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As lifespan is increasing globally, there is a critical need to identify strategies to extend 

healthspan and prevent chronic diseases into older age. The long-term goal of my 

research is to identify novel strategies to ameliorate aging-induced decline in 

hematopoietic stem cell (HSC) function. HSCs give rise to all mature blood and immune 

cells. With age, HSCs undergo defects in their differentiation ability which correlates 

with a decline in immune function. Lack of comprehensive knowledge of gene regulatory 

and epigenetic mechanisms underlying this defect is a barrier to developing therapies to 

ameliorate aging-associated decline in HSC function. Therefore, my project focuses on 

understanding the gene regulatory mechanisms underlying this decline in HSC function. 

Before delving into the gene regulatory mechanisms that go awry with age, it is important 

to identify which mechanisms are important for the differentiation of HSCs to mature 

cells. The majority of screening approaches for the identification of novel genes and gene 
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regulatory elements rely on robust in vitro assays. I have demonstrated that one such 

assay widely used in the field to differentiate hematopoietic stem and progenitor cells 

(HSPCs) to B-lymphoid cells performs in a qualitative rather than a quantitative manner 

which calls into question interpretations of results of this assay. Also, by mining publicly 

available gene expression data sets and data from an unpublished shRNA knockdown 

screen, I have identified that the epigenetic regulator lysine acetyltransferase 6b (Kat6b) 

is important for HSC function as well as demonstrated that KAT6B levels are 

significantly decreased in expression in aged long term-hematopoietic stem cells (LT-

HSCs) at the transcript and protein levels using qPCR and immunofluorescence. In 

addition, I have observed that knockdown of Kat6b leads to enhanced myeloid 

differentiation from LT-HSCs by using in vitro and in vivo assays which partially 

replicates aging-associated hematopoietic phenotypes. Transcriptome analysis suggests 

that Kat6b knockdown in LT-HSCs leads to dysregulation of differentiation signatures 

and an increase in inflammation. These data support increasing the levels of Kat6b as a 

novel therapeutic strategy for ameliorating aging-associated hematopoietic decline.  

 

 

 

 

 

 

 

 



v 

 

DEDICATION 

To my family, and in memory of the students who succumbed to challenges of mental 

health.   



vi 

 

ACKNOWLEDGEMENTS 

I acknowledge my Ph.D advisor, Dr. Jennifer Trowbridge, for giving me the opportunity 

to perform this work and for supporting me in every way during the course of my 

graduate studies. I also express my gratitude to my current committee members: Dr. 

Christopher Baker, Dr. Luanne Peters, Dr. Derry Roopenian, Dr. Dustin Updike and past 

committee member, Dr. Mary Ann Handel, for their valuable advice during my Ph.D. I 

further acknowledge past and present members of the Trowbridge Lab for their help and 

support in conducting this research and in my graduate school career in general. I also 

appreciate the help of computational services, genetic engineering technologies, genome 

technologies, microscopy core and flow cytometry core at the Jackson Laboratory. I 

thank past and present Directors of GSBSE, Dr David Neivandt and Dr. Clarissa Henry 

respectively, for giving me the opportunity to be a part of GSBSE program. I appreciate 

Tammy Crosby’s and Zhen Zhang’s continuous support in administrative and logistic 

issues of the program. Lastly, I acknowledge members of the Braun Lab and the Lu Lab 

for their help.  

 

 

 

 

 

 



vii 

 

TABLE OF CONTENTS 

DEDICATION ................................................................................................................... vi 

ACKNOWLEDGEMENTS .............................................................................................. vii 

LIST OF TABLES ............................................................................................................ xii 

LIST OF FIGURES ......................................................................................................... xiii  

Chapter  

1.     INTRODUCTION .......................................................................................................1 

1.1. The hematopoietic system generates blood and immune cells ...........................1 

1.1.1. Historical identification of HSCs. ..........................................................2 

1.1.2. Developmental hematopoiesis ...............................................................4 

    1.1.2.1. Primitive hematopoiesis ..................................................................5 

    1.1.2.2. Definitive hematopoiesis ................................................................6 

1.1.3. Bone marrow hematopoiesis ..................................................................8 

1.1.4. Assays for assessing differentiation of HSPCs ....................................13 

    1.1.4.1. In vitro assays ...............................................................................13 

                        1.1.4.2. In vivo assays ................................................................................14 

1.2. Changes in the hematopoietic system with age ................................................14 

1.2.1. Functional changes in the immune system with age ............................14 

1.2.2. Changes in the adaptive immune system with age ..............................15 

1.2.3. Changes in the innate immune system with age ..................................16 

1.2.4. Changes in HSCs with age ...................................................................16 

          

 



viii 

 

  1.3. Epigenetics and hematopoiesis .................................................................................19 

              1.3.1. Introduction to epigenetics .........................................................................19 

                  1.3.1.1. DNA methylation ................................................................................20 

                  1.3.1.2. Histone modifications .........................................................................21 

             1.3.2. Chromatin modifiers ...................................................................................22 

                 1.3.2.1. Histone methylation .............................................................................22 

                 1.3.2.2. Histone acetylation ...............................................................................23 

             1.3.3.MYST family of acetyltransferases .............................................................24 

                 1.3.3.1. KAT8 ...................................................................................................24 

                 1.3.3.2. KAT6A ................................................................................................25 

                 1.3.3.3. KAT6B .................................................................................................26 

          1.4. Epigenetic regulation of HSC function .............................................................27 

              1.4.1. Role of histone writers and erasers in HSC differentiation .......................27 

              1.4.2. Role of enhancers in HSC differentiation ..................................................29 

              1.4.3. Epigenetic changes in HSCs with age .......................................................31 

2.    RESULTS ...................................................................................................................33 

2.1. Optimization of assay for in-vitro differentiation of HSPCs to the  

       Lymphoid lineage and identification and characterization of lymphoid                  

       specific enhancers .............................................................................................34 

    2.1.1. Optimization of co-culture conditions .......................................................35 

    2.1.2. Minimizing variability in OP9 co-culture assay ........................................38     

 

 



ix 

 

2.1.3. Identification and characterization of lymphoid specific enhancers ..............43     

    2.1.3.1. In silico identification of putative lymphoid specific enhancers ............43 

    2.1.3.2. Strategy for ex vivo CRISPR/Cas9 mediated enhancer knockout                        

                 in primary cells .......................................................................................46  

        2.1.3.2.1. Determining efficiency of lentiviral transduction of Cas9 ..............46  

        2.1.3.2.2. Knockout by electroporation of in vitro transcribed sgRNA  

                        and Cas9 protein ..............................................................................51 

2.2. Aging-associated decrease in the histone acetyltransferase KAT6B is linked to                    

       myeloid-biased hematopoietic stem cell differentiation with age ..............................53 

    2.2.1. KAT6B decreases at the transcript and protein level in aged LT-HSCs .............61 

    2.2.2. Knockdown of Kat6b in LT-HSCs causes myeloid-biased in vitro  

              differentiation in CFU assays ...............................................................................63 

    2.2.3. Knockdown of Kat6b in LT-HSCs causes myeloid-biased  

              differentiation in vivo ...........................................................................................66     

    2.2.4. Knockdown of Kat6b in LT-HSCs decreases multilineage priming and  

              promotes expression of inflammation-associated gene signatures ......................71 

    2.2.5. H3K23ac levels trend towards decline in aged LT-HSCs ...................................76 

3.     METHODS ................................................................................................................78 

    3.1. Experimental animals ..............................................................................................78 

    3.2. Plasmids ..................................................................................................................78 

    3.3. Lentiviral supernatant for Kat6b knockdown experiments .....................................81 

    3.4 Lentiviral supernatant for pLenti-CRISPR-EGFP transduction optimization       

          experiments. .............................................................................................................81 



x 

 

    3.5. Titering of lentiviral supernatant ............................................................................81 

    3.6. Primary cell isolation ..............................................................................................82 

    3.7. Transduction of LT-HSCs, MPP4 cells ..................................................................83 

    3.8. Generation of concentrated virus by ultracentrifugation ........................................83 

     3.9. Electroporation of Cas9-sgRNA RNPs in HSPCs .................................................84 

     3.10. In vitro synthesis of sgRNAs ...............................................................................84 

     3.11. OP9 co-culture for differentiation to B-lymphoid cells .......................................85 

     3.12. Transduction optimization experiments for pLenti-CRISPR-EGFP ...................86 

     3.13. Colony forming unit (CFU) assays ......................................................................87 

     3.14. Real-time PCR .....................................................................................................87 

     3.15. Immunofluorescence staining of LT-HSCs .........................................................88 

     3.16. In vivo transplantation .........................................................................................88 

     3.17. RNA-seq ..............................................................................................................89 

     3.18. RNA-seq analysis .................................................................................................90 

     3.19. Statistical analysis ................................................................................................91 

4.     DISCUSSION ............................................................................................................92 

    4.1. OP9 co-culture of HSPCs is a qualitative assay .....................................................92   

    4.2. The OP9 assay is not suitable for enhancer loss of function studies ......................94   

    4.3. Kat6b is a novel therapeutic target for ameliorating aging-associated decline                  

           in HSCs ...................................................................................................................95 

5.     CONCLUSIONS .......................................................................................................99 

REFERENCES ................................................................................................................102  

AUTHOR BIOGRAPHY ................................................................................................129 



xi 

 

LIST OF TABLES 

 

Table 1.1. Common histone modifications and their associated function in gene 

regulation. .....................................................................................................22 

Table 2.1. Criteria for identification of putative lymphoid specific enhancers .............44 

Table 2.2. Genome loci of enhancers short-listed for functional characterization ........46 

Table 2.3. Sixteen chromatin regulatory genes for shRNA screening identified  

                      using an unbiased differential expression approach ....................................57 

Table 2.4. Eight chromatin regulatory genes for shRNA screening identified  

                     using a candidate gene approach ...................................................................58 

Table 3.1. shRNA plasmids ...........................................................................................78 

Table 3.2. Primer sequences ..........................................................................................79 

Table 3.3. Oligos for CRISPR/Cas9 knockout ..............................................................85 

 

	

	

	

	
 

	
 

 



xii 

 

	
LIST OF FIGURES 

Figure 1.1. The hematopoietic system generates immune and blood cells. .......................1 

Figure 1.2 The classical hierarchy of the hematopoietic system. ......................................9 

Figure 1.3 The revised hierarchy of the hematopoietic system. ......................................11 

Figure 1.4 Hematopoiesis is a process of continuous differentiation ..............................12 

Figure 1.5 Cellular changes in HSC lineage potential with age. .....................................18 

Figure 1.6 Schematic for priming and activation of enhancers. ......................................30 

Figure 2.1 Schematic for in vitro differentiation of HSPCs to B-lymphoid cells. ..........35 

Figure 2.2. Optimization of OP9 seeding density, serum type and read-out time                    

                    point. ..............................................................................................................37 

Figure 2.3 Correlation between HSPC number and lymphoid differentiation  

                    ability with OP9 stromal cells. .......................................................................39 

Figure 2.4 Effect of passaging on differentiation ability in OP9 co-culture assay ..........41 

Figure 2.5 Effect of OP9-HSPC contact on differentiation ability in OP9  

                    co-culture assay. .............................................................................................42 

Figure 2.6 Graphical representation of priming and activation status of putative 

enhancers active in B-cells .............................................................................45 

Figure 2.7 Schematic of generation of viral supernatant containing  

                    pLentiCRIPSR-EGFP with 3rd and 4th generation lentiviral packaging 

systems ...........................................................................................................47 

 

 



xiii 

 

Figure 2.8 No difference in transduction efficiency of whole BM cells  

                    transduced with lentivirus packaged with 3rd and 4th generation               

packaging systems .........................................................................................48 

Figure 2.9 Effect of number of transductions on transduction efficiency .......................48 

Figure 2.10. Effect of viral concentration by volume of culture media on              

transduction efficiency ...................................................................................49 

Figure 2.11. Effect of concentrated virus on transduction efficiency. ...............................50 

Figure 2.12 Knockout of enhancer B1 results in a reduction in percentage of             

CD19+ cells ....................................................................................................51  

Figure 2.13 Candidate selection for screen for epigenetic regulators of myeloid             

versus B-lymphoid differentiation .................................................................55 

Figure 2.14 Functional shRNA screen for epigenetic regulators of myeloid                    

versus B-lymphoid differentiation identifies Kat6b ......................................60 

Figure 2.15 KAT6B is decreased in aged LT-HSCs .........................................................62 

Figure 2.16 Kat6b knockdown alters myeloid differentiation of LT-HSCs in vitro .........64 

Figure 2.17 Kat6b knockdown alters myeloid and erythroid differentiation of                      

LT-HSCs in vivo ............................................................................................67 

Figure 2.18 Multilineage engraftment of LT-HSCs following Kat6b knockdown ...........70 

Figure 2.19 Kat6b knockdown alters gene expression programs critical for             

multilineage differentiation ............................................................................73 

Figure 2.20 Alterations in H3K23ac with aging ...............................................................76 

Figure 5.1 Model of link between Kat6b and aging-associated hematopoietic               

decline ..........................................................................................................100



1 

 

CHAPTER 1 

INTRODUCTION 

1.1. The hematopoietic system generates blood and immune cells 

Blood development (hematopoiesis) is the process of generating and replenishing 

blood and immune cells throughout the lifespan of an organism (Orkin, 2000). The 

cellular products of the hematopoietic system can be broadly classified into three main 

lineage types: erythroid, myeloid and lymphoid lineages (Figure 1.1).  

                             

Figure 1.1. The hematopoietic system generates immune and blood cells. 

 

The lymphoid lineage consists of B, T and natural killer (NK) cells. B and T cells 

constitute the adaptive part of the immune system whereas NK cells contribute to the 

innate immune system (Olsen Saraiva Camara, Lepique, & Basso, 2012). These 

lymphocytes execute their functions in several ways including direct interrogation of 

foreign pathogens and activation of components of the innate immune system like 
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macrophages (Olsen Saraiva Camara et al., 2012). The myeloid compartment consists of 

dendritic cells, monocytes, macrophages and, granulocytes (Bassler, Schulte-Schrepping, 

Warnat-Herresthal, Aschenbrenner, & Schultze, 2019). These cells contribute to the 

immune system by phagocytosis of foreign particles and by secreting inflammatory 

cytokines (Kawamoto & Minato, 2004). The erythroid lineage broadly incorporates 

megakaryocytic and erythroid lineages which are responsible for the production of 

platelets and red blood cells respectively. A rare population of cells in the bone marrow, 

HSCs, is responsible for generating all these cells through by tightly regulated processes 

of differentiation and self-renewal (Orkin, 2000) where self-renewal consists of stem 

cells dividing to produce more stem cells (He, Nakada, & Morrison, 2009).  

1.1.1. Historical identification of HSCs 

Roots of stem cells can be traced to Ernst Haeckel, a German Biologist, who first 

employed the term “Stammzelle” (stem cell) to represent a unicellular organism from 

which all other organisms evolved (Ramalho-Santos & Willenbring, 2007). He later 

proposed that a fertilized egg can be also described as a stem cell (Ramalho-Santos & 

Willenbring, 2007). Later, Boveri proposed that cells that lie on the developmental 

trajectory between a fertilized egg and committed germ cells should be called stem cells. 

These ideas represented the first characteristic of a stem cell, that is, the ability to give 

rise to multiple cell lineages. Later, Häcker observed that a particular cell in Cyclops, 

which he also called a stem cell, went through asymmetric differentiation and gave rise to 

mesoderm and a germ cell (Ramalho-Santos & Willenbring, 2007). This provided the 

second key characteristic of stem cells, that is, the ability to self-renew. Although, we 

now know that “stem cells” mentioned in these early studies represented germline stem 
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cells (Ramalho-Santos & Willenbring, 2007), these studies were critical in establishing 

the key characteristics of stem cells. Roughly at the same time the aforementioned ideas 

were being investigated, the identification of different types of white blood cells by Paul 

Ehlrich had sparked a debate about the existence of a single precursor of the 

hematopoietic system (Ramalho-Santos & Willenbring, 2007). One school of thought 

held the theory that myeloid and lymphoid cells originated from distinct progenitors and 

took place in distinct anatomical locations, whereas the other school of thought held the 

opinion that myeloid, erythroid and lymphoid cells originate from a single precursor 

(Ramalho-Santos & Willenbring, 2007).  

This issue was resolved when key studies done in the 1960s by Till and 

colleagues and others showed the presence of a single hematopoietic progenitor cell 

which could give rise to myeloid, erythroid and lymphoid cells and had the ability to self-

renew. Transplantation of nucleated bone marrow cells in irradiated recipients produced 

colony forming units (CFUs) in recipients’ spleens (Till & McCulloch, 2012). These 

CFUs consisted of erythroblast, myelocytes, metamyelocytes as well as megakaryocytes 

(Till & McCulloch, 2012). Similar experiments also provided evidence that these CFUs 

in the spleen (CFU-S) could also give rise to the lymphoid cells in the thymus (Wu, Till, 

Siminovitch, & McCulloch, 1968). These were the first reports which provided evidence 

for the existence of cells in the bone marrow having the ability to differentiate into the 

three hematopoietic lineages, which is one of the key characteristics of HSCs. When 

CFU-S were harvested from spleens of recipient mice and transplanted into secondary 

recipients, spleens of these recipients also harbored CFU-S (Siminovitch, McCulloch, & 

Till, 1963), which further showed that progenitor cells exist in the bone marrow that have 



4 

 

multilineage differentiation as well as self-renewal abilities. However, these studies still 

did not provide proof that a single progenitor cell in the bone marrow had the ability to 

give rise to a complete CFU-S. This proof was provided when donor bone marrow cells 

were irradiated before transplantation into recipients (Becker, McCulloch, & Till, 1963). 

Irradiation of these donor bone marrow cells resulted in each cell having a distinct 

karyotype. The cells within a single CFU-S colony in recipients were observed to contain 

similar karyotypes (Becker et al., 1963). This study showed that CFU-S arises from a 

single progenitor cell in the bone marrow of donor mice which had multilineage 

differentiation and self-renewal ability. Therefore, these studies provided the evidence, in 

the context of spleen colony units, for the existence of a stem cell that satisfied the key 

characteristics of HSC. However, the identity of HSCs was not revealed until cells were 

prospectively isolated by distinct cell surface markers (Weissman & Shizuru, 2008), 

starting from the enrichment of HSCs based on the Sca1+ cell surface maker (Spangrude, 

Heimfeld, & Weissman, 1988). This ability to isolate HSCs allowed elucidation of the 

journey of HSCs during development and adult stages.  

