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A Mathematical Modeling of Infrared Neural Stimulation A Mathematical Modeling of Infrared Neural Stimulation 

Abstract Abstract 
Electrical stimulation is the gold standard for artificial neural stimulation. The greatest disadvantage with 
electrical stimulation is that it scatters in space and it is difficult to achieve specific point stimulation. 
Recently, infrared stimulation attracted attention to address this issue. Infrared stimulation works on the 
principle of heating the tissue, exploiting the energy of infrared lasers to heat the cellular aqueous 
solution that helps transfer the energy to the cell membrane without direct contact, and provides a 
discrete localization of stimulation as it does not spread in space like electric fields. In the present study, 
a heat transfer model for the temperature distribution was evaluated for infrared heating. All calculations 
were done for an aqueous medium, which can be a good initial representative of conditions in the human 
body, as it is comprised 60% of water. The Laplace transform was used to convert the convoluted 
function within the heat equation to a linear function. The variables were plotted to help identify and 
predict the most effective temperatures on the surface of neuron/cell that will be activated. This project 
describes the formulation of deriving temperature profiles used to predict optimal temperatures to 
activate neurons using advanced calculus tools. 

Keywords Keywords 
infrared stimulation, neurons, heat transfer, laplace transform, inverse laplace transform, complementary 
error function 
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PROBLEM STATEMENT 
 

To find the effective temperature profiles at which infrared neurons/cells stimulation 

occurs using advanced calculus tools. 

MOTIVATION 
 

Current neurosensory implants and testing devices utilize electric currents to stimulate 

neurons/cells. As currents spread in space, it is not possible to achieve high spatial resolution 

for all stimulus situations [3, 7, 13, 16, 17]. In the last few decades, infrared stimulation 

garnered a great amount of attention to address this issue. There have been multiple reports of 

successful optical stimulation, specially, infrared stimulations with various pre-clinical in-vivo 

and in-vitro systems e.g., sciatic nerve, heart cells, SH-SY5Y neurons, DRG neurons and 

auditory systems, etc. [1, 2, 4, 9, 10, 12, 19, 21, 23]. To have a clearer understanding of the 

procedure as well as the concept which justifies the project, the following images of cochlear 

stimulation using infrared stimulation are provided. Figure 1 [14] shows an infrared device 

which is placed on to the basal turn of a cat cochlea. This device provides a heat source 

involving production of infrared waves. For this study, an optical fiber of 400 μm in diameter 

was used to deliver the infrared pulses and would have been placed in the same area of the 

cochlea as Figure 1. 

The second figure, Figure 2 [9], describes the effects of the infrared stimulation on the 

cochlea itself, and the activation of the cell in reference to the pathway of the infrared waves. 

The release of a protein labeled c-FOS has been correlated to the activation of neurons. This c-

FOS activation works congruently with the activation of the cochlear compound action 

potential. Cellular compound action potentials were assessed via c-FOS immunohistochemical 
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staining. This measurement provided data related to the energy and time required to stimulate 

the neurons, as well as the directional effects of the laser on direct and indirect targets from the 

infrared pathway. 

To better understand the optimal energy required for neural activation and resulting 

underlying cellular mechanisms, it is useful to predict heat temperature profiles during infrared 

stimulation. We used a one-dimensional transient heat conduction model in the present study 

[22]. For this heat transfer model, surrounding fluid is assumed stationary, as human body is 

made up of approximately 60 % water and heat transfer is assumed to be by conduction only. 

A Laplace transform was used to solve the heat transfer equations. Utilizing the Laplace 

transform [8], we converted the time-space differential equation into a linear differential 

equation. The inverse Laplace transform provides the temperature distribution function, which 

graphed to find spatial and temporal temperature profiles during neural activation. 

 
 

 
 

 

 

 

 

 

 

Figure 1: This image from [14] shows the placement of the optical device in cat cochlea. 

(A) Shows the length and placement of the optical fiber within the optical housing. (B) 

The arrow shows the drilled cochleostomy within the basal turn of the cochlea. (C) The 

arrow shows the round window recording electrode held by two stainless steel plates. 

(D) Shows how the assembly was held together by dental acrylic. 
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Figure 2: This three-dimensional representation of the affected cochlea, provided by [9], 

shows the effect of infrared stimulation. The spiraling line itself is a three-dimensional 

representation of the cochlea, and the arrow indicates the angle at which the laser was 

emitting the infrared waves. The circles represent the level of c-FOS activation within the 

cochlea. This activation is elicited by the infrared waves, which heat the water adjacent to 

the cell, which in turn activates the cell. As you may notice, the level of activation was 

specific, in direct correlation to the pathway of the laser. 

