 

Vernal pools provide important seasonal sources of food or water for many species of 

birds and mammals (Silveira 1998; Colburn 2004; Mitchell et al. 2008), especially for those that 

prey on seasonally abundant pool-breeding amphibians or nutrient-rich aquatic vegetation early 

in spring (Shurin et al. 2006). For example, gray jays (Perisoreus canadensis), wild turkeys 

(scientific names not listed in the text are in Table 1.1), and raccoons are known to eat 

amphibians (Childs 1953; Murray et al. 2005; A. Calhoun, personal communication, 13 June 

2017). Although the ecological roles of birds and mammals in vernal pool ecosystems are poorly 

known, there is evidence that they facilitate ecological processes such as nutrient transport, seed 

and egg dispersal, and regulation of amphibian populations (Childs 1953; Zedler 1987; Black 

and Zedler 1992), thereby making vernal pool ecological functions disproportionately large 

compared to their area (Calhoun et al. 2017). 

Vernal pool conservation is challenging; pools are typically small and seasonally 

inundated, poorly regulated, and difficult to inventory (Calhoun et al. 2017). Conflicts between 

conservation and urbanization are most acute where economic growth converts forest into 

residential, commercial, and/or industrial developments (Windmiller and Calhoun 2008). These 

conflicts will escalate as urban areas expand >12.2 million ha throughout the US by 2051 

(Lawler et al. 2014). As urban development replaces forest, habitat for forest-reliant wildlife is 

lost and fragmented (Fischer and Lindenmayer 2007); impervious surfaces alter hydrology and 

rapidly transport unfiltered anthropogenic chemicals into pools (Faulkner 2004); and novel 

threats to wildlife may increase, including human disturbance and predation from pets and 

subsidized predators (Hansen et al. 2005).  
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Shifts in bird and mammal assemblage composition in response to urban development 

have been well documented (Chace and Walsh 2006; McKinney 2008; Chupp et al. 2013). 

Urbanization typically involves a reduction in vegetation cover (McKinney 2006), a shift 

towards non-native plants (Aronson et al. 2014), and the addition of novel human structures and 

subsidies (e.g., food waste). Birds and mammals typically exhibit one of three responses to these 

changes (as coined by Blair 2001): avoidance, adaptation, or exploitation with these responses 

predominating in undeveloped/rural, suburban, and urban core areas, respectively (McKinney 

2006). Examples of avoiders include area-sensitive birds (Friesen et al. 1995) and large 

predatory mammals that are persecuted by humans (Fischer et al. 2012). Examples of adapters 

include red squirrels, which thrive in areas where understory vegetation has been removed but 

trees remain (Racey and Euler 1982), and American robins, which benefit from increased forest 

edges (Minor and Urban 2010). Rock dove (Columba livia), house sparrows (Passer 

domesticus), and Norway rats (Rattus norvegicus) can exploit novel food and shelter in the urban 

core (Blair 1996, McKinney 2002).  

Here we investigated bird and mammal assemblage composition and individual species 

use at vernal pools along an urban development gradient using motion-activated cameras. We 

used impervious cover to represent development intensity because it includes buildings and 

pavement and is thus linked to traffic and chemical, light, and noise pollution. Our primary 

objectives were to describe the composition of assemblages and examine how they corresponded 

to pool conditions and land cover types near pools at various spatial scales.   
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1.3 Methods 

1.3.1 Study area  

We conducted this study in the greater Bangor area in Maine, USA. i.e., within 18 km of 

downtown Bangor (44° 48' 8'' N, 68° 46' 13'' W) where there is 80-100% impervious cover 

(Maine Land Cover Dataset, MELCD; http://www.maine.gov/megis/catalog/). In general, 

impervious cover decreases and cover by mid-successional mixed forest (oak, Quercus spp.; 

Eastern hemlock, cover Tsuga Canadensis; white pine, Pinus strobus; American beech, Fagus 

grandifolia; poplar, Populus spp.; birch, Betula spp.; maple, Acer spp.; balsam fir, Abies 

balsamea) increases with distance from Bangor. Each site consisted of a vernal pool and the area 

within 1,000 m of its high-water mark. Sites were selected based on the presence of vernal pool-

breeding amphibians and to represent the range of land cover types.  

1.3.2 Camera trapping 

We placed infrared, motion-activated cameras (Bushnell Trophy Cam HD, Overland 

Park, Kansas; 18 m maximum detection) at 38 sites with 27, 35, and 11 sites surveyed in 2014, 

2015, and 2016, respectively. At each pool one camera was placed within 2 m of the ground and 

within 3 m from the pool’s high-water mark to capture as much of the pool as possible. Each site 

had a camera functioning 12-622 d (median=214, IQR=79-338). We identified species, behavior, 

and whether the animal(s) contacted pool water in photographs. All animals were detected 

between 15 May 2014 and 22 September 2016. We conducted this study in compliance with 

University of Maine Institutional Animal Care and Use Committee standards as no animals were 

handled.   
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For modeling, we used data from sites with >50 d of camera function between 14 May – 

26 August 2014 – 2016 (33 sites; 63-293 d per site out of 315 total days, median=139, IQR=93-

180). This “summer” season was selected to align with peak camera function among all sites 

(54.0% [4,711/8,725] of total camera days), to capture the most taxa (87.8% [52/58] of mammal 

and bird taxa), and to better meet assumptions of closure for occupancy modeling.  

1.3.3 Site characteristics 

We quantified surrounding land cover types, pool vegetation, and amphibian egg masses. 

Using ArcView GIS 10.2 and MELCD (2004 all land use; 2011 impervious cover) we quantified 

tree, open water and non-forested wetland, and impervious cover within 100, 300, 600, and 1000 

m from pool high-water marks. Distances matched spatial scales relevant to pool-breeding 

amphibians (Homan et al. 2004; Rittenhouse and Semlitsch 2007). We edited cover types to 

correct misclassifications and to reflect more recent aerial photographs (World Imagery; 10 July 

2015).  

We surveyed spring and summer vegetation at 27, 31, and 9 pools in 2014, 2015, and 

2016, respectively. Spring surveys were conducted when vernal pool-breeding amphibian eggs 

were present in May and June. We conducted summer surveys after typical summer dry down in 

July and August. We visually estimated shrub, emergent, and submerged vegetation cover and 

measured woody vegetation canopy over pools using a spherical convex densiometer. We 

conducted vernal pool-breeding amphibian egg mass counts following Crouch and Paton (2000; 

April and May). Inter-annual means were used as covariates in further analyses including site 

characteristics.  
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1.3.4 Taxon sampling curves 

All statistical analyses were conducted using R version 3.3.1 (R Development Core Team 

2016). We used the ‘vegan’ package (Oksanen et al. 2017) to create sample-based taxon 

sampling curves with camera-day as the sampling unit. We created species accumulation curves 

for sites with >30 camera days (35 sites) by adding species in order of detection. We created 

rarefaction curves across these 35 sites by randomly sampling (1,000 random permutations, 

sampling without replacement) all camera days and for the subset of days from the summer 

season (Gotelli and Colwell 2001).  

1.3.5 Partial redundancy analysis (pRDA)  

We conducted a pRDA and variance partitioning using the ‘vegan’ package (Oksanen et 

al. 2017) to identify how site characteristics correlate with dominant gradients of variation in 

camera-trapped wildlife (CTW) assemblages among sites (Borcard et al. 2011). We conditioned 

the RDA on latitude and longitude to account for the portion of Curtis-Bray dissimilarity in 

assemblages attributed to spatial correlation (Spearman’s rank correlation=0.143, p<0.01).  

We represented CTW assemblage composition with a matrix of detection frequencies 

(proportion of camera-days a taxon was observed) of taxa x sites. We did not account for 

detection probabilities when examining assemblages because sparse detections of many taxa may 

produce occupancy estimates more misleading than ignoring non-detection altogether (Welsh et 

al. 2013) and because multi-species models may not be appropriate within groups of species that 

select habitat features at dissimilar scales (Dorazio et al. 2006; Royle and Dorazio 2008). We 
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used a square root (y +1) transformation on detection frequencies to dampen the influence of rare 

and super-abundant species.  

We selected variables to represent vegetation, amphibian abundance, and land cover 

types. Within each category, we examined multivariate normality of variables and transformed 

across all variables as needed. We centered and column-standardized all explanatory variables to 

account for differences in units and assessed variables’ categories for collinearity (pairwise 

Pearson product-moment bivariate correlations ≥0.7). When collinearity was detected, we used 

forward-step variable selection (Akaike Information Criterion [AIC]-based) to select three 

variables in each category with <0.7 correlation (Pearson correlation ≤0.63 among the nine 

selected variables).  

We conducted Monte Carlo global permutation tests to determine the significance of the 

ordination, the pRDA axes, and each constraining variable. Because constraining variables are 

assessed sequentially for significance, we tested each variable as the first term in the model. 

Upon determining significance of the ordination (p=0.001), we compared the pRDA with an 

unconstrained, unconditioned principle component analysis to assess if extracted patterns in the 

pRDA likely represent actual dominant gradients (Legendre and Gallagher 2001). We similarly 

compared the “all species” pRDA ordination to pRDAs based on “limited species” data sets (i.e., 

removing species only observed at one site and/or the single most common species across all 

sites). Since all ordinations were similar, we assumed that the constraining variables in the 

pRDA are related to actual gradients of variation and that rare and abundant species were not 

highly influential in structuring the pRDA. We then calculated the proportion of variance 
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explained by each axis and overlaid generalized additive model (GAM) fitted surfaces on the 

ordination to examine the linearity of variation of each vector. 

1.3.6 Modeling urban-affiliation 

We examined the relationship between urban development intensity, as indicated by 

impervious cover, and an index of assemblage urban-affiliation using linear modeling. We used 

AIC backward-step variable selection to select well-supported (ΔAIC <2) models from a global 

model that included predictor terms of impervious cover within 100, 300, 600, and 1,000 m. To 

calculate an index of urban-affiliation, we scored each taxon on a scale of 1-4 with one for taxa 

that avoid and/or are greatly impaired by urbanization and four for taxa that benefit from 

urbanization. For each site, we multiplied the detection frequency of each taxa by its urban-

affiliation score and averaged the products of all detected species, yielding an urban-affiliation 

index value. We did not incorporate a spatial variance structure into the model because of a lack 

of evidence of spatial autocorrelation among sites (Spearman’s rank correlation=0.007, p=0.88). 

1.3.7 Single-species use probability modeling 

We fit single-season occupancy models (MacKenzie et al. 2006) using package 

‘unmarked’ (Fiske et al. 2017) to examine the relationship between species-specific probability 

of use (θ) of a vernal pool and impervious cover while accounting for detection probability (p; 

MacKenzie 2006a). We were interested in use, as opposed to occupancy, because species 

occupancy (i.e., home range) in an area containing a vernal pool does not necessitate their use of 

the pool. Following Trzcinski et al. (1999) we modeled species detected at >10% of sites (≥4 

sites) during the summer season, using a 7-day camera function period as the sampling unit for 
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detections to increase detectability and precision of use probability estimates. We truncated the 

number of sampling periods to reduce excessive missingness in the dataset and maintain ≥10 

sites with data for all sampling periods (24 periods, 24% missingness). In using single-season 

models we assume that use (θ; i.e., availability for detection) is constant across sampling units.    

We identified three a priori detection covariates based on camera placement and the 

mean of interannual spring and summer within-pool vegetation and modeled four variables 

indicating intensity of urban development (impervious cover) within 1,000 m (Table 1.1). We 

expected detection to decrease with thicker vegetation (Emergent, Shrub) and to increase with 

the percent of a pool’s basin captured in a camera’s view (View; which varied from 10-80% 

[median=60, IQR=47-66]). All detection covariates were centered and column-standardized to 

account for differences in distributions.  

Because our small sample size (33 pools) negated a complex model including terms for 

spatial autocorrelation, we fit one-covariate models to estimate detection and then ranked models 

by AICc (AIC, adjusted for small sample size). When >1 model was ≤2 ΔAICc we tested 

additive models that included all combinations of covariates ranked above the null model. We 

retained the detection parameter from the top ranked model and repeated the process with use 

covariates to determine the best use model for each species. For best-fitting models we tested 

goodness-of-fit (1,000 bootstrap permutations; Mackenzie and Bailey 2004) and reassessed 

overdispersed models (ĉ>1) using quasi-AICc (QAICc) where ĉ is used as a variance inflation 

factor for comparing models for a more conservative model (Burnham and Anderson 2002). We 

tested fit of selected models that had ĉ≤4 using Nagelkerke's (1991) R-squared index. Measures 

of fit (i.e., ΔQAICc, relative model weight, R2
N) were not assessed for models with ĉ>4 due to 
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probable inadequate model structure (Burnham and Anderson 2002).To avoid overstating the 

potential influence of impervious cover, when the model containing a null θ covariate was ≤2 

ΔAICc (or ΔQAICc) of the top model we considered the influence of θ covariates to be no 

different from the null and only reported model structure and parameter estimates for the null 

model.  

1.4 Results 

From 2014 to 2016 we detected 59 species (20 mammals, 39 birds) during 8,725 camera 

days at 35 of 38 sites (Table 1.2). We detected 11 predatory mammals, one omnivorous 

mammal, seven predatory birds, and 31 insectivorous and omnivorous birds (Table 1.2). Thirty-

nine taxa were observed at >1 site, and 29 taxa contacted pool water (Figure 1.1). We observed 

CTW bathing, drinking, feeding on vegetation, foraging for aquatic prey, preening, swimming, 

standing, and walking in pools. Fifty-two species were included in assemblage analyses and 

occupancy modeling.  
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Table 1.1 Predictor variables used to evaluate use and detection probability of species detected 

by camera traps at 33 vernal pools across an urban development gradient in 2014-2016 in greater 

Bangor, Maine, USA.  

Parameter Variable Description 

Detection  Emergent Mean within-pool emergent vegetation cover (%) 

 Shrub Mean within-pool shrub cover (%) 

 View Mean pool basin* photographed (%) 

Use Imp100 Impervious cover within 100 m (%) 

 Imp300 Impervious cover within 300 m (%) 

 Imp600 Impervious cover within 600 m (%) 

 Imp1000 Impervious cover within 1000 m (%) 

*Basin refers to inundated area at spring high-water 
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Table 1.2 Birds and mammals detected during a 2014-2016 camera trap survey at 38 vernal pools in Maine. Species detected during 

the summer season from 33 sites were used in an ordination and to quantify urban-affiliation of the bird and mammal assemblage at 

each site. Urban affiliation scores are: 1=avoids suburban and urban areas, 2=somewhat adaptable to suburban areas, 3=very adaptable 

to suburban areas, 4=adaptable to suburban and urban area; references for these are in Appendix Table A1. 

Table 1.2, continued      

Species 

Observed 

swimming 

or wading in 

pool water 

(Y/N) 

Sites 

detected 

(total, 

summer) 

Only detected at 

sites with <10% 

or >20%  

impervious cover 

within 1,000 m 

Mean 

summer 

season 

detection 

frequency 

Urban- 

affiliation 

score  

(1-4) 

Birds      

wood duck (Aix sponsa) Y 10, 9 - 0.0235 1 

mallard (Anas platyrhynchos) Y 17, 15 - 0.0415 3 

Canada goose (Branta canadensis) Y 1, 1 <10% 0.0003 3 

hooded merganser (Lophodytes cucullatus) Y 1, 1 <10% 0.0004 1 

common merganser (Mergus merganser) Y 1, 1 <10% 0.0002 3 

ruffed grouse (Bonasa umbellus) Y 6, 2 - 0.0007 1 

wild turkey (Meleagris gallopavo) Y 10, 4 - 0.0022 2 

northern goshawk (Accipiter gentilis) N 2, 2 <10% 0.0004 1 

sharp-shinned hawk (Accipiter striatus) Y 2, 1 <10% 0.0002 2 

broad-winged hawk (Buteo platypterus) Y 1, 1 <10% 0.0002 2 
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Table 1.2, continued      

Species 

Observed 

swimming 

or wading in 

pool water 

(Y/N) 

Sites 

detected 

(total, 

summer) 

Only detected at 

sites with <10% 

or >20%  

impervious cover 

within 1,000 m 

Mean 

summer 

season 

detection 

frequency 

Urban- 

affiliation 

score  

(1-4) 

American woodcock (Scolopax minor) Y 2, 1 - 0.0002 1 

mourning dove (Zenaida macroura) N 2, 1 <10% 0.0001 3 

great horned owl (Bubo virginianus) N 1, 1 <10% 0.0003 2 

barred owl (Strix varia) Y 4, 3 <10% 0.0005 1 

ruby-throated hummingbird (Archilochus colubris) N 1, 1 <10% 0.0003 3  

northern flicker (Colaptes auratus) N 4, 2 <10% 0.0004 3  

downy woodpecker (Dryobates pubescens) N 1, 1 >20%   0.0005 3 

pileated woodpecker (Dryocopus pileatus) N 2, 2 - 0.0006 1 

hairy woodpecker (Picoides villosus) N 4, 4 - 0.0015 3 

eastern phoebe (Sayornis phoebe) N 2, 0 - - -  

eastern kingbird (Tyrannus tyrannus) N 1, 1 <10% 0.0004 3 

American crow (Corvus brachyrhynchos) Y 18, 14 - 0.0134 3 

blue jay (Cyanocitta cristata) N 8, 4 - 0.0007 3  
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Table 1.2, continued      

Species 

Observed 

swimming 

or wading in 

pool water 

(Y/N) 

Sites 

detected 

(total, 

summer) 

Only detected at 

sites with <10% 

or >20%  

impervious cover 

within 1,000 m 

Mean 

summer 

season 

detection 

frequency 

Urban- 

affiliation 

score  

(1-4) 

tufted titmouse (Baeolophus bicolor) N 1, 1 >20%   0.0004 3  

black-capped chickadee (Poecile atricapillus) N 3, 1 >20%   0.0002 3  

red-breasted nuthatch (Sitta canadensis) N 1, 0 - - -  

hermit thrush (Catharus guttatus) N 5, 3 - 0.0013 1 

Swainson's thrush (Catharus ustulatus) N 1, 0 - - - 

American robin (Turdus migratorius) Y 11, 8 - 0.0034 3 

gray catbird (Dumetella carolinensis) N 1, 1 - 0.0038 3 

European starling (Sturnus vulgaris) N 2, 2 >20%   0.0004 4 

common yellowthroat (Geothlypis trichas) N 1, 1 >20%   0.0002 3 

black-and-white warbler (Mniotilta varia) N 1, 1 >20%   0.0005 1  

yellow warbler (Setophaga petechia) N 1, 1 >20%   0.0002 3 

northern cardinal (Cardinalis cardinalis) N 1, 0 - - - 

rose-breasted grosbeak (Pheucticus ludovicianus) N 1, 0 - - - 
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Table 1.2, continued      

Species 

Observed 

swimming 

or wading in 

pool water 

(Y/N) 

Sites 

detected 

(total, 

summer) 

Only detected at 

sites with <10% 

or >20%  

impervious cover 

within 1,000 m 

Mean 

summer 

season 

detection 

frequency 

Urban- 

affiliation 

score  

(1-4) 

common grackle (Quiscalus quiscula) Y 5, 2 >20%   0.0032 3 

song sparrow (Melospiza melodia) N 1, 1 - 0.0024 3 

American goldfinch (Spinus tristis) N 2, 2 - 0.0014 3  

Mammals   -   

coyote (Canis latrans) Y 16, 8 - 0.0026 3 

domestic dog (Canis familiaris) Y 11, 8 - - - 

gray fox (Urocyon cinereoargenteus) N 1, 1 >20%   0.0001 2 

red fox (Vulpes vulpes) Y 17, 8 - 0.0087 3 

domestic cat (Felis catus) Y 8, 4 - 0.0066 4 

bobcat (Lynx rufus) N 5, 3 - 0.0008 2 

striped skunk (Mephitis mephitis) N 5, 2 - 0.0034 3 

fisher (Martes pennanti) Y 10, 5 - 0.0034 1 

weasel (Mustela spp.) Y 4, 0 - - - 
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Table 1.2, continued      

Species 

Observed 

swimming 

or wading in 

pool water 

(Y/N) 

Sites 

detected 

(total, 

summer) 

Only detected at 

sites with <10% 

or >20%  

impervious cover 

within 1,000 m 

Mean 

summer 

season 

detection 

frequency 

Urban- 

affiliation 

score  

(1-4) 

raccoon (Procyon lotor) Y 30, 29 - 0.0805 4 

black bear (Ursus americanus) Y 15, 14 - 0.0054 2 

moose (Alces alces) Y 1, 1 <10% 0.0003 2 

white-tailed deer (Odocoileus virginianus) Y 30, 24 - 0.0545 3 

North American porcupine (Erethizon dorsatum) Y 13, 7 - 0.0028 2 

muskrat (Ondatra zibethicus) Y 2, 2 - 0.0009 3 

woodchuck (Marmota monax) N 3, 3 - 0.0045 3 

eastern gray squirrel (Sciurus carolinensis) Y 29, 23 - 0.1161 4 

red squirrel (Sciurus vulgaris) Y 12, 9 - 0.0246 3 

eastern chipmunk (Tamias striatus) N 12, 10 - 0.0185 4 

snowshoe hare (Lepus americanus) Y 10, 8 - 0.0080 2 
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Figure 1.1 Examples of camera-trapped wildlife (CTW) in contact with vernal in greater Bangor, 

Maine: fisher (A), black bear (B), barred owl (C), wood duck (D), white-tailed deer (E), and 

raccoon (F). 

Among the 38 pools, 19 dried every year, 5 dried 1 or 2 years, and 14 never dried during 

3 years (Table 1.3). Impervious cover was relatively low with <10% median cover across spatial 

scales and no site with >40% impervious cover at any spatial scale. Wood frog (Lithobates 

sylvaticus), spotted salamander (Ambystoma maculatum), and blue-spotted salamander 

(including the unisexual complex, Ambystoma laterale - jeffersonianum) egg masses were 

detected at 38, 31, and 23 sites, respectively. Among sites included in statistical analyses, the 

only site condition that clearly co-varied with impervious cover was tree cover (negatively, 

Figure 1.2).  
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Table 1.3 Site characteristics measured at 38 vernal pools during a 2014-2016 camera trap 

survey in Maine.  

Table 1.3, continued  

Characteristic Range (median) 

Hydroperiod (drying date) June 6 – did not dry during study 

(24 pools [63%] dried ≥1 year) 

Pool area at high-water mark (m2) 63-9,978 (420) 

Impervious surface (%) 

100 m radius 

300 m radius 

600 m radius 

1,000 m radius 

 

0.0-34.5 (2.7) 

0.0-36.8 (6.2) 

0.0-38.4 (8.1) 

0.3-37.9 (8.5) 

Tree canopy density above pool (%) 

Spring 

Summer 

 

1.0-97.0 (40.8)  

2.1-99.5 (51.6) 

Shrub cover (%) 

Spring 

Summer 

 

0.0-77.5 (26.3) 

0.0-80.0 (27.1) 

Emergent vegetation cover (%) 

Spring 

Summer 

 

0.0-99.0 (11.3) 

0.0-90.0 (37.1) 

Submerged vegetation cover (%) 

Spring 

Summer 

 

0.0-60.0 (10.0) 

0.0-90.0 (10.0) 
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Table 1.3, continued  

Characteristic Range (median) 

Amphibian mean egg mass count 

Wood frog (Lithobates sylvaticus) 

Spotted salamander (Ambystoma maculatum) 

Blue-spotted salamander (Ambystoma laterale)1 

 

1.3-300.7 (30.8) 

0.0-290.0 (16.2) 

0.0-2,065.0 (3.8) 

1 Includes the unisexual complex, Ambystoma laterale - jeffersonianum 
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Figure 1.2 Water (A), tree (B), and impervious (C) cover within 100, 300, 600, and 1,000 m of 

33 vernal pool sites with >50 days of camera function during a camera-trapped wildlife (CTW) 

survey during late spring and summer in greater Bangor, Maine in 2014-2016. Sites are arranged 

in ascending ordered based on impervious cover within 1,000 m and roughly indicate increased 

intensity of urbanization. Dashed lines connecting sites for each variable are for clarity in 

showing how all other variables change with urbanization intensity.   
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Species accumulation curves (SAC) indicated that we detected only a subset of the full 

bird and mammal assemblage because for most sites (73%) with >30 camera-days SAC did not 

approach an asymptote; and neither did rarefaction curves (Figure 1.3). However, rarefaction 

curves included an ‘elbow’, indicating that we captured the most rapid increase of species within 

the first 500 camera-days, followed by a slower increase (e.g., between camera-days 2,000 and 

4,000 <10 species were added).  

 

Figure 1.3 Rarefaction curves of camera-trapped bird and mammal taxa at 38 vernal pools with 

year-round (gray) and summer season (black) observations in Maine during 2014-2016. Curves 

(solid lines) are based on 1,000 random permutations, sampling without replacement. Dashed 

lines are standard deviations.  

1.4.1 Site characteristics corresponding to wildlife assemblages   

Site characteristics and spatial distribution of sites affected CTW assemblages. All 

modeled land cover types, summer canopy cover, spring submerged vegetation cover, and A. 

maculatum egg mass counts were significant predictors of CTW assemblages (p<0.05). Summer 
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shrub cover and L. sylvaticus egg mass counts were marginally significant predictors 

(0.05<p<0.1). Considerable variation in CTW assemblages among sites was constrained by site 

characteristics and Euclidean distance (40.8 and 26.4% of the variance, respectively). Land cover 

types, pool vegetation, and egg mass count variables respectively accounted for 19.4, 10.0, and 

6.8% of variation in CTW assemblages (47.5, 24.4, and 16.8%, respectively, of the constrained, 

non-spatial variance).  

The first canonical axis (p=0.003), which explains 23.1% of the variation among 

assemblages (56.6% of constrained variance), is primarily described by Water1000 (r=0.51) and 

Imp1000 (r=0.36), summer canopy density above a pool (r=0.40), and cover of spring submerged 

vegetation (r=-0.39; Figure 1.4). The second pRDA axis (p=0.025), which explains 9.2% of the 

variance among assemblages (22.6% of constrained variance), was positively correlated with 

spring submerged vegetation (r=0.72) and to a lesser degree with summer shrub cover (r=0.29) 

and amphibian egg mass counts (r=0.24-0.27). All vectors varied roughly linearly in ordination 

space except Imp100 (Figure 1.4).  
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Figure 1.4 Partial redundancy analysis (pRDA) ordination for observation frequencies of 52 

camera-trapped bird and mammal taxa across 33 vernal pools in Maine during 2014-2016. Sites 

are black crosses, red dots are observed taxa, and vectors represent site characteristics. Labeled 

taxa are: MALL=mallard (Anas platyrhynchos), WODU=wood duck (Aix sponsa), 

AMCR=American crow (Corvus brachyrhynchos), WHDE=white-tailed deer (Odocoileus 

virginianus), RACC=raccoon (Procyon lotor), EAGR=eastern gray squirrel (Sciurus 

carolinensis), RESQ=red squirrel (Sciurus vulgaris), and EACH=eastern chipmunk (Tamias 

striatus). Vector labels are: Canopy.su=mean density of summer tree canopy across years, 

Shrub.su=mean summer shrub cover, Submerg.sp=mean spring submerged vegetation cover; Al, 

Am, and Ls=mean egg mass counts for A. laterale, A. maculatum, and L. sylvaticus, respectively; 

and Imp100, Imp1000, and Water1000 are the percent impervious or open water cover within 

100 or 1,000 m of pools. Variance explained: RDA1=56.6%; RDA2=22.6%. Contours (gray) 

represent change in impervious cover within 100 m across ordination space.  
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1.4.2 Assemblage composition along an urban development gradient 

The only significant covariate in both top models predicting urban-affiliation scores was 

Imp1000, which was positively related to urban-affiliation scores (Table 1.4, Figure 1.5). 

Thirteen species were only detected at sites with <10% impervious cover within 1,000 m, and 

nine species were only detected at sites with >20% impervious cover within 1,000 m (Table 1.2). 

However, there was also considerable overlap of species across the development gradient: 16/52 

taxa (30.8%) were detected at sites with <10% and at sites with >20% impervious cover within 

1,000 m.  

1.4.3 Detection and use models 

We modeled pool use for 19 species using single-season occupancy models (Table 1.5). 

Detection decreased with shrub and/or emergent cover for raccoon, white-tailed deer, eastern 

gray squirrel, red fox, North American porcupine, and fisher, but detection probabilities of 

waterfowl and domestic cat were highest in areas with greater shrub cover (Table 1.6, Figure 1.6, 

Appendix Figure A1). Models with View as a detection covariate (Table 1.6) indicated increased 

detection as more pool basin (%) was captured in photos (Appendix Figure A2). Red fox and 

snowshoe hare were respectively more and less likely to use pools with greater impervious cover 

within 1,000 m (Figure 1.7).  
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Table 1.4 Top ranked models predicting urban-affiliation scores of bird and mammal 

assemblages at vernal pools. The 52 modeled bird and mammal taxa were detected with camera-

traps across 33 vernal pools in Maine during 2014-2016. 

Model Covariates 

β Estimate  

(p-value) 95% CI lower 95% CI upper AIC ΔAIC 

1 Imp100  

Imp1000 

-0.004 (0.347) 

0.012 (0.006) 

-0.012 

0.004 

0.004 

0.020 

-119.06 1.01 

2 Imp1000 0.009 (0.005) 0.003 0.016 -120.07 NA 

 

 

 

Figure 1.5 Predicted and observed urban affiliation-scores of bird and mammal assemblages at 

vernal pools in Maine during late spring and summer 2014-2016. Open circles are observed 

values, the solid line represents predicted values, and dashed lines represent the 95% confidence 

interval. 
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Table 1.5 Summary of the selected use models for 19 species at 33 vernal pools in Maine, USA, 

during summer 2014-2016. Model terms in parentheses represent detection (P) and use (θ). 

Model appropriateness and fit were assessed via an estimated overdispersion parameter (ĉ) and 

the Chi-squared goodness-of-fit test p-value (p), rank (ΔAICc or QAICc), relative model weight 

(w), and Nagelkerke's R-square value (R2
N). Delta AICc or QAICc, w, and R2

N were not assessed 

for models with ĉ>4 due to probable inadequate model structure (Burnham and Anderson 2002). 

Model covariate descriptions are in Table 1.1. 

Table 1.5, continued        

Species Top model K p ĉ 

ΔAICc 

or 

QAIC

c w R2
N 

raccoon θ(.)P(Shrub+Emergent)1, 2 5 0.00 2.6 0.00  0.51 0.55 

white-tailed deer θ(.)P(Shrub)  3 0.57 0.7 0.00 0.31 0.64 

eastern gray squirrel θ(.)P(Emergent)1 4 0.38 1.1 0.00 0.41 0.47 

mallard  θ(.)P(Shrub)    3 0.69 0.1 1.35 0.12 0.29 

American crow θ(.)P(.) 3 0.00 4,299.0 - - - 

black bear θ(.)P(.) 2 0.11 0.0 0.00 0.32 0.00 

eastern chipmunk θ(.)P(.) 3 0.00 378.1 - - - 

red squirrel θ(.)P(View) 3 0.96 0.0 1.83 0.22 0.63 

wood duck θ(.)P(Emergent) 3 0.87 0.1 0.00 0.39 0.58 

red fox θ(Imp1000)P(Shrub)2 4 0.81 0.1 0.00 0.80 0.48 

snowshoe hare θ(Imp1000)P(.) 3 0.18 0.5 0.00 0.23 0.21 

American robin θ(.)P(.) 3 0.00 197.3 - - - 

coyote θ(.)P(.) 2 0.08 0.8 0.06 0.35 0.00 

North American 

porcupine 

θ(.)P(Shrub) 3 0.16 0.6 0.00 0.35 0.15 

fisher θ(.)P(View+Emergent) 4 0.43 0.3 0.00 0.47 0.35 
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Table 1.5, continued        

Species Top model K p ĉ 

ΔAICc 

or 

QAIC

c w R2
N 

domestic cat θ(.)P(Shrub) 3 0.48 0.1 1.84 0.09 0.54 

wild turkey θ(.)P(.)2 3 0.00 1,014.8 -  - - 

hairy woodpecker θ(.)P(View) 3 0.55 0.0 1.71 0.09 0.32 

blue jay θ(.)P(.) 2 0.18 0.7 0.74 0.23 0.00 

1QAICc was used to assess model rank  

2All other models were >2 ΔAICc or ΔQAICc 
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Table 1.6 Estimated parameters (β) and standard error (S.E.) for use (θ) and detection (P) 

parameters of the top ranked occupancy models predicting species use for species detected at ≥4 

sites. Parameters were not estimated for grossly overdispersed models (ĉ >4).    

Table 1.6, continued     

Species Parameter Variable β S.E. 

raccoon θ Intercept 2.26 0.66 

P Intercept -0.73 0.10 

P Shrub  -0.38 0.12 

P Emergent  -0.36 0.11 

white-tailed deer θ Intercept 1.50 0.53 

P Intercept -1.28 0.13 

P Shrub  -0.86 0.15 

eastern gray squirrel θ Intercept 0.86 0.39 

P Intercept -0.49 0.10 

P Emergent  -0.48 0.12 

mallard θ Intercept -0.06 0.37 

P Intercept -1.50 0.17 

P Shrub  0.55 0.16 

black bear θ Intercept 0.66 0.76 

P Intercept -2.81 0.33 

red squirrel θ Intercept -0.94 0.42 

P Intercept -1.32 0.24 

P View  1.66 0.36 

wood duck θ Intercept -0.54 0.44 

P Intercept -1.21 0.21 

P Emergent  3.16 0.63 

red fox θ Intercept -1.78 0.65 

θ Imp1000 2.01 0.77 
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Table 1.6, continued     

Species Parameter Variable β S.E. 

P Intercept -1.32 0.24 

P Shrub  -0.60 0.25 

snowshoe hare θ Intercept -2.66 1.08 

θ Imp1000 -2.86 1.49 

P Intercept -1.84 0.29 

coyote θ Intercept -0.80 0.70 

P Intercept -2.96 0.55 

North American porcupine θ Intercept -0.88 0.55 

P Intercept -2.98 0.46 

P Shrub  -1.02 0.46 

fisher θ Intercept -0.78 0.74 

P Intercept -4.61 1.30 

P View 1.07 0.49 

P Emergent  -2.49 1.33 

domestic cat θ Intercept -1.29 0.65 

P Intercept -2.83 0.60 

P Shrub  1.51 0.35 

hairy woodpecker θ Intercept 0.46 1.11 

P Intercept -6.54 1.64 

P View 3.31 1.34 

blue jay θ Intercept 5.96 45.5 

P Intercept -5.29 0.59 
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Figure 1.6 Relationships between detection probabilities and emergent vegetation and shrub 

cover modelled as covariate effects in single-season occupancy models for a subset of species. 

Shaded areas represent 95% confidence intervals. Curves for additional species’ detection 

probabilities are in Appendix Figures A1 and A2. 
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Figure 1.7 Relationships between use probabilities and impervious surface within 1,000 m of 

pools modelled as a covariate effect in single-season occupancy models. Shaded areas represent 

95% confidence intervals. 

1.5 Discussion 

We observed 59 bird and mammal taxa during three years of camera-trapping, expanding 

insights into the composition of bird and mammal assemblages using vernal pools and how these 

assemblages may respond to site characteristics related to urbanization. Land cover types within 

1,000 m and within-pool vegetation conditions strongly influence the composition of birds and 

mammals that use vernal pools (Figure 1.4). The abundance of pool-breeding amphibians may 

influence assemblages, but to a lesser degree.  

Although our accumulation curves (Figure 1.3) indicate that we did not capture all 

species, the steep initial slope is characteristic of a community with a high proportion of common 

species (Thompson and Withers 2003). Additionally, with sufficient effort (1,000s of days) 

species undetected by camera traps are typically those considered rare (Tobler et al. 2008). Thus, 

we believe that we detected a high portion of the birds and mammals that regularly used studied 

pools (Table 1.2).  
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1.5.1 Land cover  

Although we explored the less developed sector of the urban development gradient 

compared to similar studies (e.g., Blair 1996; Clergeau et al. 1998), we still detected wildlife 

responses to impervious cover within 1,000 m of pools. CTW trends corresponding with 

increased impervious cover may also signal wildlife responses to deforestation and, more 

generally, to urban development, especially since the pre-disturbance matrix in our study area 

was dominated by forest, and impervious and tree cover are negatively correlated (Figure 1.2). In 

our study, land cover types within 1,000 m of pools explained more variation in CTW 

assemblages than within-pool vegetation or amphibian egg numbers aligning with the idea that 

land cover types at broad spatial scales shape the set of species present at smaller scales (Johnson 

1980) and/or limit resources that affect home range size (McLoughlin and Ferguson 2000). More 

specifically, our findings suggest little response of assemblages to small-scale (100 m) 

impervious cover when impervious cover is relatively high at large scales (1,000 m; Figure 1.4). 