1.1.2. Developmental hematopoiesis 

Hematopoiesis in vertebrates occurs in two waves;  the primitive wave and the 

definitive wave (Galloway & Zon, 2003). The primitive wave generates unipotent 

progenitors like nucleated erythrocytes whereas the definitive wave involves the 

production of multipotent progenitors like HSCs (Dzierzak & Bigas, 2018; Galloway & 

Zon, 2003). The definitive wave can sustain hematopoiesis for the lifespan of an 

organism. These two waves of hematopoiesis take place in distinct anatomical locations 

(Galloway & Zon, 2003) which will be described in the following sections.  
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1.1.2.1. Primitive hematopoiesis  

 The hematopoietic system in mice arises in the mesodermal germ layer (Dzierzak 

& Medvinsky, 1995). This primitive hematopoiesis primarily produces cells of erythroid, 

megakaryocytic and myeloid lineages (Palis, 2016) with limited lymphoid potential, and 

originates from the yolk sac blood islands which are considered to be the first site for 

development of blood and vascular systems in vertebrate embryos (Ferkowicz & Yoder, 

2005). In mice, blood islands, also known as mesodermal cells masses or angioblastic 

cords, originate from mesodermal cells in the yolk sac between E7-E7.5 (Palis & Yoder, 

2001). Visceral endoderm in the yolk sac provides the signals which lead to formation of 

blood cells (Palis & Yoder, 2001). Extra-embryonic mesodermal sheet gives rise to 

mesodermal masses which serve as precursors for blood islands which contain common 

endothelial and hematopoietic progenitors called hemangioblasts.(Ferkowicz & Yoder, 

2005). Hemangioblasts give rise to a common erythroid and megakaryocyte progenitor 

(Tober et al., 2007).  

The cells on the outer layer of the blood island differentiate into endothelial cells 

whereas inner cells differentiate into primitive erythroblasts (Palis & Yoder, 2001). These 

erythroblasts start circulation in the embryo proper when cardiac contractions start at 

E8.25 (Palis, 2016). These primitive erythroblasts go through several changes involving 

reduction in cell size, production of hemoglobin, mitochondria loss, nuclear condensation 

and, express embryonic globin genes (Palis, 2016). Primitive erythroblasts become 

enucleated around E12.5-E16.5 and are found to be in circulation a few days after birth 

(Palis, 2016).  
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Megakaryocyte progenitors also start to appear around E7.5-E10.5 with limited 

potential for endoreduplication (Tober et al., 2007), which is the process of replication of 

the genome without cell division (Ullah, Lee, Lilly, & DePamphilis, 2009). A limited 

number of platelets are also found to be circulating starting from E9.5 (Palis, 2016). 

Similar to primitive megakaryocyte cells, primitive myeloid cells originate at 

E7.25 having predominantly macrophage differentiation potential (Palis, 2016). 

However, myeloid progenitors with neutrophil, mast cell, and granulocyte-macrophage 

differentiation potential start to appear from E8.25 (Palis, 2016). In addition, E8 - E9 yolk 

sac was found to have B and T-cell reconstitution potential in recipient mice which were 

deficient for B and T-cells (Palacios & Imhof, 1993). Tracking of labeled yolk sac cells 

in recipient mice also revealed that these cells gave rise to adult HSCs (Samokhvalov, 

Samokhvalova, & Nishikawa, 2007). Therefore, these studies showed that after E8-9 

hematopoietic progenitor cells in the yolk can be defined as stem cells because of their 

multilineage differential and self-renewal potential.    

1.1.2.2. Definitive hematopoiesis 

The aorta, gonad, mesonephros (AGM) region is the primary site for definitive 

hematopoiesis (Zon, 1995). Cells from the AGM were observed to have 200 times more 

CFU-S as compared to yolk sac on day 10 days post coitum (DPC) in mice (Medvinsky, 

Samoyllna, Miillert, & Dzlerzakt, 1993; Sánchez, Holmes, Miles, & Dzierzak, 1996) 

which shows that cells from the AGM contain cells with characteristics similar to the 

HSCs. CFU-S content starts to decline in the AGM from DPC 11 which coincides with 

an increase in CFU-S in the fetal liver (Medvinsky et al., 1993). In addition, cells from 

the aorta were found to migrate into the lumen of the aorta which showed the exit of 
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potential HSCs towards fetal liver (Galloway & Zon, 2003). This results in the fetal liver 

becoming the next site for the hematopoietic development. 

The fetal liver provides the next niche for definitive hematopoiesis where 

hematopoietic progenitors undergo expansion and maturation (Ciriza, Thompson, 

Petrosian, Manilay, & García-Ojeda, 2013). At around 12.5 DPC HSCs go through 

expansion and differentiation mainly in the fetal liver (Mikkola & Orkin, 2006). Initially, 

fetal liver hematopoiesis focuses on the production of erythroid cells, which later 

incorporates the production of myeloid and lymphoid cells as well (Mikkola & Orkin, 

2006). 

As mentioned before, nucleated erythroblasts decline and nonnucleated erythroid 

cells increase in circulation by 12 DPC (Galloway & Zon, 2003). HSCs start to populate 

long bones from E17.5 (Mikkola & Orkin, 2006).  

Fetal liver HSCs contain several differences as compared to adult HSCs (Beaudin 

et al., 2016; Bowie et al., 2007; Matsuoka et al., 2001). Transplantation of CD34- and 

CD34+ HSCs from fetal liver and adult bone marrow in irradiated mice showed that fetal 

HSCs are marked with CD34+ whereas adult HSCs (after 8 weeks of age) are marked by 

CD34- (Matsuoka et al., 2001). Besides, fetal HSCs have a higher capacity for 

regeneration of HSCs as compared to their 4-week old counterparts (Bowie et al., 2007). 

This is accompanied by higher expression of genes associated with HSC cycling/self-

renewal (e.g. IKAROS family zinc finger 1 (Ikaros), Polyhomeotic 1 (Rae-28)) in fetal 

HSCs as compared to adult HSCs (Bowie et al., 2007). Fetal HSCs also produced a 

higher percentage of myeloid cells when transplanted into irradiated recipients (Bowie et 

al., 2007).  These observations show that fetal HSCs perform the function of generating a 
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higher number of HSCs which can sustain hematopoiesis for the lifespan for an organism. 

However, in adulthood, the focus of the hematopoietic system switches to the 

maintenance of numbers of HSCs.  

1.1.3. Bone marrow hematopoiesis 

Adult HSCs are responsible for production of all mature blood and immune cells. 

However, the differentiation pathways that lead to mature cells from HSCs have been 

revised several times (Y. Zhang, Gao, Xia, & Liu, 2018). In the 2000s, HSCs were 

considered to undergo sequential differentiation steps producing progenitors with 

successive restriction in self-renewal and differentiation potential ultimately leading to 

the generation of mature cells (Adolfsson et al., 2005; Akashi K, Traver D, Miyamoto T, 

& IL, 2000; Kondo, Weissman, & Akashi, 1997; Morrison, Wandycz, Hemmati, Wright, 

& Weissman, 1997; L. Yang et al., 2005).  
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Figure 1.2. The classical hierarchy of the hematopoietic system.  

According to this classical view of the hematopoietic hierarchy (Figure 1.2), LT-

HSCs have long term reconstitution ability which was assessed by multilineage 

chimerism of donor LT-HSCs for 15 weeks after being transplanted into the primary 

recipient mice (Christensen & Weissman, 2001; Mastake, Hanada, Hamada, & Nakauchi, 

1996) as well as self-renewal ability which was assessed by chimerism in the secondary 

recipients (Smith, Weissman, & Heimfeldtt, 1991). These LT-HSCs then differentiate 

into short-term HSCs (ST-HSCs) which still retain multilineage differentiation ability but 

do not have long term (greater than 15-16 weeks) reconstitution ability like LT-HSCs (L. 

Yang et al., 2005). ST-HSCs have faster kinetics of reconstituting recipients as compared 

to LT-HSCs (L. Yang et al., 2005), suggesting that ST-HSCs might contribute more 

towards steady-state hematopoiesis as compared to LT-HSCs. ST-HSCs give rise to 
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multipotent progenitors (MPPs) which have multi-lineage reconstitution ability with no 

self-renewal potential (Y. Zhang et al., 2018). After MPPs, myeloid and lymphoid 

lineages separate into lineage-committed progenitors; common lymphoid progenitors 

(CLPs) and common myeloid progenitors (CMPs) respectively (Akashi K et al., 2000; 

Kondo et al., 1997). CLPs, identified by the expression of the interleukin 7 receptor 

(IL7RA) marker, were found to harbor B and T-cell reconstitution ability with no 

myeloid reconstitution ability in vivo (Kondo et al., 1997) and expressed low levels of 

genes like GATA binding protein 3 (Gata-3) and paired box 5 (Pax5) which are 

important for the lymphoid lineage (Akashi K et al., 2000). Whereas, CMPs, identified by 

the absence of IL7RA marker, were found to have in vitro and in vivo myeloid and 

erythroid differentiation ability (Akashi K et al., 2000) but had no B and T-cell 

reconstitution ability (Boyer et al., 2019). CMPs gave rise to granulocyte-macrophage 

progenitors (GMPs) and megakaryocyte erythrocyte progenitors (MEPs). Transplantation 

of MEPs in irradiated recipients only produced TER119+ erythroid cells, whereas GMPs 

only produced MAC1+/GR1+ myeloid cells in similar experiments (Akashi K et al., 

2000). GMPs and MEPs were found to express genes important for myeloid and 

erythroid lineages respectively (Akashi K et al., 2000).  Therefore, according to these 

earlier studies HSCs went through stepwise restriction of lineage fates starting from 

separation of the lymphoid lineage from the myeloid/erythroid lineages, followed by the 

separation of the erythroid lineage from the myeloid lineage.  
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Figure 1.3. The revised hierarchy of the hematopoietic system.  

The aforementioned classical view of the hematopoietic hierarchy began to be 

revised (Figure 1.3) with the identification and characterization of different types of 

MPPs (Cabezas-Wallscheid et al., 2014; Pietras et al., 2015b; Wilson et al., 2008). New 

MPPs (MPP1, MPP2, MPP3, and MPP4) were identified by varied expression patterns of 

CD150, CD48, and CD135 cell surface markers (Wilson et al., 2008). HSPCs were 

defined by following cell surface markers: LT-HSCs (lineage- Sca1+ cKit+ Flt3- CD150+ 

CD48-), ST-HSCs (lineage- Sca1+ cKit+ Flt3- CD150- CD48-), MPP2 (lineage- Sca1+ 

cKit+ Flt3- CD150+ CD48+), MPP3 (lineage- Sca1+ cKit+ve Flt3- CD150- CD48+) and 

MPP4s (lineage- Sca1+ cKit+ Flt3+ CD150-) (Pietras et al., 2015a). 

These MPPs also showed different quiescence and cell cycling properties, with 

MPP1s being the most quiescent and MPP2, MPP3, and MPP4s showing higher cycling 

(Wilson et al., 2008). Using a combination of in vitro CFU and in vivo reconstitution 
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experiments, MPP2s were found to be biased towards the megakaryocyte/erythroid 

lineage, MPP3s were biased towards myeloid lineages whereas MPP4s had a lymphoid 

bias (Pietras et al., 2015a). However, all of these MPPs were found to have minor 

contributions towards the rest of the two lineages which they were not biased towards: 

MPP2s had myeloid and lymphoid contributions, MPP3s had lymphoid and erythroid 

contributions, and MPP4s had myeloid and erythroid differentiation potential (Pietras et 

al., 2015a). These studies provided evidence against strict restriction of lineage potential 

during differentiation of HSCs to mature cells which had been presented by earlier 

studies.  

																														 	
Figure 1.4. Hematopoiesis is a process of continuous differentiation.  

The advent of single-cell genome technologies enabled a more thorough 

interrogation of the differentiation potential of hematopoietic cells (Y. Zhang et al., 
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2018). Single-cell RNA-seq (scRNA-seq) of HSPCs has now shown that the 

differentiation potential of these cells changes along a continuum rather than discrete 

states in mice (Dahlin et al., 2018). These findings were also observed in human 

hematopoiesis, where investigation of single-cell chromatin accessibility (scATAC-seq) 

revealed a continuous relationship among hematopoietic cells and also showed 

heterogeneity among cell populations which were considered to be homogenous by 

characteristic cell surface maker patterns (Buenrostro et al., 2018). These studies support 

a model of hematopoiesis in which HSPCs lie on a continuous spectrum of differentiation 

potential rather than following discrete steps which then ultimately produces mature cells 

(Figure 1.4).  

1.1.4. Assays for assessing differentiation of HSPCs 

Studies involving hematopoiesis have relied on a variety of in vitro and in vivo 

assays for assessing the functional potential of HSPCs.  

1.1.4.1. In vitro assays 

In vitro assays for interrogating the differentiation potential of HSPCs can be 

broadly classified into liquid culture assays and semi-solid methylcellulose-based assays. 

Liquid culture-based assays involve culturing of HSPCs in presence of growth factors 

which promote differentiation to towards each lineage or combination of 

erythroid/myeloid and lymphoid lineages which is followed by an assessment of the 

differentiation potential by flow cytometry (Adolfsson et al., 2005; Young et al., 2016a). 

For assessment of B-lymphoid differentiation potential, co-culture with OP-9 stromal 

cells has been employed (Nakano, Kodama, & Honjo, 1994; Pietras et al., 2015a; Viera 

& Cumano, 2004). Colony forming unit (CFU) assays provide a measure of number and 
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type of progenitor cells by using defined methylcellulose media (Purton & Scadden, 

2007). Specific methylcellulose media are commercially available which promote 

differentiation to myeloid, erythroid or lymphoid lineages. These CFU assays produce 

colonies whose number and morphology give a measure of the respective type of 

progenitor present in the population of cells that was plated in the assay.  

1.1.4.2. In vivo assays 

In vivo assays for assessment of hematopoietic stem/progenitor cells involve 

transplantation of the respective population into myeloablated recipients (Adolfsson et 

al., 2005; Pietras et al., 2015a). The ability of transplanted cells to reconstitute the 

recipient hematopoietic system is measured by the peripheral blood composition of the 

recipient mice by flow cytometry. For assessment of long-term reconstitution potential 

transplanted mice are observed for 4-6 months (Purton & Scadden, 2007). For 

determination of true hematopoietic stem cell function involving self-renewal, bone 

marrow from primary recipients is transplanted into secondary myeloablated recipients to 

assess multilineage reconstitution potential. The ability to reconstitute secondary 

recipients shows self-renewal potential of the transplanted population. 

1.2. Changes in the hematopoietic system with age   

1.2.1 Functional changes in the immune system with age 

Aging involves a progressive decline in a variety of cellular systems which results 

in a decline in the healthspan, the period of time from birth until the organism remains 

free from chronic diseases and aging-associated diseases (Kaeberlein, 2018).  Among 

these changes, reduction in immune system function has a significant contribution to the 

shortening of healthspan. As the immune system is responsible for detection and 
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neutralizing pathogens and foreign particles (Parkin & Cohen, 2001), the elderly become 

more susceptible to infections leading to more frequent and severe infections (Dorshkind, 

& Swain, 2009). For example, 80-90% of the mortalities due to infection by influenza 

occur in individuals 65 years or older (Dorshkind, Montecio-Rodriguez, & Signer, 2009). 

Aging also involves deterioration in the efficiency of vaccination and the diminished 

ability of immune cells to detect malignant cells (Ponnappan & Ponnappan, 2011). In the 

context of human bone marrow transplantation, marrow from older individuals is less 

successful at reconstituting the immune system in recipients (Dorshkind et al., 2009). 

Another functional consequence of aging is an increase in the incidence of anemia, which 

is linked to dementia and cardiovascular disease (Ferrucci & Balducci, 2003). 

1.2.2. Changes in the adaptive immune system with age  

Functional degeneration of the immune system is associated with changes in both 

the adaptive and innate systems. The adaptive immune system consists of antigen-

specific responses to pathogens mounted by T and B lymphocytes, whereas the innate 

immune system involves chemical, physical and microbiological barriers and cellular 

responses by monocytes, neutrophils, macrophages, complement, cytokines and acute 

phase proteins (Parkin & Cohen, 2001). Age-associated regression in adaptive immunity 

involves changes in both T cell and B cells. With age, T cell proliferation decreases in 

vitro and in vivo and number of naive T cells decrease with a corresponding increase in 

memory T cells (Miller, 1996). Contrary to T cells, overall numbers of B cells in 

peripheral lymphoid organs do not change with age (Kogut, Scholz, Cancro, & Cambier, 

2012). However, there is an increase in the proportion of B cells derived from a relatively 

small number of clones (Miller, 1996). Germinal centers are a collection of B-cells that 
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are responsible for the generation of diverse and specific antibodies which also involves 

somatic hypermutation (Victora & Nussenzweig, 2012). Antibody diversity (generated by 

hypermutation in germinal centers) also diminishes with age and overall antibody 

production declines as well (Miller, 1996). 

1.2.3. Changes in the innate immune system with age  

Activation of the innate immune system with age results in misregulation of 

inflammatory responses (Shaw, Goldstein, & Montgomery, 2013). This involves 

upregulation of pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-18 (IL-

18), interleukin-1β (IL-1β) and tumor necrosis factor (TNFα) (Mcmichael, Simon, & 

Hollander, 2015). Neutrophils and macrophages are effectors of the innate immune 

system (Solana, Pawelec, & Tarazona, 2006). Neutrophils are the first to arrive at sites 

infected by pathogens, and their ability to migrate in and out of infectious sites decreases 

with age (Shaw et al., 2013). Aging is also associated with a decline in the phagocytotic 

ability of both neutrophils and macrophages as well as decreased cytotoxic activity 

towards phagocytosed pathogens (Shaw et al., 2013).   

1.2.4. Changes in HSCs with age: 

Intuitively, the frequency of HSCs should decrease with age, which would 

correspond with a decline in the immune function. However, quantification of HSCs with 

different types of HSC specific staining schemes shows that the frequency of HSCs 

actually increases with age in mice (Dykstra, Olthof, Schreuder, Ritsema, & De Haan, 

2011; Morrison, Andycz1, & Weissman, 1996; Rodrigues, Maciel-Filho, Asenjo, Zaror, 

& Maugeri, 1997; Sudo, Ema, Morita, & Nakauchi, 2000) and humans (Taraldsrud et al., 

2009). Increased variability in the frequency of HSCs among old mice was also observed 
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(Dykstra et al., 2011). However, increased HSCs’ frequency is not followed by a 

corresponding increase in the function of HSCs. Approximately ten HSCs from 2-14-

month old mice were able to achieve 63% limiting dilution frequency (the frequency of 

transplanted cells at which 63% of transplanted recipients showed reconstitution of 

hematopoietic system) of irradiated recipients when co-injected with 2 x 105 support 

cells, whereas 40 HSCs from 24-month-old mice were required to achieve the same 

results (Morrison et al., 1996). Reduction in the ability of individual HSC to form 

colonies was also shown by decreased cobblestone area forming capacity, which 

measured the in vitro differentiation ability of stem cells (Theilgaard-Mönch, 2008), of 

old HSCs (Dykstra et al., 2011). This shows that the overall reconstitution ability of 

HSCs decreases with age. In addition to increases in numbers of HSCs, the lineage 

capacity of HSCs also changes with age. HSCs from old mice are biased towards the 

myeloid lineage at the expense of the lymphoid lineage (Chung & Park, 2017). 

Transplantation of old HSCs compared to young HSCs leads to higher myeloid 

reconstitution and lower lymphoid reconstitution capacity which included increased 

percentages of GMPs and decreased percentages of CLPs (Rodrigues et al., 1997). 

