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This dissertation presents the development of finite-element (FE) techniques to simulate the 

behavior of concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) in support of more effective 

structural design and analysis methods for buried composite arch bridges (BCABs) that use CFFT arches 

as main structural members. The research includes three specific topics to make contributions in different 

aspects of the investigation of these complex structures. 

The first topic is the nonlinear three-dimensional FE modeling of steel-free CFFT splices. For 

model validation, comparisons were made between the model predictions and control beam and spliced 

beams with and without internal collars tested by others. The modeling was complex due to the need to 

capture the nonlinear constitutive response of the confined concrete, simulate concrete-FRP interaction, 

and explicitly incorporate the splice components. Therefore, the numerical analysis utilized the 

Abaqus/CAE software package with a modified damage concrete plasticity model to idealize the concrete-

fill. 

The second topic of this research is the development of a computationally efficient structural FE 

analysis technique for the second-order inelastic behavior of these CFFT arches that includes initial arch 

curvature. A curved, planar, corotational, flexibility-based (FB), layered frame element is employed to 

handle geometric and material nonlinearities. An FRP-confined concrete stress-strain model that explicitly 

considers the effect of dilation of the concrete core and confinement provide by the FRP tube is 



 

 
 

implemented. Verification of the FB formulation was carried out for elastic-plastic analysis of a beam and 

elastic post-buckling analysis of a circular arch. The measured flexural responses of different isolated CFFT 

arches available in the literature were used to verify the proposed model. The model was shown to 

accurately predict the load-carrying capacity and ductility of the tested CFFT arches. The model captured 

arch collapse mechanisms arising from FRP rupture and concrete crushing at the apex of the arches. 

The third topic is an extension of the planar FB model to three-dimensions and incorporation of a 

soil-spring model to simulate soil-structure interaction using a recently developed horizontal earth pressure 

model. The model rigorously incorporates the interaction between axial load and bending effects in the 

arches and permits the examination of out-of-plane stability and arch deformations due to bridge skew. 

Parametric studies were conducted to assess the effect of abutment skew angle on the behavior of CFFT 

arch bridge components, an important practical design consideration.



 

iii 
 

DEDICATION 

This dissertation is dedicated to the October 2019 demonstrations in Iraq: 

To all the heroic patriots who took part in those demonstrations; 

To the Tuk-Tuk drivers, who are members of marginalized groups and who became the symbol of resistance; 

To the martyrs who fell in Altahrir Square in the center of Baghdad and other protesting arenas throughout the country. 

 

 

 
Ү
هداءالا  
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   CHAPTER 1  

INTRODUCTION    

1.1 Problem Description 

In the past three decades, the use of concrete-filled fiber-reinforced polymer (FRP) tubes (CFFTs) 

has been explored as an alternative to steel-reinforced concrete structural members because of the high 

strength-to-weight ratio and excellent durability of FRP. Several infrastructure applications have been 

investigated, including bridge girders (Burgueño 1999; Karbhari et al. 2000), marine piles (Fam et al. 

2003a), bridge piers (Fam et al. 2003b), deep beams (Ahmad et al. 2008), and bridge columns for multi-

hazard resilience (Echevarria et al. 2016). Prior studies were conducted on a range of topics including 

flexural behavior (Fam and Rizkalla 2002; Mohamed and Masmoudi 2010), shear behavior (Ahmed 1999), 

fatigue behavior (Helmi et al. 2006; Zhu et al. 2009), the magnitude of strains at rupture (Abdelkarim and 

ElGawady 2015), and dynamic behavior (Qasrawi et al. 2016). In the CFFT system, the FRP tube provides 

confinement and protection of the concrete core and also serves as the concrete formwork and reinforcement 

for cast-in-place or precast elements (Dagher et al. 2012). The concrete core prevents local buckling failure 

of the FRP and increases the strength and stiffness of the CFFT member (Fam and Rizkalla 2002). 

A specific application that has seen significant investigation is the use of CFFT arches in the buried 

composite arch bridge (BCAB) system developed at the University of Maine (Bannon 2009; Demkowicz 

2011; Walton 2011, 2015). This type of bridge has become an advantageous and attractive alternative to 

short-span bridges with spans under 20 m because of its environmentally durable, cost-effective and easy-

to-skew superstructure. In the BCAB, FRP arch tubes are often fabricated from a combination of an inner 

layer of E-glass fiber braid and two outer layers of carbon fiber braid. The hybrid FRP braided tube is 

inflated and impregnated with a thermoset resin using a modified vacuum-assisted resin transfer molding 

(VARTM) process. This rigidified combination of glass and carbon fiber reinforcement provide 
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confinement, tension, and shear reinforcement to the concrete core with no need for additional steel rebar 

while remaining cost-effective, easily fabricated, and lightweight. 

These hollow lightweight FRP arches having a diameter range of 300-380 mm and a span range of 

7-18 m are typically shipped to the field after rigidification. In the BCAB construction shown in Figure 1-1, 

multiple parallel composite arch tubes are placed alongside the roadway, cast into concrete footings, and 

then filled with self-consolidating concrete. FRP transverse corrugated decks are fixed on the top side of 

these CFFT arches to stabilize them before concrete filling and to support the granular backfill applied 

before paving. It is important to note that the CFFT arches function as the main structural members of the 

bridge, carrying combined bending and axial loads, and must support the wet weight of the concrete fill and 

the decking weight prior to curing of the concrete fill. To date, more than 30 BCABs have been designed 

and constructed in accordance with AASHTO LRFD design specifications (2012, 2017) by Advanced 

Infrastructure Technologies (AIT), a company based in Orono, Maine that has commercialized UMaine’s 

CFFT technology. Figure 1-1 illustrates the elements of the BCAB system. 

 

Figure 1-1. Main Components of the Buried Composite Arch Bridge 
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Researchers at the University of Maine have conducted experimental and numerical studies at 

different scales and on various configurations of CFFT beams and arches as well as material constituents 

to develop an understanding of CFFT arch response under loading. The first systematic study focused on 

utilization of CFFT arches technology and its constructability through the fabrication method of FRP tube 

and the development of the manufacturing process and design of CFFT arches. Bannon (2009) carried out 

structural testing on full scale isolated arch specimens, and four-point bending tests of CFFT beam 

specimens to investigate the bending response of these members and provide a useful tool for structural 

design using the CFFT members. Through laboratory tests, Demkowicz (2011) performed a comprehensive 

environmental durability study and evaluated the maintenance requirements of such FRP tube arches. 

Walton (2011) experimentally examined and numerically simulated the behavior and capacity of these 

arches as formwork during filling with wet concrete. 

Dagher et al. (2012) developed a beam-based finite element (FE) model to simulate the structural 

response of CFFT arches, based on a small strain, and small displacement, 2-noded two-dimensional (2D) 

Euler beam. Parry (2013) developed a field splice for the arches to mitigate the challenges of shipping long 

spans of arches. The splice proved to be structurally feasible, exhibiting a moment capacity similar to that 

of a control arch with no splice, however, it was aesthetically unappealing and difficult to install. In a 

subsequent study, Burns (2016) developed a steel-free and easily constructed splice through an 

experimental investigation into the flexural response of spliced CFFT beams and arches. To expand 

understanding beyond isolated arch performance, Walton et al. (2016a) conducted laboratory testing of 

buried arch bridges to evaluate their response to soil backfilling and live-loading in a controlled laboratory 

environment that mimicked construction of an actual bridge. Walton et al. (2016b) also developed beam-

based FE modeling techniques for simulating soil-structure interaction (SSI) and response of buried arches. 

The model relies on conventional 2D Euler beam-based elements with nonlinear horizontal spring elements 

to represent the soil backfill. While effective and innovative in its treatment of SSI and construction 
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sequence, the model of Walton et al. (2016b) requires a high mesh density and does not rigorously couple 

axial and bending effects. 

1.2 Dissertation Objective 

The main objective of this dissertation is to develop and validate FE element techniques for advanced 

simulation of CFFT arches to more effectively perform structural analyses, increase the design efficiency, 

and develop assessment tools for the BCAB. These numerical procedures attempt to more accurately 

quantify the behavior of the CFFT arches as a main component. The research includes three specific 

components: evaluation and simulation of the structural behavior of the field CFFT splice tested by Burns 

(2016), development of a general fiber-section beam FE employing the flexibility (force-based or FB) 

approach tailored specifically for modeling CFFTs, and extending the FB beam FE model to the three-

dimensional (3D) simulation of BCABs including SSI with an examination of the effect of abutment skew 

on arch response. One challenge common to all three topics is the implementation of a general FRP-

confined concrete constitutive model that captures the combined bending and axial load effects present in 

BCABs. Further, the 3D FB models will more rigorously incorporate the interaction between axial load and 

bending effects than was done in previous displacement-based modeling. 

1.3 Organization of the Dissertation 

This dissertation contains four additional chapters. Chapters 2, 3, and 4 are each a separate 

manuscript that has been written relatively independently for publication as a journal article and reformatted 

here according to the requirements of Graduate School, University of Maine. The paper based on Chapter 

2 is in print, the paper based on Chapter 3 is currently in review, and the paper based on Chapter 4 will be 

submitted after the defense of this dissertation. Each journal paper presents one component of this 

dissertation. 
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Chapter 2 addresses the nonlinear 3D modeling of control and spliced CFFT structural beams. For 

model validation, spliced beams with/without collars tested by Burns (2016) were selected to enhance our 

understanding of the splice structural response and failure mechanisms. For comparison, a numerical 

investigation is also conducted on the control beam tested by Bannon (2009) and reported by Dagher et al. 

(2012). The modeling was complex due to the need to capture the nonlinear constitutive response of the 

confined concrete, model the concrete-FRP interaction, and explicitly incorporate the splice including the 

internal CFCC reinforcement, FRP collar, and the cohesive bond between the collar and shell. Therefore, 

the numerical analysis in this topic utilized the Abaqus/CAE software package to investigate the nonlinear 

flexural response of spliced CFFT beams because of its flexibility and extensive library of material models. 

Chapter 3 addresses the development of a second-order, 2D FB fiber-section curved beam-column 

FE. Since CFFT arches undergo significant nonlinear effects arising from both large deformations 

(geometric nonlinearity) and material nonlinearity in all their constituents, they are good candidates for 

modeling using FB FE models. Large displacement geometric nonlinearity is accurately handled at the 

element level (P-Δ effect) utilizing the corotational formulation and at section level (p-δ effect) using a 

geometrically nonlinear FB frame element. The FB element’s curvature also is handled at the section level 

as initial bowing. The fiber section technique is equipped to trace the inelastic uniaxial stress-strain 

relationships of each fiber on the selected cross-sections. MATLAB will be the main software environment 

used for development of the numerical code for this topic. To-date, the general model formulation and 

implementation have been validated using conventional structural studies (i.e., elastic-plastic beam, 

inelastic frame, column elastic buckling, and circular arch elastic post-buckling). Then, results of the CFFT 

tests including the control beam and arch test of Bannon (2009) and the short and tall arch testes of Walton 

et al. (2016a) were used to assess the ability of the model to simulate CFFT structures. 

In Chapter 4, an efficient structural analysis technique is presented to analyze an entire BCAB using 

a newly-developed FE model with only two types of elements. Initially, the FE technology described in 

Chapter 3 is expanded to 3D. A soil-spring element used to idealize the soil with a series of one-dimensional 
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nonlinear axial-only springs. Following the formulation of both elements and their constituents’ material 

models, solution strategy, and backfilling multistage simulation, the FE analysis method is verified using 

results measured during laboratory tests of straight buried steel arch bridges from the literature. A 

parametric study is undertaken on a generic, two-lane BCAB to investigate the effect of bridge skew on 

bridge capacity. Several BCAB models with skew angles ranging from 0° to 50° increasing of 10° were 

analyzed for different loading stages. The bridges were subjected to factored (ultimate) loads defined by 

AASHTO (2017) for the Strength I load cases including AASHTO HL-93 design live loading as surface 

patch loads distributed through the soil plus applicable dead loads. Critical positions of vehicles along the 

bridge were chosen to maximize bending in the arches and quantify the expected increase in demand on the 

arches due to abutment skew. 

Chapter 5 closes this dissertation with a discussion of future research needs and potential extensions 

of the work presented in Chapters 2-4. 
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   CHAPTER 2  

CONTINUUM FE SIMULATION OF SPLICE RESPONSE 

2.1 Introduction 

In the BCAB construction, the lightweight FRP arches are often shipped to the field by trucks. 

Shipping long spans of these FRP arches can be expensive and challenging due to road width, vehicle height 

limits, and escort cost. To mitigate the challenges of shipping long spans of arches, splicing two or more 

smaller segments to form a longer span has been investigated. Relatively few prior studies have been 

conducted on flexural behavior of spliced CFFTs. Zhu et al. (2006) studied splices of CFFT beams in 

flexure, testing four types of splices, i.e., internal splices with grouted steel bars, grouted FRP bars, 

unbonded post-tensioned bars, and a fourth splice using an FRP socket similar to that used in the piping 

industry. The beams were initially stiffer than a control beam that had no splice, but none of the beams was 

stronger than the control beam, showing that continuity of the FRP provides greater strength than a 

discontinuous splice. The four beams were tested in flexure, but Zhu et al. (2006) noted that adding axial 

compression would theoretically improve a beam’s stiffness and the strength of the joint. As part of a wide 

study on CFFT piles, Helmi et al. (2005) investigated the flexural behavior of three spliced CFFT beams 

by using a splice consisting of two thick steel circular plates and eight steel bars with threaded ends screwed 

into those plates. In general, these spliced specimens were 7% stronger in flexure than the un-spliced tubes 

that were also tested for comparison. 

Parry (2013) developed a field splice for the arches that was fabricated from two main parts based 

on loading type. An external E-glass fiber-reinforced collar was designed to withstand short-term 

construction and concrete filling loads and held the two arch segments together using mechanical fasteners. 

The splice also contained conventional steel reinforcing to resist long-term loading that includes forces 

from the granular backfill, pavement, other superimposed dead loads, and vehicular live loads. The splice 

proved to be a feasible solution, exhibiting a moment capacity similar to that of a control arch with no 

splice. The collar developed by Parry (2013) successfully carried both short and long-term loads but had a 
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few shortcomings. The external splice was aesthetically unappealing, and the mechanical fasteners proved 

to be difficult to install on the circular surface of the arch. The steel reinforcing also had the potential to 

corrode and shorten the lifespan of the CFFT, negating one of its advantages. 

To develop a steel-free and easily constructed splice, Burns (2016) conducted experimental work to 

investigate the nonlinear flexural response of spliced CFFT beams and arches (Figure 2-1). While similar 

in concept to the splice of Parry (2013), the splice presented by Burns (2016) differed in several important 

ways. It consisted of an internal FRP collar bonded to the FRP shell with a high-strength urethane adhesive 

to withstand the short-term construction loads and carbon fiber composite cable (CFCC) longitudinal bars 

and a spiral to withstand permanent and live loads. The CFCC material was produced by Tokyo Rope, Inc. 

(2017) and can be used for concrete tensile and shear reinforcement. Experimental characterization included 

testing spliced CFFT beams and arches in flexure as well as tests to determine the adhesive bond strength 

and CFCC development lengths. 

 

Figure 2-1 Splice Elements Installed into an FRP Tube Segment 
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This chapter documents the first research contribution of this dissertation. The main objective is to 

develop a nonlinear 3D modeling of control and spliced CFFT structural beams. For model validation, 

spliced beams with/without collars tested by Burns (2016) were selected to enhance our understanding of 

the splice structural response and failure mechanisms. For comparison, a numerical investigation is also 

conducted on the control beam tested by Bannon (2009) and reported by Dagher et al. (2012). The modeling 

was complex due to the need to capture the nonlinear constitutive response of the confined concrete, model 

the concrete-FRP interaction, and explicitly incorporate the splice including the internal CFCC 

reinforcement, FRP collar, and the cohesive bond between the collar and shell. Therefore, the numerical 

analysis in this topic utilized the Abaqus/CAE software package (Simulia Inc. 2017) to investigate the 

nonlinear flexural response of spliced CFFT beams because of its flexibility and extensive library of 

material models. 

2.2 Review of Prior Experimental Work of Burns (2016) 

2.2.1 CFFT Specimen Construction 

The tubes considered here were fabricated with a combination of an inner layer of E-glass fiber 

braid and two outer layers of Toray T-700 carbon fiber braid. The three fiber layers of the spliced specimens 

were impregnated with Derakane 610C vinyl ester thermoset resin (Alshand Inc 2016) while the control 

specimens, tested by Bannon (2009), were impregnated with Derakane 8084 vinyl ester thermoset resin 

using the modified VARTM process. These two resins possess similar chemical and mechanical properties, 

and their use was based on availability at the time of specimen fabrication. Table 2-1 shows the elastic 

properties of the fiber and matrix materials. The percentage of fiber volume in the entire volume of hybrid 

braided laminate, fiber volume fraction (Vf), was taken as 50%, according to Bannon (2009) and Walton 

(2011). More details regarding this hybrid FRP tube and the fiber angle, lamina thickness, and sequence 

are reported in Section 2.3.2.3. 
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Table 2-1. Fibers and Matrix Parameters of FRP Tube Components 

Material Elastic Modulus, E (MPa) Poisson’s Ratio v Shear Modulus G (MPa) 

E-Glass Fiber 72,400 0.230 29,600 

T-700 Carbon Fiber 234,000 0.200 27,500 

Derakane 8084 2,900 0.35 1,100 

Derakane 610C 3,530 0.35 1,300 

 

2.2.2 Splice Description and Design 

Material cost and availability, fabrication complexity, and collar practicality were considered when 

developing the splice concept. All materials (FRP collar, adhesive, and self-tapping screws) can be easily 

procured and installed in the field. Figure 2-1 shows the elements of the splice. An FRP arch can be 

fabricated to be slightly longer than the design length so that the end can be cut off and used as a collar, 

which maintains the same radius of curvature as the arch. This approach ensured an accurate fit within the 

arch for any reasonable collar length and evenly distributed the shear stresses on the collar-to-arch adhesive 

connection. A longitudinal gap in the collar was created by cutting a longitudinal slit down the collar (Figure 

2-2), which, when closed, gave the splice a slightly smaller diameter and allowed insertion into the end of 

the CFFT tube being spliced. Self-tapping screws were used to hold the collar tightly against the inside of 

the CFFT tube to evenly disperse the adhesive and provide clamping pressure while the adhesive cured. 

This splice design required analysis for two loading conditions, i.e., short-term construction loads 

and a design combination of permanent and service live loads. The internal FRP collar bonded to the FRP 

shell with a high-strength urethane adhesive was designed to withstand the short-term construction loads 

up to and including decking and concrete filling. The CFCC-reinforced concrete core was designed to 
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withstand the permanent dead load due to soil backfilling, paving, etc. as well as live loads. The splice 

design assumed a typical BCAB geometry, having circular segment arches each with a 305-mm cross-

sectional diameter, 9.75-m horizontal span, and 4.87-m radius of curvature. The ultimate design loads were 

a bending moment of 46.3 kN-m, a shear load of 39 kN, and an axial compression load of 552 kN.  The 

arches were supplied by Advanced Infrastructure Technology, a company located in Orono, Maine, USA 

that has commercialized the BCAB technology. Short-term concrete filling and construction service loads 

carried by the FRP shell before the concrete cured were calculated for this case by Parry (2013) as a moment 

of 4.9 kN-m, a shear load of 2.2 kN, and an axial load of 7.1 kN. 

 

Figure 2-2 32-mm Longitudinal Slit in Collar 

2.2.2.1 Adhesive Shear Strength Determination 

Ashland Pliogrip 7770, a high-strength urethane adhesive for composite materials, was used to 

bond the collar to the CFFT shell. The technical data sheet for Pliogrip 7770 indicated a tensile strength of 

29 MPa, Young's modulus of 1184 MPa and a Poisson’s ratio of 0.429 but no published shear strength 
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(Ashland Inc 2016). The missing shear strength was required for the design of the internal collar. Therefore, 

lap shear tests were conducted on coupons made of the same composite lay-up used for spliced CFFT beam 

specimens, following a modified procedure of ASTM D5868 (2008). 

Two sections of FRP hollow tube were bonded together using the same lay-up as the splice. Prior 

to bonding, the surfaces were thoroughly sanded as recommended by the manufacturer. After sanding, the 

coupons were cleaned with alcohol, the adhesive was applied, and the surfaces were fixed in contact. After 

24 hours, upon a full adhesive cure, 25.4-mm wide coupons were cut that were 75 mm longer than the bond 

lines. The ends of the coupons were also coated with adhesive to ensure that the coupons had the same end 

thickness and that the shear plane would remain consistent within the bonded region. Finally, the coupons 

were loaded in tension using a servo-hydraulic testing frame with a 100-kN load cell at a displacement rate 

of 1.27 mm/min. This displacement rate was slower than the ASTM D5868 standard rate (12.7 mm/min) 

and was selected to mimic the concrete filling process. Load and position were recorded to assess the 

strength of the adhesive when bonded to the FRP. 

The average shear strength of the 76.2-mm-long bond line was 4.87 MPa with a standard deviation 

of 0.80 MPa (CoV of 16.4%). The average shear strength of the 25.4-mm-long bond line was 8.02 MPa 

with a standard deviation of 1.25 MPa (CoV of 15.5%). The failure mode of the 76.2-mm bond line tests 

was interlaminar shear failure between the two layers of carbon, and the failure mode of the 25.4-mm bond 

lines was interlaminar shear failure between the carbon and E-glass fiber layers. A possible explanation for 

the different failure modes and failure stresses are inconsistent specimen fabrication and/or different shear 

and peeling stress distributions for the two different bond lengths. However, because the FRP failed before 

the adhesive, the collar can be safely designed using this adhesive. In order to be conservative, the 4.87-

MPa average shear strength of the 76.2-mm bond line was taken as the ultimate capacity of the adhesive. 

As will be discussed later, this strength is more than sufficient for splice design. 
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2.2.2.2 FRP Collar Fabrication and Installation 

A collar length of 305 mm (152.5 mm on each side of the splice) was chosen since it was a workable 

length for collar installation and provided excess capacity based on the lap shear test data. Once the collar 

was cut from the FRP arch tube, a 32-mm-wide slit was longitudinally cut as shown in Figure 2-2. This slit 

width was determined to give a bond-line thickness within the range of acceptable values recommended by 

the adhesive manufacturer (Ashland Inc 2016). The adhesive was then applied to half of the collar, which 

was inserted into the end of the first arch segment. Self-tapping screws were installed every 102 mm, 

starting from the side opposite the slit, and installed in an alternating pattern to ensure that the adhesive 

dispersed evenly. The second half of the arch was installed in the same manner. Before installing the collar 

into the second half of the arch, the CFCC reinforcement cage was fabricated and placed inside. Figure 2-3 

shows one-half of the collar fully installed into one segment of the FRP tube. 

 

Figure 2-3. One-Half of FRP Collar Fully Installed 
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2.2.2.3 Internal CFCC Reinforcement 

Longitudinal CFCC bars and a CFCC spiral were designed as a cage to reinforce the concrete core 

for the long-term loads carried by the spliced arch. The longitudinal bars were used to resist bending and 

axial forces, and the spiral was used to resist shear forces. Axial load-bending interaction diagrams were 

created to determine the required CFCC longitudinal reinforcing, and conventional shear design concepts 

were used to determine the required spiral reinforcing. Both ACI 440 (2015) and AASHTO (2012) 

standards were followed for these calculations. Ultimately, eight longitudinal bars were used along with a 

spiral having a 76-mm pitch. This spiral pitch is much less than required for shear strength but meets the 

maximum pitch requirement in AASHTO (2012). Figure 2-1 shows the CFCC reinforcing bars inside the 

CFCC spiral. 