However, assemblages at pools in relatively undisturbed larger landscapes (1,000 m) are 

predicted to respond to impervious cover at small scales (100 m). Consequently, the influence of 

development up to 1,000 m from pools may be dominant in determining the birds and mammals 

using pools even if areas directly adjacent to pools are undeveloped (Rodewald 2003, Hanowski 

et al. 2006).  

The positive association we detected between impervious cover and urban-affiliation of 

CTW (Figure 1.5) further supports the idea that development within 1,000 m of pools may 

influence bird and mammal assemblages even in landscapes with relatively little urban 

development (e.g., 0.3-37.9% impervious cover within 1,000 m; Table 1.3, Figure 1.2). Although 
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we detected a significant association between impervious cover and use probabilities only for red 

fox (positive) and snowshoe hare (negative), these use probabilities varied predictably relative to 

species’ urban affiliations (Table 1.2). These relationships align with previous research on 

community composition response to human disturbance (Beissinger and Osborne 1982; Nilon 

and VanDruff 1986; Croonquist and Brooks 1991).  

The abundance of several urban-adaptable species (e.g., raccoon, eastern gray squirrel, 

American robin, and white-tailed deer) across study sites also may explain why use probability 

was not associated with impervious cover for 17 of the 19 modeled species (Table 1.5); i.e., the 

mean urban-affiliation score was 3 or 4 for 12 of the 17 species for which use was modeled but 

no response to impervious cover was detected (Tables 1.2 and 1.5). Because we only modeled 

data from frequently detected species (detected at >10% of sites), our analyses were biased 

towards urban adapters. Alternatively, we may not have detected use differences for species that 

respond to facets of urbanization other than impervious cover (e.g., vegetation composition, 

landscape fragmentation; Boren et al. 1999). Additionally, aiming cameras at pools may have 

biased detections towards urban adapters as small animals and especially canopy species, most of 

which are urban avoiders (e.g., Beissinger and Osborne 1982), were less likely to be detected 

(Tobler et al. 2008; Rowcliffe et al. 2011). 

1.5.2 Within-pool vegetation 

Within-pool vegetation was the second-most important category of predictors (% 

variance explained). Our observations of white-tailed deer and moose foraging in pools suggest 

vegetation may be an attractant for some species. The negative effect of emergent and shrub 

cover on the detection probabilities for raccoon, eastern gray squirrel, red fox, white-tailed deer, 
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and North American porcupine (Table 1.6, Appendix Figure A.1) likely demonstrates that lower-

strata vegetation within pools can provide cover for mammals that prefer dense vegetation 

(Fuller and Destefano 2003). Positive associations between vegetation and detection are difficult 

to interpret but may indicate that detection and use are confounded for species that respond to 

lower-strata vegetation via changes in abundance or frequency of use (Welsh et al. 2013).  

1.5.3 Aquatic amphibians  

The associations between CTW and vernal pool-breeding amphibian egg numbers 

support the idea that amphibians provide food for birds and mammals (Figure 1.4). More 

specifically, spotted salamander and wood frog egg numbers were significant predictors of CTW 

and all three amphibian species had a similar direction of effect (Figure 1.4). Additionally, 

raccoon, mallard, and wood duck displayed behaviors commonly associated with foraging and 

may have preyed upon embryonic or larval amphibians and/or insects within-pools. Other studies 

have also documented birds and mammals consuming pool-breeding amphibians (Berven 1990) 

and aquatic invertebrates (Cox et al. 1998). Even if these suspected predator-prey interactions do 

not significantly shape bird and mammal assemblages they may be important for prey population 

dynamics. For example, Childs (1953) observed that in a single night a raccoon consumed all 

tadpoles in a pool. Additionally, diseases that can threaten amphibian populations, such as 

chytridiomycosis (Wake and Vredenburg 2008) and ranavirus, could be introduced by birds and 

mammals that move among pools (Gray et al. 2009).   
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1.6 Conclusions 

Our results support commonly observed trends in bird and mammal assemblage 

composition along urban gradients, primarily an increase in species that can adapt to or even 

exploit human-altered landscapes. This occurs even with relatively low intensity development at 

spatial scales encompassing land quite distant from pools (e.g., 0.3-37.9% impervious cover 

within 1,000 m). Birds and mammals are likely important components of pool ecosystems and 

should be considered in management decisions even though they are not pool specialists. These 

animals can be thought of as surrogates that indicate natural system function (Hunter et al. 2016), 

and changes in their occupancy and assemblage composition with urbanization are likely to 

parallel degradation of pool-breeding amphibian populations and other vernal pool ecosystem 

functions. We encourage land use planners and managers to consider bird and mammal 

responses to zoning and land use practices within 1,000 m of pools and to select pools embedded 

in landscapes that are relatively undisturbed (i.e., fully functioning) within 1,000 m to implement 

vernal pool mitigation or conservation planning (Calhoun et al. 2017). We also encourage 

preferential conservation of pools that have sizable populations of breeding amphibians as they 

may provide important food for birds and mammals. 

Because our primary aim was to document birds and mammals using vernal pools we did 

not compare use between vernal pool and non-vernal pool sites. Further study of such paired 

sites could help disentangle the effects of pool presence on bird and mammal assemblages from 

land cover type and local vegetation cover as well as identify possible bird and mammal 

community response to pool destruction. Comparing assemblages between pairs of pools with 

and without pool-breeding amphibian eggs and/or larvae could further elucidate the role of 
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amphibians in influencing use of pools by birds and mammals, and predation experiments could 

substantiate to what extent birds and mammals can prey on amphibian eggs and larvae.  
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CHAPTER 2: INDICATORS OF WOOD FROG (LITHOBATES SYLVATICUS) 

CONDITION IN AN URBANIZING LANDSCAPE 

2.1 Chapter Abstract 

Wood frogs (Lithobates sylvaticus) are threatened by habitat degradation associated with 

urbanization. Urban development near pools may affect larvae with ramifications for population 

persistence and vitality. We studied larval development and documented key vernal pool and 

terrestrial characteristics within 1,000 m of 43 pools across the urban development gradient near 

Bangor, Maine, USA. Specifically, we examined how survival and morphological characteristics 

(e.g., developmental phenology, condition, body length, and tail length and shape) varied with 

characteristics at pool and landscape scales. Secondarily, we explored associations between 

morphology and survival. Differences in tadpole morphology were associated with urban land 

development, hydrology, within-pool vegetation indicative of light availability at the water’s 

surface, and density of pool-breeding amphibian egg masses. Across all pools, tadpoles 

developed more slowly and were larger in pools with longer hydroperiods, while tadpoles in 

urban pools developed more quickly and were larger than those in rural pools with comparable 

hydroperiods. Tail length increased with canopy cover and was longer at urban pools than rural 

pools with comparable canopy cover. Morphology profiles also differed between rural and urban 

sites and among years, with 8% earlier development at urban sites. Survival in urban pools was 

predicted to be 15% greater than in rural pools, but across all pools (including those at 

intermediate intensities of urbanization), survival was not predicted to vary with either 

morphology or site characteristics. No strong relationship existed between developmental 

phenology and any condition or size metric. Because rural and urban tadpoles responded 
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similarly to within-pool conditions, our results support the need to maintain natural hydrology 

and vegetation conditions in pools even in developing areas. Although we detected benefits to 

tadpoles with increasing urbanization, urbanization is well-known to extirpate breeding 

populations; thus it is likely that wood frog population declines associated with urbanization are 

responding to stressors beyond the pool at terrestrial life stages.   

2.2 Introduction 

Pool-breeding amphibians are often threatened by habitat loss and degradation as land 

development associated with urbanization encroaches near and even eliminates intermittently 

inundated pools (Zacharias et al. 2007; Windmiller and Calhoun 2008; Baldwin and 

deMaynadier 2009). More specifically, urban development has been associated with both 

extirpation and reduced occupancy of amphibians (Gibbs 1998a; Homan et al. 2004; Rubbo and 

Kiesecker 2005; Clark et al. 2008). Draining or impounding wetlands for development can 

eliminate breeding pools (Preisser et al. 2000; Beja and Alcazar 2003; Windmiller and Calhoun 

2008), and adult road mortality and loss of critical post-breeding habitat via deforestation also 

likely contribute to population declines (Fahrig et al. 1995; Homan et al. 2004; Eigenbrod et al. 

2008). Even when breeding populations persist in urbanizing areas (Le Viol et al. 2012; 

Scheffers and Paszkowski 2013), urban-associated factors (e.g., road runoff) can have sublethal 

influences (Bommarito et al. 2010; Brand et al. 2010) that may not be detectable in 

demographics until decades later (Griffis-Kyle 2007; Blaustein et al. 2011).  

Accounting for sublethal effects of urbanization may be especially important in assessing 

population condition of species, such as wood frog (Lithobates sylvaticus), that are commonly 

surveyed by egg mass counts that can have high inter-annual variability (Berven 1990; Crouch 
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and Paton 2000; Capps et al. 2015). Sublethal responses to urbanization may also serve as early 

indicators of demographic declines that would not otherwise be detected for decades (e.g., 

Löfvenhaft et al. 2004; Gagné & Fahrig 2010). Measuring multiple responses (e.g., condition, 

survival) during post-embryonic life stages may provide better indicators of the impact of 

urbanization. For wood frogs, assessing larval responses may be appropriate as environmental 

conditions experienced during larval development may influence terrestrial stage morphology 

and performance (Berven 1990; Boes and Benard 2013). Larval wood frogs are sensitive to pool 

conditions that can be influenced by nearby vegetation and land use (Skelly et al. 2002; Watkins 

and Vraspir 2006; Karraker et al. 2008), and their survival may decline with road salt (Sanzo and 

Hecnar 2006; Karraker et al. 2008; Hall et al. 2017) and herbicide contamination (Relyea 2012) 

and light pollution (Perry et al. 2008).  

Multiple site characteristics can vary with urbanization and may have unclear or 

conflicting influences on wood frog larvae. For example, road salt has been linked to larger 

tadpole size but also to reduced larval and froglet survival (Karraker et al. 2008; Dananay et al. 

2015). Higher water temperatures may accelerate hatching (Herreid and Kinney 1967) and larval 

development, (Berven & Boltz, 2001; Skelly et al., 2002) thus allowing individuals to become 

free-swimming and able to move away from predation threats sooner in warmer urban waters. 

However, in warmer water wood frog larvae are slower and smaller (Herreid and Kinney 1967; 

Watkins and Vraspir 2006), potentially reducing their ability to evade predation and reducing 

survival and reproductive success during terrestrial stages. Impoundment of water in urban areas 

can increase the presence of predatory fish (Rubbo and Kiesecker 2005); however, if pools with 

longer hydroperiods lack fish and bullfrog predators they can support greater wood frog survival 

to metamorphosis (Rowe and Dunson 1995; Karraker and Gibbs 2009).  
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Shifts in within-pool vegetation with urbanization (Azous and Horner 2000) may 

influence wood frog larvae as they respond to vegetation structure (Skelly et al. 2002) and leaf 

litter composition (Rubbo and Kiesecker 2004). For example, fluctuations in canopy cover and 

leaf litter composition may influence larval development, growth, and survival (Werner and 

Glennemeier 1999; Skelly et al. 2002; Halverson et al. 2003; Rubbo and Kiesecker 2004). 

Changes in vegetation may also alter community interactions involving tadpoles. Submerged 

vegetation may reduce predation risk by providing cover for larvae (Formanowicz and Bobka 

1989; Kopp et al. 2006), and reductions in canopy cover may increase the amphibian species 

richness (Skelly 2014), potentially changing competition and predation pressures.  

Understanding the influence of urban development on wood frog persistence can be 

particularly challenging because a response to one condition can be mediated by another 

condition through synergistic or antagonistic effects (Relyea 2004; Marino et al. 2013). For 

example, tail morphology in wood frogs can respond to aquatic insect predators (Relyea 2012) as 

well as pool temperature during incubation (Watkins and Vraspir 2006). However, examining 

multiple metrics can provide a more comprehensive population status assessment than any single 

measure (Welsh et al. 2008) and can reduce potential error associated with extrapolating single 

measures, especially from early life stages (e.g., size at metamorphosis) to fitness (Earl and 

Whiteman 2015).  

Previous research demonstrates that land cover type near pools influences wood frog 

breeding occupancy (Guerry and Hunter 2002; Porej et al. 2004; Gibbs et al. 2005; Gagné and 

Fahrig 2007) and terrestrial movements (Gibbs 1998b; Vasconcelos and Calhoun 2004), but few 

studies have examined the effect of gradations of natural and urban-associated land cover types 
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on amphibian larvae. Some studies have experimentally tested the effects of run-off associated 

with human development (e.g., pesticides, road salts) on larval growth and survival (e.g., 

Cothran et al. 2013; Hua et al. 2013; road salts, Sanzo & Hecnar 2006). Others have compared 

larval survival and size between forest and roadside pools (Karraker et al. 2008; Brady 2013; 

Hall et al. 2017) and examined the relationship between skeletal abnormalities and road 

proximity (Reeves et al. 2008). Although Shepack et al. (2017) experimentally introduced larvae 

into pools where breeding populations had been extirpated by urbanization and examined their 

survival and morphology, to our knowledge, no study has examined the relative influences of 

urban-associated land cover types at various spatial scales on the larval survival and 

development of a vernal pool-breeding amphibian.  

In this paper, we examined larval wood frog responses to land cover type at the landscape 

scale (within 1,000 m), water quality, hydrology, within-pool vegetation, and indicators of 

amphibian community competition and predation across a gradient of low-intensity urbanization 

(0-38% impervious cover within 1,000 m). First, we examined relationships among 

developmental phenology, condition, body length, tail length, and tail shape within individuals 

and cohorts (i.e., site-year level) and determined if morphology varied among years and sites or 

between the least- and most-urbanized (i.e., rural and urban) pools. We then identified: 1) which 

morphological and/or site characteristics were important predictors of survival; 2) which site 

characteristics were important predictors of larval morphology; and 3) if the influence of these 

predictors varied with urbanization.  
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2.3 Methods 

2.3.1 Study area 

The greater Bangor, Maine area is located in the glaciated northeastern US, a region 

historically dominated by mixed coniferous-hardwood forest (Chapter 1). Bangor encompasses 

90 km2 with a population of approximately 33,000 (U.S. Census Bureau 2011). The 200 km2 

study area also included Orono, Hampden, and Old Town (populations of approximately 7,000-

10,000; U.S. Census Bureau 2011). Developed land uses are primarily residential and 

commercial with development intensity extremes of nearly 100% impervious surface in 

downtown Bangor (44° 48' 8'' N, 68° 46' 13'' W) to <1% impervious surface (e.g., in the City 

Forest; Fry et al. 2011).   

2.3.2 Site description 

Each site consisted of a wood frog breeding pool and the area within 1,000 m of the 

pool’s high-water mark. We studied 36, 30, 13 sites (43 total) in 2014, 2015, and 2016, 

respectively. We selected sites to represent the range of development intensity at which wood 

frog breeding occurred using percent impervious cover within 1,000 m as an index of 

development. Selected sites had 0-34% impervious cover within 100 m and 0-38% within 1,000 

m, 16-82% tree cover within 1,000 m, 0-100% above-pool tree canopy density, and 63-9,978 m2 

pool area at spring high water.  
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2.3.3 Measures of morphology  

We conducted dip net surveys for wood frog larvae throughout larval development at 25, 

30, and 12 pools (39 total) in 2014, 2015, and 2016, respectively. Surveys were conducted once 

every two weeks 10 June-19 August in 2014, and weekly 15 May-15 September in 2015 and 18 

May-13 September in 2016. Up to 20 wood frog larvae were measured per survey. Within each 

pool, we sampled larvae from multiple locations, representing available vegetation and light 

conditions, to account for potential larval response to spatial variation within a pool. We 

recorded Gosner (1960) stage, mass, snout-vent length (SVL), tail length, and tail fin depth 

(following Relyea 2000).  

To account for shifts in morphology with developmental stage and to satisfy assumptions 

of linearity in the relationship between morphological variables (Green 2001), we calculated 

individual morphological responses as the residuals of ANCOVA models where Gosner 

developmental stage was a factorial covariate (Packard and Boardman 1988; García-Berthou 

2001). We calculated an index of relative developmental phenology (hereafter considered a 

morphological response and referred to as developmental phenology, Dev) as the residuals of the 

inverse of Julian day of measurement regressed on developmental stage (Table 2.1). This is 

appropriate because date of breeding does not influence date of metamorphosis (Berven 1990). 

Negative values represent a higher-than-expected Julian day given the developmental stage (i.e., 

relatively slow development), and conversely positive values represent relatively fast 

development. We calculated an index of relative condition (hereafter referred to as condition, 

Cond) as the residuals of square root-transformed mass (g) regressed on SVL and developmental 

stage. Condition is used to indicate amount of fats and other energetic reserves relative to body 
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size (reviewed by Green 2001). We calculated relative body length (Len) and tail length (TailL) 

as the residual of each of these raw responses regressed on SVL and developmental stage (Table 

2.1). Because tail fin depth relative to body size (residuals of fin depth regressed against SVL 

and developmental stage) and fin depth relative to tail length (residuals of depth regressed 

against tail length and developmental stage; TailD) were highly correlated (r = 0.83, Pearson’s 

correlation coefficient), we only used TailD as this provided a metric of tail shape and TailL 

already represented tail size.  

For pool level analyses, we extracted aggregate morphology metrics: the 10, 50, and 90% 

quantiles and standard deviation (SD) from each site-year. Quantiles and SD better represent the 

variability within a population compared to the mean response (Cade and Noon 2003) and can be 

used to address the possibility that different segments within one population may be limited by 

different factors. We calculated aggregate measures for site-years with ≥20 tadpoles total 

collected during ≥2 site visits in a year. 

2.3.4 Egg mass surveys  

We conducted egg mass surveys at 43 pools to provide an index of the initial abundance 

of individuals in a pool as a baseline for estimating survival through metamorphosis. We also 

used the density of egg masses (number x m-2 pool area) to indicate conspecific competition 

(wood frog eggs) and predatory pressure from larval salamanders (spotted salamander 

[Ambystoma maculatum] and blue-spotted salamander [including the unisexual complex, 

Ambystoma laterale – jeffersonianum] eggs). We counted pool-breeding amphibian (wood frog, 

spotted salamander, and blue-spotted salamander) egg masses following the apparent peak of 

breeding using a dependent double-observer method to increase detection (Grant et al. 2005). If 
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eggs had been recently laid (within approximately two days) we revisited pools and counted new 

eggs.  
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Table 2.1 Larval wood frog responses from 2014-2016 in greater Bangor, Maine, USA. Missing 

data for some variables for some individuals and site-years account for differences in the number 

of site-year, site, and individual observations. 

Response Individual 

variables 

Site-year 

variable(s) 2 

Site-years (sites, 

individuals)  

Survival1  - Sur 51 (33, -) 

Developmental phenology (Julian 

day adjusted for developmental 

stage)  

Dev Dev10, Dev50, 

Dev90, DevSD 

67 (39, 6,997) 

Condition (mass adjusted for 

developmental stage and SVL)  

Cond Cond10, Cond50, 

Cond90, CondSD 

65 (38, 6,692) 

Body length (SVL adjusted for 

developmental stage) 

Len Len10, Len50, 

Len90, LenSD 

65 (38, 6,919) 

Tail shape (tail depth adjusted for 

tail length and developmental 

stage)  

TailD TailD10, TailD50, 

TailD90, TailDSD 

66 (39, 5,788) 

Tail length (adjusted for 

developmental stage and SVL)  

TailL TailL10, TailL50, 

TailL90, TailLSD 

66 (39, 4,947) 

1 Responses only calculated for site-year  
2 10, 50, 90, and SD indicate 10, 50, and 90% quantiles and standard deviation of responses 

within a site-year. 
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2.3.5 Estimation of survival  

We used repeated counts of late stage (Gosner stage ≥41) tadpoles to calculate an index 

of survival (hereto referred to as survival). We conducted tadpole counts using dip net surveys at 

42 sites (35, 26, and 12 pools in 2014, 2015, and 2016). The number of net sweeps was based on 

pool size at time of sampling (minimum of 2 sweeps, maximum of 50 sweeps; size measured at 

each sampling). This method of adjusting effort was to accommodate rapidly changing pool area 

with rain or rapid drying within a few days. In 2014, we calculated the number of sweeps per 

pool based on the estimated pool volume (one sweep per 25 m3). In 2015-16, we used pool 

surface area to determine the number of sweeps (one sweep per 25 m2). We measured length and 

width of a pool with a tape and maximum depth at pool center with a meter stick and used 

formulas for half of an ellipsoid or an ellipse to calculate volume or area. We recalculated the 

number of sweeps for the second and/or third day if the water surface area and/or depth had 

changed since the first day. Surveys began at a site when we detected a tadpole developed to 

Gosner stage ≥41 (approximate stage indicating pro-metamorphosis and thus a useful proxy of 

survival through metamorphosis) during morphology observations. We conducted 3 surveys 

within 3-4 days at each pool, where the net (0.3 m width x 0.22 m height) was gently dragged 1.5 

m along the bottom and tadpoles were sampled without replacement. Sweep locations were 

selected to representatively sample the vegetation and light conditions in a pool.  

We used package ‘unmarked’ (Fiske et al. 2017) to fit negative-binomial N-mixture 

models (MacKenzie et al. 2006) that estimated abundance (λ) of tadpoles x m-2 within sampled 

areas by site while accounting for imperfect detection (p) (Royle 2004). We extrapolated the 

estimated tadpoles x m-2 to the entire sampled pool area to estimate the abundance of tadpoles in 
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a pool. We then used the residuals of total abundance regressed against the number of egg 

masses to estimate survival by pool. We recognize that this method does not incorporate error in 

abundance estimates and egg mass counts. However, mark-recapture methods, which would 

theoretically provide more robust estimates of survival, are not feasible because embryos cannot 

be marked and marking techniques are unreliable for tadpoles (Grant 2008; Carlson and 

Langkilde 2013) or require a tissue sample at each capture for genetic analysis (Ringler et al. 

2015), potentially affecting survival. We included pool depth, area, and number of dip net 

sweeps as visit-level detection covariates and number of wood frog egg masses and a vegetation 

density index as site-level detection covariates in models (Table 2.2). We created three global 

models which included all detection covariates using Poisson, negative binomial, and zero-

inflated Poisson abundance distributions and selected the best global model using Akaike’s 

Information Criterion adjusted for small sample size (AICc; models with ΔAICc ≤2 were 

considered to be strongly supported). We tested the selected global model for goodness-of-fit 

(1,000 bootstrap permutations; Mackenzie and Bailey 2004). If the selected global model was 

overdispersed (ĉ>1) we inflated all subsequent estimated parameter standard errors by a factor of 

√ĉ and used a quasi-corrected AICc (QAICc) for further model selection (Burnham and 

Anderson 2002). We fit all combinations of covariates on detection and ranked models by 

QAICc and selected Beta (β) parameters for the final model as those from models with ΔAICc 

≤2 and 95% confidence intervals (CI) excluding zero. We used the final model (results in 

Appendix B) to estimate the number of tadpoles x m-2 of dipped area per site.  
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Table 2.2 Detection covariates used to estimate abundance of late stage wood frog tadpoles at 42 

vernal pools across an urban development gradient in 2014-2016 in greater Bangor, Maine, USA.  

Variable Description 

Veg PC1 from a PCA of within-pool summer vegetation 

cover (shrub and emergent and submerged 

vegetation); positive relationship with cover 

Depth Maximum pool depth on day of sampling 

Area Estimated pool area on day of sampling 

Dip Number of dip net sweeps on day of sampling 

Egg Number of wood frog egg masses  

2.3.6 Site characteristics 

We used ArcView GIS10.2 and the Maine Land Cover Dataset (2004 all land use; 2011 

impervious surface) to quantify the percent impervious and forest cover within 100, 300, 600, 

and 1,000 m from pool high water marks. We used impervious cover within 300 m (based on 

scales of land cover type identified as important during Random Forest Analyses, RFA) as an 

indicator of urbanization intensity. We assigned the 10 pools with the most impervious cover at 

300 m (16.5-36.8%) to an “urban” group and the 10 pools with the least impervious cover at 300 

m (0-1.9%) to a “rural” group.  

We measured pool area at spring-high-water using a sub-decimeter accuracy GPS 

(Trimble Geo 7x, Westminster, Colorado) and maximum spring-high-water depth (April 17 -

May 22) using a pole marked in centimeter increments (independent of rough pool 

measurements used to determine sample sizes for larval survival surveys). Hydroperiod was 
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determined by the Julian day that standing water was no longer present as observed during field 

visits or by trail cameras placed at pools for a separate study (Chapter 1). Because tadpoles can 

survive in small volumes of water (<1 L) for a short time, even small puddles were used to 

indicate standing water. To treat hydroperiod as a continuous variable in subsequent analyses, 

pools that did not dry in a given year were assigned Julian day 280 if they dried to within 10 cm 

or Julian day 300 if they had ≥10 cm of water at the deepest point (values only determine rank-

order of continuous explanatory variables used in RFA; De’ath & Fabricius 2000). These values 

were selected because no pool dried during the study after Julian day equivalent 266 (23 

September).  

We measured vegetation in spring and summer within pool basins at 25, 36, and 11 sites 

in 2014, 2015, and 2016, respectively. Spring surveys were conducted 2-9 June 2014, 2-20 May 

2015, and 19 May-7 June 2016 when vernal pool-breeding amphibian eggs were present. 

Summer surveys were conducted 24 July-21 August 2014, 22 July-17 August 2015, and 19 July-

26 July 2016 at late summer dry down. We visually estimated percent cover of shrub, emergent 

vegetation, and submerged vegetation to the nearest 10%. We separately estimated duckweed 

(subfamily Lemnoideae) because we suspected it may be related to anthropogenic disturbance. 

Duckweed was estimated to the nearest 10%, using 1% to indicate any presence. Woody 

vegetation canopy density over pools was measured ~1 m above the ground near the pool center 

using a spherical convex densitometer. 

We used water probes (Hach ©, Loveland, Colorado) at 43 pools to sample specific 

conductance, dissolved oxygen (DO), and water temperature; more specifically, 34 pools (31 

pools once and 3 pools twice) 3 May-10 June 2014; 37 pools (2 pools once and 35 pools twice) 2 
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May-12 June 2015; and 12 pools (4 pools once, 6 pools twice, and 2 pools thrice) 6 May-16 June 

2016. We did not adjust water temperature by Julian day because the correlation was small (r = 

0.16, Pearson’s correlation coefficient). On each date a pool was sampled, we collected and 

tested 1 L of surface water ~1 m from the water edge at each of three equidistant points around 

the perimeter. Only one sample was taken at pools that were almost dry and <2 m2. All testing 

was conducted at the pool edge within minutes of sample collection. Each metric was averaged 

by day and then year to calculate values used in analyses.  

Some missing values occurred in site characteristic data: ≤5% in datasets used for 

analysis of tadpole responses. We used k-nearest neighbor (kNN) imputation (package ‘DMwR’, 

Torgo 2010) to replace missing values with a weighted mean of the 10 nearest neighbors. Single 

imputation using kNN provides robust missing value estimates for datasets with ≤20% missing 

values (Troyanskaya et al. 2001).  
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Table 2.3 Explanatory variables used to predict larval wood frog responses in Random Forest 

Analyses. All variables except for impervious and tree cover were measured by site-year; 

impervious and tree cover were measured by site.  

Table 2.3, continued 

Abbreviation Variable (unit) 

ALDEN  A. laterale egg masses x m-2 

AMDEN  A. maculatum egg masses x m-2 

AREA Pool area (m2) 

DO Dissolved oxygen (mg/L) 

HYDRO1 Hydroperiod (Julian day of pool drying)  

IMP100 Impervious cover within 100 m of pool (%) 

IMP1000 Impervious cover within 1,000 m of pool (%) 

IMP300 Impervious cover within 300 m of pool (%) 

IMP600 Impervious cover within 600 m of pool (%) 

LSDEN L. sylvaticus egg masses x m-2 

MAXDEPTH Maximum pool depth at spring high water (m) 

SPCAN Spring tree canopy cover within pool (%) 

SPCOND Specific conductivity (mS/cm) 

SPDUCK Spring duckweed cover within pool (%) 

SPEMERG Spring emergent vegetation cover within pool (%) 

SPSHRUB Spring shrub cover within pool within pool (%) 

SPSUBMG Spring submerged vegetation cover within pool (%) 

SUCAN Summer tree canopy cover within pool (%) 

SUDUCK Summer duckweed cover within pool (%) 

SUEMERG Summer emergent vegetation cover within pool (%) 
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Table 2.3, continued 

Abbreviation Variable (unit) 

SUSHRUB Summer shrub cover within pool within pool (%) 

SUSUBMG Summer submerged vegetation cover within pool (%) 

TEMP Water temperature (C) 

TREE100 Tree cover within 100 m of pool (%) 

TREE1000 Tree cover within 1,000 m of pool (%) 

TREE300 Tree cover within 300 m of pool (%) 

TREE600 Tree cover within 600 m of pool (%) 

1 Julian day of drying adjusted for pools that did not dry (details in Methods).  
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2.3.7 Morphology profile analysis  

We conducted principal components analyses (PCA) using the ‘vegan’ package (Oksanen 

et al. 2017) in R version 3.3.1 (R Development Core Team, 2016) to identify dominant gradients 

of variation in tadpole morphology and development within site-years and individuals (Borcard 

et al. 2011). To examine site-year profiles, we created a correlation matrix of 10, 50, and 90% 

quantiles and SD of developmental phenology, condition, body length, and tail length and depth 

for site-years with complete observations across these variables (64 site-years; 38 sites). To 

examine individual morphology profiles, we created a correlation matrix of developmental 

phenology, condition, body length, tail length, and tail shape variables for individuals with 

complete observations from site-years used in the site-year PCA. Variables were standardized to 

have a mean of zero and standard deviation of one to avoid unequal weighting among variables 

within the individual and site-year data sets, respectively. We used a Monte Carlo randomization 

test (1,000 permutations) to select significant axes (P<0.01) for further examination.  

We compared the individual and site-year ordinations to examine the possibility that the 

tadpoles in a pool may display multiple, distinct profile ‘types’ (i.e., multiple morphology 

strategies within one pool). We assumed that the individual ordination was a fair representation 

of the relationships among morphology characteristics, even at the site-year level, as the relative 

eigenvector contributions of site-year variables to the correlation matrix were similar to those of 

the same variable type in the individual ordination (e.g., the relationships of Cond10, Cond50, 

and Cond90 relative to other site-year variables were similar to the relationship of Cond relative 

to other individual variables). Because individual and site-year profiles were similar, we used 

individual profiles to examine differences in morphological response (site and year effects and 



 

55 
 

5
5
 

between rural and urban groups). Because survival may not depend on all tadpoles in a pool 

(e.g., the smallest or slow-developing) and/or may be influenced by within-pool variance in 

responses, we used site-year profiles to examine the relative importance of aggregate responses 

(including within site-year variance) to predict survival.  

To test for Site, Year, and Site x Year effects and urbanization level (Urban), Year, and 

Year x Urban effects in individual profiles, we conducted permutations of multiple analysis of 

variance (PERMANOVA, package ‘vegan’) for a site-year model and an urban-year model. The 

urban-year model was conducted for the subset of individuals included in rural and urban pools. 

We ran 5,000 permutations of PERMANOVA using a Bray-Curtis similarity matrix (Anderson 

and Walsh 2013) and nesting individuals by site-year for permutations (Anderson 2001). We 

used the F-value as a signal-to-noise ratio to indicate effect size (McCune et al. 1997; Short and 

Morris 2016). If there were significant differences in multivariate profiles identified in site-year 

or urban-year models, we conducted ANCOVAs to examine if there were differences among 

site, year, or urbanization level, and if these predictors changed the relationship between pairs of 

raw measurements used to calculate residuals (Table 2.1). We used eta-squared (η2) to indicate 

effect size (i.e., % change in the response accounted for by the predictor; Levine & Hullett 

2002). If a model had significant main terms with medium to large effect sizes but a significant 

interaction term with a small effect size (η2<0.05) we dropped the interaction prior to interpreting 

the coefficients of the main effects. Mass, tail length, and tail depth regressed against SVL (both 

natural log-transformed) was examined in rural and urban pools for tadpoles with 6-22 mm SVL; 

these predictor ranges were limited to maintain comparable x-axis values between rural and 

urban sites.       
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For the site-year dataset, we used classification and regression trees (CART) analyses, 

specifically RFA to identify the relative importance of aggregate tadpole morphology variables 

in explaining survival. We conducted RFA using package ‘randomForest’ (Liaw and Wiener 

2002) in R version 3.3.1 (R Core Team 2016). Classification and regression trees analyses are a 

non-parametric approach where data is recursively split into homogenous groups based on rank-

order of continuous explanatory variables (De’ath and Fabricius 2000). These trees can be 

particularly useful in data exploration because they do not assume a specific statistical 

distribution for explanatory variables nor assume data independence and thus avoid potential 

concerns about pseudo-replication (Breiman 2001a). To avoid over-fitting and ensure robust 

classification by models, we conducted RFA, a method where many classification trees are 

constructed for each response variable and the dominant classification structure is selected 

(Breiman 2001b). We bootstrapped with replacement to build 10,000 regression trees (Random 

Forest error stabilized at approximately 1,000-2,000 trees for each response variable), using 2/3 

of the data at each iteration. We calculated explanatory variable importance using the mean 

percent decrease in accuracy resulting from removal of each variable to rank the importance of 

explanatory variables. We used package ‘randomForestSRC’ (Ishwaran and Kogalur 2014) to 

create partial dependence plots (PDPs) that examine the marginal effects of predictor variables 

while holding all other predictors at average values (Friedman 2001; Cutler et al. 2007). Because 

PDPs display general trends all reported values are approximate. 

2.3.8 Modeling tadpole response on site characteristics  

We conducted ANCOVAs to examine if urbanization level (rural, urban) or year changed 

the relationship between number of egg masses and estimated abundance of tadpoles that 
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survived to metamorphosis (i.e., survival) between rural and urban pools. We used eta-squared 

(η2) to indicate effect size (i.e., % change in the response accounted for by the predictor; Levine 

& Hullett 2002). Survival was examined for rural and urban pools with <70 egg masses; 4 urban 

site-years with 100-402 egg masses were dropped from analyses to maintain comparable x-axis 

values between rural and urban sites.    

We used RFA following the same methods described above to identify the importance of 

site characteristics (Table 2.3) that may affect survival and aggregate measures of developmental 

phenology, condition, and tail length and shape (Table 2.1). We included the respective sample 

size (DEV.N, COND.N, LEN.N, TAILL.N, TAILS.N) as a predictor in each model because 

scatterplot trends suggested that variance decreased (condition, body length, and tail length) or 

increased (developmental phenology) with sample size. A decrease may be an artifact of larger 

sample size leading to increasingly precise estimates of group means, or a decrease or increase 

may be a result of site characteristics that affect the availability of tadpoles for sampling 

throughout the season (therefore the sample size) also affecting variance. Because we were 

interested in the influence of site conditions at the pool-scale, we modeled annual (site-year) 

responses. 

For each survival or aggregate response with variance explained by RFA we conducted a 

separate ANCOVA for each of the best predictors identified during RFA (those for which we 

present partial dependence plots). Global model terms included urbanization level and an RFA 

predictor. We dropped non-significant interaction terms (F-test; P>0.05) and kept all main 

effects contained in significant interactions. We disregarded models with statistically significant 



 

58 
 

5
8
 

RFA predictors that did not have a similar range in values (x-axis distribution) across 

urbanization levels.    

2.4 Results 

For larval morphological responses, 20-327 tadpoles were sampled per site-year (median 

= 94), for a total of 6,997 tadpoles, with tadpoles sampled at Gosner stages 26-41.5 (one front leg 

emerged) and these ranged from 0.03-1.85 grams, 4-30 mm SVL, 3-40 mm tail length, and 2-20 

mm tail depth. We estimated survival through metamorphosis for 51 site-years. Pool area and 

specific conductivity were greater in urban than rural pools (rural mean area = 429 m2, urban = 

911 m2, Welch’s t17 = -1.85, P=0.08; rural mean conductivity = 42.5 uS, urban = 378.3 uS, t17 = -

3.50, P<0.01), as were scales of impervious cover not used to categorize urbanization levels. 