Therefore, aged HSCs have higher myeloid and lower lymphoid differentiation potential 

(Figure 1.5).  
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Figure 1.5. Cellular changes in HSC lineage potential with age.  

However, these studies involved transplantations that are conducted under non-

physiological conditions involving isolation of cells from their normal environment 

inside the bone marrow and exposure various kind of stresses in the process. The results 

of those experiments might not provide an accurate picture of HSC function in 

endogenous conditions (Säwen et al., 2018). Native labeling, which involves labelling of 

the cells in endogenous niches like bone marrow, of old and young HSCs has shown that 

multilineage differentiation ability decreases with age (Säwen et al., 2018). The 

frequency of platelet-biased HSCs increases with age as well, along with enrichment for 

gene signatures corresponding to pre-MegE (megakryocyte/erythroid) and 

megakaryocyte genes (Grover et al., 2016). Apart from impaired regenerative and 

differentiation abilities, HSCs from old mice also have reduced homing capability 

(Dykstra et al., 2011).  
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Therefore, HSCs undergo several changes during aging, consisting of an increase in 

frequency, a bias towards differentiation to the myeloid cell types, and a decrease 

towards differentiation to the lymphoid cell types. That is why it is important to identify 

gene regulatory and epigenetic mechanisms driving these changes in HSCs with age.  

1.3. Epigenetics and hematopoiesis 

1.3.1. Introduction to epigenetics  

The development of complex multicellular organisms from single cells involves a 

series of differentiation and division cycles while maintaining the same genome 

sequence. Changes in gene expression profiles are critical processes for the regulation of 

cell fate which aids in the development of a complex organism. Additionally, 

homeostasis and preservation of cellular identity through cellular division requires 

specific gene expression patterns to be maintained. Epigenetic mechanisms orchestrate 

these changes in gene expression profiles via changes in chromatin accessibility. The 

term ‘epigenetics’ was coined by Conrad Waddington and was defined as “the branch of 

biology which studies the causal interactions between genes and their products, which 

bring the phenotype into being” (Goldberg, Allis, & Bernstein, 2007).  This involves 

heritable variation that occurs without changes in the DNA sequence (Butler & Dent, 

2013a). DNA is wrapped around histones that are made up of a tetramer of histone 

proteins H2A, H2B, H3 and H4 which constitute a nucleosome (T. Chen & R Dent, 

2013). N- and C- terminal tails of these histone proteins are exposed and have the ability 

to interact with surrounding nucleosomes and linker DNA that connects adjacent 

nucleosomes (T. Zhang, Cooper, & Brockdorff, 2015). Covalent modifications of DNA 
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and histone tails can lead to direct reversible changes in chromatin structure and also 

serve as binding sites for recruitment of other non-histone proteins like adenosine 

triphosphate (ATP) dependent chromatin remodeling complexes, which exchange 

different types of histone and change position of histones by using energy from ATP 

hydrolysis (T. Chen & R Dent, 2013). Packaging and accessibility status of chromatin on 

target loci dictate their pattern of expression. Tightly packaged chromatin is considered 

heterochromatin and is associated with transcriptional repression, whereas accessible 

chromatin is considered euchromatin and is associated with transcriptional activation (T. 

Chen & R Dent, 2013). Epigenetic processes that lead to changes in chromatin 

architecture involve DNA methylation and post-translational modifications of the histone 

tails (Butler & Dent, 2013a). Replacement of canonical histones by non-canonical 

histones like H3.3 and H2A.Z can also serve to modify the chromatin accessibility and 

modify the expression of target loci (T. Zhang et al., 2015). In addition, non-coding 

RNAs, functional RNAs that are not translated, have the ability to regulate transcription, 

splicing, and translation to regulate expression of genes (T. Chen & R Dent, 2013). 

1.3.1.1. DNA methylation 

DNA methylation involves the covalent attachment of a methyl group to the 

cytosine base in a CpG dinucleotide context (Conerly & Grady, 2010) and follows a 

broad spectrum of variation in levels and patterns in animals (Bird, 2002). Cytosine 

methylation is generally associated with gene repression and heterochromatin formation 

and is considered a stable epigenetic mark (Butler & Dent, 2013a). DNA methylation is 

catalyzed by two classes of enzymes: the maintenance methyltransferase, DNA 

methyltransferase 1 (DNMT1), and the de-novo methyltransferases which include DNA 



21 

 

methyltransferase 3a (DNMT3A) and DNA methyltransferase 3b (DNMT3B) (Conerly & 

Grady, 2010). In addition, DNMT3L aids in the stimulation of de-novo methyltransferase 

activity of Dnmt3a  (Dé Ric Ché, Lieber, & Hsieh, 2002). Patterns of cytosine 

methylation established by these enzymes play important roles in chromatin organization 

and gene regulation during organogenesis and gametogenesis (Goldberg et al., 2007). 

DNA methylation is found throughout vertebrate genomes (Schübeler, 2015). Most of the 

CpGs found in mammalian genomes are methylated (Field et al., 2018). When present in 

gene bodies, DNA methylation aids in gene expression, whereas when found on distal 

regulatory sequences, like enhancers, it promotes repression (Field et al., 2018).  These 

changes in gene expression are brought about by methylation-dependent interactions with 

transcriptional activators and repressors (Conerly & Grady, 2010). In addition, DNA 

methylation is critical for numerous cellular processes like the silencing of the repetitive 

sequences, X-chromosome inactivation and genomic imprinting. 

1.3.1.2. Histone modifications  

Residues on histone tails can be post-translationally modified, which include 

methylation, acetylation, sumoylation, phosphorylation, ubiquitination, de-amination, 

adenosine diphosphate (ADP)-ribosylation and buturylation (Lawrence, Daujat, & 

Schneider, 2016a). According to the “histone code” hypothesis histone modifications can 

serve as recruitment sites for effector proteins (Jenuwein & David Allis, 2001). These 

histone fold modifications can disrupt the interaction between nucleosomes, for example 

acetylation of lysine 16 of histone H4 (H4K16ac) has been associated with a decrease in 

chromatin compaction and increase in transcription (Lawrence, Daujat, & Schneider, 

2016b). Whereas, histone modifications like trimethylation at lysine 20 of histone H4 
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(H4K20me3) have been shown to enhance chromatin compaction (Lawrence et al., 

2016b). Some common histone modifications and their functions are listed in Table1.1.   

Histone 
Modification Function Enzyme 

H3K4me1/3 
Enhancer Function/Gene 
activation MLL3/MLL4 

H3K9me3 Gene Repression SUV39H1 

H3K27ac Gene Activation 
CBP, P300, 
GCN5 

H3K27me3 Gene Repression EZH2 
H3K36me1-3 Gene Activation SETD2 
H3K36ac Marks Active Promoters GCN5 
H4K16ac Gene Activation ATF2 
H4K20me1 Gene Repression SETD8 

Table 1.1. Common histone modifications and their associated function in gene 
regulation (adapted from (Zhao & Garcia, 2015)).  

1.3.2. Chromatin modifiers 

1.3.2.1. Histone methylation 

Histone methylation has been observed on the lysine and arginine residues of H3 

and H4. There are seven residues which can be mono, di or tri-methylated: lysine 4 of 

histone H3 (H3K4), lysine 9 of histone H3 (H3K9), arginine 17 of histone H3 (H3R17), 

lysine 27 of histone H3 (H3K27), lysine 36 of histone H3 (H3K36), arginine 3 of histone 

H4 (H4R3) and lysine 20 of histone H4 (H4K20) (Lawrence et al., 2016a). Three main 

protein families are responsible for catalyzing the methylation of these residues: the 

PRMT1 family, the SET domain family and the DOT1/DOT1L containing non-SET 

domain proteins (Martin & Zhang, 2009). The functional effects of lysine methylation in 

terms of gene expression are context-dependent and can result in either activation or 

inhibition of gene expression. For example, trimethylation at lysine 4 of histone H3  

(H3K4me3) is associated with transcriptional elongation whereas trimethylation at lysine 



23 

 

9 of histone H3 (H3K9me3) is linked with gene repression (Table 1.1) (Lawrence et al., 

2016a).  

Methylated lysines can recruit other protein complexes collectively known as 

“reader” proteins. Methylated lysine binding domains include the ankyrin repeat, the 

plant homeodomain (PHD) finger, chromo, tudor, and malignant brain tumor (PWWP) 

domains (Butler & Dent, 2013a).  

Histone demethylases are responsible for catalyzing the demethylation of 

methylated lysine and arginine residues on histone tails. Demethylation of lysine residues 

is performed by two main families: jumonji-C domain-containing enzymes and amine 

oxidases (Butler & Dent, 2013b). Jumonji domain-containing protein 6 (JMJD6), 

peptidylarginine deiminase 4 (PADI4) and lysine-specific demethylases (KDMs) like 

KDM3A, KDM4E KDM5C, and KDM6B are candidates for arginine demethylation 

(Wesche et al., 2017). Because of conflicting reports in the literature regarding their 

arginine demethylases activities, arginine demethylases have not been well characterized 

(Wesche et al., 2017). 

1.3.2.2. Histone acetylation 

Histone acetyltransferases are enzymes that catalyze acetylation of histone tails 

which results in effects on chromatin architecture and gene regulation. There are two 

main families that contain histone acetyltransferase (HAT) domains: Gcn5 N-

acetyltransferases and the MYST family of acetyltransferases (Lee & Workman, 2007). 

There are other proteins which have the capacity to acetylate histones like E1A binding 

protein p300 (EP300)/CREB binding protein (CBP), TATA-box binding protein 

associated factor 1 (TAF1) and a number of nuclear coreceptors, however these are 
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considered to be an orphan class of HAT enzymes because they do not harbor consensus 

HAT domains (Lee & Workman, 2007). HATs can be recruited to their target loci by 

specific proteins that contain tudor domain, PHD fingers, chromodomain, bromodomain, 

and WD40 repeats. HATs play important roles in DNA repair and genome stability (Lee 

& Workman, 2007). HATs also have non-histone acetylation targets for example 

transformation-related protein 53 (P53) and general transcription factor IIB (TFIIB) 

(Yang, 2004). Histone deacetylases (HDACs) catalyze the removal of acetyl marks from 

histone residues (Butler & Dent, 2013a). Eleven HDACs are encoded by the mammalian 

genome which share a conserved histone deacetylase domain and are divided into four 

families: class I, IIa, IIb and IV (Haberland. Michael, Montgomery, & Olson., 2009).  

1.3.3. MYST Family of acetyltransferases 

The MYST family of acetyltransferases consists of five members: MOZ 

(KAT6a), MORF(KAT6b), HBO1 (KAT7), TIP60 (KAT5) and MOF (KAT8) 

(Avvakumov & Coˆte´, 2007). Proteins of the MYST family are characterized by the 

presence of a MYST region, an acetyl co-enzyme A binding site and C2HC type zinc 

finger motif (Valerio, Xu, Chen, et al., 2017). The presence of acetyl co-enzyme binding 

site allows acetyl co-enzyme A to bind, which is required for the acetyltransferase 

reaction (Sebastián & Mostoslavsky, 2017). The C2HC zinc finger motif aids in substrate 

recognition and acetyltransferase activity (Akhtar & Becker, 2001).  

1.3.3.1. KAT8 

Lysine acetyltransferase 8 (KAT8) was initially identified as a regulator of dosage 

compensation in flies (Su, Wang, Cai, Jin, & Chi-shing Cho, 2016.). KAT8 is responsible 

for acetylation at H4K16 and Kat8 depletion can lead to abnormal gene transcription. 
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Irregular expression of Kat8 and H4K16ac has been observed in various types of tumors 

and cancer cells. HAT activity of KAT8 is necessary for MLL-AF9 tumorigenesis 

(Valerio, Xu, Chen, et al., 2017). In addition, Kat8 is involved in lung cancer by 

promoting S phase entry via regulation of H4K16ac. Kat8 is important for hematopoiesis 

in newborn and adult mice, conditional deletion of Kat8 leads to hematopoietic failure 

resulting in death of pups after 8-11 days of birth (Valerio, Xu, Eisold, et al., 2017). 

Acetyltransferase activity of KAT8 was found to be important for its role in 

hematopoiesis (Valerio, Xu, Eisold, et al., 2017). Transduction of Kat8 in Kat8-

conditionally deleted Lineage- cKit+ Sca1+ (LSK)  cells, which consist of HSPCs, was 

able to rescue colony forming potential in an in vitro methylcellulose based assay 

whereas Kat8 with an inactive acetyltransferase domain was not able to rescue it 

(Valerio, Xu, Eisold, et al., 2017).   

1.3.3.2. KAT6A 

Lysine acetyltransferase 6a (Kat6a) was originally identified as a fusion partner 

with Cbp in translocation t(8;16)(p11;p13) which is found in 4-7/1000 cases of acute 

myeloid leukemia (AML) (Borrow et al., 1996). In addition, fusions of Kat6a with 

Ep300, Nuclear receptor coactivator 2 (Tif2) and developing brain homeobox 1 (Leutx) 

have been found in other hematological malignancies (X.-J. Yang, 2015). KAT6A is 

responsible for acetylation at lysine 9 of histone H3 (H3K9ac) at its target loci (Sheikh et 

al., 2016).  Loss of Kat6a in embryogenesis results in a reduction in the number of HSCs 

(Katsumoto et al., 2006). Conditional deletion of Kat6a in bone marrow leads to a decline 

in the number of HSCs and fewer of them were found to be in a quiescent stage as 

compared to wild type controls (Sheikh et al., 2016). Fetal liver from mice with a 
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catalytically inactive KAT6A histone acetyltransferase domain was also found to have a 

diminished number of HSPCs (Perez-Campo, Borrow, Kouskoff, & Lacaud, 2009). 

Hematopoietic progenitors containing catalytically inactive KAT6A have increased 

expression of cyclin-dependent kinase inhibitor 2a (p16) and enhanced nuclear 

localization of chromobox 3 (HP-1γ), markers for senescence (Perez-Campo et al., 2014).  

This suggests that Kat6a is required for the maintenance of fetal and adult HSCs and that 

histone acetyltransferase activity of KAT6A is important for this function by inhibiting 

p16 expression.   

1.3.3.3. KAT6B 

Lysine acetyltransferase 6b (Kat6b) is a paralogue of Kat6a and shares more than 

90% sequence similarity in functional domains. Homozygous Kat6b mutants survive 

until three weeks of age and show craniofacial abnormalities and cerebral defects 

(Thomas, Voss, Chowdhury, & Gruss, 2000). In a fluorescent reporter tagged 

overexpression mouse model of Kat6b, high expression of Kat6b corresponded with cells 

showing features of neural stem cells (Sheikh, Dixon, Thomas, & Voss, 2011) and 

overexpression of Kat6b also resulted in increased neuronal production (Merson et al., 

2006). A mutation in Kat6b has been observed in a patient with Noonan syndrome which 

involves hyperactivation of the mitogen-activated protein kinase (MAPK) pathway (Kraft 

et al., 2011). KAT6B has been found to acetylate H3K23 (H3K23ac) (Sim O-Riudalbas 

et al., 2015). Therefore, Kat6b is important for the function and generation of neural stem 

cells. Although, the role of KAT6B in HSCs has not been studied yet, its importance in 

neural stem cell function and its similarity to KAT6A suggests that KAT6B might also be 

important for HSC function.  
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1.4. Epigenetic regulation of HSC function 

1.4.1 Role of histone writers and erasers in HSC differentiation 

The dynamic nature of hematopoiesis relies on the tightly regulated process of 

self-renewal and differentiation of HSCs (D. Hu & Shilatifard, 2016). Chromatin 

modifying enzymes play important roles during hematopoiesis by regulating histone 

modifications (Butler & Dent, 2013b). The importance of epigenetic regulators in 

hematopoietic function is also demonstrated by the fact that mutations in these epigenetic 

regulators are common in myeloid malignancies and also play a role in hematopoietic 

transformation (Shih, Abdel-Wahab, Patel, & Levine, 2012). Epigenetic regulators 

involve histone writers who perform the task of catalyzing the addition of post-

translational modifications (PTMs) on histones, whereas histone erasers remove those 

histone modifications (Gillette & Hill, 2015). A number of histone writers and erasers 

responsible for marks associated with both gene activation and repression have been 

identified with respect to their role in HSC function.  

Cbp, and its paralogue, p300, are histone lysine acetyltransferases responsible for 

depositing the activating acetylation at lysine 27 of histone H3 (H3K27ac) mark (Chan et 

al., 2011)(Tan, Nimer, Sun, Man, & Wang, 2015). Conditional deletion of Cbp in adult 

bone marrow led to a decrease in HSPCs, an increase in myeloid and a decrease in the 

lymphoid compartment, showing that Cbp is critical for differentiation of HSCs(Chan et 

al., 2011). In addition, serial transplantation of conditionally deleted Cbp bone marrow 

and HSCs had reduced reconstitution ability thus showing that Cbp is also important for 

HSC self-renewal (Chan et al., 2011; Rebel et al., 2002).     
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Histone deacetylases (HDACs) remove the acetylation mark deposited by 

acetyltransferases like CBP. Studies involving the treatment of human CD34+ cells with 

valproic acid, an HDAC inhibitor, have shown that inhibition of HDACs results in 

increased proliferation of CD34+ cells as well as increased self-renewal of HSPCs as 

observed by competitive repopulation assays (Zheng et al., 2005). 

Histone lysine methyltransferases are responsible for catalyzing methylation on 

lysine residues at histone tails. Methylation at lysine 4 and lysine 3 of histone 3 are the 

most extensively studied among histone methylation marks (Greer & Shi, 2012). The 

MLL family of histone methyltansferases is responsible for methylation of H3K4 

residues which is associated with open chromatin (W. Yang & Ernst, 2017). Lysine 

specific methyltransferase 2a (MLL1)-/- HSCs show a defect in self-renewal potential and 

lack of success in engrafting recipients (W. Yang & Ernst, 2017).  MLL3 is related to 

MLL1 and both have been found to be mutated in acute lymphoid leukemia and acute 

myeloid leukemia (C. Chen et al., 2014). Knockdown of lysine-specific methyltransferase 

2c (MLL3) leads to an increase in LT-HSCs and a block in differentiation in a p53 

background (C. Chen et al., 2014). Another member of the MLL family, lysine specific 

methyltransferase 2d (MLL4), has also been found to be important for HSC function 

(Santos et al., 2014). Conditional deletion of MLL4 in adult bone marrow leads to an 

increase in the number of stem and progenitor cells (Santos et al., 2014). However, MLL4 

deletion leads to decreased self-renewal capacity of HSCs which was shown by a 

reduction in asymmetric division of HSCs and decreased competitive repopulation ability 

of HSPCs (Santos et al., 2014). Apart from the MLL family, enhancer of zeste 2 

polycomb repressive complex 2 subunit (EZH2) is responsible for trimethylation at lysine 
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27 of histone H3 (H3k27me3) which is associated with gene inactivation (Mochizuki-

Kashio et al., 2011). Expression of Ezh2 decreases after the differentiation of HSPCs 

(Abboud & Berman, 2013). Conditional deletion of Ezh2 in fetal liver leads to a decrease 

in efficiency of repopulation ability in fetal liver, however, competitive repopulation of 

adult bone marrow with Ezh2 deletion did not result in decrease in repopulation ability in 

both primary and secondary transplants, showing that Ezh2 is more important for fetal 

liver HSCs as compared to adults (Mochizuki-Kashio et al., 2011). Histone demethylases 

play the role of removing methyl marks from methylated histone tails. Lysine specific 

demethylase 1a (LSD1) is a histone demethylase that is responsible for removing 

methylation from H3K4 residues (Kerenyi et al., 2013). Conditional deletion of Lsd1 in 

adult mouse bone marrow leads to a reduction in stem cell self-renewal as well as a 

reduction in myeloid progenitors (Kerenyi et al., 2013). Therefore, these studies show 

that histone-modifying enzymes are important for various aspects in the function and the 

differentiation of HSCs.   