 

MATHEMATICAL DESCRIPTION AND SOLUTION APPROACH 
 

Firstly, we correlate the change in temperature as a function of the heat source in space 

and time with the following one dimensional (1-D) unsteady state heat conduction equation: 

𝜕2𝑇

𝜕𝑥2 =
1

𝛼

𝜕𝑇(𝑥,𝑡)

𝜕𝑡
                                                                     (1) 

 

This equation is used in conjunction with the following boundary conditions: 

𝑇(𝑥, 0) = 𝑇0  and  𝑇(𝑥, 𝑡) = 𝑇0                                                 (2) 
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At initial time (t = 0), the temperature at any point in space will equal its initial 

temperature (To), and when the heat source is an infinite distance from the target, at any point in 

time, the temperature of the target will stay at its initial temperature (To). 

The heat flux of the heat source is dependent on the area to which the energy is 

distributed as well as the thermal conductivity of the medium [21], distance from the target, and 

time of conduction, and can be represented by the following equation:                                              

                                                         
𝜕𝑇(0,𝑡)

𝜕𝑥
=

𝑞0

𝑘
 , as x ranges from (0, 𝑡) for t > 0                              (3) 

Assuming the variable change of temperature as: 

 

𝑇~ = 𝑇 − 𝑇0,    (
1

𝛼
)

𝜕𝑇~

𝜕𝑡
=

𝜕2𝑇~

𝜕𝑥2                                                     (4) 

 

The approach is subjected to the following conditions: 

 

𝑇~( 𝑥, 0) = 0,    𝑇~( ∞, 𝑡) = 0,    
𝜕𝑇~(0,𝑡)

𝜕𝑥
=

𝑞0

𝑘
                              (5) 

 

At time 0, there will be no change in temperature of the target, with a similar result if the 

heat source is an infinite distance away from the target. At the interface of heat target (water) and 

source (laser), there is a flux continuity i.e., at distance (x = 0) away from the target, the heat flux 

of the target is equivalent to the heat flux of the heat source. 

When taking the Laplace transform 𝑇∗(𝑥, 𝑠) = ∫ 𝑇~( 𝑥, 𝑡)𝑒−𝑠𝑡∞

0
𝑑𝑡 one gets [5, V.1; 11, 15]: 

(
1

𝛼
) [𝑠𝑇∗(𝑥, 𝑠)  −  𝑇~(𝑥, 0)] =

𝜕2𝑇∗(𝑥, 𝑠)

𝜕𝑥2
 

and 
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(
𝑠

𝛼
) 𝑇∗(𝑥, 𝑠) =

𝜕2𝑇∗(𝑥,𝑠)

𝜕𝑥2
                                                                (6) 

With the boundary conditions for the Laplace domain being: 

 

𝑇∗(∞, 𝑠) = 0,      
𝜕𝑇∗(0,𝑠)

𝜕𝑥
=

𝑞0

𝑘𝑠
                                                       (7) 

When using (6) and (7) together, we obtain: 

 

𝑇∗(𝑥, 𝑠) = 𝑐1𝑒
√

𝑠

𝛼
𝑥
 + 𝑐2𝑒

−√
𝑠

𝛼
𝑥
 

 

Using the boundary conditions within the transform, we understand that: 

𝑐1 = 0,           𝑐2 = −
𝑞0√𝛼

𝑘√𝑠3
 

and  

𝑇∗(𝑥, 𝑠) = −
𝑞0√𝛼

𝑘√𝑠3
𝑒

−√
𝑠

𝛼                                                              (8) 

 

The inverse Laplace transform of function (8) [5, V.1, p.246] and (4) lead to equation (9). This is 

the one-dimensional heat conduction model [21] which portrays the effect of transient heat 

conduction in a semi-infinite medium exposed to constant heat flux: 

 

                        𝑇 − 𝑇0 = −
𝑞0

𝑘
[2√

𝛼𝑡

𝜋
𝑒

−𝑥2

4𝛼𝑡 − 𝑥 ∙ 𝑒𝑟𝑓𝑐 (
𝑥

2√𝛼𝑡
)]                                         (9) 