Tree cover was greater for rural pools at all scales (100 m: t17 = 5.97, P<0.01; 300 m: t25 = 8.14, 

P<0.01; 600 m: t23 = 8.94, P<0.01; 1,000 m: t19 = 8.10, P<0.01). There were no differences 

(P>0.1) between urbanization levels for other site characteristics.  

2.4.1 Morphological profile 

Individual morphology profiles (Dev, Cond, Len, TailL, TailD) were best predicted by 

year in site-year models and by urbanization level in urban-year models. In both models, all 

predictors (main effects and interactions) were significant (PERMANOVA, P<0.001), but main 

effects had larger effects than interaction terms (site-year: Fsite x year 24, 4593 = 10.50; urban-year: 

Furban x year 2, 2240 = 17.25). In the site-year model (including all sites), Year had a greater effect 

than Site and thus was relatively more important in distinguishing profiles (Fyear 2, 4593 = 86.93; 

Fsite 37, 4593 = 36.41). In the urban-year model (including only rural and urban sites), Urban had a 
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greater effect than Year (Furban 1, 2240 = 102.27; Fyear 2, 2240 = 71.45). Developmental phenology was 

not strongly associated with condition, body length, or tail morphology, but tail length and 

condition were positively associated, as were body length and tail depth (Figure 2.1). No distinct 

profile “types” (i.e., clusters) emerged in morphology profiles.  

Developmental phenology was predicted to be 8% earlier in 10 urban sites than in 8 rural 

sites (FUrban:1,3241 = 1163.7, P<0.01, η2 = 0.13; Figure 2.2). Across all 38 sites there were 

significant differences in developmental phenology (FSite:37,6713 = 145.96, P<0.01, η2 = 0.22), with 

tadpoles at the earliest site developing 23% earlier than at the latest site. There were no other 

significant influences of Site, Year, or Urban with a medium to large effect size (η2≤0.07) on 

pairs of morphology variables (Appendix B).  

 

 

 

 

 

 

 

 

 

Figure 2.1 Principal components analysis (PCA) of individual wood frog tadpole morphology 

profiles. The first and second axes (PC1 and PC2) were significant (P<0.001) and account for 

34.7 and 27.6% of the total variation, respectively. The first PC was positively described by 

relatively equal contributions from tadpole condition and tail length (0.64 and 0.62 respective 

eigenvalues). The second PC was negatively described by relatively equal contributions from 

body size and tail shape (-0.69 and -0.63 eigenvalues). Developmental phenology is poorly 

represented (communality value = 0.14 compared to 0.70-0.79 for other metrics).    
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Figure 2.2 Individual wood frog tadpole developmental phenology values in 8 rural and 10 urban 

vernal pools (1,365 and 1,879 tadpoles, respectively) collected in Maine during 2014-2016. Each 

dot represents an individual. The represented equation is: ln(Julian day) = 4.620 – 0.079Urban + 

0.017Stage, adjusted R2 = 0.64. This figure is for illustrative purposes. Population identity was 

accounted in the actual analysis. 

 

Figure 2.3 Survival of wood frog tadpoles through metamorphosis for rural and urban pools in 

terms of abundance of tadpoles to complete metamorphosis relative to the number of egg masses 

counted. Each dot represents a site-year. Shaded areas represent parameter 95% confidence 

intervals. The represented equation is: ln(Abundance) = 1.487 + 2.728Urban + 0.090Egg, 

adjusted R2 = 0.36. 



 

61 
 

6
1
 

2.4.2 Survival 

Survival in urban pools was predicted to be 15% greater than in rural pools (F1,20 = 5.93, 

P = 0.02, Adj-R2 = 0.36; Figure 2.3). RFA survival models using morphology or site 

characteristic predictors did not explain any variation in the response (i.e., not different from 

random), thus predictor importance was not examined. 

2.4.3 Developmental phenology 

Tadpole phenology was predicted to be earlier in warmer pools with a shorter duration, 

lower conspecific density, and less tree cover. Later phenology was associated with longer 

hydroperiods, especially for pools drying after Julian day 200, 19 July (Figures 2.4a, c, and h; 

See Appendix B for ranking of predictors). Conversely, earlier developmental phenology was 

predicted by warmer water (Figures 2.4f and h) with the greatest increases in the lower third of 

the range of measured temperatures. Developmental phenology was also negatively associated 

with wood frog egg masses x m-2, an indicator of conspecific competition (Figures 2.4b and d). 

Finally, greater tree cover was associated with later phenology, with the greatest decrease at 

>60% tree cover within 100 m of pools (Figures 2.4e and g) and a relatively linear association 

between tree cover within 1,000 m and developmental phenology (Figure 2.4j).  
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a. Dev10 HYDRO

 

b. Dev10 LSDEN

 

c. Dev50 HYDRO 

 

  

d. Dev50 LSDEN 

 

e. Dev50 TREE100*

 

f. Dev50 TEMP*

 

  

g. Dev90 TREE100

 

h. Dev90 HYDRO 

 

i. Dev90 TEMP

 

  

j. Dev90 TREE1000

 

    

     

Figure 2.4. Partial dependence plots from Random Forest Analyses predictions of relative 

developmental phenology (adjusted for Julian day) for larval wood frog. Responses are 10, 50, 

and 90% quantiles of developmental phenology (Dev10, Dev50, and Dev90). See Table 2.3 for 

abbreviation legend for predictors (subscript). Dashed lines correspond to lowess smoothed lines 

representing the partial dependence between an explanatory variable and response. The solid 

lines indicate a smoothed error bar of +/- two standard errors. The dots indicate the partial values 

used to fit the lowess function. Plots marked with (*) for the same response have roughly 

equivalent variable importance. 
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a. Cond10 SPCAN*

  

b. Cond10 COND.N*

 

c. Cond10 SUCAN

 
d. Cond50 MAXDEPTH

  

e. Cond50 IMP300

 

f. Cond50 SUCAN 

 

g. Cond90 MAXDEPTH*

 

h. Cond90 IMP300*

 

i. Cond90 HYDRO

 

Figure 2.5 Partial dependence plots from Random Forest Analyses predictions of relative 

condition (mass regressed against SVL, adjusted for developmental stage) for larval wood frog. 

Responses are 10, 50, and 90% quantiles of condition (Cond10, Cond50, and Cond90). See 

Table 2.3 for abbreviation legend for predictors (subscript). Dashed lines correspond to lowess 

smoothed lines representing the partial dependence between an explanatory variable and 

response. The solid lines indicate a smoothed error bar of +/- two standard errors. The dots 

indicate the partial values used to fit the lowess function. Plots marked with (*) for the same 

response have roughly equivalent variable importance. 
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2.4.4 Condition 

Tadpoles in pools with a denser canopy cover and greater depth were predicted to be in 

better condition. Canopy cover was an important predictor of condition (roughly linearly 

associated with greater condition), as was greater depth and duration of water (positively 

associated with depths >0.4 m and longer hydroperiods; Figures 2.5a, c, d, f, g, and i). 

Impervious cover and sample size were also high-ranking predictors positively associated with 

condition (Figures 2.5b and h).  

2.4.5 Body length 

Site characteristics indicative of more water (depth, lower conspecific density, less 

emergent vegetation) were important predictors of greater body length. Pool depth and 

submerged vegetation were important predictors of body length, with deeper pools (especially 

increases in depth 0.3-0.6 m) and lesser emergent vegetation associated with longer bodies 

(Figures 2.6a, b, and f). Greater density of wood frog eggs (up to 0.2 egg masses x m-2) and 

sample size (up to 75 individuals) were associated with shorter body length (Figures 2.6e, g, and 

i). Although canopy was a top-ranking predictor, lowess smoothing of predicted trends suggests 

body length is relatively invariant to canopy cover (Figures 2.6c, d, and h).  
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a. Len10 MAXDEPTH* 

 

b. Len10 SUEMERG*

 

c. Len10 SUCAN* 

 
d. Len50 SUCAN

 

e. Len50 LSDEN

 

f. Len50 MAXDEPTH

 
g. Len90 LEN.N

 

h. Len90 SUCAN

 

i. Len90 LSDEN

 

Figure 2.6 Partial dependence plots from Random Forest Analyses predictions of relative body 

length (adjusted for developmental stage) for larval wood frog. Responses are 10, 50, and 90% 

quantiles of body length (Len10, Len50, and Len90). See Table 2.3 for abbreviation legend for 

predictors (subscript). Dashed lines correspond to lowess smoothed lines representing the partial 

dependence between an explanatory variable and response. The solid lines indicate a smoothed 

error bar of +/- two standard errors. The dots indicate the partial values used to fit the lowess 

function. Plots marked with (*) for the same response have roughly equivalent variable 

importance.
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2.4.6 Tail Length 

Site characteristics related to low-light conditions, greater urbanization, or lower 

conspecific competition were important predictors of greater tail length. The greatest increases in 

tail length were where spring canopy cover >30% or summer canopy cover >60% (Figures 2.7a-

c, and h), sites with 0-10% impervious cover within 300 m (Figures 2.7d and j), and at sites with 

<40% spring emergent vegetation and/or <30% summer shrub cover (Figures 2.7f-g). Greater 

tree cover at 300 and 1,000 m was associated with shorter tails (Figures 2.7e and i). Wood frog 

egg density was also an important predictor of tail length, with lesser tail length associated with 

more wood frog egg masses x m-2 within the lower third of the range of measured egg densities 

(Figures 2.7k and m).  

2.4.7 Tail shape 

Pool area was the most important predictor for tail shape (pools <50 m2 predicted to have 

tadpoles with broader fins), followed by impervious surface with fin breadth expected to increase 

with up to 10% cover within 300 m (Figures 2.8a-d). However, as tail shape was predicted to be 

relatively invariant to pool area (Figures 2.8a and c), we hesitate to interpret the direction of 

association between area and tail shape.  
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a. TailL10 SPCAN

 

 

b. TailL10 SUCAN

 

c. TailL50 SUCAN

 

d. TailL50 IMP300* 

 

e. TailL50 TREE300* 

 

f. TailL50 SUSHRUB* 

 

g. TailL50 SPEMERG*

 

h. TailL50 SPCAN*

 

i. TailL90 TREE1000

 

j. TailL90 IMP300

 

k. TailL90 LSDEN 

 

 

Figure 2.7 Partial dependence plots from Random Forest Analyses predictions of relative tail length (adjusted for developmental stage 

and body length) for larval wood frog. Responses are 10, 50, and 90% quantiles of tail length (TailL10, TailL 50, and TailL 90). See 

Table 2.3 for abbreviation legend for predictors (subscript). Dashed lines correspond to lowess smoothed lines representing the partial 

dependence between an explanatory variable and response. The solid lines indicate a smoothed error bar of +/- two standard errors. 

The dots indicate the partial values used to fit the lowess function. Plots marked with (*) for the same response have roughly 

equivalent variable importance.  
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a. TailD50 AREA

 

 

b. TailD50 IMP300

 

 

c. TailD90 AREA

 

 

d. TailD90 IMP300

 

 

Figure 2.8 Partial dependence plots from Random Forest Analyses predictions of tail depth 

relative to tail length (adjusted for developmental stage) for larval wood frog. Responses are 50 

and 90% quantiles of tail depth (TailD50, TailD90). See Table 2.3 for abbreviation legend for 

predictors (subscript). Dashed lines correspond to lowess smoothed lines representing the partial 

dependence between an explanatory variable and response. The solid lines indicate a smoothed 

error bar of +/- two standard errors. The dots indicate the partial values used to fit the lowess 

function.  

2.4.8 Morphological variation within pools 

Site characteristics indicative of more water (duration or depth) and higher light 

conditions (less canopy, greater submerged vegetation) were important predictors of variance in 

developmental phenology (positively associated at 0-20% spring submerged vegetation and >0.5 

m maximum depth; Figures 2.9b and d), condition (positively associated with pool drying 

between Julian day 200-230 [19 July – 18 August] and negatively associated with canopy cover; 

Figures 2.9f-h), and body length (pool drying near Julian day 190 [9 July]; Figure 2.9j). 

Amphibian egg mass densities were also important predictors of variance; variance in 

developmental phenology was positively associated with 0-3 blue-spotted salamander eggs x m-2, 

and variance in tail length was negatively associated with wood frog egg density (Figures 2.9c 
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and l). Sample size - which was likely responsive to duration of larval presence, abundance, and 

within-pool detection probability - was also an important predictor of variation in developmental 

phenology (roughly linearly, positively correlated), condition (negatively associated with 

increased sample size up to 80 individuals), and body length (negatively associated with 

increased sample size up to 75 individuals; Figures 2.9a, e, and i). Impervious cover was an 

important predictor of variance in tail length (positively associated with increases in impervious 

cover within 300 m between 0-10%; Figure 2.9k).  

2.4.9 Differences in response to site characteristics between urbanization levels 

Developmental phenology, condition, body length, and tail length were greater in urban 

than rural pools when accounting for the influence of important site characteristics (Figure 2.10). 

The effect of these site characteristics was the same across urbanization levels (P>0.05 for 

interaction terms).
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a. DevSD DEV.N 

 

b. DevSD SPSUBM 

 

c. DevSD ALDEN

 
d. DevSD MAXDEPTH

 

e. CondSD COND.N

 

f. CondSD HYDRO 

 
g. CondSD SPCAN 

 

h. CondSD SUCAN 

 

i. LenSD LEN.N

 

j. LenSD HYDRO 

 

k. TailLSD IMP300

 

 

l. TailLSD LSDEN

 

Figure 2.9 Partial dependence plots from Random Forest Analyses predictions of SD of relative 

developmental phenology (Dev), condition (Cond), body length (Len), and tail length (TailL) for 

larval wood frog. See Table 2.3 for abbreviation legend for predictors (subscript). Dashed lines 

correspond to lowess smoothed lines representing the partial dependence between an explanatory 

variable and response. The solid lines indicate a smoothed error bar of +/- two standard errors. 

The dots indicate the partial values used to fit the lowess function.   
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Figure 2.10. Associations between wood frog tadpole cohort responses and important site 

characteristics for which there were significant differences between rural and urban pools 

(Dev10: Furban:1,31 = 7.98, P = 0.008; Dev50: Furban:1,31 = 15.57, P<0.001; Dev90: Furban:1,31 = 

23.46, P<0.001; Cond90: Furban:1,29 = 4.79, P = 0.006; CondSD: Furban:1,29 = 7.12, P = 0.01; 

Len90: FUrban: 1, 28 = 4.81, P = 0.004; TailL50: FSPCAN:1,27 = 4.28, P = 0.048). See Tables 2.1 and 

2.3 for abbreviation legend for responses and site characteristics, respectively. Points represent 

pool-year responses. Shaded areas represent parameter 95% confidence intervals.  

a. 
 

b. 
  

c. 
 

d. 
 

e. 
  

f.  
 

g. 
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2.5 Discussion 

This study provides evidence that human land disturbance surrounding pools (within 

1,000 m) can influence tadpole survival and morphology, an issue that can influence subsequent 

terrestrial stages and potentially population vitality (Berven 1990; Boes and Benard 2013). 

Moreover, we compared the relative importance of land cover and site conditions within vernal 

pools and demonstrated that conditions both within and surrounding pools are likely to influence 

larval survival and morphology. The importance of site characteristics on multiple spatial scales 

emphasizes the complexity of wood frog larval response and the need to consider multiple 

variables when assessing population response to urbanization. Tadpole responses primarily 

varied with variables related to urbanization, pool hydrology, and within-pool vegetation, each 

covered in the next three sections.  

2.5.1 Urbanization  

Urbanization was positively associated with earlier developmental phenology (both 

individuals and cohorts) and greater cohort survival. Additionally, changes in land cover type 

consistent with urbanization (lower forest cover and greater impervious cover) were associated 

with advanced developmental phenology and increased condition, tail length, tail depth, and 

greater variation in tail length. These responses seem counterintuitive given: 1) documented 

negative impacts of similar intensities of urbanization on adult wood frogs (Homan et al. 2004; 

Rubbo and Kiesecker 2005; Skidds et al. 2007; Clark et al. 2008); and 2) evidence that wood 

frog eggs and larvae are harmed by elevated road salt concentrations (Brady 2013). However, 

larval wood frogs have been observed to be larger at metamorphosis in stormwater wetlands 

(Scheffers and Paszkowski 2016) and have greater survival through metamorphosis after the 
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forest surrounding pools was cut (Semlitsch et al. 2009). Furthermore, some other amphibian 

species, including common green frog (Pelophylax perezi), southern leopard frog (Rana 

utricularia), pig frog (R. grylio), American bullfrog (R. catesbeiana), and eastern narrowmouth 

toad (Gastrophryne carolinesnsis), have also shown positive morphological and survival 

responses in urban areas (Scheffers and Paszkowski 2011; Iglesias-Carrasco et al. 2017) and in 

areas with less terrestrial habitat (Salice et al. 2011). Although survival through metamorphosis 

was positively correlated with greater urbanization in our study, further study of the daily 

survival rate may provide insight as to whether earlier metamorphosis in urban pools is an 

adaptive mechanism that allows tadpoles to “escape” them sooner.  

We also demonstrate that within a landscape with relatively low-intensity urbanization 

(0-38% impervious surface within 1,000 m) larvae are likely influenced by land cover types 

indicative of urbanization at multiple spatial scales. For example, the relationship between 

tadpole developmental phenology and tree cover differed at different spatial scales. Tadpole 

developmental phenology was more sensitive to reductions in tree cover nearer to pools, with a 

dramatic change in predicted with initial reductions in tree cover (up to 30%) within 100 m of 

pools, whereas reductions in tree cover within 1,000 m were correlated with a steady change in 

developmental phenology (Figure 2.4). Additionally, even slight increases in impervious cover 

(0-10%) within 300 m were associated with morphological shifts. Other studies have found adult 

wood frogs to respond to land cover types at similar scales (Rubbo and Kiesecker 2005; Skidds 

et al. 2007) and with similar sensitivity (e.g., 88% habitat cover threshold within 30 m of pools, 

44% cover threshold at 1,000 m; Homan et al. 2004); thus our findings suggest that larvae 

respond to land cover at scales similar to those affecting adults.  
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Because survival differed between urbanization levels but the RFA using site 

characteristics as predictors did not explain any variance in survival, some unmeasured 

difference between rural and urban pools may be responsible for differences in survival. 

Moreover, it is possible that positive tadpole responses to urbanization may reflect site 

conditions selecting out “weaker” tadpoles (i.e., select for a relatively narrow portion of the 

possible distribution of traits) while in natural systems tadpoles with a greater variability of traits 

may survive. Unmeasured factors may contribute to greater tadpole survival as well as size in 

urban areas. For example, we did not quantify invasive vegetation, but glossy buckthorn 

(Rhamnus frangula), an invasive plant in our study area, is associated with larger and faster 

developing wood frog tadpoles with higher survival (Stephens et al. 2013). Pathogens could also 

explain greater survival and larger morphology in urban pools given that Batrachochytrium 

dendrobatidis (Bd) and ranavirus (Rv) have higher rates of infection and occurrence in rural 

pools than urban pools (Crespi et al. 2015; Saenz et al. 2015). Additionally, advanced 

developmental phenology increase survival to emergence in the presence of Rv (Reeve et al. 

2013), and this may explain greater survival even in infected urban populations. Urbanization 

may also alter aquatic insect communities and decrease predation pressure on wood frog larvae. 

For example, insecticides can reduce insect predator abundance, thereby increasing tadpole 

survival (Relyea 2005) and potentially increased feeding (Petranka and Hayes 2011; Cothran et 

al. 2013).  

Greater larval survival and individual size may translate to advantages during terrestrial 

life stages in urban areas (Scheffers and Paszkowski 2016) as has been noted in rural areas 

(Berven 1990). However, because juvenile wood frog growth can respond to terrestrial 

conditions (Boone 2005; Dananay et al. 2015) larval benefits from urbanization may be 



 

75 
 

7
5
 

overshadowed by degradation of terrestrial habitat. Removal of tree cover, which protects from 

desiccation, can increase adult mortality (Rittenhouse et al. 2009). Other novel threats, such as 

roads, sewer grates, predatory pets, and lawn mowers may reduce abundance and survival of 

terrestrial wood frogs (Eigenbrod et al. 2008; Eigenbrod et al. 2009; Hastings et al. unpublished 

data). Alternatively, larval benefits from urbanization may persist beyond metamorphosis and 

lengthen the time breeding populations persist in urbanized areas and thus contribute to the 

multi-decadal time-lag noted for amphibians in urbanizing landscapes (Löfvenhaft et al. 2004; 

Blaustein et al. 2011; Gagné & Fahrig 2010; Metzger et al. 2009). Even if urbanization benefits 

larvae and adequate terrestrial habitat remains near pools, reduced habitat connectivity associated 

with urbanization can increase the risk of wood frog extirpation (Harper et al. 2008). 

2.5.2 Hydrology  

Tadpole responses to hydroperiod and pool depth across an urbanization gradient were 

similar to those found by others in more natural landscapes. More specifically, our results of 

delayed developmental phenology and greater body length with longer hydroperiod align with 

other studies noting positive correlations between hydroperiod and wood frog larvae size 

(Karraker and Gibbs 2009) and larval period (Dimauro and Hunter 2002; Skelly 2004; Gervasi 

and Foufopoulos 2008). Although developmental phenology and condition in urban and rural 

pools had similar rates of change with increases in hydroperiod (Figures 2.4 and 2.5), urban 

pools were predicted to develop earlier (all quantiles), have greater condition (90% quantiles), 

and show more variance in condition than rural pools. This suggests that although hydroperiod is 

an important predictor of developmental phenology and condition, other factors related to 

impervious cover within 300 m (our metric for delineating rural and urban categories) influence 
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these responses. For example, predator pressure which leads to slower development (Relyea 

2002) may decrease as urbanization levels increase.  

Additionally, we found better condition and greater length associated with deeper pools 

perhaps because deeper pools have more volume and lower conspecific density, and thus 

competition, relative to pool area (Brooks and Hayashi 2002). Pool depth also may correlate with 

increased condition and body length because deeper pools are likely cooler at the bottom and 

cool water is linked to greater body size in wood frog tadpoles (Berven 1982). The influence of 

pool depth on condition and length may affect adult stages because larger tadpoles produce 

larger adults (Werner 1986; Berven 1990) and larger females produce more eggs (Berven 1988). 

This might explain the increase in reproductive effort with pool depth that has been observed by 

others (Dimauro and Hunter 2002; Calhoun et al. 2003).  

2.5.3 Vegetation  

Across the urbanization gradient, within-pool vegetation conditions indicative of low-

light conditions at a pool’s surface were associated with greater condition, body length, and tail 

length (i.e, positive associations with canopy cover and negative associations with emergent 

vegetation or shrub cover). Our results align with Boes & Benard (2013), who observed larger 

wood frog metamorphs in closed canopy pools. However, our results run counter to Skelly et al. 

(2002), who observed slower mass gain in closed canopy cover. Low-light conditions could also 

facilitate increased condition and size by maintaining lower water temperatures which can 

increase size of wood frog larvae (Berven 1982).  
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2.5.4 Morphology  

We did not detect strong relationships among larval developmental phenology, length, 

and condition (Figure 2.1) or between morphology and survival. Although we did not necessarily 

expect consistent (i.e., strong and directional) relationships among morphology metrics (Berven 

1987; Berven and Chadra 1988), we did expect survival to increase with measures indicating size 

(Berven 1990). The lack of relationship between survival and morphology metrics suggests that 

unmeasured factors may determine survival or that a wide range of morphological responses may 

result in similar survival depending on the local context. Although larval survival was not well 

predicted by morphology, other size metrics may also be consequential for populations (i.e., 

breeding population size is limited by terrestrial density-dependent factors; Berven 1990). Given 

that larval body size is usually correlated with post-metamorphic body size (Boes & Benard 

2013; Berven 1990, but see Earl & Semlitsch 2013), tadpole size may translate into fitness 

advantages associated with greater body size (Berven 1988).  

2.6 Conclusion 

Conserving amphibians in developing landscapes is challenging given the complexities of 

responses to urbanization, which can introduce a multitude of novel factors that may influence 

amphibians in both aquatic and terrestrial stages and habitats (Windmiller and Calhoun 2008). 

Our results indicate that a cohort of larvae respond to conditions within 1,000 m of pools as well 

as within-pool site conditions. This response may reflect the allele frequencies within the larval 

cohort and range of observed larval traits that are preprogramed via epigenetics and maternal 

effects as well as the specific traits of surviving larvae (Relyea 2002; Donihue and Lambert 

2015). Notably, within-pool conditions that benefit larval development (e.g., greater canopy 
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closure and pool depth) do not differ between rural and urban pools. Additionally, the site-

characteristics most closely associated with urbanization (e.g., impervious cover, road salt 

contamination) were not necessarily the most important predictors of tadpole responses. This 

suggests that differences in response may be influenced by the confluence of changes across 

many site characteristics resulting from urbanization. Although we found responses in urban 

pools were more beneficial than in rural pools (e.g., greater survival), it is well-documented that 

ultimately urbanization extirpates breeding populations (Gibbs 1998a; Homan et al. 2004; Rubbo 

and Kiesecker 2005; Clark et al. 2008). Given the urban-associated benefits to larval stages, it is 

unlikely that wood frog population declines stem from larval responses to urbanization. We 

suspect that any urban-associated benefit to larval stages is outweighed by negative impacts to 

terrestrial life stages, and thus we suggest future study focus on this issue. We also recommend 

examining larval and terrestrial stage responses to greater intensities of urbanization than were 

represented in our study area because response strength may increase with urbanization.  
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CHAPTER 3: THE INFLUENCE OF LAND COVER AND WITHIN-POOL 

CHARACTERISTICS ON LARVAL, FROGLET, AND ADULT                                       

WOOD FROGS ALONG AN URBANIZATION GRADIENT 

3.1 Chapter Abstract 

Urbanization is known to extirpate wood frog (Lithobates sylvaticus) populations, but the 

mechanism is unknown. Although larvae may not respond directly to urbanization, within-pool 

conditions experienced by larvae may affect morphology and post-metamorphic survival (i.e., 

carry-over effects). We tested the carry-over effects of larval morphology and site characteristics, 

particularly land cover indicative of urbanization within 1,000 m, on newly emerged and post-

breeding male wood frogs across an urbanization gradient in 15 pools in greater Bangor, Maine, 

USA. We raised field-captured larvae in microcosms and examined froglet morphology and 

locomotor performance at emergence and one month post-emergence. Larval mass was 

positively correlated with 50% of froglet responses, but was negatively associated with adult 

size. Among site characteristics, egg density had the most salient influence with negative effects 

on larval survival and morphology as well as on 11 of 14 froglet responses. Vegetation, 

hydrology, and urban-associated cover near pools also influenced froglet performance, and 

urban-associated cover and hydrology influenced adult morphology. Our findings support the 

idea that effects of conditions (e.g., hydrology) experienced by larvae can carry-over to terrestrial 

stages and have life-long consequences. However, conflicting directions of response to urban-

associated cover suggest that the carry-over effects of urbanization from larval to froglet stages 

may not persist to adulthood and that terrestrial responses to urbanization experienced post-
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emergence may override larval responses to urbanization. Thus it is likely that urbanization has 

the greatest impact on populations via direct effects on terrestrial stages.   

3.2 Introduction 

It has been well established that urbanization, especially at higher intensities, can result in 

the extirpation of wood frog (Lithobates sylvaticus) populations (Gibbs 1998a; Homan et al. 

2004; Rubbo and Kiesecker 2005; Clark et al. 2008; Windmiller et al. 2008). Wood frogs rely on 

fishless, vernal pools for breeding and larval development, and forest provides non-breeding 

adult habitat. This biphasic lifecycle means that disturbances in terrestrial areas primarily impact 

adults whereas within-pool disturbances primarily impact eggs and larvae. Terrestrial 

disturbances may also alter aquatic conditions and thus affect aquatic stage amphibians. For 

example, road salt (Sanzo and Hecnar 2006) and pesticides (Cothran et al. 2013) have been 

linked to reduced larval condition and survival in wood frogs. Although some research has 

addressed the effects of urban-associated changes in cover type on wood frogs at terrestrial 

stages (body size, Semlitsch et al. 2009; breeding population size, Veysey et al. 2011; Clark et al. 

2008; Windmiller et al. 2008; movement ability, Cline and Hunter 2014; Cline and Hunter 2016; 

movement patterns, Hoffman and Hastings unpublished data), little work has focused on how 

urban development near pools may contribute to population declines via effects at the larval 

stage.  

Although wood frog populations are harmed by urbanization, larval stages do not 

necessarily exhibit negative responses to terrestrial disturbances. For example, wood frog larvae 

have been observed to have equal if not greater survival, condition, and size in urban landscapes 

(Shepack et al. 2017; Chapter 2) and stormwater wetlands (Scheffers and Paszkowski 2016) and 
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had greater survival through metamorphosis after the forest surrounding pools was cut 

(Semlitsch et al. 2009). However, environmental conditions experienced during early life stages 

may have latent effects (i.e., “carry-over effects”) that influence later life stages (Pechenik 2004). 

Carry-over effects of larval conditions have been demonstrated for wood frog post-metamorphic 

morphology, locomotor performance, physiology, and survival (Relyea 2001a; Boes and Benard 

2013; Crespi and Warne 2013). These effects may have life-long consequences, potentially 

influencing adult physiology and behavior (Denver 2009), fitness (Semlitsch et al. 1988; Berven 

1990; Relyea and Hoverman 2003), and ecological processes (e.g., dispersal; Clobert et al. 

2009). Additionally, because larval phenotype may not accurately indicate fitness, responses at 

later life stages (e.g., post-metamorphic) may be better indicators of fitness (Earl and Whiteman 

2015).  

Studies examining the carry-over effects of larval conditions in wood frogs have focused 

on the influence of within-pool conditions. These studies have demonstrated that differences in 

canopy cover (Boes and Benard 2013), accelerated drying (Gervasi and Foufopoulos 2008), 

water level and food availability (Crespi and Warne 2013), predator presence (Relyea 2001a; 

Barbasch and Benard 2011), larval density (Goater and Vandenbos 1997), conductivity 

(indicative of road salt), and egg mass density (egg masses/m3; Green and Bailey 2015) during 

larval development influence post-metamorphic responses. However, because urban land 

development near pools can alter the larval environment in multiple ways, (e.g., introducing 

herbicides [Relyea 2012] and heavy metals [Peles 2013; Snodgrass et al. 2008], increasing water 

temperature [Watkins and Vraspir 2006], and shifting vegetation composition [Rubbo and 

Kiesecker 2004; Stephens et al. 2013] and predator community composition [Rubbo and 

Kiesecker 2005; Gibbs 1998; Urban et al. 2006]), examining the carry-over effects of land cover 
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type may integrate multiple influences of urbanization. Additionally, understanding the influence 

of urban-associated land conversion on carry-over effects to terrestrial stages is particularly 

relevant for vernal pool conservation which often involves conserving habitat some distance 

from a pool (Calhoun et al. 2005). 

It is yet unknown how the effects of urban development on larvae contribute to 

conditions of terrestrial stage individuals and population declines. In this study we examined 

how urban-associated land cover types near pools influence conditions experienced during larval 

development and produce carry-over effects on post-metamorphic stages. We concurrently 

examined within-pool vegetation, hydrology, and conspecific density because these pool 

characteristics can result in carry-over effects in wood frogs (Goater and Vandenbos 1997; 

Gervasi and Foufopoulos 2008; Boes and Benard 2013; Crespi and Warne 2013; Green and 

Bailey 2015). Additionally, because conditions experienced during terrestrial stages can override 

effects of larval conditions (Boone 2005; Dananay et al. 2015), we also examined the effects of 

conditions experienced by larvae on breeding adults. Specifically, our objectives were to 

examine the relative influences of landscape-scale and pool characteristics across an urbanization 

gradient on (1) larval morphology and survival to emergence, (2) newly metamorphosed froglet 

morphology and locomotor performance, and (3) adult male morphology.  

3.3 Methods 

3.3.1 Study Area 

The greater Bangor, Maine area is located in the glaciated northeastern US and covers 

200 km2 encompassing four towns: Bangor, Orono, Hampden, and Old Town (populations of 

approximately 7,000-33,000; U.S. Census Bureau 2011). Urban development is primarily 
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residential and commercial with urbanization intensity extremes of nearly 100% impervious 

surface in downtown areas to <1% impervious surface in conserved or lightly developed areas 

(e.g., Bangor City Forest; Fry et al. 2011). We have observed wood frogs breeding within the 

greater Bangor area in pools with 0-38% impervious cover within 1,000 m.     

3.3.2 Site characteristics  

We selected site characteristics to measure in 15 pools that were likely to influence 

froglet responses based on a concurrent study of larval morphology and development in 30 pools 

(Chapter 2). We used ArcView GIS10.2 and the Maine Land Cover Dataset (2004 all land use; 

2011 impervious surface) to quantify the percent impervious surface within 300 m and forest 

cover within 100 and 1,000 m from pool spring high-water marks. We selected 1,000 m based on 

previous evidence that wood frogs respond to conditions within 1,000 m (Homan et al. 2004; 

Rubbo and Kiesecker 2005; Skidds et al. 2007). We used impervious surface to represent urban 

development intensity because it includes buildings and pavement and is thus linked to traffic 

and chemical, light, and noise pollution. We measured spring-high-water depth using a pole 

marked in centimeter increments. Hydroperiod was determined by the Julian day that standing 

water was no longer present. Pools that dried to within 10 cm and ≥10 cm at the deepest point 

were assigned Julian day 280 and 300, respectively. We measured summer vegetation within 

pool basins 19 July-21 August 2014-2016 at late summer dry down by visually estimating 

percent cover of shrub, emergent vegetation, and submerged vegetation. Woody vegetation 

canopy density over pools was measured ~1 m above the ground using a spherical convex 

densitometer (lab-reared larvae pools: 6-100%, median=68%; adult pools: 31-67%, 

median=51%). We used water probes (Hach ©, Loveland, Colorado) to measure water 
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temperature 2 May-16 June 2014-2016. On each date a pool was sampled, we collected and 

tested 1 L of surface water ~1 m from the water edge at each of three equidistant points around 

the perimeter. Only one sample was taken at pools that were almost dry and <2 m2. All testing 

was conducted at the pool edge within minutes of sample collection. Pool temperature was 

averaged by day and then year for analyses. 

We used wood frog egg mass density (the number of wood frog egg masses counted in a 

pool divided by pool area; egg masses/m2) to indicate conspecific competition at the larval stage. 

We counted egg masses after spring breeding (3-8 May 2015), following the apparent peak of 

breeding using a dependent double-observer method to increase detection (Grant et al. 2005). 

Observers walked through the pool and wore polarized sunglasses to increase egg mass 

detection. If eggs had been recently deposited (within approximately 2 days) we revisited pools 

and counted new masses. The maximum number of egg masses was used to calculate egg mass 

density.  

Site characteristics from 2015 were used in analysis of froglet responses, and mean 

values from 2014-2016 were used in analysis of adult responses because adults were likely from 

multiple tadpole cohorts (years). We reduced the number of variables in both the 2015 and the 

2014-2016 datasets using the ‘Vegan’ library (Oksanen et al. 2017). We conducted separate 

PCAs for all pool vegetation, land cover type, and hydrology variables and extracted axes values 

to represent these categories in the two datasets (6 PCAs, total). We also included wood frog egg 

density as a predictor of larval and froglet responses. Site characteristics variables were not 

highly correlated (Pearson’s correlation coefficient <|0.36| for 2015 and 2014-2016 site 

characteristics).  
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3.3.3 Larval to post-metamorphic carry-over: morphology and performance measures   

We conducted a microcosm experiment to assess the effects of environmental conditions 

experienced during early larval development on post-metamorphic morphology, survival, and 

locomotor performance in wood frogs. Post-metamorphic performance may reflect physiological 

condition and movement ability of a froglet, and thus can be useful to indicate aspects of 

individual condition not represented by morphology that are relevant to dispersal, migration, and 

resource selection ability. We captured 10 tadpoles per pool for 10 pools representing the 

available gradient of impervious surface cover within 1,000 m of the pools that had tadpoles 

surviving to Gosner (1960) stage 36-42 (median=40). We captured larvae (Gosner stage 36-42) 

from each pool between June 16-July 22 and transferred individuals from the field in 1 L plastic 

containers of pool water to a lab at the University of Maine. In the lab, we placed each larvae in 

1 L of aged tap water in individual plastic containers that also had 200 cm2 of terrestrial area. 

Small ramps allowed newly emerged froglets to leave the water at will. Each day, we checked 

microcosms for emerged froglets and for these individuals removed water containers to provide a 

larger (275 cm2) terrestrial area and to prevent drowning. We changed water every 72 hours to 

prevent fouling. Animals were kept under ambient light conditions. Each terrestrial microcosm 

contained leaf litter (primarily oak, Quercus spp.) approximately 2 cm deep and was misted with 

water daily. We fed larvae rabbit pellets and boiled romaine lettuce and fed froglets live 

flightless fruit flies, following Greenspan et al. (2012). Each microcosm was covered with a 

window-screen lid to prevent froglet escape.  

