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 Pools of water that form in the fissures and depressions of rock outcrops, known as rock 

pools, are fairly common aquatic habitats that can easily be found along the rocky banks of many 

of Maine’s major rivers. In general, rock pools and the aquatic invertebrates inhabiting them 

have received little research attention and, though ubiquitous, have never been studied in Maine. 

My research addressed this knowledge gap by surveying 40 rock pools at four sites along the 

Penobscot River in Maine. The rock pools themselves had highly variable environmental 

characteristics and differed across sites and over time, especially in hydroperiod. They contained 

surprisingly abundant and diverse communities, totaling 71 invertebrate taxa across 16 orders. 

The non-biting midge Dicrotendipes and the biting midge Dasyhelea were the most abundant 

genera. Community composition differed significantly between sites in June, largely associated 

with differences in pool size, hydroperiod, influence of the adjacent river, and food resources. 

However, over the course of the summer, communities across sites became more similar to each 

other, likely due to the combination of phenologically-driven life histories for some taxa and the 

loss of stress-intolerant taxa. 



 
 

 I also conducted an experiment in which I artificially extended rock pool hydroperiods to 

determine the independent effect of hydroperiod on invertebrate community structure. I 

hypothesized that pools with longer hydroperiods would contain more diverse and abundant 

invertebrate communities and that pools with longer hydroperiods would contain more long-

lived taxa, such as Odonata and Coleoptera. To test this hypothesis, I prevented ten rock pools 

from desiccating by adding deionized water to them and left ten rock pools to naturally dry. 

Hydroperiod was not a significant driver of overall invertebrate abundance or richness and was 

only important in determining the individual abundance of one of five taxa collected in the 

experiment. Pool volume, location on the rock outcrop, and water chemistry (pH and 

conductivity) were the significant factors determining community structure. This suggests that 

the effect of hydroperiod observed in my survey and in other rock pool surveys may be 

confounded by pool size and by environmental variables mediated by hydroperiod. 
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CHAPTER ONE: 

HYDROLOGY AND AQUATIC INVERTEBRATE COMMUNITIES OF RIVERINE 

ROCK POOLS ALONG THE PENOBSCOT RIVER, MAINE 

 

1.1 Introduction 

 Depressions or cracks in rocky outcrops that fill with water, known as rock pools, are a 

common sight in areas with large amounts of exposed rock. They are widely distributed both 

geographically and ecologically, having been studied in semi-arid areas of Botswana (Brendonck 

et al. 2002), on mountains in Zimbabwe (Anusa et al. 2012), in ocean-influenced coastal areas in 

Jamaica (Therriault and Kolasa 2001) and Finland (Häggqvist and Lindholm 2015), Australia 

(Timms 2014, 2018; Brendonck et al. 2015; Calabrese et al. 2016), in Nova Scotia (Romanuk et 

al. 2010), and in Michigan (Smith 1983; Egan and Ferrington 2015) and Utah (Baron et al. 1998; 

Jocqué et al. 2007a) in the United States. In Maine, they are commonly observed along rivers 

that have mainly rocky banks with bedrock outcrops. These rock pools are often filled with 

freshwater from rain or snowmelt but can also be periodically filled through flooding events 

from adjacent rivers. Rock pools typically have a surface area less than one square meter, usually 

occur in exposed locations, and have highly variable durations of inundation (Jocque et al. 2010). 

They are often colonized by aquatic invertebrates, typically by specialized taxa that possess 

unique traits to enable them to persist in these time-constrained environments (Williams 1996). 

Rock pool communities and the potentially unique invertebrates comprising them are 

understudied globally (Jocque et al. 2010) and have never been studied in Maine. A total of 480 

species are currently known globally to occur in rock pools (Jocque et al. 2010). Over 200 of 

these species are from Australia (Pinder et al. 2000), which is among the most well-documented 

regions in terms of research on rock pool communities. However, these numbers do not include 
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taxa found in pools that are within reach of, and may have been influenced by, an adjacent river 

or lake. In fact, rock pools that are influenced by flooding rivers are often not included in studies 

or in reviews of the rock pool literature (Jocque et al. 2010; Brendonck et al. 2016) and their 

ecology and fauna are poorly understood. 

 As small container ecosystems, the environmental characteristics of rock pools can vary 

widely even within close proximity, and these habitat properties affect the aquatic invertebrate 

communities inhabiting the pools (Romanuk & Kolasa 2002; Calabrese et al. 2016). Pools that 

are less variable in pH, temperature, dissolved oxygen, and salinity are richer in taxa diversity 

(Romanuk & Kolasa 2002). The size of the pool can also affect invertebrate communities. 

Deeper pools and pools with greater surface areas typically contain more diverse communities 

(Oertli et al. 2002; Ripley and Simovich 2009), and some species, such as Daphnia longispina 

and D. magna, prefer to occupy the largest pools present in an area  (Pajunen and Pajunen 2007). 

Resource availability, such as through inputs of detritus from nearby vegetation, can also 

influence invertebrate communities. For example, detritus inputs determine the establishment 

success of native ceratopogonid midges (Romanuk and Kolasa 2005) and increase establishment 

success rates of invasive ostracods (Beisner et al. 2006). However, studies examining the effects 

of resource availability on rock pool invertebrate diversity are lacking (Brendonck et al. 2016) 

and we do not yet know how resources interact with other physiochemical drivers of invertebrate 

communities.  

The amount of time that rock pools can hold water, known as the hydroperiod, can vary 

widely depending on pool morphology and catchment, ranging from less than one week to 

greater than ten weeks (Jocque et al. 2010; Brendonck et al. 2016). Hydroperiod often plays a 

major role in shaping aquatic invertebrate communities in rock pools and other small lentic 
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habitats. For example, pools that dry out more often over a season or are inundated for a shorter 

duration of time once filled, typically have lower species richness and abundance (Therriault and 

Kolasa 2001; Romanuk and Kolasa 2002; Altermatt et al. 2009; Vanschoenwinkel et al. 2009, 

2010; Romanuk et al. 2010; Brendonck et al. 2015; Egan and Ferrington 2015; Ptatscheck and 

Traunspurger 2015; Calabrese et al. 2016). Conversely, colonization during longer hydroperiods 

allows for succession of pool communities and subsequent species-sorting dynamics that filter 

potential colonists based on their life history traits and the environmental properties of the pools 

(Jocqué et al. 2007b; Vanschoenwinkel et al. 2010). The effects of pool volume are often 

entangled with hydroperiod since larger pools tend to dry more slowly than smaller pools and are 

able to support more diverse invertebrate communities (Calabrese et al. 2016). Similarly, rock 

pools that are deeper often have longer hydroperiods and higher invertebrate diversity 

(Vanschoenwinkel et al. 2009). Clearly, hydrology appears to be an overarching environmental 

driver of invertebrate communities in rock pool systems. 

The hydrology and invertebrate communities of rock pools may be influenced based on 

their proximity to a larger body of water, such as a river, lake, or ocean, but there has been little 

research on this aspect. Pools farther away from a large body of water become more variable in 

terms of both water chemistry and hydrology (Jocqué et al. 2007a; Egan et al. 2014). 

Subsequently, species compositions of invertebrate communities change as the distance of rock 

pools from larger bodies of water increases (Egan and Ferrington 2015). Pools that are close to 

larger bodies of water have less of a chance of drying out because of splash, flooding, or 

drainage, and therefore are able to support a more diverse invertebrate community (Therriault 

and Kolasa 2001; Jocqué et al. 2007a; Egan and Ferrington 2015). However, rock pools near 

rivers may be more species poor than rock pools near lakes or intertidal zones because the fast-
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flowing water of the river scours out the sediment at the bottom of the pool, which is often 

important for the establishment of invertebrate egg banks (Brendonck et al. 2016). Conversely, 

pools farther away from the edge of a river may possess more sediment and detritus because of a 

lack of frequent scouring and because of being closer to riparian zones, assisting in the 

establishment of invertebrate egg banks. This however is an area that has received little study 

and is in need of further research. 