 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑓𝑐(𝑧) in (9) is the complementary error function which is derived from the error 

function erf (z) [5, V.1, p.387; 6]: 
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𝑒𝑟𝑓𝑐(𝑧) =
2

√𝜋
∫ 𝑒−𝑡2∞

𝑧
𝑑𝑡 = 1 − 𝑒𝑟𝑓(𝑧) ,  𝑒𝑟𝑓(𝑧)  =

2

√𝜋
∫ 𝑒−𝑡2𝑧

0
𝑑𝑡 

In equation (9), 𝑞0 is identified as the heat flux of the infrared laser heat source, k is the thermal 

conductivity of water, α represents the thermal diffusivity, t represents time of heat conduction, 

and x represents the distance of the target from the heat source [21, 18]. 

 

CALCULATIONS 

 

In (9), α is the thermal diffusivity of water as the study [18] considers water as the medium in 

which heat transverses: 

 

                               𝛼 =
𝑘

𝜌∗𝐶𝑝
=

.608
𝑊

𝑚.°𝐾

1000
𝑘𝑔

𝑚3 ∗ 4180
𝐽

𝑘𝑔°𝐾

 = 1.455 ∗ 10−7 𝑚2

𝑠
,  

 

where k represents the thermal conductivity of water, ρ represents the density of water, and 𝐶𝑝 

represents the specific heat of water [20]; qo, is representative of flux, and W/m2 is calculated by 

the following [21, 8]: an area with a 400*10-6 m diameter with a laser pulse strength of 7.3 mJ for 

10 ms, is equivalent to 0.73 W [18]. The area of effect can be described as [18]: ((400/2) x 10-6) 2 

𝜋 = 1.26*10-7 m2. To which, q0=0.73/1.26*10-7 = 5.809*106 W/m2. The direction of q0 is 

opposite of the direction of x as the laser pulse direction is towards the target, and the movement 

of the source is away from the target. Thus q0 = -5.809*106 W/m2, for any positive distance, x. 

 

Once the representative variable values have been inputted to the equation, the following 

will result for a 0.73 mj/ms laser pulse: 
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𝑇 − 𝑇0 =
−(−5.809 ∙ 106 )

(𝐽)
(𝑠 ∙ 𝑚2)

0.608
𝑊

𝑚. °𝐾

 

            ×

[
 
 
 
 

2√1.455∙10−7𝑊∙𝑚2

𝐽
𝑡

𝜋
∙ 𝑒𝑥𝑝 [

−𝑥2

4(1.455∙10−7𝑊.𝑚2

𝐽
)𝑡
]

 

− [𝑥 ∙ 𝑒𝑟𝑓𝑐 (
𝑥

2√1.455∙10−7𝑊.𝑚2

𝐽
𝑡

)]

]
 
 
 
 

  

 

The results will show the temperature change effect on a target from a heat source. The 

following temperature profile of the target was developed using the mathematical model with 

specific time and distance points. 
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RESULTS AND DISCUSSIONS 
 

Temperature Profiles of Heat Conduction (change in temperature (˚K) at 0.73 mJ/ms 

pulse) 

Distance 

(µm) 

Time (µs) 

0 0.01 0.02 0.05 0.1 0.3 0.7 1.5 2.5 

0.00 0 0.41 0.58 0.92 1.30 2.25 3.44 5.04 6.50 

0.10 0 0.01 0.06 0.26 0.56 1.42 2.57 4.14 5.59 

0.15 0 0.00 0.01 0.12 0.34 1.10 2.20 3.73 5.17 

0.20 0 0.00 0.00 0.05 0.19 0.84 1.86 3.35 4.77 

0.30 0 0.00 0.00 0.00 0.05 0.46 1.31 2.68 4.03 

0.45 0 0.00 0.00 0.00 0.00 0.16 0.72 1.86 3.09 

0.70 0 0.00 0.00 0.00 0.00 0.02 0.22 0.94 1.89 

0.90 0 0.00 0.00 0.00 0.00 0.00 0.07 0.50 1.22 

1.20 0 0.00 0.00 0.00 0.00 0.00 0.01 0.17 0.59 

1.50 0 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.26 

2.00 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 

 

Table 1: The table shows how, as the distance increases from the heat source, the 

temperature change decreases, but as the heat source is held irradiating at a specific 

distance, the temperature of the target increases with time. This change in temperature is 

what is shown within the table between the dependent variables (distance) and independent 

variables (time). 
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Graph 1: As expected, when the target is at a greater distance (µm) from the heat source, 

the change temperature (˚K) decreases with respect to distance. When the heat source is 

activated for a greater amount of time, the change in temperature is larger. This is proven 

by the time stamps, showing the larger time points starting at a higher point in respect to 

the y-axis. It can be noticed that temperature decreases rapidly as distance increases. There 

is no temperature rise at distance far away from the source. 