We measured snout-vent length (SVL) and mass of each individual to assess individual 

morphology at time of capture. After emergence we conducted two “rounds” of post-
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metamorphic locomotor performance trials and morphology measurements representing early 

and late froglet responses: first on days 1 and 2 after emergence and the second on days 29 and 

30. We assessed performance for each froglet by conducting maximum jump trials on day 1 and 

29, and endurance trials on day 2 and 30 following Boes and Benard (2013). We conducted 

maximum jump distance trials by placing a newly metamorphosed froglet in the center of a 

circular arena (1.5 m diameter plastic tub) under an opaque cup. The froglet rested under the cup 

during a 2-minute adjustment period before the cup was lifted and the distance of the first jump 

was recorded. Froglets that did not immediately jump were gently tapped on the urostyle. Three 

trials (separated by 6 minutes) were conducted for each froglet on the same day. The maximum 

jump distance (Jump) from the three trials in a day was used in analyses. To conduct endurance 

trials, we placed a froglet under an opaque cup on a circular track approximately 10 cm wide 

with walls 10 cm high for a 2-minute adjustment period. Upon lifting the cup, we recorded the 

total distance moved (Dist) and duration of movement (Duration) and calculated average speed 

(Speed). When a froglet did not immediately jump or came to a rest, it was gently tapped on the 

urostyle up to three times to encourage movement. Once a froglet did not jump after being 

tapped three times, the trial was concluded. On days 2 and 30, we measured SVL, mass, and hind 

leg length (following Boes and Benard 2013). We anesthetized froglets using MS-222 (Gentz 

2007) prior to measurement to ensure their safety. After measurement, froglets were bathed in 

aged tap water with their head above the water until they regained locomotor ability.  

3.3.4 Larval to adult carry-over: morphology measures   

During the 2 years prior to adult sampling, we measured tadpoles in the 9 pools where 

adults were sampled. We collected these data to predict breeding male size because breeding 
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adult males likely represent multiple cohorts and may have hatched within the previous 2 years. 

We conducted weekly tadpole surveys (see Chapter 2 for detailed methods) between 15 June -26 

August 2014-2015, and measured SVL and mass of Gosner stages 40-41 tadpoles. Tadpoles at 

these developmental stages are typically at their largest size prior to completion of 

metamorphosis. We conducted ANCOVAs to determine if there were differences in SVL and 

relative mass (residuals of mass regressed against SVL) between years or developmental stages.  

Because there were no substantial differences (for those models where P<0.1, η2≤0.05 indicated 

small effect size; Levine and Hullett 2002), we pooled observations across years and/or stages 

and calculated median SVL and relative mass.   

We captured and measured adult male frogs to assess carry-over effects into adults. Due 

to logistic constraints, we could not capture enough females across pools to incorporate into 

analyses. Since wood frog survival to first reproduction is not different between sexes (Berven 

1990), we used adult males as a proxy for adult wood frog responses. We used minnow traps to 

capture adult male wood frogs in 9 breeding pools (4 of the same pools from which tadpoles in 

the microcosm-rearing portion of the study were captured) from 2016 April 13-24. We weighed 

frogs, measured SVL, and toe-clipped new captures to prevent resampling. Given wood frog’s 

high breeding fidelity to their natal pool (Berven and Grudzien 1990; Vasconcelos and Calhoun 

2004), we assume that a high percent (>80%) of males were sampled at their natal pool.    
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Table 3.1 Larval, froglet, and adult frog response variables. Where a regressor variable is listed, 

pairs of response-regressor variables were examined for differences in relationship between rural 

and urban pools using ANCOVA. Relationships with regressors were examined for early and late 

froglet morphology and performance responses. Regressor variables with an (*) were included as 

a covariate in linear mixed effect models.  

Response variable Regressor variable  

ln(larval SVL) Larval Gosner stage 

ln(larval mass) ln(larval SVL (mm))* 

ln(froglet SVL) - 

ln(froglet mass) ln(froglet SVL(mm))* 

ln(froglet leg length) ln(froglet SVL(mm))* 

ln(maximum jump distance) ln(froglet SVL(mm)) 

ln(duration) ln(froglet SVL(mm)) 

ln(speed) ln(froglet SVL(mm)) 

ln(distance moved) ln(froglet SVL(mm)) 

ln(adult SVL) - 

ln(adult mass) ln(adult SVL(mm))* 
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3.3.5 Statistical analysis   

All statistical analyses were completed using program R (R Core Team 2016). Initially 

we conducted ANCOVAs for a subset of lab-reared individuals and a subset of adults from the 

four most rural and four most urban pools in each full dataset to examine if urbanization level 

influenced the relationships (i.e., rate of change) between pairs of likely size- or developmental 

stage-dependent responses and SVL or Gosner stage (Table 3.1). We used impervious cover 

within 300 m (lab-reared individuals: rural pools: 3-6%, urban: 22-27%; adults: 0.02-2% rural, 

14-27% urban) to represent urbanization intensity because this was identified as an important site 

characteristic for predicting larval wood frog morphology (Chapter 2). Because there were no 

substantial differences in these relationships between urbanization levels (for those models 

where P<0.1, η2≤0.08 indicated small effect size), we pooled all sites in each respective dataset 

for further analysis.  

We tested for differences among sites using MANOVAs with response vectors of larval 

and early froglet responses (P<0.05) and logistic regression to test for differences in probability 

of survival to emergence (ꭓ2<0.05). Because of unexpectedly low survival to the second round of 

froglet measurements (1-6 observations per site; median = 2), we did not test for differences 

among sites for second measurements, but instead relied on differences among sites for early 

froglet measurements to indicate likely differences at the late froglet stage. We used ANOVA to 

test for among-site differences in adult responses (P<0.05) because of highly uneven sample 

sizes (8-53) and because we were examining only two responses. Prior to larval and early froglet 

MANOVAs, we conducted an ANOVA for each pair of variables used in ANCOVAs to identify 

which responses were size- or developmental stage-dependent and should be corrected for size or 

stage. For all response-regressor pairs except larval SVL-Gosner stage and duration-froglet SVL, 
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the regressor was significant (P<0.1) with at least a moderate effect size (η2>0.2). All regressions 

were interpreted using Type II sum of squares to reduce the influence of uneven sample sizes. 

We extracted residuals from significant relationships for use in MANOVAs. We conducted 

MANOVAs for early froglet responses (round 1) from sites with ≥4 complete cases to maintain 

similar sample sizes among sites (53 froglets from 8 sites, 4-8 individuals per site).  

If differences among sites were detected for morphology, performance, and/or survival 

metrics, we used a two-step model selection process to identify which predictors within each 

predictor category (site characteristics, larval morphology) were likely influential and then 

compare the relative influence among those variables. Site characteristic variables were used to 

predict all responses (Figure 3.1a); larval morphology variables from lab-housed individuals 

were used to predict all froglet morphology and performance and survival metrics (Figure 3.1b); 

median larval morphology from late-stage field measured tadpoles was used to predict adult 

metrics (Figure 3.1c). 

First we created a set of linear models for each morphology and performance response 

variable using R package ‘lme4’ (Bates et al. 2017) for continuous data and logistic regression 

models using package ‘nlme’ (Pinheiro et al. 2017) for binary survival data. For all responses 

except those from late stage froglets we nested by Site (random effect). We did not nest by Site 

for late stage froglets because of the small sample size and low per-site replicates (individuals). 

A single predictor was added to create competing models. Models of relative mass and leg length 

always included natural log-transformed SVL as a covariate because we were interested in the 

effect of these responses independent of body size. The influence of SVL was not interpreted in 

these models. We grouped models of each response by predictor category and selected the top 

models for a response within each category. We used library ‘AICcmodavg’ (Mazerolle 2017) to 
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rank models using Akaike’s information criterion adjusted for small sample size (AICc). We 

considered models ΔAICc<2 that ranked above the null model to be plausible (Burnham and 

Anderson 2002). If >1 model met these criteria, we tested additive models that included all 

combinations of covariates in plausible models. Secondly, for each response, we compared all 

plausible models across predictor categories to determine the relative importance of predictors. 

Similar to the first step, if >1 model had ΔAICc<2 we tested additive models that included all 

combinations of covariates these highly-ranked models. We examined the 85% confidence 

intervals (Arnold 2010) of each covariate in this final set of models (i.e., that ranked above the 

null model and had ΔAICc<2 within its respective predictor category) to determine effect. An 

effect (predictor with an 85% CIs different from zero) of site characteristics but not of larval 

morphology suggests that site characteristics may influence later stages via an unmeasured 

morphology or physiologically related variable. In contrast, an effect of larval morphology but 

no effect of site characteristics suggests that an unmeasured difference among sites is responsible 

for the carry-over effect of larval morphology on terrestrial stages. 

 

Figure 3.1 Direct and indirect effect pathways among site characteristics and stages of wood frog 

development. Solid lines represent direct effects and dashed lines represent indirect effects. 

Effects represented by black arrows were explored in our study; grey arrows were not addressed 

with our study design. Circled letters are for reference in the text. 
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3.4 Results   

3.4.1 Summary statistics 

Of 100 tadpoles captured, 57 froglets survived to emergence and were used in froglet 

model selection analyses. Of those 57, 21 survived until the second froglet performance trials (6 

from urban pools, 13 from rural pools, and 2 from intermediate development intensities) and 14 

completed second performance trials (5 from urban pools, 7 from rural pools). Larval 

morphology and early froglet morphology-performance profiles differed by site (MANOVA, 

Larval: F9,90=8.88, P<0.001; Froglet: Pillai test F7,45=2.06, P<0.001), as did survival to 

emergence (ꭓ2
9,100=22.85, P=0.007). We measured 266 unique adult male frogs (8-53 per site), 

and adult SVL and mass adjusted for SVL differed by site (SVL: F8,257=13.52, P<0.001, η2=0.30; 

Mass: F8,256=13.51, P<0.001, η2=0.17). 

Pool characteristic metrics for the set of 15 focal pools did not vary with urbanization (as 

indicated by impervious cover within 300 m; P>0.1) with one exception. The hydrology metric 

(Hydro) decreased with urbanization (F1,8=13.23, P=0.01) for the 10 tadpole source pools, but 

this trend was not universal across the set of 30 pools used to calculate principal component 

values (F1,28=0.078, P=0.78).  

At least one site characteristic had a statistical effect (<2ΔAICc within each predictor 

category and with 85% CI excluding zero) on all larval, froglet, and adult responses except for 

late froglet leg length (Figure 3.2, Appendix C Table C2). Of those early froglet responses 

predicted by site characteristics, all except duration were also predicted by larval morphology. 

SVL was the only late stage response and mass was the only adult response predicted by site 

characteristics and larval morphology. (Figure 3.2, Appendix C Table C2). For those responses 



 

93 
 

9
3
 

for which both site characteristics and larval morphology had an effect, models with larval 

morphology predictors ranked above those with site characteristic predictors (Figure 3.2, 

Appendix C Tables C1-C2).   
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Table 3.2 Predictors of larval, froglet, and adult frog responses. Within a principal component, (–

) indicates a negative and (+) a positive relationship. Pairs of numbers in parentheses after each 

variable in a PC refer to eigenvalue contributions within the 2015 and 2014-2016 datasets. Only 

one number is listed for each cover variable because cover was consistent among years.  

Variable Description 

Site characteristics 

Veg Vegetation PC1: canopy cover (+, 0.573, 0.552); shrub (-, -0.346, 

-0.291), emergent (-, -0.623, -0.574), and submerged vegetation 

cover (-, -0.404, -0.531) 

Cover Cover PC1: tree cover within 100 (+, 0.582) and 1,000 m (+, 

0.573), impervious cover within 300 m (-, -0.576) 

Hydro Hydrology PC1: hydroperiod (+, 0.601, 0.629) and maximum 

depth (+,0.571,0.547), surface water temperature (-0.560, -0.552) 

Egg ln(Wood frog egg masses/m2) 

Larval morphology of tadpoles raised in the lab (individual measures) 

L.Mass Relative larval mass: ln(Larval mass (g)) 1 

L.SVL Larval SVL: ln(SVL (mm))  

Larval morphology of tadpoles at pools where adults were measured (cohort measures) 

L.Mass Relative larval mass: Within-pool median of residuals of 

ln(Larval mass (g)) regressed against ln(Larval SVL (mm)) 1 

L.SVL Larval SVL: Within-pool median ln(SVL (mm))  

1 Larval or froglet ln(SVL) is included as a covariate to account for variation in larval or froglet 

response, respectively, attributed to body size. 

2 Froglet morphology was assessed early (F1) and late (F2) in froglet development. 
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Figure 3.2 Carry-over effects of site characteristics and morphology on early froglet (top half) 

and late froglet (bottom half) morphology and performance. Arrows originate at the predictive 

parameter and point at the response. Arrows represent explanatory parameters from models with 

ΔAICc<2 and that had 85% CIs excluding zero. Solid arrows that point at categories of variables 

(enclosed in gray boxes) indicate a statistical effect on all variables within a box. Dashed lines 

indicate an effect of one predictor on one response variable. Circled “+” and “-” indicate the 

direction of effect of a predictor on responses. Vegetation (Veg) has both positive and negative 

effects associated with different responses at the late froglet stage and thus the direction of effect 

is indicated on the appropriate arrow. 
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3.4.2 Site characteristic predictors 

Tadpoles from pools with a higher egg density were predicted to have lower SVL and 

mass, and become froglets with shorter and slower jumps and lower endurance (but no effect on 

duration in early froglets; Figure 3.2, Appendix C Tables C1-C2). Vegetation (Veg), hydrology 

(Hydro), and land cover type (Cover) each had somewhat conflicting statistical effects across 

responses (Figure 3.2, Appendix C Tables C1-C2). Tadpoles from pools with vegetation 

characterized by less canopy and more herbaceous cover (negative Veg values, Table 3.2) were 

predicted to have lower mass and move shorter distances in endurance trials as early-stage 

froglets but farther distances in endurance trials and greater duration as late-stage froglets 

(Figure 3.2, Appendix C Tables C1-C2). Tadpoles from pools with higher hydrology values 

(primarily corresponding with longer hydroperiod and deeper water and secondarily with cooler 

water, Table 3.2) were predicted to have shorter jump duration as early-stage froglets, but be 

better jumpers (positive effect on all performance metrics) as late-stage froglets (Figure 3.2, 

Appendix C Tables C1-C2). Adults breeding in pools with greater hydrology values were 

predicted to have greater mass. Land cover type (characterized by more tree cover and less 

impervious cover, Table 3.2) was positively associated with early froglet jump speed, but 

negatively associated with adult SVL (Figure 3.3, Appendix C Tables C1-C2).  
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Figure 3.3 Relationships among site characteristics and larval and adult morphology. Solid 

arrows originate at the predictive parameter and point at the response and represent explanatory 

parameters from models with ΔAICc<2 and that had 85% CIs excluding zero. The dashed arrow 

indicates the unmeasured but likely influence of site characteristics on larval morphology. 

Circled “+” and “-” indicate the direction of effect of a predictor on responses. 

3.4.3 Larval morphology predictors 

Froglet responses were positively associated with larval predictors; all larval predictors in 

top-ranked froglet response models that also had covariate estimates with 85% CI different from 

zero had a positive effect on responses (Figure 3.2, Appendix C Tables C2). Survival models 

with larval SVL and mass as predictors ranked above the null model, but only SVL had an 85% 

CI that did not include zero (βMass: -0.517, 2.02; Table 3.4); tadpoles with greater larval SVL 

were predicted to have a greater probability of survival to emergence (Tables C1-C2). Tadpoles 

with greater mass were predicted to have greater early froglet morphology and performance 

responses (for 6 of 7 metrics) and late froglet SVL. Larval SVL was the predictor in the top-

ranked model of adult mass, with a negative effect on mass.  

3.5 Discussion 

Our findings demonstrate that both pool and landscape characteristics can influence 

larvae and have carry-over effects on post-metamorphic morphology and performance in an 
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urbanizing landscape. Although landscape characteristics had an effect on adult size, they had 

little statistical effect on froglets (only for early stage jump speed), which suggests that landscape 

characteristics primarily influence development during terrestrial stages.  

Our observation that egg density negatively affects larval morphology and froglet 

locomotor performance aligns with well-studied relationships of increased conspecific density 

resulting in smaller (mass, volume, or body length) wood frogs at metamorphic climax 

(emergence of front legs; Wilbur 1977; Smith-Gill and Berven 1979; Berven and Chadra 1988; 

Berven 2009). Additionally, Goater and Vandenbos (1997) observed that the effects of 

experimentally controlled larval density on froglet morphology are detectable months after 

metamorphosis. Our results suggest that conspecific density in the field may have similarly long-

lasting effects on juveniles, including consequences for post-emergence movement ability. 

Additionally, egg density may affect froglets indirectly via larval morphology: we observed that 

relative larval mass, which decreased with egg density, affected froglet morphology and 

performance and out-ranked competing models with egg density as a predictor. However, our 

findings that larval SVL was negatively associated with relative adult mass suggest a possible 

disconnect between egg density effects on larval stages and adult morphology. Terrestrial habitat 

quality may explain these conflicting effects between juvenile and adult stages: high-quality 

terrestrial habitat could be expected to support a relatively large population of fecund adults that 

would produce a greater egg density, which could have negative effects on larval size.  

Our finding of a negative relationship between relative larval mass and adult size is 

unexpected based on published positive correlations between size of newly emerged froglets and 

one-year old size and survival (Berven 1990). Because this result is counterintuitive, we suspect 

that (at least for the breeding pools examined), aquatic and terrestrial habitat were not of similar 
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quality (i.e., high-quality aquatic conditions were set in a landscape with low-quality terrestrial 

conditions, or vice versa) and the effects of terrestrial factors may have masked the effect of 

larval size.  

The positive relationships between larval and froglet mass and between larval SVL and 

survival in wood frog aligns with other studies (Goater and Vandenbos 1997; Relyea 2001a; 

Berven 2009). Additionally, the positive effect of larval mass, froglet mass, and leg length across 

froglet performance measures is consistent with other research on wood frogs (Boes and Benard 

2013) and newly emerged froglets of other species (Álvarez and Nicieza 2002; Orizaola and 

Laurila 2009). Our results indicate that larval mass, which corresponds with the amount of fats 

and other energetic reserves relative to body size (i.e., condition; reviewed by Green 2001), is a 

better predictor of froglet morphology (SVL, relative mass, and relative leg length) than is larval 

SVL and thus may be of greater importance to fitness. The effect of larval mass on froglet 

morphology suggests that greater late-stage larval metabolic reserves may help froglets move 

faster and farther immediately after emergence from a pool. This may be particularly important 

in fragmented urbanized landscapes where longer movements may be necessary to locate 

suitable overwintering areas and for juveniles to disperse to sustain genetic connectivity and 

colonize suitable breeding pools. 

Although we did not detect an effect of hydrology on larval morphology, hydrology 

conditions that primarily corresponded with longer hydroperiod and deeper water, and 

secondarily with cooler water, indicated greater late stage froglet performance and larger relative 

mass of adults. The effect on late stage performance suggests that hydrology conditions 

experienced during larval development could benefit frogs at terrestrial stages and persist 

through adulthood. Other studies have noted wood frog larvae size and relative mass increased 
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with hydroperiod, pool depth, and cooler water (Karraker and Gibbs 2009; Herreid and Kinney 

1967; Watkins and Vraspir 2006; however, see Rowe and Dunson 1995). In our study, we 

detected an effect of hydrology conditions experienced during larval development on terrestrial 

stages.  

Vegetation indicative of high-light conditions (consistent with less-dense canopy cover) 

was correlated with greater mass in late stage froglets and aligned with other studies that have 

demonstrated that froglets from open-canopy pools emerge at greater size than those from 

closed-canopy pools (Werner and Glennemeier 1999; Skelly et al. 2002; Schiesari 2006). 

However, there is some inconsistency within the literature; both Halverson et al. (2003) and Boes 

and Benard (2013) observed larger wood frogs developing in closed-canopy pools. The 

inconsistent effect of vegetation that we observed between early and late performance (i.e. 

individuals from high-light pools jumped farther in early stage endurance trials (Distance), but 

had shorter jumps (Distance and Duration) as late stage froglets) may suggest that vegetation 

during the larval stage can influence terrestrial stages, but the direction of effect changes with 

time since emergence.  

Cover type had no detectable effect on any larval or froglet response other than early 

stage froglet jump speed. The lack of effect of cover type on all other larval and froglet metrics is 

unexpected as it is well-demonstrated that anthropogenic contaminants associated with urban 

land cover can impact aquatic amphibians (Relyea 2005; Sanzo and Hecnar 2006; Karraker et al. 

2008; Peles 2013). Given that urbanization likely impacts larvae but that we did not find that 

larval or froglet responses corresponded to the coarse measures of land cover conversion 

commonly used to assess compliance with regulations (i.e., the concentric circle zoning 

technique), we suspect that site-specific examinations that consider land cover and hydrology 
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within the watershed of each pool may more accurately assess water quality impairments from 

urban land conversion.  

The positive association between adult size and urbanization might seem unexpected; 

however, degraded habitat and novel risks (e.g., road mortality, lawn mowers, pets) in urban 

areas may reduce survival and support fewer adults compared to natural areas. A lower density 

of adults in urbanized areas may reduce competition for food and produce larger adults (Harper 

and Semlitsch 2007; Berven 2009). This suggests that the negative effects of urbanization on 

wood frog populations may be more apparent in the demographics of breeding adults than in 

larval or froglet responses or in adult body condition and that measures of body condition may be 

counterintuitive in urban areas with degraded terrestrial habitat. Additionally, the effects of 

urbanization on breeding population size may be more apparent than on larval demographics or 

condition because adults interact directly with degraded terrestrial habitat and urban-associated 

risks, whereas larvae are buffered from contamination and novel risks by undeveloped areas near 

pools. Thus land cover experienced during terrestrial stages likely has a greater influence on 

population persistence.    

3.6 Conclusion  

Our findings indicate that egg mass density, vegetation, and hydrology experienced 

during larval development can influence terrestrial stages even though their effects may not be 

expressed in larval and/or froglet morphology. Cover type near larval pools can also influence 

development at aquatic stages with carry-over effects to terrestrial stages; however, cover type 

experienced during terrestrial stages likely has a greater influence on population persistence. The 

effect of pool hydrology on adult mass supports the idea that site conditions experienced during 
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larval development have life-long consequences, but may not be adequately captured by larval or 

froglet morphology measurements alone. Although some researchers have examined the relative 

effects of pool and landscape-scale characteristics on morphology and survival throughout the 

wood frogs’ life-cycle (Berven 2009; Green and Bailey 2015), understanding these relationships 

in urbanizing landscapes will help ensure that conservation actions are effective. Further study 

that examines the relative influence of larval and terrestrial conditions on adult morphology and 

performance, as well as survival to breeding in urbanizing landscapes, can enhance our 

understanding of which aspects of urbanization contribute to wood frog population declines.  
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CHAPTER 4: EFFECTS OF URBANIZING LANDSCAPES ON VERNAL POOL-

BREEDING AMPHIBIAN REPRODUCTIVE EFFORT 

4.1 Chapter Abstract 

Urban land conversion around vernal pools compromises terrestrial habitat quality, 

reduces pool water quality, and alters pool hydrology thereby potentially reducing amphibian 

reproductive effort and long-term population viability. We examined the effects of tree and 

impervious cover within 100 - 1,000 m of vernal pools and of road salt contamination 

(conductivity) on reproductive effort for wood frog (Lithobates sylvaticus), spotted salamander 

(Ambystoma maculatum) and blue-spotted salamander (including the unisexual complex, 

Ambystoma laterale – jeffersonianum) at 43 pools across an urbanization gradient near Bangor, 

Maine, USA. We studied the relationship between adult wood frog body condition and 

reproductive effort at six pools. Across all three species, reductions in tree cover across multiple 

scales (300-1,000 m) and increased pool conductivity were associated with reduced likelihoods 

of breeding and smaller breeding populations. Wood frog and spotted salamander populations 

were negatively associated with impervious cover near pools (100 m); however, these responses, 

along with blue-spotted salamander likelihood of breeding, were positively associated with 

impervious cover at larger scales (300-1,000 m). This increase may be explained if the removal 

of breeding pools consolidates breeding in remaining pools. Adult wood frog body size was 

positively associated with clutch size (embryos per clutch), but clutch size was negatively 

predicted by tree cover within 100 and 300 m and conductivity, suggesting lower competition 

among adults in urbanizing areas. Our results suggest that reproductive effort may be especially 

sensitive to impervious cover within 100 m and landscape change within 1,000 m. However, 



 

104 
 

1
0
4
 

positive responses to impervious cover ≥300 m from pools suggests that understanding the 

effects of urbanization may require an approach that treats amphibians from sets of pools as a 

single population.   

4.2 Introduction 

Pool-breeding amphibians in the northeastern United States, similar to most groups of 

amphibians worldwide, are threatened by urbanization and the resultant habitat loss, 

fragmentation, and degradation (Windmiller and Calhoun 2008; Baldwin and deMaynadier 

2009). Because these amphibians usually require both aquatic and terrestrial habitats to complete 

their life cycles, they are sensitive to urban-associated perturbations in both environments (Gibbs 

1998a; Homan et al. 2004; Rubbo and Kiesecker 2005).  

Pool-breeding amphibians spend the vast majority of their lives in forested areas near 

breeding pools that provide post-breeding and overwintering habitat (Regosin and Windmiller 

2003; Groff et al. 2016). The conversion of forest to urban-associated cover types (e.g., 

impervious surfaces) within 1,000 m of pools has been correlated with breeding population 

declines for wood frog (Lithobates sylvaticus) and spotted salamander (Ambystoma maculatum) 

– two species that use vernal pools as essential breeding habitat (Windmiller 1996; Homan et al. 

2004; Skidds et al. 2007; Eigenbrod et al. 2008). Moreover, the effects of urbanization may have 

non-linear effects on these breeding populations, with different intensities of forest cover 

removal within 30-1,000 m corresponding to sharp declines in the likelihood of wood frogs and 

spotted salamanders breeding at a pool (Homan et al. 2004). These effects of urbanization on 

breeding population size have not been verified for these species in northern New England, 

where sensitivity to urbanization may differ from individuals in more southerly states with 
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greater intensities of urbanization, nor for breeding populations of blue-spotted salamander 

(including the unisexual complex, Ambystoma laterale – jeffersonianum) – another species for 

which vernal pools are essential breeding habitat. While blue-spotted salamander also select non-

breeding habitat in forested areas (Ryan and Calhoun 2014), life history differences between 

spotted and blue-spotted salamanders (Homan et al. 2007; Hoffmann 2017) suggest that blue-

spotted salamanders may have a distinct, species-specific response to urbanization.  

Conservation of vernal pool-breeding species typically involves managing terrestrial 

habitat within some distance from a pool (Calhoun et al. 2005). Although management 

recommendations are based on documented distances that adult amphibians travel from pools 

during the non-breeding season, regulations typically permit some development well within the 

mean distances of terrestrial amphibian movements from pools (Calhoun et al. 2014), and it is 

not well understood how development within regulated “life zones” affects the vigor of 

amphibian populations. Some studies of blue-spotted salamander in urbanizing landscapes have 

indicated that breeding occupancy is related to forest cover near pools and a post-breeding 

preference for forests and wet meadows (Ryan and Calhoun 2014; Hoffmann 2017), but largely, 

the effects of urbanization near pools have not been well-studied for blue-spotted salamander. 

Conversion of habitat in terrestrial areas to impervious cover, specifically, introduces a 

suite of pollutants, most notably road salt, which can travel via runoff or vehicle spray into pools 

and may be implicated in pool-breeding amphibian population declines (Sanzo and Hecnar 2006; 

Karraker et al. 2008; Collins and Russell 2009). Road salt contamination can not only harm 

larval stage wood frogs and spotted salamanders (Sanzo and Hecnar 2006; Karraker et al. 2008) 

but its impacts may persist to adulthood. For example, in wood frogs, larval exposure to road salt 
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contamination has been linked to reduced post-metamorphic survival (Dananay et al. 2015; 

Green and Bailey 2015) and metrics of physiological stress in adult male wood frogs increase 

with road salt contamination (Hall et al. 2017).  

Terrestrial conditions in urbanizing landscapes may also alter the condition of breeding 

adults (see Patrick et al. 2008 for wood frogs and Homan et al. 2003 for spotted salamanders). 

Reduced body condition can lessen reproductive effort, as smaller bodied females typically 

laying clutches with fewer embryos (i.e., smaller clutch size) in both wood frog and spotted 

salamander (Wilbur 1977b; Kaplan and Salthe 1979; Woodward 1982; Berven 1988). However, 

there is some disagreement about the likely response of clutch size to urbanization. Clutch size of 

wood frogs breeding in roadside pools has been detected to be greater than or not different from 

that in forest pools, and spotted salamanders breeding in roadside pools had smaller clutch sizes 

(Karraker and Gibbs 2011; Brady 2013). Examining both breeding population size and clutch 

size may help elucidate the mechanisms of decline in urbanizing landscapes and begin to explain 

how female body condition may contribute to population declines in urban areas.  

Here we examine the effects of both urban-associated land cover near pools and road salt 

contamination in pools to compare the relative effects of these common facets of urbanization on 

wood frog, spotted salamander, and blue-spotted salamander breeding populations. More 

specifically, we examine two facets of reproductive effort, the breeding population size as well 

as clutch size, to better understand how regulated “life zone” distances and road salt management 

strategies may impact populations in ways not captured by egg mass counts alone.  
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4.3 Methods 

4.3.1 Study Area 

We conducted this study in the greater Bangor area (44° 48' 8'' N, 68° 46' 13'' W) in 

Maine, USA. The 200 km2 study area included Bangor, which encompasses 90 km2 with a 

population of approximately 33,000, and Orono, Hampden, and Old Town (populations of 

approximately 7,000-10,000; U.S. Census Bureau 2011). Developed land uses are primarily 

residential and commercial with development intensity extremes of nearly 100% impervious 

surface in downtown Bangor (44° 48' 8'' N, 68° 46' 13'' W) to <1% impervious surface (e.g., in 

city conserved lands; Fry et al. 2011). Vernal pools included in the study are embedded in mixed 

coniferous-hardwood forest (see Chapter 1 for detail). Each site consisted of a vernal pool and 

the area within 1,000 m of its high-water mark. Sites were selected based on the presence of 

vernal pool-breeding amphibians.  

4.3.2 Site Description 

Each site consisted of a wood frog and/or spotted salamander breeding pool and the area 

within 1,000 m of the pool’s high-water mark. We studied 35, 41, and 36 sites (43 total) in 2014, 

2015, and 2016, respectively. We selected sites to represent the range of development intensity at 

which vernal pool-breeding amphibian reproduction occurred in the greater Bangor area. Sites 

had 0-35 % impervious cover within 100 m, 0-38 % within 1,000 m, and 0-100 % tree canopy 

over pools. Pool area at spring high water ranged from 24 to 9978 m2.  
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4.3.3 Egg mass and embryo counts  

We used counts of egg masses and embryos per clutch (clutch size) to indicate 

reproductive effort, with egg mass counts representing breeding population size or breeding 

presence. Following the apparent peak of breeding, we conducted egg mass counts for wood 

frog, spotted salamander, and blue-spotted salamander (including the unisexual complex, 

Ambystoma laterale-jeffersonianum) at 35, 37, and 36 pools (44 total) in 2014, 2015, and 2016, 

respectively. In 2014, double-observers counted egg masses for greater detection, but only one 

count was recorded per pool. In 2015 and 2016, dependent double-observer counts were used, 

following Grant et al. (2005) where the second observer was aware of the eggs detected by the 

first observer, but not vice versa. Thus the second observer detected at least as many eggs as the 

first observer. Blue-spotted salamander egg mass counts were only used to indicate detected 

breeding presence and were not used to indicate breeding population size because of the high 

variability in how many egg masses are laid by a single female (Wilbur 1971). In 2015 and 2016, 

we counted the embryos in a subset of wood frog egg masses in 22 and 27 pools (28 total) and of 

spotted salamander egg masses in 27 and 22 pools (29 total; 38 sites between both species). Even 

though each female spotted salamanders can produce multiple egg masses (typically a larger, 

primary mass and 1 to 2 secondary, smaller egg masses; Hunter et al. 1999), and thus more error 

is likely in analyses of spotted salamander egg masses than for wood frogs, these counts may still 

provide useful information. We counted embryos in a minimum of five egg masses for a species 

at a site using techniques described in Karraker (2007) and photographed egg masses. Embryos 

in images were counted using ImageJ (Schneider et al. 2012). During counting and embryo 

examination, egg masses were disturbed as little as possible and returned to their original 

location. 
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4.3.4 Adult wood frog measurements 

We captured and measured adult male wood frogs to examine the correlation between 

adult size and resulting reproductive effort. Due to logistical constraints, we could not also 

capture enough females across pools to incorporate into analyses. Male size can be positively 

associated with increased breeding success (especially in male-skewed populations; Berven 

1981) and may also be a suitable proxy for breeding female size since adult body size in both 

sexes can respond similarly to conditions such as juvenile population size (Berven 2009). We 

used minnow traps to capture adult male wood frogs in 9 breeding pools from 2016 April 13-24. 

We weighed frogs, measured SVL (snout-vent length), and toe-clipped new captures to prevent 

resampling. Given wood frog’s high breeding fidelity to their natal pool (Berven and Grudzien 

1990; Vasconcelos and Calhoun 2004), we assume that a high percent (>80%) of males were 

sampled at their natal pool.  

4.3.5 Site Characteristics 

We used ArcView GIS10.2 and the Maine Land Cover Dataset (2004 all land use; 2011 

impervious surface) to quantify the percent impervious (IMP) and tree (TREE) cover within 100, 

300, 600, and 1,000 m from pool high water marks. Tree cover was digitized from aerial 

photographs in disturbed and undisturbed areas, thus we cannot assume that tree cover represents 

forest. Although forest cover and tree cover in urbanizing areas do not necessarily provide the 

same understory characteristics, most tree cover in either area likely corresponds with ground 

shading, leaf litter, and increased soil moisture. We used water probes (Hach ©, Loveland, 

Colorado) to sample specific conductance (SPCOND), which is indicative of road salt 

contamination, at 43 pools between 2 May-16 June. On each date a pool was sampled, we 
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collected and tested 1 L of surface water ~1 m from the water edge at each of three equidistant 

points around the perimeter. All testing was conducted within minutes of sample collection. 

Specific conductance was averaged by day to represent salt contamination concentration 

throughout seasons when amphibians use pools. Measurements were collected >1 year at 31 

sites; 27 sites had differences of ≤40 μS between years and only four sites had a difference >150 

μS between years (161-872 μS).  

4.4 Analyses 

4.4.1 Egg mass counts 

In all analyses of breeding population size we only included counts from pools where the 

modeled species was detected at least one year. We attempted to account for detection 

probabilities of egg masses to estimate the number of wood frog and spotted salamander masses 

per site-year using n-mixture models in R software package ‘unmarked’ (Fiske and Chandler 

2017) in R version 3.3.1 (R Core Team 2016). However, we chose not to interpret these results 

because the models performed poorly with improbable detection covariate values (e.g., greater 

pool sizes had greater detection probabilities) and unrealistically high estimates of egg masses 

(e.g., 150-1,000% the counted masses in approximately 1/3 of pools). For further analyses we 

modeled the maximum egg mass counts.  