1.4.2. Role of enhancers in HSC differentiation 

Enhancers are cis-regulatory DNA elements that regulate the transcription of 

target genes (Halfon, 2019). Usually consisting of a few hundred base pairs in length, 

enhancers function as a platform for recruitment of transcription and chromatin-

modifying machinery which aids in the transcription of its target genes (Halfon, 2019). 

Enhancers can perform these functions while being situated at long distances (> 1 Mb) 

(Cico, Andrieu-Soler, & Soler, 2016a) and can be present both upstream or downstream 

of their target genes as well as in introns of their target genes (Pennacchio, Bickmore, 

Dean, Nobrega, & Bejerano, 2013).  
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The first enhancer, SV40, was discovered around 40 years ago and was 

responsible for increasing transcription of a β-globin gene in the rabbit by more than 200 

fold (Banerji, Rusconi, & Schaffner, 1981). Since then, the important role of enhancers in 

development and disease has been well established (Halfon, 2019). Enhancer-associated 

chromatin goes through a number of changes that correlates with the activity of the 

enhancer (Figure 1.6). Lineage determining transcription factors bind closed enhancer 

associated chromatin to make it more accessible to histone methyltransferases which then 

deposit monomethyl at lysine 4 of histone H3 (H3K4me1) on enhancer associated 

chromatin (Heinz, Romanoski, Benner, & Glass, 2015). This marks the enhancer in a 

primed state (Heinz et al., 2015). After this, histone acetyltransferases deposit H3K27ac 

which marks the enhancer in an active state (Heinz et al., 2015).  

	

	
Figure 1.6. Schematic for priming and activation of enhancers. 
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In the context of hematopoiesis, studies involving focused investigation of gene 

regulatory elements have demonstrated that enhancers play a role in hematopoietic 

function (Bauer et al., 2013; Johnson et al., 2015). Whole-genome technologies have 

accelerated the discovery of putative enhancers and have also allowed the study of a 

larger number of enhancers. Using these approaches it was found that enhancers undergo 

considerable changes in priming and activation status during differentiation of HSCs to 

mature cells, the nature of these changes being dependent on the lineage type 

(Choukrallah, Song, Rolink, Burger, & Matthias, 2015; Lara-Astiaso et al., 2014; Luyten, 

Zang, Liu, & Shivdasani, 2014). These studies suggest that the enhancers which are 

active in mature erythroid and myeloid cells become established in HSPCs (Lara-Astiaso 

et al., 2014) whereas, the enhancers that are activated in mature lymphoid cells become 

established in those mature cell types (Choukrallah et al., 2015; Lara-Astiaso et al., 

2014). This shows that there is a difference in the enhancer establishment and setting up 

of the lineage-specific programs between erythroid, myeloid and lymphoid lineages.  

1.4.3. Epigenetic changes in HSCs with age 

HSCs undergo a variety of epigenetic changes with age involving DNA 

methylation, histone modifications and expression of epigenetic regulators (Buisman & 

Haan, 2019) which raises the possibility of the contribution of epigenetic regulators 

towards HSC aging. There are overall changes in gene expression profiles with age 

(Beerman et al., 2013; Sun et al., 2014; Wahlestedt et al., 2013). Specifically, the 

expression of important epigenetic regulators declines with age (Sun et al., 2014). 

Expression of genes associated with chromatin modification like Ezh2 and Cbx2 as well 
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genes liked to DNA methylation like Tet methylcytosine dioxygenase 1 (Tet1) and Tet 

methylcytosine dioxygenase 2 (Tet2) decreases with age (Sun et al., 2014). 

In addition to variations in gene expression profiles, HSC aging involves changes in 

levels and localization of histone modifications (Florian et al., 2012; Grigoryan et al., 

2018; Sun et al., 2014). Levels of gene activating marks H3K4me3 and H4K16ac 

increase in old HSCs compared to young HSCs (Florian et al., 2012; Sun et al., 2014). On 

the other hand, the number peaks of the repressive mark H3K27me3 do not change, 

however the coverage of peaks becomes broader with age in HSCs (Sun et al., 2014). 

Histone modifications like H4K16ac have found to distributed asymmetrically in the 

nucleus of HSCs (Florian et al., 2012). Analysis of nuclear localization of histone 

modifications showed that this polarity of H4K16ac and H3K27ac decreases significantly 

whereas polarity of acetylation at lysine 8 of histone H4 (H4K8ac) and acetylation at 

lysine 5 of histone H4 (H4K5ac) undergo modest decreases in polarity with age in HSCs 

(Grigoryan et al., 2018). Restoration of polarity of H3K16ac by inhibition of CDC42 was 

associated with functional rejuvenation of HSCs (Florian et al., 2012).  

These studies suggest that gene-regulatory elements and epigenetic regulators are 

important for function of HSPCs and that changes in epigenetic regulators and their 

activities correlate with HSC aging. Which epigenetic regulators and gene regulatory 

elements drive aging in HSCs and which related molecular pathways are perturbed in 

aging by these epigenetic factors needs to be identified.  
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CHAPTER 2 

RESULTS 

Hematopoiesis is a well-coordinated system of differentiation from HSCs to 

mature cells which relies on precise changes in gene expression profiles at each point in 

the differentiation continuum. Regulation of these gene expression profiles is dependent 

on a dynamic collaboration between lineage-determining transcription factors, chromatin-

modifying enzymes and cis-regulatory elements (Cico, Andrieu-Soler, & Soler, 2016b). 

Misregulation of these chromatin-modifying enzymes and cis-regulatory elements can 

disrupt the balance in the orchestration of precise gene expression profiles leading to 

disease and aging-associated phenotypes. My thesis involves the identification and 

characterization of gene regulatory elements and epigenetic regulators that are important 

for HSPC differentiation to mature cells so that this knowledge can be utilized in 

ameliorating the defects in the differentiation process due to aging.  

Although genome-wide technologies have facilitated the identification of putative 

enhancers, the number of functionally characterized enhancers is negligible compared to 

the total number of putative enhancers. Activity of enhancers in the hematopoietic 

progenitors has been observed to change with age (Poplineau et al., 2019). In the context 

of lymphoid lineage, identification of functionally characterized enhancers is important 

for developing novel therapeutic strategies to overcome the decline in lymphoid function 

which is observed with aging. It has been reported that the majority of lymphoid specific 

enhancers are established in mature cells and only a few are established in HSPCs 

(Choukrallah et al., 2015; Lara-Astiaso et al., 2014). Therefore, I hypothesize that a few 
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key enhancers which are established in HSPCs are important for commitment to the 

lymphoid lineage. In the first part of results I outline the investigation of this hypothesis.  

It is known that there is a decrease in the expression of key epigenetic factors and 

changes in levels of histone modifications in LT-HSCs during aging in mice (Sun et al., 

2014) and humans (Adelman et al., 2019). However, precise molecular mechanisms 

underlying changes in epigenetic regulators and hematopoietic aging have not been 

elucidated yet. This serves as a barrier for developing novel therapeutic strategies for 

ameliorating aging-associated hematopoietic decline. I hypothesized that changes in 

expression/activity of key epigenetic regulators drive age-associated functional decline in 

HSCs. The second part of the results section consists of an investigation of this 

hypothesis. 

2.1. Optimization of assay for in vitro differentiation of HSPCs to the lymphoid 

lineage and identification and characterization of lymphoid specific enhancers  

Enhancers are cis-regulatory elements that are capable of activating lineage-

specific gene expression patterns (Heinz et al., 2015). This is supported by the 

observation that distal cis-regulatory elements in mature lymphoid cells were found to be 

enriched for motifs of transcription factors which are important for the lymphoid lineage 

(Heinz et al., 2010). Although putative lymphoid specific enhancers have been identified 

by genome-wide technologies, functional characterization of these enhancers is a barrier 

for ameliorating the decline in production and function of lymphoid cell types which is 

observed in aging (Dykstra et al., 2011; Miller, 1996; Rodrigues et al., 1997). Studies 

have shown that the majority of lymphoid specific enhancers are established in mature 

cell stages. I hypothesized that a few key enhancers that are established in HSPCs are 



35 

 

important for commitment to lymphoid lineage. In this section I test this hypothesis by 

optimizing culture conditions for in vitro OP9 co-culture of HSPCs to assess B-lymphoid 

differentiation potential, followed by development of a knockout strategy for putative 

lymphoid enhancers, ultimately employing these two techniques to characterize the 

importance of putative lymphoid enhancers for differentiation of HSPCs to B-lymphoid 

cells.  

2.1.1 Optimization of co-culture conditions 

 

 

Figure 2.1. Schematic for in vitro differentiation of HSPCs to B-lymphoid cells.  
 

The in vitro assay for differentiation of HSPCs to B-lymphoid cells by co-culture 

with OP9 stromal cells was adapted from Pietras et al. (Pietras et al., 2015a).  For 

optimization of starting cell number of OP9 cells appropriate for co-culture, I seeded 

1000, 2000 or 5000 OP9 cells in flat-bottom 96-well plate on Day 0 of the assay (Figure 

2.1). On day 1, 500 Lineage- cKit+ Sca1+ (LSK) cells, which consist of HSPCs, were 

seeded on top of OP9 layer in OptiMEM supplemented with serum1(Hyclone defined; 

AYM175301), serum 2 (Hyclone Defined; AB1016350) or serum 3(VWR) and stem cell 

factor (SCF;), FMS tryosine like-3 ligand (FLT-3) and interleukin-7 (IL-7). On day 3 of 

the assay half of the media was replaced with fresh media supplemented with SCF and 

IL-7 (Figure 2.1). On day 5 of the assay half of the media was replaced with fresh media 
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supplemented with IL-7 (Figure 2.1). Subsequently, the media was changed every 2-3 

days with IL-7 supplementation. When the OP9 cell layer started to detach, the cells were 

harvested by trypsinization and transferred to a new well in a 24-well plate with pre-

seeded OP9 cells. Cells were analyzed by fluorescence-activated cell sorting (FACS) on 

days 14, 17, 20 and 23 of the assay (Figure 2.1) and number of CD45+ cells and 

percentage of CD19+ cells were used for determining the optimal conditions for the 

assay.  
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Figure 2.2. Optimization of OP9 seeding density, serum type and read-out time 
point. 1000, 2000 or 5000 OP9 cells were seeded in 96-well plate, supplemented with 
serum 1, serum 2 or serum 3 and analyzed by FACS on Day 14,17,20 and 21 of assay. 
Total CD45+ cells obtained on day 14 (A), day 17 (C), day 20 (E), day 23 (G), Percentage 
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of CD19+ and CD11b+ cells obtained on day 14 (B), day 17 (D), day 20 (F), day 23 (H). 
Dots represent n =2 biological replicates. 
 

As the purpose of this assay was to differentiate HSPCs to CD19+ B-lymphoid 

cells, I determined which readout time point produced the highest percentage of CD19+ 

cells. Day 23 seemed to be most efficient for the production of CD45+ CD19+ cells 

compared to the rest of the time points across all conditions (Figure 2.2). day 23 was used 

as the reference time point to assess the effect of serum type and OP9 seeding density on 

differentiation to B-lymphoid cells. Assays started with 1000 OP9 cells produced the 

highest mean number of CD45+ cells across all serum types (Figure 2.2G) and also had 

the highest percentage of CD19+ cells (Figure 2.2H) compared to assays started with 

2000 and 5000 OP9 cells.  

To ascertain the type of serum with the highest differentiation potential to CD45+ 

cells I compared total CD45+ cells obtained on day 23 with assays seeded at 1000 OP9 

cells. I observed that cells supplemented with Serum 2 had the highest mean number of 

CD45+ cells compared to Serum 1 and Serum 3 (Figure 2.2G).  

To conclude, I observed that OP9 co-culture B-lymphoid differentiation assay 

performs optimally when started with 1000 OP9 cells, supplemented with Serum 2 and 

readout on day 23 of the assay.  

2.1.2. Minimizing variability in OP9 co-culture assay  

 Although the conditions described the in last section were able to differentiate 

HSPCs to CD19+ cells efficiently, I observed significant variation in the overall 

differentiation ability between replicates for each condition (Figure 2.2G). In order to test 

if this variation is dependent on the number of HSPCs that was used to start the assay, I 
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seeded 10, 50, 100, 250 and 500 Lineage- cKit+ (LK) cells, which consist of HSPC and 

lineage-committed progenitors, and compared their ability to differentiate to CD45+ 

CD19+ cells (Figure 2.3A). Assays started with all of the aforementioned LK cell 

numbers produced CD19+ cells efficiently (Figure 2.3C); however, no correlation was 

found between the total number of CD45+ cells obtained and the number of LK cells used 

to start the assay (Figure 2.3B). This led me to hypothesize that the passaging conditions 

involving trypsinization and transfer to a new well is the source of variability for this 

assay. 

 

Figure 2.3. Correlation between HSPC number and lymphoid differentiation ability 
with OP9 stromal cells. (A) Schematic of lymphoid differentiation assay (B) Total 
CD45+ cells obtained on day 23 of assay. (C) Percentage of CD19+ and CD11b+ cells 
obtained on day 23 of assay.  
 
 To test this hypothesis, I performed the OP9 differentiation assay by seeding 1000 

OP9 cells in a 96-well plate (Figure 2.4A) and 5000 OP9 cells in a 24-well plate (Figure 

2.4D), followed by FACS analysis on day 12 without passaging during the assay. My 
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results showed that the 96-well assay without passaging produced less CD45+ cells as 

compared to an equivalent number of 500 LK cells readout on day 23 with passaging 

(Figure 2.3B) and also less than 50% of CD45+ cells were CD19+ cells at the end of the 

assay (Figure 2.4C). Although the 24-well assay without passaging produced a higher 

number of CD45+ cells (Figure 2.4E) as compared to 96-well without passaging (Figure 

2.4B) the percentage of CD19+ (Figure 2.4F) was still less than what had been obtained 

with cells without passaging (Figure 2.3C), and the total number of CD45+ cells still 

seemed variable (Figure 2.4D). Therefore, elimination of passaging did not mitigate the 

variation in CD45+ numbers produced at end of assay and was also not efficient in 

differentiation to CD19+ cells.  
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Figure 2.4. Effect of passaging on differentiation ability in OP9 co-culture assay. 
Schematic of assay without passaging in (A) 96-well and (D) 24-well plate. Total CD45+ 
cells obtained on day 12 of assay from (B) 96-well and (E) 24-well plate. Percentage of 
CD19+ and CD11b+ cells obtained on day 12 of assay (C) 96-well and (F) 24-well plate. 
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To further attempt to overcome the issue of heterogeneity arising due to the 

trypsinization and harvest of cells during replating in this assay, I cultured 500 and 1000 

LK cells with Transwells with readout on day 12 of the assay (Figure 2.5A). This method 

of culture involved no contact between LKs and OP9 cells and transwells containing LK 

cells were transferred to new wells on day 8 of the assay. There was still variability 

between technical replicates of in total number of CD45+ cells produced (Figure 2.5B) 

and was also inefficient at producing CD19+ cells (Figure 2.5C). 

 

Figure 2.5. Effect of OP9-HSPC contact on differentiation ability in OP9 co-culture 
assay. (A) Schematic of assay with transwells. (B) Total CD45+ cells obtained on day 12 
of assay with 500 or 1000 starting HSPCs. (C) Percentage of CD19+ and CD11b+ cells 
obtained on day 12 of assay with 500 or 1000 starting HSPCs. 

 Therefore, out of all the culture conditions that I have investigated, culture for 23 

days with serum 2 starting with 1000 OP9 cells with passaging seem to be the most 

optimal conditions for efficient differentiation of HSPCs to B-lymphoid CD19+ve cells 



43 

 

and my experiments also suggest that this assay is more suitable for qualitative rather 

than quantitative analysis.    

2.1.3. Identification and characterization of lymphoid specific enhancers 

2.1.3.1. In silico identification of putative lymphoid specific enhancers 

The goal of this part of the study was to test the hypothesis that lymphoid specific 

enhancers established in HSPCs are important for commitment to lymphoid lineage. I 

tested this hypothesis by identifying and characterizing cis-regulatory elements that were 

functionally important for the commitment of HSPCs to B-lymphoid lineage. To test this 

hypothesis, I utilized a published catalog of putative enhancers in the hematopoietic 

system (Lara-Astiaso et al., 2014). Lara-astiaso et al identified these putative enhancers 

by using levels of H3K4me1, di-methylation at lysine 4 of histone H3 (H3K4me2), 

H3K27ac and expression of nearest genes from hematopoietic stem, progenitor and 

mature cells (Lara-Astiaso et al., 2014). To identify B-lymphoid specific enhancers from 

this catalogue I used H3K4me1 levels (<25 was considered not primed; >25 was 

considered primed) to assess status of priming and H3K27ac levels (<25 was considered 

inactive; >50 was considered active) to assess status of activation at a particular enhancer 

as defined by Lara-Astiaso et al, 2014.  
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Table 2.1. Criteria for identification of putative lymphoid specific enhancers. 
Numbers represent processed read counts for H3K4me1 and H3K27ac ChIP-seq data 
sets.  
 

Therefore, by using levels of H3K4me1 and H3K27ac ChIP-seq data in HSCs, 

MPPs, CLPs, and B-cells (Table 2.1), I mined for enhancers that would be predicted to be 

primed and activated at various stages during differentiation from HSCs. My results 

revealed a total of 665 putative enhancers which were active in B-cells and which can be 

divided into 5 broad categories: Type A, Type B, Type C, Type D and Type E (Figure 

2.7). 

Enhancer Type A LT-HSC ST-HSC MPP CLP B
H3K4me1 >50 >50 >50 >50 >50
H3K27ac <25 <25 <25 >25 >25

Enhancer Type B LT-HSC ST-HSC MPP CLP B
H3K4me1 >50 >50 >50 >50 >50
H3K27ac <25 <25 <25 <25 >25

Enhancer Type C LT-HSC ST-HSC MPP CLP B
H3K4me1 <25 <25 >50 >50 >50
H3K27ac <25 <25 <25 >25 >25

Enhancer Type D LT-HSC ST-HSC MPP CLP B
H3K4me1 <25 <25 >50 >50 >50
H3K27ac <25 <25 >25 >25 >25

Enhancer Type E LT-HSC ST-HSC MPP CLP B
H3K4me1 <25 <25 <25 <25 >50
H3K27ac <25 <25 <25 <25 >25
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Figure 2.6. Graphical representation of priming and activation status of putative 
enhancers active in B-cells.  
 