 

 
Graph 2: With the pulse strength of the laser increasing by 500%, a similar increase in 

temperature change takes place. The pattern of the decrement remains the same as well to 

show that this model is most likely oversimplified to capture the reality of such an increase 

in a change in temperature. 
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Graph 3: This graph shows the increase in change in temperature in reference to time, as 

the laser is held active on to the target. This slope of the increase becomes less steep as time 

of exposure increases. This is an expected pattern within the given range as a constant heat 

source will eventually plateau if the energy of the laser is allowed to dissipate within the 

given area of effect. 

 
Graph 4: The change in pulse strength shows the increased change in temperature. The 

graph patterns again remaining like the lower strength laser pulse (0.73 mJ/ms) when using 

similar distances to similar exposure time. 
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Temperature profiles were calculated using a 1-D unsteady state heat transfer model for 

two separate pulse strengths, 0.73 mJ/ms and 3.7 mJ/ms, reported by Shapiro et al [20].  Table 1 

shows the change in temperature values at various times and distances with pulse strength of 

0.73 mJ/ms. The same were plotted with time and distance variables. At a fixed time, 

temperature decreases very rapidly with distance as shown in Graph 1 and 2 for 0.73 mJ/ms and 

7.3 mJ/ms strengths respectively. Similarly, at a fixed distance, temperature rises with time as 

shown in Graph 3 and 4 for two pulse strengths respectively. 

In conclusion, an optimal temperature of neural stimulation can be derived by making 

use of the heat equation in congruence with the Laplace transform, as an avenue to relay the 

integration into a linear format. This format was then used to create a temperature profile to 

identify the change in temperature based on the distance of the heat source from the target, and 

the amount of time the heat source was being applied to the target. 

Through the table and graph(s), it is shown that the greater the distance of the target 

from the heat source, the smaller the temperature change will be until the system temperature is 

established. If the heat source is continually being applied, the target shows to increase in 

temperature. With an optimal wavelength of applied energy, an efficient temperature would be 

reached to activate the cell, at a specific distance with a specific time of stimulation 

sustainment. This activation would occur by heating the cellular environment adjacent to the 

target cell, through the conduction of heat from the infrared heat source.  

This paper presents a highly simplified 1-D unsteady state heat transfer model. It 

would be advised that further investigations utilize the information from the one-dimensional 

heat conduction modeling to develop a three-dimensional heat conduction model. Although 

one dimensional modeling was sufficient to show the effect of a heat source with a specific 
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energy threshold to a target x micrometers away, held at s amount of time, in a linear fashion, 

heat is conducive in a three dimensional space involving x, y, and z axis. Also, the cellular 

environment is assumed to be water, to which a more realistic situation would involve a saline 

environment. It would also be advised that a cell model like Hodgkin-Huxley model be used 

in conjunction to the heat transfer model to understand underlying cellular mechanism due to 

thermal pulses. This would not only help to estimate temperature thresholds for neural 

activation but also, provide appropriate safety limits in the heat transfer of the individual 

cells/cellular networks. 

Lastly, for an effective in vivo laser-based neural or cardiac stimulation system, 

temperatures would have to be carefully controlled, so that over-heating, causing collateral 

tissue damage does not occur.  Eventually, the laser system would have to be finely tuned and 

configured to deliver spatially precise energy, where the average changes in temperature at the 

cell membrane may be on the order of 1 degree or less. 
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NOMENCLATURE 
 

Symbol Description Unit 

t Time Second 

x Distance of target from heat source Meter 

qo Flux at x = 0. i.e. the power of laser over 

an area 

Joule/(m2 * s) 

k Conductivity of water is 0.60811 
W/(m * °K) 

ρ (rho) Density of water at 4˚C is 100011 𝑘𝑔/𝑚3  

∝ (alpha) Thermal diffusivity k/(ρ * Cp) 

 Specific heat of water at 25 ˚C, is 

418011 

J/(kg * °K) 
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