2.2.3 Internal CFCC Reinforcement Pullout Testing 

CFCC is a promising reinforcement option to withstand the bending moment, axial force, and shear 

force at the splice of CFFTs. However, information on development length and pullout strength was not 

available and was essential to ensure that the required splice capacity could be developed. Therefore, pullout 

tests were conducted to determine the relationship between the embedment length and the capacity of CFCC 

by using a modified version of ASTM C900 (2015). The design of these pullout tests was guided by the 

ACI 440.1R-15 guide (2015). 

CFCC bars with diameters of 12.5 mm, 15.2 mm, and 17.2 mm were chosen for testing because 

they were expected to be the most suitable sizes for the most commonly used FRP tubes. As shown in 

Figure 2-4, the CFCC specimens were vertically placed into a formwork with a width of 610 mm, a length 

of 914 mm, and a height of the CFCC length plus an extra 153 mm to provide concrete cover on the bottom 

of the block. A CFCC spiral was placed off-center within the formwork with a 76.2-mm pitch to mimic the 

splice, and the straight CFCC bar was located inside and in contact with the spiral. Steel rebar cages were 
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placed on each of the six sides of the formwork to ensure that the concrete blocks would not fail in tension, 

and a concrete mix identical to that used to fill CFFTs was cast into the formwork. 

The tensile elastic modulus of CFCC straight bars and spiral was 155000 MPa, and the 28-day 

compressive strength of the concrete was 56.4 MPa based on 150-mm cylinder tests. The CFCC reinforcing 

had a 1x7 configuration, consisting of a single carbon strand that has six other strands wrapped helically 

around it. Actual CFCC reinforcing cross-sectional areas were 76 mm2, 115.6 mm2, and 151.1 mm2 for 

12.5-mm, 15.2-mm, and 17.2-mm CFCC diameters, respectively. Table 2-2 shows a summary of CFCC 

pullout test results including the measured maximum pullout loads and the averages for different embedded 

lengths for each tested diameter of CFCC. According to a compilation of the averages of the maximum 

pullout loads versus the embedment lengths, an interpolation to find the pullout strength for a given 

development length was used to design the internal reinforcement of the splice. 

 

Figure 2-4. CFCC Pullout Test Setup 
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Table 2-2. Summary of CFCC Pullout Tests 

Diameter 

(mm) 

Embedment 

Length (mm) 

Maximum 

pullout load (kN) 
Average (kN) 

12.5 
 

254 

71.1 
 

75.0 
12.5 76.9 

12.5 77.0 

12.5  

445 

 

119.4 
 

129.0 
12.5 140.6 

12.5 127.1 

12.5  

660 

 

165.0 
 

167.8 
12.5 157.4 

12.5 181.1 

15.2 
 

305 

105.0 
 

112.4 
15.2 100.6 

15.2 131.7 

15.2  

533 

 

157.4 
 

166.4 
15.2 168.9 

15.2 172.9 

15.2  

813 

 

204.5 
 

213.9 
15.2 204.7 

15.2 232.6 

17.2 343 146.8 146.8 

17.2 610 227.7 227.7 

17.2 914 348.3 348.3 
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2.2.4 Flexural Tests of Spliced Beams 

2.2.4.1 Specimen, Instrumentation and Test Setup Description 

In order to assess the spliced beam capacity, bending tests were conducted on straight CFFT spliced 

beams including five specimens with internal collars and two specimens without collars. These beams, with 

the internal reinforcement detailed in Section 2.2.2.3, were filled with concrete. Two CFCC reinforcing 

configurations were used, including eight longitudinal 12.5-mm-diameter CFCC bars surrounded by a 7.5-

mm CFCC spiral and six 15.2-mm-diameter CFCC bars surrounded by a 7.5-mm CFCC spiral. Both the 

bars and the spiral were embedded 457 mm on either side of the splice for a total reinforcement length of 

914 mm. These embedment lengths and bar configurations corresponded to a 61.2 kN-m calculated flexural 

strength for the concrete specimen if the FRP shell is neglected with eight 12.5-mm CFCC bars, and 66.0 

kN-m with six 15.2-mm CFCC bars. Results from tests by Bannon (2009) on three control beams and 

initially reported by Dagher et al. (2012) are also given here for comparison with spliced beam results. The 

specimens are given identification codes C, S, and Sc to indicate control, spliced with no collar, and splice 

with collar specimens, respectively. Table 2-3 presents a summary of the beam specimen properties 

including the concrete compressive strength  and the nominal moment capacities  determined as 

described previously. 

Four-point bend tests were performed to examine the CFFT beams in a region of a constant moment 

and zero shear force. Figure 2-5 shows the beam test setup. The CFFT beam specimens had an outer 

diameter of 305 mm. The total thickness of the shell was approximately 2.5 mm and further details of the 

thickness of each braided layer, and fiber bias angles are described later in this chapter. During filling with 

the concrete, the beams were placed on their ends. Saddles were used to support the ends of the beams and 

to apply loads to achieve the simply supported boundary conditions (Figure 2-6). 

 

'
cf nM
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Table 2-3. CFFT Beam Specimens 

Specimen 

ID 

Failure Moment 

kN-m 

Mn 

kN-m 

𝑓௖
ᇱ 

MPa 

Span Length 

(Total Length) mm 
Splice 

C1 161.1 

156 41.0 3660 (3960) No C2 154.2 

C3 140.4 

S1 71.1 
61.2 45.5 

2845 (3200) 

 
Yes 

Without 

Collar 

8 CFCCs of 

12.5 mm S2 49.5 

Sc1 63.1 

66.8 33.8 2845 (3200) Yes 
With 

Collar 

6 CFFCs of 

15.2 mm 

Sc2 53.0 

Sc3 42.4 

Sc4 60.4 

Sc5 61.9 

 

Cross-sectional strains were measured at the top and the bottom face of specific sections to estimate 

the maximum tension and compression strains as well as to calculate the curvature. Three sets of strain 

gages (SG), SG1-3, SG4-6, and SG7-9, were used in this test. Each gage had a 50.8-mm gage length and 

120-ohm resistance. The SG1-3 and SG4-6 sets were installed within the constant moment region for each 

specimen, and the SG7-9 set was installed outside that region for each spliced specimen. A third SG was 

placed at mid-height to verify the assumption of a linear strain distribution through the depth. Vertical 

displacement was evaluated at the supports, load points, and mid-span with linear variable differential 

transducers (LVDTs). The beams were loaded with a 490-kN hydraulic actuator (Figure 2-5 and Figure 

2-6). 
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Figure 2-5. Setup of Four-Point Bending Test of Spliced Beam 

 

Figure 2-6. Four-Point Bend Test of Control Beam, (Dagher et al. 2012)  
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2.2.4.2 Test Results 

All the spliced beams with no collar failed via separation of the FRP and concrete (Figure 2-7a), 

which led to a loss of composite action. This was followed by rupture of the FRP shell on the tension face 

and buckling of the FRP shell on the compression face. The spliced specimens with collars exhibited 

separation in the FRP collar to shell interface (Figure 2-7b) as well as separation of the FRP and concrete 

and damage in the FRP shell. Only one side of the splice debonded, and the same side exhibited both 

compressive buckling at the load head and tensile rupture below the load head. Signs of FRP rupture and 

buckling occurred in the FRP shell near the ends of CFCC reinforcing cage that may be indicative of high-

stress concentrations where the reinforcing ends. S1, S2, and Sc5 specimens debonded on the same side as 

the strain gauges, while the other beams debonded on the side opposite the gauges. The side that debonded 

appears arbitrary and could be influenced by a small difference in applied load, a minor defect in the FRP 

shell on one side, or an uneven distribution of adhesive for beams with internal collars. This failure mode 

differs from the tensile rupture of the continuous FRP shell observed in the control beam tests of Dagher et 

al. (2012) as shown in Figure 2-7c. 

The maximum experimentally observed moments for each specimen are given in Table 2-3 for 

comparison with nominal expected capacities. The spliced beams with no collar had an average 

experimental capacity of 60.2 kN-m, and spliced beams with collar had an average experimental capacity 

of 56.2 kN-m. The control specimens tested by Dagher et al. (2012) under nominally identical conditions 

exhibited an average failure moment of 152 kN-m, implying that the spliced beams with no collar achieved 

40% of the control beam capacity, and the spliced beams with collar achieved 37% of the control beam 

capacity. Clearly, the discontinuity of the reinforcing shell played a significant role in beam failure. 

However, the beams with and without collar exhibited 84% and 99% of their computed nominal capacity, 

respectively. The observed failure mode of the spliced beams involving debonding of the shell adjacent to 

the splice likely affected observed capacity 
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(a) Spliced Beam with no Collar: FRP Shell Damage Propagating from Point of Tensile Rupture 

 

(b) Spliced Beam with Collar: FRP Shell Debonding 

 

(c) Control Beam: Typical Specimen Failure Mode 

Figure 2-7. Failure Modes of Beam Specimens 
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Load versus mid-span deflection plots give a visual representation of the stiffness of the CFFT 

beam as shown in Figure 2-8 and Figure 2-9. Figure 2-8 shows the mid-span load-deflection response of 

the control beams (for further details see Dagher et al. (2012)). For the spliced beams with a collar, the 

load-deflection results exhibited four distinct points as shown in Figure 2-9a. Point 1 shows initial concrete 

cracking occurring at an average load of approximately 34.4 kN. This initial cracking occurred before the 

cracking moment due to high-stress concentrations at the end of the CFCC reinforcing cage occurred and 

was caused by the termination of reinforcing in the tension zone. Point 2 shows concrete cracking occurring 

in the load span at an average load of approximately 57.3 kN. Point 3 shows the initiation of FRP debonding, 

where the maximum strain in SG3 occurred at an average load of approximately 97.8 kN. Point 4 shows 

the maximum average load that the beam withstood, which was approximately 135.4 kN. Spliced beams 

with no collar exhibited similar load-deformation response as the spliced beams with a collar but did not 

have a distinct Point 3 corresponding with FRP debonding (Figure 2-9b). The absence of a Point 3 is likely 

because the splice has no collar, and FRP debonded from the concrete more gradually than from the FRP 

internal collar. 

 

Figure 2-8. Control Beam Mid-Span Load-Deflection Response 
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(a) Spliced Beams with Collar 

 

(b) Spliced Beams without Collar 

Figure 2-9. Spliced Beam Mid-Span Load-Deflection Response 
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Figure 2-10 shows the measured strains for typical spliced specimens plotted against the moment 

in the pure bending region obtained from the applied load, (SG1-9 as illustrated in Figure 2-5).  In the 

spliced beams with no collar, SG3 showed a slight increase in tensile stresses until just beyond the cracking 

moment and then tended back towards zero strain (Figure 2-10a). The point where it began tending towards 

zero strain was likely where the debonding of FRP from the concrete core initiated. Spliced beams with a 

collar showed similar behavior to that of spliced beams with no collar (Figure 2-10b). The main difference 

was indicated by the gauge on the tension face closest to the splice (SG1-3), which accumulated higher 

strains before either tending towards zero or breaking. The maximum strain nearest the splice on the tension 

face was analyzed to characterize when the FRP shell lost composite action by debonding. The average 

debonding moment for beams without collar was 20.34 kN-m and for beams with collar was 48.26 kN-m. 

This higher moment capacity before debonding indicated that the internal collar helped resist long-term 

loading and that stresses transferred from one side of the FRP shell to the other via the internal collar helped 

reduce stress concentrations in the FRP shell at the splice. 

The depth to the neutral axis (NA) was calculated using strain compatibility and the strain gauge 

readings in the pure bending region away from the splice (SG4-6) to avoid the effect of stress concentrations 

near the collar before debonding. A best-fit line through the three gages SG4, SG5 and SG6 was used to 

estimate the NA location, and measured strain values indicated a nearly linear strain distribution throughout 

the cross-section depth. Figure 2-11 shows the NA depth as a function of the applied moment for the spliced 

beam with collar. Plotting the NA location gave a visual representation of the damage state of the concrete 

as it was loaded. Before concrete cracking, the section was linearly elastic, and the NA was expected to be 

at the mid-height of the section. Upon concrete cracking, the neutral axis shifted towards the compression 

face to maintain equilibrium, and the CFCC reinforcement was further engaged. 
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(a) Moment vs. Strain for S1 Specimen 

 

(b) Moment vs. Strain for Sc1 Specimen 

Figure 2-10. Measured Beam Strains (for strain gages lay-out see Figure 2-5) 
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The curvature was calculated as the angle of the strain distribution using the simple geometry of 

the SG4-6 best-fit line through the depth as shown in Figure 2-12. Figure 2-12 shows the moment-curvature 

plots of the tested spliced beams with collars. Curvature for beams with no collar showed an initial linear 

region followed by a rapid increase in curvature at moments between 15 and 18 kN-m, which was where 

concrete cracking occurred. As shown in Figure 2-12, the spliced specimens with a collar had a distinct 

region where curvature increased substantially with a decrease in moment. The sudden increase in curvature 

was due to concrete cracking and occurred at moments between 25 and 30 kN-m, which were close to the 

expected cracking moment. A smaller increase in curvature was seen around 15–20 kN-m, which aligned 

with the first shift in the NA (see Figure 2-11). That increase corresponded with an initial cracking that 

likely occurred in concrete located in the pure bending zone but outside of the reinforced area. 

Cracking moment values were estimated via moment-curvature diagrams (Figure 2-12) with the 

cracking moment taken as the point at which a substantial increase in curvature was paired with a decrease 

in the moment. The larger moment at which point this curvature began was considered the cracking 

moment. However, there was likely also initial cracking outside of the reinforced zone that may have 

propagated in toward the splice. This initial cracking was believed to have occurred due to high-stress 

concentrations at the end of the CFCC reinforcing cage caused by the termination of reinforcing in the 

tension zone. The average experimental cracking moment in the S beams was 28.3 kN-m and 25.5 kN-m 

in the Sc beams. These results were consistent with the lower average concrete compressive strength in the 

Sc beams compared to the S beams. 
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Figure 2-11. Neutral Axis Analysis for Spliced Beams 

 

Figure 2-12. Moment versus Curvature for Spliced Beams with Collars 
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2.3 Finite Element Simulation 

2.3.1 Methodology and Simulation Techniques 

Previously, Dagher et al. (2012) conducted numerical modeling to investigate the flexural response 

of CFFT control beams tested by Bannon (2009) using beam elements and an iterative algorithm to predict 

the moment-curvature relationship for the entire section of the CFFT. Dagher et al. (2012) assumed the 

FRP laminate had the same ultimate failure strain in tension and compression, full composite action 

between the FRP tube and the concrete core, and the concrete had no tensile strength. The technique for 

developing the moment-curvature relationship was initially established by Burgueño (1999) and included 

a variable confinement model for concrete in compression. In contrast, this study investigated the structural 

design of a CFFT splice using a fully 3D FE analysis that accounted for concrete confinement, cracking, 

and construction details of the splice. The FE package Abaqus/CAE was used for all simulations. For 

comparison, the response of a control beam nominally identical to the three specimens tested by Dagher et 

al. (2012) was also simulated. A zero-thickness cohesive surface was assumed to capture bond failure at 

the FRP-concrete interface. The ultimate failure strains of the FRP laminate in tension and compression 

were treated independently. Based on the symmetry geometry, material properties, loads and boundary 

conditions about x and z-axes (Figure 2-13), a quarter-symmetric FE model was built for each of the tested 

beams to minimize the total number of elements/nodes in order to save computational time (Figure 2-14). 

2.3.2 Constitutive Model and Mesh 

Standard eight-node, fully integrated, 3D linear stress/displacement continuum brick elements were 

used for modeling the concrete core and saddles. Four-node general-purpose shell elements with reduced 

integration, hourglass control, finite membrane strains were used for modeling the FRP tube and internal 

collar. Standard, linear space, shear-flexible beam elements were used to model the CFCC longitudinal and 

spiral cage reinforcements. Based on a mesh convergence study conducted for the control beam, CFFT 

specimens were meshed such that maximum global element size was approximately 15 mm (Figure 2-15). 
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Figure 2-13. Entire Assembled CFFT Specimen 

 

Figure 2-14. Spliced Beam: Boundary Conditions and Applied Loads for Quarter Symmetry 
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Figure 2-15 FE Model of Spliced Beam: Mesh with 15-mm Global Element Size 

2.3.2.1 Modified Concrete Damaged Plasticity Model 

Experimental investigations described previously have shown that CFFTs behave nonlinearly 

under pure bending or combined axial and bending loading. Most of that nonlinearity is due to damage and 

plasticity of the concrete core including cracking in tension and crushing under compression. Therefore, a 

nonlinear FE framework for FRP-confined concrete was implemented. Four main inelastic models are 

provided by Abaqus/CAE that can simulate constitutive behavior for most concrete types and predict 

failure, i.e., (1) the smeared crack concrete model, (2) the Drucker-Prager plasticity model, (3) the brittle 

crack concrete model, and (4) the concrete damaged plasticity model (CDPM). 

None of these models are specifically designed to simulate FRP-confined concrete. However, the 

CDPM is appropriate for simulating FRP-confined concrete because it is based on a constitutive model 

developed by Yu et al. (2010a) which has been directly implemented in the Abaqus/CAE package with no 

need for a user-defined material subroutine. The model of Yu et al. (2010a) describes the compressive 
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elastic-plastic behavior of FRP-confined concrete including the damage parameters, the yield criterion, the 

hardening/softening rule, and the flow rule. It also adopts the cracking and crushing of concrete as the main 

two failure mechanisms by using the concepts of isotropic damage in combination with isotropic tensile 

and compressive plasticity. Further, as demonstrated by Tao and Chen (2015), CDPM can simulate 

debonding of the FRP tube from the concrete core, which is the typical failure mode in the spliced beams. 

Crack propagation is modeled within the CDPM using continuum damage mechanics and stiffness 

degradation (Simulia Inc. 2017). 

To accurately simulate concrete response, the CDPM implemented in Abaqus/CAE needs: (1) a 

tensile stress-strain relationship with its damage parameters,  (2) a compressive stress-strain relationship 

with or without its damage parameters, (3) values of the isotropic elastic parameters, including elastic 

modulus and Poisson’s ratio, and (4) additional parameters that define the strain hardening-softening and 

flow rules including the dilation angle, the flow potential eccentricity, the ratio of initial biaxial compressive 

yield stress to initial uniaxial compressive yield stress, the ratio of the second stress invariant on the tensile 

meridian to that on the compressive meridian, and the viscosity parameter that defines viscoelastic 

regularization, (Simulia Inc. 2017). In general, for unconfined concrete, the recommended values of the last 

four parameters are the default values given in the Abaqus/CAE documentation, i.e., 0.1, 1.16, 0.667, and 

0.00, respectively. Allowable values of the dilation angle are between 0o and 56o, where the larger angle 

produces a stiffer response (Yu et al. 2010a). 

Yu et al. (2010a; b) recommend the compressive strain-stress relationship of Teng et al. (2007) be 

adopted because it explicitly represents the concrete/FRP-shell interaction and the inelastic strains and their 

corresponding damage parameters are evaluated using the same iterative algorithm. By treating the lateral 

strain-axial strain relationship as the key to an accurate confinement model for FRP-confined concrete, 

Teng et al. (2007) presented an analysis-oriented model for FRP-confined concrete in compression where 

the concrete and the FRP shell responses in addition to their interaction are explicitly considered. In order 

to provide context, a brief overview is provided in Section 2.3.2.2; for further details, see Teng et al. (2007). 
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The effect of FRP confinement on the flexural tensile strength of concrete has not been extensively 

investigated, and almost all FRP-confined concrete models found in the literature simulate only the effect 

of confinement on compressive strength. In CFFTs under flexural loading, the tensile strength of the 

concrete is small relative to the confined compressive strength, and the tensile stress will not 

instantaneously drop to zero because of the tension stiffening phenomenon. The tension stress-strain 

relationship implemented in this study was assumed to be linear with brittle fracture occurring at the 

modulus of rupture 𝑓௧ using the empirical relationship 𝑓௧ = 0.7ඥ𝑓′௖ (ACI Committee 318 2014). 

In addition to the adopted tensile stress-strain relationship and the analysis-oriented model (Section 

2.3.2.2), other parameters were required for the adopted modified CDPM. Poisson’s ratio was assumed to 

be 0.20, and 𝐸௖ was computed from the unconfined concrete strength using the empirical relationship 𝐸௖ =

4700ඥ𝑓′௖ (ACI Committee 318 2014). Yu et al. (2010a) assumed a non-associated flow rule in the CDPM 

and found that the material dilation angle depended on the yield potential function parameters which were 

adopted by Yu et al. (Yu et al. 2010b). The values of dilation angle, flow potential eccentricity, and the 

ratio of the second stress invariant on the tensile meridian to that on the compressive meridian were 

estimated according to methods and assumptions given by Yu et al. (2010a; b) and Teng et al. (2007) giving 

values of 53o, 0, and 0.725 respectively. The ratio of initial biaxial compressive yield stress to initial uniaxial 

compressive yield stress and the viscosity parameter were set to the default values recommended by 

Abaqus/CAE, (Simulia Inc. 2017). 

2.3.2.2 FRP-Confined Concrete in Compression 

In FRP-confined concrete, the lateral confining pressure is affected by the stiffness of the FRP-

shell. The confining pressure 𝜎௟ is directly proportional to the hoop strain of the FRP shell. The confining 

pressure supplied by the FRP shell is given by Equation 2.1. 
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𝜎௟ =
𝐸௙௥௣. 𝑡. ɛ௛

𝑅
 Equation 2.1 

𝐸௙௥௣ is the elastic modulus of the FRP in the hoop direction; 𝑡 is the thickness of the FRP shell; 𝑅 is the 

radius of the confined concrete, and ɛ௛ is the hoop strain of FRP shell, which is assumed to be the negative 

of the concrete lateral strain. 

Teng et al. (2007) reported many experimental studies of actively-confined and FRP-confined 

concrete that were conducted with different confinement ratios. Based on observation of the results of these 

tests, the authors concluded that the axial strain at a given lateral strain is highly reliant on the ratio between 

the lateral confining pressure and the unconfined compressive strength of the concrete. Therefore, Equation 

2.2 was proposed as a particular lateral strain-axial strain relationship, which applies to unconfined, actively 

confined, and FRP-confined concrete and includes that confinement ratio as a parameter. 

ɛ௖

ɛ௖଴
= ቆ1 + 8

𝜎௟

𝑓ᇱ
௖଴

ቇ 0.85 ቊ൤1 + 0.75 ൬
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ɛ௖଴
൰൨

଴.଻

− 𝑒𝑥𝑝 ൤−7 ൬
ɛ௛

ɛ௖଴
൰൨ቋ Equation 2.2 

In Equation 2.2, 𝑓ᇱ
௖଴ and ɛ௖଴ are the unconfined cylindrical compressive strength and its 

corresponding axial strain, respectively; and ɛ௖ is the uniaxial compressive axial strain.  The axial stress-

strain relationship of FRP-confined concrete given by Equation 2.3 can be used. In which, 𝑓ᇱ
௖௖

∗ and ɛ௖௖
∗ 

are the peak axial stress and the corresponding axial strain of concrete under a specific constant confining 

pressure, respectively, and 𝜎௖ is the axial stress of concrete. The constant 𝑟 accounts for the brittleness of 

concrete and is computed according to Equation 2.4, where 𝐸௖ is the elastic modulus of concrete 
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𝑟 = 𝐸௖/(𝐸௖ −
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௖௖
∗

ɛ௖௖
∗

) Equation 2.4 
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For estimating the values for 𝑓ᇱ
௖௖

∗ and ɛ௖௖
∗, Teng et al. (2007) assumed that the axial stress of 

FRP-confined concrete at a given axial strain and confining pressure is equal to that of actively-confined 

concrete with the same confining pressure and axial strain. The stress-strain curve of FRP-confined concrete 

can be predicted as a set of points on a series of curves of actively-confined concrete; at these points, both 

the FRP-confined concrete and the actively-confined concrete have the same confining pressure. The 

locations of these interception points, however, depends on the stiffness of the FRP shell. In the present 

model, Equation 2.5 and Equation 2.6 proposed to define the failure surface of the actively confined 

concrete. 