Enhancers in Type A and Type B both got primed in HSCs however, Type A 

enhancers got activated in CLPs, whereas Type B enhancers got activated in B-cells 

(Figure 2.6). Because Type A and Type B enhancers got primed at HSCs these enhancers 

were denoted as “Pre-disposed enhancers” and contained 4 and 13 enhancers 

respectively. Type C and Type D enhancers both got primed in MPPs (Figure 2.6). Type 

C enhancers became activated in CLPs, whereas Type D enhancers became activated in 

MPPs (Figure 2.6). The final category, Type E, consisted of enhancers that got primed 

and activated in B-cells.  Type C, Type D and Type E enhancers were denoted as “De-

novo Enhancers” because these got established or primed In MPP or later stages and 

contained 1, 1 and 646 enhancers respectively (Figure 2.6). Since I was interested in 

enhancers which are important for commitment to lymphoid lineage I decided to pursue 

enhancers in categories Type A, Type B, Type C and Type D for validation. One 
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enhancer was randomly selected from each category (Enhancer A1, Enhancer B1, 

Enhancer C, Enhancer D) for initial functional characterization (Table 2.2). 

Enhancer Type Chromosome # Coordinates 
Enhancer A1 5 37059418-37061418 
Enhancer B1 10 98591289-98593289 
Enhancer C 8 55069106-55071106 
Enhancer D 1 16748743-16750743 

  Table 2.2. Genome loci of enhancers short-listed for functional characterization.  

2.1.3.2. Strategy for ex vivo CRISPR/Cas9 mediated enhancer knockout in primary 

cells 

To characterize putative B-lymphoid enhancers identified in Section 2.1.3.1, I 

employed CRISPR/Cas9 mediated knockout strategy. It consisted of performing 

knockout of each putative enhancer by using targeting 2 sgRNAs flanking each enhancer 

(Table 3.3). Initially, I employed a strategy consisting of delivery of Cas9 expressing 

plasmid in primary cells by lentiviral transduction.  

2.1.3.2.1. Determining the efficiency of lentiviral transduction of Cas9  

For optimization of gene delivery of Cas9 by lentiviral transduction, I used 3rd and 

4th generation systems of lentiviral packaging. I prepared lentivirus containing 

pLentiCRISPR-EGFP, which expresses Cas9 along with GFP, using 3rd and 4th 

generation lentiviral systems (Figure 2.7) and transduced whole bone marrow (BM) 

mononuclear cells from wildtype C57BL/6J mice. 3rd generation lentiviral systems 

consist of two viral packaging plasmids: one encodes Gag/Pol and second encodes Rev 

(“Lentiviral guide,” 2019). Whereas the 4th generation consists of 4 packaging plasmids 

with each containing a component for viral assembly (“Fourth-generation lentiviral 

packagin overview,” 2019).  
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Figure 2.7. Schematic of generation of viral supernatant containing pLentiCRIPSR-

EGFP with 3rd and 4th generation lentiviral packaging systems.  

Cells were analyzed with FACS analysis after 48 hours post-transduction (Figure 

2.8A). My results showed that the transduction efficiency from both of the packaging 

system was almost similar and was considerably low (< 0.5% GFP cells) to obtain a 

sufficient number of transduced cells for downstream analysis (Figure 2.8B). Since 

transduction of the 4th generation system was not lower than the 3rd generation system 

and 4th generation system is safer than 3rd generation, I selected the 4th generation 

packaging system for use in further experiments.  
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Figure 2.8. No difference in transduction efficiency of whole BM cell transduced 
with lentivirus packaged with 3rd and 4th generation packaging systems. (A) 
Schematic of transduction of whole BM cells (B) Transduction efficiency (%GFP+) cells 
obtained after transduction with 3rd generation and 4th generation virus.  
 

To improve the transduction efficiency, I switched to a more homogenous 

population, LSKs, as compared to whole bone marrow mononuclear cells and transduced 

twice (once at day 0 and a second time 24 hours after the 1st transduction) (Figure 2.9A). 

However, I still obtained a negligible transduction efficiency (Figure 2.9B).  

 

Figure 2.9. Effect of number of transductions on transduction efficiency (A) 
Schematic for transduction of whole BM cells with viral supernatant containing 
pLentiCRISPR-EGFP. (B) Transduction efficiency (%GFP+ cells) obtained after two 
consecutive transductions of LSK cells.  
 
 Next, I investigated the effect of the cell type and the amount of virus used for 

transduction on transduction efficiency. I transduced LSK cells with 10%, 50% and 75% 

virus by volume. Transduction was repeated after 24 hours. I analyzed the cells by FACS 
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48 hours post-transduction (Figure 2.10A). My results showed that the cells transduced 

with 10%, 50% and 75% virus produced approximately 0.17%, 0.56% and 0% GFP+ cells 

(Figure 2.10B).  

   

Figure 2.10. Effect of viral concentration by volume of culture media on 
transduction efficiency (A) Schematic for transduction of LSKs with viral supernatant 
containing pLentiCRISPR-EGFP using different viral concentrations. (B) Transduction 
efficiency (%GFP+) cells obtained after transduction with 10%, 50% and 75% by volume 
virus concentrations.  
 

After this, I prepared concentrated virus containing pLentiCRISPR-EGFP by 

ultracentrifugation of viral supernatant, and transduced LSK cells with 0.5%, 10% and 

50% virus by volume, followed by FACS analysis 48 hours post-transduction (Figure 

2.11A). However, my results showed no GFP+ cells with these conditions (Figure 2.11B). 
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Figure 2.11. Effect of concentrated virus on transduction efficiency. (A) Schematic 
for transduction of LSKs with concentrated viral supernatant containing pLentiCRISPR-
EGFP using different viral concentrations. (B) Transduction efficiency (%GFP) cells 
obtained after transduction with 0.5%, 10% and 50% by volume virus concentrations. 
 
Toxicity due to concentrated virus could be responsible for these results.  

Overall, Cas9 delivery by lentiviral transduction seemed an inefficient method for 

gene transfer in primary hematopoietic cells. Therefore, I concluded that this method was 

not appropriate for validating B-lymphoid specific enhancers.    
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 2.1.3.2.2. Knockout by electroporation of in vitro transcribed sgRNA and Cas9 

protein 

 

Figure 2.12. Knockout of enhancer B1 results in a reduction in the percentage of 
CD19+ cells. (A) Schematic for electroporation of Cas9-sgRNA RNPs in LK cells and 
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assessment of differentiation potential by OP9 co-culture. (B) Verification of knockout. 
(C) Total CD45+ cells and (D) Percentage of CD19+ and CD11b+ cells obtained on day 23 
of assay.   
 
 

Efficient CRIPSR/Cas9 mediated gene editing involving gene delivery by 

electroporation of ribonucleoprotein (RNP) complexes containing Cas9 protein and 

sgRNAs has been reported in the literature (Gundry et al., 2016).  Electroporation, in this 

case, employed the neon transfection system (Invitrogen), which allows electroporation 

of low input cells, which was suitable for my experiments. For preliminary experiments, 

one enhancer from each of the shortlisted enhancer categories was selected for validation. 

In addition, spleen focus forming virus (SFFV) proviral integration oncogene (Pu.1) was 

selected as a positive control because of its importance in the differentiation of HSCs to 

lymphoid progenitors (Iwasaki et al., 2005). sgRNAs were designed flanking each 

enhancer and flanking exons 4 and 5 of Pu.1 gene using Benchling. Oligos containing 

sgRNAs linked to the T7 promoter were designed and gRNA scaffold was amplified 

from pX458 plasmid using these oligos, followed by in vitro transcription to produce 

sgRNAs as described (Gundry et al., 2016). 

LK cells were isolated from wildtype C57BL/6J young mice and cultured in the 

presence of SCF and TPO for three hours. RNP complexes for each enhancer and Pu.1 

were made with 1 ug of Cas9 and 0.5ug of each of two flanking sgRNAs for each 

condition. These RNPs were electroporated in LK cells after three hours of culture, and 

cells were plated into the OP9 lymphoid differentiation assay. Cells were analyzed by 

FACS analysis on Day 23 and CD45+ cells were sorted for genomic DNA extraction to 

determine knockout efficiency (Figure 2.12A). I observed efficient knockout of target 
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regions in almost all conditions (Figure 2.12B). Total CD45+ cells were not significantly 

different between positive and negative controls and enhancer knockout cells (Figure 

2.12C). There was a slight decrease in the percentage of CD19+ cells from Enhancer B1 

knockout cells (Figure 2.12D) which was similar to change observed from the positive 

control (Pu.1) although the result was not statistically significant  

Therefore, electroporation of RNP complexes is an efficient method for gene 

targeting in primary HSPCs. In addition, this preliminary data shows that knockout of 

enhancer B1 in HSPCs shows a subtle reduction in CD19+ cells as compared to negative 

controls. However, this will need to be reproduced in a more robust assay to draw 

definite conclusions.  

2.2. Aging-Associated decrease in the histone acetyltransferase KAT6B is linked to 

myeloid-biased hematopoietic stem cell differentiation with age 

HSCs give rise to all mature blood cells. However, with age, cell-intrinsic 

changes within HSCs contribute to aging-associated hematopoietic decline such as 

increased HSC frequency, enhanced differentiation toward myeloid cells, and decreased 

ability to return to quiescence after activation (Verovskaya, Dellorusso, & Passegué, 

2019). Molecular features that contribute to these phenotypes include loss of cell polarity, 

impaired DNA damage repair, increased  production of reactive oxygen species (ROS), 

and declines in mitochondrial function (Verovskaya et al., 2019). In addition, previous 

studies support the occurrence of epigenetic drift in aged HSCs. This involves decreased 

expression of key epigenetic regulators, a global increase in DNA methylation (Beerman 

et al., 2013; Sun et al., 2014), and altered levels of histone H3 lysine 4 trimethylation 

(H3K4me3) and lysine 27 trimethylation (H3K27me3) in both aged murine and human 
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HSCs (Adelman et al., 2019; Sun et al., 2014). Moreover, diminished levels and polarity 

of histone H4 lysine 16 acetylation (H4K16ac) is associated with loss of regenerative 

capacity and gain of myeloid lineage skewing in aged LT-HSCs (Florian et al., 2012). 

While these studies support involvement of epigenetic regulatory processes in HSC 

aging, there remains a lack of comprehensive knowledge of the extent to which 

epigenetic alterations are linked to aging-associated changes in HSC function. Therefore, 

the goal of this study was to identify novel role of epigenetic regulators in the context of 

myeloid skewed differentiation of HSCs. 



55 

 

  

  

Figure 2.13. Candidate screen for epigenetic regulators of myeloid versus B-
lymphoid differentiation. (A) Schematic of candidate selection criteria to identify 
chromatin regulatory genes involved in myeloid versus B-lymphoid differentiation of 
HSPCs. GMP; granulocyte-macrophage progenitors, CLP; common lymphoid 
progenitors. (B) GO enrichment analysis of 2,766 genes identified as differentially 
expressed between GMP versus CLP. (C) Relative expression of shRNA target genes 
following knockdown in NIH/3T3 cells. Bars represent mean of n = 3 technical 
replicates. 
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To identify epigenetic regulators that have a functional role in aging-associated 

myeloid lineage-biased differentiation of HSCs a graduate student in our lab, Sneha 

Borikar, conducted an in vitro shRNA screen. Using gene expression commons (GEXC) 

(Seita et al., 2012), she identified 2,766 differentially expressed genes between 

granulocyte macrophage progenitors (GMPs) and common lymphoid progenitors (CLPs) 

(Figure 2.13A), which are committed progenitors for the myeloid and lymphoid lineages, 

respectively (Motonari, 2013). Among these 2,766 differentially expressed genes, gene 

ontology (GO) enrichment analysis of Reactome pathways (Ashburner et al., 2000; Mi et 

al., 2017; The Gene Ontology Consortium 2019) revealed significant enrichment of 

chromatin modifying enzymes (P = 0.000158, FDR = 0.00111). The 40 most enriched 

genes encoding chromatin modifying enzymes were further filtered to 30 genes based on 

overlap with the GO annotation “regulation of gene expression” (GO:0010468) (Figure 

2.13B). Lastly, this gene list was filtered to include those with commercially available 

shRNA constructs with verified knockdown in murine cell lines, resulting in 16 genes 

(Table 2.3).  
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Gene Symbol Gene Name 

Kat6b K(lysine) acetyltransferase 6B 

Kmt5a lysine methyltransferase 5A 

Tbl1x transducin (beta)-like 1 X-linked 

Kdm5b lysine (K)-specific demethylase 5B 

Ncor2 nuclear receptor co-repressor 2 

Suv39h2 suppressor of variegation 3-9 2 

Mta3 metastasis associated 3 

Carm1 coactivator-associated arginine methyltransferase 1 

Dot1l DOT1-like, histone H3 methyltransferase (S. cerevisiae) 

Kmt2e lysine (K)-specific methyltransferase 2E 

Arid1a AT rich interactive domain 1A (SWI-like) 

Kdm5c lysine(K)-specific demethylase 5C 

Smarcc2 SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily c, member 2 

Sap30l SAP30-like 

Jmjd6 jumonji domain containing 6 

Padi2 peptidyl arginine deiminase, type II 

Table 2.3. Sixteen chromatin regulatory genes for shRNA screening identified using 
an unbiased differential expression approach. 
 

To begin functional screening, shRNA expression plasmids for six of these 16 

genes were obtained. For negative and positive controls, she used a scrambled shRNA-
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expressing non-targeting control (NTC) vector and a shRNA vector targeting CREB-

binding protein (Crebbp), respectively. Conditional knockout of Crebbp is known to 

cause loss of HSPCs and result in myeloid-biased hematopoiesis (Chan et al., 2011). In 

addition, shRNA constructs were obtained for eight genes hypothesized to regulate 

lineage differentiation using a candidate gene approach (Table 2.4). After cloning, she 

validated reduced target gene expression from each of these shRNA constructs in murine 

3T3 cell lines (Figure 2.13C).  

 

Gene Symbol Gene Name 

Rnf40 ring finger protein 40 

Atxn7l3 ataxin 7-like 3 

Prdm16 PR domain containing 16 

Cxxc1 CXXC finger 1 (PHD domain) 

Dach1 dachshund family transcription factor 1 

Atxn7l1 ataxin 7-like 1 

Ndn necdin 

Ezh1 enhancer of zeste 1 polycomb repressive complex 2 subunit 

Table 2.4. Eight chromatin regulatory genes for shRNA screening identified using a 
candidate gene approach. 
 

To perform the in vitro shRNA screen, HSCs would seem to be the most 

appropriate cell type however, we have observed in our lab (data not shown) that HSCs 

do not perform well in B-lymphoid CFU assays. MPP4 cells have both lymphoid and 

myeloid differentiation potential (Pietras et al., 2015a) and, in contrast to LT-HSCs, have 
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efficient clonal in vitro differentiation capacity giving rise to both lymphoid and myeloid 

cells (Young et al., 2016). Thus, we chose to utilize lymphoid-primed multipotent 

progenitor cells (MPP4) as our starting cell population to conduct this screen. MPP4 (Lin- 

Sca+ c-Kit+ Flt3+) cells were isolated by FACS from young adult (8-10 weeks old) mice, 

transduced with lentiviral particles containing individual shRNA expression plasmids, 

and cultured for two days with growth factors that we previously identified as supporting 

both lymphoid and myeloid differentiation from this population (Young et al., 2016b) 

(Figure 2.14A).  
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Figure 2.14. Functional shRNA screen for epigenetic regulators of myeloid versus B-
lymphoid differentiation identifies Kat6b. (A) Schematic of experimental design to test 
epigenetic regulatory gene candidates using shRNA-mediated knockdown in lymphoid-
primed multipotent progenitor cells (MPP4) and colony-forming unit (CFU) assays. (B) 
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(Top panel) Frequency of myeloid and B-lymphoid colonies out of total colonies and 
(Bottom panel) CFU cloning efficiency calculated as the total number of myeloid and B-
lymphoid colonies following shRNA knockdown of the indicated target genes divided by 
the total number of myeloid and B-lymphoid colonies in NTC. NTC; non-targeting 
control. Bars represent mean ± SEM of n ³ 2 biological replicates. *P < 0.05; **P < 0.01; 
***P < 0.001 by two-way ANOVA and Dunnett’s multiple comparisons test or one-way 
ANOVA and Holm-Sidak’s multiple comparisons test. 
 

After two days, GFP-expressing cells were isolated by FACS and plated into parallel 

myeloid and B-lymphoid colony-forming unit (CFU) differentiation assays. To identify 

genes responsible for myeloid versus B-lymphoid differentiation, I sought genes whose 

knockdown produced a significant change in the proportion of myeloid relative to B-

lymphoid colonies while maintaining overall cloning efficiency. Relative to NTC, I found 

that knockdown of our positive control Crebbp resulted in a near-complete loss of CFU 

capacity and the residual colonies that formed were predominantly myeloid (Figure 

2.14B), consistent with the expected phenotype of Crebbp loss (Chan et al., 2011). In two 

out of the 14 shRNA constructs evaluated, targeting Kat6b and Rnf40 (ring finger protein 

40), I observed a significant increase in the proportion of myeloid relative to B-lymphoid 

colonies (Figure 2.14B, Top panel). Of these, only knockdown of Kat6b was found not to 

alter overall cloning efficiency (Figure 2.14B, Bottom panel) and thus was pursued as a 

candidate epigenetic regulator of aging-associated myeloid lineage bias. 

2.2.1. KAT6B decreases at the transcript and protein level in aged LT-HSCs 

As the goal of this study was to gain insight into the functional role of Kat6b in 

aging-associated myeloid lineage-biased differentiation of HSCs, I sought to determine if 

Kat6b is abundantly expressed within the HSCs and how this expression may be altered 

in aging. I isolated LT-HSCs (Lin- Sca+ c-Kit+ CD150+ CD48-) by FACS from young (2-4 
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month) and aged (20-23 month) mice. By real-time PCR, I observed that the Kat6b 

transcript is expressed in LT-HSCs and that its expression decreases 2.8-fold with age in 

LT-HSCs (Figure 2.15A).  

