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Breast cancer is a disease which predominatly affects women. About 1 in 8 women are

diagnosed with breast cancer during their lifetime. Early detection is key to increasing the

survival rate of breast cancer patients since the longer the tumor goes undetected, the more

deadly it can become. The modern approach for diagnosing breast cancer relies on a

combination of self-breast exams and mammography to detect the formation of tumors.

However, this approach only accounts for tumors which are either detectable by touch or

are large enough to be observed during a screening mammogram. For some individuals, by

the time a tumor is detected, it has already progressed to a deadly stage.

Unlike previous research, this paper focuses on the predetection of tumorous tissue.

This novel approach sets out to examine changes in the breast microenvironment instead of

locating and identifying tumors. The purpose of this paper is to explore whether it is

possible to discover changes in the breast tissue microenvironment which later develop into

breast cancer.

We hypothesized that changes in the breast tissue would be detected by analyzing

mammograms from the years prior to the discovery of tumorous tissue by a radiologist. We



analyzed a set of time-series digital mammograms corresponding to 26 longitudinal cancer

cases, obtained through a collaboration with Eastern Maine Medical Center (EMMC) in

Bangor, Maine. We automated the Wavelet Transform Modulus Maxima (WTMM)

method, a mathematical formalism that we used to perform a multifractal analysis. In

particular, this automated WTMM (AWTMM) was used to calculate the Hurst exponent,

a metric that is correlated with breast tissue density. The AWTMM allowed us to see with

greater detail the changes in mammogram tissue, specifically concerning breast density.

The results suggest that signs of malignancy can be observed as early as two years before

standard radiological procedures. In this research, we identify a set of variables that show

significance when classifying precancerous tissue.



PREFACE

This work represents the culmination of years of research. While there are many pages of

material, there are many more which never made it to this final draft. The author’s

ambition was to make this paper accessible to a broad audience. However, to gain more

in-depth insight into the paper, it is recommended that one also read the companion

papers to this research: "Comparative multifractal analysis of dynamic infrared

thermograms and X-ray mammograms enlightens changes in the environment of malignant

tumors," "Mammographic evidence of microenvironment changes in tumorous breasts,"

and "Computational growth model of breast microcalcification clusters in simulated

mammographic environments."

This paper serves as an overview of the current state of mammogram research in the

CompuMAINE laboratory. The results laid out in this paper are a testament to the hard

work and effort of many folks, and a sign of the many technical obstacles overcome. The

author hope is that these results will be used to further our understanding of the breast

microenvironment and help to advance our knowledge of breast cancer.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Around 1 in 8 women will be diagnosed with breast cancer in her lifetime [1]. In 2017,

there were an estimated 252,710 new cases of invasive breast cancer reported in American

women and 2,470 cases diagnosed in American men [1].1 Breast cancer is primarily a

disease that affects older women, with only 3% of cases occurring in women under the age

of 40 [2]. Many factors affect the severity and rate of occurrence of breast cancer. One such

factor is breast density.2 Breast density is determined by the ratio of glandular and

connective breast tissue to total breast tissue [2]. Women with 26%-50% breast density

have a 1.6 times greater and women with higher than 50% breast density have a 2.3 times

greater chance of developing breast cancer than women with 11%-25% breast density [3].

Further, breast cancer is more difficult to detect in mammograms with greater ratios of

dense to fatty breast tissue [4].

Mammographic breast cancer screenings can detect signs of breast cancer up to three

years before a lump can be felt during a self-breast exam [2]. Breast mammography acts as

a sentinel, alerting doctors to the growth of suspicious lesions. Early detection has been

credited with the declining mortality rate of breast cancer in western countries [2].

However, there is evidence to suggest that screening may not help mortality rates for

advanced stages of breast cancer. This failure to detect some breast cancer until it has

reached an advanced stage may be because mammographic screenings are designed to look

for tumors in the breast. However, some forms of breast cancer metastasize before they can

grow to a size detectable in a mammogram [5].

1The incidents of breast cancer in transgender and gender nonconforming individuals are unknown.
2While young women have denser breast tissue than older women, breast density is not necessarily a risk

factor in women under 40.
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The objective of this research was to prove that the automated 2D wavelet-transform

modulus maxima (AWTMM) method not only can be used to detect fluctuations in tissue

microenvironment for longitudinal data, but also to demonstrate that these fluctuations are

useful for detecting the signs of malignant tissue before an official radiological diagnosis. In

this research, we present evidence that suggests that there are detectable changes in

mammograms. We identified a set of variables that show significance in classifying

precancerous tissue through comparing aggregated time groups of longitudinal

mammograms. A summary of these results can be found in Chapter 6.

1.2 Background

In this study, we analyzed mammograms from patients that fall into two categories of

cancerous breast tissue, the first being ductal carcinoma in situ (DCIS). DCIS is a

condition in which epithelial cells mutate and begin to form abnormal cell clusters.

Generally, DCIS is benign, with only 17% of cases developing into invasive cancer [2]. In

many cases, DCIS grows slowly enough that it will have no impact on the patient’s

health [2]. However, between 20%-53% of cases of cancer are misclassified as DCIS [6–10].

The second group we examined was a general cancer category labeled as invasive ductal

carcinoma (IDC). Invasive breast cancers are the most common type of breast cancer,

making up 80% of cancer cases [11–13]. There are up to 21 different types of breast cancer,

which generally fall into four different molecular subgroups,3 each with unique properties,

including detection and treatment [2]. Since we did not have access to the specific type of

cancer, we grouped these invasive cancers into a single category. Ideally, given enough

data, the mammograms should be filtered into more granular categories. However, the

most common type of breast cancer in non-Hispanic white women is HR+/HER2-,

accounting for around 82% of breast cancer cases in this population [2]. Since these data

3Three of the four categories rely on classifying the hormone receptor (HR) and human epidermal growth
factor receptor 2 (HER2), with the four groups being HR+/HER2-, HR+/HER2+, HR-/HER2+, and Triple
negative.
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were acquired from a Maine based hospital and given that 94.64% [14] of the population of

Maine falls into this demographic, most of the cases will likely be HR+/HER2-.

The major disadvantage of mammography is that it relies on tumor detection. Up to

this point, little research has been conducted on detecting changes in breast tissue that

lead to breast cancer. Most computer-aided diagnostics (CAD), like radiologists, focus on

tumor detection. However, not all breast cancers can be detected this way [15]. Further,

previous studies have shown that radiologists can overlook lesions that are obscured by

dense breast tissue [15]. Many times, these cancers are able to be visually detected, in

previous mammograms, after the eventual diagnosis [15]. Much in the way that

mammograms have revolutionized early detection of tumors, this research hopes to go

further and utilize these mammograms to find visually undetectable changes in

mammograms that can be attributed to the development of breast cancer.

We also demonstrated that changes in the microenvironment of breast tissue were not

only detectable but also useful in distinguishing between breasts containing malignant

tissue and those without malignant tissue [16,17]. Using the 2D wavelet-transform

modulus maxima (WTMM) method, we were able to determine the relationship between

breast tissue type and the Hurst exponent (H) [16], which is a metric used to quantify the

global roughness of the images density fluctuations. Fluctuations in mammographic breast

tissue fall into three categories: monofractal anti-correlated (H < 0.45) for fatty tissue,

monofractal long-range correlated (H > 0.55) for dense tissue, and uncorrelated

(0.45 ≤ H ≤ 0.55) for disrupted tissue [16]. A rough outline of these three categories was

originally demonstrated in [18]. From this work, these regions were formally established

and named in [16], with the disrupted tissue being coined in order to characterize tissue

which exhibited high entropy (e.g., 0.45 ≤ H ≤ 0.55) [16]. We discovered that disrupted

tissue regions were found more frequently in tumorous than in healthy breast tissue. More

specifically, tissue regions with 0.45 ≤ H ≤ 0.55, as well as left versus right breast

asymmetries, were found preferably in tumorous breasts when compared to normal breasts
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(p < 0.0006), as quantified using with the combined metric (Equation 12 in Marin et.

al.) [16]. The leading hypothesis is that the changing microenvironment of the breast tissue

causes the loss of tissue homeostasis, promoting the spread of disrupted-tissue

regions [19–22].

Concurrently, while working on our research in Marin et. al., [16] we were working on

simulating the growth of microcalcifications. In Plourde et. al. [23] we hypothesized that

microcalcifications would be more likely to grow in breast tissue with a high level of

entropy. In this experiment we simulated breast tissue with fractional Brownian noise. We

discovered that the H value of the simulated breast tissue impacted the the growth rate of

the simulated microcalcifications [23]. This further reinforced our hypothesis that the

tissue microenvironment may play an important role in the development of breast cancer.

These insights suggest that our research is nearing a point where we may soon be able

to predict the formation of malignant tissue accurately. More specifically, we hypothesized

that the AWTMM would be able to be used to detect such changes in a time series analysis

of mammograms. In this paper, we extend the scope of previous research by analyzing the

time series data.

1.3 History

The 2D wavelet-transform modulus maxima (2D WTMM) method is a signal

processing technique which is used to compute the multifractal properties of an image. Up

until 2015, parameter settings and multiple power-law fittings for the 2D WTMM were

selected manually. The experts, or Human Agents (HA), performing this task would

visually inspect these sets of graphs, manually selecting a range in these graphs. Selecting

this range was tedious, time consuming, and required a lot of training. A well trained HA

could fit these curves at a rate of around one mammogram subregion per minute. Since

each mammogram was gridded off into 256x256 pixel subregions, it could take several

hours for a single HA to finish off one mammogram. For example, a single 3000x3900 pixel
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mammogram would be divided into around 11 columns and 15 rows. If 60% of the

subregions contained breast tissue, then this mammogram would have around 100

subregions to be analyzed, which equates to around 100 minutes spent analyzing the

mammogram. Of course, if an image was larger, or contained more breast tissue, it would

take even longer for the HA to classify the subregions. This does not take into account the

time spent running the 2D WTMM method, which, if not precomputed, the HA would

have to wait for the 2D WTMM method to generate the curves before they could classify

the subregion. For a single subregion, the 2D WTMM method could take up to half a

minute from start to finish. To continue the example, this means that the HA could wait

up to fifty minutes for the WTMM to be computed for each of the 100 regions.

There were a couple of issues that arose from processing the images this way. The first

was that it was time consuming, both to train HA and to classify the subregions. Further,

the fitting procedure was subjective, meaning that two expert HAs may not always agree

on the best fit. In an internal audit, we found the average agreement between two expert

HAs to be around 85%. This meant that while there is a high level of agreement between

HAs, the classification of the regions would not be entirely consistent. For this reason, HAs

had to regularly meet to discuss their classification of regions and to appraise one another’s

assessments to maintain a high level of consistency.

For these reasons, we set out to find a way to automate this procedure. Early builds of

the automated WTMM (AWTMM) were able to classify the regions with an average

agreement of around 85% with the expert HAs, meaning they had a high level of agreement

with an expert HA. Further, the AWTMM was able to classify the output of the WTMM of

a single region in less than a second. This meant that all the subregions of a mammogram

could be classified in minutes instead of hours. The same 100 region mammogram

discussed previously could now be analyzed in approximately 16 minutes. The AWTMM

also freed up time for HAs, who were often senior scientists with other responsibilities.
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From this point, we changed our focus from the traditional griding method outlined

above to a more complex system (see Chapter 5). We hypothesized that additional

information on how the tissue changed across the mammogram would provide us with new

insights into the development of breast cancer. Now instead of hundreds of subregions, a

single mammogram could be divided into thousands of subregions that needed to be

classified. The number of subregions approximately increased our resolution sixty-four fold

from the original griding protocol. That is, n222222 = n26, where n is the number of

subregions to classify. From our example above, if a mammogram had 100 subregions to

classify originally, under the new schema there would now be 6400 regions to classify.

Early implementations of this system were able to classify a single mammogram with

the new finer griding system in around 17 hours. Most of that 17 hours was dedicated to

the time needed to run the WTMM on each of the 6400 regions. For a HA, this would have

taken around 4.4 days, excluding the WTMM time. The major disadvantage of this new

system was that while it was faster and produced much larger quantities of more refined

data, analyzing data in bulk now required a huge computational investment. Though not

ideal, one of the ways to combat this was to run multiple sessions of the WTMM/AWTMM

in tandem across multiple machines. While this was still a step up from running a single

instance across a single machine, this arrangement added additional complexity to the

pipeline. It also meant that multiple machines needed to be monitored, and that the load

across machines was not consolidated, adding complication to our method. Eventually,

some of these tasks were handled by utilizing bash shell scripts, but the system was still

inefficient.

To remedy these problems, we decided that a ground up rework of the AWTMM and

mammogram processing pipeline was necessary. First, the AWTMM algorithm was

streamlined and converted to OpenCL [24] code. This meant that we could now take

advantage of the GPUs to compute the AWTMM. Next, the software was altered to utilize

OpenMPI [25]. Since each subregion is calculated independently of the rest of the image,
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this meant that we could implement an embarrassingly parallelizable schema. In other

words, we could have one supervisor thread manage a collection of worker nodes. These

worker nodes would request a region from the supervisor. Once they completed the task of

computing the WTMM/AWTMM for their designated region, they would report back the

results and request the next region. This continued until no regions were left in the queue,

which resulted in a directly linear increase in speed based on the total number of worker

nodes. Thus, if we split our 6400 regions over 80 CPUs, then the mammogram would now

only take around 13 minutes to compute. Further, the scalability of this solution allowed us

to add and remove nodes as needed, depending on workload and urgency.

As of the writing of this paper, this is the current structure and function of the

mammogram analysis pipeline. In addition to the stated hypothesis, this paper will also

serve to outline a formal mathematical definition of the AWTMM, assess its capabilities,

and discuss future improvements in the mammogram analysis pipeline. Additionally, we

will outline some of the other mathematical and algorithmic tools utilized in our image

analysis pipeline.
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CHAPTER 2

THE WTMM METHOD

The wavelet transform (WT), wavelet transform modulus maxima (WTMM), and the

wavelet transform modulus maxima maxima (WTMMM) are the underlying mathematical

machinery used in this paper. The WTMM utilizes a special class of functions, commonly

called wavelets, which have been compared to a ‘mathematical microscope’ because of their

ability to resolve image features [26–28]. The WTMM method can be used as a way to

characterize the fluctuations in density across an image [16]. While the WTMM method

has its roots in thermodynamics [26,29,30], it has been utilized in a wide range of fields

due to its ability remove noise and to identify features within images [16–18,26,27,29–53].

With respect to mammography, we are particularly interested in the ability of the WTMM

method to classify breast tissue density [16,17,39,45,46]. For an in depth explanation of

the deeper workings of this tool, please refer to one of the many references included

here [16, 17,26–30,39,40,45–47,50–52,54–56].

2.1 Wavelet Transform

As mentioned above, the end goal of utilizing the WTMM method in this research is to

compute a number which can be correlated to density fluctuations in an image, the

H-value. This first step of the WTMM method is to identify where those fluctuations exist

in the image. For that reason, the wavelet transform is utilized to help compute the

direction and magnitude of the shifts in density at different size scales. This section will

provide an overview of the calculations needed to perform the wavelet transform. We

define the vectorized form of the wavelet transform as

Tψ[f ](b, a) =

Tψ1 [f ](b, a) = 1
a2

∫ ∫
f(x)ψ1

(x−b
a

)
d2x

Tψ2 [f ](b, a) = 1
a2

∫ ∫
f(x)ψ2

(x−b
a

)
d2x

 , (2.1)
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where f is a single-valued, self-affine function, that is, the function must have some self

similarity.1 Further, we will let ψ1 and ψ2 be equations A.3 and A.4, respectively.

Traditionally in the WTMM method, ψ is the first or third order partial derivative of the

2D Gaussian function, φ(x, y), taken in both the x (Figure A.1a) and y (Figure A.1b)

directions at multiple size scales, a. Further, a is the width and height of the Gaussian

kernel. In the case of the wavelet transform, the Gaussian smooths the image, while the

derivative gives the gradient. The size scales smooth the image at increasing values of a,

rendering more prominent features visible while disregarding more localized features.

Notice that the equations in 2.1 and A.1 share a lot of similar features. Observe that if

we solve the integral in 2.1 through integration by parts, we get

Tψ[f ](b, a) = ∇{Tφ[f ](b, a)} = ∇{φb,a ∗ f} . (2.2)

From here, we can see how the wavelet transform ties in to the idea of the convolution.

However, the major difference when computing the wavelet transform is that our kernel

must sum to 0. This is a foundational assumption made when working with wavelets,

known as the admissibility condition [57]. Two such equations that meet this requirement

are Equations A.3 and A.4.

Next, we can express the wavelet transform in terms of the modulus

Mψ[f ](b, a) = |Tψ[f ](b, a)| =
√
Tψ1 [f ](b, a)2 + Tψ2 [f ](b, a)2 (2.3)

and the argument

Aψ[f ](b, a) = Arg(Tψ1 [f ](b, a) + (i)(Tψ2 [f ](b, a))) (2.4)

For the WTMM method, the modulus is the magnitude and the argument is the gradient

direction of the wavelet transform. As the name suggests, the WTMM (of the wavelet

transform modulus maxima method) are defined as the (x, y) coordinates for which the

1Equation 2.1 is implemented with a continuous convolution. For a basic overview of a mathematical
convolution and how it applies to the WTMM method, see Appendix A.
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modulus is maximal in the direction of the argument. More specifically, our goal is to

locate the maxima lines inM and then to locate the maxima lines with the locally

maximal modulus. This will allow us to construct something analogous to a topological

map of the different image features. This process will be discussed in Section 2.2.

2.2 WTMMM

As mentioned in Section 2.1, the goal of the WTMM method is to locate all the

WTMM at a given scale. Once these WTMM have been located over the set of all scales,

we can form connected chains which are called maxima chains. The WTMMM are defined

as the coordinates along the maxima chains which are locally maximum. These linked

chains across all scales (a > 0) are known as maxima lines. Let L(a) be the set of all

maxima chains that exist at any scale a. Further, let the partition functions be defined as

Z(q, a) =
∑
L∈L(a)

(
sup

(a′)∈L,a′≤a
Mψ[f ](b, a′)

)q

, (2.5)

where q ∈ R correspond to statistical order moments. These statistical order moments

provide insight into the fractal geometry of the image. Utilizing the power-law, we can see

how the partition function changes proportionally with respect to a and

τ(q) [26, 29,30,55,56]. We can define the function scaling exponents τ(q) as

Z(q, a) ∼ aτ(q), (2.6)

where a→ 0+. Here q and τ(q) relate to the fractal properties of the signal, with a

nonlinear τ(q) being related to a multifractal signal. Next let us consider the corresponding

singularity spectrum D(h). The singularity spectrum of f can be determined from the

Legendre transform of τ(q) with

D(h) = min
q

(qh− τ(q)). (2.7)

10



Because utilizing the Legendre transform can lead to computational instability, we can

alternatively use h and D(h) with respect to their Boltzmann weights,

Wψ[f ](q,L, a) =
1

Z(q, a)

∣∣∣∣∣ sup
(a′)∈L,a′≤a

Mψ[f ](x, a′)

∣∣∣∣∣
q

, (2.8)

utilizing the WTMMM chaining data, to help alleviate these computational problems.

These weights allow us to compute the expectation values

h(q, a) =
∑
L∈L(a)

ln

∣∣∣∣∣ sup
(a′)∈L,a′≤a

Mψ[f ](b, a)

∣∣∣∣∣Wψ[f ](q,L, a) (2.9)

and

D(q, a) =
∑
L∈L(a)

Wψ[f ](q,L, a) ln(Wψ[f ](q,L, a)). (2.10)

If we take the limit of h(q, a), then we come up with the equation

h(q) = lim
a→0+

h(q, a)

ln(a)
. (2.11)

Likewise, taking the limit of D(q, a) yields

D(q) = lim
a→0+

D(q, a)

ln(a)
, (2.12)

which allows us to calculate D(h(q)). We can now calculate the fractal dimension, D(h), of

all points in the image with the Holder exponent h, where the Holder exponent represents

the strength of the singularities of the image corresponding to D(q = 0) [27, 45,55,56]. As

long as the D(h) singularity spectrum is monofractal, D(h) can be used to compute a

global roughness, which is quantified by the Hurst exponent H, with the corresponding

τ(q) spectrum through the relationship

τ(q) = qH − 2. (2.13)

In order to discriminate between a monofractal and multifractal signal, we need to

consider a range of q values which is as large as possible. However, image size limits the

number of q-values one can utilize, with smaller images being able to utilize fewer q-values.

11



(a) (b) (c) (d)

Figure 2.1: An example of the modulus, argument, and maxima chains from a single size
scale (a = 73).
Figure 2.1b depicts the modulus of 2.1a taken at size scale a = 73. Figure 2.1c depicts the
argument of 2.1a taken at size scale a = 73. Figure 2.1d depicts the maxima chains of 2.1a

taken at size scale a = 73.

Since the images we utilized were 360× 360 pixels, with only the inner 256 pixel region

being kept for the WTMM analysis, we only utilize q-values from the range q ∼ −2 to

q ∼ 3. Further, in this range of q-values, the q-values closer to 0 were given higher weights

when performing the AWTMM, as discussed in Chapter 3.

2.3 Visualizing the WTMM

Sections 2.1 and 2.2 provided the mathematical framework for utilizing the WTMM. To

help ground those equations, we will now turn to some graphical examples to help illustrate

some of their meaning. If one recalls, we described the modulus and argument, equations

2.3 and 2.4, respectively, as the magnitude and direction of the wavelet transform. An

example of the modulus, argument, and maxima chains from a single size scale (a = 73)

can be seen in Figures 2.1b, 2.1c, and 2.1d respectively. Figure 2.2 illustrates the filters,

modulus, arguments, and maxima chains at multiple scales.