𝑓ᇱ
௖௖

∗

𝑓ᇱ
௖଴

= 1 + 3.5
𝜎௟

𝑓ᇱ
௖଴

 Equation 2.5 

ɛ௖௖
∗

ɛ௖଴
= 1 + 17.5

𝜎௟

𝑓ᇱ
௖଴

 Equation 2.6 

An iterative algorithm was used to generate the axial stress–axial strain curve of FRP-confined 

concrete. With the specified axial strain and all material properties as well as the CFFT cross-sectional 

dimensions, the FRP shell hoop strain was estimated using Equation 2.1 and Equation 2.4 Once the FRP 

shell hoop strain was available, the confining pressure supplied by the FRP shell could be determined 

without difficulty using Equation 2.1, then the calculation of axial stress was a straightforward process. By 

using the same algorithm, the inelastic strain and its corresponding damage parameter were evaluated taking 

the input variables, which were estimated according to the flow rule and to the softening-hardening rule of 

Yu et al. (2010b). Figure 2-16 shows the final confined compressive stress-strain model used in this study 

compared with the unconfined concrete curve using the same unconfined cylindrical compressive strength 

and its corresponding axial strain. 
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Figure 2-16. Confined and Unconfined Compressive Stress-Strain Model of Concrete 

2.3.2.3 FRP Tube and Internal Collar 

For many engineering structures, textile or woven fabric composites provide symmetric and 

balanced properties. A braided composite is a unique form of a textile composite with continuous 

reinforcement architecture such that the fiber tows are mechanically interlocked with one another, (Ayranci 

and Carey 2008). Unlike the characterization of unidirectional laminates, which is controlled by the 

mechanical properties of constituents, fiber angles, and ply thicknesses, analyses of textile composites are 

complex and depend on the undulation and cross-section geometry of the warp and fill tows as well as the 

spacing between these tows. The smallest element of the braided composite specimen that includes all the 

repetitive features is called the repetitive unit cell (RUC), (Barbero 2011). Several analytical models for 

braided composites are presented in the literature, most of which are reviewed by Ayranci and Carey  

(2008). Soykasap (2011) and Barbero (2011) satisfactorily estimated the mechanical properties of a braided 

textile composite by using different micromechanical models, including the rule of mixtures, one-

dimensional composite beam, and two-dimensional mosaic models. However, each of these models has 

some limitations and applying these analytical models requires all the parameters that describe the RUC. 
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Neither the control nor spliced beam experiments reported all required RUC parameters; therefore, 

the unidirectional ply micromechanics approach adopted by Barbero (2011) in conjunction with the Tow-

Waviness Knockdown Factor (TWKF) given by Cox and Flanagan (1997) was used in this study. Here, 

each braided composite layer with fiber orientation [±θ] is modeled as two [+θ/-θ] unidirectional plies, with 

a longitudinal modulus factored by the TWKF. The use of the TWKF accounts for the reduction in stiffness 

due to the straightening of undulating tows when loads are applied. The TWKT is a geometry-dependent 

factor, and it approximately equals 0.7 for the braided composites used in this study, (Bannon 2009). 

Therefore, the hybrid braided FRP tubes and collar were treated as a composite shell section created from 

three elastic orthotropic laminae with the corresponding braid thicknesses. Table 2-4 shows the 

micromechanics-predicted elastic properties of the braided laminae with the corresponding braided fiber 

angle and thickness. These transversely isotropic elastic properties are the model lamina parameters of the 

FRP shell. The subscript symbols  and  in Table 2-4 refer to longitudinal and hoop directions of FRP 

tubes, respectively. 

This characterization of the braided composite laminate was validated with the coupon-level 

moduli results of laminate testing conducted by Bannon (2009). That test was carried out on a single layer 

of (T-700 Carbon/Derakane 8084) braided FRP coupons prepared with different fiber orientation [±22.5°], 

[±27.5°], [±45.0°], and [±67.5°]. The model predicted values of Ex and νxy for the braided carbon laminate 

were in good agreement with experimental data as shown in Figure 2-17. 

The failure mechanisms of the braided FRP are complex due to the unique characteristics of textile 

composites. In order to minimize the uncertainty in the prediction of strength properties, Barbero (2011) 

recommend back-calculating them from experimentally measured composite properties by using 

micromechanics formulas. Therefore, the ultimate failure and damage parameters of the braided FRP tube 

are not considered in this research due to the lack of experimental data at the lamina level. 

x y
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Table 2-4 Micromechanics Predicted Elastic Properties of Braided Laminas 

Braided Lamina Carbon T-700 

Derakane 8084 

E-glass 

Derakane 8084 

Carbon T-700 

Derakane 610 

E-glass 

Derakane 610 

θ (+/-) degree 20 81 22.5 75 

Vf  (%) 50 50 50 50 

Thickness (mm) 0.78 0.94 0.86 1.02 

𝐸௫ (MPa) 57,171 9,646 50,984 10,967 

𝐸௬ (MPa) 7,373 25,376 8,108 23,614 

𝑣௫௬ 1.111 0.126 1.145 0.182 

𝐺௫௬ (MPa) 11,109 3,890 12,799 4,638 

𝐺௬௭ (MPa) 3,034 2,404 3,006 2,430 

𝐺௫௭ (MPa) 2,474 3,102 2,488 3,064 

 

 

Figure 2-17. Ex and νxy vs. Fiber Angle, Predicted and Experimental in Coupon-Level 
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2.3.2.4 CFFC Cage 

The CFCC longitudinal and spiral reinforcement were assumed to be linear elastic B31 elements 

with an embedded region constraint in the concrete core. The mechanical properties provided by the 

manufacturer, (Tokyo Rope Inc 2017) were the tensile elastic modulus of 137,000 MPa, Poisson's ratio of 

0.3, and ultimate tensile strain of 1.8%. 

2.3.3 Surface Interaction 

The FRP-to-concrete interface is usually assumed to exhibit full composite action in un-spliced 

CFFT simulations, (Chung et al. 2010; Dagher et al. 2012; Fam and Rizkalla 2002). However, in the 

simulation of spliced CFFT response, the assumption of full composite action produced an overestimated 

stiffness and did not capture the debonding failure observed experimentally. In their study on segmental 

CFFT piers, ElGawady and Dawood (2012) represented the FRP-to-concrete interface as a combination of 

a Coulomb friction model to transmit the shear stress and hard contact to transmit the normal stress. The 

stiffness predictions and the predicted debonding failure using this combined model were in good 

agreement for all CFFT beams. However, this model showed an obvious slippage at the end of the CFFT 

beam which was not observed experimentally. 

In order to construct the cylindrical interface between the FRP and concrete, this study simulated a 

surface-based cohesive interface using the traction-separation law implemented in Abaqus/CAE. This 

model showed good agreement in both control and spliced beam simulations with no slippage at the ends 

and captured the debonding failure at the splice. The constitutive law for the fictitious cohesive interface 

was obtained by back-calculating the stiffness parameters Knn, Kss, and Ktt in the normal and two shear 

directions respectively based only on the response of the control beam. This method started by assuming 

arbitrary values of these three stiffness parameters, then compared the model-predicted and experimentally-

determined mid-span deflection and maximum strains at failure load. The values of these parameters that 
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gave the best results for the control beams were used for modeling the spliced beams. The value of Knn was 

found to be 100 N/mm3 while the values of Kss and Ktt were 0.16 N/mm3. 

The lap joint between the FRP tube and FRP internal collar was also represented as a surface-based 

cohesive behavior. The mechanical parameters of the traction-separation law for this lap joint were 

determined from the technical sheet of the Pliogrip 7770 adhesive provided by Ashland Inc. (Ashland Inc 

2016) and from modeling the lap shear test discussed in Section 2.2.2.1 to determine the effective shear 

stiffness. Both FRP-to-concrete and FRP-to-FRP behaviors were assumed as a surface-to-surface contact 

with only slave nodes initially in contact. 

2.3.4 Loading Steps and Boundary Conditions 

One general-static loading step was adopted in this study. To accurately mimic the CFFT nonlinear 

flexural response, a reasonable number of automatic time steps were used for the static loading analysis 

with specific initial, maximum, and minimum increment sizes. If the solution did not converge at a given 

time step, especially when the concrete tensile cracking occurred, it was resolved with a reduced time step. 

Abaqus/CAE repeated this procedure until reaching convergence within each increment. 

Symmetry boundary conditions about the longitudinal x- and y-axes were implemented for all nodes 

at the planes of symmetry as shown in Figure 2-15. The test boundary conditions were mimicked by 

restraining the displacement degrees of freedom for all nodes at the lines of contact on the bottom surface 

of the support saddles. Frictionless contact between the beam and the top surface of the support saddles was 

simulated. The load was applied as two concentrated point loads acting on the center of the top surface of 

the load saddles, and frictionless contact was also assumed between the load saddles and the beam (Figure 

2-13 through Figure 2-15). 
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2.4 Model Predictions 

Overall, the model predictions were relatively consistent with the experimental results. Figure 2-8 

and Figure 2-9 show the mid-span load-deflection responses obtained from the FE model and experimental 

tests. The model-predicted load-deflection curves showed linear response up to abrupt softening occurring 

at a load of approximately 35 kN. This point was attributed to concrete cracking at the bottom of the beam 

in the load span. Beyond that point, a significant softening and nonlinear response occurred due to the 

progress of concrete cracking. 

The load-deflection response of the control beam was predicted more accurately than the responses 

of spliced beams due to other sources of nonlinearity caused by the splice and the relative complexity 

required to model the spliced beam. As shown in Figure 2-8, the FE model slightly overestimated the 

stiffness of the control specimens after the cracking moment up to the initiation of the debonding. That 

discrepancy was likely due to the assumption of a constant cohesive behavior between the concrete core 

and the FRP shell along the length of model regardless of the level of confinement. Nevertheless, it was 

observed that the simulations of the FRP-to-concrete interface, confined concrete, and hybrid braided FRP 

tube (an inner layer of E-glass fiber braid and two outer layers of carbon fiber) as three transversely isotropic 

laminas with zero fiber orientation showed satisfactory results for the predicted deflection. 

Figure 2-18 and Figure 2-19 show the predicted strains at the pure bending region plotted against 

their corresponding experimental strains up to failure. The moment-strain response of the spliced beams, 

away from the splice (corresponding to SG4-6) shown in Figure 2-18, was similar to that of the control 

beams, (310-mm away from mid-span) shown in Figure 2-19. The significant difference between the 

response of the spliced and control beams was indicated by the gauge on the tension face closest to the 

splice (SG3). 

The models did not explicitly predict failure since damage parameters of the braided FRP tube were 

not incorporated in the simulations. Furthermore, the model did not consider the strength and damage 
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mechanism of the cohesive FRP-to-concrete assumed in this study. However, the results obtained from the 

model of the control beam showed that the predicted applied load at a tensile strain of 0.0155 corresponding 

to longitudinal tensile rupture of the FRP shell that was 258.3 kN (Figure 2-19). This strain of 0.0155 was 

the average peak tensile strain measured by tension-face gauges at 310-mm away from mid-span (Dagher 

et al. 2012). The 258.3-kN load was 2.9% greater than the average failure load of 251.0 kN reported by 

Dagher et al. (2012) with a standard deviation of 17.35 kN and coefficient of variation of 6.91%. Likewise, 

the results obtained from the model of the spliced beam with collar showed that the applied load 

corresponding to the maximum longitudinal strain measured by SG4-6 (Figure 2-18) and SG7-9 was 128.7 

kN, which is 13.8 % greater than the average failure load of 113.1 kN with a standard deviation of 16.8 kN.  

These reasonably accurate predictions of strain at failure indicated that the model was capturing the 

behavior of both spliced and control beams reasonably well. 

The maximum predicted axial force in the longitudinal CFCC bar was 70 kN which was less than 

the minimum average capacity determined from the pullout testing explained in Section 2.2.3. Figure 2-20 

and Figure 2-21 show the models of the spliced beams’ deformed shapes obtained from the FE analysis at 

the maximum simulated load. The FE models predicted the general deformed shape, and local debonding 

of FRP interface at the splice is evident, which was also observed experimentally (see Figure 2-7). 

In general, the reasonably accurate prediction of the concrete cracking level, displacements, 

capacities, debonding, and strains compared with the experimental results indicated that the presented 

model was capable of predicting and analyzing the nonlinear response of un-spliced and spliced CFFT. 
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Figure 2-18. Predicted Stains vs. Measured Strains: Spliced Beam with Collar for SG4 and SG6 

 

Figure 2-19. Predicted Stains vs. Measured Strains: Control Beam 310 mm away from mid-span 
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Figure 2-20. Deformed Shape of the Spliced Beam with Collar 

 

Figure 2-21. Deformed Shape of the Spliced Beam with no Collar 
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2.5 Summary 

Structural development and investigation of a field-installed CFFT splicing for bridge construction have 

been presented. This splice consisted of an internal FRP collar bonded to the FRP shell with a high-strength 

urethane adhesive to withstand the short-term construction loads and CFCC longitudinal bars and spiral to 

withstand permanent and live loads. This chapter has detailed the fabrication, structural testing and FE 

simulation of spliced CFFT beams. Also included were results of pullout testing of CFCC necessary to 

design the splice. The following conclusions and findings were drawn from this study. 

 Pullout testing of CFCC showed there was a direct correlation between the embedment length and 

the pullout capacity. Further, relatively short development lengths developed significant CFCC 

tensile capacity. 

 The splice design presented here appears to be a viable option for field-splicing CFFTs. While 

moment capacity of the spliced beams was, on average, 38% of the moment capacity of the un-

spliced beams, spliced beam capacity was, on average, 88% of the computed splice strength which 

accounted for the internal reinforcing and neglected the FRP collar. In a field application of this 

technology, splices can be located in regions of the structure with lower applied moments. 

However, while the adhesive used to attach the collar is also employed to attach adjacent sections 

of FRP decking during construction of BCABs, the successful field application of the adhesive in 

a splice may need to be verified through NDE or other techniques. 

 The presence of an internal collar may have increased the moment capacity of a spliced beam 

beyond that of a spliced beam without an internal collar. This was likely due to FRP debonding 

occurring at higher moments compared to beams with no internal collar. However, only two beams 

were tested with an internal collar, and significant spread in capacities was observed. 

 Debonding of the FRP shell from the concrete core was a pre-cursor to FRP tensile rupture in the 

spliced beams, and matrix damage propagated from the point of tensile rupture to the splice. Tensile 

rupture and compressive buckling also occurred for all specimens at the termination of the CFCC 
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reinforcing. The internal collar did not prevent the FRP from debonding but increased the moment 

required to debond the shell by a factor of almost 2.4. 

 More bending tests could be conducted to better characterize FRP debonding and the resulting 

effect of loss of concrete confinement. These tests could have varying internal collar lengths to 

assess if a longer internal collar increases the splice’s capacity before debonding. Additional tests 

employing different lengths and termination points of the CFFT reinforcing cage would also be 

valuable to help assess the significance of the termination point of the CFFT. 

 The nonlinear FE models of this study provided a better understanding of the general performance 

of the control and spliced CFFT beams as well as the effect of the internal collar. The models gave 

reasonable predictions of stiffness and strength of the spliced beams, and very good predictions of 

strains and load-deflection response of the un-spliced control beam. 
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   CHAPTER 3  

EFFICIENT FE SIMULATION OF CFFT ARCHES 

3.1 Introduction 

In 1995, Mirmiran and Shahawy pioneered the use of CFFTs as compression members, (Mirmiran 

and Shahawy 1997). Thereafter, a large amount of experimental work has been conducted to investigate 

the structural performance of CFFTs in different configurations, with and without reinforcement, and under 

different types of loading. Davol et al. (2001) carried out bending tests on CFFT beams to characterize their 

flexural and shear response as well as the FRP hoop and the concrete dilation behavior. Fam and Rizkalla 

(Fam and Rizkalla 2002) extensively investigated the flexural behavior of large-scale CFFT beams by 

demonstrating the effects of various parameters such as concrete filling and placement of an internal hole. 

Cole and Fam (2006) and Mohamed and Masmoudi (2010) attempted to enhance the flexural response of 

the CFFTs by reinforcing them with either steel or FRP. 

In order to help understand experimentally observed response of CFFTs, provide insight into their 

structural performance, and design structures supported by CFFT beams and arches, numerical simulations 

are necessary. The traditional fiber cracked section analysis has been applied to predict CFFT bending 

response based on the concepts of equilibrium and strain compatibility along with the experimental work 

as in the literature cited above (Cole and Fam 2006; Davol et al. 2001; Fam and Rizkalla 2002; Mohamed 

and Masmoudi 2010). FE studies have also been conducted to numerically predict CFFT system response 

and components (Hany et al. 2016; Hussein Abdallah et al. 2017; Kabir and Shafei 2012; Mirmiran et al. 

2000; Qasrawi et al. 2016; Son and Fam 2008; Youssf et al. 2014; Yuan et al. 2017). However, most of 

those analyses have utilized both solid-based and shell-based elements of commercial software packages 

such as Abaqus/CAE and have typically been developmentally and computationally demanding. Few 

researchers have developed simple beam-based, i.e., (either DB or FB), FE analyses to simulate CFFT 

structural members. Dagher et al. (2012) investigated the bending response of CFFTs using 2D DB FE 

analysis proposed by as discussed later. Hu and Barbato (2014) adopted a geometrically linear FB element 
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using a previously-established MATLAB-based program called FEDEASLab to model the structural 

response of reinforced concrete circular columns confined with externally-bonded FRP, specifically. 

Of particular interest in this dissertation are BCABs, where CFFT arches act as the main structural 

members and must carry combined axial load and bending. Dagher et al. (2012) carried out structural testing 

on full scale isolated arch specimens along with four-point bending tests of CFFT beam specimens to 

investigate the flexural response. The authors also developed a DB beam model to simulate the structural 

response of CFFT arches based on small strains and small displacements using two-noded, 2D Euler beam 

elements. The authors adopted an iterative algorithm that pre-defines the nonlinear moment-curvature 

response of an arch cross-section and accounts for concrete cracking and FRP confinement effects on the 

concrete for the entire section of the CFFT using the concrete constitutive model of Burgueño (1999). 

CFFT arches present unique modeling challenges due to the effect of confinement of the concrete 

core on its stiffness and ductility as well as the importance of large deformations. The arches undergo 

significant nonlinear effects arising from both geometric and material nonlinearities; however, they have 

rarely been investigated by a simple, efficient, second-order nonlinear approach. Therefore, CFFT arches 

are good candidates for simulation using FB beam-column (frame) elements, which permit accurate 

nonlinear structural simulations with relatively few elements compared to conventional DB analysis 

(Spacone et al. 1996). With FB element force interpolation functions exactly satisfy the equilibrium in the 

deformed configuration, although an iterative procedure is required at the element level to verify the 

compatibility at element integration points. 

This chapter documents the second research contribution of this dissertation and presents an efficient 

method for structural modeling of CFFT arches. The main objective is to develop and validate a general, 

second-order, layered-section, curved frame element employing the FB approach that is tailored specifically 

for modeling CFFT members. This will allow more efficient design of CFFT arches and more accurately 

quantify the behavior of these structures. Large displacements and geometric nonlinearity are accurately 
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handled at the element level (P-Δ effect) utilizing a corotational formulation and at the section level (p-δ 

effect) using a geometrically nonlinear FB frame element. The initial curvature of the CFFT arch is 

incorporated in the formulation. The layered section technique is equipped to trace the elastic behavior of 

the FRP tube and the inelastic uniaxial stress-strain relationship of the FRP-confined concrete. The 

MATLAB programming environment (2018) was used to implement the FB element and solver. To the 

best of the authors’ knowledge, this study employs for the first time a second-order inelastic FB curved 

frame FE to simulate the structural response of CFFT arches. The general model formulation and its 

implementation are verified using three case studies including elastic-plastic analysis of a beam, elastic 

buckling analysis of a column and elastic post-buckling analysis of a circular arch. A bending test was 

performed on isolated CFFT arches spanning 6.1 m and having different rises to compare their response 

with model predictions. Results of CFFT arch and beam tests reported by Dagher et al. (2012) were also 

used to additionally assess the ability of the model to simulate CFFT behavior and failure modes. The 

results of the FB modeling approach are shown to compare well with the experimental results. 

3.2 Development of Analysis Methodology 

A methodology for performing a FB planar FE analysis on isolated CFFT structural members 

considering the effect of FRP confinement on the constitutive response of the concrete core is presented. 

The element geometry within the corotational framework, material constitutive relationship that accounts 

for the FRP confinement effect on the concrete, element state-determination process, and global 

incremental-iterative solver are detailed. 

3.2.1 Coordinate Systems and Geometry 

A curved, planar, FB frame element is adopted with two nodes (I and J) and six degrees of freedom 

in the global coordinate system (X, Y) as shown in Figure 3-1a. The global end displacement including the 
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rigid body modes 𝐃෡  and their corresponding force components 𝐏෡ are illustrated in Figure 3-1 and grouped 

in Equation 3.1 and Equation 3.2, respectively. 

𝐃෡ = [𝐷෡ଵ, 𝐷෡ଶ, 𝐷෡ଷ, 𝐷෡ସ, 𝐷෡ହ, 𝐷෡଺]் Equation 3.1 

𝐏෡ = ൣ𝑃෠ଵ, 𝑃෠ଶ, 𝑃෠ଷ𝑃෠ସ, 𝑃෠ହ, 𝑃෠଺൧
்

 Equation 3.2 

To avoid singularity of the element stiffness matrix due to the rigid body modes, the nodal 

displacements are transformed to the local element (basic) coordinate (x, y) system using the corotational 

formulation. The corotational formulation allows accurate handling of large rigid body motions of an 

element and system-level geometric nonlinearity in a small strain framework de Souza (2000). Furthermore, 

the element and geometric stiffness matrices, along with the element forces, can then be transformed from 

the local to the global coordinate system including all translational and rotational degrees of freedom for 

assembly into the global stiffness matrix and internal force vector, respectively. Further details on the 

formulation and derivation of the corotational formulation are omitted here but are thoroughly covered by 

others (Crisfield 1990; de Souza 2000). 

 

Figure 3-1. (a) Global Coordinate System, (b) Basic Coordinate System 

In the basic coordinate system, the frame element has three DOFs including one axial displacement 

and two rotations relative to the chord. These three degrees of freedom are the minimum number of 

geometrical variables required to illustrate the deformable mode of the element and must be updated at 
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every global iteration. The local nodal displacements D and the corresponding forces P are illustrated in 

Figure 3-1b and grouped in Equation 3.3 and Equation 3.4, respectively. 