 

 

Figure 2.15. KAT6B is decreased in aged LT-HSCs. (A) Relative expression of Kat6b 
in LT-HSCs isolated from young (2-4 month) and aged (20-23 month) mice. Bars 
represent mean ± SEM of n ³ 3 biological replicates. *P < 0.05 by unpaired t test. (B) 
Representative immunofluorescence images of KAT6B and DAPI in LT-HSCs isolated 
from young and aged mice. Scale bar equals 5 µm. (C) Violin plots of mean fluorescence 
intensity (MFI) of KAT6B in LT-HSCs isolated from young and aged mice. Solid lines 
indicate median and dotted lines indicate quartiles. Data points include n = 17-64 
individual cells sampled from n = 4 biological replicate animals. ***P < 0.001 by 
unpaired t test. 
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Previous work comparing transcriptional changes between young and aged mouse LT-

HSCs found a 1.2-fold decrease in Kat6b expression in aged LT-HSCs (FDR = 0.0413) 

(Sun et al., 2014) and a recent study comparing human HSPCs (Lin- CD34+ CD38-) 

isolated from young (18-30 year-old) and aged (65-75 year-old) individuals (Adelman et 

al., 2019) identified that KAT6B transcript decreases 1.2-fold in aging (Padj = 0.0397), 

supporting my finding that Kat6b levels decrease with age in HSCs. To analyze KAT6B 

at the protein level, I immuno-stained LT-HSCs isolated by FACS from young and aged 

mice with an antibody against KAT6B and the nuclear stain DAPI (Figure 2.15B). I 

observed that the mean fluorescence intensity (MFI) of KAT6B in LT-HSCs isolated 

from aged mice is significantly lower than in young mice (Figure 2.15C). Together, my 

results show that KAT6B is significantly decreased at both the transcript and protein 

levels in aged LT-HSCs. 

2.2.2. Knockdown of Kat6b in LT-HSCs causes myeloid-biased in vitro 

differentiation in CFU assays 

To evaluate the functional consequence of reduced expression of Kat6b as 

observed in aged LT-HSCs, I utilized a shRNA knockdown approach. LT-HSCs isolated 

from young mice were transduced with lentiviral particles containing NTC or one of two 

Kat6b shRNA expression plasmids and cultured for two days with growth factors 

supporting LT-HSC maintenance (Figure 2.16A) (Holmfeldt et al., 2016). After two days, 

GFP+ cells were isolated by FACS and evaluated for in vitro myelo-erythroid 

differentiation using CFU assays. From the resultant colonies, I determined that Kat6b 

transcript was reduced by 4.8-fold and 1.5-fold using Kat6b shRNA1 (sh1) and Kat6b 
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shRNA2 (sh2), respectively (Figure 2.16B). The total number of colonies was not 

significantly altered in sh1 or sh2 compared to NTC (Figure 2.16C).  

  

Figure 2.16. Kat6b knockdown alters myeloid differentiation of LT-HSCs in vitro. 
(A) Schematic of experimental design to knockdown Kat6b in LT-HSCs and assess 
differentiation in the myeloid CFU assay. (B) Relative expression of Kat6b in colonies 
following shRNA-mediated knockdown of Kat6b using two independent hairpins (sh1 or 
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sh2) or NTC. Bars represent mean ± SEM of n ³ 3 biological replicates. ***P < 0.001 by 
one-way ANOVA and Holm-Sidak’s multiple comparisons test. (C) Total number of 
colonies produced and (D) colony subtype distribution from 200 GFP+ cells post-
transduction of LT-HSCs. CFU-M; macrophage, CFU-GM; granulocyte-macrophage, 
CFU-GEMM; granulocyte-erythrocyte-macrophage-megakaryocyte. Dots denote 
biological replicates and bars represent mean ± SEM of n ³ 3 biological replicates. *P < 
0.05; ***P < 0.001 by two-way ANOVA and Dunnett’s multiple comparisons test. (E) 
Total number of colonies produced upon passage of 30K cells harvested from the primary 
CFU assay. Dots denote biological replicates and bars represent mean ± SEM of n = 3 
biological replicates. 
 
 
However, differences were observed with respect to colony composition, determined 

based upon cellular morphology within each colony to distinguish macrophage-only 

(CFU-M), granulocyte-macrophage (CFU-GM) and granulocyte-erythrocyte-

macrophage-megakaryocyte (CFU-GEMM) colonies. Upon knockdown of Kat6b, I 

observed a significant increase in the number of CFU-GM colonies and a significant and 

consistent decrease in the number of CFU-GEMM colonies (Figure 2.16D), consistently 

with both shRNA constructs. In addition, I investigated the effect of Kat6b knockdown 

on colony replating capacity for further assessment of myeloid differentiation potential. 

While NTC colonies did not replate past passage three, I observed that Kat6b knockdown 

colonies replated to passage five, representing an increase in CFU replating capacity 

(Figure 2.16E). Together, my results demonstrate that knockdown of Kat6b results in 

myeloid-biased in vitro differentiation from LT-HSCs and increased serial replating 

capacity of the resultant myeloid progenitor cells. 
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2.2.3. Knockdown of Kat6b in LT-HSCs causes myeloid-biased differentiation in vivo 

To evaluate the functional consequence of reduced levels of Kat6b in LT-HSCs in 

vivo, I transduced LT-HSCs with Kat6b sh1 or NTC and transplanted GFP+ cells into 

lethally irradiated B6.CD45.1 recipient mice (Figure 2.17A).   
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Figure 2.17. Kat6b knockdown alters myeloid and erythroid differentiation of LT-
HSCs in vivo. (A) Schematic of experimental design to knockdown Kat6b in LT-HSCs 
and assess hematopoietic reconstitution in lethally irradiated recipient mice compared to 
NTC-transduced LT-HSCs. (B) Frequency of donor-derived cells (CD45.2+ GFP+) in the 
peripheral blood (PB) of recipient mice, (C) myeloid cells (CD11b+ve) within donor-
derived PB cells (CD45.2+ GFP+), and (D) erythroid cells (Ter119+) within donor-derived 
PB cells (GFP+) at 1 month (1mo) post-transplant. Each dot represents one recipient 
mouse. Lines represent mean ± SEM of n ³ 7 biological replicates. *P < 0.05; ***P < 
0.001 by Mann-Whitney test. (E) Frequency of B (B220+) and T (CD3e+) cells within 
donor-derived PB cells (CD45.2+ GFP+) at one month post-transplant. Each dot 
represents one recipient mouse. Lines represent mean ± SEM of n ³ 7 biological 
replicates. P values calculated by unpaired t test. 

 

In total, 15 recipient mice were transplanted with NTC-transduced cells and 16 

recipient mice were transplanted with Kat6b sh1-transduced cells. From these, 7/15 

(46%) and 8/16 (50%) were found to have multilineage engraftment above a threshold of 

0.1% donor-derived peripheral blood cells at one-month post-transplant. At this time 

point, donor-derived engraftment (% CD45.2+ GFP+) was not significantly different 

between NTC and Kat6b sh1 (Figure 2.17B). However, mice transplanted with Kat6b 

knockdown LT-HSCs had a significant increase in the proportion of donor-derived 

myeloid cells in the peripheral blood as compared to NTC (Figure 2.17C). In addition, 

there was a significant decrease in donor-derived erythroid cells in the peripheral blood 

of mice transplanted with Kat6b knockdown LT-HSCs compared to NTC (Figure 2.17D). 

A trend toward decreased frequency of donor-derived B and T lymphocytes in Kat6b 

knockdown compared to NTC did not reach statistical significance (P = 0.0765 and P = 

0.1984, respectively) (Figure 2.17E).  
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At four months post-transplant, 3/15 (20%) and 3/16 (18.8%) of recipients were found to 

have sustained multilineage engraftment above a threshold of 0.1% donor-derived 

peripheral blood cells (Figure 2.18A).  
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Figure 2.18. Multilineage engraftment of LT-HSCs following Kat6b knockdown. (A) 
Frequency of donor-derived cells in the peripheral blood (PB) of recipient mice at 4mo 
post-transplant. Each dot represents one recipient mouse. Lines represent mean ± SEM of 
n = 3 biological replicates. (B) Limiting dilution analysis of repopulating cell frequency 
from NTC or Kat6b-transduced LT-HSCs at 4mo post-transplant. (C) Frequency of 
myeloid (CD11b+), erythroid (Ter119+), B (B220+) and T (CD3e+) cells within donor-
derived PB cells at four months post-transplant. Each dot represents one recipient mouse. 
Lines represent mean ± SEM of n = 3 biological replicates. P values calculated by Mann-
Whitney test. 
 

These data were utilized to calculate repopulating cell frequency by limiting 

dilution analysis (Y. Hu & Smyth, 2009). In the NTC group, the repopulating cell 

frequency was calculated to be 1/1170 (1/3644 to 1/376; 95% Confidence Interval (CI)), 

similar to the repopulating cell frequency in Kat6b knockdown (1/6720, 1/1683 to 1/422; 

95% CI) (Figure 2.18B). In addition, frequency of donor-derived lymphocytes, erythroid 

and myeloid cells showed similar trends at 4-month transplant as were observed at 1-

month post-transplant in Kat6b knockdown compared to NTC, but did not reach 

statistical significance (Figure 2.18C). Together, these results show that knockdown of 

Kat6b causes myeloid-biased differentiation from LT-HSCs in vivo without altering 

repopulation capacity. 

2.2.4. Knockdown of Kat6b in LT-HSCs decreases multilineage priming and 

promotes expression of inflammation-associated gene signatures 

To investigate the molecular mechanisms underlying myeloid-biased 

differentiation after Kat6b knockdown, I transduced LT-HSCs with NTC or Kat6b sh1 

and performed RNA-seq on sorted GFP+ cells. Unsupervised clustering separated NTC 

and Kat6b knockdown samples (Figure 2.19A). 252 significantly differentially expressed 

genes (FDR < 0.05) were identified, out of which 127 genes were upregulated and 125 
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genes were downregulated in Kat6b knockdown compared to NTC (Figure 2.19B). Kat6b 

itself was found to be downregulated by 1.2-fold in Kat6b knockdown compared to NTC 

samples. In addition, I observed downregulation of Aldh3a1 (aldehyde dehydrogenase 

family 3), loss of which impairs B cell development and HSC function (Gasparetto et al., 

2012) and Apoe (apolipoprotein E), loss of which has been demonstrated to cause 

monocytosis and neutrophilia in mice (Murphy et al., 2011).   
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Figure 2.19. Kat6b knockdown alters gene expression programs critical for 
multilineage differentiation. (A) PCA plot showing unsupervised clustering of gene 
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expression profiles from Kat6b sh1 (n = 3) and NTC (n = 3). Each color represents a set 
of biological replicate samples. (B) Volcano plot showing log fold changes of genes 
against -log10 of FDR. Points in red highlight genes with FDR < 0.05. (C) Gene set 
enrichment analysis (GSEA) of genes upregulated in young versus aged LT-HSCs (Sun 
et al., 2014). Red denotes NTC and blue denotes Kat6b sh1. (D) Gene set enrichment 
analysis (GSEA) of genes upregulated in aged versus young LT-HSCs (Sun et al., 2014). 
Red denotes NTC and blue denotes Kat6b sh1. (E) Normalized enrichment score from 
GSEA analysis of the indicated datasets in Kat6b sh1 versus NTC. Black bars indicate 
FDR < 0.05, white bars indicate FDR > 0.05. (F) Top gene ontology (GO) terms enriched 
in genes found to be significantly upregulated in Kat6b sh1 versus NTC (fold change > 2 
and P < 0.05). (G) Top gene ontology (GO) terms enriched in genes found to be 
significantly downregulated in Kat6b sh1 versus NTC (fold change > 2 and P  < 0.05).  

To test the hypothesis that Kat6b knockdown alters expression of gene programs 

associated with aging and differentiation of LT-HSCs, we performed gene set enrichment 

analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005). Gene set enrichment 

analysis compares the expression of query gene list between our control or experiment 

samples and then ranks the genes based on enrichment in either the control or 

experimental samples. Comparing our RNA-seq data to LT-HSC aging gene signatures 

(Sun et al., 2014) revealed that genes more highly expressed in young versus aged LT-

HSCs were significantly enriched in NTC versus Kat6b knockdown (Figure 2.19C). On 

the other hand gene more highly expressed in old vs young LT-HSCs were significantly 

enriched in Kat6b knockdown vs NTC from (Sun et al., 2014) (Figure 2.19D. This might 

also explain the heterogeneity among Kat6b sh1 biological replicates. as heterogeneity 

due to epigenetic dysregulation in HSCs is a feature of aging (Buisman & Haan, 2019).  

I then compared our dataset to previously defined gene signatures representing 

HSCs (Chambers et al., 2007), the self-renewal program (Krivtsov et al., 2006), 

hematopoietic progenitor cell populations (lymphoid (CLP), granulocyte-macrophage 

(preGM) and erythroid-megakaryocyte (preMegE, preCFU-E, MkP)) (Sanjuan-Pla et al., 
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2013), and mature hematopoietic cell populations (M1 and M2 macrophages, monocytes, 

granulocytes, erythrocytes, CD4+ naïve T cells, CD8+ naïve and activated T cells, B cells 

and NK cells) (Chambers et al., 2007; Engler, Robinson, Smirnov, Hodgson, & Berger, 

2012; Mantovani, Sozzani, Locati, Allavena, & Sica, 2002; Martinez, Gordon, Locati, & 

Mantovani, 2006). This analysis revealed that Kat6b knockdown LT-HSCs had a 

significant enrichment of an M1 macrophage signature while NTC LT-HSCs were 

enriched in HSC/self-renewal, preGM, monocyte, CLP, NK and CD8+ naïve T cell 

signatures (Figure 2.19E). This result is consistent with literature demonstrating 

downregulation of Kat6b during macrophage polarization and M1 activation (Shukla et 

al., 2018). To further interrogate mechanisms underlying the observed myeloid 

differentiation bias of Kat6b knockdown LT-HSCs, unbiased GO enrichment analysis 

was utilized. This analysis revealed significant upregulation of signatures associated with 

defense response, immune processes and immune response in Kat6b knockdown LT-

HSCs (Figure 2.19F) and downregulation of signatures associated with response to 

external stimulus and homeostasis (Figure 2.19G). Together, these data suggest that 

decreased expression of Kat6b in LT-HSCs impairs multilineage differentiation, and 

permits a transcriptional program promoting differentiation toward pro-inflammatory-

type macrophages and that is associated with aging. 
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 2.2.5. H3K23ac levels trend towards decline in aged LT-HSCs 

 

Figure 2.20: Alterations in H3K23ac with aging. (A) Representative 
immunofluorescence images of H3K23ac and DAPI in LT-HSCs isolated from young 
and aged mice. Scale bar equals 5 µm. (B) Violin plots of mean fluorescence intensity 
(MFI) of H3K23ac in LT-HSCs isolated from young and aged mice. Solid lines indicate 
median and dotted lines indicate quartiles. Data points include n = 25-69 individual cells 
sampled from n = 4 biological replicate animals. P values calculated by unpaired t test.  

 

As KAT6B is known to catalyze H3K23 acetylation, I hypothesized that this 

modification would be decreased in LT-HSCs with aging. To test this hypothesis, I 

isolated LT-HSCs from young and aged mice by FACS and immunostained with an 
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antibody against H3K23ac and DAPI (Figure 2.20A). I observed a trend toward decrease 

in mean fluorescence intensity of H3K23ac in LT-HSCs isolated from aged mice (P = 

0.1729) (Figure 2.20B). These results suggest that H3K23ac may be modestly reduced 

with age in LT-HSCs, consistent with reduction in KAT6B at the transcript and protein 

levels. 
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CHAPTER 3 

METHODS 

 

3.1. Experimental animals 

Young C57BL/6J (2-4 months old), aged C57BL/6J (20-24 months old) and 

B6.SJL-PtprcaPepcb/BoyJ (B6.CD45.1) (2-4 months old) were obtained from, and aged 

within, The Jackson Laboratory. All mice used in this study were females. All 

experiments were approved by The Jackson’s Laboratory Institutional Animal Care and 

Use Committee (IACUC).  

3.2. Plasmids 

shRNA expression plasmids (in pLKO.1 or pLKO1.5) were obtained from Sigma 

(St. Louis, MO) (Table 3.1). 

Table 3.1. shRNA plasmids. 

Target Gene Symbol Target Gene Name Clone Number (Sigma) 

NTC MISSION® pLKO.1-puro 

Non-Target shRNA Control 

Plasmid DNA or TRC2 

pLKO.5-puro Non-

Mammalian shRNA Control 

Plasmid DNA 

SHC202 or SHC016 

Kat6b sh1 K(lysine) acetyltransferase 

6B 

TRCN0000287544 

Kat6b sh2 K(lysine) acetyltransferase 

6B 

TRCN0000039341 

Crebbp  CREB binding protein TRCN0000012725  

Rnf40  ring finger protein 40 TRCN0000041048 
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Kmt5a lysine methyltransferase 5A TRCN0000241070 

Atxn7l3 ataxin 7-like 3 TRCN0000251735 

Tbl1x transducin (beta)-like 1 X-
linked 

TRCN0000109355 

Atxn7l1 ataxin 7-like 1 TRCN0000348933 

Table 3.1. Continued

Ndn necdin TRCN0000312951 

Ezh1 enhancer of zeste 1 
polycomb repressive 
complex 2 subunit 

TRCN0000317140 

Kdm5b lysine (K)-specific 
demethylase 5B 

TRCN0000113491 

Ncor2  nuclear receptor co-repressor 
2 

TRCN0000095281 

Suv39h2 suppressor of variegation 3-9 
2 

TRCN0000353741 

Prdm16 PR domain containing 16 TRCN0000075459 

Cxxc1 CXXC finger 1 (PHD 
domain) 

TRCN0000257088 

Dach1 dachshund family 
transcription factor 1 

TRCN0000433533 

 

 pLKO.3G was a gift from Christophe Benoist & Diane Mathis (Addgene,

Watertown, MA; plasmid #14748). The GFP cassette from pLKO.3G was sub-cloned 

into each shRNA plasmid. Colony PCR with eGFP primers (Table 3.2) was performed to 

identify clones containing the GFP insert

Table 3.2. Primer sequences. 