We ultimately examined the relationships between site characteristics (land cover and 

specific conductivity) and reproductive effort indicated by egg masses (detected reproductive 

population size of wood frog and spotted salamanders; likelihood of detected breeding of spotted 

and blue-spotted salamanders) by site-year using Random Forest analyses (RFA) of 

classification and regression trees (CART) in package ‘randomForest’ (Liaw and Wiener 2002). 
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We also examined differences in conductivity between pools with and without detected breeding 

using individual Mann–Whitney tests for spotted and blue-spotted salamander. To avoid over-

fitting and to ensure robust classification by models, we conducted RFA, a method where many 

classification trees are constructed for each response variable and the dominant classification 

structure is selected (Breiman 2001b). We bootstrapped with replacement to build 10,000 

regression trees (Random Forest error stabilized at approximately 1,000-2,000 trees for each 

response variable), using 2/3 of the data at each iteration. We calculated explanatory variable 

importance using the mean percent decrease in accuracy resulting from removal of each variable 

to rank the importance of explanatory variables. We used package ‘randomForestSRC’ 

(Ishwaran and Kogalur 2014) to create partial dependence plots (PDPs) that examine the 

marginal effects of predictor variables while holding all other predictors at average values 

(Friedman 2001; Cutler et al. 2007). Because PDPs display general trends all reported values are 

approximate. 

CARTs allow for high correlation of covariates and identify the relative importance of 

covariates while holding all other variables at their mean. By using multiple years of data from 

sites as separate observations we captured the among-year variation that is well-documented for 

the breeding population size of these amphibians (Berven 2009; Capps et al. 2015). We natural-

log transformed abundance data so the model (CART) would have an unbiased treatment of high 

and low egg mass counts. RFAs were particularly appropriate because population size and 

likelihood of breeding likely does not respond linearly to land cover types and because there was 

high correlation (r > 0.59) among all land cover type variables. Additionally, CART have been 

found to be more accurate than negative binomial regression models of count data, which can be 



 

112 
 

1
1
2
 

used to account for the overdispersion and non-normal distribution of count data (Wah et al. 

2012).  

4.4.2 Clutch size 

Prior to modeling the effect of site characteristics on wood frog and spotted salamander 

clutch size (embryos per egg clutch), we examined the variability in embryo counts (i.e., 

detection probability) using embryos from 5 wood frog and 19 spotted salamander egg masses. 

These were counted 2-7 times (spotted salamander median = 2, wood frog median = 4 counts; 23 

wood frog and 52 salamander counts for a total of 75 counts) with each egg mass being counted 

by ≥2 observers. We assumed that undercounting was more likely than over-counting due to 

embryos possibly being obscured by other embryos or glare in the photo. For each egg mass, we 

compared the maximum embryo count to all other counts (equal or fewer embryos than the 

maximum count) to determine the proportion of embryos detected in non-maximum counts. 

Because detection was relatively high (median non-maximum count detection = 98%; wood frog: 

86-100%; spotted salamander: 81-100%), in further analyses of the entire embryo dataset we 

used the counted number of embryos per egg mass for clutches counted once and used the 

median count for clutches counted multiple times.  

We examined the effect of Year on clutch size for wood frog and spotted salamander 

before examining the effects of site characteristics, breeding population size, or adult 

morphology. Using clutch sizes only from site-years where clutch size had been counted for ≥5 

egg masses, we regressed clutch size on year. We initially compared model structure between 

models with and without Site as a random effect using Akaike’s information criterion (AIC). We 

then examined the effects of Year in the model with the highest-ranking model (ΔAIC=0) for 
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both species. If Year had a significant effect (P<0.05), it was included as a fixed effect in all 

further models of both years of clutch size data for that species to compare years across all sites 

and estimating the effect size of year-to-year differences.  

To examine the effects of land cover type at 100-1,000 m and specific conductivity on 

clutch size we fit linear models that included one predictor as well as Year if clutch size was 

different between years, as noted above, using package ‘nlme’ (Pinheiro et al. 2017). We then 

ranked models using AIC adjusted for small sample size (AICc) using package ‘AICcmodavg’ 

(Mazerolle 2017). We considered models ΔAICc<2 that ranked above the null model to be 

plausible (Burnham and Anderson 2002). If >1 model had ΔAICc<2 we tested additive models 

that included all combinations of covariates these highly-ranked models. We examined the 85% 

confidence intervals (Arnold 2010) of covariates in all plausible models to determine effect. 

Prior to fitting univariate models, we determined optimal model structure by comparing model fit 

among full models (including all land cover variables and specific conductivity as predictors) 

with no random effect or that had Site or Year as a random effect. We used the structure from the 

highest-ranking (ΔAIC=0) model with the simplest structure; i.e., models without a random 

structure were selected over those with a random structure if both were ΔAICc<2 from each 

other.  

We examined the effect of breeding population size (egg mass count) on clutch size 

across all years and the effects of median adult SVL and median size-adjusted mass (residual of 

natural log-transformed mass plotted against natural log-transformed SVL) on 2016 clutch size 

by species for wood frog and spotted salamander using linear regression. We removed one site 

from analyses of the effects of adult morphology because it had clutch size for only two egg 
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masses in 2016. For both sets of models, we initially compared model structure between models 

without a random effect or with Site as a random effect. We then examined the effects of 

significant (P<0.05) predictors within the highest-ranking models (ΔAIC=0).  

4.5 Results 

4.5.1 Detected breeding  

We detected up to 426 and 391 egg masses of wood frogs and spotted salamanders, 

respectively, per site-year, and detected breeding at 108, 82, and 54 site-years for wood frogs, 

spotted salamanders, and blue-spotted salamanders, respectively (Table 4.1). Spotted salamander 

and blue-spotted salamander breeding was detected in pools with ≤646 μS, ≤34% impervious 

cover within 100 m, ≤32% and ≤27% (respectively) impervious cover within 1,000 m, ≥36% and 

≥8% tree cover within 100 m, and ≥17% and ≥29% tree cover within 1,000 m. 

Table 4.1 Reproductive responses to conditions in a developing landscape in greater Bangor, 

Maine, USA, modeled for three species. Observed range and medians are untransformed values. 

Egg mass counts are only provided for those pools where breeding presence was detected. 

Response  Sample size:  

Pools / individuals 

Range  

(median, mean) 

Maximum egg mass count  

Wood frog 

Spotted salamander 

Blue-spotted salamander 

 

44 (-) 

34 (-) 

27 (-) 

 

0-426 (22.5, 40.8) 

0-391 (8.0, 36.2)  

- 

Embryos per egg clutch  

Wood frog 

Spotted salamander 

 

27 (453) 

26 (744) 

 

120-1,469 (642.0, 650.8) 

4-224 (97.0, 95.6) 
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Wood frog breeding population size, as indicated by egg mass counts, was predicted by 

cover types at multiple scales, with top-ranked predictors at 100-1,000 m (Figure 3.1a). 

Population size was predicted to negatively respond to urban-associated land cover at 100-600 m 

with small increases (0-5%) in impervious cover near pools (100 m) predicted to reduce 

population size and increases in tree cover >50% within 600 m associated with larger population 

sizes (Figure 3.2). However, 0-38% impervious cover at larger scales (600 and 1,000 m) was 

positively associated with population size at (Figure 3.2).  

Spotted salamander breeding population size and the likelihood of detected breeding 

were generally negatively associated with urbanization. Both responses were predicted by cover 

types at multiple scales, with the most important predictor for each operating at relatively small 

scales (100 m for population size; 300 m for likelihood of breeding; Figures 3.1b-c). Spotted 

salamander population size was predicted to decrease with small increases (0-7%) in impervious 

cover near pools (100 m) but was positively associated with small increases (0-7%) in 

impervious cover at 600 m. Tree cover was positively associated with population size (1,000 m) 

and likelihood of detected breeding (300-600 m), with steep declines in population size predicted 

with tree cover losses at 1,000 m between 60-80% and in breeding likelihood predicted with 

losses of tree cover at 300 and 600 m below 70% and 50%, respectively (Figure 3.2). Increases 

in specific conductivity up to 650 μS were associated with reductions in likelihood of breeding 

(Figure 3.2). Significant differences in conductivity between pools where breeding was and was 

not detected were detected with Mann-Whitney tests (U = 232, P = 0.05). 

The most important predictor for the likelihood of detected breeding for blue-spotted 

salamander was tree cover within 1,000 m, which was positively associated with breeding 

likelihood up to at least 82% (Figures 3.1d and 3.2). However, impervious cover within 300 was 
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generally positively associated with breeding likelihood, with the strongest effect predicted 

between 0-7% impervious cover (Figure 3.2). No significant differences in conductivity between 

pools where breeding was and was not detected (Mann-Whitney, U = 206, P = 0.72).  

a. Wood frog egg 

counts (38%) 

 

b. Spotted 

salamander egg 

counts (73%) 

c. Spotted 

salamander detected 

breeding (7%) 

d. Blue-spotted 

salamander detected 

breeding (20%) 

    
Mean decrease in accuracy (%) 

Figure 4.1. Variable importance plots from random forest models for wood frog (Lithobates 

sylvaticus) ln (mean egg mass count +1) regression trees (a and b) and classification trees (c and 

d). Plot shows the rank-order of explanatory variables along the y-axis and the percent average 

increase in mean square error when the values of the given variable are randomized while all 

others are held constant along the y-axis. Parenthetical percentages represent the variation 

explained for egg mass counts (wood frog and spotted salamander) and out of bag (OOB) 

estimate of error rate for detected breeding (spotted salamander and blue-spotted salamander).
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Wood frog egg mass count 
a. IMP600* 

 

b. TREE600* 

 

c. IMP100* 

 

d. IMP1000 

 
Spotted salamander egg mass count   

e. IMP100 

 

f. IMP600* 

 

g. TREE1000*

 

 

Spotted salamander likelihood of detected breeding   

h. TREE300

 

i. TREE600

 

j. SPCOND 

 

 

Blue-spotted salamander likelihood of detected breeding   

k. TREE1000

 

l. IMP300
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Figure 4.2. Partial dependence plots from random forest predictions of natural log-transformed wood frog egg mass counts (a-c), 

natural log-transformed spotted salamander egg mass counts (d-f) and likelihood of breeding presence (g-i), and likelihood of blue-

spotted salamander breeding presence (j-k) plotted against impervious and tree cover within 100, 300, 600, and 1,000 m. In a partial 

dependence plot of marginal effects, only the relative values (and not the absolute values) of predicted responses can be interpreted. 

The black dashed line corresponds to a lowess smoothed line representing the partial dependence between an explanatory variable and 

response. The dashed red lines indicate a smoothed error bar of +/-two standard errors. The red dots indicate the partial values used to 

fit the lowess function.  
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4.5.2 Clutch size 

We counted embryos in 453 wood frog and 744 spotted salamander egg masses. Wood 

frog egg masses had 120-1469 (median = 642) and spotted salamanders had 4-224 (median = 97) 

embryos per egg mass (Table 4.1, Appendix H Tables H2-H3). There were differences between 

years for wood frog and spotted salamander clutch size (Wood frog: Site as a random effect; 

F1,425=10.88, P=0.001; Spotted salamander: no random effect; F1,742=10.02, P=0.002). 

Wood frog clutch size decreased with tree cover within 100 and 300 m (Tables 4.2 and 

4.4). Conductivity had a positive effect on wood frog clutch size, with increases of 100 μS in 

conductivity predicted to increase wood frog clutches by 13 embryos (Table 4.3). There was no 

effect of site characteristics on spotted salamander clutch size nor of the effective breeding 

population size on clutch size (wood frog, Site as a random effect, F1,424= 1.86, P=0.17; spotted 

salamander, no random effect, F1,741=0.622, P=0.43). Median adult SVL had a positive effect on 

clutch size, and there was close to a statistically significant effect of size-adjusted mass (Site as a 

random effect; FSVL:1,72=22.6, P<0.001, Figure 4.3; FMass:1,72=3.70, P=0.059).  

Table 4.2 Model ranking using only those wood frog models that ranked <2 ΔAICc and ranked 

above the null model. Null models are included for reference. Observations are nested by Site 

(random effect). 

 K AICc ΔAICc w LL 

TREE100 + Year + Site 5 5881.76 0 0.14 -2935.88 

SPCOND + Year + Site 5 5882.02 0.26 0.12 -2936.01 

TREE300 + Year + Site 5 5882.13 0.37 0.12 -2936.07 

Year + Site (Null) 4 5882.26 0.5 0.11 -2937.13 
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Table 4.3 Estimates, standard errors, and 85% confidence intervals (CIs) of covariates of wood 

frog clutch size for models with <2ΔAICc and that rank above null models. Covariates are listed 

in order of AICc of their respective model.  

  β estimate SE Lower CI Upper CI 

 
TREE100 -1.36 0.844 -2.61 -0.110 

 SPCOND 0.128 0.0845 0.00323 0.253 

 TREE300 -1.39 0.937 -2.78 -0.00317 

 

 

 

 

 

Figure 4.3 Wood frog clutch size plotted against adult median SVL in breeding pools in 2016. 

The regression line is based on all clutch sizes except those that SVL = 49 mm (clutch size 

counted for two egg masses). 
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4.6 Discussion 

Our results suggest that decreases in tree cover (including canopy cover in urbanizing 

areas as well as forest) within 1,000 m, increases in impervious cover within 100 m, and 

increases in road salt contamination impact reproductive effort for wood frog, spotted 

salamander, and blue-spotted salamander. Increased specific conductivity and/or reductions in 

tree cover were associated with reduced breeding likelihoods and/or fewer egg masses for the 

three studied species. Similarly, egg mass counts for wood frog and spotted salamander greatly 

decreased with small increases (0-5%) in impervious cover within 100 m. Additionally, we 

detected declines in the likelihood of spotted salamander breeding corresponding to tree cover at 

<70% within 300 m and <50% within 600 m.  

Smaller breeding populations or a reduced likelihood of breeding of our three study 

species correlating with less forest support similar findings in other studies. Windmiller et al. 

(2008) documented substantial declines in wood frog, spotted salamander, and blue-spotted 

salamander (complex) breeding emigration after 41% forest removal within 300 m of a pool; and 

Homan et al. (2004) detected thresholds of declines in spotted salamander breeding occupancy at 

30% and 41% forest cover within 100 and 500 m, respectively. The substantial declines we 

detected may have corresponded with greater forest cover than those detected by Homan et al. 

(2004) because they selected study pools using remote sensing whereas we only studied pools 

with confirmed breeding presence of wood frog or spotted salamander.  

Lower wood frog and spotted salamander breeding populations associated with relatively 

little impervious cover within 100 m of pools suggest that these species are especially sensitive 

to urban land conversion near pools. Additionally, these results align with studies that 
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demonstrate the importance of conserving forested areas near pools for pool-breeding amphibian 

adult habitat. For example, areas near pools provide important overwintering habitat for adult 

wood frogs and spotted salamander (40-60% of wood frog and spotted salamanders 

overwintering <100 m, Regosin et al. 1996; within 100 m, Regosin & Windmiller 2003; mean 

hibernacula distance of approximately 125 m and maximum distance of 317 m from breeding 

pools, Groff et al. 2016). Moreover, these are important areas for movements outside of the 

breeding season. Areas within 200 m encompass ≥2/3 of spotted salamander movements outside 

of the breeding season (Regosin et al. 1996), and areas within 152 m of pools support 95% of 

adult blue-spotted salamander (sexually breeding) movements (Ryan and Calhoun 2014) to be 

with 152 m of pools. Increases in impervious surfaces almost assuredly remove the burrows and 

uncompacted substrates on which these species rely for cover and overwintering (Madison 1997; 

Regosin et al. 2003). In areas where lightly compacted yet vegetated areas (e.g., lawns) are 

typically associated with impervious cover, as is the case in the Greater Bangor area, increases in 

impervious cover likely correspond to even greater increases in areas where burrows and 

uncompacted areas suitable for overwintering are removed.  

The reduced likelihood of spotted salamander breeding in pools with higher specific 

conductivity supports other studies indicating that road salt contamination may eliminate 

breeding populations (Turtle 2000; Karraker et al. 2008; Collins and Russell 2009; Brady 2012). 

It is possible that our detected effect of specific conductivity may be confounded by road 

mortality which can contribute to extirpation of breeding populations of spotted salamanders 

(Gibbs and Shriver 2005) and may encompass the total effects of nearby roads rather than the 

effects conductivity alone.  
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Counterintuitively, impervious cover at larger scales (300-1,000 m) was positively 

associated with wood frog and spotted salamander breeding population size along with blue-

spotted salamander likelihood of breeding. One hypothesis is that this relationship may be 

explained by the loss of breeding pools resulting in displaced adults and first year breeding 

recruits consolidating breeding in remaining pools. The idea that isolation of suitable breeding 

pools can increase breeding population size in those pools has been proposed by others (Calhoun 

et al. 2003; Baldwin et al. 2006; Veysey et al. 2011). Moreover, genetic analyses for wood frogs 

and spotted salamanders have indicated that populations become more isolated with increased 

road density within 1 km of pools (J. J. Homola, personal communication). This consolidation of 

breeding effort could lead to egg mass count-driven population assessments to inappropriately 

conclude that populations were stable or even benefiting from urbanization. Thus, we suggest 

that future studies examining the impacts of urbanization on an egg mass count-derived response 

consider amphibians from sets of pools as one population. This follows the recommendations of 

other studies to treat clusters of pools as single demographic units (Petranka et al. 2004; Zamudio 

and Wieczorek 2007; Veysey et al. 2011).  

The clutch sizes we observed (wood frog: 120-1,469; spotted salamander: 4-224; Table 

4.1) were similar to those in other locations throughout the northeastern US (wood frog: ~300-

1,250 embryos per clutch in Maryland, Berven 1988; mean=664 embryos per clutch in 

Connecticut, Halverson et al. 2006; 514-1,012 in New York, Karraker & Gibbs 2011; ~800 in 

Connecticut, Brady 2013; spotted salamander: 7-228 in New York, Karraker & Gibbs 2011; 

~100 in Connecticut, Brady 2012). However, the effects of tree cover near pools (100-300 m) 

and specific conductivity on wood frog clutch size suggest that clutch size may increase with 

urbanization intensity. Because female wood frog size has been positively correlated with clutch 
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size (Howard and Kluge 1985; Berven 1988), the effect of urbanization on clutch size may be 

linked to female body size. The positive correlation between adult male SVL and clutch size in a 

subset of study pools supports this relationship, if one assumes terrestrial habitat quality has a 

similar effect on the size of males and females. Female body size has also been positively 

correlated with clutch size for spotted salamander in temporary pools as well as for two other 

congeners (Kaplan and Salthe 1979; Woodward 1982). Thus, the lack of detected effect of land 

cover conversion or specific conductivity on spotted salamander clutch size in our study suggests 

no difference in female condition across the studied urbanization gradient.  

Larger clutch sizes with increased urbanization aligns with Brady's (2013) observation 

that clutch size increased with female body size at a greater rate in high-salinity, roadside pools 

compared to low-salinity, woodland pools (but see Karraker and Gibbs 2011). However, greater 

embryo mortality was detected in roadside pools (Brady 2013) and sodium chloride-

contaminated stormwater management pools (Snodgrass et al. 2008). Thus, the effect of larger 

clutch sizes with increasing urbanization intensity may not increase the breeding population size. 

Indeed, increased embryonic mortality with greater urbanization would favor those individuals 

with larger clutch sizes, and thus greater clutch size would be expected to evolve. It is also 

plausible that declines in breeding population size in urbanizing areas may reduce competition 

for resources among the remaining adults, allowing these adults to grow larger and potentially 

produce larger clutches (Harper and Semlitsch 2007; Patrick et al. 2008). 

Our study supports the idea that urbanization, even at intermediate levels, limits pool-

breeding amphibian populations by compromising reproductive effort and may affect the body 

condition of breeding wood frogs, specifically. Because urban-associated cover types near pools 

have the most consistent negative effects on egg mass numbers and these effects can be detected 
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at relatively low levels of cover, maintaining forest cover and other undisturbed areas within 100 

m of breeding pools is likely especially important to avoid direct reductions in breeding 

population size and breeding occurrence. Furthermore, conservation of areas within 1,000 m may 

be best served to focus on maintaining a mosaic of intact breeding pools, each with sufficient, 

adjacent terrestrial habitat. Additionally, our results suggest that the effects of conductivity on 

clutch size are likely not responsible for these declines in breeding populations, but we note that 

other effects of road salt (e.g., increased larval mortality) may contribute to these declines.  
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APPENDIX A: SUPPLEMENTAL INFORMATION ABOUT BIRD AND MAMMAL 

USE OF VERNAL POOLS ALONG AN URBAN DEVELOPMENT GRADIENT 

Table A1 Bird and mammal species detected during a 2014-16 camera trap survey at 38 vernal 

pools in Maine. Species detections during the summer season (14 May – 26 August 2014 – 2016) 

from 33 sites were used in a partial redundancy analysis (pRDA) and to quantify urban-

affiliation of the detected bird and mammal assemblage at each site. A numbered list of 

references follows the table.  

Table A1, continued  

Species Reference supporting urban-affiliation score 

Birds  

wood duck (Aix sponsa) Campbell, 2009 

mallard (Anas platyrhynchos) Blair, 1996; Eakin et al., 2015 

Canada goose (Branta canadensis) Eakin et al., 2015; Gosser & Conover, 1999 

hooded merganser (Lophodytes cucullatus) Donaldson, Henein, & Runtz, 2007 

common merganser (Mergus merganser) Donaldson, Henein, & Runtz, 2007 

ruffed grouse (Bonasa umbellus) Campbell, 2009 

wild turkey (Meleagris gallopavo) Fuller, Spohr, Harrison, & Servello, 2013; 

Gustafson, Parker, & Backs, 1994 

northern goshawk (Accipiter gentilis) Bosakowski & Smith, 1997 

sharp-shinned hawk (Accipiter striatus) Hager, 2009; Hansen & Urban, 1992  

broad-winged hawk (Buteo platypterus) Bosakowski & Smith, 1997; Campbell, 2009; 

Hager, 2009  

American woodcock (Scolopax minor) Horn, 1985 

mourning dove (Zenaida macroura) Blair, 1996  

great horned owl (Bubo virginianus) Bosakowski & Smith, 1997; Hager, 2009 
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Table A1, continued  

Species Reference supporting urban-affiliation score 

barred owl (Strix varia) Bosakowski & Smith, 1997; Horn, 1985 

ruby-throated hummingbird (Archilochus 

colubris) 

McCaffrey & Wethington, 2008 

northern flicker (Colaptes auratus) Beissinger & Osborne, 1982; Horn, 1985; 

McIntyre, 1995 

downy woodpecker (Dryobates pubescens) Beissinger & Osborne, 1982; Eakin et al., 2015; 

Horn, 1985 

pileated woodpecker (Dryocopus pileatus) Beissinger & Osborne, 1982 

hairy woodpecker (Picoides villosus) Latta, Musher, Latta, & Katzner, 2013 

eastern kingbird (Tyrannus tyrannus) DeGraaf & Wentworth, 1986; Eakin et al., 2015 

American crow (Corvus brachyrhynchos) McGowan, 2001 

blue jay (Cyanocitta cristata) Aldrich & Coffin, 1979; Beissinger & Osborne, 

1982; Horn, 1985 

tufted titmouse (Baeolophus bicolor) Beissinger & Osborne, 1982; Dowd, 1992; 

Horn, 1985 

black-capped chickadee (Poecile 

atricapillus) 

Beissinger & Osborne, 1982; Eakin et al., 2015  

hermit thrush (Catharus guttatus) MacGregor-Fors, 2010; Manley et al., 2006 

American robin (Turdus migratorius) Beissinger & Osborne, 1982; Blair, 1996; 

Minor & Urban, 2010 
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Table A1, continued  

Species Reference supporting urban-affiliation score 

gray catbird (Dumetella carolinensis) Aldrich & Coffin, 1979; Beissinger & Osborne, 

1982 

European starling (Sturnus vulgaris) Aldrich & Coffin, 1979; Beissinger & Osborne, 

1982; Blair, 1996 

common yellowthroat (Geothlypis trichas) Eakin et al., 2015; Horn, 1985 

black-and-white warbler Mniotilta varia) Wilcove, 1985 

yellow warbler (Setophaga petechia) Campbell, 2009; Tewksbury, Hejl, & Martin, 

1998 

common grackle (Quiscalus quiscula) Beissinger & Osborne, 1982 

song sparrow (Melospiza melodia) Aldrich & Coffin, 1979; Beissinger & Osborne, 

1982 

American goldfinch (Spinus tristis) Blair, 1996; Eakin et al., 2015 

Mammals  

coyote (Canis latrans) Ordenana et al., 2010  

gray fox (Urocyon cinereoargenteus) Chupp, Roder, Battaglia, & Pagels, 2013; 

Ordenana et al., 2010  

red fox (Vulpes vulpes) (Adkins and Stott 1998) 

domestic cat (Felis catus) Chupp, Roder, Battaglia, & Pagels, 2013; 

Ordenana et al., 2010 

bobcat (Lynx rufus) Ordenana et al. 2010; Joly and Myers 2001 

striped skunk (Mephitis mephitis) Ordenana et al., 2010 
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Table A1, continued  

Species Reference supporting urban-affiliation score 

fisher (Martes pennanti) Schwartz, Ruiz-Gonzalez, Masuda, & Pertoldi, 

2012 

raccoon (Procyon lotor) Chupp, Roder, Battaglia, & Pagels, 2013; 

Ordenana et al., 2010 

black bear (Ursus americanus) Baruch-Mordo, Breck, Wilson, & Theobald, 

2008; Joly & Myers, 2001 

moose (Alces alces) Allen, Jordan, & Terrell, 1987; LaBonte, 

Kilpatrick, & Barclay, 2013 

white-tailed deer (Odocoileus virginianus) Grund, McAninch, & Wiggers, 2002 

North American porcupine (Erethizon 

dorsatum) 

Barthelmess, 2014; Odell & Knight, 2001 

muskrat (Ondatra zibethicus) Cotner & Schooley, 2011 

woodchuck (Marmota monax) Lehrer, Fredebaugh, Schooley, & Mateus-

pinilla, 2010 

eastern gray squirrel (Sciurus carolinensis) Bateman & Fleming, 2014; Williamson, 1983 

red squirrel (Sciurus vulgaris) Racey & Euler, 1982 

eastern chipmunk (Tamias striatus) Nilon & VanDruff, 1986 

snowshoe hare (Lepus americanus) Joly & Myers, 2001 
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Figure A1 Relationship between detection probability and within-pool emergent vegetation and 

shrub cover modelled as covariate effects in single-season occupancy models for a subset of 

species. Shaded areas represent 95% confidence intervals.  
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Figure A2 Relationship between detection probability and the percent of a pool basin captured in 

photos (View). View was modelled as a covariate effect in single-season occupancy models. 

Shaded areas represent 95% confidence intervals. 
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APPENDIX B: SUPPLEMENTAL INFORMATION FOR CHAPTER 2 ABOUT WOOD 

FROG (LITHOBATES SYLVATICUS) LARVAE SURVIVAL AND MORPHOLOGY 

B.1 Survival estimation of wood frog larvae 

Within the global models candidate set in Chapter 2, the model with the negative binomial 

distribution was the highest ranked and was slightly overdispersed (ĉ = 1.28, ꭓ2 = 16,379.7, P = 

0.163). Two models were within ΔQAICc ≤2 with all detection parameters in common except 

Dip (Table B1). Dip was not included in the final model because its 95% CI Beta estimate 

included zero. Beta estimates in the final model indicated that detection decreased with Veg, 

Depth, and Egg, but increased with Area (Table B2).  

 

Table B1 Results of the top-ranked abundance models (ΔQAICc ≤2). The null model is included 

for reference.  

 K QAICc ΔQAICc w 

λ(.)p(Veg+Depth+Area+Egg) 8 1275.64 0.00 0.70 

λ(.)p(Veg+Depth+Area+Dip+Egg) 9 1277.32 1.68 0.30 

λ(.)p(0) 4 1340.7 65.06 0.00 

Table B2 Estimated detection parameters (β), standard error (SE), and 95% CI of the selected 

model predicting wood frog tadpole abundance.  

 β  SE Lower CI Upper CI 

Veg -0.18  0.03 -0.23 -0.13 

Depth -0.54 0.05 -0.62 -0.46 

Area 0.73  0.15 0.47 0.98 

Egg -0.67  0.06 -0.78 -0.55 
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B.2 Effect sizes of predictors of wood frog larvae morphology variable pairs 

Table B3 Effect sizes (eta-squared, η2) of predictors for raw morphology variable pairs from univariate-

ANOVAs examining site, year, and urbanization level effects associated with Chapter 2. The first 

variable listed in the pair-wise relationship is regressed against the second variable, and the main effect of 

Site, Year, or Urban and the respective interaction term were included as predictors. Symbols indicate 

statistical significance. Parenthetical numbers are degrees of freedom. Stage refers to developmental 

stage.  

 η2 (Full data set) η2 (Subset of rural and 

urban site 

observations) 

Pair-wise 

relationship  

Site     Site-

interaction 

Year     Year-

interaction 

Urban      Urban-

interaction 

ln(Julian 

day)~stage 

0.22*** 

(37, 6676) 

0.03*** 

(37, 6676) 

0.03*** 

(2, 6746) 

0.02*** 

(2, 6746) 

0.13*** 

(1, 3240) 

0.02*** 

(1, 3240) 

ln(mass)~ln(SVL) 0.03*** 

(37, 6676) 

0.01*** 

(37, 6676) 

0.00*** 

(2, 6746) 

0.00*** 

(2, 6746) 

0.00*   

(1, 3218) 

0.01*** 

(1, 3218) 

ln(SVL)~stage 0.05*** 

(37,6676) 

0.03*** 

(37, 6676) 

0.01*** 

(2, 6746) 

0.01*** 

(2, 6746) 

0.00*** 

(1, 3240) 

0.00       

(1, 3240) 

ln(tail 

length)~ln(SVL) 

0.07*** 

(37, 6676) 

0.02*** 

(37, 6676) 

0.01*** 

(2, 6746) 

0.01*** 

(2, 6746) 

0.01*** 

(1, 3218) 

0.02*** 

(1, 3218) 

ln(tail 

depth)~ln(tail 

length) 

0.06*** 

(37, 6602) 

0.01*** 

(37, 6602) 

0.01*** 

(2, 6672) 

0.00*** 

(2, 6672) 

0.00*** 

(1, 3179) 

0.00***     

(1, 3179) 

*P≤0.05, **P≤0.01, ***P≤0.001 
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B.3 Aggregate morphology responses of wood frog larvae to site characteristics 

a. Dev10 (40%)

 

b. Dev50 (51%)

 

c. Dev90 (54%)

 

d. DevSD (15%)

 
e. Cond10 (25%)

 

f. Cond50 (8%)

 

g. Cond90 (20%)

 

h. CondSD (33%)

 
i. Len10 (15%)

 

j. Len50 (17%)

 

k. Len90 (19%)

 

l. LenSD (10%)

 
m. TailL10 (12%)

 

m. TailL50 (19%)

 

n. TailL90 (24%)

 

o. TailLSD (4%)
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p. TailD50 (1%)

 

q. TailD90 (6%)

 

  

Mean decrease in accuracy (%) 

Figure B1 Variable importance plots from Random Forest Analyses models for larval wood frog 

examined in Chapter 2. Plots show the 15 top-ranked explanatory variables along the y-axis and 

the percent average increase in mean square error when the values of the given variable are 

randomized while all others are held constant along the y-axis. Parenthetical numbers note % 

variance explained by RFA. Models for TailD10 and TailDSD did not explain any variation in 

the response (i.e., not different from random), thus predictor importance was not examined for 

these responses. 
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APPENDIX C: SUPPLEMENTAL INFORMATION ABOUT CARRY-OVER 

EXPERIMENT MODEL RANKINGS AND COEFFICIENTS 

Table C1 Model ranking using only those models that ranked <2 ΔAICc in their respective 

predictor category (SC = site characteristics, LM = larval morphology) and that ranked higher 

than the null model. Null models (NM) are included for reference. Observations are nested by 

Site (random effect) in all models except those for round 2 froglet responses.  

Table C1, continued 

  K AICc ΔAICc w LL 

Larval morphology      

Relative mass       

 SC: L.SVL + Egg 5 -51.23 0 0.44 30.93 

 NM: L.SVL 4 -50.24 0.99 0.27 29.33 

SVL      

 SC: Egg 4 -131.27 0 0.82 69.85 

 NM: . 3 -126.65 4.62 0.08 66.45 

Survival to emergence      

 LM: L.SVL 3 129.33 0 0.64 -61.54 

 LM: L.Cond 4 130.79 1.46 0.31 -61.19 

 NM: . 2 134.32 4.98 0.05 -65.1 

Round 1 froglet morphology      

Relative mass 2      

 LM: F1.SVL + L.Mass + L.SVL 6 -72.16 0 1 42.89 

 SC: F1.SVL + Egg 5 -50.9 21.27 0 31.01 

 NM: F1.SVL 4 -49.5 22.67 0 29.12 
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Table C1, continued 

  K AICc ΔAICc w LL 

SVL      

 LM: L.Mass + L.SVL 5 -165.11 0 1 88.11 

 SC: Egg 4 -140.31 24.8 0 74.52 

 NM: . 3 -138.88 26.23 0 72.65 

Relative leg length       

 LM: F1.SVL + L.Mass + L.SVL 6 -128 0 0.94 70.81 

 SC: F1.SVL + Egg 5 -121.06 6.94 0.03 66.10 

 NM: F1.SVL 4 -119.87 8.13 0.02 64.30 

Round 1 froglet performance       

Maximum jump distance       

 LM: L.SVL + L.Mass 5 38.65 0 0.99 -13.83 

 SC: Egg 4 47.27 8.62 0.01 -19.31 

 NM: . 3 51.97 13.32 0 -22.79 

Distance moved       

 LM: L.SVL + L. Mass  5 88.69 0 0.59 -38.8 

 SC: Egg 4 99 10.3 0 -45.14 

 SC: Veg 4 99.03 10.33 0 -45.16 

 NM: . 3 99.16 10.47 0 -46.37 

Duration      

 SC: Hydro 4 60.87 0 0.77 -26.08 

 NM: .      
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Table C1, continued 

  K AICc ΔAICc w LL 

Speed       

 LM: L.Mass + L.SVL 5 62.19 0 0.95 -25.55 

 SC: Egg 4 69.19 7 0.03 -30.24 

 SC: Cover 4 70.79 8.6 0.01 -31.04 

 NM: . 3 71.51 9.32 0.01 -32.55 

Round 2 froglet morphology**      

Relative mass      

 SC: F2.SVL + Veg 4 -14.46 0 0.61 12.48 

 NM: F2.SVL 3 -13.59 0.87 0.39 10.5 

SVL       

 LM: L.SVL + L.Mass 4 -52.57 0 1 31.53 

 SC: Veg 3 -26.92 25.64 0 17.17 

 NM: . 2 -14.02 38.55 0 9.34 

Relative leg length      

 NM: . 3 -37.09 0 1 22.25 

Round 2 froglet performance**      

Maximum jump distance      

 SC: Hydro 3 13.19 0 0.66 -2.67 

 SC: Egg 3 14.56 1.36 0.33 -3.36 

 NM: . 2 21.94 8.75 0.01 -8.54 

Distance moved      
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Table C1, continued 

  K AICc ΔAICc w LL 

 SC: Hydro 3 56.21 0 0.4 -24.1 

 SC: Egg 3 56.52 0.31 0.34 -24.26 

 SC: Veg 3 58.12 1.92 0.15 -25.06 

 NM: . 2 58.68 2.47 0.11 -26.88 

Duration       

 SC: Hydro 3 43.01 0 0.4 -17.5 

 SC: Egg 3 43.39 0.38 0.33 -17.7 

 SC: Veg 3 44.53 1.52 0.19 -18.26 

 NM: . 2 46.14 3.13 0.08 -20.61 

Speed       

 SC: Hydro 3 29.63 0 0.35 -10.81 

 SC: Egg 3 29.75 0.12 0.33 -10.88 

 NM: . 2 29.77 0.15 0.32 -12.43 

Adult morphology      

Relative mass      

 LM: SVL 5 -492.18 0 0.81 251.21 

 SC: Hydro 5 -488.02 4.16 0.1 249.13 

 NM: . 4 -487.83 4.35 0.09 248 

SVL       

 SC: Cover 4 -758.02 0 0.33 383.09 

 SC/LM: Cover + L.Mass 5 -757.66 0.36 0.27 383.95 
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Table C1, continued 

  K AICc ΔAICc w LL 

 LM: Mass 4 -757.21 0.81 0.22 382.69 

 NM: . 3 -756.84 1.18 0.18 381.47 
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Table C2 Estimates, standard errors, and 85% confidence intervals (CIs) of covariates of larval 

survival; larval, froglet, and adult morphology; and froglet performance for models with 

<2ΔAICc within their respective predictor category and that rank above null models. Covariates 

are listed in order of AICc of their respective model. Only those covariates with CIs that do not 

include zero are shown here. In two-covariate models, <2 covariates had 85% CIs different from 

zero, thus single covariate models were more parsimonious; no two covariates shown are from 

the same model. The SVL terms that were paired with mass and leg length covariates to adjust 

for size-dependence are not shown here as they were not intended as predictors. 