Finally, invertebrate communities of rock pools may also be influenced by seasonal 

changes in water chemistry, resource availability, and temporal variation in life histories of 

different species inhabiting the same pool. For example, inputs of detritus can vary between 

seasons, especially in temperate climates (Bennion and Smith 2000; Higgins 2000). Ponds that 

contain high levels of detritus typically have a lower pH than those that contain less detritus, 

which influences taxa that are able to persist in the pond (Bennion and Smith 2000; Higgins 

2000; Batzer et al. 2004). Community structure can also change between seasons in rock pools 

due to temporal differences in invertebrate life histories. For example, certain taxa may be 

present in the pool early in the season but emerge from the pool later in the season to be replaced 

by late-colonizing or late-hatching taxa (Brendonck et al. 2015). However, the effect of 

seasonality on resource availability, hydrology, and their interactions with invertebrate 

communities in rock pools still remain understudied.  

 I addressed these research gaps by surveying habitat characteristics and invertebrate 

communities in 40 rock pools across four sites to meet the following objectives: (1) determine 

how rock pool hydrology varies across space and time, (2) determine how aquatic invertebrate 

communities vary spatially and temporally and which abiotic and biotic factors may be important 
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drivers of variation, and (3) determine whether a nearby river system has an effect on pool 

hydrology and invertebrate community composition.  

1.2 Methods 

 1.2.1 Study Area 

 Four exposed rock outcrops were selected as sites along the Penobscot River between 

Old Town and Eddington, Penobscot County, Maine. Sites were designated a number based on 

location along the river, with Site 1 being the furthest upstream and Site 4 being the furthest 

downstream. Site 1 was the least likely to be flooded by the river during the summer (based on 

vertical distance from the river in June), whereas Sites 3, 4, and parts of Site 2 were prone to 

regular flooding events. All sampled areas except for an elevated bench of Site 2 were flooded 

by the river during peak spring runoff in April. Site 3 was the only site that was located directly 

underneath riparian trees, whereas the other three sites were well-removed (>15m) from the 

riparian zone (Fig. 1.1).  

 

 

Figure 1.1 Examples of rock outcrops and pools sampled. Site 3 (a), Site 2 from the pool 

closest to the riparian zone (b), and Site 4 (c) along the Penobscot River near Milford, Maine. 
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 Ten rock pools between 10cm and 1 m in diameter were sampled at each site between 

June 20 and September 26, 2018. Pools were chosen in a stratified manner at each site to account 

for different microhabitats in different areas of the outcrops. For example, if a portion of the rock 

outcrop was shaded by riparian trees then pools were selected from both the shaded portion and 

sunlit portion. Pool elevation with respect to the adjacent river varied within sites, such that 

during an increase in river height one or several pools were likely to be flooded with river water. 

Pool volumes ranged from 0.72 liters to 28.05 liters, with a median of 4.07 liters. 

 1.2.2 Field Methods  

 The aquatic invertebrate communities were sampled in each pool in late June, early 

August, and mid-September. Invertebrates were collected with a fine-mesh (250µm) aquarium 

net by sweeping through the pool for three minutes after the substrate had been disturbed. 

Samples were immediately transferred to 70% ethyl alcohol and stored for later sorting and 

identification. Both coarse and fine particle organic matter (CPOM and FPOM, respectively) 

were collected simultaneously with the aquatic invertebrate samples using a 250µm aquarium 

net. CPOM was defined as any detritus greater than one millimeter and FPOM was defined as 

any detritus between 250 micrometers and one millimeter. 

 Pool volume was estimated using the mean depth, based on three randomly taken depth 

measurements, and surface area. Given the uneven shape of most pool basins, pool volumes were 

most likely overestimated. Surface area was calculated by measuring pools in scaled photos with 

Adobe Acrobat Pro. Water chemistry parameters (conductivity and pH) and pool depth were 

measured every five days. Conductivity and pH were measured using a Hach HQ40d multi-

probe. Water samples were collected for chloride and chlorophyll-a analyses in June, August, 

and September. 
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 1.2.3 Laboratory Methods 

 All invertebrates, with the exception of mosquitos, zooplankton, bivalves, and 

gastropods, were identified to genus using Peckarsky et al. (1990) and Merritt et al. (2008). 

Zooplankton, bivalves, and gastropods were identified only to family. Mosquitos were identified 

to species using Andreadis et al. (2005). Chironomids were subsampled by first randomly 

selecting twelve individuals from each sample to mount, then visually scanning the remaining 

sample and picking out unique individuals that were missed. Chironomid larvae were slide-

mounted in CMC-10 following methods outlined by Epler (2001). 

 CPOM and FPOM detritus fractions were dried for one week at 50 degrees Celsius and 

then ashed for two hours at 500 degrees Celsius to determine ash-free dry mass (AFDM). 

Chloride analyses were conducted using Method 4500Cl from Standard Methods for the 

Examination of Water and Wastewater by Eastern Analytical, Inc. in Concord, New Hampshire. 

Raw fluorescence of chlorophyll-a pigments was measured with 24 hours of sample collection 

using a Trilogy Laboratory Fluorometer (Turner Designs, Inc.) equipped with an in-vivo 

chlorophyll-a module. 

 1.2.4 Statistical Methods 

Data were analyzed using R version 3.5.1. Univariate analyses consisted of two-way 

ANOVAs to compare the relations between physical and biological response variables with site 

(1-4), month (June, August, September), as well as their interactions included as fixed 

categorical predictors. The responses of taxa richness and abundance to environmental variables 

were analyzed using linear models with average depth, hydroperiod, pool volume, chloride 

concentration, conductivity, pH, algal biomass, CPOM, and FPOM included as fixed, continuous 
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variables. Prior to analysis, invertebrate abundances were adjusted to individuals per liter and 

environmental variables were standardized and scaled using the R-package “dplyr”. Lotic taxa 

were defined as those that are associated with flowing water based on descriptions by Merritt et 

al. (2008).  

Redundancy analysis (RDA) was used to assess the role of environmental variables, site, 

and season in determining the abundance and distribution of taxa across sites. This ordination 

was created on the species abundance matrix of all taxa found within all 40 pools. Species 

abundance data were Loge +1-transformed prior to performing the ordination to meet the 

assumptions of normality. The matrix of environmental variables included pH, conductivity, 

CPOM, FPOM, average depth, raw algal fluorescence, chloride, pool volume, hydroperiod, site, 

and month. All continuous predictors were scaled prior to analysis. A permutation ANOVA test 

(500 permutations) on the RDA was used to determine which variables were most important in 

characterizing the invertebrate communities of rock pools. RDA analysis, plots, and the 

permutation ANOVA were performed using the R-package “vegan”. 

1.3 Results 

 1.3.1 Pool Environmental Conditions 

 Hydroperiod varied significantly between sites, months, and within sites between months 

(Fig. 1.2, Table 1.1). Collectively throughout the sample period, pools in Site 4 spent an average 

of 16 days without containing water out of a total 92 days (17.4%). Conversely, pools in Site 3 

averaged 0.2 days without containing water out of a total 96 days (0.002%). 
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Figure 1.2 Cumulative hydroperiods measured in riverine rock pools at four 

sites along the Penobscot River, Maine. Hydroperiod measurements for each 

pool began the first full day that the pool was exposed above the river after May 

1. Error bars are +1 SE of the mean. 
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Response Factor Df F value P value 

Richness Site 1 <0.01 0.931 

 Month 2 10.02 <0.001 

 Site × Month 2 0.63 0.534 

 Average Depth 1 4.11 0.045 

 Hydroperiod 1 1.13 0.291 

 Pool Volume 1 10.26 0.002 

 Chloride 1 <0.01 0.956 

 Conductivity 1 0.36 0.551 

 CPOM 1 0.01 0.920 

 FPOM 1 0.17 0.684 

 pH 1 0.02 0.880 

 Algal Biomass 1 <0.01 0.993 

     

Abundance Site 1 0.01 0.941 

 Month 2 5.32 0.006 

 Site × Month 2 1.51 0.226 

 Average Depth 1 11.13 0.001 

 Hydroperiod 1 3.36 0.069 

 Pool Volume 1 28.19 <0.001 

 Chloride 1 5.06 0.026 

 Conductivity 1 6.60 0.012 

 CPOM 1 9.70 0.002 

 FPOM 1 24.98 <0.001 

 pH 1 1.30 0.257 

 Algal Biomass 1 2.91 0.091 

     