Target Purpose Forward Primer (5’) Reverse Primer (5’) 

eGFP Cloning  GCAGTCGGCTCCCTCGTT
GACCGA 

CTGCACGCTCCCGTCCTCGATG
TT 

B2m Real-time 
PCR 

CAGTATGTTCGGCTTCCC
ATTC 

TTCTGGTGCTTGTCTCACTGA 

Kat6b 

set 1 

Real-time 
PCR 

AGAAGAAAAGGGGTCGT
AAACG 

GTGGGAATGCTTTCCTCAGAA  
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Kat6b 

set 2 

Real-time 
PCR 

AGCTTCTGTTTGGGGACT
AAAG 

GTGTCCACTACTGCCACAATC 

Crebbp  Real-time 
PCR 

CCAAACGAGCCAAACTCA
GC 

TTTGGACGCAGCATCTGGAA 

Rnf40  Real-time 
PCR 

GACCCTACGGTGACGGAA
GT 

CCAGTAGCGGTTGACGATGT 

Kmt5a Real-time 
PCR 

CAGACCAAACTGCACGAC
ATC 

CTTGCTTCGGTCCCCATAGT 

 

Table 3.2. Continued 

Atxn7l3 Real-time 
PCR 

AAGGAGTGTGTTTGCCCC
AA 

AGACTTGGATCTTCGAGGGGA 

Tbl1x Real-time 
PCR 

CACAAGTTGCACGGCTCG ACTGTGGCTTTACTCGGTGG 

Atxn7l1 Real-time 
PCR 

CAAGCCCTAGAACAGCGT
CA 

AGCAAGTTTCTGCCCTCACA 

Ndn Real-time 
PCR 

CCAGAGGAGCTAGACAG
GGT 

ACGCCTGGGGATCTTTCTTG 

Ezh1 Real-time 
PCR 

CAACACTTCCCGCTGCAT
TC 

GGCGCTTCCGTTTTCTTGTT 

Kdm5b Real-time 
PCR 

CGAGCTGGGAAGAGTTCG
C 

ATCACAAGCGAATGGTGGCT 

Ncor2  Real-time 
PCR 

CCTGGTGGAAGTTCGTGG
AC 

GCTCCTGAGACCGTTCACTC 
  

Suv39h2 Real-time 
PCR 

GACCGCGCCAGTTTGAAT
G 

CTAAAGGTGGGCCCTCCAAG 

Prdm16 Real-time 
PCR 

ATGGATCCCATCTACAGG
GTA 

CATTGCATATGCCTCCGGGT 

Cxxc1 Real-time 
PCR 

GATGATCACGGCCTACCC
TG 

GCCGTTTGTACCTCTCCTCC 

Dach1 Real-time 
PCR 

GGCTTTCGACCTGTTCCT
GA 

AGGAAGTTCCAGTCCAACACT 

PU1 Knockout 
Screen 

AACAGATGCACGTCCTCG
AT 

GAAGGCTGTGCTTGTGGAGT 

Enhance

r A1 

Knockout 
Screen 

ATGGCCAGTCATACAAAG
GATTT 

AATGGCACAAAGAAGTCTTGA
GAA 

Enhance

r B1 

Knockout 
Screen 

ACCGTCTAAGAGGCTTTG
GC 

GCTACTAAGGCCACCGCTAG 
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Enhance

r C 

Knockout 
Screen 

TTGGTGCCATTTTTCACAT
GATGC 

AGATGTTCTTTGGCCATCACTC
T 

Enhance

r D 

Knockout 
Screen 

GTCCTCCAAGAATGGGGG
TG 

CACCCCTCCGGTTAGGTTTC 

Px458 

Reverse 

sgRNA 
synthesis 

AGCACCGACTCGGTGCCA
CT 

 

 

pLENTI-CRISPR-EGFP (EGFP) was a gift from Dr. Rick Maser. PX458 plasmid 

was obtained from addgene.  

3.3. Lentiviral supernatant for Kat6b knockdown experiments 

shRNA expression plasmids, RC-CMV-Rev1b, HDM-Hgpm2 (gag-pol), HDM-

tat1b, HDM-VSV-G (at a mass ratio of 10:2:2:2:1) were transfected into 5 x 106 HEK-

293T cells (ATCC, Manassas, VA), seeded 24 hours before transfection. CalPhos™ 

Mammalian Transfection Kit (Takara Bio, Mountain View, CA) was used for 

transfection. Growth media was replaced 24 hours after transfection. For viral 

supernatant collection, media was collected 48 hours after transfection, centrifuged at 

1250 rpm for 5 min at 4oC and aliquots of supernatant were stored at -80oC.  

3.4. Lentiviral supernatant for pLenti-CRISPR-EGFP transduction optimization 

experiments 

For 4th generation system, pLenti-CRISPR-EGFP, RC-CMV-Rev1b, HDM-

Hgpm2 (gag-pol), HDM-tat1b, HDM-VSV-G, or for 3rd generation system PMD2.G and 

pxPAX2 were transfected into 5 x 106 HEK-293T cells (ATCC, Manassas, VA), seeded 

24 hours before transfection. CalPhos™ Mammalian Transfection Kit (Takara Bio, 

Mountain View, CA) was used for transfection. Growth media was replaced 24 hours 



82 

 

after transfection. For viral supernatant collection, media was collected 48 hours after 

transfection, centrifuged at 1250 rpm for 5 min at 4oCand used either fresh or aliquots of 

supernatant were stored at -80oC. 

3.5. Titering of viral supernatant 

To titer lentiviral supernatant, 2 x 105 NIH/3T3 cells (ATCC) were seeded in a 6-

well plate 24 hours before supernatant was thawed and added at 1:2, 1:10, 1:50, 1: 250 

and 1:1250 diluted in DMEM+10%FBS with 5 ug/ml polybrene. Plates were spun at 

2500 rpm for 60 min at room temperature followed by incubation at 37oC and 5% CO2 

for 48 hours with media change after 24 hours. After this 48h culture period, cells were 

harvested and run on a LSRII (BD Biosciences, San Jose, CA) to assess frequency of 

GFP+ cells. These frequencies were used to calculate the titer of each preparation of 

lentiviral supernatant. In addition, RNA was isolated from transduced NIH/3T3 cells to 

assess shRNA knockdown efficiency by real-time PCR. 

3.6. Primary cell isolation 

LT-HSCs and MPP4 cells were isolated as described previously (Young et al., 

2016b). Femurs, tibiae, iliac crests from each mouse were pooled, crushed and filtered to 

prepare single-cell suspensions of bone marrow (BM). Ficoll-Paque (GE Healthcare, 

Chicago, IL) density centrifugation was used to isolate BM mononuclear cells (MNCs). 

These cells were stained with fluorochrome-conjugated antibodies from BioLegend (San 

Diego, CA), eBiosciences (ThermoFisher Scientific, Waltham, MA), BD Biosciences 

(San Jose, CA): c-Kit (clone 2B8), CD48 (clone HM48-1), CD150 (clone TC15-

12F12.2), Sca-1 (clone D7), FLT3 (clone A2F10), mature lineage (Lin) marker mix 

(B220 (clone RA3-6B2), CD11b (clone M1/70), CD4 (clone RM4-5), CD8a (clone 53-
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67), Ter-119 (clone TER-119), Gr-1 (clone RB6-8C5), CD5 (clone 53-7.3)) and viability 

stain propidium iodide (PI). Cells were sorted on a FACSAria (BD Biosciences) with 

these surface marker profiles: LT-HSC (Lin- Sca+ c-Kit+ CD150+ CD48-), MPP4 cells 

(Lin- Sca+ c-Kit+ Flt3+), LSK cells (Lin- Sca+ c-Kit+) and LK cells (Lin- c-Kit+). 

3.7. Transduction of LT-HSCs, MPP4 Cells 

LT-HSCs were resuspended in SFEMII (StemCell Technologies, Vancouver, 

Canada) supplemented with growth factors described previously (Holmfeldt et al., 2016); 

Stem cell factor (SCF; 10 ng/ml), thrombopoietin (TPO; 20 ng/ml), insulin-like growth 

factor 2 (IGF2; 20 ng/ml) and fibroblast growth factor (FGF; 10 ng/ml) (BioLegend or 

StemCell Technologies) along with 5ug/ml polybrene (Sigma) and viral supernatant. 

Lentiviral supernatant was added at concentration of 1000 MOI in a total volume of 200 

ul in a 96-well U-bottom plate. The plate was spun at 2500 rpm for 60 min at room 

temperature. After this, cells were cultured at 37oC and 5% CO2 for 36 hours. Transduced 

cells (viable GFP+) were sorted on a FACSAria (BD Biosciences). MPP4 cells were 

handled as above in IMDM (ThermoFisher Scientific) supplemented with 10% FBS 

(VWR, Radnor, PA), interleukin-3 (IL-3, 10 ng/ml ), interleukin-6 (IL-6, 10 ug/ml), 

interleukin-7 (IL-7, 20 ng/ul), SCF (100 ng/ml), leukemia inhibitory factor (LIF, 20 

ng/ml) (Peprotech, Rocky Hill, NJ) and polybrene (5 ug/ml) (Sigma).  

3.8. Generation of concentrated virus by ultracentrifugation 

shRNA expression plasmids, RC-CMV-Rev1b, HDM-Hgpm2 (gag-pol), HDM-

tat1b, HDM-VSV-G (at a mass ratio of 10:2:2:2:1) were transfected into 5 x 106 HEK-

293T cells (ATCC, Manassas, VA), seeded 24 hours before transfection. CalPhos™ 

Mammalian Transfection Kit (Takara Bio, Mountain View, CA) was used for 
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transfection. Growth media was replaced 24 hours after transfection. For viral 

supernatant collection, media was collected 48 hours after transfection, centrifuged at 

1250 rpm for 5 min at 4oC and filtered through a 0.45uM filter. Filtrate was centrifuged at 

25000 rpm for 90 mins. Viral pellet was incubated at 4C overnight, followed by 

resuspension. Aliquots of supernatant were stored at -80oC. 

3.9. Electroporation of Cas9-sgRNA RNPs in HSPCs: 

Electroporation protocol was adapted from (Gundry et al., 2016).LK cells were 

cultured for three in presence of 10 ng/ml SCF 100 ng/ml TPO in SFEMII media for 

three hours. Cells were resuspended in 10 ul of Buffer T (Neon Transfection Kit).  

1 ug of Cas9 protein (PNABio) was incubated with 1 ug of in vitro transcribed sgRNA 

(0.5 ug of each sgRNA was used which flanked the target knockout region) in a total 

volume of 2 ul for 15 mins at RT. RNP complexes were combined with resuspended cells 

and electroporated at 1700 V, 20 ms (Neon Transfection System) followed by cell count 

and plating into OP9 co-culture assay.  

Screen for knockout was performed by isolation of genomic DNA of cells with 

DNeasy Blood and Tissue Kit (Qiagen) and performing PCR by using primers listed in 

Table 3.2. 

3.10. In vitro synthesis of sgRNAs 

Oligos containing T7 promoter and variable region of sgRNAs against candidate 

loci were ordered from Integrated DNA Technologies (Table 3.3).  
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Table 3.3. Oligos for CRISPR/Cas9 knockout. 

Target Purpose sgRNA 1 sgRNA2 

PU1 Cas9 
Knockout 

GAAATTAATACGACTCAC
TATAAGTCCATAAGGGAT
AGCCCAGTTTTAGAGCTA
GAAATAGC 

GAAATTAATACGACTCACTATA
AGACTCCCAAGGAAGCACCGG
TTTTAGAGCTAGAAATAGC 

Enhance

r A1 

Cas9 
Knockout 

GAAATTAATACGACTCAC
TATAGGGCAAGGGTGTAA
AGAAGTGTTTTAGAGCTA
GAAATAGC 

GAAATTAATACGACTCACTATA
GGGCAAGGGTGTAAAGAAGTG
TTTTAGAGCTAGAAATAGC 

Enhance

r B1 

Cas9 
Knockout 

GAAATTAATACGACTCAC
TATAAGAAGAGAGTGCAC
TCACAGGTTTTAGAGCTA
GAAATAGC 

GAAATTAATACGACTCACTATA
AGATTGGCAAGGGCTCACAGGT
TTTAGAGCTAGAAATAGC 

Enhance

r C 

Cas9 
Knockout 

GAAATTAATACGACTCAC
TATAAGTAGCTATTTGGA
ACCTGAGTTTTAGAGCTA
GAAATAGC 

GAAATTAATACGACTCACTATA
GGTTGATGATCAGTATGTGAGT
TTTAGAGCTAGAAATAGC 

Enhance

r D 

Cas9 
Knockout 

GAAATTAATACGACTCAC
TATAGAACCTTGGGAATA
CAACACGTTTTAGAGCTA
GAAATAGC 

GAAATTAATACGACTCACTATA
GGGAGTACCTGGTGTTCCAAGT
TTTAGAGCTAGAAATAGC 

 

 

 These oligos were used as primers to PCR amplify scaffold region of sgRNA 

from PX458 plasmid followed by purification of PCR products by QIAquick PCR 

Purification Kit (Qiagen). In vitro RNA transcription of these PCR products was 

performed by HiScribe T7 High Yield RNA Synthesis Kit (NEB) followed by 

purification and concentration by RNA Clean & Concentrator-25 (Zymo Research).  

3.11. OP9 co-culture for differentiation to B-lymphoid cells  

OP9 co-culture protocol was adapted from (Pietras et al., 2015a). OP9 cells were 

cultured with MEM-α media 89%, FBS 10%, Pen/Strep 1%. On Day -1 OP-9 cells were 

seeded in 96-well or 24-well plate. LSKs or LKs were added to pre-seeded OP9 cells in 
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200 ul of B-cell media (optiMEM 93.9% , FBS 5%, Pen/strep 1%, 1% of 55mM B-

mercaptoethanol 0.1%, SCF 10 ng/ml, Flt3L 10 ng/ml, IL-7 5 ng/ml). On Day 2, half 

media was replaced with fresh media (optiMEM 93.9% , FBS 5%, Pen/strep 1%, 55mM 

B-mercaptoethanol 0.1%, SCF 10 ng/ml, IL-7 5 ng/ml). On Day 5, half media was 

replaced with fresh media (optiMEM 93.9% , FBS 5%, Pen/strep 1%, 55mM B-

mercaptoethanol 0.1%, IL-7 5 ng/ml). After this media was changed every 2-3 days same 

as done on Day 5. When the OP9 layer started to detach from the periphery, 5000 OP9 

cells were seeded in 1 well of a 24 well plate. Cells were harvested by trypsinization. 

Resuspended in 200 ul of B-cell media (same composition as Day 5 of assay) along with 

old media from 96-well plate.  

3.12. Transduction optimization experiments for pLenti-CRISPR-EGFP 

For Figure 2.8 1 x 106 whole bone marrow cells were resuspended in 1.8 ml of 

respective viral supernatant supplemented with 5% FBS, SCF (100 ng/ml) and Polybrene 

(13.5 ug/ml). Cells were spun at 2500 rpm for 1 hour. After overnight culture, cells were 

resuspended in SFEMII with SCF (100 ng/ml). 

For Figure 2.9 approximately 9000 LSKs were resuspended in SFEMII media 

supplemented with SCF (100 ng/ml), Polybrene (5 ug/ml) with 8% by volume pLENTI-

CRISPR-EGFP viral supernatant. Cells were spun at 1800 rpm for 30 min. After 

overnight culture, cells were transduced with similar conditions as Day 1.  

For Figure 2.10 approximately 4000 LSK cells were resuspended in SFEMII 

media supplemented with SCF (100 ng/ul), Polybrene (8 ug/ml) and 10%, 50% or 70% 
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pLENTI-CRISPR-EGFP viral supernatant. Cells were spun at 2500 rpm for 60 mins. 

After overnight culture, transduction was repeated as performed on Day 1. 

For Figure 2.11 approximately 2000 LSKs were resuspended in IMDM medium 

with 0.5%, 10% or 50% of concentrated viral supernatant, SCF (100 ng/ul), Polybrene 

(5ug/ml) made up to 200 ul total volume with IMDM 10% FBS. Cells were spun at 2500 

rpm for 60 mins. After overnight culture cells were resuspended in IMDM 10% FBS. 

3.13. Colony forming unit (CFU) Assays 

For B-lymphoid CFU assays, 100 GFP+ cells from transduced MPP4 cells were 

plated in Methocult M3630 (StemCell Technologies) supplemented with FMS-like 

tyrosine kinase like 3 ligand (FLT3L, 25 ng/ml) and SCF (50 ng/ml) (Peprotech). For 

myeloid CFU assays, 100 GFP+ cells from transduced MPP4 cells or 200 GFP+ cells from 

transduced LT-HSCs were plated in Methocult GF M3434 (StemCell Technologies) and 

cultured at 37oC and 5% CO2. Scoring of colonies was done between days 7 and 10 using 

a Nikon Eclipse TS100 inverted microscope. CFU cloning efficiency was calculated as 

the sum of the myeloid and B-lymphoid colonies divided by the sum of the myeloid and 

B-lymphoid colonies in the NTC group. For analysis of replating potential, colonies were 

harvested and total viable counts were obtained, followed by plating of 1-3 x 104 cells in 

Methocult GF M3434. Remaining cells were resuspended in RLT buffer (Qiagen, Hilden, 

Germany). RNA was isolated by RNeasy Micro or RNeasy Mini kits (Qiagen) followed 

by cDNA synthesis using the SuperScript™ III First-Strand Synthesis SuperMix 

(ThermoFisher Scientific). 
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3.14. Real-time PCR 

Real-time PCR was performed using RT2 SYBR Green ROX qPCR Mastermix 

(Qiagen) using the Viaa7 or QuantStudio 7 Flex (Applied Biosystems, Foster City, CA). 

Refer to Supplemental Table 5 for primer sequences used.  

3.15. Immunofluorescence staining of LT-HSCs 

Staining was performed as previously described (Florian et al., 2012). Sorted LT-

HSCs were seeded on retronectin-coated glass coverslips in SFEMII supplemented with 

SCF (10 ng/ml), TPO (20 ng/ul), IGF2 (20 ng/ul), FGF (10 ng/ul) (BioLegend or 

StemCell Technologies) for at least 2 hours. Cells were fixed in 4% PFA (ThermoFisher 

Scientific). Cells were washed with PBS, permeabilized with 0.2% Triton X-100 

(ThermoFisher Scientific) in PBS for 20 mins and blocked with 10% goat serum 

(ThermoFisher Scientific) for 20 mins. Cells were stained by either α-KAT6B (NBP1-

92036; Novus Biologicals, Centennial, CO) or α-H3K23ac (ab61234; Abcam, 

Cambridge, UK) for one hour at room temperature. For secondary antibody, cells were 

stained with α-Rabbit conjugated with Alexa-568 (A-11036; ThermoFisher Scientific) for 

one hour. Coverslips were mounted on slides with Gold Antifade with DAPI 

(ThermoFisher Scientific). Imaging was performed with Leica SP8 confocal microscope. 

Z-stack images were summed and quantification of individual fluorescence intensities 

was performed by Fiji software (Schindelin et al., 2012). Cells were detected by Fiji in 

range of 150-250 pixel units. Scale bars in images represent 5 um.  
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3.16. In Vivo transplantation 

200-350 transduced GFP+ cells were combined with 5 x 105 bone marrow 

mononuclear cells (MNCs) from B6.CD45.1 mice and retro-orbitally injected into 

recipient B6.CD45.1 mice after 1000 rads gamma irradiation (split dose). Peripheral 

blood from recipient mice was analyzed by flow cytometry every 4 weeks after 

transplantation. Blood was collected by retro-orbital bleeding and stained with a 

combination of fluorochrome-conjugated antibodies from BioLegend or BD Biosciences 

with or without red blood lysis: CD45.1 (clone A201.7 or clone A20), CD45.2 (clone 

104), B220 (clone RA3-6B2), CD3e (clone 145-2C11), CD11b (clone M1/70), Ly6g 

(clone 1A8), Ly6c (clone HK1.4), Ter-119 (clone TER-119), GR1 (clone RB6-8C5), 

CD4 (clone GK1.5), CD8a (clone 53-6.72) and CD41 (clone MWReg30). Stained cells 

were run on a FACSymphony A5 (BD Biosciences) and data was analyzed using FlowJo 

software (FlowJo, LLC, Ashland, OR). 