Table C2, continued 

  β estimate SE Lower CI Upper CI 

Larval morphology     

Relative mass      

 Egg -0.239 0.125 -0.436 -0.0426 

SVL     

 Egg -0.0835 0.0271 -0.126 -0.0409 

Survival to emergence     

 L.SVL 4.93 1.92 2.25 7.84 

Round 1 froglet morphology     

Relative mass      

 L.Mass 0.524 0.0998 0.383 0.665 

 Egg  -0.0671 0.0348 -0.121 -0.0131 

SVL     

 L.Mass 0.270 0.0315 0.225 0.315 

 Egg  -0.0819 0.0391 -0.143 -0.0207 

Relative leg length      

 L.Mass  0.202 0.0601 0.117 0.287 

 Egg -0.0329 0.0175 -0.0601 -0.00571 
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Table C2, continued 

  β estimate SE Lower CI Upper CI 

Round 1 froglet performance     

Maximum jump distance      

 L.Mass 0.762 0.162 0.531 0.993 

 Egg -0.354 0.114 -0.533 0.175 

Distance moved       

 L.Mass  1.10 0.232 0.770 1.43 

 Egg -0.310 0.191 -0.609 -0.0111 

 Veg -0.188 0.117 -0.371 -0.00530 

Duration     

 Hydro -0.113 0.0344 -0.167 -0.0588 

Speed      

 L.Mass 0.751 0.190 0.480 1.02 

 Egg -0.304 0.129 -0.506 -0.102 

 Cover 0.104 0.0572 0.014 0.194 

Round 2 froglet morphology     

Relative mass     

 Veg -0.0499 0.0258 -0.0886 -0.0111 

SVL      

 L.Mass 0.357 0.0373 0.301 0.413 

 Egg -0.151 0.0329 -0.200 -0.101 

Round 2 froglet performance #2     
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Table C2, continued 

  β estimate SE Lower CI Upper CI 

Maximum jump distance     

 Hydro 0.180 0.0467 0.110 0.251 

 Egg -0.276 0.0777 -0.394 -0.158 

Distance moved     

 Hydro 0.482 0.200 0.177 0.786 

 Egg -0.775 0.333 -1.28 -0.268 

 Veg 0.561 0.297 0.109 1.01 

Duration      

 Hydro 0.341 0.132 0.139 0.542 

 Egg -0.548 0.221 -0.884 -0.211 

 Veg 0.424   0.194 0.128 0.720 

Speed      

 Hydro 0.154 0.0871 0.0213 0.287 

 Egg -0.250 0.144 -0.469 -0.0298 

Adult morphology     

Relative mass     

 L.SVL -0.332 0.108 -0.509 -0.155 

 Hydro 0.0279 0.0166 0.000752 0.0551 

SVL      

 Cover -0.00724 0.00383 -0.0135 -0.000940 
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APPENDIX D: AQUATIC INSECT ASSEMBLAGES AND EFFECTS ON WOOD FROG 

TADPOLE MORPHOLOGY ACROSS AN URBANIZING LANDSCAPE 

D.1 Introduction 

Urban development threatens vernal pools in the northeastern US and the amphibians for 

which these pools are essential breeding habitat (Homan et al. 2004; Windmiller and Calhoun 

2008; Baldwin and deMaynadier 2009). Aquatic insects in these pools may be major predators of 

larval pool-breeding amphibians (Colburn et al. 2006). Changes in pool environments caused by 

urban development may shift the composition of insect assemblages (Williams 1996; Relyea 

2002; Bischof et al. 2013) and resulting differences in amphibian and insect interactions may 

shift patterns of predation pressure (Eck et al. 2014). Predation pressure can influence wood frog 

(Lithobates sylvaticus) tadpole morphology, growth, and developmental rates (Relyea 2001b, 

2004), thus adding complexity to understanding the total influence of urbanization on vernal pool 

amphibians.  

Tadpole tail morphology may be influenced by differences in predator pressure (Calsbeek 

and Kuchta 2011). Predatory insect attacks can also cause sublethal damage to tadpole tails. 

Although individual larvae with tail damage may not have reduced survival and growth (Polich 

et al. 2013), tail damage among surviving tadpoles may indicate relative within-pool (i.e., 

population level) predator pressure on tadpoles. 

Here we characterize the invertebrate assemblage in 29 vernal pools and examine their 

predatory pressures on wood frog tadpoles in an urbanizing landscape. Specifically, we studied 

how two urban-associated characteristics, impervious cover and road salt contamination, 
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influence assemblage composition and density of predatory insects. We also examined how the 

densities of predatory insects relate to larval wood frog tail damage, development, and 

morphology. We expected insect assemblages to shift with urban-associated characteristics, and 

that increased densities of predatory insects would correspond to a greater likelihood of tail 

damage, tadpoles with longer and broader tails, slower development, shorter bodies, and lower 

condition.  

D.2 Methods 

D.2.1 Site characteristics 

We used ArcView GIS10.2 and the Maine Land Cover Dataset (2004 all land use; 2011 

impervious surface) to quantify the percent impervious and tree cover within 100 m of the pools’ 

high water marks. We quantified mean specific conductivity, hydroperiod, and summer canopy 

cover using 2014-2016 measurements from concurrent studies of a larger set of study pools that 

included the study pools here (Chapters 1-2). We used the multi-year average to reflect 

conditions over an extended time period to which insect assemblages likely respond. We used 

water probes (Hach ©, Loveland, Colorado) to sample specific conductance in pools during May 

and June 2014-2016. On each date a pool was sampled, we collected and tested 1 L of surface 

water ~1 m from the water edge at each of three equidistant points around the perimeter. Only 

one sample was taken at pools that were almost dry and <2 m2. All testing was conducted at the 

pool edge within minutes of sample collection. Each metric was averaged by day and then year 

to calculate values used in analyses. Hydroperiod was determined by the Julian day that standing 

water was no longer present as observed during field visits or by trail cameras placed at pools for 

a separate study (Chapter 1). We measured woody canopy cover over pools in summer. Canopy 
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density was measured ~1 m above the ground near the pool center using a spherical convex 

densitometer. See Chapter 2 for greater detail.  

D.2.2 Aquatic insect surveys 

We used the density of predatory aquatic insects (m-2) during wood frog larval 

development to indicate the relative predatory pressure from predatory aquatic insects among 

pools. We conducted dip net surveys of aquatic insects once at 27 pools in 2015 from 16 June – 

24 July, once at 10 pools in 2016 from 8 - 23 June, and a second time at 5 pools from 29 June – 

22 July (29 different pools, total; 9 of the pools sampled in 2015 were also resampled in 2016). 

We followed the same dip netting methods described in Chapter 2 for tadpole abundance 

surveys, except that insect sampling was conducted within a 5-day window.  

We followed Werner et al. (2007) to determine if an insect family was likely to prey upon 

tadpoles. Some families in orders Odonata (Aeshnidae, Cordulidae, Gomphidae, Libellulidae, 

and Corduliidae), Coleoptera (Dytiscidae, Hydrophilidae), and Hemiptera (Belostomatidae, 

Notonectidae) as well as all Megaloptera were categorized as predators (hereafter referred to as 

predatory insects). We combined Libellulidae and Corduliidae because of the difficulty in 

differentiating between these families and treated them as a single family throughout analyses. 

We counted and identified all insects to family except for some Coleopterans detected in 2015 in 

six pools that were not collected for lab identification. Because we could not determine whether 

these Coleopterans were likely tadpole predators, all 2015 observations from these pools were 

excluded from predator density analyses. To indicate daily relative density, we divided the 

number of individuals in each family detected during each visit by the total area of dip net 
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sweeps (number of sweeps x 0.39 m2) during that visit. Predatory insect density was summed by 

visit and averaged across visits within each year.  

For a more complete representation of the aquatic insect assemblages, we also 

opportunistically identified aquatic insects during tadpole surveys (15 May – 8 June 2015 and 23 

May – 6 September 2016). All opportunistic samples from 2015 were from pools where insect 

density surveys were conducted, and in 2016 they were conducted at pools surveyed to 

determine density as well as at an additional two pools which were sampled for insect density in 

2015 (collected concurrently with tadpole sampling occurring at these pools in 2016, Chapter 2). 

Only 2015 observations (opportunistic and those from density surveys) were used in further 

analyses of insect composition. 

D.2.3 Tadpole surveys 

We conducted wood frog tail damage surveys at 30 pools in 2015 and at 10 pools in 

2016. During these surveys, we inspected tadpoles for the presence of tail damage (0,1) 

indicative of an escape from a predator. At least 34 tadpoles were sampled per site. We also 

collected data on tadpole morphology and development for the 23 sites (31 pool-years; 21 pools 

in 2015 and 10 pools in 2016) where tail damage and insect abundance was studied. These data 

were collected as part of a larger study of 39 vernal pools during 2014-2016, as described in 

Chapter 2. Residuals indicating relative tadpole developmental phenology, body condition, body 

length, tail length, and tail fin depth were calculated in this concurrent study. Tail measurements 

were excluded for tadpoles with tail damage.  
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D.2.4 Statistical analyses 

D.2.4.1 Insect assemblages 

We examined differences in assemblage composition among pools using 2015 

observations from pools where all insect detections (density surveys and opportunistic 

detections) were identified to family. Although including opportunistic observations makes 

sampling effort inconsistent among pools, this increases the overall detection of families and thus 

may provide some useful information.  

Initially, we examined similarities among assemblage composition using non-hierarchical 

cluster analyses in the ‘fpc’ package. We represented assemblage composition with a detection 

matrix (0,1) of family x site-year. We removed all families detected at <2 sites. If clusters were 

not stable, we did not categorize pools by assemblage “type” in further analyses but instead 

assumed that examination of gradients of variation among assemblages was likely more 

appropriate.  

We then conducted a partial redundancy analysis (pRDA) using the ‘vegan’ package 

(Oksanen et al. 2017) to identify how hydroperiod and canopy cover (conditions which are 

associated with shifts in aquatic assemblages) as well as specific conductivity and impervious 

cover within 100 m (urban-associated characteristics) correlate with dominant gradients of 

variation in assemblages among sites (Borcard et al. 2011). Prior to conducting the pRDA, we 

assessed explanatory variables for collinearity (all pairwise Pearson product-moment bivariate 

correlations were ≤0.56). We conditioned the RDA on latitude and longitude to account for the 
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portion of Curtis-Bray dissimilarity in assemblages attributed to spatial correlation (Spearman’s 

rank correlation=0.110, p=0.04).  

We conducted Monte Carlo global permutation tests to determine the significance of the 

ordination, the pRDA axes, and each constraining variable. Because constraining variables are 

assessed sequentially for significance, we tested each variable as the first term in the model. 

Upon determining significance of the ordination (p=0.001), we compared the pRDA with an 

unconstrained, unconditioned principle component analysis to assess if extracted patterns in the 

pRDA likely represent actual dominant gradients (Legendre and Gallagher 2001). Since both 

ordinations were similar, we assumed that the constraining variables in the pRDA are related to 

actual gradients of variation. We then calculated the proportion of variance explained by each 

axis and each constraining variable and overlaid generalized additive model (GAM) fitted 

surfaces on the ordination to examine the linearity of variation of each vector. 

We further examined how the natural log-transformed total density of predatory insects 

relates to hydroperiod, canopy cover, and urban-associated characteristics. We compared global 

models including Site or Year as nesting terms (random effects) with a model with no nesting 

term using Akaike’s information criterion adjusted for small sample size (AICc) to determine the 

optimal fixed structure of the model. Because the global model without a random effect was 

highest ranked, we did not include a nesting term in subsequent models. We created a set of 

univariate linear models for predator density using R package ‘lme4’ (Bates et al. 2017) and then 

compared these models using AICc to select top ranking models using library ‘AICcmodavg’ 

(Mazerolle 2017). We considered models ΔAICc<2 that ranked above the null model to be 
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plausible (Burnham and Anderson 2002) and examined the 85% confidence intervals (Arnold 

2010) of each covariate in these models to determine effect.  

D.2.4.2 Tadpole responses 

We examined the statistical effects of insect predator density on tadpole tail damage, 

developmental phenology, and morphology. Initially, we examined if the likelihood of tadpole 

tail damage was cumulative throughout the season using logistic regression (package ‘nmle’, 

Pinheiro et al. 2017). We used Site as a random term in these models to account for the lack of 

independence among tadpoles within the same pool. If tail damage was cumulative throughout 

the season (P<0.05), we included Julian day as a covariate in all further models of likelihood of 

tail damage. 

For each tadpole response, we created a set of univariate linear models with the density of 

each predator family and the total predator density as covariates. We examined the response to 

multiple predatory families because predatory ability differs among families, i.e., the predation 

pressure of 10 individuals of family X might be different from that of 10 individuals of family Y 

(Roth and Jackson 1987). We created models of likelihood of tail damage using package ‘nmle’ 

(Pinheiro et al. 2017) and linear models of tadpole development and morphology responses using 

‘lme4’ (Bates et al. 2017). We then compared the set of models for each response using AICc to 

select top ranking models using library ‘AICcmodavg’ (Mazerolle 2017) and examined the 85% 

confidence intervals (Arnold 2010) of each covariate in plausible models to determine effect. If 

>1 model met these criteria, we tested additive models that included all combinations of 

covariates in plausible models.  
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D.3 Results 

We detected aquatic insects in six orders and 24 families, with six orders and 12 families 

represented in abundance surveys. Although not targeted taxa, we also detected aquatic 

invertebrates in subclass Hirudinea (leech), order Isopoda (isopods), and phylum Mollusca 

(mollusks, primarily snails and clams). Dytiscidae and Libellulidae/Corduliidae, all of which are 

predators of wood frog tadpoles, were detected in 27 of 29 pools (Table D1). 
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Table D1 Detected presence of aquatic insects at 29 pools in greater Bangor, Maine. In 2015 and 

2016, 27 and 10 pools were surveyed, respectively. Those taxa denoted with (*) were 

categorized as predators in analyses. 

Table D1, continued    

Order and Family 2015 2016 Total 

Coleoptera 26 10 28 

Dytiscidae *1 25 10 27 

Elmidae 1 3 0 3 

Gyrinidae 0 1 1 

Haliplidae 0 1 1 

Hydrophilidae *1 7 6 11 

Noteridae 0 5 5 

Scirtidae 1 0 1 

Diptera 2 7 2 9 

Culicidae 0 2 2 

Stratiomyidae 1 0 1 

Tipulidae 1 5 0 5 

Hemiptera 16 4 17 

Belostomatidae *1 2 1 3 

Corixidae 1 16 3 17 

Gerridae 1 6 3 9 

Notonectidae * 1 2 3 

Megaloptera 12 7 17 

Corydalidae *1 12 7 17 
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Table D1, continued    

Order and Family 2015 2016 Total 

Sialidae * 0 1 1 

Odonata 27 7 28 

Aeshnidae *1 15 3 17 

Gomphidae * 1 0 1 

Lestidae 1 13 2 13 

Libellulidae/Corduliidae *1 26 6 27 

Trichoptera 3 17 3 17 

Limnephilidae 1 14 2 14 

Hydropsychidae 1 0 1 

Phryganeidae 1 0 1 

Rhyacophilidae 0 1 1 

1 Families detected in 2015 and used in assemblage composition analyses.  

2 Diptera were detected in one pool in 2015 where no family was identified. This pool was not 

resampled in 2016.  

3 Trichoptera were detected in two pools in 2015 where no family was identified. In 2016, one 

pool was not resampled and no Trichoptera were detected in the pool that was resampled.  
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Site characteristics and the spatial distribution of sites affected aquatic insect assemblages 

detected in 2015. Summer canopy cover was a significant predictor of assemblages (p<0.01). 

Impervious cover within 100 m and specific conductivity were marginally significant predictors 

(0.05<p<0.1). Considerable variation in assemblages among sites was constrained by site 

characteristics and relatively little variation was constrained by Euclidean distance (28.2 and 

7.0% of the variance, respectively). Canopy cover, conductivity, and impervious cover 

respectively accounted for 13.1, 4.9, and 4.7% of variation in CTW assemblages (46.5, 17.4, and 

16.5%, respectively, of the constrained, non-spatial variance).  

The first canonical axis (p=0.001), which explains 15.2% of the variation among 

assemblages (50.0% of constrained variance), is primarily described by summer canopy cover 

(r=-0.93), and to a lesser degree by specific conductivity (positively, r=0.26) and impervious 

cover within 100 m (negatively, r=-0.20 Fig. 4). We note that impervious cover and conductivity 

were positively correlated (r=0.52) despite the differences in the constraints they place on RDA1. 

The second pRDA axis (p=0.029), which explains 6.8% of the variance among assemblages 

(22.5% of constrained variance), was positively correlated with hydroperiod (r=0.37) and 

negatively with impervious cover within 100 m (r=-0.36). Most (10/12) modeled insect taxa 

were positively associated with RDA1, and negatively associated with RDA2 (8/12 taxa; Figure 

D1). All vectors varied roughly linearly in ordination space except specific conductivity (Figure 

D1). Insect assemblages detected in 2015 did not form distinctly different clusters (Jaccard 

similarity value 0.52 – 0.64), and thus pools were not categorized by assemblage type in further 

analyses. 
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Figure D1 Partial redundancy analysis (pRDA) ordination for aquatic insect family detections at 

27 vernal pools in Maine during 2014-2016. Sites are black crosses, red dots are observed taxa, 

and vectors represent site characteristics. Taxa labeled in red are categorized as likely predators 

of tadpoles and those labeled in blue are considered not likely to be predators. Vector labels are: 

CANO=mean density of summer tree canopy across years, HYDRO=mean hydroperiod, 

IMP=impervious cover within 100 m, and COND=mean specific conductivity. Constrained 

variance explained: RDA1=50.0%; RDA2=22.5%. Contours (gray) represent change in mean 

specific conductivity across ordination space.  
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Predatory taxa were detected throughout all pools and non-predatory taxa were detected 

in 24 of 27 pools included in the ordination. When examining all pools with predator density 

data in 2015 and 2016, predator density was predicted to decrease with longer duration of pool 

water (Figure D2, Table D2). Models of total predator density with other predictors (canopy, 

impervious cover, specific conductivity) did not rank higher than the null or have <Δ2AICc. 

 

Figure D2 The density of insect predators (m-2) relative to the interannual mean pool 

hydroperiod. Each dot represents a site-year. The shaded area represents parameter 95% 

confidence intervals.  

D.3.1 Tail damage and depth and insect predators 

Across 2015 and 2016, 46.7% of tadpoles surveyed for tail damage had a damaged tail 

(2,566 of 5,493 total individuals; 45.1% [2,020 / 4,479] in 2015; 53.8% [546 / 1,014] in 2016). 

Likelihood of tail damage increased with Julian day (β = 0.013, SE = 0.0015, 90% CI = 0.012-

0.016, P<0.01). 

In pools where insect abundance was measured, 4,458 tadpoles were examined for tail 

damage and developmental phenology and morphology. Tadpoles were predicted to develop 
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faster in pools with greater densities of Hydrophilidae (Table D2). Tadpoles in pools with greater 

densities of Notonectidae were predicted to have greater body condition, shorter bodies, longer 

tails (if not damaged), and a greater likelihood of tail damage (Table D2). Greater densities of 

Dytiscid larvae were correlated with shorter tail fins (Table D2). 
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Table D2 Model ranking using only those models that ranked ≤2 ΔAICc and higher than the null 

model. Null models are included for reference. Observations are nested by Site (random effect) 

in all models except those total predator density. Direction of effect notes the covariate value for 

those covariates with a 85% CI that is different from zero.  

 K AICc ΔAICc w LL Direction 

of effect 

Total predator density       

Hydroperiod 3 64.32 0.00 0.87 -28.71 (-) 

Null 2 69.97 5.66 0.05 -32.77  

Likelihood of tail damage       

Notonectidae density 4 5957.01 0.00 0.99 -2974.50 (+) 

Null 3 5975.36 18.34 0.00 -2984.68  

Developmental phenology       

Hydrophilidae density 4 -58458.7 0.00 1.00 29233.35 (+) 

Null 3 -58425.8 32.86 0.00 29215.91  

Body condition       

Notonectidae density 4 -9078.52 0.00 1.00 4543.27 (+) 

Null 3 -9014.87 63.65 0.00 4510.44  

Body length       

Notonectidae density + 

Belostomatidae density 

5 17837.43 0.00 0.62 -8913.71 (-), (-) 

Notonectidae density 4 17839.43 2.00 0.23 -8915.71 (-) 

Null 3 17875.49 38.05 0.00 -8934.74  

Tail length       

Notonectidae density + 

Sialidae density 

5 15515.52 0.00 1.00 -7752.75 (+), (-) 

Null 3 15599.96 84.44 0.00 -7796.98  

Tail height       

Dytiscid density 4 12261.93 0.00 1.00 -6126.96 (-) 

Null 3 12290.87 28.94 0.00 -6142.43  
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D.4 Discussion 

D.4.1 Insect assemblage composition and density 

Canopy cover strongly influenced the composition of aquatic insect assemblages in 

vernal pools across an urbanization gradient, with most families examined in the ordination (10 

of 12) negatively correlated with canopy cover (Figure D1). The strong influence of canopy 

cover on insects in vernal pools provides further support for recent findings by Plenzler and 

Michaels (2015) that canopy cover may be a primary regulatory mechanism for invertebrate 

communities in ephemeral wetlands via food web pathways regulation. Our results also align 

with Relyea (2002), who observed the insect assemblage composition among closed canopy 

pools to be less variable than among open canopy pools and that Libellulidae, Aeshnidae, and 

Hydrophilidae occurred in greater densities in open canopy pools. Additionally, the family that 

we found to be most positively correlated with greater canopy cover, Dytiscidae, was noted to be 

more abundant in closed canopy pools by Relyea (2002). Impervious cover and road salt 

contamination may influence assemblages, but to a lesser degree than canopy cover. The 

relatively strong negative correlation of Limnephilidae with impervious cover, (the only 

Trichoptera family that was included in the assemblage ordination), suggests that water quality 

corresponding to impervious cover may exclude insects that are especially sensitive to water 

quality.  

The lack of a strong influence of hydroperiod in structuring assemblages was unexpected 

given that water permanence is considered to limit the diversity of insects and drive the 

composition of these assemblages across temporary waters, including vernal pools (Williams 

1996; Brooks 2000). However, another study of aquatic insect composition in temporary pools in 
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Ohio also did not detect an expected increase in family richness with longer hydroperiods 

(Plenzler and Michaels 2015). 

Examination of families relative to the constraining environmental variable vectors in the 

assemblage ordination did not suggest an obvious pattern of response of predator and non-

predator families (Figure D1). However, when grouping all insects in predatory families, we did 

detect a significant decrease of predatory insects in pools with a shorter hydroperiod (Figure D2). 

These results suggest that although hydroperiod may not predict the presence of any particular 

predatory family, in general, pools with shorter hydroperiods may have relatively high densities 

of individuals of whichever predatory families are present.  

D.4.2 Tadpole responses to insect density 

Contrary to previous findings that wood frog tadpoles have less tail damage later in the 

season (Blair and Wassersug 2000), in our pools tail damage within a pool was cumulative 

within a season, despite clear evidence of tail regeneration in tadpoles. This suggests that 

tadpoles in our study pools were under predatory pressure from insects throughout development 

and supports lab experiments demonstrating that larger insect predators can handle and some 

preferentially select larger tadpoles as prey (Brodie and Formanowicz 1983).  

Our result that longer tadpole bodies were predicted at lower predator densities aligns 

with other studies demonstrating that insect predators can restrict tadpole body size. For 

example, the presence of Dyticidae, Belostomatidae, and Aeshnidae dragonflies can induce 

smaller body morphology and lower activity levels in wood frog tadpoles (Relyea 2003, 2004).  



 

184 
 

1
8
4
 

Advanced developmental phenology, greater body condition, and smaller tails with 

greater predator densities were unexpected patterns given past field and lab research on tadpole 

morphology responses to insect predators  (e.g., Skelly and Werner 1990; Relyea 2003, 2004). 

Although wood frog tadpole morphology typically responds to the strongest predator in the 

presence of multiple predator families (Relyea 2003), it is possible that tadpole response to an 

entire assemblage of insect predators is different from the response to one to two predators. 

Additionally, because the number of tadpoles in our study was not controlled, removal of 

tadpoles by predators might have counterintuitive effects on the morphology of the surviving 

tadpoles (e.g., less competition for food in areas of the pool with relatively little predation 

pressure). The greater likelihood of tail damage with greater predator densities also supports the 

idea that greater predator densities may increase tadpole mortality and thus release remaining 

tadpoles from competition pressures. Tadpoles in our study could also access the entire pool, and 

thus some may have located areas within the pool where they could avoid predation pressure.  

 Our study provides evidence that canopy cover and hydrology may be driving forces for 

insect assemblage composition in vernal pools across an urbanizing landscape. We also provide a 

greater understanding of how insects in vernal pools may interact with larval amphibians, 

specifically wood frog. Our results suggest that increased predation pressure may, 

counterintuitively, result in increased size and condition of developing tadpoles. These findings 

suggest that additional studies of the relationship between predatory insects, larval survival, and 

the fitness of larvae that survive through metamorphosis will help to elucidate the effects of 

insect predation on wood frog populations.     
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D.5 Supplemental Information 

Table D3 Total individuals sampled during density sampling surveys by site and year. The number of site visits is “n”, and “Area” is 

mean pool area at spring high water (m2). 

Table D3, continued 
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B06 2015 1 0 0 0 0 0 0  0 0 0  0 1 0 0  0 0  0 3 9  0 2 0 2 49 

B08 2015 5 0 0 0 2 0 0  0 0 0  0 1 0 0  0 0  0 0 9  0 1 0 3 146 

B10 2015 0 1 0 0 0 0 1  0 0 0  0 4 2 0  0 0  2 24 1  0 0 0 3 71 

B12 2015 2 0 0 0 0 0 0  0 0 6  0 0 0 0  2 0  5 2 13  0 0 0 3 839 

B13 2015 12 0 0 0 2 0 0  0 0 2  0 22 2 0  0 0  12 15 38  0 6 0 3 371 

B18 2015 10 3 0 0 3 0 0  0 5 0  0 13 0 0  0 0  0 3 27  0 3 0 3 285 

B18 2016 20 0 4 0 2 1 0  0 0 0  1 173 1 1  0 0  0 37 20  0 0 0 7 89 

B23 2015 10 0 0 0 0 0 0  0 0 0  0 0 0 0  0 0  0 0 12  0 0 0 3 39 

B25 2015 20 0 0 0 1 0 0  0 0 6  0 48 1 0  0 0  6 11 62  0 9 0 3 676 

H01 2015 11 0 0 0 1 0 0  0 0 0  0 4 0 0  0 0  0 0 7  1 0 0 3 184 

H01 2016 30 0 0 0 4 2 0  0 0 0  0 3 1 0  1 0  0 0 0  0 0 2 5 195 

H02 2015 1 0 0 0 0 0 0  0 0 2  0 0 0 0  0 0  0 0 20  0 0 0 3 225 
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Table D3, continued 
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H02 2016 1 0 0 0 2 0 0  0 0 0  0 0 0 0  0 0  0 0 0  0 0 0 2 69 

OR01 2015 2 0 0 0 0 0 0  0 0 0  0 0 0 0  0 0  0 1 0  0 5 0 2 152 

OR11 2015 7 0 0 0 0 0 0  0 0 0  0 3 0 0  0 0  1 4 4  0 12 0 3 326 

OR11 2016 39 0 0 0 1 0 0  0 0 0  0 0 0 1  1 0  0 14 11  0 1 0 6 305 

OR12 2015 14 0 0 0 0 0 0  0 0 0  0 0 0 0  0 0  1 0 14  0 0 0 2 10 

OR16 2015 1 0 0 0 0 0 0  0 0 0  0 0 0 0  0 0  2 0 1  0 3 0 3 164 

OR16 2016 7 0 0 0 1 1 0  0 0 0  0 0 0 0  1 0  0 0 3  0 0 0 3 223 

OR17 2015 6 0 0 0 2 0 0  0 0 5  0 1 0 0  5 0  4 0 17  0 18 0 3 316 

OR23 2015 9 0 0 0 0 0 0  0 0 0  0 2 0 0  6 0  0 0 1  0 0 0 3 248 

OR25 2015 12 0 0 0 1 0 0  0 0 0  1 13 0 0  2 0  1 5 208  0 0 0 2 413 

OR26 2015 10 0 0 0 0 0 0  0 0 0  0 0 0 0  6 0  4 0 2  0 21 0 3 237 

OR26 2016 9 0 0 0 2 0 0  0 0 0  0 0 3 0  1 0  2 0 0  0 6 0 6 264 

OR27 2015 0 0 0 0 0 0 0  0 0 0  0 0 0 0  0 0  0 0 1  0 2 0 1 88 

OT05 2015 9 0 0 0 0 0 0  0 0 0  0 0 0 0  2 0  0 0 6  0 0 0 3 17 

OT05 2016 2 0 0 1 0 0 0  1 0 0  0 0 0 0  0 0  0 0 0  0 0 0 2 24 

OT06 2015 5 0 0 0 0 0 0  0 0 0  0 9 0 0  4 0  0 2 27  0 0 0 3 106 
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Table D3, continued 
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OT06 2016 38 0 0 0 0 2 0  0 0 0  0 0 0 0  1 1  2 0 15  0 0 0 6 125 

OT10 2016 4 0 0 0 0 3 0  0 0 0  0 0 0 0  3 0  2 0 2  0 0 0 3 427 

OT12 2016 3 0 0 0 0 0 0  0 0 0  0 0 0 0  0 0  0 0 0  0 0 0 2 111 
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APPENDIX E: EXAMINATION OF THE SEASONALITY OF RANAVIRUS (RV) 

INFECTION IN WOOD FROG LARVAE 

E.1 Introduction  

There is mounting evidence that ranavirus (Rv), an emerging viral pathogen, contributes 

to substantial amphibian population declines globally and can result in high mortality rates 

within populations (Lesbarreres et al. 2012; Gray and Chinchar 2015). Rv infection in 

amphibians has been detected on five continents and in every state within the continental US 

(Duffus et al., 2015; USGS NWHC, 2015). Even when mortality is <100%, the resultant 

population decline can exacerbate the risk of extinction from other stressors, such as habitat loss 

and degradation (Earl and Gray 2014; Brunner et al. 2015) or presence of other pathogens 

(Hoverman et al. 2012b; Landsberg et al. 2013). The consequences of this disease may be 

underrated because study of its ecosystem consequences and interactions have begun relatively 

recently (Chinchar et al. 2009). Although great strides have been made to understand the 

ecology, etiology, epidemiology, and other aspects of the disease, there continues to be a lack of 

information about how environmental factors contribute to mortality, incidence of illness, and 

timing of infection in populations (Lesbarreres et al. 2012).  

Wood frog (Lithobates sylvaticus) tadpoles are especially susceptible to Rv infection 

(Hoverman et al. 2011) and observations of cohort die-offs in vernal pools are not uncommon 

throughout the Northeastern US (e.g., Brunner et al., 2011; Gahl & Calhoun, 2010; Wheelwright, 

Gray, Hill, & Miller, 2014). Loss of wood frogs in vernal pools due to unchecked Rv infections 

could degrade food web structure and resilience in these pools as tadpoles have important roles 

as consumers and prey (Duellman and Trueb 1994; Schiesari et al. 2009; Brodie and 
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Formanowicz 1983; Skelly 1997). Despite that wood frogs are prolific breeders and can thus 

absorb high mortality rates, they are also short-lived and have high breeding site fidelity (Berven 

2009). This confluence of factors makes it so that consecutive years of die-offs within a pool 

greatly increase the probability of extinction of a breeding population. Moreover, the loss of 

wood frogs from vernal pools would likely alter these ecosystems in ways not yet understood 

(e.g., biogeochemically, food web contributions, the cascade of effects resulting from frogs 

transferring nutrients between aquatic and terrestrial systems; Gibbons et al. 2006; Capps et al. 

2015). The potential consequences of Rv infection for wood frogs are especially concerning 

because we cannot know the risk to vernal pool ecosystems without information about which site 

conditions increase tadpole susceptibility and mortality. Surveillance studies that intensively 

monitor Rv infection in tadpole populations are needed to better understand the population 

consequences of Rv infection (Gray, Brunner, Earl, & Ariel, 2015).  

During a preliminary investigation of Rv infection in 2014-15, we conducted wood frog 

tadpole surveys targeted at measuring growth and development and observed clinical signs 

consistent with Rv infection (hemorrhaging, lethargy, bloating) in 24 and 22 pools and die-offs 

in 1 and 4 pools in 2014 and 2015, respectively. We collected and sent a small subset of tadpole 

samples from 7 pools (years combined) to the USGS National Wildlife Health Center (NWHC) 

for lab analysis. Although virus culture rates were low (due to a logistical issue), samples from 3 

pools tested positive for Rv, including 2 of the 5 pools with die-offs. The NWHC also suspected 

Rv infection in those samples that did not test positive but in which clinical signs of Rv were 

observed. If all tadpoles that had clinical signs of Rv were actually infected, 13 pools had 

tadpoles that were infected with Rv for at least two consecutive years, however, did not 

necessarily experience complete die-offs. Additionally, pools that had infected individuals are in 
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a variety of settings, ranging from suburban lawns to managed forests, and the timing of 

observed clinical signs and die-offs did not appear to be synchronous across pools. The disparate 

infection timing, prevalence (proportion of infection within a population), and mortality rates 

among pools supports the idea that site characteristics contribute to the response of a population 

to Rv infection. Because Rv has been observed to occur in pools for consecutive years 

(Hoverman et al. 2012a, personal observation), the known occurrence of Rv in these pools 

provided an opportunity to study its effects on wood frog tadpoles. 

In 2016, we conducted a surveillance study to describe seasonal changes in (1) 

prevalence of Rv-infected tadpoles, (2) viral load in tadpoles, and (3) the waterborne Rv 

concentration in vernal pools. We also aimed to provide insights into how pool characteristics 

that change throughout the season may influence these responses. We also considered the effects 

of larval development. Additionally, we examined how prevalence and timing of infection was 

related to pool-wide tadpole die-offs and how tadpole Rv infection and development varied with 

concentrations of Rv DNA in pool water throughout the season.  

E.2 Methods 

E.2.1 Tadpole sampling 

We surveyed wood frog tadpoles in 10 vernal pools in the Greater Bangor, Maine, area 

between 19 May and 13 September 2016 for Rv infection. We conducted surveys approximately 

weekly (4-17 days between visits, mean = 7.1 days, median = 7 days; 17 day gap only occurred 

once at the beginning of the season, and the next longest time between surveys was 11 days) 

surveys starting shortly after hatching and continued until metamorphosis or a die-off occurred. 
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During dip netting surveys, we captured up to 26 tadpoles from each pool and conducted larval 

examinations, noting developmental Gosner (1960) stage and measuring mass and body length. 

Although not necessarily indicative of Rv infection, we also noted any symptoms consistent with 

Rv infection. We calculated an index of relative condition (hereafter referred to as condition, 

Cond) as the residuals of square root-transformed mass (g) regressed on SVL and developmental 

stage. Condition is used to indicate amount of fats and other energetic reserves relative to body 

size (reviewed by Green 2001). Field equipment that came in contact with pool water or animals 

was disinfected at least 100 m from pools using 0.75-2% Nolvasan® S (chlorhexidine diacetate; 

(Bryan et al. 2009) after visiting each site. 