𝐃 = [𝐷ଵ, 𝐷ଶ, 𝐷ଷ]் Equation 3.3 

𝐏 = [𝑃ଵ, 𝑃ଶ, 𝑃ଷ]் Equation 3.4 

3.2.2 Element Formulation 

Based on Bernoulli- Euler theory, the deformations at each cross-section d(x) of the adopted frame 

element are described by defining two degrees of freedom including the axial strain at the reference axis 

ε0(x) and the curvature of the cross-section κ(x), as grouped in Equation 3.5. The corresponding section 

forces or the stress resultant vector S(x) consists of the axial force, N(x), and the bending moment, M(x), as 

illustrated in Figure 3-2 and grouped in Equation 3.6. 

𝐝(𝑥) = [ 𝜀଴(𝑥) 𝜅(𝑥)] ் Equation 3.5 

𝐒(𝑥) = [𝑁(𝑥) 𝑀(𝑥)]் Equation 3.6 

Each element is further divided into a number of sections that are subdivided into layers (e.g., for 

CFFT, there are FRP and confined concrete fibers at each layer as shown in Figure 3-2). The strain ɛ(𝑥, 𝑦) 

at any layer 𝑖 is constant and related to the sectional deformation d(x) as 𝜀(𝑥, 𝑦) = 𝐚(𝑦)𝐝(𝑥), where 𝐚(𝑦) 

is the compatibility matrix that relates the generalized section deformations with the strain at any section, 

as shown in Equation 3.7. 

𝐚(𝑦) = [1 − 𝑦] Equation 3.7 
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Figure 3-2. Layered-Section Discretization and Distributed Plasticity Technique 

To satisfy equilibrium at any section in the deformed element of length 𝐿, the force interpolation 

function 𝐛(𝑥, 𝑣௫) in Equation 3.8 proposed by Neuenhofer and Filippou (1998) was adopted to relate the 

section forces 𝐒(𝑥) to the element end forces 𝐏 by Equation 3.9. 

𝐒(𝑥) = 𝐛(𝑥, 𝑣௫)𝐏      where     𝑣௫ = 𝑣(𝑥) + 𝑣଴(𝑥) Equation 3.9 

Because this interpolation function strictly satisfies equilibrium in the deformed shape, there is no 

discretization error but only a numerical error in the FB element analysis (Neuenhofer and Filippou 1997). 

The lateral displacement 𝑣(𝑥) (Figure 3-1) is employed to accurately capture the geometric nonlinearity in 

the section level caused by the interaction between the axial force and bending moment. In Equation 3.9, 

𝑣଴(𝑥) is the initial curvature of the FB element, and can be used to capture the curvature of CFFT arches 

as in the present study or member imperfections (Du et al. 2017). 

The weak form of compatibility is enforced through the application of the Principle of Virtual 

Forces, which in the case of the FB frame element takes the form in Equation 3.10.  

𝐛(𝑥, 𝑣௫) = ൤
1 0 0
𝑣௫ 𝑥/𝐿 − 1 𝑥/𝐿

൨ Equation 3.8 
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න 𝛿𝐒(𝑥)்𝐝(𝑥)𝑑(𝑥)

௅

଴

= 𝛿𝐏்𝐃 
Equation 

3.10 

According to Du et al. (2017), Equation 3.11 represents the relations between the virtual section forces 

𝛿𝐒(𝑥) and virtual end forces 𝛿𝐏 obtained using the composite matrix 𝐛∗(𝑥, 𝑣௫
∗) in Equation 3.12. 

𝛿𝐒(𝑥) = 𝐛∗(𝑥, 𝑣௫
∗)𝛿𝐏     where     𝑣௫

∗ = 0.5 ∗ 𝑣(𝑥) + 𝑣଴(𝑥) Equation 3.11 

𝐛∗(𝑥, 𝑣௫
∗) = ൤

1 0 0
𝑣௫

∗ 𝑥/𝐿 − 1 𝑥/𝐿
൨ Equation 3.12 

After substitution of Equation 3.11 in Equation 3.10 and elimination of 𝛿𝐏் based on the arbitrariness 

argument, the element end displacement in terms of the section deformation along the element is shown in 

Equation 3.13. 

𝐃𝒆𝒍𝒆 = න 𝐛∗(𝑥, 𝑣௫
∗)𝐝(𝑥)𝑑(𝑥)

௅

଴

 Equation 3.13 

3.2.3 Fiber Section Model and Element Flexibility matrix 

Following Bernoulli-Euler theory, at any cross-section of Figure 3-2 only normal stress 𝜎(𝑥, 𝑦) 

acts on each one-dimensional element fiber, and the corresponding material tangent modulus is 𝐸௧(𝑥, 𝑦) =

డఙ(௫,௬)

డఌ(௫,௬) 
. The stress resultants 𝐒(𝑥) at that cross-section (integration point) can be calculated by stress 

integration over the whole section area A as in Equation 3.14, which is applicable to both elastic and 

inelastic materials. 

𝐒(𝑥) = න 𝐚(𝑦)𝑻𝜎(𝑥, 𝑦)𝑑𝐴
஺

଴

 Equation 3.14 
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Therefore, considering distributed plasticity by using the layered-section technique makes the FB 

elements more efficient than the DB elements in the geometrically nonlinear inelastic analysis (Du et al. 

2017). Furthermore, using the layered-section technique in FB elements can assist in capturing plastic 

hinges along the elements with reduced computation time due to the adopting of exact force interpolation 

function 𝐛(𝑥, 𝑣௫). 

According to de Souza (2000), the resulting expressions for the section tangent stiffness matrix 

𝐤𝒔𝒆𝒄(𝑥) and flexibility matrix 𝐟𝒔𝒆𝒄(𝑥) are obtained from Equation 3.15 and Equation 3.16, respectively. 

𝐤𝒔𝒆𝒄(𝑥) = න 𝐚(𝑦)𝑻𝐸௧(𝑥, 𝑦)𝐚(𝑦)𝑑𝐴 =
஺

଴

⎣
⎢
⎢
⎢
⎡ න 𝐸௧(𝑥, 𝑦)𝑑𝐴

஺

଴

− න 𝑦𝐸௧(𝑥, 𝑦)𝑑𝐴
஺

଴

− න 𝑦𝐸௧(𝑥, 𝑦)𝑑𝐴
஺

଴

න 𝑦ଶ𝐸௧(𝑥, 𝑦)𝑑𝐴
஺

଴ ⎦
⎥
⎥
⎥
⎤

 Equation 3.15 

𝐟𝒔𝒆𝒄(𝑥) = 𝐤𝒔𝒆𝒄(𝑥)ି𝟏 Equation 3.16 

The section constitutive law is written in Equation 3.17. 

𝐝(𝑥) = 𝐟𝒔𝒆𝒄(𝑥)𝐒(𝑥) Equation 3.17 

The element flexibility matrix 𝐅𝒆𝒍𝒆 can be obtained by taking the derivative of the end nodal 

displacements 𝐃𝒆𝒍𝒆 (Equation 3.13) with respect to the end nodal forces 𝐏. Due to the existence of lateral 

displacement term 𝑣(𝑥) in the matrix 𝐛∗(𝑥, 𝑣௫
∗), the flexibility matrix evaluation is complicated and leads 

to Equation 3.18. 

𝐅௘௟௘ =
𝜕𝐃

𝜕𝐏
= න{𝐛∗(𝑥, 𝑣௫

∗)𝑻𝐟𝒔𝒆𝒄(𝑥)[𝐛(𝑥, 𝑣௫) + 𝐡(𝐏, 𝑣௫)] + 𝐠(𝐏, 𝑣௫)

௅

଴

}𝑑(𝑥) Equation 3.18 

Finally, the element stiffness matrix without rigid body modes is given by Equation 3.19. 
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𝐊௘௟௘ = 𝐅௘௟௘ିଵ
 Equation 3.19 

The matrices h and g are defined in Equation 3.20. 

𝐡(𝐏, 𝑣௫) = 𝑃ଵ ቈ
0 0 0

డ௩(௫)

డ௉భ

డ௩(௫)

డ௉మ

డ௩(௫)

డ௉య

቉,     𝐠(𝐏, 𝑣௫) =
఑(௫)

ଶ
቎

డ௩(௫)

డ௉భ

డ௩(௫)

డ௉మ

డ௩(௫)

డ௉య

0 0 0
0 0 0

቏ Equation 3.20 

The term 
డ௩(௫)

డ𝐏
= [

డ௩(௫)

డ௉భ

డ௩(௫)

డ௉మ

డ௩(௫)

డ௉య
] in Equation 3.20 is evaluated using a technique primarily 

developed by Neuenhofer and Filippou (1998) called Curvature Based Displacement Interpolation (CBDI). 

In the CBDI technique, the displacements 𝑣(𝑥) need to be obtained from the curvature field 𝜅(𝑥) evaluated 

at n integration points using a Lagrangian polynomial. The procedure is mathematically summarized in 

Appendix A. Further details on the derivation of element flexibility matrix 𝐅𝒆𝒍𝒆 and the formulation of 

CBDI technique are omitted here but are thoroughly covered by de Souza (2000). 

In addition to the use of the layered-section technique to capture the stiffness degradation due to 

concrete cracking in the tension face of the cross-section and along the CFFT arch element as shown in 

Figure 3-2, Gauss-Lobatto numerical integration is used to numerically evaluate Equation 3.13 and 

Equation 3.18. This scheme is more accurate than conventional Gauss integration when solving nonlinear 

problems because it always includes the end sections of the integration field (Spacone et al. 1996). Element 

loads are concentrated at the ends, which experience the most substantial nonlinear behavior. 

3.2.4 CFFT Constitutive Model 

Most of the nonlinear response of the CFFT arches is due to damage and plasticity of the concrete 

core, including tensile cracking. The compressive strength and the ultimate strain of concrete can be 

significantly enhanced by FRP confinement. Therefore, an important aspect in the simulation of CFFT 

arches is to use a compressive stress-strain model that explicitly considers the response of the concrete core 

and its dilation as well as the FRP tube and its confining effect on the concrete core. The stress-strain, 
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analysis-oriented model for FRP-confined concrete used in this study was originally proposed by Teng et 

al. (2007) based on an interpretation of the lateral deformation characteristics of concrete with different 

levels of FRP confinement. This model has demonstrated good predictive capabilities in 3D continuum 

shell simulation of spliced and unspliced CFFT beams in Chapter 2 of this dissertation. To provide context, 

a brief overview is provided in Section, 2.3.2.2; for further details, see Teng et al. (2007). 

An iterative algorithm was generated to illustrate the compressive axial stress–axial strain curve of 

FRP-confined concrete up to the ultimate axial compressive strain (enhanced crushing strain), the maximum 

value of which is typically taken as 0.01 in accordance with ACI Committee 440 (2017). With a given axial 

strain and all material properties as well as the CFFT cross-sectional dimensions, the FRP shell hoop strain 

was estimated using Equation 2.1 and Equation 2.2. In Equation 2.2, the strain at peak stress 𝜀௖଴ is 

calculated as 𝜀௖଴ = 9.37 × 10ିସ ඥ𝑓௖଴
ర  based on Teng et al. (2009). Once the FRP shell hoop strain was 

known, the confining pressure supplied by the FRP shell was determined using Equation 2.1, and the 

calculation of the concrete axial stress 𝜎𝑐 (illustrated in Figure 2-16) was a straightforward process using 

Equation 2.3 through Equation 2.6. 

The effect of FRP confinement on the tensile strength of the concrete core in CFFT system has not 

been extensively investigated relative to the confined compressive strength. As a brittle material, the plain 

concrete is usually considered to have no tensile strength as assumed in the CFFT analytical and numerical 

investigations by Davol et al. (2001) and Dagher et al. (2012). This assumption is slightly conservative for 

analysis purposes and consistent with the ACI design recommendation of neglecting the tensile strength for 

members with a non-normal percentage of steel reinforcement (ACI Committee 318 2008). In a study of 

characterization and design of BCABs, Burgueño (1999) adopted an approximate linear stress-strain 

relationship for concrete in tension with a strength taken from the ACI recommendation for cracking 

strength and neglected the phenomenon of tension stiffening.  
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In the CFFT system, however, the tensile stress in the concrete core will not instantaneously drop 

to zero due to the presence of the FRP shell (Fam and Rizkalla (2002) and Son and Fam (2008)). 

Furthermore, Fam and Rizkalla (2002) found that the value of cracking strength of CFFTs is slightly higher 

than the value given by the ACI recommendation. Herein, the concrete in tension was treated as shown in 

Figure 3-3 with a modulus of rupture 𝑓௧ calculated in accordance with the ACI equation as 𝑓௧ = 0.6. ඥ𝑓ᇱ
௖଴ 

(ACI Committee 318 2014), and stress relaxation multiplier 𝑇௖ of 0.6 as the default value (Son and Fam 

2008). The FRP shell was treated as a linearly elastic material in both longitudinal and transverse (hoop) 

directions. Longitudinal and hoop elastic moduli and rupture strains were determined based on coupon 

tension tests as discussed later. Finally, full composite action was assumed between the FRP shell and the 

concrete interface, which is consistent with observed experimental behavior and design of the CFFT 

members (Dagher et al. 2012). 

 

Figure 3-3. Concrete Stress-Stain Relationship in Tension 
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3.2.5 Nonlinear Solution Procedure 

The FB method is very efficient for analyzing nonlinear structural problems because it strictly 

satisfies force equilibrium at the element level. However, one of its main drawbacks is the difficulty of 

numerical implementation, especially in general DB FE programs. In FB methods, the determination of 

element internal forces and deformations is not a straightforward procedure and requires an iterative method 

at the element level due to the interpolation of the unknown forces as well as the existence of lateral 

displacement in the interpolation function of those forces. Thus, an element state determination procedure 

is employed to determine the trial end forces calculated by the end displacements and then used for force 

interpolation. 

Initially, however, the unknown end displacements need to be calculated at each global load 

increment using the corresponding global stiffness matrix. Therefore, using the FB elements in an 

incremental-iterative second-order nonlinear analysis requires a trial-and-error procedure which involves 

two levels of iteration: a global iteration for an incremental-iterative numerical solution (e.g., Newton-

Raphson method, Arc-length method, or the Generalized-Displacement Control (GDC) method) as well as 

local iteration. 

The GDC method proposed by Yang et al. (2007) was adopted in this study because of its 

robustness and effectiveness in solving nonlinear problems with multiple critical points. According to Leon 

et al. (2011), the GDC method has been used for large deflection analysis with complex nonlinear behavior 

because of its general numerical stability and efficiency compared with other nonlinear solution schemes 

(e.g., Load-Control, Displacement-Control, Arc-Length or Work-Control method). Furthermore, the GDC 

method considers the variation of the structural stiffness and an automatically reversed direction to 

determine the load increment. 

The equilibrium equation for each iteration at any global incremental loading step is performed as 

in Equation 3.21. 
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𝐊෡ ଴Δ𝐔 = λ𝐐෡ + 𝐑଴ Equation 3.21 

Here, 𝐊෡ ଴ is the tangent system stiffness matrix from the previous converged state, Δ𝐔 is the current 

displacement increment vector, 𝐐෡  is the total applied load vector, 𝐑଴ is the unbalanced force vector from 

the previous converged state, and λ is the load increment parameter. Equation 3.21 can be decomposed into 

Equation 3.22 and Equation 3.23. 

𝐊෡ ଴Δ𝐔෡ = 𝐐෡ Equation 3.22 

𝐊෡ ଴Δ𝐔ഥ = 𝐑଴ Equation 3.23 

The displacement increment vector Δ𝐔 can be computed according to Equation 3.24. 

Δ𝐔 = λΔ𝐔෡ + Δ𝐔ഥ Equation 3.24 

Moreover, the total displacements 𝐔 and the corresponding external applied loads 𝐐 of the structure at the 

end of each iteration can be accumulated using Equation 3.25 and Equation 3.26. 

𝐔 = Δ𝐔 + 𝐔଴ Equation 3.25 

𝐐 = λ𝐐෡ + 𝐐଴ Equation 3.26 

Here, 𝐔଴ and 𝐐଴ are the vectors of total structure displacements and the corresponding total external applied 

loads from the previous converged state. The unknown load increment factor λ can be determined from a 

constraint condition based on Generalized Stiffness Parameter (GSP) as follows. For the first iteration step 

at any increment, λ is determined according to Equation 3.27, and for all other iterations using Equation 

3.28 where λଵis the first load increment and GSP is computed according to Equation 3.29. 

λ = λଵඥ|GSP| Equation 3.27 
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λ = (Δ𝐔෡଴
்

Δ𝐔ഥ)/(Δ𝐔෡଴
்

Δ𝐔෡) Equation 3.28 

GSP = (Δ𝐔෡ଵ
்

Δ𝐔෡ଵ)/(Δ𝐔෡଴
்

Δ𝐔෡) Equation 3.29 

In the above approach, Δ𝐔෡଴ is the displacement increment generated by the reference load 𝐅෠ at the 

first global iteration of the previous incremental step, and Δ𝐔෡ଵ is the displacement increment generated by 

the reference load 𝐅෠ at the first global iteration of the first incremental step. Δ𝐔෡ and Δ𝐔ഥ are the displacement 

increments generated by the reference load and unbalanced force vectors, respectively. The simplified step-

by-step algorithm of the GDC nonlinear iterative-incremental solver used in this study is detailed in 

Appendix B. 

At each load step corresponding to the application of load increment, the global incremental end 

displacements ∆𝐃෡  are extracted from the global displacement increment vector and total end displacements 

𝐃෡  are computed using Equation 3.30, where 𝐃෡ ଴ is the total end element displacements from the previous 

converged state. 

𝐃෡ = 𝐃෡ ଴ + ∆𝐃෡  Equation 3.30 

For each element in the structure, the element displacements 𝐃 are obtained from the corotational 

formulation. At this step of corotational formulation computations, one can evaluate a 3x6 force 

transformation matrix 𝐓 and three 6x6 matrices 𝐆௜ (𝑖 = 1,2,3) needed to calculate the element geometric 

stiffness matrix 𝐊ீ
௘௟௘, the element global forces 𝐏෡, and the element global stiffness matrix 𝐊෡ ௘௟௘ as shown 

in Equation 3.31, Equation 3.32, and Equation 3.33, respectively. For further details on the formulation and 

derivation of the corotational formulation see de Souza (2000). 

𝐊ீ
௘௟௘ = ෍ 𝐆௜𝑃௜

ଷ

௜ୀଵ

 Equation 3.31 
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𝐏෡ = 𝐓ିଵ𝐏 Equation 3.32 

𝐊෡ ௘௟௘ = 𝐓்𝐊௘௟௘𝐓 + 𝐊ீ
௘௟௘ Equation 3.33 

The element resisting force increments ∆𝐏 are calculated by Equation 3.34 using the current 

element displacements, the element displacements from the previous iteration 𝐃𝟎, and the previous element 

stiffness matrix 𝐊𝟎
𝐞𝐥𝐞. 

∆𝐏 = 𝐊𝟎
𝐞𝐥𝐞(𝐃 − 𝐃𝟎) Equation 3.34 

The local iterative form of the element state determination for second-order nonlinear is required 

for each element. Before performing the main steps of the element state determination in the framework of 

the overall analysis, initial variables need to be stored for each element before any local iteration is 

performed based on the previous converged state. These initial variables include total end forces 𝐏଴, force 

interpolation matrices 𝐛଴, section forces 𝐒଴, section stiffness matrices 𝐤଴
௦௘௖ and section deformations 𝐝଴. 

These quantities must be defined at all integration points. Iterations at the element level were performed 

such that the residual displacements fall below a specified tolerance within each global iteration. The 

simplified iterative procedure is accomplished following the state determination algorithm in accordance 

with Du et al. (2017) as presented in Appendix C. 

3.3 Verification of Element Formulation 

3.3.1 Distributed Plasticity Analysis of a Fixed-Fixed Beam 

A 6.0 m-long W16x31 steel beam (Figure 3-4) was considered as a good candidate to verify the 

proposed FB element formulation. Similar models can be found in the literature and have been analytically 

and numerically investigated by others (see Du et al. (2017), for example). The fixed-end beam is fully 

braced against lateral torsional buckling and has a point load applied at 1.5 m from the left-hand support. 

For comparison, the analytical solution was also developed by employing a step-wise elastic approximation 
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accounting for plastic hinges at critical points. Using the basic beam mechanics formulas, the fixed-fixed 

beam was initially loaded up to the development of the initial plastic hinge at left-hand support (Figure 

3-4a). Then, the resulting fixed-hinged beam was loaded until a new plastic hinge occurred under the point 

load, and finally, the beam was loaded to collapse when hinging occurred at the right-hand support. 

Here, Young’s modulus and yield stress of the steel were taken as 200 GPa and 345 MPa, 

respectively and the cross-section was taken as the I shape defined in Figure 3-4b. The equilibrium path 

obtained using the proposed force-based element is compared against the analytical equilibrium path 

(Figure 3-5). Four elements, each with four Gauss-Lobatto integration points, were used to discretize the 

beam. For the numerical integration, the I-section was discretized into 404 layers having an equal thickness 

of 1 mm using the exact depth of each web and flanges. The model showed robustness and high accuracy 

even when a coarse FE mesh is used. The elastic-plastic simulation results using the proposed element are 

in good agreement with the analytical solutions. 

 

Figure 3-4. Fixed-Fixed Beam with Section Analyzed as Elastic-Plastic 
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Figure 3-5. Equilibrium Bath for the Fixed-fixed Beam 

3.3.2 Elastic Buckling of Columns 

A single general pinned-pinned column subjected to an axial load 𝑃 with very small eccentricity 𝑒 

(Figure 3-6) was analyzed using the proposed element to verify the ability and accuracy of the model to 

simulate large deformations. For generality and direct comparison with Euler buckling theory, an arbitrary 

elastic constant cross-section (𝐴, 𝐼 𝑎𝑛𝑑 𝐸), with an arbitrary length (𝐿) and 𝑒 of 𝐿/10଻ were assumed in 

this analysis, where 𝐴, 𝐼, 𝐸 are the cross-sectional area, moment of inertia and Young’s modulus, 

respectively. 

Generalized applied load (𝑃/𝑃𝑐𝑟) vs. generalized axial shortening (𝑉/𝑉𝑐𝑟) is plotted in Figure 3-7, 

where 𝑃𝑐𝑟 = 𝜋ଶ𝐸𝐼/𝐿 and 𝑉𝑐𝑟 = 𝑃𝑐𝑟𝐿/𝐸𝐴 are the Euler buckling load and its corresponding axial 

shortening, respectively. The load deflection response is plotted for any slenderness ratio 𝜆 = 𝐿/𝑟 where 

𝑟 = ඥ𝐼/𝐴 is the radius of generation. 
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Generally speaking, the results predicted by the proposed force-based element agree well with the 

theoretical results and demonstrate the accuracy of the model for various magnitudes of slenderness ratio. 

It can be seen from Figure 3-7 that the elastic buckling load predicted by the FB elastic analysis is less than 

the classical Euler buckling load due to the influence of the load eccentricity. 