2.4 Visualizing Space-scale Skeletons

Section 2.3 provides illustrations for the argument, modulus, and maxima lines

produced from the WTMM method. In this section we illustrate the space-scale skeletons

discussed in Section 2.2. Figure 2.3, taken from Marin et. al., serves as a graphical

representation of how the maxima lines can be linked together to form the space-scale

12



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.2: The wavelet transform applied to 2.1a at the scales (column-wise) a =
{7, 29, 73, 127}.
Figures 2.2a–2.2d are the modulus at multiple scales. Figures 2.2e–2.2h are the arguments

at multiple scales. Figures 2.2i–2.2l are the maxima chains at multiple scales.

skeletons. The first row (Figures 2.3a through 2.3c) depicts three unique regions taken

from a mammogram, representing the three types of breast tissue, with the three columns

representing fatty, disrupted, and dense breast tissue, respectively. The middle three rows

(Figures 2.3d through 2.3l) represent the maxima chains at three different scales. The last

row (Figures 2.3m through 2.3o) represents the space-scale skeletons that are constructed

from all of the maxima chains.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 2.3: Illustration of space-scale skeletons.
This illustration, taken from Marin et. al. [16], depicts the construction of a ‘space-scale

skeleton’ at different scales. The first row, 2.3a through 2.3c, are subsections of
mammograms with different H values. The columns represent tissue with H ≤ 0.45,

0.45 < H < 0.55, and H ≥ .55, respectively.
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2.5 Visualizing h(q, a) and D(q, a)

These h(q, a) and D(q, a) are similar to curves which we will utilize during our

calculations of the Automated WTMM, discussed in Chapter 3. An example of the h(q, a)

and D(q, a) curves can be seen in Figures 2.4 and 2.5, respectively. Note that in Chapter

3.2, we will look at these curves as sets of sets, H and D. The notation in this chapter was

utilized to reflect the canonical notation of the WTMM method.
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Figure 2.4: An example of a h(q, a) curve.
This figure contains an example of an h(q, a) curve, with Figure 2.4a providing an example

of the full h(q, a) graph. Figure 2.4b is a subset where h(q, 1 ≤ a ≤ 3). The slope of
h(0, 1 ≤ a ≤ 3) = 0.6089, which corresponds to dense (density fluctuations are spatially

positively correlated) tissue in a mammogram. Figure 2.4c is a subset where
h(q, 1.8 ≤ a ≤ 3.5). The slope of h(0, 1.8 ≤ a ≤ 3.5) = 0.5064, which corresponds to
disrupted tissue (high entropy, i.e. the density fluctuations are uncorrelated) in a
mammogram. Figure 2.4d is a subset where h(q, 2.0 ≤ a ≤ 4.0). The slope of

h(0, 2.0 ≤ a ≤ 4.0) = 0.3064, which corresponds to fatty tissue (density fluctuations are
spatially anti-correlated) in a mammogram. This is a graphical representation of a typical
set of h(q, a) curves from Equation 2.9. The q-values from blue to red are: q = {-2, -1.5, -1,
-0.8, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6,

1.8, 2, 2.5, 3, 3.5, 4, 5}
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Figure 2.5: An example of a D(q, a) curve.
This figure contains an example of a D(q, a) curve, with Figure 2.5a providing an example

of the full D(q, a) graph. Figure 2.5b is a subset where D(q, 1 ≤ a ≤ 3). The slope of
D(0, 1 ≤ a ≤ 3) = 2.171, which corresponds to a 2D space. Figure 2.5c is a subset where
D(q, 1.8 ≤ a ≤ 3.5). The slope of D(0, 1.8 ≤ a ≤ 3.5) = 2.123, which again corresponds to

2D space. Figure 2.5d is a subset where D(q, 2.0 ≤ a ≤ 4.0). The slope of
D(0, 2.0 ≤ a ≤ 4.0) = 2.171. This is a graphical representation of a typical D(q, a) set of
curves from Equation 2.10. The q-values from red to turquoise are: q = {-2, -1.5, -1, -0.8,
-0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8,

2, 2.5, 3, 3.5, 4, 5}
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2.6 Design Decisions for utilizing the WTMM Method

The WTMM method is accessed through a software package, written in C and TCL,

called xsmurf. The xsmurf software is a signal and image analysis software package, written

and designed for computers of the 1990s. These computers were far more limited on RAM

and processing power when compared to modern machines. For that reason, xsmurf was

not designed with portability or future-proofing in mind; instead, many of the design

decisions revolved around RAM limitations and performance. The xsmurf software was

also designed to run as a single-threaded, standalone application. More specifically, much

of the code had circular references, global variables, and other organizational issues that

made it difficult to modernize and maintain.

The xsmurf software package contains over a hundred thousand lines of C code and

thousands of more lines of code written in TCL. Up until recently, there was no official

version control software used to manage the development cycle of xsmurf. One of the first

steps we took when designing the AWTMM method was to convert the xsmurf software

into a library, libxsmurf. This overhaul is still in the works with our final goal of rewriting

the software into OpenCL and eliminating the TCL dependencies. Much of the code has

been reorganized, with the circular references being removed. However, because global

variables are such an integral part of the software, they have been left in place until they

can be addressed in future upgrades.

Recall from Chapter 2 note that the WTMM method chains the WTMMM together.

This chaining process is the most involved process with complexity at worst O(n4). The

computational complexity arises from searching the space above and below a particular

WTMMM to locate the next WTMMM in the chain. One of the improvements we would

like to make in the future would be to implement a more efficient search algorithm and to

parallelize this code across multiple CPUs. We believe that this may be possible since each

search could theoretically be run on a different thread.
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Rewriting and optimizing the WTMM method for OpenCL would allow the code to be

executed on a GPU. Processing the WTMM method on multiple GPU cores has the

potential to increase our throughput. Even if GPU cores turn out not to be the best fit for

the algorithm, we would still benefit from a streamlined version of the code which would

run across multiple CPU threads or even field-programmable gate arrays (FPGAs). If, for

instance, we could run the code on an FPGA, then the results would be orders of

magnitude faster than our current implementation.

Another approach we could take toward improving the speed of the WTMM method

would be to train a CNN (convolutional artificial neural network) on the image subregions.

In theory, this CNN would be given an image subregion and would produce an H value

based on the region. However, doing this would be, in some ways, a step backward. There

is no guarantee that a CNN would produce a suitable result across multiple datasets. Even

if we were to train a CNN on the mammograms successfully, there is no guarantee that this

CNN would match the accuracy of the mathematical definition. Our choice, for at least

this experiment, was to use something reliable and relatively slow, rather than to take the

risk of using something that might be faster but might come at the expense of accuracy.

Alternatively, we could have used an ANN (artificial neural network) to classify only

the h and D curves, the task that the AWTMM currently performs. At face value, this is

not a bad idea. However, since the AWTMM algorithm performs nearly as accurately as a

human, we decided that we would have little to gain from utilizing an ANN. We again

made a similar design decision, opting to use the known system, since we had little to gain

at the potential cost of time and accuracy.
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CHAPTER 3

THE AUTOMATED WTMM METHOD

As discussed in Chapter 2, the 2D WTMM method requires curves to be fit to

power-law exponent curves. The Automated WTMM (AWTMM) method was developed as

a way to fit these curves. The invention of this algorithm is the author’s core contribution

to the Computer Science field. In this section, we will discuss this automated fitting

algorithm and provide OpenCL/C code which can be used to run this operation.

Additionally, a full listing of the code, with additional comments, can be found in

Appendix B.

3.1 Linear Regression

Before a thorough explanation of the curve fitting procedure can be given, the

supporting equations for this procedure need to be defined. This section relies heavily on

basic statistical concepts, which can be found in any standard statistical textbook such

as [58]. In particular, this section introduces the ideas and code for a basic linear model.

Since linear regression is a cornerstone of the AWTMM method, we will begin by

discussing linear regression. For a set X, the mean, µ(X), is given as

µ(X) =
k∑
i=1

xi
k
, (3.1)

where X = {x1, x2, x3, ..., xk|k ∈ N}. Listing 3.1 provides the code for this function.

1 double mean(__global double* aData ,
2 unsigned long aDataSize){
3 double lRet = 0;
4

5 for(unsigned long i = 0; i < aDataSize; i++){
6 lRet += aData[i];
7 }
8

9 return lRet/aDataSize;
10 }

Listing 3.1: Code for Mean of Data.
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The standard deviation (σ(X)), or the square-root of the variance, is defined as

σ(X) =

√√√√ k∑
i=1

(xi − µ(X))2

k − 1
, (3.2)

where k > 1. The code for the standard deviation is given in Listing 3.2.

1 double stdev(__global double* aData ,
2 unsigned long aDataSize){
3

4 double lAverage = mean(aData ,aDataSize);
5 double lRet = 0;
6

7 for(unsigned long i=0; i<aDataSize; i++){
8 lRet += (aData[i]-lAverage)*(aData[i]-lAverage);
9 }

10

11 lRet = lRet/(aDataSize -1);
12 return sqrt(lRet);
13

14 }

Listing 3.2: Code for Standard Deviation.

In addition to the mean and standard deviation, there is also a weighted version of both

of these equations. These weights adjust the means and standard deviations by making

some elements count less toward the final calculation, as opposed to the mean and standard

deviation, which weigh each element equally. While these two statistics are not used in the

linear regression model, they have the purpose of emulating human behavior with respect

to the curve fitting model presented later in the chapter. The weighted mean is defined as,

µw(X,W ) =

∑k
i=1(xiwi)∑k
i=1(wi)

, (3.3)

where wi is the ith element in the set of weights W , and W ⊂ Rk. The code for the

weighted mean is given in Listing 3.3.

1 double weighted_mean(__global double* aData ,
2 __global double* aWeights ,
3 unsigned long aArraySize){
4

5 double lRet = 0;
6 double lWeightSum = sum_vector(aWeights , aArraySize);
7
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8 for(unsigned long i = 0; i < aArraySize; i++){
9 lRet += (aData[i]* aWeights[i])/lWeightSum;

10 }
11

12 return lRet;
13 }

Listing 3.3: Code for Weighted Mean.

The weighted standard deviation is calculated as

σw(X,W ) =

√∑k
i=1(xi − µw(X,W ))2wi∑k

i=1(xiwi)− 1
, (3.4)

where wi is the ith element in the set of weights W , and W ⊂ Rk. The code for the

weighted standard deviation is given in Listing 3.4.

1 double weighted_stdev(__global double* aData ,
2 __global double* aWeights ,
3 unsigned long aSize){
4

5 double lRet = 0;
6 double lWeightedSum = sum_vector(aWeights ,aSize);
7 double lWeightedMean = weighted_mean(aData , aWeights , aSize);
8

9 for(unsigned long i = 0; i < aSize; i++){
10 lRet += ((aData[i]-lWeightedMean)*(aData[i]-lWeightedMean))
11 *aWeights[i]/( lWeightedSum -1);
12 }
13

14 return sqrt(lRet);
15

16 }

Listing 3.4: Code for Weighted Standard Deviation.

Least squares regression is a mathematical tool used to model the linear system

(defined in Listing 3.5) that best fits a set of ordered pairs (where an ordered pair is

defined in Listing 3.6). Let A be a set of ordered pairs such that

A = {{x1, y1}, {x2, y2}, ..., {xk, yk}}, where k ∈ N. Additionally, xi ≥ xj ∀ xj ∈ Ax, where

Ax is the set of x components of A, namely, Ax = {x1, x2, ..., xk}, and Ay is the set of all y

components of A, namely, Ay = {y1, y2, ..., yk}. We will denote the mean of Ax as x̄ and the

mean of Ay as ȳ. In linear regression, the coordinate (x̄, ȳ) in the 2D plane will serve as the
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center of mass for the set of ordered pairs through which the line will be drawn, computed

in Listing 3.7, lines 25 and 26.

First we compute the variance of Ax, which is the difference between sum of squares of

Ax and kx̄2,

Sxx(A) =
k∑
i=1

(x2i )− kx̄2. (3.5)

The code for Sxx is given in Listing 3.7, lines 43 and 44.

Next we compute the covariance of Ax and Ay.

Sxy(A) =
k∑
i=1

(xiyi)− kx̄ȳ. (3.6)

This calculation gives us information on how x and y are correlated.

Utilizing these two equations, we can then compute the slope of the regression line, β̂,

as the ratio between Sxy and Sxx,

β̂(A) =
Sxy(A)

Sxx(A)
. (3.7)

In Listing 3.7, β̂ is computed on lines 37-40.

We can then compute the y-intercept of the regression line, α̂, as

α̂(A) = ȳ − β̂(A)x̄. (3.8)

α̂ is computed in lines 41 and 42 in Listing 3.7.

Next, we compute the variance of Ay,

Syy(A) =
k∑
i=1

y2i − kȳ2, (3.9)

computed in Listing 3.7, lines 45 and 46. From here we can compare the variance of Ax to

the variance of Ay to give us R,

R(A) = β̂(A)

√
Sxx
Syy

. (3.10)

This is computed in line 45 of Listing 3.7.
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Finally we can use R to compute the R2 value. The R2 value provides an estimate of

how well the linear model fits the data. The R2 value is given as

R2(A) =

(
β̂(A)

√
Sxx
Syy

)2

, (3.11)

where R2(A) provides us with an unsigned quantity which expresses how well the linear

model fits the data set. The R2 equation is computed on line 48 of Listing 3.7.

1 struct LinearModel{
2

3 double vBetaHat; //Slope of the regression line.
4 double vAlphaHat; //Y-Intercept
5 double vSxx; // Standard deviation x
6 double vSyy; // Standard deviation y
7 double vRSquared; //R^2 value
8 double vRVal; //R value
9

10 struct PointF vMeanXY; //The mean of the x,y data.
11 double vSumXY; //Sum xy
12 double vSumXSquared; //Sum x^2
13 double vSumYSquared; //Sum y^2
14

15 double vMinX; //Min x range
16 double vMaxX; //Max x range
17

18 };

Listing 3.5: Structure for a Linear Model.

1 struct PointF{
2 double x; //The x coordinate of the ordered pair.
3 double y; //The y coordinate of the ordered pair.
4 };

Listing 3.6: Structure for an (x,y) ordered pair.

1 __kernel void calculate_least_squares_regression(
2 __global struct LinearModel* aDst ,
3 __global struct PointF* aData ,
4 unsigned long aDataSize ,
5 unsigned long aFirst ,
6 unsigned long aLast){
7

8 // Initialize the return argument
9 aDst ->vSumXY = 0;

10 aDst ->vSumXSquared = 0;
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11 aDst ->vSumYSquared = 0;
12 aDst ->vBetaHat = 0;
13 aDst ->vAlphaHat = 0;
14 aDst ->vSxx = 0;
15 aDst ->vSyy = 0;
16 aDst ->vRSquared = 0;
17 aDst ->vRVal = 0;
18 aDst ->vMeanXY = {0,0};
19

20 // Performing the linear model calculations
21

22 unsigned long lSize = aLast -aFirst +1;
23

24 for(unsigned long i = aFirst; i < aLast +1; i++){
25 aDst ->vMeanXY.x += aData[i].x/( double)lSize;
26 aDst ->vMeanXY.y += aData[i].y/( double)lSize;
27 aDst ->vSumXY = aDst ->vSumXY
28 + (aData[i].x*aData[i].y);
29 aDst ->vSumXSquared = aDst ->vSumXSquared
30 + (aData[i].x*aData[i].x);
31 aDst ->vSumYSquared = aDst ->vSumYSquared
32 + (aData[i].y*aData[i].y);
33

34 }
35

36

37 aDst ->vBetaHat = (aDst ->vSumXY
38 - (lSize*aDst ->vMeanXY.x*aDst ->vMeanXY.y))
39 /(aDst ->vSumXSquared
40 - (lSize*aDst ->vMeanXY.x*aDst ->vMeanXY.x));
41 aDst ->vAlphaHat = aDst ->vMeanXY.y
42 - (aDst ->vBetaHat*aDst ->vMeanXY.x);
43 aDst ->vSxx = aDst ->vSumXSquared
44 - (lSize*aDst ->vMeanXY.x*aDst ->vMeanXY.x);
45 aDst ->vSyy = aDst ->vSumYSquared
46 - (lSize*aDst ->vMeanXY.y*aDst ->vMeanXY.y);
47 aDst ->vRVal = aDst ->vBetaHat*sqrt(aDst ->vSxx/aDst ->vSyy);
48 aDst ->vRSquared = aDst ->vRVal*aDst ->vRVal;
49

50

51 aDst ->vMinX = aData[aFirst ].x;
52 aDst ->vMaxX = aData[aLast].x;
53

54 }

Listing 3.7: Function for computing the linear model of a set of ordered pairs.
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3.2 Defining H and D

In this section, we will be discussing the procedure for processing the power-law fittings

for h and D. Here we will consider the power-law fittings generated by the WTMM

method from some image M (Chapter 4.1, Definition 1), where M is a real valued m by n

matrix. The output of the power-law fittings of the 2D WTMM will be two sets of sets,

which are called h and D.

One can consider h and D as sets of sets of xy coordinates. Each of these sets of sets

are indexed by their Q-value, which represents the statistical order moment of the

particular set of of ordered pairs. More specifically, Q = {q1, q2, ..., qk} is a finite subset of

the real numbers. For this analysis, the set of q-values used is

Q = {−2,−1.5,−1,−0.8,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.5, 1.6, 1.8, 2, 2.5, 3, 3.5, 4, 5}. (3.12)

We will call the function that generates the set of h curves h : M,Q→ {R2,R2, ...,R2},

where |h(M, q = r)| = k, for k ∈ N, r ∈ Q. In other words,

h(M, q = r) = {{x1, y1}, {x2, y2}, ..., {xk, yk}}. Further, we will call the function D that

generates the set of curves D : M,Q→ {R2,R2, ...,R2}. In other words,

D(M, q = r) = {{x1, y1}, {x2, y2}, ..., {xk, yk}} where |D(M, q = r)| = k. In the context of

this paper, one could consider a set of order pairs as defined by Listing 3.8.

1 struct PointFList{
2 struct PointF vData [50]; //The array of ordered pairs
3 unsigned long vDataSize; // Number of ordered pairs <= 50
4 };

Listing 3.8: Structure for a set of ordered pairs.

To classify the power-law fittings, we must find the linear models for all possible subsets

of the h and D charts. In code, we accomplished this by creating a list of subsets (an array

of Listing 3.9), and computing the regression lines between the first and last elements

identified by the SizeTPair from Listing 3.9. Generally for the WTMM method, these pairs
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are referred to as amin and amax. However, in this chapter will call them γ and ρ,

respectively. This is done to prevent the mathematical definitions listed in this chapter

from becoming too cumbersome.

1 struct SizeTPair{
2 unsigned long first; //Index of the first element , gamma.
3 unsigned long second; //Index of the second element , rho.
4 };

Listing 3.9: A structure for holding pairs of indices of elements.

Next we can compute the linear model for either h or D utilizing the code in Listing

3.10. This code works by passing the set of points for some index q ∈ Q. Once the linear

model is computed, the results are stored in a set of linear model data (Listing 3.11) at the

index associated with q.

1 __kernel void calc_curvedata_rl(struct RegressionList* aRL ,
2 struct LinearModel* aLM ,
3 struct SizeTPair* aBounds ,
4 unsigned long* aPairSize ,
5 struct PointFList* aData ,
6 unsigned long* aDataSize){
7

8 //The current row and column of the regression list
9 unsigned long i = get_global_id (0);

10 unsigned long j = i/(* aDataSize);
11 unsigned long k = i%(* aDataSize);
12

13 // Compute the regression of the subset range
14 calculate_least_squares_regression(aLM+i,
15 aData[k].vData ,
16 aData[k].vDataSize ,
17 aBounds[j].first ,
18 aBounds[j]. second);
19

20 //Set the values in the return variable
21 aRL[j]. vSlope[k] = aLM[i]. vBetaHat;
22 aRL[j]. vIntercept[k] = aLM[i]. vAlphaHat;
23 aRL[j]. vRSquared[k] = aLM[i]. vRSquared;
24

25 if(k==0){
26 aRL[j].vAMin = aData[k].vData[aBounds[j].first].x;
27 aRL[j].vAMax = aData[k].vData[aBounds[j]. second ].x;
28 }
29
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30

31 }

Listing 3.10: Code to compute the linear model of a subregion of points.

1 struct RegressionList{
2

3 double vAMin;
4 double vAMax;
5 double vSlope [32];
6 double vRSquared [32];
7 double vIntercept [32];
8 double vDeltaSlope [32];
9 double vDeltaRSquared [32];

10 double vDeltaIntercept [32];
11

12 };

Listing 3.11: Structure for an (x,y) ordered pair.

To define this system mathematically, we will have to discuss some of the finer details,

such as indexing D and h by q ∈ Q. We can define the collection of all h values indexed by

Q as H(M) = {h(M, q = −2), h(M, q = −1.5), ..., h(M, q = 0), h(M, q = .1), ..., h(M, q =

4), h(M, q = 5)}.1 Further, let Hq,γ≤x≤ρ(M) denote the set of subsets where each element

of h contains only the x values which fall between γ and ρ. For example, suppose we have

the set

HQ,γ≤x≤ρ(M) ={{{0, yq=−2,0}, {.01, yq=−2,1}, ..., {1, yq=−2,100}},

{{0, yq=−1.5,0}, {.01, yq=−1.5,1}, ..., {1, yq=−1.5,100}},

...,

{{0, yq=5,0}, {.01, yq=5,1}, ..., {1, yq=5,100}}}.

1While h and D have similar mathematical representations here, they represent entirely different physical
phenomena.
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Then

HQ,.5≤x≤.75(M) ={{{.50, yq=−2,50}, {.51, yq=−2,51}, ..., {.75, yq=−2,75}},

{{.50, yq=−1.5,50}, {.51, yq=−1.5,51}, ..., {.75, yq=−1.5,75}},

...,

{{.50, yq=5,50}, {.51, yq=5,51}, ..., {.75, yq=5,75}}},

and

H(q=−2),.5≤x≤.75(M) ={{.50, yq=−2,50}, {.51, yq=−2,51}, ..., {.75, yq=−2,75}}.

Note that in this context, the second indexing number tells us what the element id is for

the particular member. For example, yq=5,50 informs us that this is the 50th element of

subset corresponding to q = 5.

Similar to the collection of h values, we can define the collection of all D indexed by the

set Q as D = {D(M, q = −2), D(M, q = −1.5), ..., D(M, q = 0), D(M, q = .1), ..., D(M, q =

4), D(M, q = 5)}. Additionally, let Dq,γ≤x≤ρ denote the set of subsets where each element of

D contains only the x values which fall between γ and ρ. These definitions provide us with

the mathematical framework needed to build up the mathematical model used in the

Automated WTMM (AWTMM) method. In the following sections, we will discuss the

mathematical foundation used to construct this model.