Lotic Taxa Abundance Site 1 2.82 0.096 

 Month 2 3.82 0.025 

 Site × Month 2 2.67 0.074 

 Chloride 1 0.40 0.527 

 Conductivity 1 1.10 0.297 

 CPOM 1 0.08 0.775 

 FPOM 1 0.12 0.729 

 pH 1 8.04 0.005 

 Algal Biomass 1 0.06 0.809 

 Pool Depth 1 0.15 0.699 

 Pool Volume 1 0.37 0.546 

 Hydroperiod 1 0.88 0.351 

     

RDA permANOVA Site 1 1.63 0.164 

 Month 2 6.50 0.001 

Table 1.1 Linear regression results of biotic and abiotic variables. Data 

collected from 40 riverine rock pools at four sites along the Penobscot River, 

Maine. Significant predictor variables (P<0.05) are shown in bold. 
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Response Factor Df F value P value 

RDA permANOVA Site × Month 2 2.36 0.017 

(Cont.) Chloride 1 0.75 0.531 

 Conductivity 1 0.95 0.416 

 CPOM 1 6.10 0.002 

 FPOM 1 4.66 0.003 

 pH 1 5.42 0.001 

 Algal Biomass 1 0.35 0.891 

 Pool Depth 1 13.18 0.001 

 Pool Volume 1 5.98 0.001 

 Hydroperiod 1 5.80 0.002 

     

Conductivity Site 1 1.40 0.239 

 Month 2 0.70 0.501 

 Site × Month 2 5.05 0.008 

     

Chloride Site 1 0.55 0.461 

 Month 2 8.45 <0.001 

 Site × Month 2 <0.01 0.997 

     

CPOM Site 1 2.93 0.090 

 Month 2 0.07 0.935 

 Site × Month 2 0.04 0.965 

     

FPOM Site 1 2.28 0.134 

 Month 2 1.54 0.219 

 Site × Month 2 0.14 0.872 

     

Algal Biomass Site 1 11.68 <0.001 

 Month 2 8.60 <0.001 

 Site × Month 2 13.31 <0.001 

     

Hydroperiod Site 1 11.72 <0.001 

 Month 2 20.98 <0.001 

 Site × Month 2 4.14 0.018 

     

pH Site 1 2.28 0.134 

 Month 2 5.20 0.007 

 Site × Month 2 0.73 0.484 

 

 

Table 1.1 Continued 
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 The ashed mass of CPOM did not vary between months or within sites between months 

(Table 1.1). There was some support for a difference in CPOM between sites (site effect: 

p=0.09), however there was a large amount of variation within sites (Fig. 1.3a). Algal biomass 

measured as water column chlorophyll -a varied significantly across sites, month, and between 

months within sites (Fig. 1.3c, Table 1.1). Pools in Site 1 experienced algal blooms during 

August and contained substantially greater algal biomass than pools at other sites during the 

same sampling period (Fig. 1.3c). A small bloom of filamentous algae occurred in pools at Site 2 

in August, however not to the level observed in pools at Site 1. 
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 Average pH typically ranged from 8-9, and varied significantly over time (Table 1.1), 

largely due to especially high pH during June in Site 3 (Fig. 1.4a). Chloride varied significantly 

by month, with most sites exhibiting low average chloride concentrations in June and September. 

Only Site 3 had high chloride concentrations in June but all sites had high chloride 

Figure 1.3 Mean ash-free dry mass of Coarse Particle Organic Matter (a), Fine Particle 

Organic Matter (b), and water column chlorophyll-a (c). Data collected from40 riverine 

rock pools at four sites along the Penobscot River, Maine. Error bars are +1 SE of the 

mean. 
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concentrations in August (Fig. 1.4c). Conductivity varied significantly between months within 

sites (Table 1.1). Pools at Site 4 had especially high conductivity measurements in the low water-

level month of August (Fig. 1.4b), whereas the conductivity of pools in Site 3 declined from June 

to September. 

 

 

 

 

Figure 1.4 Average pH (a), conductivity (b), and chloride (c). Data collected from 40 

riverine rock pools at four sites along the Penobscot River, Maine. Error bars are +1 SE of 

the mean. 
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 1.3.2 Invertebrate Richness and Abundance 

 Rock pools along the Penobscot River contained a high abundance of individuals and 

higher richness than what I anticipated. 30,478 individuals were collected and 71 unique taxa 

were identified during the course of this study. These taxa spanned 61 insect genera representing 

30 families in eight orders (Table 1.2). The most abundant taxa were Dicrotendipes (n=9,247) 

and Dasyhelea (n=8,802) midges. Chironomus (n=3,380) midges and two mosquito species, 

Aedes atropalpus (n=3,998) and Ae. japonicus (n=1,891), were also abundant (Table 1.2). Ten 

taxa were found at all four sites, of which only Cloeon dipterum, a baetid mayfly, and Stenelmis, 

a riffle beetle, were not Diptera. Chironomidae exhibited considerable diversity with 18 genera 

present, representing three subfamilies: Chironominae, Orthocladiinae, and Tanypodinae. 

 Of the 61 insect genera found during the study, 26 were considered to be primarily lotic-

dwelling taxa. Stenelmis (n=165), Laccophilus (n=91), and Cloeon (n=89) were the most notable 

genera within this group. Both Stenelmis and Laccophilus were collected from the pools as 

larvae and adults. The abundance of lotic taxa varied significantly over time (Table 1.1) and 

were more abundant during June than in other months. Nevertheless, lotic taxa were present at 

all sites in all months except for during September at Site 4 (Fig. 1.5). 

 Insect abundance was positively associated with conductivity and the ADFM of CPOM 

and FPOM (Table 1.1). There were no significant differences in abundance over time or between 

sites. However, there was considerable variability in invertebrate abundance within sites, 

especially during August at Site 1 and June at Site 2 (Fig. 1.6a). Richness varied significantly 

over time but did not differ between sites. Hydroperiod also did not have a significant effect on 

abundance (Table 1.1), however abundance was higher in larger, deeper pools, even after 

correcting for pool volume in density estimates. Richness at all sites was the lowest in September 
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(Fig. 1.6b). Interestingly, while richness greater in larger, deeper pools (Table 1.1), it was not 

significantly associated with any other environmental variable. 

 Several genera of predaceous insects were collected during the study. The most abundant 

taxa were Libellula and Pantala (Libellulidae), Laccophilus, and Berosus (Hydrophilidae) (Table 

1.1). The abundance of Libellula, Pantala, and the other three odonate genera (Boyeria, 

Enallagma, and Cordulia) was positively associated with hydroperiod (linear regression: F=7.07, 

p=0.009) and pool volume (linear regression: F=6.30, p=0.013). The abundance of coleopteran 

predators was not associated with hydroperiod (linear regression: F=1.03, p=0.313) or pool 

volume (linear regression: F=0.11, p=0.737) (Table 1.1). 
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Order Family Genus Abundance 1 2 3 4 

Ephemeroptera Baetidae Acerpenna* 1     

  Baetis 5     

  Cloeon dipterum 89     

 Ephemerellidae Eurylophella* 7     

 Heptageniidae Leucrocuta 1     

  Maccaffertium* 1     

 Leptophlebiidae Habrophlebiodes* 4     

 Siphlonuridae Siphlonurus* 25     

Odonata Aeshnidae Boyeria* 1     

 Coenagrionidae Enallagma 1     

 Corduliidae Cordulia* 6     

 Libellulidae Libellula 29     

  Pantala 98     

Hemiptera Gerridae Trepobates* 1     

 Hydrometridae Hydrometra* 2     

Megaloptera Corydalidae Nigronia* 1     

Coleoptera Dytiscidae Agabus 5     

  Laccophilus 91     

  Liodessus 3     

 Elmidae Ancyronyx* 2     

  Microcylloepus* 2     

  Promoresia* 1     

  Stenelmis* 165     

 Hydrophilidae Berosus 64     

  Enochrus 10     

  Hydrophilus 1     

 Psephenidae Psephenus* 4     

Trichoptera Brachycentridae Micrasema* 5     

 Helicopsychidae Helicopsyche* 2     

 Hydropsychidae Cheumatopsyche* 1     

 Lepidostomatidae Lepidostoma 2     

 Leptoceridae Mystacides* 1     

 Limnephilidae Pycnopsyche* 2     

 Odontoceridae Marilia* 2     

 Philopotamidae Chimarra* 1     

 Phryganeidae Ptilostomis* 1     

 Psychomyiidae Lype* 1     

Lepidoptera Crambidae Parapoynx* 5     

Table 1.2 List of all taxa collected from 40 rock pools across four sites along the 