 

Figure 3-6. A Pinned-Pinned Column under Eccentric Axial load 

 

Figure 3-7. A Generalized Load-Deflection Curve for a General Pinned-Pinned Elastic Column 
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3.3.3 Elastic Postbuckling Analysis of a Circular Arch 

The following example is presented to verify the capability of the proposed model to predict 

postbuckling behavior and large deformations as well as to verify the use of initially curved elements. A 

postbuckling elastic analysis of a pinned-pinned semi-circular arch has been studied by several researchers 

for different aims (Jafari et al. 2009; Li 2006; Yang et al. 2007; Yang and Shieh 1990). The arch shown in 

Figure 3-8 has a major diameter 𝐿 of 254 mm, a moment of inertia of 416000 mm4, Young’s modulus of 

1.38 MPa, and a cross-sectional area of 6452 mm2. 

The arch was represented by 16 circular-segment elements of equal length. A point load was applied 

at the apex with an eccentricity 𝑒 of 80 mm (Figure 3-8) to investigate the post-buckling of that arch. The 

load-deflection curve has been plotted in Figure 3-9 for the imperfect loading. The figure shows that the 

buckling and postbuckling behavior of this arch is quite complicated, and there exist several snap-back 

points and multiple loops. At the snap-back points, these load-deflection curves are in a good agreement 

with the result obtained by Li (2006), who used 25, three-noded beam elements and an isoparametric, mixed 

element formulation. This simulation verifies the ability of the proposed curved FB element to predict large 

displacements and rotations. 

 

Figure 3-8. Hinged Deep Circular Arch 
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Figure 3-9. Response of the Arch under Eccentric Point Load 

3.4 Analysis of CFFT Arches and Beams 

An important step in the development of the FB FE analysis for CFFT arches is a comparison with 

laboratory tests and previously validated analysis techniques due to the complexity of the constitutive 

response of the confined concrete core and hybrid nature of the arch. In this section, the FB modeling 

techniques developed in this study are applied to the analysis of two fixed-fixed isolated subscales CFFT 

arches having the same span length but different rises. In addition, full-scale CFFT arches investigated by 

Dagher et al. (2012) are modeled using the proposed FB. The models were computationally efficient, 

relying on a small number of elements and integration points, but proved accurate. In the following analysis, 

a particular thickness for the section layers is chosen to use a minimum number of layers and to discretize 

the exact thickness each of the FRP tube and concrete core. Based on a mesh convergence study conducted 

for the pinned-pinned CFFT arches, the following CFFT arches were meshed with 10 elements per half of 

the structure and 5 integration points per element. 
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3.4.1 Laboratory Tests of CFFT arches of Walton (2015) 

The load-deformation and load-strain response of two subscale CFFT arches subjected to a central 

point load were experimentally assessed. Circular segment CFFT arches with spans of 6.1 m and span-to-

rise ratios of 5:1 and 8:3 were manufactured and prepared for test specimens in this research. The specimens 

are referred to as the short arch (1.22-m rise) and tall arch (2.29-m rise). The specimens had an FRP shell 

with a nominal diameter of 110 mm and a total thickness of 2 mm fabricated from two layers of braided E-

glass fiber with an inner layer bias angle of ± 81° and an outer layer bias angle of ± 21°. The braid bias 

angle is measured relative to the longitudinal axis of the tube; the inner layer with a larger bias angle largely 

provides shear and confinement reinforcing, and the outer layer provides longitudinal tension reinforcing. 

The arches were infused with Derakane 610C resin from two ports located at the apex. The infused FRP 

shell had experimentally determined moduli of 13.8 GPa in the longitudinal direction and 19.4 GPa in the 

hoop direction, and tensile strengths of 313 MPa longitudinally and 374 MPa in the hoop direction. The 

coupon-level FRP strength and stiffness characterization were carried out by Walton (2015) and followed 

the procedures outlined by Bannon (2009) and Demkowicz (2011) based on ASTM D3039 (2008). 

The FRP arch tubes were positioned upside down in custom wooden trusses which fully supported 

the arches while being filled with self-consolidating concrete from the arch ends. The arch specimens were 

filled with an expansive concrete mix of a nominal compressive design strength of 34.5 MPa. The tall arches 

and short arches were cast separately along with other specimens used for evaluating SSI of subscale buried 

arch bridge tests by Walton et al. (2016a). The truss formwork was also used to fully support the filled 

arches when they were flipped upright and cast into concrete foundations. The arches were cast into 1.52 

m wide, 0.91 m long, and 0.46 m deep footings that were fixed to the facility reaction floor to provide full 

moment restraint at the arch ends. 

Figure 3-10 shows the arch test setup. During testing, the arch footings were tied to the concrete 

floor of the laboratory with four 19 mm diameter rods and further braced against the out-of-plane 
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movement. Three groups of Omega 12.7 mm foil SGs were installed at 200 mm from the apex and both 

shoulders to measure bending and axial strains. At each cross-section, SGs were installed at the top, mid-

height and bottom, which are referred to as SGtop, SGmid, and SGbot, respectively (Figure 3-10). The SGmid 

was used to verify the assumption of a linear strain distribution through the depth. Deflections were 

measured vertically at the apex and shoulders and horizontally at shoulders. For the tall arch, vertical 

displacements were measured with +/-127 mm LVDTs, and the horizontal displacements were measured 

with 635 mm string potentiometers. The short arch had Celesco SP2 string potentiometers for all five 

displacements. Both arches were loaded in deflection control at a rate of 12.7 mm/min. A 100 kN load cell 

was used to measure the applied load on the tall arch, and a 50 kN load cell was used for the short arch. 

Wooden saddles were used to apply loads produced by the hydraulic actuator. Transverse bracing faced 

with low-friction plastic was located at the third points of the span to prevent out-of-plane deflections. 

Figure 3-11 shows a photo of the tests. 

 

Figure 3-10. Arch Test Setup 
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Figure 3-11. Photo of Arch in Test Device 

3.4.2 Arch test results 

Both arches failed by a sudden tensile rupture of the FRP shell with significant crushing of the 

concrete occurring at the apex as shown in Figure 3-12. The capacity of the short arch was 15.55 kN, and 

the capacity of the tall arch was 12.15 kN. The maximum tensile strain in the FRP measured by tension 

gage SGbot of the apex at peak load for the short arch was 1.27%. The tension gage SGbot at the apex of the 

tall arch went out of range prior to ultimate load, and measured strain at failure was not available. However, 

the maximum failure tensile strain of 1.14% was estimated based on the linear strain distribution through 

the depth using readings from the remaining gages SGtop and SGmid at failure. Figure 3-13 shows 

experimentally measured strains at the apex of the tall arch at loads of 4 kN, 6 kN, 8 kN, and failure; also 

shown are the best-fit linear strain distributions based on these measured values. 

The load-deflection response at the apex of each arch gives a visual representation of the stiffness 

and strength as illustrated in Figure 3-14 and Figure 3-15 for short and tall arches, respectively. It is obvious 



 

69 
 

that the short arch is stiffer than the tall arch. Figure 3-16 through Figure 3-19 show the measured strains 

plotted against the apex applied load at the apex and shoulders of both arch specimens. 

3.4.3 Model Predictions of Tested CFFT Arches 

Each arch was simulated with clamped ends and a point load applied at the apex using the FB 

element formulation detailed previously. The model was run using 10 elements per half of the structure. 

For each element, 5 Gauss-Lobatto integration points were used with 114 layers (1 mm thick each) used to 

discretize the cross-section. The effect of FRP-confinement on concrete was implemented using the model 

presented in Section 3.2.4. The model-predicted load-deflection responses with and without considering 

the effect of confinement are plotted with the experimentally-determined responses shown in Figure 3-14 

and Figure 3-15. The model-predicted load-strain responses are shown in. Figure 3-16 through Figure 3-19. 

Taking advantage of the GDC solver used in this study, the proposed FB model explicitly predicts 

the failure loads corresponding to longitudinal tensile rupture strains measured at the FRP shell tension face 

of the apex. After rupture of the FRP shell, a singular stiffness matrix occurs at the apex cross-section along 

with crushing and cracking of the concrete. The model-predicted failure load for the short arch 17.1 kN, 

which exceeds the experimental value by 10%. For the tall arch, the model-predicted failure load was 12.4 

kN, which is 2% higher than the experimentally measured failure load. While the model predicted arch 

capacities reasonably accurately, displacements were under-predicted for the short arch by 4.5% at failure 

and over-predicted by 26% for the tall arch at failure. Neglecting FRP confinement of the concrete core had 

an insignificant effect on arch stiffness but did reduce the predicted failure load by 10% for the short arch 

and 7% for the tall arch (Figure 3-14 and Figure 3-15). The importance of accurately modeling that 

confinement is more clearly demonstrated by the low failure load and low ductility predicted by the 

unconfined analysis of the full-scale CFFT arches analyzed in the next section. The model was able to 

accurately predict the strain at the apex and shoulders of both arches for different loading increments before 

and after the cracking of concrete (Figure 3-16 through Figure 3-19). 
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Figure 3-12. Apex Failure Mode 

 

Figure 3-13. Tall Arch: Apex Cross-Sectional Strain-Profile 
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Figure 3-14. Short Arch: Load-Deflection Response at the Apex 

 

Figure 3-15. Tall Arch: Load-Deflection Response at the Apex 
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Figure 3-16. Short Arch: Load-Strain Response at the Apex 

  

Figure 3-17. Short Arch: Load-Strain Response at the Shoulders 

L
o

a
d

 (
kN

)
L

o
a

d
 (

kN
)



 

73 
 

 

Figure 3-18. Tall Arch: Load-Strain Response at the Apex 

 

Figure 3-19. Tall Arch: Load-Strain Response at the Shoulders 
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3.4.4 Simulation of Pinned-Pinned CFFT Arches of Dagher et al. (2012) 

The response of four identical CFFT arches tested by Dagher et al. (2012) was simulated to further 

validate the proposed model. These arches differ significantly from those detailed previously with different 

braid angles, a much smaller ratio of span to cross-sectional diameter, and different boundary conditions. 

Each arch specimen had a nominal diameter of 300 mm, a constant radius of 3.96 m, a span of 6.71 m, and 

a 28-day compressive strength 𝑓௖
ᇱ of 27 MPa based on cylinder tests. The hybrid FRP shell was fabricated 

with a total wall thickness of 2.5 mm, a longitudinal elastic tensile modulus of 42.7 GPa, and a transverse 

modulus of 14.3 GPa. The arches were cast in reinforced concrete footings that were detailed as pinned 

connections. A single load was applied vertically downward at the arch apex. The arches failed at the apex, 

the location of maximum moment, which resulted in a hinge at that location. The load-deflection response 

for the arch apex and the load-curvature response for a section 457 mm from the apex are plotted up to 

failure in Figure 3-20 and Figure 3-21, respectively. 

 

Figure 3-20. Pinned-Pinned Arch: Load-Deflection Response at the Apex 
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Figure 3-21. Pinned-Pinned Arch: Load-Curvature Response 457 mm away from the Apex 

The predicted load-deflection response is also illustrated in Figure 3-20 for comparison. The model 

was run using ten curved elements per half of the structure and one rigid link (high stiffness element) to 

simulate the footing mechanism. For each element, 5 Gauss-Lobatto integration points were used with 244 

layers used to discretize the cross-section (1.25 mm thick each). The effect of FRP-confinement on concrete 

was implemented using the model presented in Section 3.2.4. The predicted load-deflection response using 

the proposed model without considering the effect of confinement is also illustrated in Figure 3-20 to 

demonstrate the significance of confinement. The predicted load-curvature from the proposed model is 

plotted versus the experimental load-curvature response reported by Dagher et al. (2012) as shown in Figure 

3-21. The proposed FB model explicitly predicts the failure loads corresponding to longitudinal tensile 

rupture of the FRP shell at the tension face of the apex at an FRP strain of 0.017, the value experimentally 

determined from coupon tests of this braid as reported by Dagher et al. (2012). After rupture of the FRP 

shell, a singular stiffness matrix occurs at the apex cross-section along with crushing and cracking of the 

concrete (Figure 3-22a). The predicted applied loads, corresponding to the experimentally observed apex 
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failure mode shown in Figure 3-22b, are 315.1 and 261.5 kN for the analyses with and without confinement, 

respectively. The predicted maximum load accounting for concrete confinement was within 1.5% of the 

average failure load of 320 kN reported Dagher et al. (2012). The importance of accurately modeling 

confinement of the concrete core is demonstrated by the low failure load of 261.5 kN predicted by the 

unconfined analysis. 

 

Figure 3-22. Pinned-Pinned Arch: Development of a Plastic-Hinge at the Apex 

(a) Model-Predicted Strains at the Failure Load, (b) Typical Apex Failure (Dagher et al. 2012) 

3.4.5 Simulation of CFFT Beams of Dagher et al (2012) 

The response of three identical CFFT beams tested by Dagher et al. (2012) was simulated to further 

validate the proposed model. These straight beams of an overall length of 3.96 m had the same FRP-shell 

materials, properties, and dimensions as did the arches described in Section 3.4.4, and were filled with 

concrete with a 41 MPa compressive strength based on tests of 150 mm diameter cylinders. The specimens 

were tested in a four-point bending configuration such that the centerline of length 3.66 m was divided into 

three equal lengths using wood saddles for support and load application. The beams failed via tensile rupture 

of the FRP shell within the middle third of the span. The load-deflection response for mid-span and the 

load-strain response for a section 305 mm from mid-span are plotted up to failure in Figure 3-23 and Figure 

3-24, respectively. 
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Figure 3-23. Beam: Mid-Span Load-Deflection Response 

 

Figure 3-24. Beam: 305 mm away from Mid-Span Load-Strain Response 
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The predicted load-deflection response is also illustrated in Figure 3-23 for comparison. The model 

was run using 14 straight elements per half of the structure as illustrated in Figure 3-25a. For each element, 

five Gauss-Lobatto integration points were used with 244, 1.25 mm layers used to discretize the cross-

section. The load-strain response predicted by the model is plotted versus the experimental load-strain 

response reported by Dagher et al. (2012)  in Figure 3-24. The proposed FB model explicitly predicts the 

failure loads corresponding to longitudinal tensile rupture of the FRP shell within the middle third of the 

span at an FRP strain of 0.017, the value experimentally determined from coupon tests of this braid as 

reported by Dagher et al. (2012). The predicted applied load corresponding to the experimentally observed 

mid-span failure mode shown in Figure 3-25b is 265.4 kN. The predicted maximum load was 5.9% greater 

than the average failure load of 251.0 kN reported by Dagher et al. (2012) with a standard deviation of 

17.35 kN and coefficient of variation of 6.91%. The predicted strain on the tension face at 305-mm section 

away from the mid-span is 0.0169, which is 9% greater than the average peak tensile strain of 0.0155 

measured by the tension-face gauges (Dagher et al. 2012). 

 

Figure 3-25. Beam: (a) Schematic of FE Model, (b) Strain Profile Corresponding to Maximum Load 
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3.5 Summary 

A computationally efficient, second-order, inelastic FE simulation procedure for the analysis of 

CFFT arches and beams has been developed. The model uses a curved, planar, layered-frame FB element 

employing the corotational formulation to address geometric nonlinearity, and a layered-section 

discretization and distributed plasticity technique to capture material nonlinearity. Second-order effects at 

the section level and the curvature of the CFFT arch (as initial bowing) are incorporated using a nonlinear 

force interpolation that strictly satisfies equilibrium in the deformed shape. An FRP-confined concrete 

compressive stress-strain model that explicitly considers the effect of dilation of the concrete core and 

confinement provided by the FRP tube, and a bilinear concrete tensile stress-strain that considering the 

tension stiffening phenomenon and after-cracking concrete relaxation, have been implemented. A full 

nonlinear FE procedure using the GDC method as a robust and effective incremental-iterative global solver 

and the element state determination as a trial-and-error iterative local algorithm is outlined. 

Following the FB element formulation and the FE nonlinear solution strategy, the implementation 

was verified by carrying out an elastic-plastic analysis of a beam and an elastic post-buckling analysis of a 

circular arch. Bending tests were performed on CFFT arches to compare their behavior with the proposed 

model predictions. Additional comparisons are made with other CFFT beam and arch bending tests 

available in the literature. The model accurately predicts the load-carrying capacity and ductility of the 

tested CFFT arches and beams. The model is able to capture the collapse mechanism due to FRP rupture 

and concrete crushing at the apex of the arches. The model results demonstrate the effect of confinement 

on the ductility of CFFT arches and beams. 

The main contribution of this chapter is the combination and implementation of existing modeling 

tools into a robust, nonlinear frame finite-element and associate solution strategy that enable engineers to 

model the mechanical behavior of CFFT arches in an accurate and computationally efficient fashion. While 

the research reported here represents an important step in the development of a FB analysis and design tool 
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for CFFT arches, additional developments will be required to extend the FB formulation into a design tool 

for BCABs. Specifically, an extension of the FB formulation to model more general 3D CFFT framed 

structures and methods to accurately capture SSI arising from the staged backfilling and the progressive 

change in soil restraint with increasing deformation and overburden stresses are required. Progressive 

multistage simulations will also be necessary to capture the effect of alternating stages of soil backfilling 

as well as the effect of the application of surface live loads. 
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   CHAPTER 4  

3D SIMULATION OF SKEWED, BURIED, COMPOSITE ARCH BRIDGES 

INCORPORATING SSI 

4.1 Introduction 

The United States has 615,002 bridges, of which 8.9% are considered structurally deficient (FHWA 

2018). In the State of Maine, there are 2,458 bridges, of which 13.3% are structurally deficient, and over 

200 bridges have been built between 2008-2018 (ARTBA 2018). About half of these bridges are classified 

as skewed. As national infrastructure facilities, these bridges are experiencing rapid deterioration as they 

age. The growth in the maintenance, repair, or replacement of old bridges and construction of new bridges 

calls structural engineers’ attention to exploring new materials and bridge types. The high performance, 

durable, and cost-effective buried composite arch bridge (BCAB) has become an attractive alternative, 

especially for short-span bridges with spans under 20 m in aggressive environments. The bridge 

superstructure can be rapidly constructed and shows promise as an integral part of the national railway and 

highway network. The American Association of State Highway and Transportation Officials (AASHTO) 

(2012) has published guidelines for the design of the CFFTs as the main structural components of BCABs. 

Over 60% of the constructed BCABs have been skewed to some extent. Site inspection and 

monitoring were carried out on some bridges under service load (Goslin et al. 2015). Figure 4-1 shows a 

completed BCAB having 11-m span, 3.7-m rise, 17.7-m width, and 56o-skew angle in Lagrange, Maine, 

USA, which is considered as one of the largest skewed arch bridge in the world (AIT 2019; MaineDOT 

2018). Researchers initially focused on understanding the responses of standalone components of BCABs 

by investigating the structural capacity of CFFT beams and arches of different scales and configurations 

(Dagher et al. 2012), material constituent durability (Demkowicz 2011), and the effect of concrete filling 

on the FRP wall local buckling (Walton 2011). The structural design of spliced CFFT was also investigated 

by Parry (2013) and Burns (2016) to ease shipping of long-span CFFT arches. Wang et al. (2019) 
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investigated the dynamic responses under blast loading of four scaled CFFT arches with different FRP 

strengthening ratios and concrete strength. 

 

Figure 4-1. B&A Overhead Bridge in Lagrange, Maine, USA (consists of 13 CFFTs) 

However, improvements in structural analysis procedures for the BCAB is warranted due to the soil 

embedment around the superstructure that both loads the arches and provides additional structural support. 

Following the earlier research on standalone components of BCABs, Walton et al. (2016a) investigated 

soil-structure interaction (SSI) in BCABs through laboratory testing of subscale buried steel arch bridges. 

The authors experimentally evaluated the response of soil backfilling of two buried steel arch bridges of 

the same geometry. Walton et al. (2016b) also developed a nonlinear soil-spring model to investigate SSI 

numerically and predict the bending moments during backfilling and service live loads. A structure 

consisting of a single arch with a tributary width of soil equal to the arch spacing is modeled with 

conventional displacement-based (DB) 2-noded 2D Euler beams and horizontal axial spring elements that 

represent soil. While effective and innovative in its treatment of SSI and construction sequence, the model 

of Walton et al. (2016b) requires a high mesh density to adequately predict the response of the arch system 
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during backfilling and apex loadings. Moreover, the model accuracy decreased when the 2D arch was 

subjected to loads offset from the arch apex. Furthermore, the conventional 2D DB model does not 

rigorously couple axial and bending effects and cannot account for abutment skew angle. Skew may 

increase flexural demands on the arches, influence SSI, and reduce the load carrying capacity of the bridge. 

Further, the FRP decking that is placed over the arches and supports the soil acts as a diaphragm. This 

decking is mechanically fastened to the arches, and in a skewed bridge, these fasteners may be subject to 

increased shear forces that are not currently considered in the design of BCABs. Consequently, a 3D FE 

numerical code is required to analyze the behavior of skewed BCABs while considering the actual 3D 

geometry of the bridges and the effect of the soil backfill. Such numerical procedures need to provide useful 

information and guidance to BCABs design engineers and can also help establish rational methods of load 

rating. 

This chapter documents the third research contribution of this dissertation. The main objective is to 

present a computationally efficient structural analysis technique using a newly-developed FE model to 

analyze an entire BCAB while accounting for abutment skew. The model consists of two types of elements 

that capture complexities in the structural response arising from the nonlinear behavior of the CFFT arches, 

the SSI, and transversal effects induced by geometry and load eccentricity in skewed BCABs. The first 

element is a spatial, co-rotational, flexibility-based (FB), fiber-frame element employed to discretize each 

of the arches, decking and foundation elements. The third chapter of this dissertation showed the superiority 

and efficiency of the FB element for the analysis of CFFT arches that helps resolve unique modeling 

challenges due to the effect of confinement of the concrete core on its stiffness and ductility as well as the 

importance of large deformations. The second element is a soil-spring element used to idealize the soil with 

a series of one-dimensional, nonlinear, axial-only springs. All required code was written using MATLAB 

programming environment (MathWorks Inc 2018), including an FRP-confined concrete compressive 

stress-strain model and a bilinear concrete tensile stress-strain as well as the nonlinear SSI model based on 

a recent displacement-dependent lateral earth pressure model. The FE procedures also simulate the staged 
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backfilling process. This study investigates for the first time the effects of skew angle on BCAB load 

capacity. The analysis is initially verified by comparison with results measured during laboratory tests of 

straight (no skew) buried steel arch bridges found in the literature. A parametric study is then conducted 

using a generic two-lane BCAB of 12 m span and 9 m width shown in Figure 4-2 to investigate the effect 

of bridge skew on the capacity of the bridge. Case studies of 10°, 20°, 30°, 40°, and 50° skew angles were 

carried out using AASHTO HL-93 design truck loading distributed through the soil. Critical positions of 

trucks along the bridge were chosen to produce maximum bending in the arches. 

 

Figure 4-2. Description of Skewed BCAB 
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4.2 Development of Analysis Methodology 

A methodology for performing a combination of spatial FB and one-dimensional soil-spring FE 

analysis on an entire skewed BCAB considering the effect of the nonlinear response of the CFFT and effects 

induced by geometry and load eccentricity is presented. Figure 4-3 shows a generic dimensionless BCAB 

schematic of a coarse mesh illustrating the model in the global coordinate system (X,Y,Z). The FB element 

geometry within the corotational framework and element state-determination process are discussed. 

Incorporating a series of soil-spring elements connected to the nodes is detailed. Implementation procedures 

of multistage backfilling simulation and AASHTO HL-93 design load applications are discussed. 