3.3 Fitness Parameters

The goal of any fitness function is to select the optimal solution from a set of potential

solutions. In the case of this analysis, we desire to find the value of H, h(M, q = 0), which

best describes the rougness of M. This procedure, when performed by a human agent (HA),

involves the selection of a region based on how the h and D curves behave. We chose the

parameters listed later in this section as they best relate to the scientific interpretation of

those characteristics the HA looked for while manually fitting the curves.
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The first step the HA takes in isolating a region is finding a subregion where h0 is

relatively linear. Then the HA checks to make sure that the slope of h0 (Hurst exponent)

and D0 (fractal dimension) are reasonable values, e.g., ∼ 0 < β̂(Hq=0,γ≤x≤ρ(M)) <∼ 1 and

∼ 1.7 < β̂(Dq=0,γ≤x≤ρ(M)) ∼ 2.3, respectively. Next, the HA verifies that all of

Hq=0,γ≤x≤ρ(M) are roughly linear. We will represent this set as RQ,γ≤x≤ρ(M), where

RQ,γ≤x≤ρ(M) = {R2(H(q=−2),γ≤x≤ρ(M)), R2(H(q=−1.5),γ≤x≤ρ(M)),

...,

R2(H(q=0),γ≤x≤ρ(M)), R2(H(q=.1,γ≤x≤ρ)(M)),

...,

R2(H(q=4),γ≤x≤ρ(M)), R2(H(q=5),γ≤x≤ρ(M))},

(3.13)

where R2 is from Equation 3.11. The HA inspects these slopes, paying the most attention

to values closer to q = 0. In other words, the HA checks to ensure that

µw(Rq=0,γ≤x≤ρ(M),W ) (Equation 3.3) is high. To simulate this, we assigned weights (W )

to each curve. Let the set of weights (W ), which are indexed by Q, be defined as

W = {wq=−2, wq=−1.5, ..., wq=0, wq=0.1, ..., wq=4, wq=5}. (3.14)

An example set of weights could be

W = {0.1, 0.5, 1, 1.8, 2.6, 3, 4, 5, 7, 9, 10, 9, 8, 7, 6, 5, 4.6, 4.2, 3.8, 3.4, 3, 2.5, 2,

1.83, 1.66, 1.33, 1, 0.5, 0.2, 0.2, 0.2, 0.2}.

The final thing the HA checks is that all of the slopes of RQ,γ≤x≤ρ(M) are roughly the

same, again lending more weight to the q-values closer to q0. This was done to reduce the

chance of misclassifying a multi-fractal signal. We will call this set of slopes
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MQ,γ≤x≤ρ(M),2 where

MQ,γ≤x≤ρ(M) = {β̂(H(q=−2),γ≤x≤ρ(M)), β̂(H(q=−1.5),γ≤x≤ρ(M)),

...,

β̂(H(q=0),γ≤x≤ρ(M)), β̂(H(q=.1,γ≤x≤ρ)(M)),

...,

β̂(H(q=4),γ≤x≤ρ(M)), β̂(H(q=5),γ≤x≤ρ(M))},

(3.15)

where β̂ is from Equation 3.7. In other words, we want to ensure that the weighted

standard deviation of this set of slopes, σw(MQ,γ≤x≤ρ(M),W ) (Equation 3.4), is small.

3.4 Fitness Function

Now that we’ve established where the fitness parameters originated from, we can

combine these variables into a single equation, one that will yield the optimal region where

γ and ρ best match the HA’s selection. This fitness score should be high when it is closer

to the HA selection. Further, this selection procedure operates under the assumption that

there are multiple sufficient answers, all of which will yield similar values, but that there is

one best answer.

This fitness function should maximize Rq=0,γ≤x≤ρ(M) (Equation 3.13) and

µw(RQ,γ≤x≤ρ(M),W ) (Equation 3.3), giving equal priority to both of these values.

Therefore, let Re be the scaled Euclidean distance between these two values, where

Re =
1√
2

√
(Rq=0,γ≤x≤ρ(M))2 + (µw(RQ,γ≤x≤ρ(M),W ))2. (3.16)

Next we scale β̂(Hq=0,γ≤x≤ρ(M)) (Equation 3.7), β̂(Dq=0,γ≤x≤ρ(M)) and

σw(MQ,γ≤x≤ρ(M),W ) (Equation 3.4) between 0 and 1 using the scaling function,

scale(x, xmin, xmax) =
x− xmin

xmax − xmin
. (3.17)

The scale function is defined in code in Listing 3.12.

2Note that this is not the sameM as used in Chapter 2.
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1 double scale_value(double aVal , double aMin , double aMax){
2 return (aVal -aMin)/(aMax -aMin);
3 }

Listing 3.12: The scale function.

We compute these scaled values as

Hs = scale(β̂(Hq=0,γ≤x≤ρ(M)), hmin, hmax), (3.18)

Ds = scale(β̂(Dq=0,γ≤x≤ρ(M)), dmin, dmax), (3.19)

and

Ss = scale(σw(MQ,γ≤x≤ρ(M),W )), smin, smax), (3.20)

where hmin and hmax are the minimum and maximum Hurst exponent, dmin and dmax are

the minimum and maximum fractal dimension, and smin and smax are the minimum and

maximum weighted standard deviations for the slopes of Hq=0,γ≤x≤ρ. These three scaled

equations are defined in lines 28-36 of Listing 3.15.

It is important to observe that for Hs, Ds, and Ss, any value which falls between 0 and

1 is just as valid as any other value which falls between 0 and 1. For example, Hs = 0.5 is

just as valid as Hs = 0.25. It is only when we arrive at values outside of the range [0, 1]

that we would like to penalize the fitness. Therefore, we will define a function that fixes

this fitness so that any valid value will be 1, and penalize the fitness otherwise. Let fix(x)

be defined as

fix(x) =


x : x < 0

1 : 0 ≤ x ≤ 1

1− x : x > 1

. (3.21)

This function is defined as ‘calc_fit’ in Listing 3.13.

1 double calc_fit(double aVal , double aMin , double aMax){
2

3 double lVal = scale_value(aVal ,aMin ,aMax);
4 double lRet = 0;
5

6 if(lVal > 1){

32



7 lRet = 1-lVal;
8 } else if (lVal < 0){
9 lRet = lVal;

10 } else {
11 lRet = 1;
12 }
13

14 return lRet;
15 }

Listing 3.13: Function for computing the fixed fitness.

Finally, let us combine and scale these 5 variables together to form the scaled fitness

function. This scaled fitness function is defined in Listing 3.15, line 38 and mathematically

as,

fitγ≤x≤ρ(M,G) =
Re +Hs +Ds + Ss

4
, (3.22)

where G is the set of weights and scaling parameters:

G = {W, {hmin, hmax}, {dmin, dmax}, {smin, smax}}. (3.23)

Now that we can compute the fitness of a particular γ and ρ, we can extend this

computation across the set of all valid permutations of γ and ρ to find the optimal subset.

Let the set of all fitness functions for all permutations of γ and ρ be defined as

V = {fitγ≤x≤ρ(M,G)|{γ, ρ} ∈ X × X|ρ− γ ≥ 1}, (3.24)

where X is set generated by the function

g(x0, k, dx) = {x0 + (dx)0, x0 + (dx)1, x0 + (dx)2, ..., x0 + (dx)(k − 1), x0 + (dx)k} and

X = g(0, 100, .1). Further, let the elements of V be indexed such that vn ∈ V and n is the

index of the permutation for {γ′, ρ′}n ∈ X × X .

To find the optimal element of V , we choose the ith element from V such that

vi ≥ vj ∀ vj ∈ V and let vmax(M,G) = (fitγ≤x≤ρ(M,G))i represent the element with the

greatest fitness. This operation would be performed by sorting a set of classified curve data

(Listing 3.16) by the fitness. Further, the Hurst exponent and fractal dimension for M are
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β̂(Hq=0,γ′≤x≤ρ′(M)) and β̂(Dq=0,γ′≤x≤ρ′(M)) respectively. To classify the group that the

Hurst exponent falls into, we use the classification function

hgroup(x, f) =



B x < 0.45, f ≥ τ

Y .45 ≤ x ≤ .55, f ≥ τ

R x > .55, f ≥ τ

N f < τ

, (3.25)

where f is the fitness of the classifier and τ is global minimum valid fitness threshold. 3

For this research, B, Y , R, and N refer to the classification groups H < 0.45,

0.45 ≤ H ≤ 0.55, H > 0.55, and no-scaling, respectively. Historically, these groups were

color coded with the colors: Blue, Yellow, Red, and Gray. However, for this research, the

color green is often used to represent the Y group. This is done because images contain a

green channel instead of a yellow channel. To represent the green pixels as yellow requires

additional image processing. For further details on these groups, see Chapter 2. For

example, hgroup(β̂(Hq=0,γ′≤x≤ρ′(M)) = .35, vmax ≥ τ) is classified as group B. Likewise,

hgroup(β̂(Hq=0,γ′≤x≤ρ′(M)) = .35, vmax < τ) is classified as group N . Note that this is a

slight abuse of the notation that we laid out above, but this serves to illustrate the

classification system. The code definition for hgroup is given as a combination of Listing

3.14 and Listing 3.15, lines 77-83.

1 char classify_h_group(double aHValue){
2

3 char lRet = 0x00;
4

5 if(aHValue > .55){
6 lRet = ’R’;
7 } else if (aHValue < .45){
8 lRet = ’B’;
9 } else {

10 lRet = ’Y’;
11 }

3For this paper we chose τ = .75, which represents the cutoff where any one of the fitness parameters
resulted in a value such that fit(x) = 0.
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12

13 return lRet;
14

15 }

Listing 3.14: Function for classifying hgroup.

1 void classify_curvedata(__global struct CurveData* aDst ,
2 double aMinWeightedR2 ,
3 double aMinHValue ,
4 double aMaxHValue ,
5 double aMinDValue ,
6 double aMaxDValue ,
7 double aThreshWeightedH){
8

9 // Initialize our return values
10 bool lSmallDelta = false;
11 bool lBadH = false;
12 bool lBadHStdev = false;
13 bool lBadD = false;
14 bool lNoScaling = false;
15 bool lBadR2 = false;
16 bool lBadWR2 = false;
17 aDst ->vSuitable = true;
18

19

20 for(int i = 0; i < 5; i++){
21 aDst ->vComment[i] = ’-’;
22 }
23 aDst ->vComment [5] = 0;
24

25 // Compute the fitness of the curve
26 double lFitCalc = sqrt((aDst ->vR2Value*aDst ->vR2Value)
27 +(aDst ->vWeightedR2*aDst ->vWeightedR2))/1.414213562;
28 double lScaleH = calc_fit(aDst ->vHValue ,
29 aMinHValue ,
30 aMaxHValue);
31 double lScaleD = calc_fit(aDst ->vDValue ,
32 aMinDValue ,
33 aMaxDValue);
34 double lScaleWSDH = calc_fit(aDst ->vStdevWeightedH ,
35 0,
36 aThreshWeightedH);
37

38 aDst ->vFitness = (lScaleH+lFitCalc+lScaleD+lScaleWSDH)/(4.0);
39

40

41 //Is the h-value suitable?
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42 if(aDst ->vHValue < aMinHValue || aDst ->vHValue > aMaxHValue){
43

44 aDst ->vSuitable = false;
45 aDst ->vComment [2]=’H’;
46

47 }
48

49 //Is the weigthed standarad deviation of h suitable?
50 if(aDst ->vStdevWeightedH > aThreshWeightedH){
51 aDst ->vSuitable = false;
52 aDst ->vComment [3]=’S’;
53 }
54

55 //Is our D-value suitable?
56 if(aDst ->vDValue < aMinDValue || aDst ->vDValue > aMaxDValue){
57 aDst ->vSuitable = false;
58 aDst ->vComment [4]=’D’;
59 }
60

61 //Is our R^2 value suitalbe?
62 if(aDst ->vR2Value < aMinWeightedR2){
63 aDst ->vSuitable = false;
64 aDst ->vComment [0]=’R’;
65 }
66

67 //Is our weighted R^2 value suitable?
68 if(aDst ->vWeightedR2 < aMinWeightedR2){
69

70 aDst ->vSuitable = false;
71 aDst ->vComment [1]=’W’;
72 }
73

74 //Were any of the suitablity conditions not met?
75 //If so, classify as No scaling (N)
76 if(!aDst ->vSuitable){
77 aDst ->vGroup = ’N’;
78

79 // Otherwise classify the h-value
80 } else {
81 aDst ->vGroup = classify_h_group(aDst ->vHValue);
82 }
83

84 }

Listing 3.15: Function for classifying power-law fittings

1 struct CurveData{
2 double vHValue; //h(0,a)
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3 double vDValue; //D(0,a)
4 double vR2Value; //How well the linear model fit
5

6 double vAMin; //gamma for h(q,a), D(q,a) curves
7 double vAMax; //rho for h(q,a), D(q,a) curves
8

9 double vFitness; //The fitness of the curve
10

11 char vGroup; //R,Y,B,N
12 char vComment [100]; //No scaling reason
13

14 double vWeightedDelta; //The weigthed delta
15 double vWeightedH; // Weighted h(0,a)
16 double vWeightedD; // Weighted D(0,a)
17 double vWeightedR2; //Fit of weighted linear model
18 double vAvgDelta; // Average data spread
19 double vAvgH; //What is the average h-value
20 double vAvgD; //What is the average D-value
21 double vAvgR2; //What is the average R^2
22

23 double vStdevWeightedDelta; //stdev of the weighted delta
24 double vStdevWeightedH; //stdev of the weighted h(0,a)
25 double vStdevWeightedD; //stdev of the weighted D(0,a)
26 double vStdevWeightedR2; //stdev of the weighted D(0,a)
27 double vStdevDelta; // stdev of the weighted linear fit
28 double vStdevH; //stdev of the average h-value
29 double vStdevD; //stdev of the average D-value
30 double vStdevR2; //stdev of average R^2
31

32 bool vSuitable; //Flag for vaild curvedata
33

34 };

Listing 3.16: Structure for contaning classified power-law curve.

3.5 AWTMM Method Complexity and Design Choices

The complexity of the AWTMM method algorithm is at worst O(n2), based on the

number of subsets used to compute the regression lines. However, given the embarrassingly

parallelizable nature of the data, each regression line is independent of the others and can

be computed on a different thread. Given enough GPU threads, all of the regression lines

could be computed simultaneously for a given image subregion. One of the improvements

to the algorithm we implemented early on was to generate a list of all valid subsets. This
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list was then referenced in each run of the AWTMM algorithm, allowing us to save

computation time while computing the subsets of the regression lines. Precomputing the

subsets instead of running the subsets in a double for-loop, allowed us to reduce the coding

complexity of the algorithm. The most operationally complex process of the AWTMM

algorithm is computing the regression line for each of the subsets of the h and D curves.

Each of these algorithms (See Chapter 2) used in computing the regression lines have a

complexity of O(n). The final operation in the AWTMM, sorting, has a complexity of

O(n log(n)).

Before we implemented the fitness function, we used a binary decision tree to determine

if the particular subregion was valid or not. Inside this loop, we also performed a check to

see if the particular graph subregion had the greatest weighted R2 value. The graph

subregion with the greatest weighted R2 which was still valid was used to classify the image

subregion. If no such valid subregion existed, then the image subregion was classified as N

(no-scaling). The disadvantage of this classification method is that it only provided

information on the passing graph subregion. One could not ascertain how ‘close’ a graph

subregion was to passing, only that it failed for one or more reasons.

While binary tree classification is fast and efficient, it lacked the overall flexibility we

needed to classify the data. Additionally, this new classification schema could allow us to

use a more robust set of parameters to classify the graph subregion. For instance, we could

include variables like the standard deviation of the slopes of the h graphs. Using

parameters that a human might not consider could potentially give us a more robust way

of classifying subregions. This change took the number of operations needed to classify the

calculated graph subregion (see Listing 3.15) from around 15 operations to around 30

operations.4 Since the code was ported to OpenCL and distributed across multiple GPU

cores, the overall run time of the algorithm decreased instead of increased. As it stands,

the AWTMM is a lean algorithm. There are few places left for optimization. The

4These are C operations and not assembly operations.
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AWTMM algorithm has reached a high level of efficiency, as it was redesigned from the

ground up with performance and parallelization as the highest priorities. However, since

the AWTMM was written in OpenCL, we could flash this algorithm to an FPGA, which

would allow it to run at very near the speed of the logic gates.

We chose to utilize OpenCL so that we could take advantage of both GPUs and CPUs

of different architectures. For instance, we were able to successfully compile and run the

AWTMM method on an ARM processor and utilize both its GPU and CPU cores. This

flexibility to move between architectures and platforms allows us to be agile with regard to

our changing hardware needs.

The Automated Sliding Window AWTMM (ASWAWTMM) is written in C++ and

makes calls to the OpenCL code, passing the data to the CPU. In addition to OpenCL,

ASWAWTMM utilizes OpenMPI to start a supervisor thread that manages a collection of

worker nodes. We chose to utilize OpenMPI for a few reasons. OpenMPI is a mature, easy

to implement, fast, open-source software package, and comes highly recommended by

experts in the field of high-performance computing. The implementation of the sliding

window is discussed in Chapter 5.

After the supervisor thread launches, the worker nodes request subregions of the image

and use the WTMM method to compute the h and D curves. The thread then passes the

results of these computations back to the supervisor thread. After all of the regions are

computed, the data for these curves are then passed to the AWTMM algorithm via

OpenCL calls, where they are classified into one of the four groups (B, Y, R, or N). Since

OpenMPI handles the message passing and the AWTMM algorithm computations are

performed using OpenCL, there are only a handful of areas left to optimize. Steps could be

taken to slim down the codebase and the dependencies ASWAWTMM uses. One such step

would be the removal of vestigial code. Since the ASWAWTMM was developed as a single

thread application, there still exist subroutines that were designed for this environment.
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Eliminating these old pieces of code would simplify the code base and make it easier to

maintain and upgrade.

In the original ASWAWTMM, we did not implement any form of multi-threading. This

meant that each mammogram was computed utilizing only a single thread. That is, each

image subregion was computed serially. At the time, the WTMM method was being

utilized as a library, known as libxsmurf, to facilitate shared memory between the AWTMM

software package and the WTMM. However, libxsmurf made heavy use of global variables,

meaning that it would be challenging to implement a thread-safe version of the library.5

To work around the thread-safety issue, we decided to detach libxsmurf and opted

instead to pipe commands to instances of xsmurf controlled by worker nodes. It is

important to note that xsmurf is an older piece of software, designed to run on computers

from the 1990s. The xsmurf software makes heavy use of disk caching to prevent

overflowing system memory. To get around the bottlenecks associated with reading and

writing data to disk drives, we decided to make a RAM disk to write all temporary files

that xsmurf created during its runs. Further, we stored the h and D curves the WTMM

method generated to the RAM disk. In this way, we create a simple and relatively fast IPC

(inter-process communication) system. This system utilized code that already existed in

both the xsmurf and AWTMM software packages, making it a nearly drop-in place solution.

The speedup curve of the xsmurf+AWTMM software package looks linear. That is, the

tasks can be evenly divided between multiple threads, all of which will process tasks at

around the same rate that a single CPU would process a task. Some efficiency is lost due

to message passing, reading data, and data storage, meaning that a perfect linear speedup

curve is not possible at this time. That is, the speedup is highly dependent on

supercomputer cluster architecture. It is conceivable that if the WTMM method can be

5The xsmurf software package was originally designed as a standalone signal processing software package.
We converted it into a library specifically to make function calls directly from the library instead of piping
command to xsmurf.
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rewritten to be more efficient, then the whole process may be able to be computed in the

CPU cache. If this were the case, then we may observe a super-linear speedup curve.
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CHAPTER 4

MASK ANALYSIS

4.1 Mask Properties

In Chapters 2 and 3, we informally defined the idea of a digital image. In this chapter,

we will formally define this concept as well as some of the operations that can be

performed on digital images.1 A digital image (image for short) can be represented as a

matrix whose elements are in [0..1]. More formally,

Definition 1 A digital image B is an m by n matrix whose elements Bi,j ∈ [0..1] for all

1 ≤ i ≤ m and 1 ≤ j ≤ n. These Bi,j values correspond to pixel intensities.

The processing capabilities of the AWTMM allowed us to create a fine grid of both

H-values and their associated H-groups. This schema allowed us to not only investigate the

counts of the H-groups, but also to investigate the geometry of clusters of H-groups. In

particular, we examined the groups of tissue classified as dense and disrupted, that is

H > 0.55 and 0.45 ≤ H ≤ 0.55, respectively. In other words, we segmented the image by

H-group clusters, where segmentation in this context is defined as:

Definition 2 Segmentation is the process of partitioning a digital image into multiple

disjoint sets of pixels.

An effective way of segmenting an image is achieved by creating what is known as an image

mask. An image mask defines which pixels in the image are considered the foreground.

Mathematically,

Definition 3 A mask M is an m by n matrix whose elements Mi,j ∈ {0, 1} for all

1 ≤ i ≤ m and 1 ≤ j ≤ n.

1Many concepts and definitions laid out in this chapter were taken from [59]. Many other concepts here
were derived independently, though sources to prior work are listed for the convenience of the reader.
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A mask can be created from an existing image through the use of a thresholding

function. A thresholding function is any function T where T : [0..1]→ {0, 1}. Suppose we

have a thresholding function

Tmin,max(x) =


1 min ≤ x ≤ max

0 Otherwise
, (4.1)

where min and max are the upper and lower bounds of the thresholding function.2 If we

apply T0.0,0.45, T0.45,0.55, and T0.55,1.0 to the matrix

B =



0.1 0.3 0.5 0.3 0.1

0.1 0.5 0.8 0.5 0.1

0.1 0.5 0.8 0.5 0.1

0.1 0.5 0.8 0.5 0.1

0.1 0.3 0.5 0.3 0.1


,

then the results will be

T0.0,0.45(B) =



1 1 0 1 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 1 0 1 1


, T0.45,0.55(B) =



0 0 1 0 0

0 1 0 1 0

0 1 0 1 0

0 1 0 1 0

0 0 1 0 0


, and

T0.55,1.0(B) =



0 0 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 0 0


.

For this paper, we built our masks by categorizing the data generated by the AWTMM.