Penobscot River, Maine. Taxa denoted with an asterisk (*) are those that have not 

previously been reported in literature as inhabiting rock pools. 
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Diptera Ceratopogonidae Dasyhelea 8,802     

  Leptoconops* 163     

 Chironomidae Ablabesmyia 30     

  Chironomus 3,380     

  Corynoneura 9     

  Cricotopus 114     

  Dicrotendipes 9,247     

  Labrundinia 36     

  Microtendipes 99     

  Nilotanypus* 7     

  Paratanytarsus 12     

  Phaenopsectra 35     

  Polypedilum 536     

  Procladius 104     

  Psectrocladius 404     

  Pseudochironomus* 4     

  Rheotanytarsus 4     

  Smittia* 1     

  Tanytarsus 108     

  Tribelos* 68     

 Culicidae Aedes atropalpus 3,998     

  Aedes japonicus 1,891     

  Anopheles quadrimaculatus* 72     

Amphipoda Crangonyctidae Crangonyx* 109     

Isopoda Asellidae Lirceus* 1     

Basommatophora Lymnaeidae*  34     

 Physidae  38     

 Valvatidae*  1     

Unionida Unionidae*  9     

Venerida Sphaeriidae*  4     

Cladocera   500     

Nematoda   22     

Decapoda Cambaridae Orconectes* 1     

16 38 64 30,486     

 

Table 1.2 Continued 
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Figure 1.5 Average abundance per liter of lotic invertebrates from 40 riverine 

rock pools at four sites along the Penobscot River, Maine. Lotic taxa determined 

by descriptions in Merritt et al. (2008) collected Error bars are +1 SE of the 

mean. 
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Figure 1.6 Mean invertebrate abundance per liter (a) and mean taxa richness (b) 

of aquatic invertebrate communities collected from riverine rock pools along the 

Penobscot River, Maine. Error bars are +1 SE of the mean. 
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 1.3.3 Invertebrate Community Analysis 

 The aquatic invertebrate community composition varied significantly between months 

and this variation differed over time between sites (Site x Month interaction, Table 1.1). Sites 

supported unique communities in early summer, but differences between communities across the 

four sites decreased over time such that communities became fairly homogenous by September 

(Fig. 1.6). Pool depth, volume, and hydroperiod were all significant factors in determining 

community structure, as were pH, CPOM, and FPOM (Table 1.1). 
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Figure 1.7 Redundancy analysis ordinations based on a log-abundance matrix of 

aquatic invertebrates collected from riverine rock pools in June (a), August (b), 

and September (c) along the Penobscot River, Maine. Polygons enclose all 10 

pools sampled within each of the four sites in a given season. 



23 
 

1.4 Discussion 

 1.4.1 Invertebrate Communities Across Space and Time 

 71 unique taxa were identified during this study, which is a similar number to other 

studies on rock pool communities (Baron et al. 1998; Fontanarrosa et al. 2009; Timms 2014; 

Brendonck et al. 2016). Out of these 71 taxa, 38 have never been reported in the rock pool 

literature (Table 1.2). By abundance, these communities were dominated by Diptera, which is a 

similar finding to other studies on rock pool communities (Pinder et al. 2000; Fontanarrosa et al. 

2009). Diptera made up 95.5% of all individuals collected during the study, of which all were 

Chironomidae, Ceratopogonidae, or Culicidae. These taxa all either have cutaneous gas 

exchange (Chironomidae and Ceratopogonidae) or use a siphon (Culicidae) (Barrera 1988), 

which enable them to be exceptionally well-suited for the low availability of dissolved oxygen in 

rock pool environments. Furthermore, midges and mosquitos generally have short life histories 

which offsets mortality risk from drying, and are also often tolerant to other environmental 

stressors, such as fluctuations in temperature and desiccation in at least one life history stage 

(Brendonck et al. 2016). Chironomid midges in particular have the potential to be exceptionally 

diverse in rock pool habitats (Egan and Ferrington 2015). However, the diversity of 

Chironomidae in rock pools and many other aquatic habitats is often not fully explored because 

of taxonomic difficulty (Pinder 1983). Describing the chironomid fauna in any freshwater study 

below the subfamily-level is important in understanding the invertebrate community as a whole 

because Chironomidae is often the most abundant and diverse taxon in freshwater environments 

(Oliver and Roussel 1983). In this study alone, I was able to document 18 different genera of 

Chironomidae and even greater diversity may have been uncovered if larvae had been reared out 

to adulthood. 



24 
 

 One mechanism potentially explaining why communities at different sites became more 

similar over time is that repeated environmental stressors, such as fluctuations in temperature, 

resource availability, or desiccation, excluded taxa that are less tolerant to environmental stress, 

resulting in more homogenous communities (as in Chase 2007). Similarly, in pools that 

experienced frequent disturbances, such as desiccation, it is likely that only rapid colonizing taxa 

became established in the pools and late successional taxa or those with longer life histories were 

excluded (Vanschoenwinkel et al. 2017). In coastal rock pools in Jamaica, temporary pools had 

less variable community structures than permanent pools because temporary pools were 

generally dominated by taxa capable of rapid dispersal into and colonization of disturbed pools 

(Therriault and Kolasa 2001). Strong environmental filtering of invertebrate communities is 

likely to be commonplace among rock pools and other small container habitats. 

 The composition of the aquatic invertebrate communities differed across sites, but these 

communities became more similar over time. Much of this may have been driven by a decline in 

the abundance of Dasyhelea between August and September in all four sites. While the 

phenology and life history of most Dasyhelea species are not well-documented, some 

populations have been shown to be tolerant to environmental stress in tree-holes (Petermann et 

al. 2016), which are fairly similar abiotically to rock pools. Therefore, it’s more likely that 

Dasyhelea abundances are more driven by phenology than by fluctuations in the environment 

within seasons. Populations of Dasyhelea in German tree-holes was dependent on seasonality, 

with individuals present only during the winter and spring (Gossner 2018). In Pennsylvania, 

Dasyhelea were only abundant during June and July (Barrera 1988). While the occurrence of 

Dasyhelea was observed during different times of year between these two studies, it suggests 

that the life histories of species within Dasyhelea are seasonal. 
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 Predatory taxa were present in many of the pools in this study. Several genera of 

predaceous Chironomidae (Ablabesmyia, Labrundinia, Nilotanypus, and Procladius) were 

collected at relatively low abundances compared to other chironomid genera, with only 

Procladius being present at all four sites (Table 1). Large-bodied predators, such as Berosus, 

Laccophilus, Pantala, and Libellula were collected in moderate numbers. Interestingly, none of 

these large-bodied taxa were present in pools at Site 4 throughout the study, and the only large 

predator that was collected at that site was the hydrophilid beetle Enochrus. Four individuals 

were collected in June and one individual was collected in August. The limited distribution of 

most predatory taxa between sites may be due to environmental constraints such as short 

hydroperiods, since pools in Site 4 averaged significantly lower hydroperiods than pools at the 

other three sites (Fig. 1). In particular, Odonata collected during this study were strongly 

associated with larger pools and pools with long hydroperiods (Table 2). As with other predatory 

taxa, dragonflies and damselflies typically have longer life histories and may only be found in 

pools that rarely or never dry out (Williams 1996; Anusa et al. 2012). Moreover, larger pools 

support more prey biomass that might attract and retain large-bodied predators (Spencer et al. 

1999). Regardless of the mechanism, my results suggest that pools may vary substantially in 

trophic structure, which has wider implications for community and ecosystem processes. 

 1.4.2 Lotic Taxa as Components of Riverine Rock Pools  

 Several taxa found in this study were those that primarily inhabit lotic environments. 

Many of these taxa have never been reported from rock pools, which can be expected given that 

riverine rock pools are generally overlooked in reviews of rock pool diversity (Jocque et al. 

2010; Brendonck et al. 2016). While lotic taxa might be expected to colonize pools adjacent to 

the river during high flows, several lotic taxa were found later in the season inhabiting rock pools 
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that were well above the river’s high-water mark. Notably, 66 early-instar Cloeon dipterum 

nymphs were collected in August from a pool at Site 2 that was likely never flooded by the river, 

even during significant spring flows. Similarly, adult and occasionally larval Stenelmis were 

found in pools that were near the river’s edge but had not been inundated by the river for several 

weeks prior. These cases suggest that river-dwelling taxa might enter rock pools through 

dispersal or oviposition and that they can survive in rock pools for at least a short time, providing 

the pools do not dry out. 