 

Figure 4-3. 3D Scheme of FE Model of BCAB including the Soil-Spring Element 

The CFFT arches are represented using second-order nonlinear FB elements given an FRP-confined 

concrete stress-strain model that explicitly considers the effect of dilation of the concrete core and 

confinement provided by the FRP tube as summarized in Chapter 3 of this dissertation. The model also 

implements a bilinear concrete tensile stress-strain that considers the tension stiffening phenomenon and 

after-cracking concrete relaxation. The FRP decking diaphragm is implemented using a second-order linear 

elastic FB element that spans continuously in the transverse and diagonal directions. The diagonal bracing 

members have zero material density and are used to model diaphragm shear resistance that may have 

significant effects in the case of skewed BCAB. The decking elements are connected to the arch nodes with 
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beam elements to represent the fasteners (connectors). It is important to note that, in a real BCAB structure, 

these connecters are placed at discrete points wherever there is contact between the bottom side of the 

corrugated FRP deck and the top of the CFFT arches. To represent these connectors, a second set of nodes 

offset from the first set of nodes shown in Figure 4-3 is created with a specified distance to simulate the 

offset of the decking relative to the center of gravity of the arches. Each pair of offset nodes is connected 

with a rigid element having a moment release at the arch as detailed in Figure 4-3. In the proposed model, 

however, the number of connector elements is mesh-dependent because connections are placed at each arch 

node. Furthermore, any additional friction forces at the deck-to arch interfaces are not considered in this 

model, and these forces may be significant. The main function of the deck is to distribute soil load, dead 

load and live load to the arches. The soil-spring elements are connected to the deck elements and are 

activated during the staged backfill loading. 

The BCAB loading simulation proceeds in steps: self-weight and soil backfilling loads, wearing 

surface load, and the subsequent application of AASHTO HL-93 design loads including impact. Since the 

principle of superposition is not applicable in the analyses due to the nonlinear response of the constituent 

materials, analysis of each loading step analysis must begin from the point at which the previous step was 

completed. The code was written specifically for simulations reported herein using MATLAB. Each loading 

stage was solved nonlinearly using the GDC solver discussed in Section 3.2.5 and Appendix C to calculate 

the unknown end displacements using an incremental-iterative trial-and-error procedure. 

4.2.1 Second-Order Nonlinear Flexibility Based Element 

4.2.1.1 Element Formulation 

A spatial, FB frame element is adopted with two nodes and six degrees of freedom (DOF) in a local 

coordinate system (𝑥, 𝑦, 𝑧). The local displacements 𝐃 including one axial displacement, two rotations 

about 𝑦 and 𝑧 axes at each node and one torsional rotation about the x axis and the corresponding forces 𝐏 

are illustrated in Figure 4-4a and grouped in Equation 4.1 and Equation 4.2, respectively. 
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𝐃 = [𝐷ଵ, 𝐷ଶ, 𝐷ଷ, 𝐷ସ, 𝐷ହ, 𝐷଺]் Equation 4.1 

𝐏 = [𝑃ଵ, 𝑃ଶ, 𝑃ଷ, 𝑃ସ, 𝑃ହ, 𝑃଺]் Equation 4.2 

 

 

Figure 4-4. FB CFFT element (a) Distributed Plasticity Technique, (b) Fiber-Section Discretization 

Based on the Bernoulli-Euler beam theory, the 3D response of such element is represented by the 

generalized strain field 𝐝(𝑥) at each cross-section of the of the element, which consists of four DOFs 

including the axial strain at the reference axis 𝜀଴(𝑥), curvatures 𝜅௭(𝑥) and 𝜅௬(𝑥) about z and y axes 

respectively, and the torsional angle 𝜑(𝑥), as grouped in Equation 4.3. The corresponding section forces or 

the stress resultant vector 𝐒(𝑥) consists of the axial force 𝑁(𝑥), bending moments 𝑀௭(𝑥) and 𝑀௬(𝑥) about 

𝑧 and 𝑦 axes respectively, and torque 𝑇(𝑥) as grouped in Equation 4.4. 

𝐝(𝑥) = [ 𝜀଴(𝑥) 𝜅௭(𝑥) 𝜅௬(𝑥)  𝜑(𝑥)] ் Equation 4.3 

𝐒(𝑥) = [𝑁(𝑥) 𝑀௭(𝑥)  𝑀௬(𝑥) 𝑇(𝑥)]் Equation 4.4 

Each element is further divided into a number of sections (integration points) that are subdivided 

into fibers as shown in Figure 4-4b, in which a dimensionless quarter section of a coarse mesh is displayed 

to conceptually illustrate the CFFT element components, section fibers, and their centroids. It is observed 
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here that using such fiber-section discretization traces the behavior of CFFT arches better than using the 

radial discretization used in the analysis of circular columns and bridge piers confined with FRP jackets 

presented by Monti et al. (2001) and Hu and Barbato (2014). The uniaxial strain ɛ(𝑥, 𝑦, 𝑧) at any fiber is 

constant and related to the sectional deformation 𝐝(𝑥) as 𝜀(𝑥, 𝑦, 𝑧) = 𝐚(𝑦, 𝑧)𝐝(𝑥), where 𝐚(𝑦, 𝑧) is the 

compatibility matrix that relates the generalized section deformations with the uniaxial strain at any section 

neglecting the contribution of the torsion in the axial strain, as shown in Equation 4.5. 

𝐚(𝑦, 𝑧) = [1 −𝑦 𝑧 0] Equation 4.5 

To satisfy equilibrium at any section in the deformed element of length 𝐿, the force interpolation 

function 𝐛(𝑥) in Equation 4.6 proposed by de Souza (2000) was adopted to relate the section forces 𝐒(𝑥) 

to the element end forces 𝐏 by Equation 4.7. 

𝐒(𝑥) = 𝐛(𝑥)𝐏 Equation 4.7 

Due to this interpolation function that strictly satisfies equilibrium in the deformed shape, there is 

no discretization error but only a numerical error in the FB element analysis (Neuenhofer and Filippou 

1997). The lateral displacements 𝑣(𝑥) and 𝑤(𝑥) in y and z axes are employed to accurately capture the 

geometric nonlinearity in the section level caused by the interaction between the axial force and bending 

moment. The weak form of compatibility is enforced through the application of the Principle of Virtual 

Forces, which in the case of the FB frame element takes the form in the Equation 4.8. According to Du et 

al. (2017), Equation 4.9 represents the relations between the virtual section forces 𝛿𝐒(𝑥) and virtual end 

forces 𝛿𝐏 obtained using the composite matrix 𝐛∗(𝑥) in Equation 4.10. By Substitution of Equation 4.9 in 

𝐛(𝑥) = ൦

1
𝑣(𝑥)

−𝑤(𝑥)
0

0
𝑥/𝐿 − 1

0
0

0
𝑥/𝐿

0
0

0
0

𝑥/𝐿 − 1
0

0
0

𝑥/𝐿
0

0
0
0
1

൪  Equation 4.6 
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Equation 4.8 and elimination of 𝛿𝐏் based on the arbitrariness argument, the element end displacement in 

terms of the section deformation along the element is shown in Equation 4.11. 

න 𝛿𝐒(𝑥)்𝐝(𝑥)𝑑(𝑥)

௅

଴

= 𝛿𝐏்𝐃 Equation 4.8 

𝛿𝐒(𝑥) = 𝐛∗(𝑥)𝛿𝐏  Equation 4.9 

𝐛∗(𝑥) = ൦

1
𝑣(𝑥)/2

−𝑤(𝑥)/2
0

0
𝑥/𝐿 − 1

0
0

0
𝑥/𝐿

0
0

0
0

𝑥/𝐿 − 1
0

0
0

𝑥/𝐿
0

0
0
0
1

൪ Equation 4.10 

𝐃𝒆𝒍𝒆 = න 𝐛∗(𝑥)𝐝(𝑥)𝑑(𝑥)

௅

଴

 Equation 4.11 

4.2.1.2 Fiber Section Model and Element Flexibility matrix 

The nonlinear stress-strain response of each one-dimensional element fiber at any cross-section of 

Figure 4-4a is described by the appropriate uniaxial nonlinear material constitutive model of a normal stress 

𝜎(𝑥, 𝑦, 𝑧) and the corresponding material tangent modulus is 𝐸௧(𝑥, 𝑦, 𝑧) =
డఙ(௫,௬,௭)

డఌ(௫,௬,௭) 
. Therefore, considering 

distributed plasticity by using the fiber-section technique makes the FB elements more efficient than the 

DB elements in geometrically nonlinear inelastic analyses (Du et al. 2017). Furthermore, using the fiber-

section technique in FB elements can assist in capturing plastic hinges along the elements with reduced 

computation time due to the adopting of exact force interpolation function 𝐛(𝑥).The section tangent 

stiffness matrix 𝐤𝒔𝒆𝒄(𝑥) is obtained from Equation 4.12 with need to add the section torsional stiffness 

parameter of ∫ (𝑦ଶ + 𝑧ଶ)𝐺𝑑𝐴  
஺

଴
as the last member of the matrix 𝐤𝒔𝒆𝒄(𝑥), where 𝐺 is the fiber shear 

modulus. The section flexibility matrix 𝐟𝒔𝒆𝒄(𝑥) and its constitutive law are written in Equation 4.13 and 

Equation 4.14, respectively. 
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𝐤𝒔𝒆𝒄(𝑥) = න 𝐚(𝑦, 𝑧)𝑻𝐸௧(𝑥, 𝑦, 𝑧)𝐚(𝑦, 𝑧)𝑑𝐴
஺

଴

 Equation 4.12 

𝐟𝒔𝒆𝒄(𝑥) = 𝐤𝒔𝒆𝒄(𝑥)ି𝟏 Equation 4.13 

𝐝(𝑥) = 𝐟𝒔𝒆𝒄(𝑥)𝐒(𝑥) Equation 4.14 

The element flexibility matrix 𝐅𝒆𝒍𝒆 can be obtained by taking the derivative of the end nodal 

displacements 𝐃𝒆𝒍𝒆 (Equation 4.11) with respect to the end nodal forces 𝐏. Due to the existence of lateral 

displacement terms 𝑣(𝑥) and 𝑤(𝑥) in the matrix 𝐛∗(𝑥), the flexibility evaluation is complex and leads to 

Equation 4.15. Finally, the element stiffness matrix without rigid body modes is given by Equation 4.16. 

𝐅௘௟௘ =
𝜕𝐃

𝜕𝐏
= න{𝐛∗(𝑥)𝑻𝐟𝒔𝒆𝒄(𝑥)[𝐛(𝑥) + 𝐡(𝑥)] + 𝐠(𝑥)

௅

଴

}𝑑(𝑥) Equation 4.15 

𝐊௘௟௘ = 𝐅௘௟௘ିଵ
 Equation 4.16 

The matrices h and g are defined in Equation 4.17. 

𝐡(𝑥) = 𝑃ଵ[𝟎   𝐕(𝑥)   − 𝐖(𝑥)   𝟎]் 

𝐠(𝑥) =
𝜅௭(𝑥)

2
[𝐕(𝑥)  𝟎  𝟎  𝟎  𝟎  𝟎]் −

𝜅௬(𝑥)

2
[𝐖(𝑥)  𝟎  𝟎  𝟎  𝟎  𝟎]் 

Equation 4.17 

𝐕(𝑥) = ൤
𝜕𝑣(𝑥)

𝜕𝑃ଵ

𝜕𝑣(𝑥)

𝜕𝑃ଶ

𝜕𝑣(𝑥)

𝜕𝑃ଷ

𝜕𝑣(𝑥)

𝜕𝑃ସ

𝜕𝑣(𝑥)

𝜕𝑃ହ

𝜕𝑣(𝑥)

𝜕𝑃଺
൨ 

𝐖(𝑥) = ൤
𝜕𝑤(𝑥)

𝜕𝑃ଵ

𝜕𝑤(𝑥)

𝜕𝑃ଶ

𝜕𝑤(𝑥)

𝜕𝑃ଷ

𝜕𝑤(𝑥)

𝜕𝑃ସ

𝜕𝑤(𝑥)

𝜕𝑃ହ

𝜕𝑤(𝑥)

𝜕𝑃଺
൨ 

Equation 4.18 

The term 𝐕(𝑥) and 𝐖(𝑥) in Equation 4.18 are evaluated using the CBDI technique, in which the 

displacements 𝑣(𝑥) and 𝑤(𝑥) are obtained from the curvatures field 𝜅௭(𝑥) and 𝜅௬(𝑥) evaluated at n 
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integration points using a Lagrangian polynomial. The procedure is mathematically summarized in the 

Appendix A. Further details on the derivation of element flexibility matrix 𝐅𝒆𝒍𝒆 and the formulation of 

CBDI technique are omitted here but are thoroughly covered by de Souza (2000). 

4.2.2 Soil-Spring Elements 

One of the most important factors in the response of buried structures is the soil backfill, which 

both loads the structure due to its weight and restrains or loads the structure due to horizontal earth pressure. 

The vertical earth pressure 𝜎௩ acting at any node on the BCAB is computed based on soil density 𝛾௦௢௜௟  and 

the soil depth at that node ℎ as 𝜎௩ = 𝛾௦௢௜௟ ∙ ℎ while its corresponding horizontal earth pressure 𝜎௛ was 

estimated based on earth pressure coefficient 𝐾௦௢௜௟ as 𝜎௛ = 𝐾௦௢௜௟ ∙ 𝜎௩. In this study, the soil backfill was 

modeled as a series of nonlinear elastic horizontal soil-spring elements that only carried compressive axial 

loads. These individual horizontal springs were connected at each decking node, as seen in Figure 4-3. The 

spring force 𝐹௦௣௥௜௡௚ is computed based on the 𝜎௛ and the tributary area at the corresponding node (vertical 

projection) 𝐴௩ as 𝐹௦௣௥௜௡௚ = 𝜎௛ ∙ 𝐴௩, i.e., 𝐹௦௣௥௜௡௚ = 𝐾௦௢௜௟ ∙ 𝜎௩ ∙ 𝐴௩. For each individual spring, 𝐾௦௢௜௟ and 𝜎௩ 

are unique and changing as functions of deflection and loading step (backfill, wearing surface or live load), 

respectively. The spring tangent stiffness 𝑘௦௣௥௜௡௚ has been estimated based on the same forward difference 

approximation employed by Walton et al. (2016b) taking into consideration the influence of skew on the 

mobilized resistance of the backfill soil and the behavior of SSI. However, this research has adopted an 

effective and unified displacement-dependent model proposed by Ni et al. (2018) to calculate the 𝐾௦௢௜௟.The 

approach is directly effective and applicable for practical engineering design without prior knowledge of 

earth pressure measurements. 

Based on the commonly observed lateral earth pressure (𝑝௦) displacement (𝑠) relationship shown 

in Figure 4-5, Ni et al. (2018) obtained Equation 4.19 to calculate displacement-dependent 𝐾௦௢௜௟ ranging 

from the fully active to the fully passive states for retaining walls. To define these boundary limits, the 

authors employed the traditional Rankine minimum active 𝐾௔ and maximum passive 𝐾௣ and the simplified 
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Jaky’s at-rest 𝐾଴ earth pressure coefficients as shown in Equation 4.20, Equation 4.21, and Equation 4.22, 

respectively, in which, ∅ is the effective friction angle of the backfill soil. As part of their study, Ni et al. 

(2018) further recommend to use the displacement required to mobilize the full active earth pressure 𝑠௔.as 

a function of the height of the retaining wall 𝐻 and type of backfill. For example, 𝑠௔ is equal to 0.001𝐻, 

0.002𝐻 and 0.004𝐻 for dense sand, medium sand and loose sand, respectively. In this study, 𝐻was taken 

as the depth of soil at a current stage of backfill, and 𝐾଴ (typically 0.4 for the granular backfill used in 

BCAB) was increased to 1.0 as the compaction modifies the at-rest state of the soil. 

 

Figure 4-5. Variation of Earth Pressure with Displacement, (Ni et al. 2018) 

𝐾௦௢௜௟ = 2𝐾௢ − 𝐾௣ + 2
𝐾௣ − 𝐾଴

1 + 𝑒
௦

௦ೌ
∙୪୬ (

௄೛ି௄ೌ

௄೛ିଶ௄బା௄ೌ
)
 Equation 4.19 

𝐾௔ = tanଶ(
𝜋

4
− ∅) Equation 4.20 

𝐾௣ = tanଶ(
𝜋

4
+ ∅) Equation 4.21 

𝐾଴ = 1 − sin ∅ Equation 4.22 
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4.2.3 Simulation of Staged Backfilling and Wearing Surface Loads Application 

The backfilling process takes place after FRP decking is situated and the concrete fill in the arches 

has cured. The backfill is applied in lifts sequentially on alternating sides of the arch to maintain balanced 

loading. As recommended by AIT, 200 mm is the maximum compacted lift height, and no more than 600 

mm of soil may be placed on one side of the arch without countering backfilling on the opposite side. Figure 

4-6 illustrates backfill placement for a series of 200 mm layers corresponding to the maximum allowable 

unbalanced backfilling sequence. After backfilling is completed, the wearing surface is applied to the 

roadway. Accordingly, this study assumed the same sequence in the simulation of backfill and wearing 

surface applications. 

 

Figure 4-6. Uniform Backfill Placement (by AIT) 

To mimic the backfill and wearing surface application, a progressive multistage simulation was 

used to capture the effect of backfilling. This study assumed that as each lift was installed, the soil vertical 

loads increase on each node below updated soil depth and new soil-spring elements are initialized for nodes 

covered by soil. The nodal soil vertical load at any node can be calculated based on 𝜎௩ and horizontal 
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tributary area 𝐴௛. Prior analysis by Walton et al. (2016b), considered that the new positions of the deformed 

nodes represent the at-rest state of the corresponding soil-springs. And for the next soil lift or any loading 

step, the structure has to be analyzed from the beginning with new total applied loads and activated springs. 

This may be inefficient with respect to computational time. 

To achieve more computationally efficient multistage simulation, this study considers the 

advantage of both adopted incremental-iterative GDC solver and the FB element state determination 

detailed in Chapter 3 to analyze the pre-loaded structure under the application of a single layer of backfill, 

wearing surface placement, or live load application as new load increment. In other words, the model is 

brought into equilibrium under any current loading, and then only the load effect resulting from the next 

step must be analyzed. All initial variables required in the current loading stage are stored from the last 

local iteration of the last global increment of the previous converged state. The current analysis stores both 

force and stiffness of each soil-spring. Before performing the main steps of the element state determination 

in the framework of the overall analysis, initial variables need to be stored for each element before any local 

iteration is performed based on the previous converged state. The nodal soil vertical loads on the structure 

associated with the dead load of the wearing surface and the corresponding nodal lateral loads were simply 

based on tributary areas. 

4.2.4 Simulation of Vehicular HL-93 Transient Loads 

Loads on the BCAB structures are determined in accordance with AASHTO (2017) specifications. 

In addition to the force effects resulting from horizontal and vertical earth pressure and pavement load, 

AASHTO specifies that such a buried structure must be designed and analyzed for the force effects of live 

load and vehicular dynamic load allowance. Such transient load effects are affected by soil cover on the 

back of the buried arch and must be distributed through the earth fills. Further guidelines and specifications 

are provided to compute and distribute the live load effects when the soil cover exists as outlined in the 

provisions of Article 3.6.1.2.6. AASHTO (2017). Although the approach of distribution of the wheel loads 
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through the soil fill is very simple, this approach is overly conservative and does not account for variable 

load distribution with the depth of fill along the arc length of the arches (Bannon 2009). It is further noted 

here that this approach is not suitable for buried arch structures with a skew angle that affects both the 

longitudinal and transverse load distributions. However, the AASHTO (2017) specifications allow using 

more precise methods of analysis for these distributions.  

In this study, both AASHTO HL-93 design uniform lane load and design vehicular live load (truck 

or tandem) including impact were applied at the road surface of the bridge and distributed through the earth 

fills as vertical loads. Each vertical live load 𝑝௜_௟௜௩௘ acting at node 𝑖 is unique and calculated based on the 

well-known Boussinesq approach described by Das (2013). The Boussinesq approach accounts for variable 

load distribution with a depth of soil backfill in both the longitudinal and transverse directions. In contrast 

with the AASHTO simplified method, this approach also estimates the effects of the live load when the 

wheels are beyond the area of the bridge structure. It is observed throughout the model verification in the 

following section that the sum of the applied nodal force vector resulting from the Boussinesq method 

∑ 𝑝௜_௟௜௩௘ is less than the actual applied lane or tandem load 𝑃௔௖௧௨௔௟. Presumably, this is due to the 

assumption of a semi-infinite soil medium made by Boussinesq. In case of BCAB (having non-infinite soil 

medium), however, some of the live loads is dissipated through the soil beyond the area of the bridge 

structure. To substitute that dissipated load in this analysis, any applied nodal live load vector was factored 

by (
௉ೌ೎೟ೠೌ೗

∑ ௣೔_೗೔ೡ೐
). The uniform lane load is applied separately from the live load because it is a constant load and 

it does not include impact loading and therefore it is not necessary to re-apply it for various truck positions 

in an envelope-type analysis. 

4.3 Model Verification 

4.3.1 Review of Previous Work by Walton et al. (2016) 

The short subscale buried steel arch bridge tested and modeled by Walton et al. (2016a; b) was 

selected to verify the currently proposed model. The subscale bridge was tested in three phases to 
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investigate the SSI during the staged backfill, service live loading, and ultimate loading, (Walton et al. 

2016a). The bridge structure was made of three circular-segment profile arches having a 6.1-m span and 

1.22-m rise. The arches were solid square 51×51-mm cross sections fabricated from Grade 50 steel with 

experimentally determined 350-MPa yield strength. The arches were spaced 762 mm on center and set with 

no skew in 610×610×2130-mm concrete footing. Wood decking was attached on the top of the arches with 

311-mm cantilever off the centerline of the outside arches to provide no torsion at arch locations under a 

uniform load. Figure 4-7 shows the overall test setup of the tested bridge. To mimic an in-service bridge, 

the subscale bridge was placed on a thick concrete floor inside a self-reacting heavy timber soil box for 

confinement. Bending strain gauges were distributed evenly at eight points along the arc length because 

buried arch bridge design is typically controlled by bending moment capacity. 

Soil backfilling was performed in 19 lifts using a well-graded granular soil fill having a 44° friction 

angle and 2400 kg/m3 compacted material density. Lift 1 was applied from the base of the foundation with 

a thickness of 400 mm on the south side and 200 mm on the north side. Lifts 2-16 were alternatingly placed 

in 200-mm thicknesses on each side of the bridge. North (N) and south (S) are relative to the apex as shown 

in Figure 4-7. Lifts 17-19 were applied across both sides. A scaled service live load of 84 kN was applied 

vertically using a hydraulic actuator with a spreader beam in order to equally loaded the three arches. The 

live loads were applied as three load cycles (loading up to 84 kN and unloading). The bridge was initially 

service loaded at the apex. Then, the load was alternatingly applied to each side of the bridge at offsets of 

percent of the span away from the apex including 10% N, 10% S, 20% N, 20% S, 30%N, and 30% S. After 

each service loading test, the strain gages mounted on the steel arches were reset. Finally, the bridge was 

loaded to failure at the apex with a pad made of timber placed over the soil to avoid driving the load beam 

into the soil under expected high loadings as shown in Figure 4-8. 

Walton et al. (2016b) also developed a nonlinear soil-spring model to investigate SSI numerically 

and predict the bending moments during backfilling, service live and ultimate loadings. A structure 

consisting of a single arch with a tributary width of soil equal to the arch spacing was modeled with 
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conventional DB 2-noded 2D Euler beams and horizontal axial spring elements that represent soil. The 

experimentally measured and numerically predicted responses during different loading steps are 

summarized and illustrated later in the following section. 