In particular, the thresholding function we used is given by Equation 3.25, where the

2Other examples of thresholding in digital images can be found in [60–62]
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different groups (B, Y, R, and N) represent the different masks. An example of this

masking process can be seen in Figure 4.1.

Figure 4.1: An example of generating masks from a set of H-values.
The top left image depicts the H-values (as grayscale pixels) computed for a mammogram.
The top right image depicts the regions with a valid fitness. The white area denotes regions
with valid fitness while the black area denotes regions with invalid fitness. The gray area
represents regions which were not analyzed and are not being fed into the hgroup function

(Equation 3.25). The color mammogram is a graphical representation of the classified
groups, with blue, green, red, and gray being classified as B,Y,R, and N, respectively. The
bottom row of images represent the masks generated for each of the groups B, Y, R, and N,

from left to right.

44



4.2 Defining Clusters

Now that we have discussed how we obtain masks from an image, we can compute

useful information from the elements contained in the mask. In the case of this analysis, we

define a cluster as a set of 4-connected pixels which are disjoint from all other sets of

4-connected pixels. Here 4-connectivity refers to the number of adjacent, or neighboring

mask elements a particular mask element has. Consider matrix Z,

Z =



0 0 0 0 0

0 1 1 1 0

0 1 1 1 0

0 1 1 1 0

0 0 0 0 0


.

We say that z2,2 has 2 neighbors and that z3,3 has 4 neighbors. Mathematically, we define a

cluster as the union of its boundary and interior. The interior of a cluster is defined as

Definition 4 Let ki,j ∈ K where K is a mask. If ki−1,j + ki,j−1 + ki,j+1 + ki+1,j < 4, then

(i, j) is in the boundary of the mask. For the cases where ki−1,j, ki,j−1, ki,j+1, or ki+1,j fall

outside of the mask, then their values are considered to be 0. If (i, j) is not in the

boundary, then it is in the interior.

Further, let the boundary be defined as

Definition 5 Denote the boundary of K as ∂(K), with |∂(K)| = β elements. The

boundary of K consists of the points α1, α2, α3, ..., αβ with fwer than 4 neighbors, arranged

in clockwise order as the boundary is traversed.

The next property, perimeter, can be defined using the topological ideas of the digital

plane and boundary.3 For this research, we obtained the boundary of the object through a

modified digital plane topology. For this modification, we linearly scaled the image by a

3Note that using the topological definition to find the interior and boundary of digital objects is not new
and can be found in such references as [63,64].

45



Figure 4.2: Scaling a pixel up by a factor of 3 in both the x and y directions.

Figure 4.3: Extracting the boundary from a image mask.

factor of 3 in both the x and y directions. This transformed single pixels into blocks of 9

pixels, as shown in Figure 4.2. From here, we identified all pixels which had fewer than 4

neighbors. These pixels were considered our boundary points. In this way, we were able to

create a list of boundary points for each shape in the mask. Internal boundaries were

identified and removed by computing whether any of the boundary points of a polygon

were contained in another polygon. A visualization of this procedure can be seen in Figure

4.3. The remaining set of boundary points were scaled back down by a factor of 3 in both

the x and y directions, where they were utilized for the geometric equations. Further, the

geometric properties (i.e., area, perimeter, diameter, etc.) of the scaled boundary were also

assessed.

Up to this point, masks have been considered for images with only a single object in the

foreground and objects which do not contain any internal boundaries. However, sometimes

it is necessary to create a mask of an image which does not adhere to the above

specifications.
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Definition 6 Consider the polygon Q, where all the vertices of Q lie inside a polygon P

and the boundary of Q does not intersect the boundary of P. Then the polygon Q is said to

be an internal boundary of P.

Figure 4.4a depicts an object with an internal boundary (in orange). While internal

boundaries can provide important information, we only considered the geometric properties

of external boundaries for this research. Henceforth all clusters considered will be

non-internal boundaries, and all masks considered will be mathematically equivalent to a

filled in disk. This conversion process is depicted in Figure 4.4 with Figure 4.4b

representing the filled in mask of Figure 4.4a [59].

(a) (b)

Figure 4.4: Example of an internal boundary.
An illustration of a mask with an internal boundary, alongside the same mask drawn

topologically as a disk. (a) A circle with an internal boundary (orange) and a boundary
(black). (b) The shape from (a) with the internal boundary filled in.

Suppose the mask K of an image B contains multiple disjoint boundaries

K = {∂(K)1, ∂(K)2, ..., ∂(K)r}. Each of these disjoint boundaries represent a sub-mask of

the mask K. Each sub-mask can be treated as its own mask in regards to any of the

computations laid out in this chapter (A, P , etc ...).
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4.3 Calculating Shape Properties

In the context of this paper, a mask provides a simplified means of computing

geometric properties of the object contained in the original image. That is, we have the

ability to compute dimensional properties which the objects contained in the mask exhibit.

Most of the properties we can extract from these clusters are derived from basic geometric

properties such as area (A), perimeter (P ), and diameter (D).

4.3.1 Area

Since pixel area is the most straightforward of these computations, we will begin with

this feature. Suppose K is a mask with m rows and n columns. The pixel area function

Apx : K → R is defined as

Apx(K) =
m∑
i=1

n∑
j=1

(ki,j), where ki,j ∈ K and ki,j = 1 or 0. (4.2)

In other words, Apx is the sum of all elements of the matrix K.4

In addition to the pixel area (Apx), we can also compute the area of the boundary

polygon. The area of the polygon is the absolute value of the sum of the cross products

divided by two of the boundary points [65], or

A =

∣∣∣∣β−1∑
i=1

(αi × αi+1) + (αβ × α1)

∣∣∣∣
2

, (4.3)

where αi ∈ ∂(K) and i = 1, 2, ..., β.

The convex area (Acvx), is calculated in a similar way to polygon area, but instead

utilizes the vertices associated with the convex hull, i.e.

Acvx =

∣∣∣∣β−1∑
i=1

(αi × αi+1) + (αβ × α1)

∣∣∣∣
2

, (4.4)

where αi ∈ ∂cvx(K) and i = 1, 2, ..., β.

4While area of a digital object is a trivial measure, more detail on this particular metric can be found
in [60–62]
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The last area measurement we can compute is the area of the minimal bounding

rectangle, Ambr. The minimal bounding rectangle for a cluster in matrix K, mbr(K), is

defined as the smallest possible rectangle that contains all of the boundary points of the

cluster in K. Since the minimal bounding rectangle is a polygon, we compute Ambr as

Ambr = A(mbr(K)). (4.5)

4.3.2 Perimeter

To compute the perimeter of the cluster, we must consider the ‘length’ of the boundary.

However, simply counting up the number of elements in the boundary would not

necessarily yield an accurate perimeter. This is because if two boundary points are

diagonal from each other, the distance between their centroids is
√

2 ≈ 1.41, whereas the

distance between centroids of elements which share a an edge is 1. Take for example Figure

4.5 [59]. The number of pixels which make up the boundary is 14. However, the sum of the

distance between all of the centroids is around 17.314. For that reason, we will define the

perimeter as the sum of the distance between centroids instead of the raw count of

boundary elements.5 More precisely, let the boundary elements of a mask K correspond

to vertices of the mask. Let αi ∈ ∂(K), where i = 1, 2, ..., β. The perimeter of K, where

P : K → R, can be computed as

P (K) =

β−1∑
i=1

d(αi, α(i+1)) + d(αβ, α1), (4.6)

where d is the standard Euclidean distance function d : R2 × R2 → R,

d((x1, x2), (y1, y2)) =
√

(x2 − x1)2 + (y2 − y1)2. (4.7)

In addition to the perimeter, we can also examine the convex perimeter of the cluster

(Pcvx). The convex boundary can give us a sense of irregularity in boundary. That is, if the

boundary is substantially longer then the convex perimeter, this means that the perimeter

may be irregular. To define the convex perimeter, an understanding of convexity is needed.

5More detail on this particular metric can be found in [60–62]
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Figure 4.5: Example of polygon perimeter.
An illustration of the boundary of a mask in a matrix. The elements of the mask K are

highlighted in gray and the boundary of K is marked with the black dots and connected by
the heavy black lines. The perimeter is measured as 17.314 pixels, with 14 elements in the

boundary [59].

Definition 7 A boundary is said to be convex if every straight line segment between two

vertices is on the boundary or in the interior.

The convex hull is the smallest convex boundary in the set of all convex boundaries.

Mathematically,

Definition 8 A boundary is said to be the convex hull (∂cvx) of the mask K if it is the

“smallest” (i.e. has the fewest number of elements) convex boundary P such that

KcontainedbyP.

The convex hull can be found using a variety of methods; such algorithms are outlined

in [66–69]. In this paper, we utilized an algorithm similar to the Quickhull method outlined

in Barber et. al. [68].

The convex perimeter is calculated in a similar way to the perimeter (Equation 4.6),

but instead utilizes the vertices associated with the convex hull, i.e.

Pcvx =

β−1∑
i=1

d(αi, αi+1) + d(αβ, α1), (4.8)

where αi ∈ ∂cvx(K) and i = 1, 2, ..., β.
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4.3.3 Diameter

The next geometric property we can examine is diameter. Since these clusters are often

irregular in shape, it is difficult to choose a single line that accurately reflects the shape’s

diameter. In the context of this paper, we will say that the diameter, D, is the distance

between the two boundary points which are furthest from each other.

In addition to the diameter, we can also examine the distance between two points on

boundary polygon with respect to the centroid. This gives us a sense of how far any one

edge is away from the centroid. We will call the longest distance that passes through the

centroid Dmax and the shortest Dmin. The line which passes between two distinct points on

the boundary polygon intersects the centroid if

0 = ς(a, b, ϕ) =


b2−a2
b1−a1 (ϕ1 − a1)− ϕ2 + a2, if b1 6= a1

−ϕ1 + a1, if b1 = a1 and b2 6= a2

, (4.9)

where a = (a1, a2), b = (b1, b2), ϕ = (ϕ1, ϕ2), a, b ∈ ∂(K), and ϕ is the centroid. Here ς is

the slope-intercept formula. The condition will only be satisfied when ϕ rests on the line

connecting a to b. This equation is used under the assumption that the mask has at least 1

element in the interior. The centroid can be computed on a mask K with m rows and n

columns. The centroid is given by the function ϕ : K → R× R defined as

ϕ(K) =

(∑m
i=1

∑n
j=1 j · ki,j

Apx(K)
,

∑m
i=1

∑n
j=1 i · ki,j

Apx(K)

)
, where ki,j ∈ K. (4.10)

Finally, we can define

Dmax(K) = max{d(a, b) : a, b ∈ ∂(K) and ς(a, b, ϕ) = 0 : ϕ is the centroid of K} (4.11)

and

Dmin(K) = min{d(a, b) : a, b ∈ ∂(K) and ς(a, b, ϕ) = 0 : ϕ is the centroid of K}. (4.12)

An illustration, taken from [59], of the above detailed geometric properties can be see in

Figure 4.6.
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Figure 4.6: Example of geometrical features.
An illustration which demonstrates several of the object’s geometrical features. The area of
24 pixels is highlighted by the gray region. D = Dmax = 6 pixels and Dmin = 3 pixels are
denoted with the red and purple dashed lines, respectively. These both pass through the
centroid, marked by the large black dot. The perimeter, measured as 17.314 pixels, is
formed by the solid black lines connected by the smaller black dots. Finally the convex
perimeter, measured as 15.307 pixels, is illustrated as the dashed teal lines connected by

the smaller black dots.

4.3.4 Corners

One last feature that we can measure is the number of corners in a boundary, C. A

corner is any element in the boundary whose neighbors are not either both horizontal, or

both vertical, in 4-connected clusters. Counting the number of corners in a cluster is useful

for understanding how flat the edges of the cluster are.

4.4 Calculating Shape Factors

While the shape properties defined in Section 4.3 can provide us valuable insight into

cluster size, they do not necessarily provide information on the overall shape of the

clusters. That is, they do not provide information on whether the cluster is spread out, if

the boundary is smooth or rough, or if the shape is more elongated or round. To gain data

on the shape of clusters, we can combine the shape properties in a variety of equations that

yield information relating to the geometric characteristics of a cluster.

The first property, circularity ratio [70], is defined as

Rcir =
4πApx
P 2

, (4.13)
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where A is area (Equation 4.2) and P is perimeter (Equation 4.6). A circularity value of

close to one suggests that the object is circular, whether values less than one suggest that

the object is ellipsoidal in nature. Its formula is derived from the perimeter and area

calculations of a circle. The one major flaw with this equation is that it may not be able to

distinguish between an elongated object with a smooth edge and a circular object with a

rough edge. An object could be approximately circular, but if it has a rough or jagged

edge, then even though the object appears circular, Rcir will have a value which is much

greater than one.

Another property, filament ratio [70], which is defined as

Rfil =
4Apx
PD

, (4.14)

where Apx is area (Equation 4.2), P is perimeter (Equation 4.6) and D is diameter

(Equation 4.9). Filament ratio quantifies how filamentary (long and thin) an object is.

Like Rcir, a value of close to one suggests that the object is circular. Values less than one

suggest that an object is filamentary or elongated in nature. Unlike the circularity ratio,

filament index is not as severely affected by jagged or rough edges.

Aspect ratio [71] is given by the equation

Rasp =
Dmin

Dmax
, (4.15)

where Dmax and Dmin are as defined in equations 4.11 and 4.12, respectively. Aspect ratio

is approximately the ratio of the shape’s width and height along its primary axes. Since

aspect ratio is the ratio between the primary axes, it provides information related to how

elongated the object is. In this respect, an ellipse and rectangle with the same bounding

region would be indistinguishable from each other. An aspect ratio of 1 would signify that

the object is less elongated, and an aspect ratio less than one indicates some form of

elongation.

53



The next shape factor we will look at is the ratio of polygon area to the convex area

(Rcvx). Ratio of area to convex area is defined as

Rcvx =
A

Acvx
, (4.16)

were A is polygon area (Equation 4.3) and Acvx is convex area (Equation 4.4). This

calculation provides information on how close to convex the cluster is. This is useful for

determining how spread out a cluster is and discriminating between an elongated object

and an object with a rough edge. If a cluster has filaments or a rough edge then, this ratio

will be closer to zero.

The ratio of area to minimal bounding rectangle area is given as

Rmbr =
Apx
Ambr

, (4.17)

where Apx is pixels area (Equation 4.2) and Ambr is the area of the minimal bounding

rectangle (Equation 4.5). Similar to Rcvx, the ratio of area to minimal bounding rectangle

area is also useful in computing how spread out an object is. Further, the Rcvx is also

useful in ascertaining how square an object is. If a cluster is close to square, the ratio will

be near 1. If a cluster is more spread out or filamentary, this ratio will be closer to 0.

The next value we will look at is the ratio of the corners to the perimeter,

Rcp =
C

P
, (4.18)

where C is the number of corners (Section 4.3.4) and P is perimeter (Equation 4.6). The

ratio of corners to perimeter gives information on how many twists and turns the perimeter

undergoes. The idea behind this metric is that if there is a high ratio of corners to

perimeter, then this means that the cluster’s boundary is constantly changing direction. If

this ratio is low, then this indicates that the cluster has long straight patches along the

boundary.

Waviness [72,73] is defined as

W =
P

Pcvx
, (4.19)
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where P is the perimeter (Equation 4.6) and Pcvx is the convex perimeter (Equation 4.8).

Waviness computes how different (e.g. a grooved boundary) the perimeter is from the

convex perimeter. Values closer to 1 indicate that the boundary is more regular and values

less than 1 indicate a potentially irregular boundary.

Image moments can provide geometric information about the objects’ area, center of

mass, etc. The p, q moment of an image is

mp,q(K) =
l∑

i=1

n∑
j=1

jpiqKi,j, (4.20)

where K is an l by n matrix and p and q are the order of the moment being

computed [74,75].

Central moments are moments that are normalized around the center of gravity of the

image. The p, q central moment is computed as

µp,q(K) =
l∑

i=1

n∑
j=1

(j − ϕ(K)y)
p(i− ϕ(K)x)

qKi,j, (4.21)

where K is an l by n matrix, and ϕ is the centroid (Equation 4.10) [74, 75] .

The second order central moments provide us with information about the object’s

orientation. If we divide these central moments (Equation 4.21) by area (m0,0),6 then we

can find information about the object independent of its size and position, given by the

following equation:

µ̄p,q =
µp,q
m0,0

. (4.22)

Utilizing the the mathematical moments and normalized moments, we can come up

with two additional equations, the normalized compactness,

Mcpt =
1

2π

m0,0

µ̄2,0 + µ̄0,2

, (4.23)

and the normalized eccentricity,

Mecc =

√
(µ̄2,0 − µ̄0,2)2 + 4µ̄2

1,1

µ̄2,0 + µ̄0,2

. (4.24)

6Note that m0,0 is equivalent to pixel area, Equation 4.2.
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These two equations are normalized versions of their counterparts given in [74]. Similar to

Rfil and Rcir, these two equations give us information on how compact or elongated the

cluster is.

4.5 Artifacts from Shape Discretization

It may not be immediately obvious, but we are faced with several challenges related to

the fact that these clusters are discrete objects. Because the clusters are discrete, we have

no way of knowing the true shape of a cluster, especially for small clusters. Suppose that

we have a cluster made up of a single element. There is no way to know if the single

element represents a square, or circle, or some other shape, and there is not enough

resolution to determine the true shape. Take for example Figure 4.7. It is impossible to

distinguish any of the clusters in the final column from each other, as they are all a single

pixel. So despite the fact that they were all generated from a different shape, as a single

element they are identical.

While it is impossible to know for sure the classification of single elements, there are

measures we can take to measure clusters as accurately as possible to help minimize

discretization artifacts. One such method is a matter of choosing how to measure the

cluster. The measure of a digital shape can be computed using either of the following

techniques. In one method, depicted in Figures 4.8a–f, the ideal shape (red) is centered

such that the northernmost, southernmost, easternmost, and westernmost points on the

shape touch the edges of pixels. This type of alignment will be referred to as an

edge-aligned perimeter. In the second approach, illustrated by Figures 4.8g–l, the

northernmost, southernmost, easternmost, and westernmost points on the ideal shapes

touch the centers of pixels. This type of alignment will be referred to as a center-aligned

perimeter. The perimeters for the shapes are then approximated by summing the

Euclidean distance (Equation 4.7) between the centers of neighboring boundary pixels, as

depicted by the black lines in Figures 4.8a–l. In all cases, the area is computed by
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure 4.7: Calibration shapes at multiple sizes.
This graphic depicts several objects being scaled down, with the left side being the images
at a high resolution and the right being the same images scaled down to a single pixel.

These images were generated by scaling down the image on the left by a factor of 2 for each
iteration. The bottom row was also rotated in addition to the scaling. One can see that the

clusters in the last column are indistinguishable from each other.

calculating the number of pixels inscribed or partially inscribed by the ideal shape.

Table 4.1 reports the percent error,

Epct =

(
Measured− Expected

Expected

)
(100%) , (4.25)

between the approximate and expected perimeter and area computations associated with

the respective figures. The edge-aligned perimeter type of measurement shown in Figures

4.8a–f has a high accuracy when measuring the area, but low accuracy for the perimeter.

This trend is opposite for the center-aligned type of measurement demonstrated in Figures

4.8g–l, with a better approximation of the perimeter and a worse approximation for the

area.
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Based on these results, it is expected that there will be some trade-offs in minimizing

the errors associated with measuring the perimeter and area of an ideal mathematically

modeled object. These figures represent the upper and lower ranges one would expect for

the area and perimeter of a circle or square which has been calculated using these methods.

It is worth noting that as the number of pixels used to approximate the circle or square

increases, the accuracy of both the perimeter and area measurements also increase.

One last measure we took in minimizing the effects of these artifacts was to compute

the geometric properties on the topological boundaries, mentioned in Section 4.2, of the

clusters. Take for example the 1 element cluster. The area, perimeter, and diameter of this

would be 1, 1, and 1, respectively. This means that our Rfil = (4)(1)
(1)(1)

= 4 and

Rcir = (4)(π)(1)
12

= 12.57. However, these values are both greater than 1. The theoretical

maximum value for both filament ratio and circularity ratio is 1; anything above this value

is undefined. This comes about because we are unable to truly calculate the perimeter and

diameter of a single pixel element. However, if we utilize the topological boundary we get

an area of 4, a perimeter of 8, and a diameter of 2.83. Now Rfil = (4)(4)
(8)(2.83)

= 0.71 and

Rcir = 4π4
82

= 0.79. One can see that utilizing the topological boundary in addition to the

boundary can help to provide additional insights into the shapes of the clusters.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: Example of shape alignment.
Two sets of circles and squares approximated at three different resolutions using the

edge-aligned perimeter and center-aligned perimeter. Edge aligned perimeters for circles
with diameter 4 (a), 6 (b), and 8(c) and squares with diameter 4 (d), 6 (e), 8 (f). Centered
aligned perimeters for circles with diameter 4 (g), 6 (h), 8 (i) and squares with length 4 (j),
6 (k), and 8 (l). The red line denotes the ideal perimeter and the black line denotes the

measured perimeter [59].
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Table 4.1: Percent error of the shapes in Figure 4.8

As the diameter increases in the edge-aligned and center-aligned perimeters, the magnitude
of percent error decreases in the perimeters and areas for the circles, and either the area or

the perimeter for the squares [59].

Shape Alignment Diameter/Length Area Perimeter
circle edge 4 -4.51% -23.13%
circle edge 6 -15.12% -18.76%
circle edge 8 3.45% -7.24%
square edge 4 0.00% -25.00%
square edge 6 0.00% -16.67%
square edge 8 0.00% -12.50%
circle center 4 67.11% 8.68%
circle center 6 30.86% 2.46%
circle center 8 11.41% 8.62%
square center 4 56.25% 0.00%
square center 6 36.11% 0.00%
square center 8 26.56% 0.00%

4.6 Calibration

A calibration was performed to assess the accuracy and reliability when segmenting

objects with known geometric properties. The comparisons were made with a circle (Figure

4.9a), a large circle, an ellipse (Figure 4.9b), and a square (Figure 4.9c). The results were

contrasted with their respective ideal mathematical models. This comparison can be seen

in Table 4.2.

(a) (b) (c)

Figure 4.9: Shapes used in the calibration process.
(a) A circle (diameter of 85). (b) An ellipse with major axis of length 83 and minor axis of

length 41. (c) A square with side length of 66 [59].
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The data in Table 4.2 was calculated using the percent error equation (Equation 4.25).