 Interestingly, Nilotanypus and Rheotanytarsus were the only chironomids collected 

during this study that are known to inhabit exclusively lotic environments (Merritt et al. 2008). 

Rheotanytarsus was only collected in one pool in Site 3 in June, so larvae likely entered the pool 

from the river during high spring flows. Nilotanypus on the other hand was found in two pools in 

August, of which one pool was never flooded by the river between the June sample and the 

August sample and one pool was flooded once. The presence of Nilotanypus in a pool that was 

not flooded in the weeks prior to sampling suggests that Nilotanypus adults flying over and 

around the river may potentially oviposit in nearby riverine rock pools. Another possibility is 

that eggs were deposited in the vicinity of the pool while spring flows were in progress and the 

larvae subsequently hatched during the summer and were detectable after the June sampling 

occurred. However, definitive conclusions about pool colonization pathways by lotic taxa cannot 

be drawn from the data collected during this study. As colonization of riverine rock pools by 

lotic taxa is undoubtedly important in determining invertebrate community structure, more 

research attention is needed to shed light on colonization pathways and processes. 
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 1.4.3 Pool Hydrology and Environmental Conditions 

 The pools included in this study exhibited high variability in hydroperiod, especially 

between sites. This was a significant factor in determining invertebrate composition within and 

among pools, which a finding that is consistent with numerous studies (Bazzanti et al. 1997; 

Batzer et al. 2004; Fontanarrosa et al. 2009; Vanschoenwinkel et al. 2009, 2010, 2017; 

Brendonck et al. 2015, 2016; Calabrese et al. 2016). Morphological characteristics of rock pools, 

such as pool area and maximum depth, can be directly correlated with pool hydroperiod and 

subsequently affect overall pool hydroregime (Vanschoenwinkel et al. 2009). For example, 

deeper pools or those with smaller surface-area-to-volume ratios will hold water for longer 

stretches of time than shallow pools or pools with larger surface areas (Brendonck et al. 2016). 

Pool maximum depths in my study ranged from 11.4cm to 29.8cm with an average of 17.7cm. 

Pools in Sites 1 and 4 had the shortest average hydroperiods and the lowest mean depths whereas 

those in Sites 2 and 3 had longer hydroperiods and were deeper on average. This suggests that 

pool depth may have had a role in determining pool hydroperiod during this study. The 

morphology of the rock outcrops at each site may have also been an important factor. At sites 2 

and 3, most pools occurred in sloped areas of the outcrops and it is likely that during rain events, 

the sloped surface of the rock outcrop allowed water to be channeled into flow paths leading 

directly into the pools. In contrast, pools in flat areas of an outcrop, such as those in Site 4, did 

not receive water from runoff and therefore were not substantially filled during rain events (C. 

Gagne, pers. obs.). The ability to delineate catchments for each rock pool studied on an outcrop 

would be useful for describing and understanding pool hydrology at a more detailed level. 

 Another factor influencing differences in hydroperiod is the amount of shade that pools 

received from riparian vegetation. Riparian trees adjacent to Site 3 provided shade such that 
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pools were only exposed to direct sunlight for a short period of time, likely limiting the amount 

of water evaporation from the pools. In contrast, pools at Site 4 were well-removed from any 

vegetation and were not situated underneath rock benches or ledges, so every pool was exposed 

to direct sunlight and high rates of evaporation for the entire day.  

 Several other environmental variables linked to food resources varied among sites and 

over time. All sites except for Site 2 experienced increases in the amount of coarse detritus 

present in September, which is consistent with leaf litter accumulation from fall abscission from 

deciduous riparian trees. Pools at Site 2 were flooded by the river less often than pools at Site 3, 

however many of the flood-prone pools at Site 2 were well-removed from the riparian zone. 

Leaves seldom entered these pools, unlike the pools at Site 3 that were situated directly under 

riparian trees, so infrequent flooding events at Site 2 were likely enough to keep pools devoid of 

leaf litter. While several pools at other sites were also well-removed from the riparian zone, the 

increase in leaves falling from nearby trees likely increased the chances that leaves got blown 

into the pools, and infrequent or nonexistent flooding events allowed these leaves to accumulate. 

Undoubtedly, coarse detritus is likely to be an important resource component for riverine rock 

pool invertebrates, and in this study I observed significant relationships between CPOM and 

invertebrate abundance and community structure. An opposite temporal trend occurred with fine 

detritus, in which detritus mass decreased in all sites between August and September and, except 

for Site 2, decreased from June to August. However, much like CPOM, there was much variation 

within sites. Much of this variance can likely be attributed to the physical position of rock pools 

on each individual rock outcrop. This is especially evident at Site 2 where some pools were 

situated directly under shrubs and near patches of moss, whereas other pools were in areas 

devoid of any vegetation. The amount of FPOM present in the pools at Site 2 was highly 
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variable, but steadily decreased over time in the other three sites (Fig. 1.2b). The decrease in 

Sites 1, 3, and 4 was likely due to consumption over the course of the season by invertebrates 

inhabiting the pools, along with low detritus input rates due to pools being removed from low-

lying vegetation and areas where sediment accumulates. High variation in Site 2 likely stems 

from some pools being situated under or near low-lying vegetation, or in depressions on the rock 

outcrop where sediment can accumulate. 

 Interestingly, all sites exhibited high chloride concentrations in August and only the pools 

at Site 3 had high chloride in June. The reason for high chloride concentrations in the rock pools 

during August is quite unclear. While rivers affected by road salt have been shown to have peaks 

in chloride concentrations during the summer months (Kelly et al. 2019), pools in Site 1 

experienced substantial increases in chloride but were never flooded by the river between the 

June and August sampling dates. After further analysis, chloride was found to be negatively 

correlated with both hydroperiod length and average depth. Thus, chloride concentrations within 

the rock pools included in this study are likely determined by the amount of water present in the 

pools rather than the frequency of inundations by the Penobscot River. 

1.5 Conclusion 

 Riverine rock pools along the Penobscot River hosted surprisingly diverse and unique 

aquatic invertebrate communities. These communities were comprised of both lentic and lotic-

dwelling taxa, suggesting that invertebrates from the adjacent river colonize and utilize rock 

pools intentionally or become trapped when river levels drop during the summer. Invertebrate 

communities varied substantially between sites, but a combination of phenologically-driven life 

histories and highly variable environmental conditions within the pools likely caused 

communities to become more similar throughout the sampling period. Several of the taxa 
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collected during this survey have never before been reported in rock pool literature, highlighting 

the paucity of research on the diversity and community structure in riverine rock pools. Finally, 

while resource availability, pool size, and hydroperiod were all identified as factors influencing 

invertebrate abundance and community composition, the intercorrelated nature of these variables 

suggests that experimental work is needed to fully understand the mechanisms of environmental 

controls of rock pool communities. 
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CHAPTER TWO: 

IS HYDROPERIOD A KEY DRIVER OF INVERTEBRATE COMMUNITY 

STRUCTURE IN RIVERINE ROCK POOLS? AN EXPERIMENTAL APPROACH 

 

2.1 Introduction 

 The amount of time that a body of water is inundated, known as the hydroperiod, is often 

cited as one of the most important driving factors of invertebrate community composition in 

small temporary water bodies, including rock pools (Bazzanti et al. 1997; Batzer et al. 2004; 

Altermatt et al. 2009; Fontanarrosa et al. 2009; Ripley and Simovich 2009; Vanschoenwinkel et 

al. 2009, 2010, 2017; Brendonck et al. 2016; Calabrese et al. 2016). Pools with short 

hydroperiods desiccate more frequently and for longer durations, limiting the range of taxa that 

can live in them to only those that have rapid life histories and/or desiccation-resistant phases. 