3.17. RNA-Seq 

Transduced GFP+ LT-HSCs from 3 independent biological replicates were sorted 

directly into 350 ul of RLT buffer (Qiagen). Total RNA was isolated from cells using the 

RNeasy Micro kit (Qiagen), according to manufacturers’ protocols, including the optional 

DNase digest step. Sample concentration and quality were assessed using the Nanodrop 

2000 spectrophotometer (ThermoFisher Scientific) and the RNA 6000 Pico LabChip 

assay (Agilent Technologies, Santa Clara, CA). Libraries were prepared by the Genome 

Technologies core facility at The Jackson Laboratory using the Ovation RNA-seq System 

V2 (NuGEN Technologies, Redwood City, CA) and Hyper Prep Kit (Kapa Biosystems, 

Wilmington, MA). Briefly, the protocol entails first and second strand cDNA synthesis 
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and cDNA amplification utilizing NuGEN’s Ribo-SPIA technology, cDNA 

fragmentation, ligation of Illumina-specific adapters containing a unique barcode 

sequence for each library, and PCR amplification. Libraries were checked for quality and 

concentration using the D5000 ScreenTape assay (Agilent Technologies) and quantitative 

PCR (Kapa Biosystems), according to the manufacturers’ instructions. Libraries were 

pooled and sequenced 75 bp single-end on the NextSeq 500 (Illumina, San Diego, CA) 

using NextSeq High Output Kit v2.5 reagents. Raw and processed data was deposited in 

the Gene Expression Omnibus (GEO accession GSE133304). 

3.18. RNA-seq analysis 

Trimmed alignment files (with trimmed base quality value < 30, and 70% of read 

bases surpassing that threshold) were processed using the RSEM (v1.2.12; RNA-Seq by 

Expectation-Maximization) software (B. Li & Dewey, 2011) and the Mus Musculus 

reference GRCm38. Alignment was completed using Bowtie 2 (v2.2.0) (Langmead & 

Salzberg, 2012) and processed using SAMtools (v0.1.18) (H. Li et al., 2009). Fragment 

length mean was set to 280 and standard deviation to 50. Expected read counts per gene 

produced by RSEM were rounded to integer values, filtered to include only genes that 

have at least two samples within a sample group having a cpm > 1.0, and were passed to 

edgeR (v3.5.3) (Robinson, Mccarthy, & Smyth, 2010) for differential expression 

analysis. The negative binomial conditional common likelihood was maximized to 

estimate a common dispersion value across all genes. Exact tests were used to elucidate 

statistical differences between the two sample groups of negative-binomially distributed 

counts producing p-values per test. The Benjamini and Hochberg’s algorithm (p-value 

adjustment) was used to control the false discovery rate (FDR). Features with an FDR-
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adjusted p-value < 0.05 were declared significantly differentially expressed. Gene set 

enrichment analysis (GSEA) (Daly et al., 2003; Subramanian et al., 2005) was performed 

using previously published aged LT-HSC RNA-seq data (Sun et al., 2014) and previously 

defined gene signatures representing HSCs (Chambers et al., 2007), the self-renewal 

program (Krivtsov et al., 2006), hematopoietic progenitor cell populations (lymphoid 

(CLP), granulocyte-macrophage (preGM) and erythroid-megakaryocyte (preMegE, 

preCFU-E, MkP)) (Sanjuan-Pla et al., 2013), and mature hematopoietic cell populations 

(M1 and M2 macrophages, monocytes, granulocytes, erythrocytes, CD4+ naïve T cells, 

CD8+ naïve and activated T cells, B cells and NK cells) (Chambers et al., 2007; Engler et 

al., 2012; Mantovani et al., 2002; Martinez et al., 2006) (Supplemental Table 3). 

3.19. Statistical analysis 

Sample groups were compared using an unpaired t test, Mann-Whitney test, one-

way ANOVA and Holm-Sidak’s multiple comparisons test, or two-way ANOVA and 

Dunnett’s multiple comparisons test as indicated in figure legends.Prism software 

(GraphPad Software, San Diego, CA) was utilized for statistical calculations and 

graphing.  
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CHAPTER 4 

DISCUSSION 

4.1. OP9 co-culture of HSPCs is a qualitative assay 

I have reproduced the finding that the OP9 co-culture of HSPCs is successful at the 

production of CD19+ B-lymphoid cells as has been earlier reported (Pietras et al., 2015b). 

However, I observed that this assay shows considerable heterogeneity with respect to 

efficiency of differentiation of HSPCs to mature cells. I did not find any correlation 

between the number of HSPCs which were input in the start of assay and the number of 

CD45+ cells produced at the end. This was the first indication that this assay was suitable 

for qualitative measure of B-lymphoid differentiation potential rather than quantitative 

assessment. However, I attributed this heterogeneity in the performance of this assay to 

the culture conditions. After 7-10 days of culture the OP9 layer started to detach from the 

surface of a 96-well plate, at which time OP9 and HSPCs were harvested by 

trypsinization and centrifugation and were transferred to a well 24 well plate containing 

pre-seeded OP9 cells for rest of the assay. I hypothesized that this step was the source of 

variability of this assay and so I tested this hypothesis by performing the assay starting 

from 96-well and 24-well and continuing the culture for 12 days without re-plating. I 

observed that these conditions produced CD19+ cells with lower efficiency as compared 

to the 23-day long culture with re-plating and there was still heterogeneity among 

technical replicates. I also attempted to culture HSPCs in transwells which allowed 

transfer the of HSPCs to a new well without trypsinization steps, however, the percentage 

of CD19+ cells was considerably lower as compared to cells cultured with initial 

conditions and variability in output persisted.  Although this experiment did not solve the 
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problem of variability in output, it did provide evidence that HSPCs differentiation into 

CD19+ cells is dependent on contact with OP9 cells. It can also be inferred from these 

experiments that the variability in OP9 co-culture of HSPCs could stem from the 

heterogeneity in OP9 cells themselves which would result in heterogeneity in the 

performance of the assay. Although another cell line, S17, has been used for in vitro 

differentiation to lymphoid cells, OP9 cells were found to be 30% more efficient (Viera 

& Cumano, 2004). Therefore, among current methods, OP9 coculture of HSPCs cells is 

the most appropriate method for assessment of in vitro B-lymphoid differentiation 

potential. That is why this assay is widely used in the field (Adolfsson et al., 2005; 

Akashi K et al., 2000; Arinobu et al., 2007; Pietras et al., 2015a). My findings provide 

evidence that OP9 co-culture assay is more suitable for qualitative assessment of B-

lymphoid differentiation potential, rather than quantitative analyses. Therefore, these 

findings provide important considerations for the application of the OP9 co-culture assay. 

It is also possible that the heterogeneity that I observed in my results could stem from the 

use of a heterogeneous population of HSPCs. The use of HPSCs for these experiments 

was important due to the biological question that I was asking regarding their 

differentiation. Therefore, I propose that future studies should involve studying the effect 

of using more purified hematopoietic progenitor populations like CLPs in the OP9 co-

culture. I also propose that further studies should involve the generation of a more 

homogenous OP9 cell line and determining the exact cell receptors or molecules secreted 

by these cells which promote B-lymphoid differentiation, which will allow more 

controlled in vitro differentiation culture systems.  
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4.2. The OP9 assay is not suitable for enhancer loss of function studies 

Enhancers often act in a combinatorial manner in which activities of multiple enhancers 

contribute to the expression of a single target gene (Maekawa, Imamoto, Merlino, Pastan, 

& Ishii, 1989; Osterwalder et al., 2018). In vivo knockout of experimentally validated 

limb specific enhancers did not produce any limb morphology phenotypes, whereas 

deletion of two enhancers did produce in a discernable phenotype showing the presence 

of redundancy in enhancer function as well (Osterwalder et al., 2018). In context of the 

hematopoietic system, synergy between two enhancers, HS1 and HS2, of Gata1, a gene 

important for erythroid lineage, has also been established (Testa et al., 2004). Therefore, 

in the context of the loss of function studies involving the deletion of a single enhancer 

that I attempted, the expected phenotype is likely to be subtle. And, these subtle 

phenotypes were probably masked by the heterogeneity and qualitative nature the of OP9 

assay. This is a possible explanation that why I did not observe a significant reduction in 

B-lymphoid differentiation of HSPCs after knockout of Pu.1. These technical challenges 

could be overcome by performing an in vivo screen for these putative lymphoid specific 

enhancers. Such a screen would involve targeting enhancers by a library of genome-wide 

sgRNAs in HSPCs isolated from Cas9 expressing mice, followed by transplantation in 

conditioned recipients. Prevalence of sgRNA tags in donor-derived B-cells would a 

measure of relative importance of each enhancer for differentiation to B-cells.  

 

 

 

 



95 

 

4.3. Kat6b is a novel therapeutic target for ameliorating aging-associated decline in 

HSCs 

 By employing a shRNA-mediated screen of epigenetic regulators, we have 

discovered a novel role for Kat6b in the context of LT-HSC differentiation with 

relevance to aging. I have found that KAT6B decreases in aged HSCs at the transcript 

and protein levels. The knockdown of Kat6b in young LT-HSCs resulted in an increase in 

the proportion of myeloid cells and a decrease in the proportion of erythroid cells in vitro 

and in vivo, demonstrating myeloid lineage-biased differentiation. I did not observe any 

BFU-E/CFU-E colonies in vitro, perhaps due to the effect of 2-day culture conditions on 

the differentiation potential of LT-HSCs before setting up CFU assays. Transcriptome 

data revealed that knockdown of Kat6b resulted in loss of HSC-associated expression 

signatures as well as multilineage priming, while gaining an M1 pro-inflammatory 

macrophage expression signature. HSPCs have been known to express myeloid genes 

(Iwasaki and Akashi, 2007) and my in vitro and in vivo data show an increase in 

differentiation towards myeloid cells. Thus, knockdown of Kat6b might be causing 

expression of myeloid associated genes which might have led to an enrichment in gene 

signatures associated with M1 macrophages. In addition, it has been reported that Kat6b 

expression is reduced in macrophages under LPS stimulation which results in M1 

activation (Shukla et al., 2018). LPS results in immune activation and we have shown 

that knockdown of Kat6b also results in GO terms associated with immune response 

(Figure 5E). So, it is possible that immune response mediated by reduction in Kat6b is 

resulting in the activation of M1 gene expression profiles. Together, my results support 

that Kat6b functions as a regulator of HSC self-renewal and multilineage differentiation 
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and decrease in Kat6b promotes myeloid lineage-biased HSC differentiation, similar to 

results observed in aging.   

This work builds upon literature demonstrating the importance of the MYST 

family of acetyltransferases for LT-HSC function. KAT6A, a paralogue of KAT6B with 

structural similarity (Simpson et al., 2012), also has important functions in the regulation 

of HSPCs (Sheikh et al., 2016). My results support overlapping but non-redundant roles 

for KAT6A and KAT6B in hematopoiesis. In vitro, Kat6a-deficient bone marrow has 

reduced total number of colonies in the CFU assay including reduction in all colony 

subtypes (Sheikh et al., 2016), whereas I observed that Kat6b knockdown results in no 

change in total colony numbers and a proportional increase in myeloid-only colonies. In 

vivo, conditional knockout of Kat6a resulted in impaired competitive repopulation 

capacity and increased ratio of myeloid to lymphoid differentiation (Sheikh et al., 2016), 

whereas Kat6b knockdown resulted in no significant change in repopulation capacity or 

B cell frequency, increased frequency of myeloid cells and decreased frequency of RBCs. 

Thus, I propose that KAT6A and KAT6B have overlapping but distinct roles in proper 

multilineage differentiation from LT-HSCs.  

 In the context of my experiments, LT-HSCs were cultured under ex vivo 

conditions which have been reported to promote HSC self-renewal (Holmfeldt et al., 

2016). However, this requirement for ex vivo culture for lentiviral transduction is also a 

caveat in the interpretation of our results. It is possible that some or all of the LT-HSCs 

seeded into ex vivo culture differentiate to progenitors during the 36h transduction culture 

period. Thus, the Kat6b knockdown phenotype I observe may be manifest in either HSCs 

or their myeloid progenitor progeny. In addition, ex vivo culture conditions of LT-HSCs 
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before CFU assay might also explain lack of observation of erythroid colonies like BFU-

E and CFU-E from my experiments. Therefore, to overcome these caveats and further 

test the hypothesis that Kat6b is important for regulation of HSC differentiation to 

myeloid and erythroid lineages, it would be important to perform loss of function studies 

of Kat6b in adult bone marrow by using an inducible system. These experiments would 

involve engineering a Kat6b inducible knockout mouse consisting of floxed Kat6b. The 

knockout would be induced specifically in bone marrow at adult (2-4 months) stage. 

Uninduced floxed mice will be used as negative controls. After induction of knockout of 

Kat6b, HSCs will be isolated from experimental and control mice and transplanted in 

conditioned recipients. Peripheral blood and bone marrow composition of these mice will 

be measured at 6 months post transplantation to test the hypothesis that knockout of 

Kat6b results in increase in differentiation to myeloid and reduction in differentiation to 

erythroid cell types as I observed in in vivo experiments involving transplantation of 

HSCs after Kat6b knockdown by lentiviral transduction. To assess that if Kat6b knockout 

affects stem cell self-renewal, HSCs from recipient mice will be isolated and transplanted 

into secondary recipients.  

Both NTC and Kat6b sh1 transplanted mice had low donor-derived reconstitution 

ability and also declined across 4-month time period post-transplant. This observation can 

be attributed to culture conditions during transduction not being sufficient to keep the 

HSCs in stem cell state completely. Another possible reason is that effect of lentiviral 

transduction on reconstitution ability of stem cells. It has been reported that transduction 

followed by transplantation usually results in low reconstitution (Barrette et al., 2000; 

Hosokawa et al., 2010; Kinkel et al., 2015; Kumar et al., 2019; Mazumdar et al., 2015) 
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and also declines with time (Passegué et al., 2004). Higher engraftment by transduction 

and transplantation methods are observed in proliferation inducing phenotypes (Hope et 

al., 2004). Since I did not observe any evidence that Kat6b knockdown is inducing any 

malignant transformation of cells, that’s why low reconstitution of transplanted cells can 

be explained by their transduction.  

As a proof of principle that aged HSCs can be rejuvenated by therapeutic interventions 

that target epigenetic regulatory processes, it has been shown that inhibition of CDC42 by 

CASIN restored the polarity of H4K16ac, Cdc42 and Tubulin in aged HSCs (Florian et 

al., 2012). These CASIN-treated aged HSCs had re-balanced B-lymphoid and myeloid 

differentiation potential in vivo and HSC frequency resembling young animals (Florian et 

al., 2012), although a subsequent study has shown that simply increasing the levels of 

H4K16ac using a pan-HDAC inhibitor is not sufficient to restore HSC function 

(Grigoryan et al., 2018). In addition, reprogramming of aged HSCs to induced pluripotent 

stem cells (iPSCs) has been shown to rejuvenate in vivo engraftment and T cell 

differentiation potential (Wahlestedt et al., 2013). My work suggests that therapeutically 

increasing levels of KAT6B in aged HSCs may also rejuvenate aspects of altered 

functionality, particularly with respect to lineage-balanced differentiation. A recent report 

by Adelman et al. demonstrated a reduction in active enhancer-associated chromatin 

modifications at a KAT6B-proximal enhancer region in aged versus young human HSCs 

(Adelman et al., 2019), suggesting that therapeutic approaches to increase enhancer 

activity may be a viable strategy to boost Kat6b expression in aged HSCs. Further studies 

will be required to test whether restoring expression of Kat6b in aged HSCs to levels 

observed in young HSCs is sufficient to restore balanced lineage differentiation.  
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CHAPTER 5 

CONCLUSIONS 

Hematopoiesis is a well-coordinated continuous process of differentiation from HSCs to 

mature blood and immune cells. Investigations of molecular mechanisms of this process 

have not only provided us with knowledge regarding the origin of blood disorders and 

malignancies but have also been instrumental in elucidating basic molecular and cellular 

mechanisms underlying stem cell function and differentiation. These studies have relied 

on a variety of in vitro and in vivo assays, that is why robustness and correct applications 

of a particular assay are key to interpreting the results obtained from that assay. In my 

thesis work, I have investigated the robustness of OP9 co-culture assay for the 

differentiation of HSPCs to B-lymphoid cells. My experiments have reproduced findings 

from literature which support that this assay is successful in differentiation of HSPCs to 

B-lymphoid cells. However, I have contributed to the body of literature in this field by 

showing that this assay provides a qualitative measure of differentiation potential and 

therefore is not suitable for studies involving quantitative assessment of differentiation 

potential. This provides novel insights into the application of this assay for assessment of 

B-lymphoid differentiation capacity. I have also demonstrated that one (enhancer B1) of 

out of 4 putative lymphoid enhancers showed a subtle defect in differentiation towards B-

lymphoid cells after knockout as compared to the negative control, whereas rest of 

investigated enhancers did not show any difference. There can be a couple of 

interpretations from these results. Since enhancer B1 belonged to the category of pre-

disposed enhancers, therefore, it can be inferred that pre-disposed enhancers are more 

important for commitment and differentiation to lymphoid lineage as compared to de 
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novo established enhancers. Secondly, it is possible that these enhancers are acting in a 

redundant manner which might explain subtle or no phenotypes after knockout of single 

enhancers.    

 In addition, I have also studied the cellular and molecular mechanism underlying 

differentiation of HSCs to myeloid cells with links to aging-associated phenotypes. Some 

of the key cellular phenotypes hematopoietic aging are a reduction in differentiation to 

erythroid and increase in the production of myeloid cell types. I have demonstrated that 

loss of function of Kat6b by knockdown approaches results in impaired differentiation to 

erythroid cell types and enhanced differentiation to myeloid cell types in vitro and in vivo 

from HSCs (Figure 5.1).  

 

Figure 5.1. Model of link between Kat6b and aging-associated hematopoietic decline. 

By performing transcriptomic analysis after Kat6b knockdown I have demonstrated that 

reduction in Kat6b expression results in gene expression profiles that partially 
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recapitulate aging-associated gene signatures. Furthermore, I have shown that transcript 

and protein levels of KAT6B decline with age in murine HSCs. This provides Kat6b as a 

novel therapeutic target whose over-expression in aged HSCs could potentially 

rejuvenate aging-associated decline in the hematopoietic system.   

 Therefore, I have demonstrated in my thesis that gene regulatory and epigenetic 

elements are important for the differentiation of HSPCs to mature cells. I have also 

shown that epigenetic regulators like Kat6b are linked with aging-associated decline in 

the hematopoietic systems and alterations in levels of such epigenetic regulators can be 

one of the contributing factors which drive aging-associated hematopoietic decline. 

Future studies in these areas should involve investigation of combinatorial approaches 

involving targeting gene regulatory elements and associated epigenetic regulators to 

boost hematopoietic function with age. These studies will consist of in vivo genome-wide 

screens to identify cis-regulatory elements which are important for differentiation to 

mature lineages, and tracking changes in the activation status of these cis-regulatory 

elements. These will be followed by the recruitment of dCas9 fused epigenetic effectors 

to these cis regulatory elements in old HSCs to correct the changes that have accrued due 

to aging. The long-term goal of such studies would be to obtain comprehensive 

knowledge about molecular and cellular mechanisms that go awry with aging, so that 

therapeutic strategies to treat aging-associated diseases can be developed. 
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