Tadpoles in five of these pools were also monitored for Rv infection using quantitative 

polymerase chain reaction (qPCR). These pools (hereto referred to as “tadpole collection pools”) 

were selected for this more intensive surveillance because Rv had been detected or a die-off 

suggestive of Rv infection occurred in 2014 and/or 2015. When ≥ 5 tadpoles were captured, up 

to 15 tadpoles were euthanized by submersion in an aqueous 10g/L solution of MS-222 (tricaine 

methane sulfonate) for organ extractions. Our target sample size for genetic analyses was 15 

tadpoles because in pools with 4,300-21,000 tadpoles (early spring estimated maximum 

population sizes in these 5 pools based on egg mass counts and clutch size estimates in 2014-15; 

See Chapters 2 and 4 for methods egg and embryo count methods) this sample size would likely 

detect high-prevalence Rv infection (≥ 20% infection rate; sample size recommendations in Gray 

et al. 2015). We collected tadpoles for qPCR testing in one of the other five pools during a visit 

when symptoms of Rv were detected in tadpoles. 
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Tadpoles were placed on ice and immediately transferred to the lab where liver and 

kidneys were extracted and frozen (-80 C) until shipped to the University of Tennessee Rv Lab 

(under direction of M. Gray) for qPCR to detect and quantify Rv (viral load) in individuals. Each 

sample was run in duplicate, and samples without amplification were considered negative. We 

prioritized sample testing so that those collected at the last sampling date were tested first, 

followed by those collected from sequentially earlier dates of sampling until Rv was not detected 

in any tadpoles sampled from a visit. This method allowed us to archive samples from the 

beginning of the season and only test samples if ranavirus infection was detected in samples 

from later weeks, thus minimizing the number of samples that needed to be analyzed.   

E.2.2 Pool water sampling (eDNA) 

Water sampling was conducted to determine the Rv titer in pool water. This non-

invasively sampling technique has been validated to be effective for detecting Rv presence in 

wood frog tadpole populations, with concentrations of Rv in pool water positively correlated 

with viral load in tadpoles (Hall et al. 2016). Despite the benefits of this technique, we note that 

this technique is complementary to the Rv testing of individual tadpoles as it does not indicate 

the prevalence of infection within a population, does not specifically identify which host(s) 

contribute eDNA, and the diagnostic specificity (true negative rate) has not yet been estimated 

for this technique (Hall et al. 2016).  

We collected water once every 1-2 weeks from 10 pools between 9 June and 9 August 

2016. Three 250 ml samples were collected ~120 degrees apart on each pool shore; samples were 

taken from the edge of each pool prior to entering pools for tadpole capture. At each pool visit, 

water samples were either immediately filtered or put on ice, transferred to the lab, kept under 
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refrigeration, and filtered within 24 hours. We filtered 200 - 250 ml from each water sample 

using a vacuum pump onto one or two 0.45 μm Cellulose nitrate filter funnels (Fisher scientific: 

CAT#1452045). Directly after filtering a round of pool water, a corresponding field- or lab-

negative sample was processed using 250 ml of store-bought bottled water (Nestle). Filtration 

equipment was disinfected using 10% bleach solution after the processing each water sample. 

eDNA samples were placed in paper coin envelopes and then sealed into a snack bag with at 

least 10 ml of indicating silica, stored at room temperature, and shipped for DNA extraction and 

qPCR at Washington State University within 5 months of collection. During storage, we replaced 

silica beads if color change indicated the presence of excess moisture. Water sampling was 

conducted in cooperation with a separate study by E. Hall that focused on linking road-related 

disturbance with Rv die-offs in wood frog larvae using eDNA techniques. 

E.2.3 Sampling site characteristics  

We measured water depth using a pole marked in centimeter increments and water probes 

(Hach ©, Loveland, Colorado) to sample specific conductance (indicating salinity), dissolved 

oxygen (DO), pH, and water temperature. On each date a pool was sampled, we collected and 

tested 1 L of surface water ~1 m from the water edge at each of three equidistant points around 

the perimeter. All testing was conducted at the pool edge within minutes of sample collection. 

All metrics except depth were averaged by day to calculate values used in analyses.  

E.2.4 Statistical analysis 

All statistical analyses were completed using program R (R Core Team 2016). For 

analyses of relationships between eDNA and site and tadpole morphology characteristics we 
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assigned each measurement to a “Visit” based on the date of observation. Because eDNA 

sampling was often not conducted on the same day that site characteristics and tadpoles were 

measured, we associated measurements by “Visit”.  

We examined the effect of site characteristics and tadpole morphology metrics on 

prevalence of tadpole infection in tadpole collection pools and on eDNA titer in all ten pools. We 

used a two-step model selection process to identify which predictors within each predictor 

category (site characteristics, larval morphology) were likely influential and then compare the 

relative influence among those variables. First we created a set of models for each response using 

R package ‘nlme’ (Pinheiro et al. 2017) for logistic regression for the probability of infection 

(prevalence) and using package ‘lme4’ (Bates et al. 2017) for eDNA titers. Because it is likely 

that prevalence and eDNA titer do not respond linearly to site or tadpole morphology 

characteristics, we considered both linear and quadratic models. Examination of correlation plots 

indicated possible quadratic relationships between eDNA titer and site and tadpole morphology 

characteristics. For prevalence, we created multivariate linear model with all single-order site 

characteristic terms and a separate model with all single-order tadpole morphology terms. 

Examination of the residuals did not indicate a quadratic relationship between prevalence and 

predictors. Thus, each set of models included all univariate linear models and model sets for 

eDNA titer also included a two-term model with the corresponding quadratic term added to a 

univariate model. We nested observations by site (Site as a Random effect) to account for the 

lack of independence among observations within a site. We grouped models of each response by 

predictor category and selected the top models for a response within each category. We used 

library ‘AICcmodavg’ (Mazerolle 2017) to rank models using Akaike’s information criterion 

adjusted for small sample size (AICc). We considered models ΔAICc<2 that ranked above the 
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null model to be plausible (Burnham and Anderson 2002). Secondly, for each response, we 

compared all plausible models across predictor categories to determine the relative importance of 

predictors. We examined the 85% confidence intervals (Arnold 2010) of each covariate in this 

final set of models (i.e., that ranked above the null model and had ΔAICc<2 within its respective 

predictor category) to determine effect.  

E.3 Results  

We sampled 1,059 tadpoles in all 10 pools where pool water titers were sampled, with 

546 in tadpole collection pools. We conducted qPCR analyses for 197 tadpoles at tadpole 

collection pools and an additional 15 tadpoles at one non-tadpole collection pool where tadpoles 

with symptoms consistent with Rv were detected, for a total of 212 tadpoles at 6 pools.  

E.3.1 Die-offs in pools with tadpole collection 

Apparent die-offs in two pools (H02, OT10) likely involved Rv. In these pools leading up 

to die-offs, the detected prevalence of Rv increased up to 75-100% and the viral titer in pool 

water was double that of the three other tadpole collection pools. Moreover, in H02, we never 

detected tadpoles in the late stages of metamorphosis (most advanced developmental Gosner 

stage detected = 34; hind limb developed to foot paddle stage, but no digit separation), 

suggesting that tadpoles did not complete metamorphosis. In OT10 we detected one tadpole as 

developmentally advanced as Gosner stage 40 one week prior to the last date of detection, thus it 

is possible that some tadpoles completed metamorphosis between these site visits. However, the 

maximum developmental stage detected during the last site visit when 15 tadpoles (our sampling 

target) were detected (29 June) was Gosner stage 37 (minimum = 31, median = 33), suggesting 
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that declines in tadpole detection at subsequent visits were not caused by emergence from pools. 

On the last date tadpoles were detected in OT10, we also detected four larval Ambystoma spp. 

which had symptoms consistent with Rv (hemorrhaging, mortality, swelling).  

A die-off likely occurred in one other pool (OT12) as tadpoles were unexpectedly not 

detected despite tadpoles not yet nearing completion of metamorphosis. On the last two dates of 

detection at OT12 tadpoles were between Gosner stages 28 – 32 (Figure E1a). Although Rv was 

detected in pool water, it is unlikely that this die-off was primarily precipitated by Rv since Rv 

was not detected in any of the 16 tadpoles tested on the last two dates when tadpoles were 

detected in OT12. Although a tadpole in OT06 had our highest viral load of all tadpoles sampled, 

there is no evidence of a die-off at this pool as prevalence was low (1 of 15 tadpoles sampled) on 

the date tested tadpoles were collected, none of the 15 tadpoles sampled on the previous date 

were Rv-positive, and 15 tadpoles (our sampling target) were detected within a week of pool 

drying. 
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Figure E1 Seasonal trends in mean tadpole developmental stage (A), SVL (B), body condition 

(C), and Ranavirus (Rv; (D)) titer in tadpoles as well as the probability of infection (E) and the 

Rv titer in pool water (F) in 5 pools in 2016. Error bars represent 95% CIs. Tadpole titer was 

calculated for the subset of tadpoles that tested positive for Rv, only. All dates with larval Rv 

titer samples are reflected in (E). 
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E.3.2 Seasonal trends associated with Rv detection in tadpoles 

At both pools with suspected Rv-involved die-offs (H02 and OT10), tadpoles were Rv-

positive at two and four sequential samplings, respectively, with increasing prevalence but 

decreasing viral titer in tissue (Figures E1d-e). In both pools, Rv-infected tadpoles were detected 

at approximately the same developmental stage (H02, mean Gosner stage = 30.0, 95% CI = 26.6-

30.4; OT10, mean = 30.9, 95% CI = 30.5-31.3), and leading up to die-offs viral load in tadpoles 

decreased and prevalence increased (Figures E1a, d, and e). Both pools also had the highest 

eDNA concentration of the five pools where larvae were routinely sampled for Rv (Figure E1f). 

The progression of infection and prevalence throughout the season differed between the two 

pools with detection of Rv in tadpoles at H02 approximately three weeks earlier than at OT10 

(Figures E1d-e). The die-off at H02 also appeared to progress more quickly, as we were not able 

to detect tadpoles at H02 within two weeks of the first Rv detection, but at OT10 tadpoles were 

detected until approximately one month after the first Rv detection. The number of tadpoles 

detected during and after the visit when Rv was detected declined slowly at OT10 (on 29 June, 

15 of 15 tadpoles sampled; on 8 July, 3 of 3 tadpoles, 14 July, 2 of 2 sampled) compared to H02 

where 15 tadpoles were detected during each of the two last visits. Tadpoles in H02 developed 

faster than in OT10 (progressed to a later Gosner stage at an earlier date; Figure E1a), and the 

die-off in H02 occurred earlier in the season than in OT10.  

 Of the five non-tadpole collection pools, the only one that had notably higher specific 

conductivity and a lower pH than the others (H02) also likely had a Rv-related die-off (Figures 

E2a and c). The one pool that had a consistently lower pH than the others (OT12) had a die-off 

that was not likely Rv-related (Figure E2c). No Rv-infected tadpoles were detected in the one 

pool that was notably deeper than the others (OR26), but Rv was detected in pool water in this 
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pool (Figures E2a and d). Tadpole morphology, DO, and water temperature did not vary 

appreciably among these five pools throughout the season (Figures E1a-c, E2b, and E3b).  

 Prevalence of infection was predicted to increase with pH and developmental stage, with 

pH as the predictor in the top-ranking model (Tables E1-E2). The probability of infection in a 

“typical” pool was predicted to increases notably after approximately pH 6.0 or Gosner stage 35, 

however, there was considerable among-pool variation (Figure E4). 
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Table E1 Model ranking using only those models that ranked <2 ΔAICc in their respective 

predictor category (site characteristics and larval morphology) and that ranked higher than the 

null model. Null models (NM) are included for reference. Observations are nested by Site 

(random effect) in all models. Quadratic models included linear and squared covariate terms.   

  K AICc ΔAICc w LL 

Prevalence      

pH 3 86.41 0 1 -40.11 

Stage  3 133.25 46.84 0 -63.57 

Null 2 178.58 92.17 0 -87.26 

eDNA       

 DO + DO2 5 557.5 0 1 -273.66 

 Stage 4 999.18 441.68 0 -495.54 

 Null 3 1013.62 456.12 0 -503.78 

 

Table E2 Estimates, standard errors, and 85% confidence intervals (CIs) of covariates of eDNA 

and detected prevalence of Rv infection for models with <2ΔAICc within their respective 

predictor category and that rank above null models. Covariates are listed in order of AICc of 

their respective model. Quadratic models included linear and squared covariate terms.   

  β estimate SE Lower CI Upper CI 

Prevalence     

pH 21.7 5.86 13.7 30.9 

Stage  0.707 0.143 0.518 0.930 

eDNA     

DO  -0.574 0.134 -0.767 -0.381 

DO2  0.0578 0.0153 0.0358 0.0799 

Stage 0.0527 0.0129 0.0342 0.0712 
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Figure E2 Seasonal trends in the mean specific conductivity (A), DO (B), and pH (C) in 5 pools 

in 2016. The probability of infection (D) and the Rv titer in pool water (E) are duplicated from 

Figure E1 for comparison. Error bars represent 95% CIs.  
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Figure E3 Seasonal trends in the mean pool depth (A) and temperature (B) in 5 vernal pools in 

2016. The probability of infection (D) and the Rv titer in pool water (E) are duplicated from 

Figure E1 for comparison. Error bars represent 95% CIs.  
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A 

 
B 

 
Figure E4 Predicted probabilities of Ranavirus detection in wood frog tadpoles corresponding to 

pool pH (A) and developmental (Gosner) stage (B) for five vernal pools. The thick line in the 

middle represents the predicted values across all pools, and the thin lines represent the extremes 

of the location of 85% of pools’ logistic curves. Open circles represent individuals. Points are 

‘jittered’ to show all individuals, but infection values for each individual is 0 or 1. 
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E.3.3 Rv detection and die-offs in pools with eDNA sampling 

We detected Rv in all pools during at least one visit, and the highest titers (>104 copies x 

ml-1) were detected between mid-June and mid-July in two pools (Figure E5). Approximately a 

week prior to this time (8 June), we detected symptomatic tadpoles in OR16, the one of these 

two non-tadpole collection pools, and tested 15 individuals but Rv was not detected in any of 

these tadpoles. This pool and another pool without tadpole collection (B18 and OR16) had 

higher eDNA titers than H02 or OT10 where die-offs likely involved Rv (as confirmed by Rv 

detection in tadpoles; Figure E5). At both pools we detected tadpoles in the late stages of 

metamorphosis (≥41 Gosner stage, front arms emerge within 24 hours), suggesting that some 

tadpoles in each pool completed metamorphosis. Although Rv was not detected in tadpoles 

collected on 8 June from OR16, we suspect a relatively slow die-off occurred in there as the 

number of detected tadpoles decreased from 15 (our sampling target) on 28 June to one tadpole 

on 20 July and the pool never dried. In contrast, there is no evidence that a die-off occurred at 

B18 as 14 tadpoles were detected on the last date of sampling (12 July) and the pool dried within 

the following week. There is no evidence of die-offs in the other three pools without tadpole 

collection (H01, OR11, OT05) as all three pools had tadpoles detected within the week prior to 

drying, no notable declines in the number of detectable tadpoles from week-to-week with the 

exception of samplings within a week of drying (5-15 tadpoles detected), and eDNA titers in 

these pools were <0.05 copies x ml-1.  

In one pools with a likely Rv-involved die-off, OT10, eDNA titers remained relatively 

high during visits with high prevalence detection in tadpoles and approximately two weeks after 

the last tadpole detections. However, eDNA titers were substantially lower in another pool with a 
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likely Rv-involved die-off, OR16, near the time of die-off than had been measured two weeks 

earlier.     

DO and developmental stage both had statistical effects (2ΔAICc within each predictor 

category and with 85% CI excluding zero) on eDNA titer (Tables E1-E2). Pools with tadpoles at 

later developmental stages were predicted to have higher eDNA titers (Table E2 and Figure 

E6b).  However, there was substantial variation in predicted values among pools (Figure E6).  

 

 

 
Figure E5 Seasonal trends in the mean Rv titer in pool water. Error bars represent 95% CIs.  
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A 

 
B 

 
Figure E6 Predicted eDNA titer of Ranavirus corresponding to DO (A) and wood frog tadpole 

developmental (Gosner) stage (B) in ten vernal pools. The thick line in the middle represents the 

predicted values across all pools, and the thin lines represent the extremes of the location of 85% 

of pools’ predicted curves. Open circles represent pool-visits in (A) and individuals in (B). Points 

in (B) are ‘jittered’ to show all individuals. 
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E.4 Discussion 

We detected the presence of Rv in pool water across all study pools but only detected 

tadpole declines and other evidence of Rv-related die-offs at three pools. Although PCR cannot 

determine if the detected virus is active (Miller et al. 2015), this suggests that Rv may be 

ubiquitous within our study area but that susceptibility may differ among pools. This contributes 

to a growing body of evidence that multiple factors, including physical and chemical site 

characteristics as well as anthropogenic stressors, may interact and effect amphibian 

susceptibility to Rv (Gray et al. 2009; Gahl and Calhoun 2010). Greater probability of infection 

in tadpoles in pools with higher pH (Table E2, Figure E4a) aligns with a lesser likelihood of 

infection of wood frog and spring peeper (Pseudacris crucifer) tadpoles in pools with lower pH 

(pH <4.5) observed by (Gahl and Calhoun 2010). In contrast to their finding that lower specific 

conductivity predicted a higher incidence of Rv die-offs and that Rv die-offs were not detected at 

pools with <60 μS, one of our three pools that likely had a Rv die-off had the highest specific 

conductivity within the tadpole collection pools (approximately 200-400 μS). However other 

studies have noted Rv infection of larval amphibians in pools with pH 7.35 (Bullfrog, Lithobates 

catesbeianus; Landsberg et al. 2013). DO predicted eDNA titer in our study pools, but 

interpreting the effect of this is difficult given the relatively small range of DO represented by 

our study pools and the quadratic shape of the relationship indicating the lowest predicted eDNA 

titer near 5% DO.  

We detected a greater likelihood of infection and eDNA titer with developmental stages 

nearing metamorphosis (Figures E3b and E5b). These results support other studies providing 

evidence that susceptibility increases with tadpole developmental stage. Warne et al. (2011) 

observed wood frog tadpoles infected with Rv at developmental stages nearing metamorphosis to 
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have a greater likelihood of death, and die-offs typically observed at developmental stages near 

completion of metamorphosis in wood frogs and other amphibians (Green et al. 2002; Greer et 

al. 2005; Gahl and Calhoun 2010).    

The apparent widespread occurrence throughout our study site in relatively undisturbed 

sites as well as at pools within 10 meters of roads, emphasizes the potential impact Rv may have 

on vernal pool-breeding amphibian populations. Additionally, as Rv titers in pool water and 

tadpoles were better predicted by pool chemistry than by tadpole developmental measures, it is 

possible that Rv infection and die-offs respond more strongly to pool physical characteristics 

than developmental stage.  
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APPENDIX F: DETECTION OF ICHTHYOPHONUS IN WOOD FROG AND AQUATIC 

INSECTS 

F.1 Introduction 

Icthyophonus sp. infections leading to morbidity and mortality have been detected in 

multiple species of larval and adult frogs and salamanders from vernal pools and other wetland 

types throughout the eastern US (Mikaelian et al. 2000; Green et al. 2002; USGS National 

Wildlife Health Center (NWHC) 2009). Ichthyophonus-attributed wood frog (Lithobates 

sylvaticus) larvae die-offs in vernal pools have been reported many times including twice in 

Maine (Gahl and Calhoun 2008; Glenney et al. 2010). Icthyophonus is currently thought to be 

endemic to amphibian populations, generally resulting in more cases of morbidity than mortality 

within a population (Green et al. 2002). However, whole cohort die-offs in multiple amphibians 

have also been attributed to Icthyophonus and this is troubling as there has been little research on 

population effects (Green et al. 2002). Additionally, not much is known much about site 

conditions that may correlate with Ichthyophonus infections and/or die-offs in amphibians 

(David Green, personal communication, 20 November 2015). It is also unknown how this 

organism may be spread among amphibians, whether it persists in the environment, whether 

there are unidentified infective stages, and whether there are intermediate hosts (NWHC report, 

30 November 2015).  

Icthyophonus can infect wood frog larvae in landscapes where Ranavirus – a lethal 

pathogen of amphibians – is also present (Gahl and Calhoun 2008; Glenney et al. 2010). 

Icthyophonus and Ranavirus can co-occur in pools within an amphibian species ( red-spotted 

newts, Notophthalmus viridescens; Glenney et al. 2010). Because symptoms of Icthyophonus 
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overlap with those associated with Ranavirus infection in tadpoles (swelling in the thigh, rump, 

and tail; Densmore and Green 2007), it is possible that infections and die-offs attributed to 

Ranavirus may be facilitated or caused by Icthyophonus. In 2015 and 2016, we surveyed wood 

frog tadpoles across an urbanizing landscape to examine which diseases might infect wood frog 

tadpoles and how this might vary with urbanization. This survey was not disease-specific and 

thus not designed to target Ichthyophonus. Because Batrachochytrium dendrobatidis (Bd) and 

tadpoles with symptoms consistent with Ranavirus had been detected within the study area prior 

to our study (Longcore et al. 2007; personal observation; Appendix E), we expected that some 

symptoms, such as swelling, lethargy, or emaciation, or die-offs to most likely be caused by 

these diseases.   

F.2 Methods Field observations and USGS National Wildlife Health Center examination 

We conducted health surveillance surveys of larval wood frogs from 15 May – 15 

September 2015 and 18 May – 13 September 2016 in 32 vernal pools in greater Bangor, Maine 

following methods in Chapter 2. During surveys we noted indications of disease, including small 

white structures embedded in the skin and/or visible within the body cavity in several larvae. In 

2015, we collected and submitted 19 of these larvae from seven pools to the USGS National 

Wildlife Health Center (NWHC) for examination. We photographed a sample of these white 

structures from a wood frog skin sample through a light microscope. Morphologically similar 

white structures were detected in multiple aquatic insects examined in 2016. Additionally, we 

quantified within-pool and landscape scale site characteristics following methods in Chapter 2.   
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F.3 Results 

The NWHC confirmed muscle infections by Icthyophonus sp., a fungal parasite, in 12 

larvae from five pools via histological examination. Nearby pools there was little disturbance 

(0.0-5.6 % impervious cover within 100 m), and within 1,000 m of pools there was 2.0-27.5 % 

impervious cover. Furthermore, gross examination suggested muscle infection in five tadpoles 

for which histological examinations were not conducted, for a total of 17 of 18 wood frog 

samples with confirmed or suspected Icthyophonus infections (NWHC report, 30 November 

2015). The NWHC suggested that given the absence of other infectious skin diseases in the 

examined larvae, it is likely that all white structures were due to infection by Icthyophonus. The 

NWHC noted 4 to >90 individual Icthyophonus organisms in each tadpole, and suggested that 

Icthyophonus infection may have been the cause of death for these animals, however, this was 

unclear as the intensity of Icthyophonus infections was considered minimal to moderate.  

In the field, we detected small white structures embedded in tadpoles in 11 pools, total, 

between 3 June – 28 July 2015 and 16 June – 20 July 2016 (Table F1, Figures F1 and F2). These 

structures were observed on the ventral sides and tails of tadpoles. Concurrently observed 

symptoms of infection included lethargy, hemorrhaging, emaciation, and bloating/swelling, and 

in 2015, 11 individuals with structures were found dead. Infected tadpoles were Gosner stage 25-

40 (median = Stage 35 in 2016, Stage 32 in 2015) and SVL 6-20 mm (median = 13 mm in 2016, 

14 mm in 2015). We also detected morphologically similar structures in five insect taxa in five 

pools in 2016, with two of these pools also having tadpoles with white structures (Table F2, 

Figure F3). During some surveys, the detected prevalence of these structures was relatively high 

(5-100% in 2015; 33-87% in 2016). Five pools where white structures were detected in 2015 
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were also sampled in 2016. Two pools had white structures detected on tadpoles both years, with 

80-95% prevalence during at least one survey each year.  
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Table F1 Detected prevalence of white structures consistent with Icthyophonus sp. in wood frog 

larvae in 32 pools in greater Bangor, Maine during 2015-2016.  

Year Overall prevalence 

(larvae with white 

structures detected; 

total larvae examined) 

Prevalence within pools where 

structures were detected (larvae 

with white structures detected; 

total larvae examined) 

Proportion of pools with 

detections (Pools with 

white structures detected; 

Total pools examined) 

2015 3.6% (185; 5,071)  10.6% (185; 1,747) 32.2% (10; 31) 

2016 5.9% (69; 1,160) 23.8% (69; 290) 25.0% (3; 12) 

 

a.  

 

b. 

 

c. 

 

Figure F1 Tadpoles with suspected Icthyophonus sp. infections observed on June 9 (a) and 22, 

2015 (b) and June 28, 2016 (c). Arrows point to small white structures that are likely 

Icthyophonus sp. spores in (a) and (b). The entire tail of (c) has multiple small white structures as 

indicated by the bracket. A single spore is indicated in (a), and multiple spores are present 

throughout the abdomen in (b) and especially visible against the red of the heart and lungs. 

Tadpoles in (a) and (c) also displays symptoms consistent with Ranavirus (hemorrhaging and tail 

fin degradation). 
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a. 

 

b. 

 

c. 

 

  

Figure F2 Photographs of foreign bodies removed from a wood frog tadpole on June 19, 2015. 

Images are of the same slide at 40X (a and b) and 100X magnification (c). Image b was taken 

after the cell wall was ruptured and intercellular fluid appears to be flowing out of the cell. Image 

(c) is of the upper left structure in images (a) and (b). 

 

 

Table F2 Aquatic insects in which white structures consistent with Icthyophonus sp. were 

detected in greater Bangor, Maine from June 3 to July 21, 2016.  

Order/Suborder Family Genus 

Megaloptera Corydalidae  

Odonata/Anisoptera Libellulidae Sympetrum 

Coleoptera Noteridae  

Coleoptera Dysticidae  

Coleoptera Hydrophilidae  
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a. 

 

b. 

 
Figure F3 Photographs of a dragonfly larvae (Order Odonata, Suborder Anisoptera, Family 

Libellulidae) with small white structures consistent with the morphology of Icthyophonus sp. (as 

noted by black arrows) from OT06 from 2016 – June 10, 2016. 

 

In 6 of 11 pools where structures were detected some larvae exhibited concurrent 

hemorrhaging, a symptom consistent with Ranavirus infection (in pools with >20% prevalence 

during at least one survey during 2015 and with 87% prevalence in 2016). Of the pools where 

structures were detected in 2015 and 2016, two had larval amphibians (larval wood frog and/or 

Ambystoma sp.) with positive Ranavirus cultures (testing by USGS NWHC) in 2014, four had 

wood frog larvae with positive Ranavirus cultures in 2016 (testing in Matt Gray’s lab, University 

of Tennessee), four had larval wood frog die-offs in 2014, and one had a die-off in 2016 

(Appendix E). 

Pools where we detected structures in tadpoles had 0-31% impervious cover within 100 

m and 0-38% impervious cover within 1,000 m. These pools dried as early as 6 June and others 

did not dry during the year sampled, and pool areas ranged from 103-3,147 m2 at spring high 

water.   

F.4 Discussion and conclusions  

Because the NWHC suggested that all white structures detected in examined samples 

were caused by Icthyophonus, we suspect that most, if not all abnormal white spots detected on 
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amphibian larvae in the field were also due to infection by Icthyophonus. Our detections 

consistent with Icthyophonus infection appeared to spike in June and July, with relatively high 

prevalence of infection apparent in some larval cohorts. Our results are similar to that of 

Ichthyophonus-associated mortality events reported for larval and adult frogs between April-

August in the Midwest and glaciated northeastern North America (Mikaelian et al. 2000; Green 

et al. 2002).  

Results from the NWCH indicated that Icthyophonus infections were present in wood 

frog tadpoles in 3 of the 5 pools where we suspect there were Ranavirus-related die-offs in 

2015. Our detection of Ranavirus and Icthyophonus co-occurring in our study pools supports the 

idea that there may be a synergistic or facultative relationship between these pathogens. 

Additionally, given our detection of structures in aquatic insects that are morphologically similar 

to the Icthyophonus spores detected on wood frog larvae, it is possible that aquatic insects in 

vernal pools may also be affected by and/or involved in the life cycle of Icthyophonus.  

Because there is evidence that Icthyophonus may pose a substantial risk to pool-breeding 

amphibian larvae yet there is a lack of knowledge about the effects of this pathogen in amphibian 

larvae, we suggest future study of Icthyophonus in vernal pool ecosystems. Possible interactions 

of this pathogen with Ranavirus increase the importance of understanding the effects of 

Icthyophonus on pool-breeding amphibian larvae.  
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APPENDIX G: ASSESSMENT CHALLENGES AND PRELIMINARY EXAMINATIONS 

OF WHITE BLOOD CELL PROFILES IN WOOD FROG LARVAE  

G.1 Introduction 

  White blood cell (WBC) profiles are good indicators of pre-capture physiological 

condition in amphibians because WBC composition and production responds to the long-term 

blood concentration of corticosterone (CORT), a glucocorticoid which is involved in energy 

regulation and immune responses (Davis et al. 2008). Types of WBCs include neutrophils, 

lymphocytes, basophils, eosinopils, and monocytes and are involved in immunological functions 

such as defense (e.g., lymphocytes and basophils) and response to infection (e.g., neutrophils; 

Davis et al. 2008). The ratio of neutrophils : lymphocytes (hereafter referred to as N : L ratios) 

have recently been used to indicate adult and larval amphibian physiological health responses to 

environmental conditions (Shutler and Marcogliese 2011; Burraco et al. 2013; Hota et al. 2013). 

N : L ratios better reflect chronic environmental conditions than do CORT levels as CORT in 

amphibians can change in response to acute (Glennemeier and Denver 2002) and chronic 

(Gendron, Bishop, Fortin, & Hontela, 1997) adverse environmental conditions. Although short-

term activation of CORT is necessary for general life processes (e.g., mobilize energy to flee a 

predator), long-term activation can result in chronically elevated levels, leading to depleted 

energy reserves and/or the inability of an individual to mount an additional metabolic response to 

an acute stimuli (Glennemeier and Denver 2002).  

  Although WBC profiles have been used to assess the physiological health of amphibians, 

amphibian blood collection and smear creation methods, especially for relatively small tadpoles 

(i.e., <5 g), are poorly described in the literature. Several studies on amphibian larvae either do 
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not detail the number of WBCs counted to obtain N : L ratios (Rocha et al. 2010; Teixeira et al. 

2012) or use WBC counts that are too low to be considered statistically robust for analysis of N : 

L ratios (Davis 2008; Davis and Milanovich 2010; Hota et al. 2013): statistically relevant sample 

sizes require ≥100 WBCs per slide (Houwen 2001). Although creating high quality blood smears 

for small amphibian larvae, can be logistically challenging, N : L ratios paired with other 

measurements (e.g., mass, growth rate) can be used to comprehensively assess the health of 

amphibian populations.  

 WBC profiles may be especially appropriate to assess the response of some larvae with 

highly variable morphology to environmental conditions (i.e., comparatively large larvae are not 

necessarily healthier). As part of an overarching study examining how urbanization contributes 

to wood frog (Lithobates sylvaticus) declines, we attempted to assess N : L ratios. The external 

morphology of wood frog tadpoles is highly variable as development patterns respond to pool 

size, hydrology, vegetation, and predator communities (Skelly 1997; Snodgrass et al. 2000; 

Veysey et al. 2011), thus N : L ratios are appropriate to assess how urbanization may contribute 

to wood frog declines at the larval stage. Additionally, N : L ratios may indicate imperiled 

populations before actual declines become noticeable. Despite the potential for WBC profiles to 

provide much needed information about larval amphibian health, there are several logistical 

challenges to successfully performing this technique in small larval amphibians. Here, we 

present our preferred suite of techniques for blood collection and smear creation for African 

clawed frog in the lab (i.e., preliminary technique selection) and wood frog larvae in the lab and 

field. We also examine the relationship between wood frog larval developmental metrics and 

WBC types in successful smears (smears with ≥100 WBCs). 
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G.2 Methods  

G.2.1 Blood collection and smear creation techniques 

In 2014, we attempted preliminary blood smears for 92 wood frog tadpoles from three 

(Gosner stages 27-40, median 36; approximately 0.1-1.0 g). Tadpoles were from six pools, of 

which three were relatively rural landscapes (0-7% impervious cover within 1,000 m) and three 

were in somewhat urbanized landscapes (27-38% impervious cover). We euthanized tadpoles by 

submersion in 10 mg/L M-222 within 5 minutes of collection and tadpoles remained submerged 

for approximately 10 minutes prior to blood collection. We collected blood from euthanized 

tadpoles due to the small size of these animals relative to the volume of blood needed for N : L 

ratio analysis (5 - 10 µl [Davis et al. 2008]; which exceeds the recommendation of no more than 

10% of body mass for any amphibian <2.65g [Heatley and Johnson 2009]). Upon removal from 

MS-222, we dried tadpoles using an absorbent tissue, and made an incision on the ventral side at 

the heart with a No. 12 scalpel (hooked). We attempted to gently soak up any clear body fluid 

with an absorbent tissue prior to rupturing the exposed heart using a heparinized microcapillary 

tube (Davis and Maerz 2008). Immediately after blood collection, we created two blood smears 

on microscope slides using the coverglass technique (Houwen 2002). Within one month of 

collection a blood analyst stained the smears using a Wright-Giemsa stain (Volu-Sol, Salt Lake 

City, Utah; 2 minute stain, 2 minute buffer, and 10-dip rinse) and examined them for N : L ratios 

using a standardized count methodology (Houwen 2001). 

Because all smears created from these preliminary attempts were unreadable for N : L 

ratios (< 30 WBCs per slide), we attempted to improve upon techniques. Blood cells were 

distorted and diluted, likely caused by contamination of blood with lymph and cerebrospinal 
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fluid (personal communication, L. L. Leppert). Thus, our technique, rather than a lack of WBCs 

in tadpole blood, was likely responsible for the low number of WBCs. We identified possible 

improvements at multiple steps between tadpole capture and completion of stained smears.  

Immobilizing tadpoles and using magnification during blood collection, collecting blood from 

anesthetized amphibians (to be euthanized immediately after collection), and pretreating the 

circulatory system (injecting the heart) with heparin sodium, an anticoagulant, prior to collection 

were suggested to potentially improve the quality of blood smears (personal communications, A. 

B. Lichtenwalner, J. A. Weber). Other researchers suggested that staining slides immediately 

after collection or using a different stain may reduce cell degradation (personal communications, 

A. K. Davis, L. L. Leppert). Another strategy identified to reduce lymph contamination was to 

deposit blood into a small area on a thin cytocentrifuge filter pad on top of a microscope slide to 

absorb lymph while blood cells would fall to the slide, below (personal communication, Jill 

Arnold).  

 To improve the technique used to make smears between the 2014 and 2015 wood frog 

larval seasons, we used 37 lab-reared (Xenopus 1, Inc., Dexter, Michigan) African clawed frog 

(Xenopus laevis) tadpoles which were approximately the same size as wood frog tadpoles. 

Tadpoles were reared in aged tap water maintained at approximately 20 C at a density of 

approximately 1.6 tadpoles per L and fed Xenopus tadpole food (Carolina Biological Supply 

Company, Burlington, NC) and cooked lettuce. We collected blood and created smears between 

24 April and 29 May 2015. We attempted different techniques to (1) stabilize tadpoles (pinning, 

strapping with a rubber band, placing tadpoles into a tadpole-shaped divot cut in foam), (2) 

improve visibility of tadpoles (magnification, artificial lighting), (3) create an incision (No. 12 

and No. 15 scalpel), (4) collect blood (heparinized microhematocrit tube, cardiac puncture using 
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a 27 gauge needle), (5) create smears (wedge-method using two microscope slides; making a 

smear by placing blood on a coverslip, dropping another coverslip onto the blood, and quickly 

pulling the coverslips apart at a slight angle), and (6) stain slides (Wright-Giemsa [same as used 

in 2014], Dip Quick [5 s in methanol, 5 s in eosin, 5 s in Thyozine stain, rinse with DI water], 

May-Grunwald (Sigma Aldrich Inc., St. Louis, MO; 5 m in stain, 3 m in buffer [pH 6.8], 15 m in 

1:20 Giemsa solution, rinse with DI water). We also tested multiple placements and directions of 

the ventral incision, attempted to heparinize tadpole hearts (0.01 ml of 1000 iu/ml heparinized 

saline using a 27 gauge tuberculin syringe), and collected blood on euthanized as well as 

anesthetized tadpoles. Determination of success of these techniques was qualitative, with 

comparative targets of (1) reducing collection of non-blood body fluid and coagulated blood, (2) 

increasing the volume of undiluted blood collected, (3) a relatively even spread of readable blood 

cells across slides, (4) smears with undistorted WBCs, and (5) staining that contrasts WBC 

organelles for easier morphological distinction among WBC types. Two or more smears were 

created for each tadpole. We examined slides using an Olympus BX60 compound microscope.  