Taxa that fit these characteristics include several dipterans, such as midges and mosquitos, and 

small rapidly-reproducing crustaceans, such as branchiopods, cladocerans, and ostracods 

(Williams 1996; Brendonck et al. 2016). Conversely, pools with long hydroperiods are inundated 

for periods of time sufficient to support taxa with longer life histories, such as Coleoptera, 

Trichoptera, Hemiptera, and Odonata. In particular, Coleoptera and Hemiptera are capable of 

active dispersal as adults. Adults of these taxa may be present in pools regardless of hydroperiod 

length because they are able to easily disperse to refuges if the pool desiccates (Wissinger 1997). 

However, juvenile stages of these and other long-lived taxa are only present in the latter stages of 

community succession as adults selectively oviposit in deeper, less ephemeral pools (Jocqué et 

al. 2007b; Vanschoenwinkel et al. 2010). Thus, the presence of juvenile stages of Coleoptera, 

Odonata, and Hemiptera may be used as indicators of long-lived, relatively stable rock pool 

environments. 
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 Temporary aquatic habitats, including rock pools, that have longer hydroperiods tend to 

have higher species diversity than those with shorter hydroperiods (Bazzanti et al. 1997; Spencer 

et al. 1999; Batzer et al. 2004; Fontanarrosa et al. 2009; Vanschoenwinkel et al. 2009, 2010, 

2017; Brendonck et al. 2015, 2016; Calabrese et al. 2016). Short hydroperiods can truncate 

community succession and limit the invertebrates inhabiting the pools to only those that can 

tolerate desiccation. Conversely, long hydroperiods allow more generalist taxa that are less 

tolerant of desiccation to colonize pools, which leads to more complex and diverse invertebrate 

communities (Jocqué et al. 2007b; Vanschoenwinkel et al. 2010). Along with these changes in 

the invertebrate community comes the addition of predators. Most predatory taxa colonize pools 

later during community succession, so longer hydroperiods allow for more time and 

opportunities for predators to enter communities (Bilton et al. 2001). Furthermore, the addition 

of predators adds trophic complexity to long-lived pools and allows for biotic interactions to 

become the dominant drivers of community structure (Jocqué et al. 2007a). In some cases, 

predators can greatly reduce the abundance of species within a community that are vulnerable to 

predation (Brendonck et al. 2002). It is likely that in rock pools with long hydroperiods, 

colonizing predators play important roles in determining community structure by reducing or 

excluding populations of prey species. 

 Habitat size, usually in the form of pool area or depth, can also be an important predictor 

of taxa richness in freshwater habitats. Larger temporary pools may be able to host a wider range 

of taxa due to more available microhabitats and more stable environmental conditions (Wissinger 

et al. 1999). Indeed, positive species-area relationships have been detected in several studies of 

rock pool communities (Spencer et al. 1999; Kiflawi et al. 2003; Vanschoenwinkel et al. 2009; 

Anusa et al. 2012). As generally small habitats with limited dispersal of taxa between them, rock 
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pool communities can be modeled reasonably well using island biogeography theory; a key 

mechanism of which is the positive relationship between habitat size and colonization rate 

(MacArthur and Wilson 1967). Kiflawi et al. (2003) found that an island-biogeographical model 

explained 62% of the variation of species richness in 47 temporary pools based on pool size and 

hydroperiod. The presence of certain taxa may also be particularly sensitive to habitat size, 

especially larger predators such as beetles (Nilsson 1984) and odonates (Oertli et al. 2002). Thus, 

rock pool size is likely an important environmental variable structuring invertebrate communities 

in rock pools. 

 While both hydroperiod and habitat size are generally accepted as being important drivers 

of community composition in freshwater habitats, these two variables are often tightly correlated 

(Wissinger 1999). Larger pools tend to have longer hydroperiods, and very few studies have 

attempted to directly separate and isolate the effects of these different environmental drivers. 

Vanschoenwinkel et al. (2009) used a hydrological model based on field observations to 

reconstruct the hydroregime (the frequency of both desiccation and water-input events) of rock 

pools in South Africa and determine the effects of hydroregime on aquatic invertebrate 

communities. There were both unique and shared effects of hydroregime and habitat size on rock 

pool communities, however isolating these variables mechanistically was difficult because 

hydroperiod was strongly correlated with pool area and weakly correlated with depth. Studies 

isolating hydroperiod from habitat size variables through experimental manipulation of 

hydroperiod are lacking, especially in a field setting. The present study addressed this gap in 

knowledge by experimentally manipulating the hydroperiod of natural rock pools varying in size 

to determine its effect on rock pool invertebrate communities. I hypothesized that rock pools 

with manipulated long hydroperiods will have greater taxa richness and total abundance, as well 
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as greater abundances of large predatory taxa (Coleoptera, Hemiptera, Odonata), than pools with 

short natural hydroperiods. 

2.2 Methods 

 2.2.1 Study Area 

 I selected 20 rock pools for this experiment from one outcrop along the Penobscot River 

near Milford, Maine. The outcrop was stratified such that ten pools were situated at a low 

elevation on the outcrop and were therefore at risk of flooding during high river flows, while ten 

pools were at a higher elevation out of the range of summer flood stage. Pool volumes ranged 

from 0.25L to 2.31L and were not significantly different between outcrop sections (p=0.661). 

Within each of the lower and higher sections of the outcrop, five of the ten pools were randomly 

assigned to either natural hydroperiods or water additions that artificially extended hydroperiod. 

The entire rock outcrop was devoid of vegetation except for sparse grasses and lichens around 

pool edges. 

 2.2.2 Field Methods 

 The experimental manipulations of hydroperiod began on 27 June and ran until 27 

September 2018. The treatment pools were prevented from desiccating by adding water every 

other day whereas pools in the control group were allowed to dry out and refill naturally. 

Rainwater was collected and used to keep treatment pools filled for the first month of the 

experiment, however infrequent rain events forced a switch to using deionized water for the final 

two months. When control pools were inundated, some water was removed with a small cup and 

poured back into the pool to control for the mechanical disturbance caused by adding water to 

the treatment pools. 
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 Aquatic invertebrates were sampled and removed from all pools prior to beginning the 

experiment to standardize pool communities. Doing so allowed the focus of the experiment to be 

on the colonization and establishment of pool communities from late June onward. Invertebrates 

were collected at the conclusion of the experiment in September by sweeping a fine-mesh 

(250µm) aquarium net through the pool for three minutes after the substrate had been disturbed. 

Samples were immediately transferred to 70% ethyl alcohol and stored for later sorting and 

identification. Both coarse and fine particle organic matter (CPOM and FPOM, respectively) 

were collected simultaneously with the June and September sweep samples using a 250µm 

aquarium net. CPOM was defined as any detritus greater than one millimeter and FPOM was 

defined as any detritus between 250 micrometers and one millimeter. 

 Pool volume was estimated by using the mean depth and surface area of each pool. 

Surface area was calculated by measuring pools in scaled photos with Adobe Acrobat Pro. Pool 

depth from the deepest point was measured every other day prior to the addition of water. 

Conductivity and pH were measured every two days using a Hach HQ40d multi-probe. 

 2.2.3 Laboratory Methods 

 All invertebrates, excepting mosquitos and chironomid midges, were identified to genus 

using Peckarsky et al. (1990) and Merritt et al. (2008). Mosquitos were identified to species 

using Andreadis et al. (2005) and chironomid midges were not identified past the family level. 

CPOM and FPOM detritus fractions were dried for one week at 50 degrees Celsius and then 

ashed for two hours at 500 degrees Celsius to determine ash-free dry mass (AFDM). 
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 2.2.4 Statistical Methods 

Data were analyzed using R version 3.5.1. Differences in environmental variables across 

pools were assessed with ANOVAs with treatment (hydroperiod manipulation), outcrop section, 

and pool volume as fixed, categorical predictors. Invertebrate abundances were adjusted to the 

number of individuals per liter based on calculations of pool volume. 

Model selection based on backwards stepwise model fitting using the R-function “step” 

was conducted to determine the variables most important in determining richness, overall 

invertebrate abundance, and abundances of individual taxa. The stepwise procedure for model 

selection ended when removal of variables did not significantly reduce model AIC scores. 

Subsequent linear models were run on the best-fitting model for each biological factor to 

calculate model R2 and the significance of each predictor. 