 

Figure 4-7. Elevation View of Arches with Apex Cross Section 
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Figure 4-8. Load Beam before Ultimate Load Test (Walton et al. 2016a) 

4.3.2 Simulation 

Taking advantage of the structure symmetry, the central arch was simulated using the proposed 

model with an overhang transverse decking equal to the arch spacing. Figure 4-9 shows a representation of 

the model, in which a scaled schematic of a coarse mesh with a fictitious length given to each soil-spring 

element is displayed to conceptually illustrate the model components. Arch, decking, and foundation 

elements were modeled using the FB element formulation detailed previously with 5 Gauss-Lobatto 

integration points. Foundation and decking elements were given linearly elastic elements corresponding to 

their geometrical and physical properties. The steel elements were modeled as nonlinear elastic-perfectly 

plastic elements with 10×10 fibers used to discretize their cross-section. 
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Figure 4-9. Schematic Model of Third Symmetry of Buried Steel Bridge 

The bottom nodes of the foundations were modeled as clamped ends where the overhang nodes of 

the decking were modeled as symmetry faces having no transverse displacement and no rotation about the 

axis parallel to the arch span. All loads were gathered and represented as point loads applied at the nodes 

corresponding to their tributary areas, position and the soil depth above each node. Soil lifts were modeled 

and activated as soil-springs as discussed previously. The model was run with a mesh of 4 vertical elements 

per one footing, 2 elements per a single transverse row of a decking and 20 arch elements. Although the 

proposed model uses tributary areas to gather loads at nodes, the model accuracy is not limited by the small 

number of elements. Figure 4-10 shows a mesh convergence study conducted on the same arch bridge 

studying the apex moment and vertical displacement at the post-backfilling load and apex peak load against 

the number of arch elements. Figure 4-11 shows the arch deformed shapes resulted from the mesh 

convergence study. 
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Figure 4-10. Mesh Convergence Study: Apex Moment and Vertical Displacement 

 

Figure 4-11. Mesh Convergence Study: Deformed Shape, (Deformations are magnified 30 times) 

4.3.3 Predicted Responses 

Different responses predicted by the proposed model for the three loading phases are illustrated 

against the experimental and model data of Walton et al. (2016a; b) in Figure 4-12 through Figure 4-19. 
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Figure 4-12 shows the apex moment during backfilling and comparisons between both experimental and 

Walton’s model data. The experimental apex moment was computed from flexural strains measured over 

the depth of the steel arch section. The predicted apex moment shows good agreement with experimental 

results, including the peak moment as well as the reduction from peak during the last few backfill lifts. The 

proposed model better follows the trend indicated by experimental results as the soil loads above the apex 

induce an apex positive moment, reducing the negative moment from prior loading (positive moment 

produces compression on the outside face of the arch). However, the experiment response shows that the 

peak moment occurs after the first lift above the apex (Lift 17). On the other hand, the proposed model 

predicts the peak moment at Lift 16. The predicted apex moments corresponding to Lift 16, Lift 17 and Lift 

19 (final lift) are 2014, 2007 and 1896 N-m, respectively. These predicted moments were within 1.6%, 

7.6%, and 3.6% of corresponding experimentally observed apex moments of 1982, 2174 and 1967 N-m, 

respectively. 

Figure 4-13 shows the apex displacements (positive upward) during backfilling and comparisons 

with the experimental data of the three steel arches measured by Walton et al. (2016a). The predicted 

displacement response shows good agreement with the experimental response and both show that the peak 

displacement of approximately 12 mm occurred at the Lift 16 and the final three lifts cause downward apex 

displacement of a final displacement approximately 7 mm. Figure 4-14 shows the moments along the arch 

arc length at the end of the backfilling process for both the proposed model, the experiments, and the model 

of Walton et al. (2016b). Generally, moments predicted by the proposed model follow a similar trend at the 

experimental moments better than Walton’s model. As shown by the experiment, the proposed model 

indicates that the peak positive moment appears near 20% of the span away from foundations with a more 

symmetric response. 

Following backfilling simulation, live loadings are applied corresponding to load points from 

laboratory experiments. Due to the non-hysteretic soil-spring model used in this study, the simulation of 

each cyclic live loading is represented by the first cycle taking place right after the backfilling simulation 
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and the proposed model does not account for any creep or relaxation between live loading tests. Figure 4-15 

through Figure 4-18 show the comparison of live-load moments along the arch arc length at the end of each 

live loading simulation. Live-load moments are calculated from the difference between total moments at 

the end of each live load analysis and the moments at the end of backfilling. 

Returning to Figure 4-14, the experimental and predicted post-backfilling moment responses are 

slightly un-symmetric. In Figure 4-15 through Figure 4-18, however, the experimental live-load moment 

responses are not identical for the same N and S offset loads due to the cyclic live-loading tests conducted 

on alternating sides of the bridge and the resulting un-symmetric, locked-in deformations of the soil and 

arch. On the other hand, the proposed model responses for both offset loading sides are identical because it 

does not account for any creep or relaxation between live loading tests as well as due to the assumption of 

non-hysteretic soil model that is not accounting for the effect of cyclic live-loading applications on the 

alternating sides of the bridge. Although Walton’s model has the same two former assumptions, its 

responses for both offset loading sides were not identical and the reason for that is not interpreted. 

Furthermore, Walton et al. (2016b) conducted additional soil continuum model using Abaqus, not reported 

here, and this model also showed identical responses for both offsets loading sides. Consequently, each plot 

illustrates both N and S offset load responses on the same plot flipping the former response about the apex. 

As shown by the experiment, the model indicates that the peak positive moment is produced near the point 

of load application in all cases. Comparing with Walton’s model, the FB model more accurately predicted 

the peak moment under the point of load application. For the larger load offsets of 20% and 40%, the FB 

model also more accurately predicted arch response away from the point of load application. Both the 

proposed and Walton’s models over-predicted moments near the supports. This is likely because the model 

assumes a clamped support, and during the test, rotations were likely not fully restrained. However, none 

of the moments near the foundation exceed the maximum moment for the all loading conditions. 

Figure 4-19 shows the predicted ultimate load total moment responses plotted against the 

experimental response which includes backfilling and hysteretic locked-in strains resulting from all prior 
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loads. Taking advantage of the GDC solver used in this study, the proposed model was able to predict the 

failure loads corresponding to snap through observed experimentally. The model was run after the 

backfilling simulation. Figure 4-20 shows the arch displaced shape, deformations are magnified 30 times, 

predicted by the proposed model at the loading of Lift 16 (soil backfilling within the arch apex) and Lift 19 

(post-backfilling), and 27.8, 53.3, 74.7 and 100 percent of the ultimate applied apex load. 
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Figure 4-12. Apex Moment During Backfilling 

 

Figure 4-13. Apex Displacement During Backfilling 
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Figure 4-14. Moment at the End of Backfilling 

  

Figure 4-15. Apex Live-Load Moment Diagram 
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Figure 4-16. 10% Offset Live-Load Moment Diagram 

  

Figure 4-17. 20% Offset Live-Load Moment Diagram 
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Figure 4-18. 30% Offset Live-Load Moment Diagram 

 

Figure 4-19. Ultimate total moment, apex load 

0 20 40 60 80 100

Arc Length (%)

-5

-2.5

0

2.5

5
Proposed model (S)

Proposed Model (N)

Experiment (S) of Walton et al. (2016b)

Experiment (N) of Walton et al. (2016b)

DB Model (S) of Walton et al. (2016b)

DB Model (N) of Walton et al. (2016b)

0 50 100 150 200 250

Applied Load (kN)

-2

0

2

4

6

8

10

12

A
p

e
x 

M
o

m
e

n
t (

kN
.m

)

Proposed Model
Experiment of Walton et al. (2016b)
DB Model of Walton et al. (2016b)



 

108 
 

 

Figure 4-20. Shape of the Steel Arch with its Foundations during Several Loading Cases 

4.4 Skew Effect Parametric Study 

Skewed bridges, which have foundations that are not perpendicular to the bridge span, are common 

in roadway and railway networks. The faces of the bridge superstructure are not perpendicular to its 

abutments and its plan view is a parallelogram as shown in Figure 4-2. According to AIT (2019), the 

BCAB’s superstructure can easily accommodate skews without increasing the bridge footprint. Orienting 

the CFTT arches and headwalls of a BCAB parallel to the roadway reduces right-of-way impact and softens 

horizontal curves in the roadway alignments. In 2012, for instance, the Maine DOT made a decision to use 

a skewed BCAB with a 25° skew angle and 11 CFFT arches instead of using a precast concrete bridge in 

Ellsworth, Maine as shown in Figure 4-21. 
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Figure 4-21. Skewed Bridge Comparison Example, Ellsworth, Maine, reported by AIT (2019) 

Skewed BCABs will experience out-of-plane deformations which cannot be captured by 

conventional 2D analyses. For such a skewed buried structure, AASHTO (2017) specifies to extend the 

design and analyses to consider the influences of unsymmetrical forces on the structure as well as on the 

representation of conventional dead and service live loads. The sophisticated combined FE model presented 

and verified early in this chapter is used to investigate the effect of the skew angle that causes many 

difficulties in the implementation and analysis of BCABs. 

4.4.1 Description of the Skewed Bridge 

A generic, skewed, two-lane BCAB having a span of 12 m, a width of 9 m, and a rise of 3 m, 

consisting of nine circular-segmental profile CFFT arches as shown in Figure 4-2, was used in the 
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parametric studies presented here. This geometry is very typical of BCABs. The nine arches were 

considered to be parallel, spaced at 1.125 m on center, and cast into very stiff and strong footings. This type 

of stiff footing may not represent actual foundations of an in-service BCAB. According to Walton et al. 

(2016a), there is lateral resistance through basal shear and soil pressure behind the foundation such as is 

present in the in-service speared foundations. Other types of foundations are used in BCAB technology, 

such as piles, which provide horizontal resistance dependent on pile stiffness and in situ soil properties. 

Simulation of the BCAB foundation is beyond the scope of this parametric study. The skew angle was the 

single parameter and was varied from 0° to 50° in 10° increments. For the purpose of this investigation, the 

12-m bridge span (parallel to the CFFT arches) has been kept constant in all skew angle cases. 

Consequently, the square span (S) of the bridges decreased as the angle of skew (φ) increased as shown in 

Figure 4-2, i.e., S= 12 m × cos(φ). 

The CFFT arches were assumed to be fabricated from the same the FRP-tube and concrete used in 

the analysis of the isolated arch described in Section 3.4.5, which is typical for BCABs. An FRP corrugated 

decking, fabricated particularly for use in BCAB technology, was assumed to be fixed on the back of the 

arches. It is important to note that the corrugation of the FRP decking is always parallel to the footings for 

any skew angle as seen in Figure 4-1. Geometrical and material properties of the decking were provided by 

AIT as shown in Appendix D. The 200-mm height of soil lifts was treated as recommended previously 

considering the alternating sequence and the soil material properties used in Section 4.3.1. A wearing 

surface of 0.1 m was applied to the top of the backfill with a density of 2500 kg/m3. 

4.4.2 Loading Application 

The bridges were considered to be subjected to loads defined by AASHTO (2017) for Strength I 

and Service I load limit states with load factors defined in Table 4-1 Service I is not reported here because 

Strength I load combination controlled in all load stages. In addition to the description of the skewed bridge 

above, this parametric study is limited to two cases of AASHTO HL-93 design live loading. Both cases 
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were two-lanes loaded with a uniform lane and design tandem loads transversely positioned as close as 

possible to the longitudinal centerline (CL) of the bridge. Longitudinally, the center of the two tandem loads 

was positioned at mid-span (Case 1) and the quarter-point of the span (Case 2). Figure 4-22 shows the two 

loading cases, in which the uniform lane load was applied as an infinite strip load over the roadway. 

Although the tandem has lower wheel loads than the HL-93 design truck, the tandem often controls the 

design for BCABs according to Walton (2015) and is generally critical for shorter span bridges like the 

BCAB considered here. The tandem is a 224 kN vehicle with two axles spaced at 1.2 m with a 1.8 m axle 

width. 

Table 4-1 Strength I Limit State Load Combinations 

Factor Value Definition 

DC 1.25 Both CFFT arches and FRP decking self-weight 

EV 1.30 Vertical earth pressure 

EH 1.35 Horizontal earth pressure 

DW 1.50 Wearing surfaces loads 

LL 1.75 Live loads 

m 1.00 Multiple Presence Factors (two lanes) 

IM 0.17 

Dynamic Load Allowance as 

IM = 33 ∙ ൬1.0 −
0.125 ∙ 𝐷ா

0.305
൰ ≥ 0% 

𝐷ா is taken as 1.2 m the depth of the backfill above the crown 
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Figure 4-22. Two-Lane Skewed BCAB with Centered Loading  
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4.4.3 Analyses 

The entire BCAB described above was simulated using the proposed model having rigid supports 

in the vertical and horizontal directions (fixed-fixed boundaries as seen in Figure 4-3). Arch and decking 

elements were modeled using the FB element formulation detailed previously with 5 Gauss-Lobatto 

integration points. The nonlinear FRP-confined concrete model presented in chapters 2 and 3 was 

implemented to simulate the CFFT elements with 80 equal sizes of FRP fibers and 840 differently sized 

concrete fibers used to discretize their cross-section as seen in Figure 4-4b. 

All decking elements were assumed to be linearly elastic. The stiffness matrix of the transverse 

decking elements was calculated using to the geometrical and material properties of the corrugated decking 

given in Table D 1 and Figure D 1. In case of diagonal bracing elements and due to the corrugation of the 

FRP deck, it is difficult to perform an equivalent lattice analysis to find a satisfactory approximation for 

their stiffness matrix that works for different mesh sizes. For that reason, the diagonal element stiffness 

matrix was taken as a fraction of the transverse decking stiffness matrix and a sensitivity analysis was 

performed to evaluate the effect of that fraction on the analysis. A visual representation of this sensitivity 

analysis (Appendix D) shows that there is some effects of the fraction of the resultant bending and torque 

moments of CFFT arches cross-section. The sensitivity analysis shows that as that fraction increases, the 

factored ultimate moment 𝑀௨, which generally controls the design of BCAB, decreases. Thus, the stiffness 

matrix of the diagonal bracing elements was taken as10% of the stiffness of the transverse decking elements 

for in the subsequent analyses, which is expected to be a conservative assumption. 

The model was run with a mesh of 24 circular-segment elements of equal length per single arch 

(25 nodes) and a single decking element between pairs of adjacent arch nodes. All loads were gathered and 

represented as point loads applied at the nodes corresponding to their tributary areas, position and the soil 

depth above each node. Soil lifts were modeled and activated as a soil-spring as discussed previously. 
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One of the advantages of the FB element formulation employed here is its ability to provide output 

for different variables at any node, integration point or section fiber of any element during all of the 

multistage simulation. These output variables include strains and stresses, displacements and rotations, 

forces and moments as an in-plane, out-of-plane, and torsion. Prior research showed that the in-plane 

moment capacity of CFFT arches typically controls the design of BCAB, and these arches are usually under 

combined axial compression and bending loading (Walton 2015). In the case of skewed BCAB, however, 

out-of-plane shear forces and flexural moments, as well as torsional moments, are produced during the 

backfilling process and under the service load. For the purpose of this investigation, the results and 

discussion focus on the effect of skew angle on shear forces and flexural moments of CFFT arches, the two 

most critical section forces for design. 

Because of the circular configuration of the CFFT cross-section used in this study, the maximum 

resultant shear force and the maximum resultant flexural moment will control the design of CFFT arches 

in skewed BCABs. Therefore, the CFFT cross-section should be designed as a cylindrical section that has 

the same longitudinal properties in all radial directions (360°), i.e. under cylindrical envelopes of moments 

and forces. It is important to note that the CFFT cross-section used in this study has an experimentally-

determined nominal moment capacity 𝑀௡ of 156 kN-m (having a standard deviation of 21.17 kN-m and 

coefficient of variation of 6.91%) corresponding to 1.72% longitudinal tensile rupture strain at the tension 

face of the FRP shell as shown in Table 2-3. Although this moment capacity is for a section under pure 

bending, the axial force typically carried by CFFT arches has an advantageous effect on the bending 

capacity of such sections. According to a CFFT moment-curvature analysis that accounts for the effect of 

a fixed axial force, Dagher et al. (2012) generated multiple moment-curvature relationships corresponding 

to different values of the axial force. Due to the assumption of fixed axial force during the analysis, Dagher 

et al. (2012) found that the applied axial force has an obvious effect the earlier stage of the analysis rather 

than on the ultimate moment. Herein, a range of isolated CFFT arches having the same cross-section, 

material properties used for skewed brides and different span to rise ratios were analyzed using the FB 
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method detailed in Chapter 3. Figure 4-23a shows the predicted moment-curvature relationship for the apex 

cross-section of different isolated arches having the pinned-pinned supports and apex load configuration 

used in Section 3.4.4. Figure 4-23b shows the corresponding axial force occurred and increased gradually 

during the analysis. Further visual representation of the effect of the axial force is shown in Figure 4-24. 

For example, a value of 300 kN axial force at the end of the analysis increases the corresponding ultimate 

moment resistance by 10.3%. However, an 𝑀௡ of 156 kN-m with a resistance factor ɸ of 0.65 are used 

herein as conservative comparison giving a design flexural moment capacity ɸ𝑀௡ = 101.4𝑘𝑁. 

 

Figure 4-23. Axial Force Effect on the Resistance Moment of the CFFT Cross-Section 
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Figure 4-24. Axial Forces vs. Ultimate Resistance Moments of the Arch Cross-Section 

4.4.4 Result and Discussion 

The influence of the skew angle is investigated by comparing maximum flexural moments and 

maximum shear forces along the CFFT arches and the maximum shear force at the deck-arch interface of 

the skewed BCABs against the straight BCAB. The maximum total in-plane, out-of-plane and resultant of 

these parameters’ forces are summarized in Table 4-2 through Table 4-4. In these tables, the location of any 

variable is given by the number of the corresponding CFFT arch over the percentage of the arc length of 

the arch (Arch/Arc %), where the Arches are numbered from 1 (West) to 9 (East) and arc% is from zero 

(South) to 100 (North) as illustrated in Figure 4-22. Results show that the skew angle has a significant effect 

on the magnitudes and locations of the maximum flexural moments as well as the shear forces in the CFFT 

arches. Both maximum in-plane moment and shear generally decrease as the skew angle increases. In 

contrast, both out-of-plane moment and shear force increase as the skew angle increases and for some larger 

skew angles, the out-of-plane moment and shear force exceed the corresponding in-plane moment and 

shear, respectively. 

M
o

m
e

n
t (

kN
.m

)



 

117 
 

For the CFFT arches flexural moments and shear forces increase as the skew angle increases. An 

extreme loading event is expected to induce high lateral displacements and according to Figure 4-5, the 

slope of the soil-spring model becomes smaller under such high lateral displacements. Consequently, the 

superstructure will lose some of its soil restraint under high loadings. This is a good illustration of the need 

for a nonlinear soil-spring model in the simulation of BCABs responses. Furthermore, Figure 4-25 and 

Figure 4-26 illustrate the CFFT arches’ absolute resultant moment and shear envelopes, respectively. The 

torsional moment and axial force envelopes are plotted in Figure 4-27 and Figure 4-28, which show the 

effect of the skew angle parameter on these variables. While both shear and torsional moments increase 

with increasing skew, the increase is more pronounced for torsion. This implies that for a skewed BCAB, 

the effect of torsion may need to be considered simultaneously with other stress resultants when checking 

arch capacity. 

The effects of skew angle on the shear forces at the decking-to-CFFT arches interfaces is also 

assessed in this study as shown in Table 4-4. Although these shear forces do not realistically represent 

forces in individual connectors between the deck and arch for the reasons discussed in Section 4.2, the 

results show the significance of the skew angle on the resultant shear force and its components. The peak 

shear force increases significantly as skew angle increases. Therefore, the number and capacity of the 

fasteners used to attach the decking on the back of the CFFT arches must be considered for skewed BCAB 

bridges. If the fasteners between the deck and arches are insufficient, lateral bracing of the arches could be 

lost, significantly increasing the potential for arch global instability.   

From the design point of view, the CFFT arch cross-section assumed here is not practical when it 

is skewed to more than 30° because the factored ultimate moment 𝑀௨ of 102.54 kN-m (Table 4-2) exceeds 

the design moment capacity ɸ𝑀௡ = 101.4 𝑘𝑁. 𝑚 (pure bending) presented previously. In contrast, that 𝑀𝑢 

is for a section at the north footing of Arch 4 and this section has factored ultimate shear and axial forces 

of 75 kN and 750 kN, respectively. The comparison with that ɸ𝑀௡ of pure bending moment is conservative 
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because of the existence of axial compression that increases moment capacity of the CFFT section (Figure 

4-23 and Figure 4-24). 

Additional visual representations of the effect of the skew parameter are given in Appendix E (Figure 

E 1 through Figure E 20). In those figures, more in-plane and out-of-plane flexural moments and shear 

forces at different BCABs cross-sections are plotted for dead and two cases live loads as. Due to the 

nonlinearity, the principle of superposition is not applicable. Therefore, live-load moments are calculated 

from the difference between total moments at the end of each live load analysis and the moments at the end 

of the dead load (after DW application) analysis. 