The measured dimensions and areas align well with the predicted values. The most notable

discrepancy in Table 4.2 is in regard to the perimeter. This deviation aligns well with the

discretization artifacts noted in Section 4.5.

Table 4.2: Calibration data compared to mathematical models

Calculated percent error of Figures 4.9a, 4.9b, and 4.9c measured against ideal
mathematical models [59].

Shape Area Diameter Dmax Dmin Perimeter
Circle 4.41% 2.14% 2.14% 0.00% 6.26%
Large Circle 0.17% 0.09% 0.09% -0.10% 5.42%
Ellipse 2.82% 2.87% -0.85% 0.56% 4.21%
Square 0.02% -1.58% -1.58% -0.07% -1.52%
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CHAPTER 5

ANALYSIS

5.1 Analysis Methods and Variables

For this experiment, we primarily looked at mammograms of two cohorts of patients

with biopsy proven, malignant tumors: a set of patients with ductal carcinoma in situ

(DCIS) and a set with invasive ductal carcinoma (IDC). The purpose of this analysis was

to discover if changes in the roughness of breast tissue or density fluctuations in

mammograms could be used to detect signs of the tumors before the changes became

visible in the mammograms. To perform this analysis, we utilized the mathematical tools

outlined in Chapters 2, 3, and 4.

We divided each mammogram into a grid of squares with a horizontal and vertical step

size of 32 pixels. We then constructed subregions for each grid. Each subregion in this grid

had a width and height of 360 pixels. Further, this 360× 360 pixel square had an interior

Figure 5.1: A subregion of a mammogram with a grid overlay.
This figure depicts an example of the griding used during the AWTMM analysis pipeline.

The black lines are a graphical representation of the 32× 32 pixel steps. The orange
rectangle is a graphical representation of the 360× 360 pixel subregion. The pink square

represents the 256× 256 region for calculating the final H-value.
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Visual representation of the 32 step grid.
This graphic depicts one subregion of the 32 step grid. The images are all 360× 360

mammogram subregions. The bottom row depicts the 256× 256 region used to compute
the H-value. The pixel coordinates of the upper left hand corner of the gray squares 5.2a,

5.2b, and 5.2c are (1374, 1425), (1406, 1425), and (1438, 1425), respectively.

square, placed at its center, with a width and height of 256 pixels. An example of this

setup can be seen in Figure 5.1, where the black lines represent grid lines, the orange

square represents a single 360× 360 subregion, and the pink square represents the inner

256× 256 square. Figure 5.2 illustrates how the subregions were generated, namely by

shifting the orange square in Figure 5.1 over in a given direction by 32 pixels. Figure 5.2a

shows the region outlined by the orange square in Figure 5.1, while Figures 5.2b and 5.2c

show the next two subregions to the immediate right of Figure 5.2a. The purple regions in

Figures 5.2d-5.2f show the 256× 256 square in each respective region.

The WTMM is computed on the outer 360 pixel square, while only the inner 256 region

is used to compute the H-value of the region. This is done to prevent misclassification due

to mathematical discontinuities at the edges of the 360 region.
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Figure 5.3: Visual representation of the placement of H-value in 32 pixel grid.
Here we depict the placement of the H-value for the mathematical mapping onto the

matrix corresponding to the (x, y) coordinates of the 32× 32 pixel grid.

Next let A be an m by n matrix where m is the number of vertical subregions and n is

the number of horizontal subregions. Further, the elements of the matrix A correspond to

the (x, y) coordinates of the 32× 32 pixel grid. Once the H-value has been computed for a

subregion, this value is mapped to the index of the (x, y) coordinates of the 32× 32 pixel

square at the upper left-hand corner of the 360× 360 pixel region. An example of this

mapping can be seen in Figure 5.3, where the images serve as visual representations for the

mathematical mapping onto A. The process is repeated, with each subregion being

mapped to a unique 32× 32 pixel square in the mammogram.

Now that we have an understanding of how the images were broken up into overlapping

subregions, and how the subregions were classified, we can now look into the procedure for

analyzing the H-value matrices generated from the analysis of the mammograms. To

analyze the mammograms, the first metric we examined was how the H-values of the

mammograms changed over time. We began by labeling each mammogram with a number

corresponding to the number of years from the final mammogram in the series in which the

tumor was detected. The number of participants in each time step is given in Table 5.1.

The total number of mammograms utilized in this study was 328, or 164 for the sides

which developed the tumor and another 164 for the opposite breasts. After calculating the

H-values for each of the mammograms, we performed a histogram analysis of H-values on

each mammogram in our data set. We discovered that patients’ tissue composition varied
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Table 5.1: The number of patients in each of the time groups.

t (years) -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
N 1 7 9 13 19 18 19 17 15 23 23

widely from year to year; that is, the H-values of mammograms appear to follow no

meaningful pattern. There appeared only a loose correlation between the H-value of the

mammogram from one year to the next, as can be seen in Figure 5.4. Here Figure 5.4a

depicts histograms density for fatty tissue, Figure 5.4b for disrupted tissue, and Figure 5.4c

for dense tissue. We expected that the H-values would only fluctuate slightly from year to

year and that a trend in the data would be easily identifiable, but this was not the case.

As no discernible pattern was able to be determined, we investigated whether there was

any visible pattern detectable in the aggregated data. Since breast tissue density is a risk

factor for the development of breast cancer, we decided that examining density would be

the next step. In our previous research, we were able to use the combined metric,∑
(Red Squares)∑

(Red Squares) + 0.8
∑

(Blue Squares)
, (5.1)

as a way to estimate breast density [16]. Utilizing this metric, we calculated the results of

the analysis to generate Figure 5.5a. Breast tissue generally decreases in women as they

age [2]; in Figure 5.5a we see an overarching trend where the dense tissue appears to

decrease over time. One interesting observation we made about this graph was the dip in

median breast density around t = −2 years in the side where the tumor was detected. As

this trend is not present in the opposite side, we hypothesized that this trend might be an

indication of the emergent tumor.

In addition to the density, we examined the relationship between the ratio of dense

tissue to that of disrupted tissue. We compute this ratio as

ρ(Y )1/16ρ(R)1/2

ρ(B) + ρ(Y ) + ρ(R)
, (5.2)

where ρ(B), ρ(Y ), and ρ(R) represent the histogram density of the H-values making up the

fatty tissue, disrupted tissue, and dense tissue, respectively. In previous studies
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(e.g. [16, 39] ), we have seen evidence of the relationship between both disrupted and dense

tissue and the occurrence of cancer. We hypothesized that there should be some non-linear

combination of dense and disrupted tissue which should describe this phenomenon. This

equation represents the non-linear combination of the ratios of dense and disrupted tissues

to the total breast density. We have no evidence to suggest that this equation will be useful

in other applications and may only pertain to this data set. However, it furthers the

hypothesis that both dense and disrupted tissues may be an indication of breast cancer.

The final equation we examined related to breast density. This equation was generated

from reasoning similar to the rationale that led to Equation 5.2. However, here we now are

utilizing the ratio of fatty tissue quarter scaled and multiplied by dampened dense tissue.

The equation we came up for this is given as

ρ(B)1/4ρ(Y )1/14ρ(R)1/8

(ρ(B) + ρ(Y ) + ρ(R))1/4
. (5.3)

Here we see that the median dampened tissue ratio for the opposite side has a general

declining trend, whereas the tumor side appears to be more chaotic and does not decrease

in the same way. Much like Equation 5.2, we have no evidence to suggest that this

equation will be useful in other applications and again may only pertain to this particular

data set. In both equations 5.2 and 5.3, the exponents were obtained through a trial and

error/data-mining process.

In addition to breast tissue density, we examined the graphs for the following groups:

• The shape factors for the mean, median, and max clusters for both the disrupted and

dense tissues;

• The shape factors for the mean and median cluster sizes for all clusters with area >

40 pixels;

• The densities of histograms with the H-values for the bin size: 1/3, 1/4, ..., 1/20;

• The differences in histogram densities between the tumor side and opposite side for

the H-values with the bin size: 1/3, 1/4, ..., 1/20;
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Figure 5.4: Graphs comparing the three tissue types as a function of time.
The top row depicts the average density individual histogram densities plotted as functions
of time. We generated a 3-bin histogram split at 0.0-0.45, 0.45-0.55, and 0.55-1.0. Graphs
5.4a and 5.4d are the histogram frequencies for the fatty tissue (0.0-0.45). Graphs 5.4b and
5.4e are the histogram frequencies for the disrupted tissue (0.45-0.55). Graphs 5.4c and 5.4f
are the histogram frequencies for the dense tissue (0.55-1.0). The bottom row of graphs

depicts the aggregated data of the top row. The dark red and blue lines depict the medians
of the tumor and opposite sides. The shaded red and blue areas are the first and third

quartiles for the aggregated data.

• The number of fatty, disrupted, dense, and no-scaling regions in each mammogram;

• The percent fatty, disrupted, dense, and no-scaling regions in each mammogram;

• The registration between the opposite and tumor sides for each set of mammograms

was performed. We compared the differences in H-values and regions between the

mammograms.

These categories provided us with a total of 1481 variables to examine. However, many of

these variables are correlated, and were included as a way to error check the data.
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Figure 5.5: A comparison of data generated from Equations 5.1, 5.2, and 5.3.
For all of these figures, the red line represents the median of the tumor data, the blue line
represents the median of the opposite data, and the shaded red and blue areas represent
the first and third quartiles of the cancer and opposite data, respectively. Figure 5.5a

depicts density computed with the combined metric, Equation 5.1. Figure 5.5b depicts the
comparison of dense and disrupted tissue given by Equation 5.2. Figure 5.5c show the

comparison of dense and disrupted tissue given by Equation 5.3.

Since none of the variables we examined seemed to exhibit a reasonable level of

coherence from year to year, we treated the data extracted from each mammogram as

independent from the rest of the mammograms in that patient’s time series. This led us to

analyze an aggregated form of the data where we filtered the mammograms into three

categories: Normal/Benign1 (B), Precancer/Pretumor (PC), and Cancer/Tumor (C). We

classified the final mammogram in each of the participants’ history as the Cancer/Tumor

group. We classified the three years preceding the tumor detection as the

Precancer/Pretumor group. Finally, the Normal/Benign groups were all remaining

mammograms. Table 5.2 provides the number of mammograms in each group. Finally,

variables from each category were compared pairwise using the Mann-Whitney-Wilcoxon

test. Each variable on the tumor side was compared to the opposite side using the

Mann-Whitney-Wilcoxon test as well.

1Several of the mammograms had benign abnormalities detected years before malignant masses appeared.
To be medically correct we have grouped these under the label Normal/Benign since both types of
mammograms had the potential to appear in this group. However, no benign tumors appeared in this
group.
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Table 5.2: The number of patients in each of the classification groups.

Group B PC C
N 86 55 23

The Mann-Whitney-Wilcoxon test is used to compare two sets of independent

observations to determine if they follow the same distribution. It is performed by first

sorting observations from smallest to largest, and then assigning a numeric rank (starting

from 1) to each observation. In the case of a tie, an average rank is assigned to each

observation involved in the tie. The U value is then calculated to determine statistical

significance. The U value is given by

U = n1n2
n1(n1 + 1)

2
−

n1∑
i=1

Ri (5.4)

where n1 is the number of observations in the first set, n2 is the number of observations in

the second set, and Ri is the rank of the ith observation in the first set [76]. The U value is

then compared against a table of U values [76]. If the lookup value is less than the U value,

then the null hypothesis is accepted and the result is statistically significant [76].

This method provided a robust comparison between the groups within variables. Once

the p-value was obtained from the Mann-Whitney-Wilcoxon test, we sorted through the list

of p-values and found all variables where there was at least one statistically significant

group comparison (p < .05), paired with at least one other group comparison with a

significant, or a nearly significant value (p < .15). A summary of the results variables

which fulfilled this requirement can be seen in Tables 6.3, 6.4, 6.6, and 6.8.
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CHAPTER 6

RESULTS

For all of the tables given in this chapter, we use the following notation listed in Table

6.1 to represent statistical significance. Since we did not discover any variables with

p < 0.0001, these will be the only categories we will utilize.

Table 6.1: Table of significance levels.

Criteria Representation
p ≥ 0.05
0.05 > p ≥ 0.01 *
0.01 > p ≥ 0.001 **
0.001 > p ≥ 0.0001 ***

We examined 1481 variables, so we needed an efficient way to examine all of the

variables to locate the variables which were statistically significant. This was done by

seeking the variables which had 2 or more statistically significant p-values between groups

(B, PC, and C) utilizing the Mann-Whitney-Wilcoxon test. Where applicable, we

compared the groups on the tumor side independently of the opposite side. Further, we

also compared the tumor side to the opposite side for each of the three groups (B, PC, and

C) with the Mann-Whitney-Wilcoxon test. While many of the variables we discovered were

correlated, we decided that including all statistically significant variables would yield the

clearest picture and would help to inform the results.

In the analysis, we looked at the three different tissue types, fatty (H < 0.45),

disrupted (0.45 ≤ H ≤ 0.55), and dense (H > 0.55). In Chapter 5, we discussed how we

developed the masks based on these three categories. For this analysis, we found the

clusters (Section 4.2) and associated shape properties (Section 4.4) and computed the

shape factors (Section 4.3) for each cluster. In particular, we examined the shape factors

and shape properties for the cluster with the largest pixel area in each mammogram (LC),

the clusters with a pixel area greater than or equal to 40 (LC40), and the average of all the

clusters in a mammogram (AC). Further, we also computed the shape properties and shape
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factors using the topological boundary (Section 4.2). These results are included with the

LC, LC40, and AC results. However, the ‘Alt’ column in tables Tables 6.3, 6.4, 6.6, and

6.8, denote the shape properties computed using the topological boundary with a ‘T’.

Figure 6.1 depicts three hypothetical clusters. The pixel area of the largest cluster (Apx

of LC) of Figure 6.1 is the orange cluster, with a pixel area of 6. The average pixel area of

the clusters (Apx of AC) would be ≈ 4.33. One can see that we have no clusters with area

greater than 40, so in this case the area of the largest cluster with 40 or more pixels (Apx

TLC40) would be N/A.

Figure 6.1: Example of Clusters
Here three separate clusters are depicted. The largest cluster is the orange cluster, with an

area of 6 pixels.

Figure 6.2 depicts the four different hgroups (Equation 3.25) discussed in Chapter 3.4

which were used in this analysis. We analyzed the clusters in the disrupted tissue

(0.45 ≤ H ≤ 0.55, depicted in green in Figure 6.2), the dense tissue (H > 0.55, depicted in

red in Figure 6.2), and the no-scaling regions (depicted in gray in Figure Figure 6.2). Since

the fatty tissue area is often one connected mass, it did not make sense to analyze the

shape factors and shape properties of these clusters. We computed both the shape
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Figure 6.2: Example of AWTMM Mammogram Clusters
Here the output of the AWTMM is being split into four different sets of clusters. The blue

represents the fatty tissue (H < 0.45), the green represents the disrupted tissue
(0.45 ≤ H ≤ 0.55), the red represents the dense tissue (H > 0.55), and the gray represents

the no-scaling regions.

properties and shape factors, topological and regular, for each individual cluster for each

analyzed mammogram. This allowed us to find the LC, LC40, AC, TLC, TLC40, and TAC

for each mammogram. The only clusters whose analysis returned significant values were

the dense tissue clusters (H > 0.55). Sections 6.4 and 6.3 discuss the results of this

analysis. For the remainder of the paper the results from LC, LC40, AC, TLC, TLC40,

and TAC will be referring to the dense tissue clusters, that is, those clusters with H>0.55.

6.1 Histogram Density

The first set of metrics we examined were the histogram densities (normalized

histogram frequency). These histogram densities were obtained by building histograms of

the H-values for each of the mammograms at multiple histogram bin sizes. For this

analysis, only H-values between 0 and 1 were considered. The bin sizes we examined were

were {1
3
, 1
4
, 1
5
, ..., 1

20
}. An example of this can be seen in Figure 6.4b, where the bin size is
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1
20
. In this particular case, the H values of Figure 6.3 were aggregated into a histogram.

Here the histogram density of each bin is a variable used in the analysis. Compare this to

the histogram of the fatty, disrupted, and dense tissue seen in Figure 6.4a. Note that the

three bins corresponding to the designations for fatty, disrupted, and dense tissue,

respectively. From this image it is clear that the majority of the tissue considered in this

analysis was classified as fatty, while smaller proportions were dense or disrupted.

Figure 6.3: A graphical representations of H-values
This image depicts the H-value output of the AWTMM. With exception to the area outside

of the breast, the darker values are closer to 0 and the lighters values are closer to 1.

Once all of the bins were calculated, we found the histogram density for each of the bins

for each of the mammograms. Each bin was used as a variable for the analysis. Tables 6.2

and 6.3 contain the summary of the results with levels of significance between groups and

Figure 6.5 provides a side-by-side comparison of these variables. For this analysis, we ran

the Mann-Whitney-Wilcoxon test between all three groups (B, PC, and C) independently

for both the tumor (columns T-BvPC, T-BvC, and T-PCvC) and opposite sides (columns

O-BvPC, O-BvC, and O-PCvC). Further, we also compared the opposite side to the tumor

side (columns BvB, PCvPC, and CvC). From this analysis, it appears that there is a

significant difference between the B and PC groups and the B and C groups, but this

difference is only observable on the tumor side and is only present in the dense tissue
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(a) (b)

Figure 6.4: Histogram density plots of H-values
This figure depicts the histogram density plots of the H-values from Figure 6.3. The blue
regions represent the fatty tissue regions (H < 0.45), the yellow regions represent the

disrupted tissue regions (0.45 ≤ H ≤ 0.55), and the red regions represent the dense tissue
regions (H > 0.55).

regions of the mammograms. A majority of the T-BvPC comparisons have p-values < 0.01.

This may indicate that there are observable changes in the tissue microenvironment

present only on the tumor side. If we look at the graphs associated with these rows, we can

see that the density of the opposite side stays roughly constant from year to year while the

tumor side has a sharp decrease in density when transitioning from the B group to the PC

group. This decrease is then reversed when transitioning from PC to C. Row 10 (0.667-1.0)

of Tables 6.2 and 6.3 best summarizes these results, with p = 0.00249 for the T-BvPC

comparison and p = 0.03724 for the T-BvC comparison. We also observed, as shown in

Figure 6.5j, that there appears to be some recoil in the tissue microenvironment T-BvC

column, as there appears to be less of a difference between the normal and cancer groups

on the tumorous side.

Finally, we also observed in row 5 (0.857-0.929) that there is a difference between the

tumor and opposite sides with respect to the PC groups (p = 0.03607). Using Figure 6.5f,

we can see that there are overall higher levels of this smooth dense tissue (dense tissue with
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a higher H-value) on the opposite side when compared to the tumor side. While we

hypothesize that this is likely an outlier in the data, given the lack of support from other

similar metrics, this could indicate that the body is attempting to push back against the

developing tumor by increasing the overall amount of dense tissue in the breasts.

Table 6.2: Histogram Density Significance

Row Histogram Density T-BvPC T-BvC T-PCvC O-BvPC O-BvC O-PCvC BvB PCvPC CvC
1 0.7-0.75 ** *
2 0.692-0.769 ** *
3 0.846-0.923 * *
4 0.8-0.867 ** *
5 0.857-0.929 * * *
6 0.737-0.789 ** *
7 0.812-0.875 * *
8 0.667-0.833 ** *
9 0.7-0.8 ** *
10 0.667-1.0 ** *

Table 6.3: Histogram Density P-Values

Row Histogram Density T.BvPC T.BvC T.PCvC O.BvPC O.BvC O.PCvC BvB PCvPC CvC
1 0.7-0.75 0.00516 0.04032 0.92998 0.61347 0.18006 0.28284 0.15934 0.27641 0.82581
2 0.692-0.769 0.002 0.04001 0.83484 0.5611 0.12695 0.31599 0.14533 0.17089 0.86034
3 0.846-0.923 0.01454 0.03899 0.80833 0.9947 0.70357 0.71064 0.56379 0.06512 0.22967
4 0.8-0.867 0.00435 0.04343 0.86973 0.61966 0.50209 0.76989 0.4364 0.09308 0.49877
5 0.857-0.929 0.01078 0.04941 0.98958 0.58265 0.6949 0.50659 0.36062 0.03607 0.36284
6 0.737-0.789 0.00121 0.04516 0.68446 0.46307 0.08531 0.31515 0.19708 0.16391 0.75754
7 0.812-0.875 0.01656 0.04086 0.75313 0.54662 0.34104 0.65957 0.71425 0.1572 0.51742
8 0.667-0.833 0.00192 0.04455 0.86082 0.48289 0.17412 0.35447 0.1677 0.24493 0.98247
9 0.7-0.8 0.00246 0.03861 0.80087 0.43298 0.09544 0.27796 0.18431 0.2485 0.8604
10 0.667-1.0 0.00249 0.03724 0.90405 0.41704 0.14965 0.43333 0.25653 0.23068 0.96495
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(g) 0.692-0.769
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(i) 0.667-0.833
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Figure 6.5: Box and whisker charts for histogram densities.
This figure depicts the box and whisker charts of histogram densities for a variety of bins.

The bins from 6.5a to 6.5j are: 0.7-0.8, 0.7-0.75, 0.737-0.789, 0.812-0.875, 0.8-0.867,
0.857-0.929, 0.692-0.769, 0.846-0.923, 0.667-0.833, and 0.667-1.0. Histogram bins are

H-values associated with dense tissue. This pattern indicates that changes in breast tissue
are primarily occurring in dense tissue regions of the mammograms and on the tumor side.
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6.2 Difference in Histogram Density

The next set of metrics we examined were the difference between the opposite side and

tumor side’s H-values in terms of histogram density, which we label as ∆ Histogram

Density. This data was generated by subtracting the H-value of the opposite side from the

tumor side of the histogram data from Section 6.1. Here we found that there appears to be

a statistically significant difference between the tumor and opposite side with respect to

the dense tissue. In particular, Table 6.4 suggests that there may be a change in the dense

tissue composition in the years before cancer is detected by a radiologist. If we examine row

1 (0.737-0.789) of Table 6.4, we can see that the BvPC column has a p-value of 0.00031.