 Within a week of determining a preferred suite of techniques to create blood smears for 

clawed frog tadpoles, we were provided with several lab reared wood frog larvae from a separate 

research project. Between 1 – 3 June 2015, We conducted the preferred clawed-frog techniques 

on 33 wood frog larvae (Gosner stages 27-35, median 33; approximately 0.1-0.8 g) and made 

adjustments as needed to increase the success of smear creation for wood frog larvae.  

 Between 10 June – 14 July 2015, we created blood smears from wood frogs from 10 

pools in the field. Five pools were relatively rural landscapes (4-11% impervious cover within 

1,000 m) and five were in somewhat urbanized landscapes (27-38% impervious cover). We 

sampled 5-11 individuals per site (median = 10) and 1-4 slides were created per individual 
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(median = 2). We used the suite of techniques that were preferred to create blood smears from 

wood frog tadpoles in the lab. We also quantified developmental Gosner stage (Gosner 1960), 

mass, and SVL for tadpoles. Two or more smears were created for each tadpole in the lab and 

field. Field-collected smears that appeared to have an even, red spread indicative of a slide likely 

of having ≥100 WBCs were sent to a blood analyst to count types of WBCs using the standard 

methodology to determine N : L ratios (Houwen 2001). Neutrophils, lymphocytes, monocytes, 

eosinophils and basophils were counted for smears that had an abundance of WBCs nearing 100 

(based on the approximation of the blood analyst). Relatively few smears neared 100 WBCs per 

slide, and thus interpreting the relationship between N : L ratios and conditions was not 

appropriate as some sites would be represented by a smear from one tadpole. However, these 

data are appropriate for a preliminary examination of how WBC counts and N : L ratios vary 

with wood frog tadpole development.  

G.2.2 Statistical analysis 

Statistical analyses were conducted for wood frog WBC responses using program R (R 

Core Team 2016). We examined the relationship between the likelihood of an individual having 

at least one slide with ≥100 WBCs (i.e., a “successful” smear) and tadpole developmental 

responses (SVL, mass, stage) using logistic regression using R package ‘nlme’ (Pinheiro et al. 

2017). For those individuals with at least 100 WBCs per slide, we examined the statistical effect 

of tadpole developmental responses on each WBC type (the number encountered during a 

standard white blood cell count used to determine N : L ratios) and on N : L ratios using linear 

models using package ‘lme4’ (Bates et al. 2017). We averaged the numbers of WBCs by type for 

individuals that had >1 slide with 100 WBCs. To account for the lack of independence among 
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slides from the same individual, we included Site as a random term in all models. For each 

response, we created a set of univariate models, and then selected the top model(s) for each 

response using library ‘AICcmodavg’ (Mazerolle 2017) to rank models using Akaike’s 

information criterion adjusted for small sample size (AICc). We considered models ΔAICc<2 

that ranked above the null model to be plausible (Burnham and Anderson 2002).  If >1 model 

met these criteria, we tested additive models that included all combinations of covariates in 

plausible models. We examined the 85% confidence intervals (Arnold 2010) of each covariate in 

these models to determine effect.  

G.3 Results  

G.3.1 African clawed frog technique 

The suite of techniques that achieved the best smear for African clawed frogs used 

tadpoles included euthanasia, with blood collection beginning as soon as tadpoles did not 

respond to touch. Less blood was generally available for collection in tadpoles that continued to 

soak in MS-222 for a longer time, potentially because blood continued flowing immediately after 

death, but then may have quickly ceased to flow with additional time. We placed tadpoles in a 

supine position (ventral side-up) into a tadpole-shaped divot cut into a piece of soft foam and 

pinned tadpoles through the tail and nostrils to the foam. The tail was pinned at an angle through 

the tail to avoid the spinal cord and associated blood vessels to prevent bleeding. The tadpole 

was more stable when pinned into a divot than when pinned to a flat foam surface. Strapping 

tadpoles to the foam with a rubber band that was pinned at either end avoided rupturing blood 

vessels but did not adequately prevent tadpoles from shifting during incision.  
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We gently dabbed the skin dry with an absorbent lab tissue and then made a lateral 

(horizontal) 1 mm incision with a #15 scalpel to expose the heart. Creating a vertical incision 

(from vent towards nose) did not appear to increase the ease of blood collection, and the 

horizontal incision was easier to control. A small corner of the tissue was used to absorb 

interstitial fluid that flowed from the incision without disturbing any internal organs. However, 

attempts to absorb as much fluid as possible typically disturbed organs and resulted in 

uncontrolled bleeding into the abdominal cavity. With one hand, we positioned a heparinized 

micohematocrit tube in the incision and slightly agitated (ruptured) the heart while gently 

pinching either side of the base of the tail with thumb and forefinger of the other hand and then 

gently applying pressure to the lower abdomen. Applying pressure resulted in a greater volume 

of blood collected. The micohematocrit tube had a rubber bulb dispenser on the end which 

increased the accuracy and speed with which we could dispense the desired volume of blood on a 

slide. The bulb had the added benefit of greater dexterity in handling microhematocrit tubes 

during blood collection. We dispensed one drop of blood onto the end of the slide and created a 

smear using the wedge-method (Houwen 2002). The coverglass technique more often resulted in 

smears that did not have uniform coverage of red blood across the slide than the wedge-method, 

and the coverslip technique produced a relatively small smear. Although the coverglass and 

coverslip techniques did produce successful smears, we more reliably created successful smears 

using the wedge-method. Smears were stained immediately after drying using Wright-Giemsa 

stain. Other tested stains did not provide greater contrast in WBC organelles. Blood collection 

was aided by use of a tabletop, adjustable magnifying glass or a magnification visor (1.75-2.25 

X) and a small lamp lighting tadpoles. 
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The #15 scalpel was easier to control compared to the #12 (hooked) scalpel, as the tip of 

the #12 could more easily rupture a non-target area with the slight tremor of a hand. Attempts to 

heparinize the heart and to collect blood using a heparinized syringe (through an incision as well 

as without an incision) ruptured the heart and resulted in blood quickly mixing with fluid in the 

body cavity. Additionally, less blood was collected with the syringe than the microhematocrit 

tube, and after the only a portion of this blood in the needle hub was successfully removed via 

microhematocrit tube and then transferred to a slide.  

G.3.2 Wood frog technique 

The suite of techniques that achieved the best smear for wood frog tadpoles slightly 

differed from the best suite of techniques identified for African clawed frog tadpoles. WeI 

pinned tadpoles to the flat foam surface because they were typically less turgid than clawed frog 

tadpoles and “sunk” into the divot, making the angle of handling slightly more difficult. 

Additionally, the wood frog tadpoles did not shift as much as clawed frog tadpoles during 

incision and blood collection and thus did not require the extra stability of being positioned in a 

divot.  

Gently applying pressure to the lower abdomen during blood collection forced intestines 

out of the incision over the heart and thus was discontinued. Incision with a # 12 (hooked) 

scalpel provided more accuracy in the position of the cut than a # 15 scalpel. We used the tip of 

the scalpel to puncture the skin at one end of the horizontal incision, and then, with the hooked 

end just under the surface of the skin and maintaining upwards pressure, we completed the 

horizontal incision. Additionally, after agitating the heart with a microhematocrit tube, we held 
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the microhematocrit tube at a downwards angle from the heart during collection to use gravity to 

increase the volume of blood collected. 

G.3.3 Wood frog WBCs 

Twenty-one of the 91 individuals with smears examined for WBCs had successful smears 

(100 WBCs counted on at least one slide; 8 individuals had 2-3 successful smears), and seven 

pools had individuals with successful smears. Three of these pools were relatively urban (9 

individuals) and four were relatively rural (12 individuals). On successful smears, we detected 

16-83 lymphocytes (median = 53), 3-73 neutrophils (median = 22), 0-25 eosinophils (median = 

4), 3-37 basophils (median = 13.5), and 0-20 monocytes (median = 3.5). Larvae with successful 

smears were 0.60-1.55 g (median = 0.97 g), had 14-21 mm bodies (median = 18 mm), and were 

stage 30-41 (median = 36.5).  

In general, smears from later stage and larger tadpoles had fewer lymphocytes, more 

neutrophils and monocytes, and greater N : L ratios (Tables 1-2, Figure 1). Tadpole stage was the 

best predictor of lymphocytes, neutrophils, and (as would follow) N : L ratios (Table 1). 

Although mass was positively correlated with the likelihood of a successful smear (covariate 

estimate = 1.86) and was the covariate in the highest ranking model (Table 1), the 85% CI for 

mass included zero. No univariate model outranked the null model for eosinophils or basophils. 
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Table G1 Model ranking for the likelihood of a successful smear and numbers of white blood 

cell types using only those models that ranked <2 ΔAICc and that ranked higher than the null 

model. Null models (NM) are included for reference. Observations are nested by Site (random 

effect) in all models.  

 K AICc ΔAICc w LL 

Likelihood of a successful smear      

mass 3 97.39 0 0.32 -45.56 

null 2 97.6 0.21 0.29 -46.73 

Neutrophils      

stage 4 175.39 0 0.27 -82.45 

mass 4 175.47 0.07 0.26 -82.48 

null 3 175.53 0.14 0.25 -84.06 

Lymphocytes      

stage 4 173.26 0 0.4 -81.38 

null 3 173.31 0.05 0.39 -82.95 

Monocytes      

SVL 4 126.22 0 0.51 -57.86 

mass 4 127.9 1.67 0.22 -58.7 

null 3 129.04 2.82 0.13 -60.82 

N : L ratio      

stage 4 36.76 0 0.41 -13.13 

null 3 37.41 0.65 0.3 -15 
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Table G2 Estimates, standard errors, and 85% confidence intervals (CIs) of covariates of white 

blood cell counts and N : L ratios for models with <2ΔAICc and that rank above null models. 

Covariates are listed in order of AICc of their respective model. Only those covariates with CIs 

that do not include zero are shown here.  

 β estimate SE Lower CI Upper CI 

Neutrophils     

stage 3.05 1.51 0.852 5.25 

mass 28.7 16.1 5.22 52.2 

Lymphocytes     

Stage -2.71 1.53 -4.94 -0.476 

Monocytes     

SVL 1.35 0.419 0.739 1.96 

mass 11.9 4.67 5.06 18.7 

N : L ratio     

stage 0.116 0.0591 0.116 0.202 
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Figure G1 Predicted number of white blood cell types and N : L ratios corresponding to tadpole 

mass, stage, and SVL for 21 tadpoles with successful blood smears from six vernal pools. The 

thick line in the middle represents the predicted values across all pools, and the thin lines 

represent the extremes of the location of 85% of pools’ predicted curves. Open circles represent 

individuals.  
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G.4 Discussion 

 We successfully created blood smears from wood frog larvae as small as 0.6 grams, 14 

mm SVL, and as early in development as stage 30. However, the majority (77%) of individuals 

sampled did not yield a successful smear. Although some of these tadpoles may have been too 

small (14 tadpoles were <0.6 g) for the techniques we used, 56 tadpoles with unsuccessful 

smears were an equivalent size and stage as those with successful smears. As tadpoles sampled at 

four pools did not yield any successful smears, it is possible that local conditions affect the 

success of the technique. For example, water temperature at time of sampling may influence 

viscosity and availability of blood for sampling, or within-pool conditions experienced by 

tadpoles during development may affect the availability or quality of blood. Moreover, any 

lymph contamination may dilute blood and make smears unsuitable for determining N : L ratios 

(Allender and Fry 2008; Teixeira et al. 2012).  

 We detected evidence of changes in WBC composition throughout wood frog larval 

development, with fewer lymphocytes and more neutrophils and monocytes nearer to the 

completion of metamorphosis and at larger sizes. Neutrophils and monocytes are phagocytic 

cells which are produced in response to infection and inflammation and lymphocytes defend 

against within-cell pathogens and mutations (Davis et al. 2008), thus these trends suggest a 

greater inflammatory response and suppressed immune function in wood frog larvae nearing 

metamorphic climax. These responses support the idea that during and shortly after metamorphosis, 

amphibians are particularly susceptible to adverse conditions, including disease, due to rapid metabolic 

and immune system restructuring (Duellman and Trueb 1994). The trends we detected in lymphocytes 

and neutrophils also align with expected increases of endogenous CORT production nearer to the 

end of metamorphosis (Rollins-smith 2001). Elevated CORT levels near metamorphosis may 
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reduce the ability of tadpoles to respond to environmental stimuli. For example, Chambers et al. 

(2011) observed that during metamorphosis (Gosner stages 41–45), wood frog larvae mounted a 

smaller CORT response to a metabolic challenge compared to earlier larval stages, thus 

indicating their relative inability to cope with additional “stressors” during this energetically 

demanding time in their lives.  

 

WBC type fluctuations throughout development are similar to those detected for other 

larval anurans. Decreases in lymphocytes and increases in neutrophils and monocytes nearing 

metamorphic climax have also been observed for ornate frog (Microhyla ornate; Hota et al. 

2013). Similar trends for lymphocytes and monocytes have been observed in bullfrog larvae 

(Rana catesbeiana) and Dubois’s tree frog (Polypedates teraiensis), but neutrophils increase with 

stage for these species (Davis 2008; Das and Mahapatra 2012).  

Because WBC morphology changes throughout larval development in wood frog, it is 

essential to account for these fluctuations when studying deviations in WBC profiles due to 

additional challenges (e.g., anthropogenic disturbance, disease). Our work highlights some 

challenges in using WBC profiles to assess the immune and metabolic condition of wood frog 

larvae, and also provides information about the expected baseline WBC composition and 

abundance in wood frog larvae. Hematological parameters can be species-specific (Davis et al. 

2008) and thus WBC profile reference values for wood frog larvae should be established prior to 

using WBC profiles to assess the metabolic and immune response of wood frog larvae to 

degraded environmental conditions.  
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APPENDIX H: WOOD FROG, SPOTTED SALAMANDER, AND BLUE-SPOTTED SALAMANDER EGG MASS AND 

EMBRYO COUNTS  

Table H1 Maximum egg mass counts. We detected breeding at 133, 97, and 61 pool-years (66 pools; 44 pools included in statistical 

analyses) for wood frogs (Lithobates sylvaticus), spotted salamanders (Ambystoma maculatum), and blue-spotted salamanders 

(including the unisexual complex, A. laterale - jeffersonianum) in greater Bangor, Maine.  

Table H1, continued 

 Wood frog Spotted salamander  Blue-spotted salamander   

Site 2014 2015 2016 2014 2015 2016 2014 2015 2016  latitude, longitude 

B01 10 0 8 0 0 0 0 0 0  44.82467, -68.72979 

B02* 8 - - 0 - - 0 - -  roughly between B01 and B06 

B03* 20 - - 0 - - 0 - -  roughly between B01 and B06 

B06 7 7 8 3 0 0 0 15 0  44.82302, -68.72926 

B07* 35 - - 7 - - 0 - -  44.833036, -68.731825 

B08 33 48 45 1 6 3 0 0 0  44.794639, -68.800203 

B09* 78 - - 7 - - 0 - -  44.79015, -68.80201 

B10 7 100 78 0 0 0 0 0 0  44.82342, -68.75153 

B11* 8 - - 0 - - 0 - -  44.824114, -68.749447 

B12 18 44 39 0 0 0 0 0 0  44.81979, -68.74689 

B13 7 38 41 0 0 0 0 0 0  44.81662, -68.74948 

B14* 4 - - 0 - - 0 - -  44.826716, -68.764152 
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Table H1, continued 

 Wood frog Spotted salamander  Blue-spotted salamander   

Site 2014 2015 2016 2014 2015 2016 2014 2015 2016  latitude, longitude 

B15* 15 - - 3 - - 0 - -  44.830622, -68.776919 

B17 31 23 44 14 11 23 1 0 0  44.83455, -68.80389 

B18 28 35 58 0 0 0 2 0 8  44.79787, -68.83723 

B20 10 5 9 52 45 36 52 23 7  44.8632, -68.75721 

B21 0 1 - 3 1 - 0 0 -  44.86317, -68.75737 

B22 1 0 3 21 32 23 0 0 0  44.86382, -68.75237 

B23 12 69 23 0 0 0 0 0 0  44.80212, -68.78862 

B24* 0 - - 0 - - 42 - -  44.833981, -68.804533 

B25 6 0 66 53 78 18 206 43 0  44.833833, -68.803383 

B26 49 8 33 49 77 86 1 2 0  44.86395, -68.75195 

B27* 40 - - 28 - - 0 - -  44.865022, -68.750297 

H01 31 36 91 19 21 23 0 0 0  44.78024, -68.79009 

H02 20 24 22 27 8 14 62 24 1  44.75848, -68.85593 

H03* 167 - - 12 - - 4 - -  44.72506, -68.83901 

H04* 25 - - 24 - - 79 - -  44.725981, -68.839553 

H05* 62 - - 220 - - 88 - -  44.726372, -68.839056 

H06* 9 - - 16 - - 0 - -  44.76884, -68.81378 
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Table H1, continued 

 Wood frog Spotted salamander  Blue-spotted salamander   

Site 2014 2015 2016 2014 2015 2016 2014 2015 2016  latitude, longitude 

OR01 28 15 31 0 0 0 0 5 150  44.89837, -68.68651 

OR02* 24 - - 0 - - 0 - - 

 roughly between OR07 and 

44.899278, -68.686958 

OR03* 11 10 - 0 0 - 0 0 - 

 roughly between OR07 and 

44.899278, -68.686958 

OR04* 5 6 - 1 2 - 0 1 - 

 roughly between OR07 and 

44.899278, -68.686958 

OR05* 2 - - 1 - - 0 - - 

 roughly between OR07 and 

44.899278, -68.686958 

OR06* 6 1 11 8 3 1 0 0 7 

 roughly between OR07 and 

44.899278, -68.686958 

OR07 11 2 1 8 10 14 51 16 12  44.89847, -68.68678 

OR08 5 5 3 12 10 3 0 0 0  44.89807, -68.68738 

OR09 2 9 - 7 3 - 0 44 -  44.89775, -68.68664 

OR11 60 29 69 124 92 70 96 590 763  44.89423, -68.70352 

OR12 426 301 175 65 96 76 0 0 0  44.88414, -68.68796 

OR14* 8 - - 0 - - 22 - - 

 roughly between OR07 and 

44.899278, -68.686958 

OR15 13 8 - 31 28 - 0 0 -  44.89336, -68.72401 
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Table H1, continued 

 Wood frog Spotted salamander  Blue-spotted salamander   

Site 2014 2015 2016 2014 2015 2016 2014 2015 2016  latitude, longitude 

OR16 11 44 85 44 16 101 26 190 89  44.895389, -68.723372 

OR17 402 157 73 131 86 120 20 3 0  44.87252, -68.70612 

OR18 1 - 1 3 - 0 13 - 0  44.87265, -68.70502 

OR19 6 20 25 0 0 0 189 51 34  44.90094, -68.67728 

OR20* 11 - - 55 - - 0 - -  44.89615, -68.72778 

OR21 29 32 34 28 7 8 0 0 0  44.887556, -68.782631 

OR22 - 11 - - 23 - - 5 -  44.892305, -68.656452 

OR23 - 16 5 - 2 0 - 181 32  44.889115, -68.653327 

OR24 - 15 21 - 36 7 - 44 1  44.889115, -68.653327 

OR25 - 140 125 - 0 0 - 0 0  44.878547, -68.683408 

OR26 - 34 119 - 82 56 - 1000 3130  44.879174, -68.682775 

OR27 - 36 57 - 55 35 - 1296 654  44.885921, -68.686026 

OR28 - 134 - - 114 - - 18 -  44.905639, -68.677889 

OT01 52 - - 0 - - 0 - -  44.93884, -68.68915 

OT02* 2 - - 0 - - 0 - - 

 roughly between OT07 and 

44.935661, -68.689183 

OT03* 6 - - 0 - - 0 - - 

 roughly between OT07 and 

44.935661, -68.689183 
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Table H1, continued 

 Wood frog Spotted salamander  Blue-spotted salamander   

Site 2014 2015 2016 2014 2015 2016 2014 2015 2016  latitude, longitude 

OT04* 29 - - 136 - - 71 - -  -, - 

OT05 27 20 30 1 2 1 0 0 1  44.93947, -68.68961 

OT06 37 24 62 80 76 53 0 0 0  44.934602, -68.687251 

OT07 68 0 - 2 10 - 0 4 -  44.93426, -68.68809 

OT08 124 49 103 391 233 244 13 6 2  44.93902, -68.67132 

OT09 74 11 5 123 68 65 10 10 3  44.93902, -68.67132 

OT10 156 24 95 355 86 382 72 25 21  44.93885, -68.6722 

OT12 - 12 14 - 13 12 - 0 0  44.940437, -68.687158 

* Not included in statistical analyses
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Table H2 Wood frog clutch size (number of embryos per egg mass) by site-year for 45 pool-

years (27 pools) in greater Bangor, Maine. Summary statistics are based on clutch sizes of egg 

masses counted once and median clutch size for egg masses with >1 count.  

Table H2, continued 

 2015   2016   

Site min max median min max median 

B01 - - - 686 1110 870 

B08 537 959 744.5 333 1006 753 

B10 483 659 559 395 715 516 

B12 788 1035 900 599 987 868.5 

B13 466 480 473 400 786 534 

B17 - - - 468 619 511 

B18 497 588 542.5 642 1110 776 

B23 590 948 801 1011 1140 1075.5 

H01 345 619 450 367 889 612 

H02 403 1004 778.5 425 1469 872 

OR08 394 664 590.5 247 247 247 

OR09 455 774 599 - - - 

OR11 366 366 366 351 837 626 

OR12 308 600 511 534 828 708.5 

OR16 437 1029 643 634 1053 824 

OR19 - - - 180 828 643 

OR21 395 945 667 397 844 455 

OR24 - - - 534 891 549 

OR25 398 879 641.5 543 903 693 
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Table H2, continued 

 2015   2016   

Site min max median min max median 

OR26 739 739 739 318 882 807 

OR27 - - - 389 1130 826 

OT09 120 554 258 355 503 393 

OT10 378 766 571 272 703 472 

OT12 499 972 801 537 899 761 

OR15 524 963 687 - - - 

OR22 323 606 421.5 - - - 

OR28 211 911 542.5 - - - 
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Table H3 Spotted salamander clutch size (number of embryos per egg mass) by site-year for 43 

pool-years (26 pools) in greater Bangor, Maine. Summary statistics are based on clutch sizes of 

egg masses counted once and median clutch size for egg masses with >1 count.  

Table H3, continued 
 2015   2016   

Site min max median min max median 

B08 12 101 53.5 - - - 

B17 46 202 125 35 161 74 

B20 34 146 73 39 175 99 

B22 4 150 75.5 7 170 82.5 

B25 12 210 117.5 - - - 

B26 5 176 117 20 210 111 

H01 14 173 91 28 153.5 108 

H02 39 134 74 13 185 76.5 

OR07 14 147 85.5 - - - 

OR08 9 221 99 - - - 

OR11 21 156 109 13 153 108 

OR12 23 178 81 9 199 124.5 

OR16 10 173 89 11 169 95.5 

OR17 10 206 88 33 210 109.5 

OR21 47 122 96 30 124 93.5 

OR24 - - - 10 168 130 

OR26 14 145 70 10 187 106.5 

OR27 31 150 93 23 212 122 

OT06 8 117 51 - - - 

OT08 30 205 98 40 164 101.25 
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Table H3, continued 
 2015   2016   

Site min max median min max median 

OT09 23 224 93 11 149 115.5 

OT10 22 171 90 32 177 111.5 

OT12 10 167 73 23 135 115 

OR15 33 215 88 - - - 

OR22 6 150 78.5 - - - 

OT07 13 208 89 - - - 
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APPENDIX I: INFLUENCES OF ROAD SALT AND FOOD AVAILABILITY ON 

WOOD FROG LARVAE  

I.1 Introduction 

Habitat loss and degradation have been identified as major threats to amphibian 

persistence (Sodhi et al. 2008). Road salt is widely distributed on roadways and paved surfaces 

throughout areas with below-freezing temperatures in North America and can travel 100s of 

meters into wetlands (Trombulak and Frissell 2009). Thus, road salt contamination of amphibian 

breeding pools may contribute to risks to amphibians in these areas. Vernal pool-breeding 

amphibians, including wood frog (Lithobates sylvaticus), have been identified as particularly 

sensitive to road salt contamination (Collins and Russell 2009). Road salt contamination at 

environmentally relevant concentrations can reduce wood frog embryonic and larval survival, 

weight, activity, and time to metamorphosis and increase morphological abnormalities (Sanzo 

and Hecnar 2006; Karraker et al. 2008), and wood frog breeding is more likely to occur in pools 

without road salt contamination (Collins and Russell 2009).  

Although high levels of sustained road salt contamination harm wood frogs at aquatic 

stages, larval responses to road salt in the field are likely complex. Road salt-induced reductions 

in individual survival may lessen competition for food and lead to detected increases in mass and 

survival among surviving larvae, as detected by Karraker et al. (2008) and others (Petranka and 

Doyle 2010; Dananay et al. 2015; Chapter 2). Additionally, effects on tadpoles in pools with low 

to moderate salt contamination (e.g., 500 – 2,000 uS) may not be clear as larval growth and 

survival in these pools may not be discernibly different than in uncontaminated pools. Increased 

variability in larval developmental phenology in salt-contaminated pools near roads (Hall et al. 
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2017) may further obscure the effects of road-related contamination on pool-breeding amphibian 

populations.  

Here we studied the chronic exposure of wood frog larvae to a gradient of ecologically 

relevant road salt concentrations and examined growth and survival. We hypothesized that 

increases in tadpole size in pools with road salt contamination is linked to greater food 

availability (i.e., reduced competition). To test these hypotheses, we conducted an experiment 

where salt concentrations were crossed with high and low food availability.  

I.2 Methods 

I.2.1 Salt x Food availability experiment 

We conducted an experiment to determine the influence of road salt contamination (as 

indicated by conductivity) and food availability on tadpole size and development by 

manipulating food and conductivity levels for individual tadpoles in small plastic containers in a 

lab. We manipulated food and road salt contamination (conductivity) levels, with seven 

conductivity levels crossed with two food availability levels. Within each food availability level, 

we used eight replicates for control conductivities and 13 replicates for each elevated 

conductivity, for 172 total experimental units (individual tadpoles). Control and elevated 

conductivity treatments had different numbers of replicates because we anticipated survival to 

differ between control and elevated conductivity levels (i.e., 64% in control and 41% in elevated 

conductivities; Sanzo and Hecnar 2006; Karraker et al. 2008), with a goal of ≥5 replicates per 

conductivity x food availability level surviving through the experiment (i.e., near metamorphic 

climax).  
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The control conductivity was similar to that noted for forest pond water (Karraker et al. 

2008) and was within the range of specific conductivities we measured at pools in the greater 

Bangor area in 2014-15 (20-30 μS) in landscapes with a low level of human disturbance 

(unpublished data). The high conductivity level provides an ecologically relevant high endcap: 

we observed pools with conductivity up to 1,596 μS in 2014-15 (unpublished data). Additionally, 

wood frog tadpoles raised in 2,000 μS water have been documented to have significantly reduced 

larval survival compared to those raised at ~150 μS (Sanzo and Hecnar 2006). The 

concentrations of 500uS -1,700 μS were selected to represent the middle of the range of 

conductivity between which wood frog tadpole survival differences have been detected 

(differences between 500 and 3,000 μS, Karraker et al. 2008; differences between 200 and 2,000 

μS, Sanzo and Hecnar 2006). The tadpoles in low and high food availability treatments were fed 

ground fish food (Tetramin ®) at a rate of 4 and 8% of the mean body mass of the treatment per 

tadpole per day (to the nearest 0.01 g).  We selected these rates of food availability because they 

have been observed to result in no difference in survival but in distinguishable differences in 

mass throughout larval development for wood frogs (Anholt et al. 2000, Berven and Boltz 2001).  

These food levels are also noted to not result in water fouling (Relyea 2002). Tadpoles were 

massed weekly to determine the mass of food to be given for the following week. 

We collected five egg masses from a vernal pool (OT10) in the University of Maine 

University Forest, Old Town, ME without any known road salt contamination (42 μS mean 

conductivity 16 June 2016) on 10 May 2016. Eggs were placed in 1 L of pool water and 

immediately transported to the University of Maine. Each egg mass was divided into seven 

sections and a section of each egg mass was placed in a rearing tub with 3 L of water of one of 

seven experimental conductivities: 25, 500, 800, 1,110, 1,400, 1,700, and 2,000 μS. The 25 μS 
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control was created by mixing aged well water with deionized water. All other conductivities 

were created by mixing “control” water with road salt sourced from Maine Department of 

Transportation (Table 1) to achieve the target conductivity, ±6 uS/cm. This method of achieving 

experimental conductivities was the same throughout all experiments.  Slightly more embryos 

were allocated to the 25 and 2,000 μS rearing tubs than intermediate conductivities to provide 

embryos for the salt x predator experiment, with <250 embryos/L (Karraker and Ruthig 2009) 

across all rearing tubs. Although others have documented differences in wood frog tadpole 

densities resulting in differences in individual mass after 10 days (Peacor and Pfister 2006) we 

did not anticipate early stage tadpoles that had been free swimming and feeding for only one day 

to have differences in mass resulting from differences in embryo densities. 

Table I1 Road salt chemical composition results. Road salt was sourced from the Maine 

Department of Transportation in 2016 and represents a random sample from the MDOT stock of 

road salt applied to roads in the study area. Chemical composition analysis was performed by the 

University of Maine Analytical Lab.  

 Element Concentration (mg/kg)  

Al < 16.4 

Ca 479 

Cu < 3.3 

Fe < 16.4 

K 3141 

Mg 145 

Mn < 3.3 

P < 16.4 

Zn < 8.2 
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We checked egg masses daily for development. All 172 tadpoles needed for the 

experiment became free-swimming within 24 hours of each other and upon becoming free-

swimming, were fed ground Tetramin ® ad libitum (following Berven and Boltz 2001). One day 

after tadpoles became free-swimming (16 May 2016), we distributed individuals among 2 L 

plastic containers containing 1 L of water of their corresponding experimental conductivities. To 

avoid maternal affects, ≤25% of the tadpoles in a treatment were from a single egg mass. We 

visually selected tadpoles to standardize initial size and mass among treatments and massed 

tadpoles prior to placement in the 2 L containers. We randomly allocated rearing containers to 

locations on a lab bench. Throughout rearing and the experiment, egg masses and tadpoles were 

maintained at room temperature (approximately 23 °C) in 12:12 light:dark conditions.   

The experiment began as soon as tadpoles were placed in individual containers. We 

changed water in the experimental containers 3x per week and recorded mass, snout-to-vent 

length, tail fin height, and developmental stage for all tadpoles 1x per week.  We measured 

survival from the time of placement into individual containers until the end of the experiment. 

Tadpoles euthanized because of signs of imminent death from abnormally high saline or 

unknown causes were considered to have survived until the day they were euthanized. The 

experiment ended after 28 days (2 days after the first tadpole developed to Gosner stage 42, just 

prior to completing metamorphosis) whereupon all tadpoles were euthanized and a final set of 

measurements was conducted. This experiment was conducted under approval from the 

University of Maine Animal Care and Use Committee (Protocol # A2016-03-10).          
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I.2.2 Statistical Analyses 

We calculated an index of final body mass (condition) and tail height (relative tail height) 

relative to body length using the residuals of mass and final tail height regressed against SVL. 

We then assessed all response variables (final stage, SVL, condition, change in mass, and 

relative tail height) for high correlation (|r| >0.7). We then examined the efficacy of the food 

availability manipulation by conducting a t-test (P=0.05) and examining effect size using 

Cohen’s d for final larval mass and SVL. We examined the effects of initial tadpole mass among 

conductivity levels using ANOVA and a Student’s t-test between food availability levels 

(P=0.05). If differences existed, we conducted Tukey’s HSD pairwise comparisons to identify 

differences (P=0.05). If initial tadpole morphology differed among treatment levels for a 

response, we examined the effects of food and conductivity treatments on the change between 

initial and final measurements as well as final measurements. For all further analyses we treated 

food level as a factor and conductivity as a continuous variable.     

We examined interactions between food availability and conductivity treatments for the 

natural log-transformed final mass, SVL, condition, developmental stage, and survival to the end 

of the experiment using ANOVA (P=0.05). If interactions were not significant, they were 

dropped and main effects were interpreted. If conductivity was a significant predictor of a 

response based on residuals (condition, relative tail height), we assessed the effects of 

conductivity on the relationship between morphology metrics to estimate predicted change in 

response values (as opposed to predicted change in residual values). Residual plots for all 

ANOVA models were checked for normality and response variables were natural log-
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transformed to meet assumptions of normality if not normally distributed. All statistical analyses 

were performed using program R (R Core Team 2016).  

I.3 Results 

We successfully manipulated food levels, with lower final mass and SVL in low 

compared to high food levels (P<0.01, Cohen’s dMass = -1.34, Cohen’s dSVL =-1.08). Initial 

tadpole mass was different among conductivity levels (P<0.01) with 20 and 2,000 uS levels 

different from other conductivities (P<0.01). Responses were not highly correlated, with the 

highest correlation between mass and condition (|r| ≤ 0.57).      

Survival was unexpectedly high (98.8%, 168 of 170 tadpoles) across all treatments, and 

thus we did not statistically examine effects of food or conductivity on survival. Tadpole 

condition was predicted to increase with increased conductivity (P=0.03, FCond 1,159= 4.54) and 

food level, with food having a somewhat larger effect (P<0.01, FFood 1,159= 7.49; Figure 1). Mass 

was predicted to increase 5% for every increase in conductivity of 1 mS. The relationship 

between final mass and SVL differed with conductivity (P=0.02, FCond 1,159= 5.86) with a 4% 

increase in mass predicted for every increase in conductivity of 1 mS at a given SVL. However, 

neither conductivity nor food was a significant predictor of natural log-transformed change in 

mass. Tadpoles were predicted to develop slower and have greater relative tail height at higher 

conductivities, but not significantly so (Development: P=0.06, FCond 1,159= 3.42; Relative tail 

height: P=0.052, FCond 1,159= 3.83). Food was not a significant predictor of final developmental 

stage or relative tail height. Conductivity was not a significant predictor of final SVL (P=0.3, 

FCond 1,159= 1.05), but SVL was predicted to increase with more food (P<0.01, FFood 1,159= 47.3). 
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The interaction between food and conductivity levels was not significant for any modeled 

response.  

 

Figure I1 The relationship between wood frog tadpole final condition (mass adjusted for SVL) 

and conductivity from road salt contamination in a microcosm experiment. Conductivity and 

food availability levels had significant effects on final condition (L = low, H = high; 

Conductivity: P=0.03, F1,159= 4.54; Food: F1,159= 7.49). Points represent individuals. Shaded 

areas represent parameter 95% confidence intervals.  

I.4 Discussion 

 Our results indicate that in road salt contamination at ecologically relevant concentrations 

may not increase wood frog tadpole mortality rate aligns results from some studies (Dananay et 

al. 2015) but conflicts with lab and field observations of others (Sanzo and Hecnar 2006). Our 

detected effects of road salt on tadpole morphology are a little more ambiguous. Although 

tadpoles reared in higher conductivities had greater condition and greater relative tail height, 

there was no effect of conductivity on change in mass throughout larval development. A result of 

no change in body size with conductivity when food availability is controlled supports the 

hypothesis that increases in tadpole size observed in the field associated with elevated road salt 
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contamination are caused by reduced competition for food (Karraker et al. 2008) or changes in 

abundance of periphyton and zooplankton food resources (Dananay et al. 2015). Road salt may 

release algae from zooplankton grazing pressures, thus increasing food for tadpoles and 

promoting growth (Van Meter et al. 2011). 

 These results support the growing body of literature supporting the idea that road salt 

contamination primarily affects wood frog larvae through food web structure and food limitation. 

Although we did not detect negative effects to tadpoles associated with road salt, road salt 

exposure during larval development can reduce survival at embryo and froglet stages (Brady 

2013; Dananay et al. 2015) and high salinity pools are not preferred for wood frog breeding 

(Collins and Russell 2009). Road side pools also have been documented to have breeding 

populations that produce embryos that are maladapted to high salinity conditions (Brady 2013). 

We encourage the reduction and avoidance of road salt use near vernal pools to help maintain 

ecosystem structure and functions which support healthy wood frog populations.     
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