In the following tables, all entries are absolute values and the resultant entry in any row is not 

necessarily equal to the resultant of in-plane and out-of-plane entries at that row. Bold entries indicate that 

in-plane and out-of-plane entries are at the same location. Underlined entries indicate that the out-of-plane 

moment exceeds the in-plane.  
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Table 4-2. Maximum Flexural Moments of the CFFT Arches 

Load 

Case 

Skew 

Angle 

(deg) 

In-Plane Out-of-Plane Resultant 

Value 

(kN-m) 

Location 

Arch/Arc (%) 

Value 

(kN-m) 

Location 

Arch/Arc (%) 

Value 

(kN-m) 

Location 

Arch/Arc (%) 

Case 1 

0 40.95 5/50 1.32 5/58.33 40.97 5/50 

10 40.82 5/50 13.62 8/0 40.83 5/50 

20 41.14 5/50 28.33 9/0 41.15 5/50 

30 41.11 5/50 43.72 8/0 46.76 8/0 

40 40.21 5/50 62.01 8/0 65.15 8/0 

50 38.74 5/50 76.59 8/0 79.84 8/0 

Case 2 

0 99.47 5/100 1.29 7/100 99.48 5/100 

10 97.97 4/100 22.48 5/100 100.35 4/100 

20 90.87 4/100 40.85 4/100 99.59 4/100 

30 85.50 4/100 56.60 4/100 102.53 4/100 

40 76.40 3/100 69.65 4/100 103.21 4/100 

50 65.66 3/100 82.61 4/100 105.41 4/100 
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Table 4-3. Maximum Shear Forces of the CFFT Arches 

Load 

Case 

Skew 

Angle 

(deg) 

In-Plane Out-of-Plane Resultant 

Value 

(kN) 

Location 

Arch/Arc (%) 

Value 

(kN) 

Location 

Arch/Arc (%) 

Value 

(kN) 

Location 

Arch/Arc (%) 

Case 1 

0 32.36 5/100 0.36 9/100 32.31 5/100 

10 32.31 5/100 10.89 9/0 33.08 5/100 

20 32.07 5/100 23.41 9/0 34.62 5/0 

30 31.22 5/0 36.55 1/100 37.62 1/100 

40 28.15 5/0 48.83 8/0 49.01 9/0 

50 25.82 5/0 63.36 2/100 63.74 2/100 

Case 2 

0 57.19 8/25 0.52 7/100 57.19 8/100 

10 60.72 2/100 14.54 3/100 62.28 2/100 

20 58.58 2/100 27.55 3/100 64.33 2/100 

30 55.31 2/100 40.69 4/100 66.94 2/100 

40 49.58 3/100 54.43 3/100 73.68 3/100 

50 45.19 3/100 68.48 3/100 82.05 3/100 
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Table 4-4. Maximum Shear Forces at the Decking-to-CFFT Arches Interfaces 

Load 

Case 

Skew 

Angle 

(deg) 

In-Plane Out-of-Plane Resultant 

Value 

(kN) 

Location 

Arch/Arc (%) 

Value 

(kN) 

Location 

Arch/Arc (%) 

Value 

(kN) 

Location 

Arch/Arc (%) 

Case 1 

0 27.13 4/95.83 0.23 2/4.16 27.13 4/95.83 

10 27.29 8/4.16 3.36 2/4.16 27.43 8/4.16 

20 28.17 8/4.16 6.59 2/4.16 28.77 8/4.16 

30 29.12 8/4.16 10.96 3/4.16 30.69 8/4.16 

40 29.66 8/4.16 14.00 8/95.83 32.75 8/4.16 

50 31.10 3/4.16 19.27 2/4.16 35.67 2/95.83 

Case 2 

0 27.55 5/4.16 0.244 9/4.16 27.55 5/4.16 

10 27.57 8/4.16 3.83 3/95.83 27.71 8/4.16 

20 28.45 8/4.16 7.04 3/95.83 29.04 8/4.16 

30 29.40 8/4.16 11.27 3/4.16 31.08 3/4.16 

40 29.28 8/4.16 15.51 3/95.83 31.79 3/95.83 

50 30.41 4/95.83 21.20 3/95.83 35.71 3/95.83 
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Figure 4-25. Resultant Moment Envelope 
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Figure 4-26. Resultant Shear Force Envelope 
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Figure 4-27. Torque Envelope 
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Figure 4-28. Axial Force Envelope (all compression forces)  
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4.5 Summary and Conclusions 

A novel yet practical methodology for 3D simulation of an entire skewed BCAB, including SSI and 

staged backfilling has been presented. The analysis methodology reflects a computationally efficient 

structural analysis technique that uses a newly-developed combined FE model. The model consists of two 

types of elements that capture complexities in the structural response arising from the nonlinear behavior 

of the CFFT arches, SSI, and transverse effects induced by geometry and load eccentricity in skewed 

BCABs. The first element is a spatial, co-rotational, FB, fiber-frame element employed to discretize each 

of the arches and decking elements. This element has unique features for the analysis of CFFT arches that 

help resolve unique modeling challenges due to the effect of confinement of the concrete core on its stiffness 

and ductility, as well as the importance of large deformations. The second element is a soil-spring element 

used to idealize the soil with a series of one-dimensional, nonlinear, axial-only springs connected to each 

decking node. An effective and unified displacement-dependent model has been adopted to simulate the 

behavior of these compression-only springs under any state of soil between full active and full passive. 

Row sets of soil-spring elements are activated when their corresponding nodes are covered by soil during 

the backfilling process. An efficient multistage simulation was developed to analyze and capture the effect 

of progressive staged backfilling, wearing surface, and service load applications. To achieve this, the model 

is brought into equilibrium under any current loading. Subsequently, only the load effect resulting from the 

next step is required to be analyzed using the stress and loading from the previously resolved state as initial 

conditions. The well-developed Boussinesq approach with small modifications is adopted to distribute 

AASHTO HL-93 design uniform lane and vehicular live loads that are applied at the road surface of the 

bridge. All loads were gathered and represented as point loads applied at the nodes corresponding to their 

tributary areas, position and the soil depth above each node. 

The features of the presented model include computational efficiency and high accuracy despite using 

coarse mesh. The computational efficiency is derived from the use of FB element formulation that 

distributes the plasticity and imposes equilibrium at specified integration points, the cross-section fiber 
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discretization that allows use of uniaxial material constitutive models, the one-dimensional, nonlinear 

springs and the unified displacement-dependent soil model to idealize soil-structure-interaction, and the 

multistage simulation that captures the effect of construction sequence. The accuracy of the model is 

derived from the use of the second order 3D element and the capability of the fiber section model and its 

discretization that characterize the nonlinear interaction between axial forces and bending moments. 

Due to the lack of the experimental work, the analysis is verified by comparison with results measured 

during laboratory tests of straight buried steel arch bridges found in the literature for an un-skewed bridge. 

Although the model uses tributary areas to gather loads at nodes, a mesh convergence showed that the 

model accuracy is enough with a small number of arch elements. The verification analyses showed very 

good predictions of the proposed model against different responses under different types of loadings. 

Finally, a parametric study was undertaken on a generic, two-lane BCAB to investigate the effect of 

abutment skew angle on bridge capacity, an important practical design concern. BCAB models with skew 

angles ranging from 0° to 50° were analyzed for different loading stages. The bridges were subjected to 

factored loads due to the AASHTO Strength I load combination. Although the study was limited to a 

relatively small number of load cases, the results clearly show the effects of the skew angle on the in-plane 

and out-of-plane flexural moments and shear forces of the CFFT arches. According to this parametric study, 

a skewed BCAB must be designed for the section resultant moment and shear envelopes (cylindrical 

envelopes). The proposed FB model neglected the contribution of torsion in the axial strains, however, the 

study showed that such contribution is important to be considered in case of skewed BCAB bridges. The 

proposed model showed that the shear forces at the decking-to-CFFT arches interfaces are most effected 

by the skew angle. The peak shear force increases significantly as skew angle increases. However, these 

shear forces do not realistically represent forces in individual connectors between the deck and arch due to 

the mimicking of FRP deck as transvers and diagonal FB element connected to the arch nodes. These nodes 

are not necessarily located at the real decking-to-CFFT arches interfaces in addition of neglecting the 

friction forces and the glue resistance force at these interfaces. 
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Besides the different sophisticated techniques used in the model presented (distributed plasticity, 

fiber-section, corotational formulation, FB element determination, displacement-dependent soil model, 

GDC solver, multistage simulation, etc.), there are some improvements that could further enhance the 

proposed model. Although the simplified section constitutive relation with adopted uniaxial FRP-confined 

concrete model was adequate for the parametric study, a 3D FRP-confined concrete model that addresses 

the interaction between the axial force, bidirectional shear, biaxial bending, and torsion can be 

implemented. Furthermore, a more practical hysteretic FRP-confined concrete model can be used that 

combines the envelope curve above with the unloading and reloading as well as the hysteretic rules. The 

full composite action at the interface between the FRP tube and the concrete core is required by CFFT 

design specifications and must be verified in accordance with ASSHTO (2012). On the other hand, the 

assumption of no relative slippage between different fibers is also required in order to use the fiber-section 

technique (Spacone et al. 1996). However, cylindrical FRP-to-concrete interaction can be implemented to 

model any level of the composite action at that interface that may exist in the case of a BCAB having a 

spliced CFFTs. Although the adopted soil model was unified and applicable for practical engineering 

vertical retaining walls with a free end, a modification on the model may be made to capture the arch 

curvature and the compaction effects. The proposed model demonstrates the significance of skew angle on 

the shear force at the decking-to-CFFT arches interfaces. Because the proposed model was largely intended 

to study the effect of skew angle, the representation of the connecters was not realistic and was affected by 

the beam element representation of corrugated deck. Therefore, improvements on the representation of 

connecters in the proposed model are demanding. Such improvements can be achieved by incorporating a 

shell element in the model to simulate the decking. 
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   CHAPTER 5  

RECOMMENDATIONS FOR FUTURE RESEARCH 

For future research, there are several topics that warrant investigation to further expand our 

understanding of the behavior of BCABs and their structural components. That future work can be 

broadly divided into several topics as outlined below: 

 Splice Optimization: The FE continuum models presented in Chapter 2 can be used for parametric 

studies that examine the effect of collar length, collar material and thickness, CFCC length and 

area, and other applicable factors that are likely to affect splice capacity and failure modes. 

 Foundation Simulation: Different BCAB foundation configurations should be assessed and 

investigated. The lateral resistance due to basal shear and soil pressure behind the spread foundation 

as well as the horizontal resistance of the pile foundations can be included in the 3D presented 

model in Chapter 4. The effect of skew angle on the bridge abutments can be further investigated. 

 CFFT Arches Shape Optimization: The shape of the CFFT arches is very important in the design 

of BCAB as it has a major effect on the way that the structure responds during different sequential 

loadings. Other geometries such as elliptic or multi-radius circular-segment arches can be 

investigated in future analyses. Parametric studies on the effect of the skew angle can be further 

conducted to optimize the shape of the CFFT arches. The shape optimization including the skew 

may tend to decrease the foundation thrust and increase the CFFT arch design capacities. 

 Backfill Crown Depth Optimization: BCABs are considered as semi-rigid buried structures in 

well-compacted granular soil. Their design and analysis are based on SSI as that soil loads the 

structure due to its weight, restrains the structure due to horizontal earth pressure, and dissipate the 

vehicular live loads. Under a shallow depth of backfill, the structure may fail by initiating shear or 

tension failure in the backfill cover above BCAB crown. Therefore, an optimization of the 

minimum soil depth needs to be done in the future. 
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 Incorporate More Realistic Models of Decking and Arch-Deck Connectors: The model showed 

the significance of the skew effect on the shear force at the decking-to-CFFT arch interfaces. The 

idealization of the decking and the connectors using beam elements as done here is an 

approximation since the decking is constructed as a continuous diaphragm with glued and 

mechanically-fastened transverse joints. The inclusion of shell elements to model the decking 

would be more realistic and allow the assessment of in-plane shear-induced in the decking by 

abutment skew. 

 Model Verifications: The presented model here has only been compared with previous 

experimental and numerical work relating to straight buried steel arch bridges. While those 

comparisons indicate reasonable accuracy of the model, additional experimental work should be 

performed to validate the response of the skewed structures assessed here. 

 

In addition to the research topics detailed above, there may be value in extending the FE software 

developed here to become a design tool. The 3D combined model presented in Chapter 4 was developed as 

a research tool, and all its routines were written as MATLAB functions, i.e., the model inputs and outputs 

are text-based files. Integration of this FE software with a graphical user interface would give an integrated 

tool suitable for the analysis of multi-arch, skewed BCABs. 
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APPENDICES 

Appendix A: Curvature Based Displacement Interpolation (CBDI) 

The CBDI formulas used to interpolate the curvatures field 𝛋௭  and 𝛋𝐲, and to evaluate the lateral 

displacements 𝐯 and 𝐰 at the FB element integration points using the influence matrix 𝐈∗ are summarized 

in Table A 1. For further details, see de Souza (2000). 

 

Table A 1.Summary of CBDI  

Planar FB Element Chapter 3 Spatial FB Element Chapter 4 

𝐯 = 𝐈∗𝛋 
𝐯 = 𝐈∗𝛋௭  

𝐰 = 𝐈∗𝛋௬ 

𝐯 = [ 𝑣(𝜉ଵ) 𝑣(𝜉ଶ) …   𝑣(𝜉௡)]் 
𝐯 = [ 𝑣(𝜉ଵ) 𝑣(𝜉ଶ) …   𝑣(𝜉௡)]் 

𝐰 = [ 𝑤(𝜉ଵ) 𝑤(𝜉ଶ) …   𝑤(𝜉௡)]் 

𝛋 = [𝜅(𝜉ଵ) 𝜅(𝜉ଶ) …  𝜅(𝜉௡)]் 
𝛋௭ = [ 𝜅௭(𝜉ଵ) 𝜅௭(𝜉ଶ) …  𝜅௭(𝜉௡)]் 

𝛋௬ = [ 𝜅௬(𝜉ଵ) 𝜅௬(𝜉ଶ) …   𝜅௬(𝜉௡)]் 

𝐈∗ = 𝐋𝟐
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𝜕𝐯

𝜕𝐏
= 𝐁𝐚∗ ൞

𝜕𝐯

𝜕𝐏
𝜕𝐰

𝜕𝐏

ൢ = ൤
𝐀𝐳 𝐁
𝐁 𝐀𝐲

൨
ିଵ

൜
𝐈∗𝐚𝐳

−𝐈∗𝐚𝐲
ൠ 

𝐁 = 𝐀ି𝟏𝐈∗ 𝐁 = 𝐈∗(𝐈𝐟𝟐𝟑)𝑃ଵ 

𝐀 = 𝐈 − 𝐈∗(𝐈𝐟𝟐𝟐)𝑃ଵ 
𝐀𝐳 = 𝐈 − 𝐈∗(𝐈𝐟𝟐𝟐)𝑃ଵ  

𝐀𝐲 = 𝐈 − 𝐈∗(𝐈𝐟𝟑𝟑)𝑃ଵ 

𝐚∗ = [𝐟𝟐𝟏 + (𝐈𝐟𝟐𝟐)𝐯 (𝐈𝐟𝟐𝟐)(𝛏 − 𝟏) (𝐈𝐟𝟐𝟐)𝛏] 

𝐚𝐳 = [𝐚𝐳_కభ
𝐚𝐳_కమ

…   𝐚𝐳_క೙
]் 

𝐚𝐲 = [𝐚𝐲_కభ
𝐚𝐲_కమ

…   𝐚𝐲_క೙
]் 

𝐚𝐳_క೔
= 𝐟𝟐഍೔

𝐛క೔
        and        𝐚𝐲_క೔

= 𝐟𝟑഍೔
𝐛క೔

 

𝐟𝟐𝟏 = [𝑓ଶ,ଵ
௦௘௖(𝜉ଵ) 𝑓ଶ,ଵ

௦௘௖(𝜉ଶ) …   𝑓ଶ,ଵ
௦௘௖(𝜉௡)]் 

𝐟𝟐𝟐 = [𝑓ଶ,ଶ
௦௘௖(𝜉ଵ) 𝑓ଶ,ଶ

௦௘௖(𝜉ଶ) …   𝑓ଶ,ଶ
௦௘௖(𝜉௡)]் 

𝐟𝟐𝟑 = [𝑓ଶ,ଷ
௦௘௖(𝜉ଵ) 𝑓ଶ,ଷ

௦௘௖(𝜉ଶ) …   𝑓ଶ,ଷ
௦௘௖(𝜉௡)]் 

𝐟𝟑𝟑 = [𝑓ଷ,ଷ
௦௘௖(𝜉ଵ) 𝑓ଷ,ଷ

௦௘௖(𝜉ଶ) …   𝑓ଷ,ଷ
௦௘௖(𝜉௡)]் 

𝐟𝟐഍೔
= [𝑓ଶ,ଵ

௦௘௖(𝜉௜) 𝑓ଶ,ଶ
௦௘௖(𝜉௜) 𝑓ଶ,ଷ

௦௘௖(𝜉௜)   𝑓ଶ,ସ
௦௘௖(𝜉௜)] 

𝐟𝟑഍೔
= [𝑓ଷ,ଵ

௦௘௖(𝜉௜) 𝑓ଷ,ଶ
௦௘௖(𝜉௜) 𝑓ଷ,ଷ

௦௘௖(𝜉௜)   𝑓ଷ,ସ
௦௘௖(𝜉௜)] 

𝛏 = [1 2 …   𝑛]் 

𝐈 is (𝑛 × 𝑛) identity matrix, and 𝟏 is a column vector of ones of a length n. 

𝐟𝒔𝒆𝒄 is the section flexibility matrix shown in Equation 3.16 (planar) or Equation 4.13 (spatial) for the 

𝑖𝑡ℎ integration point. 

𝐛క೔
 is the force interpolation function shown in Equation 4.6 for the 𝑖𝑡ℎ integration point. 
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Appendix B: The Global Incremental-Iterative Solver 

The simplified step-by-step solution algorithm is summarized below in accordance with the GDC as a 

nonlinear iterative-incremental solver including the element state determination process is as the following: 

1. Define the initial state: 𝐔଴, 𝐑𝟎 and 𝐐଴ then assemble the initial tangent stiffness matrix  𝐊෡ ଴. 

2. Select a reference load vector 𝐐෡ , the first load increment λଵ and set the reference load factor Λ = 0. 

3. Start loop over the load increments. 

4. Start loop over iteration at the structure level. 

4.1. For the first iteration at each incremental step: 

4.1.1. Solve  Δ𝐔෡ = 𝐊෡ ଴
ିଵ

𝐐෡ 

4.1.2. For the first increment, set GSP = 1; for other increments, use Equation 3.29 to determine GSP. 

4.1.3. Use Equation 3.28 to determine λ as the sign of λଵ. 

4.1.4. Check the value of GSP. If GSP is negative, then multiply obtained in step (4.13) by −1. 

4.1.5. Evaluate the displacement increments as Δ𝐔 = λΔ𝐔෡. 

4.2. Compute the structural displacements 𝐔 and the corresponding total external loads 𝐐 using 

Equation 3.25 and Equation 3.26, respectively. 

4.3. Start loop over all the elements of the structure. 

4.3.1. Element State Determination algorithm as presented in Appendix C. 

4.3.2. Assemble the tangent stiffness matrix and set it as 𝐊෡ ଴. 

4.3.3. Assemble the vector of residual loads and set it as  𝐑଴. 

4.4. Updated history variables for the next iteration: 𝐐଴ = 𝐐, 𝐔଴ = 𝐔. 

4.5. Λ = Λ + λ 

4.6. For the remaining iterations (𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ≠ 1): 

4.6.1. Evaluate Δ𝐔෡ and Δ𝐔ഥ through Equation 3.22 and Equation 3.23, respectively. 

4.6.2. Use Equation 3.29 to determine λ. 

4.6.3. Compute the displacement increments Δ𝐔 through Equation 3.24. 
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4.7. Repeat steps (4.2-4.5) 

4.8. If (𝑹 <  𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒), exit loop; otherwise, next iteration and go to steps (4.6 and 4.7). 

5. If (Λ >  1), exit loop; otherwise, the next increment and go to step (4.6). 
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Appendix C: State Determination Algorithm 

Iterations at the element level were performed such that the residual displacements fall below a specified 

tolerance within each global iteration. The iterative procedure is accomplished with the following state 

determination algorithm. 

1. Gather the total end element forces without rigid body modes: 𝐏 = 𝐏଴ + ∆𝐏; 

2. Compute corresponding sections force increments: ∆𝐒 = 𝐛଴𝐏; 

3. Determine trial sections deformations: ∆𝐝 = 𝐤଴
௦௘௖ିଵ

∆𝐒; 

4. Store accumulated section deformations: 𝐝 = 𝐝଴ + ∆𝐝; 

5. Determining the corresponding lateral displacement 𝐯, through; 

6. Update the force interpolation matrices 𝐛 and the composite matrices 𝐛∗ using Equation 3.8 and 

Equation 3.12, respectively; 

7. Updated section stiffness matrices 𝐤𝒔𝒆𝒄 and corresponding flexibility matrices 𝐟𝒔𝒆𝒄 using Equation 

3.15 and Equation 3.16, respectively; 

8. Determine updated element end displacement 𝐃𝒆𝒍𝒆 and element flexibility matrix 𝐅𝒆𝒍𝒆 using 

Equation 3.13 Equation 3.18, respectively; 

9. Compute trial section forces 𝐒 = 𝐛𝐏; 

10. Determine the residual displacements: 𝐫 = 𝐃 − 𝐃𝐞𝐥𝐞, where 𝐃 obtained from Equation 3.3; 

11. Compute the residual end forces: ∆𝐏 = 𝐅௘௟௘ିଵ
𝐫; 

12. Update history variables for the next iteration: 𝐏଴ = 𝐏, 𝐛଴ = 𝐛, 𝐝଴ = 𝐝, 𝐤଴
௦௘௖ = 𝐤௦௘௖, and 𝐒଴ = 𝐒; 

13. If (𝐫 <  tolerance), exit loop; otherwise, go to step (1). 

For the next load step, the stiffness matrix 𝐊௘௟௘ and the geometric stiffness matrix 𝐊ீ
௘௟௘ can be determined 

through Equation 3.19 and Equation 3.31, respectively. Then, the element resisting forces 𝐏෡ and the tangent 

stiffness matrix 𝐊෡ ௘௟௘ in the global system can be calculated according to Equation 3.32 and Equation 3.33, 

respectively.  
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Appendix D: FRP Decking Properties and Diagonal Elements Stiffness Sensitivity Analysis 

Table D 1. Geometrical and Material Properties Provided by AIT 

 

FRP decking cross-section is shown in Figure D 1 having 20.924-in width, 7.561-in2 cross-sectional area, 

and 15.237-in4 and 264.205-in4 second moment of area about the weak and strong axes, respectively 
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Figure D 1. FRP decking cross-section Provided by AIT   
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The following figures were plotted according to a 40° skew angle. 

 

 

Figure D 2.. Resultant Moment Envelope 
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Figure D 3. Resultant Shear Force Envelope 
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Figure D 4. Torque Envelope 
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Figure D 5. Axial Force Envelope (all compression forces) 
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Appendix E: Visual Representation of the Influence of the Skew Angle  

 

Figure E 1. Strength I: Apexes In-plane Moment 
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Figure E 2. Strength I: South Shoulders In-Plane Moment 
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Figure E 3. Strength I: North Shoulders In-Plane Moment 

1 2 3 4 5 6 7 8 9
-10

-5

0

5

10

15
Dead Load

1 2 3 4 5 6 7 8 9
-40

-30

-20

-10

0

10

20

M
o

m
e

n
t 

(k
N

.m
)

Apex Live Load

1 2 3 4 5 6 7 8 9

Arch Number

-20

0

20

40

60
Shoulder Live Load

  0o

10o

20o

30o

40o

50o

Skew Angle



 

150 
 

 

Figure E 4. Strength I: South Footings In-Plane Moment 
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Figure E 5. Strength I: North Footings In-Plane Moment 

1 2 3 4 5 6 7 8 9
-40

-30

-20

-10

0

10
Dead Load

1 2 3 4 5 6 7 8 9
-20

0

20

40

60

80

M
o

m
e

n
t 

(k
N

.m
)

Apex Live Load

1 2 3 4 5 6 7 8 9

Arch Number

-80

-60

-40

-20

0

20
Shoulder Live Load

  0o

10o

20o

30o

40o

50o

Skew Angle



 

152 
 

 

Figure E 6. Strength I: Apexes Out-of-Plane Moment 
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Figure E 7. Strength I: South Shoulders Out-of-Plane Moment 
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Figure E 8. Strength I: North Shoulders Out-of-Plane Moment 
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Figure E 9. Strength I: South Footings Out-of-Plane Moment 
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Figure E 10. Strength I: North Footings Out-of-Plane Moment 

1 2 3 4 5 6 7 8 9

-60

-50

-40

-30

-20

-10

0
Dead Load

1 2 3 4 5 6 7 8 9
-20

-10

0

10

20

30

M
o

m
e

n
t 

(k
N

.m
)

Apex Live Load

1 2 3 4 5 6 7 8 9

Arch Number

-20

-15

-10

-5

0

5

10
Shoulder Live Load

  0o

10o

20o

30o

40o

50o

Skew Angle



 

157 
 

 

Figure E 11. Strength I: Apexes In-Plane Shear Force 
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Figure E 12. Strength I: South Shoulders In-Plane Shear Force 
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Figure E 13. Strength I: North Shoulders In-Plane Shear Force 
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Figure E 14. Strength I: South Footings In-Plane Shear Force 
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Figure E 15. Strength I: North Footings In-Plane Shear Force 
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Figure E 16. Strength I: Apexes Out-of-Plane Shear Force 
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Figure E 17. Strength I: South Shoulders Out-of-Plane Shear Force 
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Figure E 18. Strength I: North Shoulders Out-of-Plane Shear Force 
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Figure E 19. Strength I: South Footings Out-of-Plane Shear Force 
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Figure E 20. Strength I: North Footings Out-of-Plane Shear Force 
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