Further, if we examine the B data in Figure 6.6a, we can see that the median difference

between tumor and opposite sides is less than zero, indicating that the tumor side may

have more dense tissue than the opposite breast. When looking at PC and C, we can see

that these two charts have positive differences, indicating that there is more dense tissue in

the opposite breast during these time groups. This provides us with additional evidence

that changes are occurring on the tumor side which are not present on the opposite side.

Table 6.4: Significance levels of the difference in histogram density metric.

Row ∆ Histogram Density BvPC BvC PCvC BvPC BvC PCvC
1 0.737-0.789 0.00031 0.03915 0.48897 *** *
2 0.733-0.8 0.00059 0.04481 0.62922 *** *
3 0.714-0.857 0.00293 0.04609 0.92571 ** *
4 0.6-0.8 0.00356 0.04615 0.87807 ** *
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Figure 6.6: Box and whisker charts depicting the difference in histogram density.
These graphs depict the difference between the opposite side and the tumor side for the
specified histogram bins. Figures 6.6a, 6.6b, 6.6c, and 6.6d depict the difference between

densities for histogram bins 0.737-0.789, 0.733-0.8, 0.714-0.857, and 0.6-0.8.

6.3 Shape Factors

The next set of metrics we examined were the shape factors. Here, Tables 6.5 and 6.6

indicate that there may be some changes in the shape of the dense breast tissue that occur

on both the tumor and opposite sides.

6.3.1 Aspect Ratio of LC

We begin by investigating the aspect ratio (Equation 4.15) of LC, rows 1 and 2 of

Tables 6.5 and 6.6 and Figures 6.7b and 6.7a. The B and PC groups appear to be less
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elongated when compared to the C group (p = 0.00029 and p = 0.002, respectively). On

the opposite side, the PC and C groups appear to be more rounded compared to the B

group (p = 0.01545 and p = 0.00166, respectively). This means that there is evidence to

suggest that the LC in each mammogram appears to become more rounded, with the

clusters on the tumor side rounding out at a faster rate than those on the opposite side.
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Figure 6.7: Box and whisker charts of aspect ratio Rasp for largest dense cluster.

6.3.2 Aspect Ratio of the AC

The next metric we will examine is the aspect ratio (Equation 4.15) of AC, rows 3 and

4 of Tables 6.5 and 6.6 and Figures 6.8a and 6.8b. Here we see signs that the AC on the

opposite side in the B and PC groups are less elongated compared to the AC in the C

group (p = 0.00087 and p = 0.01432, respectively). There also appears to be a significant

difference between the tumor and opposite side with respect to the PC (p = 0.04571) and

C groups (p = 0.00069). This indicates that on average, the clusters on the opposite side

are becoming less elongated, whereas the on the tumor side, the clusters are retaining

roughly the same aspect ratio.
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Figure 6.8: Box and whisker charts of aspect ratio Rasp for average dense cluster.

6.3.3 Mean Eccentricity of the LC

Next we will look at the mean eccentricity (Equation 4.24) of the LC, row 5 of Tables

6.5 and 6.6 and Figure 6.9. According to Table 6.5, on the tumor side there is a significant

difference between the B and PC groups compared to the C group (p = 0.00070 and

p = 0.00382, respectively). This indicates that there may be a significant decrease in

eccentricity when transitioning from the PC to C group, meaning that the LC are

becoming more rounded. Further, we can observe that on the opposite side, there is a

significant difference between the PC and C groups compared to the B group (p = 0.02270

and p = 0.00166, respectively). This suggests that the PC and C groups are less eccentric

than the B group on the opposite side. The mean eccentricity of the LC behaves much like

the aspect ratio of the LC for all three groups, with the LC becoming less eccentric in later

stages.
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Figure 6.9: Box and whisker charts of mean eccentricity Mecc for largest dense cluster.
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6.3.4 Mean Eccentricity of the AC

Next we will examine the mean eccentricity (Equation 4.24) of the AC, row 6 of Tables

6.5 and 6.6 and Figure 6.10. Here we observe a significant difference between the B and PC

groups compared to the C group (p = 0.00104 and p = 0.00511, respectively). Further, we

observe a significant difference between the tumor and opposite side with respect to the C

group, p = 0.00127. Looking at the graphs, we see that there appears to be some small

increase in mean eccentricity on the tumor side, whereas on the opposite side this trend is

reversed. This could indicate that the AC on the tumor side is becoming less rounded,

while on the opposite side the AC is becoming rounder.
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Figure 6.10: Box and whisker charts of mean eccentricity, Mecc, for average dense cluster.

6.3.5 Mean Compactness of the LC

Next we will examine the mean compactness (Equation 4.23) of the LC, row 7 of Tables

6.5 and 6.6 and Figure 6.11. We observed a significant difference on the tumor side between

the B and PC groups compared to the C group (p = 0.00066 and p = 0.04611, respectively).

This could indicate that the LC on the tumor side are becoming more compact. Looking at

Figure 6.11, we observe that this appears to be the trend. Further, on the opposite side, we

observe a significant difference between the B and C groups, p = 0.02343. While there is

some difference, note that it is not as drastic as on the tumor side.
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Figure 6.11: Box and whisker charts of mean compactness, Mcpt, for largest dense cluster.

6.3.6 Corner to Perimeter Ratio of the LC

Next we examined the ratio of corners to perimeter of the LC (Equation 4.18), row 8 of

Tables 6.5 and 6.6 and Figure 6.12. Here we observed a significant difference between the B

and PC groups compared to the C group (p = 0.02439 and p = 0.00348, respectively). This

could indicate that the perimeter is becoming longer, that the number of corners is

increasing, or that these two properties are changing at the same time in the PC group on

the tumor side. Since we have indication that the perimeter is becoming longer, it seems

reasonable that much of the change we see here correlates to the elongation of the clusters.
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Figure 6.12: Box and whisker charts of corner to perimeter ratio, Rcp, for largest dense
cluster.

6.3.7 Filament Ratio of the AC

The final shape property we will examine is the filament ratio (Equation 4.14) of the

AC, row 9 of Tables 6.5 and 6.6 and Figure 6.13. For this variable, we observe a significant

difference on the opposite side between the B and PC groups compared to the C group

(p = 0.04511 and p = 0.04981, respectively). Referring to Figure 6.13, we see that this may
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indicate that the AC on the opposite side is becoming more circular. Further, there

appears to be a non-significant trend on the tumor side in the opposite direction. This was

further corroborated when comparing the C groups of the tumor and opposite sides,

p = 0.00420. This may indicate that in the case of the C group, the AC on the tumor side

in the C group may be more more filamentary than the AC on the opposite side.
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Figure 6.13: Box and whisker charts of filament ratio, Rfil, for AC.

6.3.8 Summary of Shape Factors

In summary, we see that on both the tumor and opposite sides that the largest clusters

appear to become less eccentric, more compact and rounded overall. However, this

reduction in elongation seems to happen only when transitioning from the PC to the C

group for the tumor side, whereas the change seems more gradual and less extreme on the

opposite side. We observed that the average cluster on the tumor side appears to become

more elongated, though not significantly. The average cluster on the opposite side appears

to become more circular.

Table 6.5: Significance levels for selected shape factors.

Row Variable Alt CG T-BvPC T-BvC T-PCvC O-BvPC O-BvC O-PCvC BvB PCvPC CvC
1 Rasp Max *** ** * **
2 Rasp T Max *** ** * **
3 Rasp Mean *** * * ***
4 Rasp T Mean ** * **
5 Mecc Max *** ** * **
6 Mecc Mean ** ** **
7 Mcpt Max *** * *
8 Rcp T Max * **
9 Rfil T Mean * * **
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Table 6.6: P-values for selected shape factors.

Row Variable Alt CG T.BvPC T.BvC T.PCvC O.BvPC O.BvC O.PCvC BvB PCvPC CvC
1 Rasp Max 0.32262 0.00029 0.00298 0.01545 0.00166 0.23657 0.93229 0.13737 0.37947
2 Rasp T Max 0.29257 0.00030 0.00130 0.02134 0.00158 0.14954 0.91267 0.17762 0.38545
3 Rasp Mean 0.27455 0.21353 0.68515 0.29292 0.00087 0.01432 0.95442 0.04751 0.00069
4 Rasp T Mean 0.21949 0.25122 0.72996 0.46043 0.00249 0.01347 0.90288 0.07435 0.00174
5 Mecc Max 0.36236 0.00070 0.00382 0.02270 0.00166 0.27557 0.82879 0.10586 0.51345
6 Mecc Mean 0.40383 0.31428 0.75065 0.64494 0.00104 0.00511 0.51949 0.10586 0.00127
7 Mcpt Max 0.06881 0.00066 0.04611 0.41878 0.02343 0.06020 0.30505 0.79944 0.52762
8 Rcp T Max 0.06748 0.02439 0.00348 0.46292 0.23563 0.7258 0.57491 0.10325 0.40964
9 Rfil T Mean 0.30736 0.18994 0.4763 0.94897 0.04511 0.04918 0.66874 0.1008 0.00420

6.4 Shape Dimensions

The next set of properties we examine are the dimensional properties of the clusters in

the dense tissue. While the shape factors from Section 6.3 are a combination of many of

the dimensions discussed in this section, the dimensions may provide additional insights

that the shape factors alone cannot. We can use the information from the shape properties

to help understand the change occurring between the different time groups.

6.4.1 Area of the LC

We start off by looking at the area of the LC. In particular, we will look at rows 1, 3, 4,

and 5 of Tables 6.7 and 6.8, and their associated histograms, Figure 6.14. Tables 6.7 and

6.8 suggest that the LC in the B group on the tumor side has a large area that decreases

when transitioning to PC and C (p < 0.05 for all). This change does not appear to manifest

itself on the opposite side. Note that it appears that while the overall dense tissue remains

constant over time, the disrupted tissue appears to undergo a non-significant increase

during the PC phase. This could indicate that the LC are larger than the LC on the

opposite side, though not significantly, and that these clusters become smaller over time.

If we refer to Figure 6.15, one may observe that the AC here remain relatively constant.

When we looked at the p-values, we observed no significant change in the area of the AC.

This means that while the LC is decreasing in size, the AC is not changing. Given the

results in Section 6.3, this may indicate that the LC are indeed becoming smaller and more

compact over time.

84



●

●
●

●

●●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

B B PC PC C C

0
20

0
40

0
60

0
80

0

9*
P

ix
el

s^
2

Tumor
Opposite

(a) Max Topology A

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●

●

B B PC PC C C

0
20

00
60

00
10

00
0

P
ix

el
s^

2

Tumor
Opposite

(b) Max A
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●●●●

●

●

●

●
●

●●

●

B B PC PC C C

0
50

0
10

00
20

00

9*
P

ix
el

s^
2

Tumor
Opposite

(c) Max Topology Ambr

●

●
●

●

●●

●●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●

B B PC PC C C

0
20

0
40

0
60

0
80

0

P
ix

el
s^

2

Tumor
Opposite

(d) Max Apx

Figure 6.14: Topological area shape properties.
This figure depicts the box and whisker charts for the topological area shape properties.
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(a) Average dense tissue cluster A.

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

B B PC PC C C

0
50

15
0

25
0

P
ix

el
s^

2

Tumor
Opposite

(b) Average disrupted tissue A.

Figure 6.15: Mean area shape properties.
This figure depicts the box and whisker charts for the average area of all clusters.

6.4.2 Area of the Median LC40

Next, we looked at the area of the median LC40. For this data, we will refer to rows 8,

10, 12, and 13 of Tables 6.7 and 6.8 and Figure 6.16. These LC40 show similar behavior to

the LC in Section 6.4.1. We observed a significant decrease on the tumor side between the

PC and C groups compared to the B group (p < 0.05 for both comparisons). This could

indicate that these LC40 are remaining roughly the same size on the opposite side, while

they are shrinking in size on the tumor side.
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Figure 6.16: Median Areas > 40 pixels.

6.4.3 Area of the Average LC40

The next set of shape properties relate to the area of the average LC40. This set of

variables corresponds to rows 15, 16, and 19 of Tables 6.7 and 6.8 and Figure 6.17c. On the

tumor side, the PC and C groups appear to be significantly different from the B group

(p < 0.04 and p < 0.02, respectively). Similar to Sections 6.4.1 and 6.4.2, the LC40 on the

tumor side appear to decrease in size over time, while the LC40 remain close to the same

size on the opposite side, as can be seen in Figure 6.17c.
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Figure 6.17: Mean Areas > 40 pixels.

6.4.4 Diameter of the LC

The next shape property examined is the diameter of the LC. These variables

correspond to rows 6 and 7 of Tables 6.7 and 6.8 and Figure 6.18. We observed a

significant difference on the tumor side between the PC and C groups compared to the B

group (p < 0.05 and p < 0.01, respectively). Further, this difference does not appear to be

present on the opposite side. Looking at Figure 6.18, it appears that the diameter of the

LC is decreasing over time for both the opposite and tumor side. However, this decrease

appears more pronounced on the tumor side. This corroborates with the results in Section

6.3, as a reduction in the size of the diameter would be expected for an cluster that is

becoming less elongated.
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Figure 6.18: Longest significant diameters.

6.4.5 Results of Perimeter Data

The next dimension we examined was the perimeter, Equation 4.6. Consider rows 2, 9,

11, and 17 from Tables 6.7 and 6.8 and Figure 6.19. The first of these variables we will

examine is the perimeter of the LC. The data suggests that the average perimeter of the

LC decreases when transitioning from B to PC (p = 0.04181) and from B to C

(p = 0.02872) on the tumor side, as shown in Figure 6.19a.

The next three charts, Figures 6.19b, 6.19c, and 6.19d (rows 9, 11, and 17 of tables 6.7

and 6.8), indicate that the mean and median of LC40 appear to decrease on the tumor

side, while either remaining constant or slightly increasing on the opposite side. In

particular, we observe a difference between the PC and C groups as compared to the B

group (p<0.05 for both comparisons). In the graphs, there does appear to be some minor

increase in the length of the perimeter of the LC40. However, if the perimeter on the

opposite side is increasing, it is not at a statistically significant level.

An additional observation we made was that the length of the AC perimeter appears to

remain roughly constant over time, as shown in Figure 6.20. This means that while the LC

appear to be decreasing in perimeter length on the tumor side, the AC does not reflect this

change. This is another indication that the AC on the tumor side may be becoming more

compact and less elongated.

Lastly, we observed a significant difference between the tumor and opposite sides with

respect to the C group when looking at rows 9 and 11 of Tables 6.7 and 6.8, and Figures
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6.19c, and 6.19d. This significant difference, p < 0.02552, indicates that the perimeter of

the LC40 on the tumor side may be shorter that the perimeter of the LC40 on the opposite

side. This is in line with our speculation that the LC40 on the tumor side are decreasing in

size and becoming more compact while the LC40 on the opposite side are either

maintaining their size or increasing in size marginally.
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Figure 6.19: Selected perimeter shape properties.
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Figure 6.20: The average perimeter size of the dense tissue clusters.
Our data indicated that there was no statistically significant difference between the groups.
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6.4.6 Corners of the Average and Median LC40

The final shape properties that we examined were the average and median number of

corners of the LC40. The data we will be referring to can be found in Figures 6.21a and

6.21b and rows 14 and 19 of Tables 6.7 and 6.8 and Figure 6.19. Here we observed

significant differences on the tumor side between the PC and C groups compared to the B

group. In the case of the median number of corners of the LC40, on the tumor side we

observed the decrease from the B group to the PC and C groups with significance of

p = 0.03604 and p = 0.00963, respectively. For the average number of corners of the LC40

on the tumor side, we observed a decrease from the B group to the PC and C groups with

significance of p = 0.03067 and p = 0.01464, respectively. While in both of these cases, it

appears that the number of corners of the clusters decrease over time on the tumor side,

they remain relatively constant on the opposite side. We also examined the average

number of corners of the AC, which can be found in Figure 6.22. There were no significant

differences in the average number of corners for any of the group pairings. This may

indicate that the average number of corners per cluster remains constant while the LC40

on the tumor side appear to have a slight decline. This could be another indicator that the

LC40 on the tumor side are becoming less complicated shapes with fewer changes in

directions. This decrease in number of corners could also be due to the decreasing area of

the dense clusters on the tumor side.
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Figure 6.21: Mean and median corners of clusters with area > 40 pixels.
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Figure 6.22: The average number of corners of the dense tissue clusters.

6.4.7 Summary of Shape Dimensions

In summary, we see that the average cluster on the tumor side appears to maintain

roughly the same area, perimeter, and diameter. Further, the largest clusters on the tumor

side appear to decrease in area, perimeter, and diameter. On the opposite side, the neither

the large clusters nor average clusters show signs of significant changes.

Table 6.7: Significance levels of selected shape properties.

Row Variable Alt Cluster T-BvPC T-BvC T-PCvC O-BvPC O-BvC O-PCvC BvB PCvPC CvC
1 Apx Max * *
2 Ppx Max * *
3 A T Max * *
4 Ambr T Max * *
5 A Max * *
6 D Max * **
7 Dmax Max * **
8 A Median > 40 * **
9 Pcvx Median > 40 * * *
10 Apx Median > 40 * **
11 Ppx Median > 40 * * *
12 A T Median > 40 * **
13 Ambr T Median > 40 * *
14 C T Median > 40 * ** *
15 A Mean > 40 * *
16 Apx Mean > 40 * *
17 Ppx Mean > 40 * *
18 A T Mean > 40 * *
19 C T Mean > 40 * *
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Table 6.8: P-values of selected shape properties.

Row Variable Alt Cluster T.BvPC T.BvC T.PCvC O.BvPC O.BvC O.PCvC BvB PCvPC CvC
1 Apx Max 0.03384 0.02238 0.4237 0.71045 0.15712 0.20362 0.08443 0.64741 0.91251
2 Ppx Max 0.04181 0.02872 0.44952 0.64182 0.22688 0.31328 0.10882 0.80172 0.80899
3 A T Max 0.03384 0.02238 0.4237 0.71045 0.15712 0.20362 0.08443 0.64741 0.91251
4 Ambr T Max 0.04789 0.03243 0.48304 0.59082 0.14541 0.25897 0.11654 0.77184 0.88641
5 A Max 0.03077 0.02261 0.42371 0.70571 0.14131 0.20561 0.08987 0.57414 0.96495
6 D Max 0.04719 0.0056 0.17763 0.53471 0.11247 0.23443 0.10647 0.97854 0.80899
7 Dmax Max 0.04601 0.00419 0.15738 0.49071 0.09642 0.21349 0.11192 0.97377 0.81748
8 A Median > 40 0.014 0.00518 0.65093 0.66014 0.72849 0.92748 0.06606 0.14143 0.11506
9 Pcvx Median > 40 0.04084 0.0164 1 1 0.37652 0.49685 0.08138 0.42606 0.02552
10 Apx Median > 40 0.01562 0.00747 0.78063 0.65481 0.67938 0.85559 0.06604 0.16575 0.10678
11 Ppx Median > 40 0.02801 0.017 0.97223 0.94449 0.34178 0.45088 0.07595 0.33807 0.02172
12 A T Median > 40 0.01562 0.00747 0.78063 0.65481 0.67938 0.85559 0.06604 0.16575 0.10678
13 Ambr T Median > 40 0.04607 0.02386 0.8165 0.97661 0.46193 0.58508 0.12893 0.29207 0.06726
14 C T Median > 40 0.03604 0.00963 0.5536 0.895 0.25716 0.34908 0.06561 0.58831 0.01298
15 A Mean > 40 0.03484 0.01551 0.70184 0.94741 0.76606 0.6031 0.0801 0.46738 0.18621
16 Apx Mean > 40 0.03873 0.01929 0.67619 0.93283 0.70994 0.5499 0.07163 0.5207 0.20804
17 Ppx Mean > 40 0.04932 0.03247 0.84363 0.7778 0.42266 0.3232 0.06973 0.6767 0.0824
18 A T Mean > 40 0.03873 0.01929 0.67619 0.93283 0.70994 0.5499 0.07163 0.5207 0.20804
19 C T Mean > 40 0.03067 0.01464 0.68445 0.59255 0.28991 0.25799 0.06284 0.79109 0.06705
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CHAPTER 7

CONCLUSION AND DISCUSSION

7.1 Summary of Results

7.1.1 Histogram Density Results

For the histogram results, discussed in Section 6.1, only the histogram bins where

H > 0.55 (R) showed significance. We observed that the bin 0.667 < H < 1 encompassed

the range of all the other significant bins presented in Table 6.3. This overlap of the other

density variables (Table 6.3) makes it a good candidate to summarize the results.

On the tumor side, for Normal/Benign and Precancer/Pretumor, p = 0.00249, and for

Normal/Benign and Cancer/Tumor, p = 0.03724, meaning that we observed a reduction in

the amount of tissue classified with 0.667 < H < 1 when transitioning from both

Normal/Benign to Precancer/Pretumor and Normal/Benign to Cancer/Tumor. On the

opposite side, we observed a roughly constant density level of 0.667 < H < 1 between all

three groups. However, the opposite side does appear to have a slight, non-significant

reduction in the 0.667 < H < 1 tissue. This is expected, as breast density tends to decrease

with age.

The quantity of “very dense” (i.e., 0.667 < H < 1) mammographic tissue is a clinically

meaningful metric. The very dense mammographic tissue varies significantly as a function

of time in the tumorous breast in the years prior and leading up to the tumor diagnostic.

Meanwhile no such significant variation of very dense mammographic tissue is detected in

the opposite, healthy breast. This lends credence that this very dense mammographic

metric should be considered as a candidate variable for future attempts at the

implementation of an automated cancer pre-detection tool.

93



●●
●

●●
●
●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

B B PC PC C C

0.
0

0.
1

0.
2

0.
3

H
is

to
gr

am
 D

en
si

ty

Tumor
Opposite

(a) 0.667-1.0

Figure 7.1: Box and whisker chart for the histogram density of the “very dense” (0.667 <
H < 1) mammograpic tissue regions.