2.3 Results 

 The experimental treatment significantly increased rock pool hydroperiod by an average 

of 29 days compared to the control pools (Table 2.1, Fig. 2.1). Conductivity was significantly 

higher in pools with artificially extended hydroperiods (Table 2.1), but no other environmental 

variables differed between hydroperiod treatments. Resource availability, measured as CPOM 

and FPOM mass, was significantly greater (p=0.005 and p=0.049, respectively) in pools in the 

high section than those in the low section of the rock outcrop (Table 2.1). In addition, FPOM was 

more abundant in larger pools. Average pH was also significantly higher in pools in the high 

section (p<0.001) (Table 2.1). Although data on chlorophyll-a concentrations were not collected 

in this experiment, sporadic algal blooms were observed in pools in the high section during the 

experiment and none were recorded in pools in the low section (Gagne, pers. obs.). 
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 Treatment Section Pool Volume 

          

 df F P df F P df F P 

          

Hydroperiod 1 18.03 <0.001 1 1.36 0.247 1 7.58 0.007 

          

Conductivity 1 4.95 0.028 1 1.75 0.188 1 1.96 0.164 

          

pH 1 2.95 0.088 1 89.70 <0.001 1 6.01 0.016 

          

CPOM 1 0.57 0.459 1 10.29 0.005 1 0.74 0.400 

          

FPOM 1 0.40 0.536 1 4.47 0.049 1 4.69 0.044 

          

Average Depth 1 0.01 0.928 1 11.14 0.001 1 90.47 <0.001 

Table 2.1 Univariate ANOVA results for environmental variables measured during 

an experimental manipulation of hydroperiod of rock pools (n=20) along the 

Penobscot River, Maine. 

Figure 2.1 Average cumulative hydroperiod during a hydroperiod manipulation 

experiment in riverine rock pools by the Penobscot River, Maine. Hydroperiod 

was artificially lengthened in “Filled” pools. Error bars are ±1 SE of the mean. 
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 Only five taxa were collected from the rock pools at the conclusion of the manipulation, 

and of these, the dragonfly Pantala was the only long-lived (univoltine) taxon present in the 

pools (Table 2.2). The other four taxa present were multivoltine dipterans that are common in 

riverine rock pools (Chapter 1). Despite the vast difference in hydroperiod lengths between 

treatment and control pools, hydroperiod treatment was not selected in the best model as one of 

the important variables for determining invertebrate richness or abundance. Interestingly, the 

only variable significantly associated with invertebrate richness was average pH (p<0.001) 

(Table 2.3), with higher pH pools supporting more taxa. FPOM and pool volume were also 

included in the best model predicting invertebrate richness, however these variables themselves 

did not explain significant variation in richness (Table 2.3). Invertebrate abundance was best 

explained by a model including conductivity, section of the outcrop, and pool volume (Table 

2.3). Pools in the high section of the outcrop contained greater invertebrate abundance than pools 

in the low section (p=0.001), and abundance increased with pool size (p=0.035) (Table 2.3). 

There was also a strong positive correlation between average conductivity and abundance 

(p<0.001) (Table 2.3). 

 

 

 

Order Family Genus LC LT HC HT 

Odonata Libellulidae Pantala 0 0 1 13 

Diptera Ceratopogonidae Dasyhelea 0 0 22 4 

 Chironomidae - 18 54 120 208 

 Culicidae Aedes atropalpus 15 1 37 16 

  Aedes japonicus 14 7 93 61 

2 4 4 47 62 273 302 

 

Table 2.2 Aquatic invertebrate taxa collected at the conclusion of 

experimental manipulation of hydroperiod in rock pools along the 

Penobscot River, Maine. Abbreviations: LC=Low Control, LT=Low 

Treatment, HC=High Control, HT=High Treatment. Five rock pools were 

used in each category. 
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 The responses of individual taxa mirrored these patterns. The individual abundances of 

Aedes japonicus and Chironomidae, in particular, were significantly associated with conductivity 

(p=0.002 and p=0.001, respectively) (Table 2.3). Resource variables (FPOM and CPOM) were 

important factors determining the abundance of Pantala, Aedes atropalpus, and Dasyhelea. Pool 

Response Effect df F P AIC r2 

Richness Average pH 1 19.53 <0.001 1.07 0.574 

 FPOM 1 2.02 0.175   

 Pool Volume 1 0.01 0.934   

       

Abundance Conductivity 1 21.58 <0.001 174.97 0.725 

 Section 1 15.27 0.001   

 Pool Volume 1 5.28 0.035   

       

Pantala Pool Volume 1 32.65 <0.001 -19.92 0.764 

 FPOM 1 22.39 <0.001   

       

Aedes atropalpus Pool Volume 1 4.23 0.056 96.26 0.277 

 Average pH 1 2.29 0.149   

       

Aedes japonicus Conductivity 1 14.74 0.002 134.97 0.648 

 Section 1 8.59 0.010   

 Pool Volume 1 6.09 0.025   

       

Chironomidae Conductivity 1 15.66 0.001 158.86 0.739 

 Section 1 14.75 0.002   

 Treatment 1 7.89 0.013   

 Pool Volume 1 4.15 0.060   

       

Dasyhelea Average pH 1 2.55 0.130 83.74 0.251 

 FPOM 1 2.14 0.163   

 Pool Volume 1 0.68 0.421   

Table 2.3 Model selection results of relationships between environmental predictors 

and biological responses in an experiment manipulating hydroperiod of rock pools 

(n=20) along the Penobscot River, Maine. Important environmental variables for 

each response were determined through AIC-based backwards stepwise model 

selection of a full model including treatment and outcrop section as fixed categorical 

variables and pH, conductivity, pool volume, and FPOM and CPOM biomass as 

continuous predictors. Only variables included in the best model are shown. 
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volume was included in the best models for Pantala and Aedes japonicus, but interestingly, 

Chironomidae was the only taxon significantly affected by the experimental hydroperiod 

treatment: Chironomidae abundance was higher in manipulated pools than in control pools 

(Table 2.3). Together these results suggest that hydroperiod has weak to no effects on rock pool 

insects compared to pool size, resource availability, and water chemistry. 

2.4 Discussion 

 Overall, pool volume and the section of the outcrop in which a pool was located were 

much more important factors in determining community structure was than hydroperiod length. 

This finding is contradictory to most other studies on rock pools and other small temporary 

freshwaters, which generally agree that hydroperiod is one of the most important factors for 

determining invertebrate community structure (Jocqué et al. 2007a; Vanschoenwinkel et al. 

2009, 2010; Brendonck et al. 2015, 2016). For example, Batzer et al. (2004) found in their study 

of 66 temporary woodland ponds that hydroperiod was a significant driver of species richness, 

largely through influencing the presence and abundance of rare taxa. However, common species 

collected during the study were found at high abundances regardless of hydroperiod length, so 

overall invertebrate abundance was not affected significantly by hydroperiod. It’s likely that a 

similar pattern was observed in my experiment. Pantala was the only invertebrate collected that 

was not one of the taxa that were found to make up the vast majority of riverine rock pool 

invertebrates in my study system (Chapter 1). The four Dipteran taxa that dominated 

communities in the experimental pools are likely much more tolerant of shortened pool 

hydroperiod than Pantala is, so a manipulation of hydroperiod would only have a small effect on 

abundance, if any. In addition, these dipterans are mostly multivoltine with short life histories or 

overlapping generations (Menzie 1980; Giberson et al. 2001; Burger and Davis 2008), increasing 
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the likelihood of multiple colonization events during the wet phases of the control pools. If more 

rare taxa were collected, detecting a difference if it existed in taxa richness and overall 

community composition in pools with extended hydroperiods would be much more likely.  

 A likely explanation for the low diversity of rare taxa and the robustness of communities 

to changes in hydroperiod is the time of year in which the communities were sampled. Late in 

September, it’s possible that the only taxa persisting in rock pools are those that are tolerant of 

environmental instability. Other studies of environmental characteristics of rock pools show that 

they can be quite variable, even over the course of a single day (Jocque et al. 2010). In particular, 

temperature in small rock pools is often similar to ambient air temperature, so large differences 

in maxima and minima during a single day are common (Brendonck et al. 2000). High variability 

in temperature, pH, and other water chemistry parameters place a high level of stress on rock 

pool invertebrates, and these effects compound as temperatures rise during the summer. This 

variability can act as an ecological filter, eliminating less tolerant taxa and driving communities 

to become more similar by allowing only a subset of the regional fauna to inhabit rock pools 

over time (Chase 2007; Vanschoenwinkel et al. 2007). Therefore, it’s likely that high variability 

in environmental factors reduced community richness over the course of the season until only 

taxa tolerant of environmental stress were present in the pools in September. 