7.1.2 Elongation of Largest Cluster of Long-ranged Correlated Mammogram

Regions

The largest cluster of long-ranged correlated tissue can be best summarized using the

aspect ratio metric (4.15). Recall from Chapter 6 that we examined the clusters formed

from monofractal anti-correlated (H < 0.45 , labeled as fatty tissue or B), monofractal

long-range correlated (H > 0.55, labeled as dense tissue or R) and monofractal

uncorrelated (0.45 ≤ H ≤ 0.55, labeled as disrupted tissue or Y). Only the clusters formed

from the monofractal long-range correlated data showed significance when comparing two

or more pairs of variables as outlined in Section 4.6. On the tumor side, we observed a

significant difference between Benign/Normal and Cancer/Tumor groups (p = 0.00029) and

Precancer/Pretumor and Cancer/Tumor groups (p = 0.00298). Further, we observed

significant differences on the opposite side between the Benign/Normal and

Precancer/Pretumor groups (p = 0.01545) and the Benign/Normal and Cancer/Tumor

groups (p = 0.00166). In all of the metrics, it appeared that the largest cluster of

long-ranged correlated tissue became less elongated and more compact. This provides us

with evidence that the largest cluster of long-ranged correlated tissue in each mammogram

appears to become more rounded, with the clusters on the tumor side rounding out at a

faster rate than those on the opposite side.
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Figure 7.2: Box and whisker chart of the aspect ratio of the largest cluster of long-ranged
correlated tissue

7.1.3 Elongation of the Average Cluster of Long-ranged Correlated

Mammogram Regions

The mean eccentricity (Equation 4.24) of the average cluster of long-range correlated

regions serves as a good summary variable for the elongation of average cluster of

long-range correlated regions. We observed on the opposite side a significant difference

between the Benign/Normal and Cancer/Tumor groups (p = 0.00104) and between the

Precancer/Pretumor and Cancer/Tumor groups (p = 0.00511). Further, we observed a

significant difference between the tumor and opposite sides in the Cancer/Tumor group

(p = 0.00127). Looking at Figure 7.3, we see that there appears to be some small increase

in mean eccentricity on the tumor side, whereas on the opposite side this trend is reversed.

This could indicate that the average cluster of long-ranged correlated mammographic tissue

regions on the tumor side is becoming less rounded, while on the opposite side the average

cluster of long-ranged correlated mammographic tissue regions are becoming rounder.
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Figure 7.3: Box and whisker chart of mean eccentricity, Mecc, for average cluster of
long-ranged correlated mammographic tissue regions.
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7.1.4 Shape Properties of Clusters of Long-ranged Correlated Mammogram

Regions

We examined the shape properties of the average clusters of long-ranged correlated

mammographic tissue regions, largest clusters of long-ranged correlated mammographic

tissue regions, clusters of area greater than 40 pixels of clusters of long-ranged correlated

mammographic tissue regions. These shape properties include the area (Equation 4.2),

perimeter (Equation 4.6), and diameter (Section 4.3.3). These shape properties (Section

4.3) are used to compute the shape factors (6.3) and are thus highly correlated with the

shape factors. Upon analyzing them, we discovered that they changed in ways which were

in line with the shape factors. Since the shape factors are calculated from the shape

properties, this makes sense. There were no surprising results from the shape properties.

The large clusters appeared to decrease in size on both the tumor and opposite side,

though not at the same rate. On average, clusters remained around the same on both the

tumor and opposite side, although again they changed at different rates.

7.2 Conclusion

There is evidence to suggest that the AWTMM algorithm and associated mammogram

analysis software are able to detect signs of breast cancer in timeline data before an official

diagnosis from a radiologist. Given that breast cancer is notoriously difficult to detect in

dense tissue, we find these results to be encouraging.

In Chapter 6, we outlined the changes in the breast microenvironment determined from

analyzing the output of the AWTMM. We observed significant differences between the

tumor and the opposite groups, and also changes between the B, PC, and C time groups in

terms of the dense tissue regions. The evidence suggests that the makeup of the dense

tissue on the tumor side undergoes more extreme changes when compared to the opposite

side and that these changes occur independently of the opposite side, years in advance of

an official cancer diagnosis. The largest cluster on the tumor side becomes even more
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compact than the largest cluster on the opposite side and undergoes a rapid transition

between the precancer and cancer time groups. Further, the evidence suggests that the

largest clusters on the tumor side are on average larger than the largest clusters on the

opposite side during the B time group, suggesting that in some cases, cancer may be

growing for many years in a breast before it is visible to a radiologist.

In addition to the largest clusters, the average cluster with pixel area greater than 40

pixels appears to decrease on the tumor side while average clusters on the opposite side

maintain roughly the same area between the B, PC, and C time groups. However, the

overall average area on both the tumor and opposite sides remains relatively constant over

time. Further, the average dense cluster on the tumor side appears to have some

propensity toward becoming more filamentary, while on the opposite side the dense tissue

clusters appear to become more rounded. This could indicate that the tumor side is

developing more small dense clusters over time. We hypothesize that these may be smaller

dense tissue filaments, present due to the spreading tumor.

7.3 Future Work

In addition to the variables we examined, we also attempted to see if it would be

possible to classify a mammogram into one of the three time groups (B, PC, and C) based

on the set of parameters. We initially used linear and quadratic discriminate analysis (LDA

and QDA, respectively) to attempt the classification. However, because of the assumptions

of the LDA and QDA, we were only able to use 22 variables. One of the primary

assumptions of the LDA and QDA is that one can have at most n− 1 variables, where n is

the size of the smallest group. Upon running both the LDA and QDA, the mammograms

were able to be successfully classified at better than random chance, even when

cross-validating (jackknifing) the results. However, because of the small sample size, this

analysis served as a preliminary result at best and was not included in this thesis.
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We did not explore other machine learning techniques for the classification at the time

of the publication. One of the primary reasons is the number of data points. There are not

enough data points to build both a training and a validation set. While jackknifing a

neural network is possible, it seemed more prudent to focus instead on the statistical

analysis of the data instead of attempting to build models with insufficient data.

Two complicating factors for this analysis were the number of mammograms we

analyzed and the assumption of independence for the different time groups. A similar

analysis with a larger population would likely produce stronger results. However, given the

consistency of the results, we do not feel this point invalidates the study. Further, given

our understanding of breast cancer and its development, the results appear consistent with

that model. As for the latter concern, we feel that there is a high enough level of

independence from year to year for this assumption to be warranted. Given enough patient

data, we could confirm this assumption by using a single mammogram from each

participant to ensure independence.

This research lays the groundwork to analyze additional data utilizing the AWTMM.

One area that is currently open for exploration is analyzing these images with finer

gridding instead of our current 32-pixel step size. Further improvements to the code, such

as parallelization of the WTMM chaining procedure, would allow us to improve the

throughput of our mammogram analysis software. With a finer resolution, we may be able

to more accurately detect how the dense tissue and its shape change over time. A larger

data set including mammograms from patients with biopsy-proven benign tumors would

enable us to build a more encompassing model and improve the accuracy of our results.

More participants would also allow us to control for factors such as age, family history, and

cancer type.

As part of the future work we will examine a larger patient population. This population

will include a normal group, benign group, and a cancer group. These populations will be

made up of patients who never developed a tumor over their mammography history;
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patients who developed a benign tumor over the course of their mammography history; and

finally a group of patients who developed a cancerous tumor over the course of the

mammography history. We hope that comparing the microenvironment of the breast tissue

from these groups will provide us with a more robust dataset, with the potential of

classifying pre-malignant tissue.

While further research is needed to build a model which can pre-detect breast cancer,

the fact that we were able to see changes in both the presence of dense tissue and the

shape of the dense tissue indicates that a pre-detection model is not outside the realm of

possibility. We hope these results will shed light on the spread and development of

tumorous tissue in mammograms.
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APPENDIX A

CONVOLUTION APPENDIX

Before we delve into the mechanics of the WTMM, it is crucial to understand what a

convolution is and the difference between a convolution performed in Fourier space and a

convolution performed in discrete space. This section serves as a primer to help the reader

visualize the purpose of a convolution and develop an understanding of how this procedure

is performed in both discrete and continuous spaces. It is important to note that the

wavelet transform has no formal discrete definition. This is because the mathematics of the

wavelet transform break down in discrete space, and thus must be performed in a

continuous space. For that reason, we will approach this section from both an algorithmic

and mathematical perspective. In this way, the reader will be able gain an understanding

of the underlying mechanics from a lay perspective.

The first step of the wavelet transform is to perform a convolution with some kernel ψ

over a digital image f . A kernel can be thought of as smaller image, or filter, with r rows

and c columns. Ideally, the elements should sum to zero, although this is not always the

case. The convolution of f at pixel {x, y}, is calculated as

gx,y = ψ ∗ fx,y =
r∑
i=1

c∑
j=1

f(y−b r2c+i),(x−b c2c+j)ψi,j (A.1)

where gx,y is the output value of the single pixel of the convolved region. This convolution

must be applied to all of the pixels in the image f . If the elements of the convolution do

not add up to zero, one must normalize the convolution by the sum of the kernel,

gx,y = ψ ∗ fx,y =

∣∣∣∣∣
∑r

i=1

∑c
j=1 f(y−b r2c+i),(x−b c2c+j)ψi,j∑

k∈ψ ψk

∣∣∣∣∣ (A.2)

For speed, this transformation is often performed by a convolution utilizing the Fourier

transformation. An advantage of using the Fourier transformation is that it helps to

prevent edge artifacts of the original image due to the finite kernel size. Note that by using

A.1, there is no mathematical definition for those elements whose index exceeds the bound
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of f . That is, there are no elements outside of the bounds of f , e.g., (−1,−1). In other

words, a 3× 3 pixel kernel will ‘erode’ away 2 rows and 2 columns from the original image,

as shown in the following example, and a 5× 5 pixel kernel will create convolution artifacts

4 rows and 4 columns from the original image. More specifically, a k × k kernel will remove

k − 1 rows and columns from the original image. Other strategies exist for dealing with the

edges, such as wrapping the image or duplicating the values around the edge, but these can

cause the emergence of image artifacts or defects.

To illustrate the difficulty that ψ poses at the edges, suppose we have the kernel

ψ =


0 −1 0

−1 5 −1

0 −1 0

 ,
and the image

f =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1


.

If we convolve these two matrices together, the result will be

g = ψ ∗ f =



3 2 2 2 2 3

2 1 1 1 1 2

2 1 1 1 1 2

2 1 1 1 1 2

3 2 2 2 2 3


.

In this case, the sum of the elements of ψ is 1. This means that the net effect of the

convolution should be 1 on the unit matrix (a matrix of all ones). However, along the edges

of g there exist non-1 values. This is because in this case we treated the elements outside of
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f as though they were 0 valued elements, that is

f ′ =



0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0



,

where the elements of value 1 are the original matrix. Thus the values obtained at the

edges are not necessarily the ‘true’ values but rather are artifacts created by the inability of

ψ to handle mathematically what is happening outside of f .

Next we will take a look at a convolution with a larger kernel. In this case we will use

the partial derivatives of the 2D Gaussian

ψ1(x, y) =
∂φ(x, y)

∂x
, (A.3)

and

ψ2(x, y) =
∂φ(x, y)

∂y
. (A.4)

We will call this convolution of f with ψ, ψ ∗ f = Tψ[f ](a) for some size scale a. Figures

A.2b and A.2c show the effects of applying A.1a and A.1b to A.2a, respectively. Note

Figures A.2b and A.2c were convolved without the Fourier transform and as a result we

can see some distortion along the y edges of Figure A.2b. Likewise, we can see a similar

distortion along the x edges of Figure A.2c. These distortions are the artifacts mentioned

earlier. These images are included here to emphasize the importance of utilizing the

Fourier transform to perform the convolution. Our analysis did not suffer from these

artifacts as we utilized the convolution with the Fourier transform. Equivalently, one could

first apply a Gaussian to the image then take the derivative in the x and y direction of the
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(a) (b)

Figure A.1: Partial derivatives of the 2D Gaussian.
Figure A.1a: Graphical representation of the first derivative of the Gaussian taken in the x
direction. Figure A.1b: Graphical representation of the first derivative of the Gaussian

taken in the y direction.

smoothed image. The reason why taking the derivative of the Gaussian first is the default

method is that this reduces the number of operations performed on the image.

In this analysis, we are not limited to a single size scale of the 2D Gaussian. Figure A.2

depicts the effect of applying the 2D Gaussian at multiple scales. One can see that as we

increase the scale of the Gaussian, the finer details become muted, overpowered by the

more prominent features contained in the image.

(a) (b) (c)

Figure A.2: An image alongside its partial derivatives.
Figure A.2a is an image featuring Brownian noise. Figure A.2b is the convolution of A.2a

with A.1a. Figure A.2c is the convolution of A.2a with A.1b
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A.3: Gaussian filters applied to A.2a at scales a = {7, 29, 73, 127}.
From left to right, the figure depicts 2D Gaussian kernels at larger and larger scales,
a = {7, 29, 73, 127}. Figures A.3a–A.3d are the x derivatives of the Gaussian filters.

Figures A.3e–A.3h are the y derivatives of the Gaussian filters.
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APPENDIX B

CODE APPENDIX

B.1 AWTMM OpenCL Code

1 #pragma OPENCL EXTENSION cl_khr_fp64 : enable

2

3

4 //=============================================================================

5 // This s e c t i on o f code i s where the s t r u c t s l i v e

6 //

7 //=============================================================================

8

9 /∗∗∗

10 ∗ This s t ru c tu r e conta ins an (x , y ) ordered pa i r .

11 ∗/

12 s t r u c t PointF{

13 double x ; //The x coord inate o f the ordered pa i r .

14 double y ; //The y coord inate o f the ordered pa i r .

15 } ;

16

17 /∗∗∗

18 ∗ This s t ru c tu r e conta ins a s e t o f 50 ordered pa i r s

19 ∗ e . g . {(x_1 , y_1) , (x_2 , y_2) , (x_3 , y_3) , . . . , ( x_50 , y_50) }

20 ∗/

21 s t r u c t PointFList {

22 s t r u c t PointF vData [ 5 0 ] ; //The array o f ordered pa i r s

23 unsigned long vDataSize ; //The number o f ordered pa i r s ( p r e a l l o c a t ed to 50)

24 } ;

25

26 /∗∗∗

27 ∗ This s t ru c tu r e i s f o r ho ld ing pa i r s o f e lements indexes

28 ∗/

29 s t r u c t SizeTPair {

30 unsigned long f i r s t ; //The index o f the f i r s t element

31 unsigned long second ; //The index o f the second element .

32 } ;

33

34 /∗∗∗

35 ∗ This s t ru c tu r e i s used f o r conta in ing the l i n e a r model data

36 ∗/

37 s t r u c t LinearModel {

38

39 double vBetaHat ; // Slope o f the r e g r e s s i o n l i n e .

40 double vAlphaHat ; //Y−I n t e r c ep t

41 double vSxx ; // Standard dev i a t i on x

42 double vSyy ; // Standard dev i a t i on y

43 double vRSquared ; //R^2 value

44 double vRVal ; //R value

45

46 s t r u c t PointF vMeanXY; //The mean o f the x , y data .

47 double vSumXY; //Sum xy

48 double vSumXSquared ; //Sum x^2
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49 double vSumYSquared ; //Sum y^2

50

51 double vMinX ; //Min x range

52 double vMaxX; //Max x range

53

54 } ;

55

56 /∗∗

57 ∗ This s t ru c tu r e conta ins the 32 r e g r e s s i o n l i n e s

58 ∗/

59 s t r u c t Reg r e s s i onL i s t {

60

61 double vAMin ;

62 double vAMax;

63 double vSlope [ 3 2 ] ;

64 double vRSquared [ 3 2 ] ;

65 double v In t e r c ep t [ 3 2 ] ;

66 double vDeltaSlope [ 3 2 ] ;

67 double vDeltaRSquared [ 3 2 ] ;

68 double vDe l ta In te r cept [ 3 2 ] ;

69

70 } ;

71

72 /∗∗∗

73 ∗ This s t ru c tu r e i s f o r ho ld ing the c a l cu l a t ed curvedata

74 ∗/

75 s t r u c t CurveData{

76 double vHValue ; //h (0 , a )

77 double vDValue ; //D(0 , a )

78 double vR2Value ; //How we l l the l i n e a r model f i t

79

80 double vAMin ; //min a f o r the h(q , a ) and D(q , a ) curves

81 double vAMax; //max a f o r the h(q , a ) and D(q , a ) curves

82

83 double vF i tnes s ; //The f i t n e s s o f the curve

84

85 char vGroup ; //R,Y,B,O,N

86 char vComment [ 1 0 0 ] ; //No s c a l i n g reason

87

88 double vWeightedDelta ; //The weigthed de l t a

89 double vWeightedH ; //Weighted h (0 , a )

90 double vWeightedD ; //Weighted D(0 , a )

91 double vWeightedR2 ; //How we l l the weighted l i n e a r model f i t

92 double vAvgDelta ; //On average , how f a r spred out are the data

93 double vAvgH ; //What i s the average h−value

94 double vAvgD ; //What i s the average D−value

95 double vAvgR2 ; //What i s the average R^2

96

97 double vStdevWeightedDelta ; //The standard dev i a t i on o f the weghted de l t a

98 double vStdevWeightedH ; //The standard dev i a t i on o f the weighted h (0 , a )

99 double vStdevWeightedD ; //The standard dev i a t i on o f the weighted D(0 , a )

100 double vStdevWeightedR2 ; //The standard dev i a t i on o f the weighted D(0 , a )

101 double vStdevDelta ; //The standard dev i a t i on o f the weighted l i n e a r model f i t

102 double vStdevH ; //The standard dev i a t i on o f the average h−value

103 double vStdevD ; //The standard dev i a t i on o f the average D−value

104 double vStdevR2 ; //The standard dev i a t i on o f average R^2

113



105

106 bool vSu i tab l e ; //Flag f o r s i g n a l i n g i f the curvedata i s va l i d

107

108 } ;

109

110 //=============================================================================

111 // This s e c t i on o f code i s where the s t a t i s t i c a l computations l i v e

112 //

113 //=============================================================================

114

115

116 /∗∗∗

117 ∗ This func t i on computes the d i f f e r e n c e between the elements o f an array

118 ∗ The va r i ab l e aDst i s modi f ied

119 ∗ @Param aData − The data to compute the de l t a o f

120 ∗ @Param aDst − The de s t i n a t i on vector f o r the computed de l t a s

121 ∗ @Param aArraySize − The s i z e o f the data and de s t i n a t i on ar rays .

122 ∗/

123 void get_delta ( __global double ∗ aData ,

124 __global double ∗ aDst ,

125 unsigned long aArraySize ) {

126

127 // Subtract the f i r s t element from the l a s t element

128 aDst [ 0 ] = fabs ( aData [0]−aData [ aArraySize −1]) ;

129

130 // Subtract each element from the next

131 f o r ( unsigned long i = 1 ; i < aArraySize ; i++){

132 aDst [ i ] = fabs ( aData [ i ]−aData [ i −1]) ;

133 }

134

135 }

136

137 /∗∗

138 ∗ Sums the va lues in an array .

139 ∗ @param aData − Array to f i nd the sum of .

140 ∗ @param aDataSize − The number o f e lements in aData

141 ∗ @return The sum of a l l the e lements o f the vector .

142 ∗/

143 double sum_vector ( __global double ∗ aData ,

144 unsigned long aDataSize ) {

145

146 double lRet = 0 ;

147

148 f o r ( unsigned long i = 0 ; i < aDataSize ; i++){

149 lRet += aData [ i ] ;

150 }

151

152 return lRet ;

153 }

154

155 /∗∗

156 ∗ Ca l cu l a t e s the average o f an ordered s e t o f pa i r s .

157 ∗ mu_x = (1/( f−l ) ) âĹŚ ( ( x_i ) | i=f to l )

158 ∗ mu_y = (1/( f−l ) ) âĹŚ ( ( y_i ) | i=f to l )

159 ∗ where x_i = aData . x , y_i = aData . y , f = aFir s t , and l = aLast

160 ∗
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161 ∗ @param aData −Array o f po in t s .

162 ∗ @param aF i r s t −F i r s t element to c a l c u l a t e the mean from

163 ∗ @param aLast − Last element to c a l c u l a t e the mean to

164 ∗ @return Returns a PointF that r ep r e s en t s the mean o f the x and y ordered pa i r s .

165 ∗ between the f i r s t and l a s t elments .

166 ∗/

167 s t r u c t PointF calc_average_pt ( __global s t r u c t PointF∗ aData ,

168 unsigned long aFir s t ,

169 unsigned long aLast ) {

170

171 s t r u c t PointF locAverage = {0 ,0} ;

172

173 long unsigned in t l S i z e = aLast−aF i r s t +1;

174

175 f o r ( unsigned long i = aF i r s t ; i < aLast+1; i++){

176 locAverage . x += aData [ i ] . x /( double ) l S i z e ;

177 locAverage . y += aData [ i ] . y /( double ) l S i z e ;

178 }

179

180 return locAverage ;

181 }

182

183 /∗∗

184 ∗ Computes the mean o f the array . The mean i s computed as :

185 ∗ \sum_{ i =0}^{k}( aData_i ) / aDataSize .

186 ∗ @param aData − Data to average .

187 ∗ @param aDataSize − The number o f e lements in aData .

188 ∗ @return The average .

189 ∗/

190 double mean( __global double ∗ aData ,

191 unsigned long aDataSize ) {

192

193 double lRet = 0 ;

194 f o r ( unsigned long i = 0 ; i < aDataSize ; i++){

195 lRet += aData [ i ] ;

196 }

197

198 return lRet / aDataSize ;

199

200 }

201

202 /∗∗

203 ∗ Computes the weighted mean o f the array . The mean i s computed as :

204 ∗ \sum_{ i =0}^{k}( aData_i∗aWeights_i ) /\sum_{ i =0}^{k}( aWeights_i ) .

205 ∗ I f the two vec to r s are not o f the same s i z e then a runtime e r r o r w i l l be thrown .

206 ∗ @param aData Data to average .

207 ∗ @param aWeights Weight o f the corresponding data po int s .

208 ∗ @return Weighted average .

209 ∗/

210 double weighted_mean ( __global double ∗ aData ,

211 __global double ∗ aWeights ,

212 unsigned long aArraySize ) {

213

214 double lRet = 0 ;

215 double lWeightSum = sum_vector ( aWeights , aArraySize ) ;

216
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217 f o r ( unsigned long i = 0 ; i < aArraySize ; i++){

218 lRet += ( aData [ i ] ∗ aWeights [ i ] ) /lWeightSum ;

219 }

220

221 return lRet ;

222 }

223

224 /∗∗

225 ∗ Ca l cu l a t e s the s imple var iance o f a array .