 The only invertebrate taxon that was associated with the experimental treatment was 

Chironomidae. While chironomids are known to be among the most common rock pool 

inhabitants due to their rapid life histories and tolerance to desiccation (Jocque et al. 2010; 

Brendonck et al. 2016), they were found at significantly greater abundances in pools with 

extended hydroperiods than in pools with short hydroperiods. In pools with long hydroperiods, 

multiple different instars were observed in the same sample and adults were seen emerging at 
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multiple times throughout the season (Gagne, pers. obs.), indicating that there may have been 

several generations present simultaneously which increased total abundance. Furthermore, active 

dispersing insects have more opportunities to colonize long-lived pools and successfully become 

established (Bilton et al. 2001; Vanschoenwinkel et al. 2010). Thus, it’s possible that midge 

abundances were greater in manipulated pools because opportunities for colonization were 

greater then in shorter hydroperiod pools. Alternatively, resource availability may have been 

higher in manipulated pools because longer inundations enabled algal and microbial biomass to 

accumulate more than in pools that dried out frequently. Drying events can cause a considerable 

decline in bacterial biomass and additionally reduces colonization and breakdown of leaf litter 

(Arroita et al. 2018). Thus, chironomids may have had more food resources available to them in 

pools that did not desiccate. 

 Habitat size, which includes surface area and volume, has been determined by several 

studies to be an important factor driving community structure in rock pools (Ranta 1982; Spencer 

et al. 1999; Kiflawi et al. 2003; Vanschoenwinkel et al. 2009; Anusa et al. 2012). Proposed 

mechanisms are consistent with those of species-area relationships, namely a diversity of feeding 

and spatial habitat niches that promote complex and diverse communities (Anusa et al. 2012). In 

my experiment, pool volume was not found to explain significant variation in invertebrate 

richness. This is an interesting finding given that species-area relationships are fairly well-

documented in rock pools (Ranta 1982; March and Bass 1995; Kiflawi et al. 2003; Anusa et al. 

2012). Conversely, pool volume was an important factor in determining the abundances of all 

five individual taxa and was significantly associated with abundance for Aedes japonicus and 

Pantala. In a study using constructed ponds of different sizes ranging from 0.3m2 to 1.2m2, 

Mitchell and Lasswell (2018) found that Pantala flavescens populated the ponds in increasing 
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abundance as pond size increased. Interestingly, P. flavescens nymphs were not found in any of 

the 0.3m2 ponds. This suggests that P. flavescens selects for larger ponds when choosing where 

to oviposit. In my experiment, Pantala may have been selecting for larger pools in a similar 

fashion and generally avoiding smaller pools. Regardless of the mechanism of pool size, my 

results suggest that the strong and consistent effects of hydroperiod detected in surveys 

(including Chapter 1) may in fact be due to covarying effects of larger pool size. 

 Overall, taxa richness was most strongly associated with average pH. There was also a 

significant difference in average pH between outcrop section, with pools further from the river 

(and closer to riparian vegetation) exhibiting greater pH values than the low section. It’s likely 

that this difference in pH is due to differing rates of primary production between the high and 

low outcrop sections. Algal blooms were occasionally observed in pools in the high section, but 

none were recorded from pools in the low section. Additional food resources in the form of algae 

and FPOM in pools in the high section likely allowed the four dipteran taxa to inhabit the same 

pool without experiencing strong competition from resource limitation. Positive productivity-

species-richness relationships similar to this have been found in several freshwater invertebrate 

communities (Cusens et al. 2012). Pantala may also have been found in these pools because 

algae and settled layers detritus provide structural components to the rock pool basin and may 

allow for higher predation success. Thus, pools with higher pH may have had more food and 

structural resources available and were able to support more diverse invertebrate communities. 
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2.5 Conclusion 

 This study was the first to directly manipulate rock pool hydroperiod and attempt to 

isolate the effects of hydroperiod from tightly correlated variables such as pool size. I 

hypothesized that rock pools with artificially extended hydroperiods would contain greater 

invertebrate taxa richness and contain higher abundances of long-lived taxa than rock pools with 

natural, short hydroperiods. This hypothesis was not supported because taxa richness and 

individual abundance of all taxa except for Chironomidae were not strongly associated with the 

experimental treatment. Outcrop section, pool volume, and chemical variables, including average 

pH and conductivity, were more important than hydroperiod in determining community structure 

in riverine rock pools. This result is surprising because hydroperiod is often found to have the 

greatest effect on rock pool communities in most surveys of rock pool invertebrates. My findings 

suggest that the observed effect of hydroperiod on rock pool communities in other studies may 

be confounded by pool size and by indirect effects of other environmental variables mediated by 

hydroperiod. 
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CHAPTER THREE 

SYNTHESIS 

 The results from Chapter 1 indicate that riverine rock pools in Maine contain surprisingly 

diverse communities of aquatic invertebrates. These communities are highly variable over the 

course of the season and environmental drivers likely coupled with seasonally abundant taxa are 

responsible for this variability. Resource variables (CPOM and FPOM), pH, and hydrological 

variables (volume, depth, and hydroperiod) were the most important factors for determining 

invertebrate community structure. However, separating the effect of hydroperiod on community 

assemblage from the effect of pool volume is difficult and likely not possible in a community 

survey. Experiments involving the manipulation of hydroperiod have not been done in a field 

setting, so it is unclear whether hydroperiod itself drives community structure in rock pools or if 

it is another tightly covarying variable, such as pool size. 

 The results from Chapter 2 suggest that hydroperiod is not a significant factor in 

determining invertebrate community structure. Instead, environmental variables such as pH and 

resource availability as well as pool size and location were more important factors for 

community assemblage. These results give interesting insight into the mechanisms driving 

community structure in rock pools and may inform future studies on which factors are important 

when studying species distributions on rock outcrops. 

 This thesis highlights the uniqueness of rock pools as container habitats. They are often 

removed from vegetative cover and subsequently are exposed to sunlight and have limited input 

of detrital resources, making them environmentally variable and unpredictable habitats for the 

invertebrates colonizing them (Jocque et al. 2010). The aquatic invertebrates inhabiting rock 
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pools are therefore highly specialized and adapted to deal with the stressful environment 

(Brendonck et al. 2016). While research quantifying the contribution of rock pool communities 

to the regional fauna has not been undertaken, it’s likely that rock pools support a significant 

portion of the local populations of container-dwelling mosquitos and midges. Due to the 

specialized nature of these taxa (Brendonck et al. 2016), it’s unlikely that large populations 

inhabit other aquatic habitats in the area such as ponds or rivers. The destruction of rock outcrops 

and the rock pools situated on them therefore has potentially serious implications for the 

conservation of invertebrate diversity (Porembski et al. 2016). Specific to riverine rock pools, the 

creation of dams may cause water levels to rise and cover entire rock outcrops, rendering the 

rock pools on the outcrop functionally destroyed. This was the case for many rock outcrops 

along the Penobscot River, as inspection of aerial photographs indicate that the rock pool 

outcrops sampled in this thesis have only recently become exposed again after the removal of 

several dams. Though the aquatic invertebrates inhabiting rock pools have been little studied, 

they are undoubtedly diverse and highly specialized to these unique habitats. Rock pools are 

often overlooked, but their conservation is vital to the survival of their specialist taxa. 

 Continued work on rock pool communities is desperately needed. Very few surveys of 

rock pool invertebrates have been conducted and the breadth of their diversity is still poorly 

known (Jocque et al. 2010). This thesis helped shed light on the diversity of invertebrates in rock 

pools along the Penobscot River, however it is unknown if similar patterns of diversity will be 

observed in other parts of Maine and the northeastern United States. Other mechanisms 

important for determining community structure, such as active and passive dispersal and 

resource limitation, are still fairly unexplored in rock pools relative to other larger aquatic 

environments like vernal pools and ponds. These two thesis chapters aimed to set a baseline of 
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knowledge on riverine rock pools in Maine and did so successfully. The future directions of rock 

pool research building upon this baseline are all but boundless, but I believe that a mix of 

community surveys and manipulative experiments will likely best serve to continue 

understanding invertebrate diversity in rock pools and the mechanisms responsible for 

influencing it.   
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