226 ∗ @param aData −Array we want to f i nd the var iance o f .

227 ∗ @param aDataSize −Number o f e lements in aData

228 ∗ @return Returns the var iance o f aData .

229 ∗/

230 double var iance ( __global double ∗ aData ,

231 unsigned long aDataSize ) {

232

233 double lAverage = mean( aData , aDataSize ) ;

234 double lRe su l t s = 0 ;

235

236 f o r ( unsigned long i =0; i<aDataSize ; i++){

237 lRe su l t s += ( aData [ i ]− lAverage ) ∗( aData [ i ]− lAverage ) ;

238 }

239

240 lRe su l t s = lRe su l t s /( aDataSize−1) ;

241

242 return lRe su l t s ;

243

244 }

245

246 /∗∗

247 ∗ Ca l cu l a t e s the s imple standard dev i a t i on o f a double array . This i s accomplished by

248 ∗ sq r t ( Variance )

249 ∗ @param aData −Array we want to f i nd the standard dev i a t i on o f .

250 ∗ @param aDataSize −Number o f e lements in aData

251 ∗ @return Returns the standard dev i a t i on o f aData .

252 ∗/

253 double stdev ( __global double ∗ aData ,

254 unsigned long aDataSize ) {

255 return sq r t ( var iance ( aData , aDataSize ) ) ;

256 }

257

258 /∗∗

259 ∗ Computes the weighted standard dev i a t i on o f a vector . The weighted standard dev i a t i on

260 ∗ i s computed as : \sum_{ i =0}^{k }( ( aData_i−WM)^2∗aWeights_i ) /(WS−1) where WM i s the weighted mean

261 ∗ and WS i s the weighted sum .

262 ∗ I f the two vec to r s are not o f the same s i z e then a runtime e r r o r w i l l be thrown .

263 ∗ @param aData − The data to compute the weighted standard dev i a t i on o f

264 ∗ @param aWeights − The weights to compute the standard dev i a t i on o f

265 ∗ @return The standard dev i a t i on o f the data

266 ∗/

267 double weighted_stdev ( __global double ∗ aData ,

268 __global double ∗ aWeights ,

269 unsigned long aArraySize ) {

270

271 double lRet = 0 ;

272 double lWeightedSum = sum_vector ( aWeights , aArraySize ) ;

116



273 double lWeightedMean = weighted_mean ( aData , aWeights , aArraySize ) ;

274

275 f o r ( unsigned long i = 0 ; i < aArraySize ; i++){

276 lRet += (( aData [ i ]− lWeightedMean ) ∗( aData [ i ]− lWeightedMean ) ) ∗aWeights [ i ] / ( lWeightedSum−1) ;

277 }

278

279 return sq r t ( lRet ) ;

280

281 }

282

283

284 //=============================================================================

285 // This s e c t i on o f code us used to c l a s s i f y the h(q , a ) and D(q , a ) curves

286 // I t conta ine s the OpenCL kerne l f o r c l a s s i f y i n g and the a s s o c i a t ed f i t n e s s

287 // func t i on s .

288 //=============================================================================

289

290

291 /∗∗∗

292 ∗ C l a s s i f i e s the h−value input in to i t s a s s o c i a t ed t i s s u e group (B,Y,R)

293 ∗ B < . 4 5 ; R > . 5 5 ; and Y i s between .45 and . 5 5 .

294 ∗

295 ∗ @param aHValue − The h−value to c l a s s i f y

296 ∗ @return Returns the charac t e r (B,Y, or R) a s s o c i a t ed with the t i s s u e type .

297 ∗/

298 char class i fy_h_group ( double aHValue ) {

299

300 char lRet = 0x00 ;

301

302 i f ( aHValue > . 55 ) {

303 lRet = ’R ’ ;

304 } e l s e i f ( aHValue < . 45 ) {

305 lRet = ’B ’ ;

306 } e l s e {

307 lRet = ’Y ’ ;

308 }

309

310 return lRet ;

311

312 }

313

314 /∗∗∗

315 ∗ Maps a number in to the range aMin−aMax

316 ∗

317 ∗ @param aVal − The value to remap

318 ∗ @param aMin − The minimum value o f the new range

319 ∗ @param aMax − The maximum value o f the new range

320 ∗ @return Returns a s ca l ed ve r s i on o f aVal e . g . ( aVal−aMin) /(aMax−aMin)

321 ∗/

322 double sca le_value ( double aVal , double aMin , double aMax) {

323 return ( aVal−aMin) /(aMax−aMin) ;

324 }

325

326 /∗∗∗

327 ∗ Computes the f i t n e s s o f aValue .

328 ∗ I f the f i t n e s s i s po s i t v e then aVal i s f i t o therwi se i t i s not f i t .
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329 ∗ The more negat ive the f i t n e s s , the l e s s f i t the value i s .

330 ∗

331 ∗ @param aVal − The value to compute the f i t n e s s o f

332 ∗ @param aMin − The minimum f i t value

333 ∗ @param aMax − The maximum f i t value

334 ∗ @return Returns a double r ep r e s en t i ng the f i t n e s s .

335 ∗/

336 double c a l c_ f i t ( double aVal , double aMin , double aMax) {

337

338 double lVal = sca le_value ( aVal , aMin , aMax) ;

339 double lRet = 0 ;

340

341 i f ( lVal > 1) {

342 lRet = 1− lVal ;

343 } e l s e i f ( lVal < 0) {

344 lRet = lVal ;

345 } e l s e {

346 lRet = 1 ;

347 }

348

349 return lRet ;

350 }

351

352 /∗∗∗

353 ∗ C l a s s i f i e s the h(q , a ) and D(q , a ) curves .

354 ∗ This func t i on determines i f the curves produce a va l i d f i t to the modle

355 ∗ I f i t does then aDst−>vSui tab l e w i l l be t rue

356 ∗ aDst i s modi f ied

357 ∗

358 ∗ @param aDst − The de s t i n a t i on o f the c a l cu l a t ed f i t n e s s

359 ∗ @param aMinWeightedR2 − The f i t n e s s f o r checking i f R^2 and weighted R^2 are s u i t a l b e

360 ∗ @param aMinHValue − Minimum su i t a b l e h−value .

361 ∗ @param aMaxHValue − Maximum su i t a b l e h−value .

362 ∗ @param aMinDValue − Minimum su i t a b l e D−value .

363 ∗ @param aMaxDValue − Maximum su i t a b l e D−value .

364 ∗ @param aThreshWeightedH − Checks i f weigthed standarad dev i a t i on o f h i s s u i t a b l e

365 ∗/

366 void c l a s s i f y_curveda ta ( __global s t r u c t CurveData∗ aDst ,

367 double aMinWeightedR2 ,

368 double aMinHValue ,

369 double aMaxHValue ,

370 double aMinDValue ,

371 double aMaxDValue ,

372 double aThreshWeightedH ) {

373

374 // I n i t i a l i z e our return va lues

375 bool lSmal lDe l ta = f a l s e ;

376 bool lBadH = f a l s e ;

377 bool lBadHStdev = f a l s e ;

378 bool lBadD = f a l s e ;

379 bool lNoSca l ing = f a l s e ;

380 bool lBadR2 = f a l s e ;

381 bool lBadWR2 = f a l s e ;

382 aDst−>vSui tab l e = true ;

383

384
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385 f o r ( i n t i = 0 ; i < 5 ; i++){

386 aDst−>vComment [ i ] = ’− ’ ;

387 }

388 aDst−>vComment [ 5 ] = 0 ;

389

390 //Compute the f i t n e s s o f the curve

391 double lF i tCa l c = sq r t ( ( aDst−>vR2Value∗aDst−>vR2Value )

392 +(aDst−>vWeightedR2∗aDst−>vWeightedR2 ) ) ;

393 double lSca leH = ca l c_ f i t ( aDst−>vHValue , aMinHValue , aMaxHValue ) ;

394 double lSca leD = ca l c_ f i t ( aDst−>vDValue , aMinDValue , aMaxDValue ) ;

395 double lScaleWSDH = ca l c_ f i t ( aDst−>vStdevWeightedH , 0 , aThreshWeightedH ) ;

396

397 aDst−>vFitnes s = ( lSca leH+lF i tCa l c+lSca leD+lScaleWSDH) /(4 .414213562) ;

398

399

400 // I s the h−value s u i t a b l e ?

401 i f ( aDst−>vHValue < aMinHValue | | aDst−>vHValue > aMaxHValue ) {

402

403 aDst−>vSui tab l e = f a l s e ;

404 aDst−>vComment[2 ]= ’H ’ ;

405

406 }

407

408 // I s the weigthed standarad dev i a t i on o f h s u i t a b l e ?

409 i f ( aDst−>vStdevWeightedH > aThreshWeightedH ) {

410 aDst−>vSui tab l e = f a l s e ;

411 aDst−>vComment[3 ]= ’S ’ ;

412 }

413

414 // I s our D−value s u i t a b l e ?

415 i f ( aDst−>vDValue < aMinDValue | | aDst−>vDValue > aMaxDValue ) {

416 aDst−>vSui tab l e = f a l s e ;

417 aDst−>vComment[4 ]= ’D ’ ;

418 }

419

420 // I s our R^2 value s u i t a l b e ?

421 i f ( aDst−>vR2Value < aMinWeightedR2 ) {

422 aDst−>vSui tab l e = f a l s e ;

423 aDst−>vComment[0 ]= ’R ’ ;

424 }

425

426 // I s our Weighted R^2 value s u i t a b l e ?

427 i f ( aDst−>vWeightedR2 < aMinWeightedR2 ) {

428

429 aDst−>vSui tab l e = f a l s e ;

430 aDst−>vComment[1 ]= ’W’ ;

431 }

432

433 //Were any o f the s u i t a b l i t y cond i t i on s not met?

434 // I f so c l a s s i f y as No s c a l i n g (N)

435 i f ( ! aDst−>vSui tab l e ) {

436 aDst−>vGroup = ’N ’ ;

437

438 //Otherwise c l a s s i f y the h−value

439 } e l s e {

440 aDst−>vGroup = class i fy_h_group ( aDst−>vHValue ) ;
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441 }

442

443

444

445 // return aDst . vSu i tab l e ;

446

447 }

448

449

450 /∗∗∗

451 ∗ This func t i on c l a s s i f i e s the h(q , a ) and D(q , a ) curves

452 ∗ The va r i ab l e aDst i s modi f ied

453 ∗ @Param aHData − The h(q , a ) curves

454 ∗ @Param aDData − The D(q , a ) curves

455 ∗ @Param aWeights − Weights f o r mean and stdev

456 ∗ @Param aWeightSize − Number o f weights

457 ∗ @Param aDst − The c l a s s i f i e r d e s t i n a t i on

458 ∗ @Param aParams − The c l a s s i f i c a t i o n parmeters

459 ∗/

460 __kernel void get_curvedata ( __global s t r u c t Reg r e s s i onL i s t ∗ aHData ,

461 __global s t r u c t Reg r e s s i onL i s t ∗ aDData ,

462 __global double ∗ aWeights ,

463 __global unsigned long ∗ aWeightSize ,

464 __global s t r u c t CurveData∗ aDst ,

465 __global double ∗ aParams ) {

466

467 // Getting the thread ID

468 unsigned in t i = get_global_id (0) ;

469

470 // I n i t i a l i z i n g aDst

471 aDst [ i ] . vAMax = aHData [ i ] . vAMax;

472 aDst [ i ] . vAMin = aHData [ i ] . vAMin ;

473

474 aDst [ i ] . vHValue = aHData [ i ] . vSlope [ 1 0 ] ;

475 aDst [ i ] . vDValue = aDData [ i ] . vSlope [ 1 0 ] ;

476 aDst [ i ] . vR2Value = aHData [ i ] . vRSquared [ 1 0 ] ;

477

478 //Finding the de l t a o f both H and D.

479 get_delta (aHData [ i ] . vSlope , aHData [ i ] . vDeltaSlope , ∗ aWeightSize ) ;

480 get_delta (aHData [ i ] . v Intercept , aHData [ i ] . vDe l ta Intercept , ∗ aWeightSize ) ;

481 get_delta (aHData [ i ] . vRSquared , aHData [ i ] . vDeltaRSquared , ∗ aWeightSize ) ;

482

483 get_delta (aDData [ i ] . vSlope , aDData [ i ] . vDeltaSlope , ∗ aWeightSize ) ;

484 get_delta (aDData [ i ] . v Intercept , aDData [ i ] . vDe l ta Intercept , ∗ aWeightSize ) ;

485 get_delta (aDData [ i ] . vRSquared , aDData [ i ] . vDeltaRSquared , ∗ aWeightSize ) ;

486

487

488 //Computing the Weighted Means

489 aDst [ i ] . vWeightedDelta = weighted_mean (aHData [ i ] . vDeltaSlope , aWeights , ∗ aWeightSize ) ;

490 aDst [ i ] . vWeightedH = weighted_mean (aHData [ i ] . vSlope , aWeights , ∗ aWeightSize ) ;

491 aDst [ i ] . vWeightedR2 = weighted_mean (aHData [ i ] . vRSquared , aWeights , ∗ aWeightSize ) ;

492

493 aDst [ i ] . vAvgDelta = mean(aHData [ i ] . vDeltaSlope , ∗ aWeightSize ) ;

494 aDst [ i ] . vAvgH = mean(aHData [ i ] . vSlope , ∗ aWeightSize ) ;

495 aDst [ i ] . vAvgR2 = mean(aHData [ i ] . vRSquared , ∗ aWeightSize ) ;

496
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497 aDst [ i ] . vWeightedD = weighted_mean (aDData [ i ] . vSlope , aWeights , ∗ aWeightSize ) ;

498 aDst [ i ] . vAvgD = mean(aDData [ i ] . vSlope , ∗ aWeightSize ) ;

499

500 //Computing the weighted Standard dev i a t i on s

501 aDst [ i ] . vStdevWeightedDelta = weighted_stdev (aHData [ i ] . vDeltaSlope , aWeights , ∗ aWeightSize ) ;

502 aDst [ i ] . vStdevWeightedH = weighted_stdev (aHData [ i ] . vSlope , aWeights , ∗ aWeightSize ) ;

503 aDst [ i ] . vStdevWeightedR2 = weighted_stdev (aHData [ i ] . vRSquared , aWeights , ∗ aWeightSize ) ;

504

505 aDst [ i ] . vStdevDelta = stdev (aHData [ i ] . vDeltaSlope , ∗ aWeightSize ) ;

506 aDst [ i ] . vStdevH = stdev (aHData [ i ] . vSlope , ∗ aWeightSize ) ;

507 aDst [ i ] . vStdevR2 = stdev (aHData [ i ] . vRSquared , ∗ aWeightSize ) ;

508

509 aDst [ i ] . vStdevWeightedD = weighted_stdev (aDData [ i ] . vSlope , aWeights , ∗ aWeightSize ) ;

510 aDst [ i ] . vStdevD = stdev (aDData [ i ] . vSlope , ∗ aWeightSize ) ;

511

512 // C l a s s i f y i n g the curve

513 c l a s s i f y_curveda ta ( aDst+i , aParams [ 0 ] , aParams [ 1 ] , aParams [ 2 ] , aParams [ 3 ] , aParams [ 4 ] , aParams [ 5 ] ) ;

514

515 }

516

517

518

519 //=============================================================================

520 // This s e c t i on o f code us used to compute the r e g r e s s i o n l i n e s

521 // I t conta ine s the OpenCL kerne l f o r computing the r e g r e s s i o n l i n e s

522 //

523 //=============================================================================

524

525 /∗∗

526 ∗ Ca l cu l a t e s the l i n e o f best f i t through a s e t o f ordered pa i r s

527 ∗ {( aData [ aF i r s t ] . x , aData [ aF i r s t ] . y ) , ( aData [ aF i r s t +1] . x , aData [ aF i r s t +1] . y )

528 ∗ , . . . ,

529 ∗ ( aData [ aLast ] . x , aData [ aLast ] . y ) } us ing the l e a s t squares method .

530 ∗ This func t i on w i l l modify aDst

531 ∗

532 ∗ Sxx = âĹŚ(x^2| i=1 to n) − n (x−bar )^2

533 ∗ <br>

534 ∗ Syy = âĹŚ(y^2| i=1 to n) − n (y−bar )^2

535 ∗ <br>

536 ∗ B−hat = âĹŚ( xy | i=1 to n) − (n x−bar y−bar ) /Sxx

537 ∗ <br>

538 ∗ A−hat = y−bar − B−hat∗x−bar

539 ∗ <br>

540 ∗ R^2 = (B−hat ) âĹŽ(Sxx/Syy )

541 ∗

542 ∗ @param aDst − The conta ine r f o r ho ld ing the r e s u l t s o f the r e g r e s s i o n

543 ∗ @param aData − The s e t o f ordered pa i r s to f i nd the l i n e a r model o f

544 ∗ @param aDataSize − The number o f element

545 ∗ @param aF i r s t − The f i r s t element o f the r e g r e s s i o n

546 ∗ @param aLast − The l a s t element o f the r e g r e s s i o n .

547 ∗/

548 __kernel void ca l cu l a t e_ lea s t_square s_reg r e s s i on ( __global s t r u c t LinearModel ∗ aDst ,

549 __global s t r u c t PointF∗ aData ,

550 unsigned long aDataSize ,

551 unsigned long aFir s t ,

552 unsigned long aLast ) {
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553

554 // I n i t i a l i z e the return argument

555 aDst−>vSumXY = 0 ;

556 aDst−>vSumXSquared = 0 ;

557 aDst−>vSumYSquared = 0 ;

558 aDst−>vBetaHat = 0 ;

559 aDst−>vAlphaHat = 0 ;

560 aDst−>vSxx = 0 ;

561 aDst−>vSyy = 0 ;

562 aDst−>vRSquared = 0 ;

563 aDst−>vRVal = 0 ;

564

565

566 //Performing the l i n e a r model c a l c u l a t i o n s

567

568 unsigned long l S i z e = aLast−aF i r s t +1;

569 aDst−>vMeanXY = calc_average_pt ( aData , aFi r s t , aLast ) ;

570

571 f o r ( unsigned long i = aF i r s t ; i < aLast+1; i++){

572 aDst−>vSumXY = aDst−>vSumXY + ( aData [ i ] . x ∗ aData [ i ] . y ) ;

573 aDst−>vSumXSquared = aDst−>vSumXSquared + ( aData [ i ] . x ∗ aData [ i ] . x ) ;

574 aDst−>vSumYSquared = aDst−>vSumYSquared + ( aData [ i ] . y ∗ aData [ i ] . y ) ;

575

576 }

577

578

579 aDst−>vBetaHat = ( aDst−>vSumXY − ( l S i z e ∗aDst−>vMeanXY. x∗aDst−>vMeanXY. y ) )

580 /( aDst−>vSumXSquared − ( l S i z e ∗aDst−>vMeanXY. x∗aDst−>vMeanXY. x ) ) ;

581 aDst−>vAlphaHat = aDst−>vMeanXY. y − ( aDst−>vBetaHat∗aDst−>vMeanXY. x ) ;

582 aDst−>vSxx = aDst−>vSumXSquared − ( l S i z e ∗aDst−>vMeanXY. x∗aDst−>vMeanXY. x ) ;

583 aDst−>vSyy = aDst−>vSumYSquared − ( l S i z e ∗aDst−>vMeanXY. y∗aDst−>vMeanXY. y ) ;

584 aDst−>vRVal = aDst−>vBetaHat∗ sq r t ( aDst−>vSxx/aDst−>vSyy ) ;

585 aDst−>vRSquared = aDst−>vRVal∗aDst−>vRVal ;

586

587

588 aDst−>vMinX = aData [ aF i r s t ] . x ;

589 aDst−>vMaxX = aData [ aLast ] . x ;

590

591 }

592

593 /∗∗∗

594 ∗ This func t i on computes the l i n e a r model and r e g r e s s i o n l i s t f o r the

595 ∗ s p e c i f i e d element .

596 ∗ Both aRL and aLM are modi f ied during t h i s c a l c u l a t i o n .

597 ∗

598 ∗ @param aRL − The s e t o f r e g r e s s i o n l i n e s

599 ∗ @param aLM − The l i n e a r model

600 ∗ @param aBounds − The s e t o f subse t s to compute the r e g r e s s i o n l i n e s over

601 ∗ @param aPa i rS i z e − The number o f subse t s in aBounds

602 ∗ @param aData − The s e t o f s e t s o f ordered pa i r s to compute the r e g r e s s i o n l i n e s f o r

603 ∗ @param aDataSize − The number o f s e t s o f conta ined in aData

604 ∗/

605 __kernel void calc_curvedata_rl ( __global s t r u c t Reg r e s s i onL i s t ∗ aRL ,

606 __global s t r u c t LinearModel ∗ aLM,

607 __global s t r u c t SizeTPair ∗ aBounds ,

608 __global unsigned long ∗ aPairS ize ,
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609 __global s t r u c t PointFList ∗ aData ,

610 __global unsigned long ∗ aDataSize ) {

611

612 //Find the cur rent row and column to compute the r e g r e s s i o n l i s t o f

613 unsigned long i = get_global_id (0) ;

614 unsigned long j = i /(∗ aDataSize ) ;

615 unsigned long k = i %(∗aDataSize ) ;

616

617 //Compute the r e g r e s s i o n o f the l i n e between the range s p e c i f i e d in aBounds

618 ca l cu l a t e_ lea s t_square s_reg r e s s i on (aLM+i ,

619 aData [ k ] . vData ,

620 aData [ k ] . vDataSize ,

621 aBounds [ j ] . f i r s t ,

622 aBounds [ j ] . second ) ;

623

624 // Set the va lues in the return va r i ab l e

625 aRL [ j ] . vSlope [ k ] = aLM[ i ] . vBetaHat ;

626 aRL [ j ] . v In t e r c ep t [ k ] = aLM[ i ] . vAlphaHat ;

627 aRL [ j ] . vRSquared [ k ] = aLM[ i ] . vRSquared ;

628

629 i f ( k==0){

630 aRL [ j ] . vAMin = aData [ k ] . vData [ aBounds [ j ] . f i r s t ] . x ;

631 aRL [ j ] . vAMax = aData [ k ] . vData [ aBounds [ j ] . second ] . x ;

632 }

633

634

635 }
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