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The research of freshwater (FW) 
benthic macroinvertebrates (BMIs) can 
be rewarding and or dangerous. Aquat-
ic field work is a required part of many 
BMI research projects and may include a 
wide variety and magnitude of risks (e.g., 
Dewailly et al. 1986, Howarth and Stone 
1990, Courtenay et al. 2012, Orr 2017). In 
the above papers some researchers risked 
death, possibly due to inexperience, un-
known equipment problems, scientific goals, 
etc. Some extreme examples of risk include 
deep dives (≥ 30 m) with scuba (Miyanishi 
et al. 2006), collecting BMIs in cave springs 
with high levels of toxic hydrogen sulfide 
(Tobler et al. 2006, 2013), accessing a deep 
cave with high CO2 levels, slippery vertical 
surfaces, rocky substrates, groundwater fed 
subterranean aquifers and springs (Howarth 
and Stone 1990), and crossing a swift, tur-
bulent glacial stream for sediment samples 
(Orr 2017). Recently, the risk of drownings 
has been closely associated with large dams 
(Tschanz 2015), and especially at low-head 
dams in many streams and rivers (Hotchkiss 
et al. 2014, Kern 2014, Tschanz 2015). The 
sign in Fig. 1 advises everyone, including 
researchers, of danger if wading to collect 
BMIs near and below the large dam because 

of sudden fast discharge at various times to 
generate electric power. Fortunately, USA 
research scientists have a lower incidence 
rate (near 1%) for scuba dangers than other 
countries’ research scientists (Dardeau and 
McDonald 2007), who make more mistakes 
during deep dives at ≥ 30 m, e.g., Japanese 
divers (Miyanishi et al. 2006). According to 
Efrig (2017), a medical doctor who practices 
stress management prevention, most people 
hesitate to think about danger prevention 
until it is too late to make corrections. How-
ever, the discussion section explains what 
the FW BMI researcher should do to avoid 
unnecessary stress and dangers.

I evaluated papers in six peer-reviewed 
journals and other background literature on 
ecology of FW BMIs to determine if dangers 
were reported or a warning was included. 
I discovered that many papers sparsely 
informed the reader of potential dangers in 
FW BMI habitats. The danger features and 
safety concerns found became the objectives 
of this paper. The objectives were to: 1) find 
and discuss hidden dangers in papers that 
did not warn of existing dangers in the field 
sampling process, 2) determine if those 
danger factors with metric threshold values 
(toxic and hazardous chemicals), non-metric 
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Abstract
This paper reviews hidden dangers that threaten the safety of freshwater (FW) re-

searchers of benthic macroinvertebrates (BMIs).  Six refereed journals containing 2,075 
papers were reviewed for field research resulting in 505 FW BMI articles.  However, danger 
was reported in only 18% of FW BMI papers.  I discussed: 1) papers that did not warn of 
existing danger and consider researcher safety, 2) metric threshold values (e.g., chemical 
hazards), and non-metric dangers, (e.g., caves and aquatic habitats), 3), the frequency of 
danger occurrence, 4) baseline and extreme values. Examples of 28 danger factors that posed 
a threat to BMI researchers in water were compared by frequency per journal papers.  FW 
dangers identified by metric thresholds present a safety limit not to be exceeded, whereas 
non-metric dangers do not have a threshold as further explained.  Also, discussed was a 
recent thesis on civil engineering hydraulics that identified low-head dams as deceptive 
and an increasing source of drownings in 39 states.  A safe shallow water maximum depth 
to wade and collect BMIs is proposed based on researcher height and gender, compared to 
human height means in a large database.  Practical safety recommendations were presented 
to help protect the FW researcher avoid and survive hidden dangers.

Keywords:  Researcher safety, danger factors, threshold values, accidents and 
drowning
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dangers (e.g., caves with aquatic habitats), 
could be documented, 3) determine frequency 
of danger occurrence, 4) compare baseline 
values (safe) to above baseline and extreme 
(unsafe) values, 5) present practical and 
innovative safety recommendations to avoid 
dangers and fatalities prior to and during 
BMI surveys to enhance researcher safety. 
Examples of important government agencies 
that furnish water safety data and services 
to the public are presented here and in Ta-
ble 1. The U.S. Environmental Protection 
Agency (USEPA) established the National 
Primary Drinking Water Regulations (also 
termed Standards) (USEPA 2017a). These 
Standards specify maximum contami-
nant levels (MCLs) with specific limits for 
drinking water contaminants to protect 
human health and are legally enforceable. 
Also, USEPA set Secondary Drinking Wa-
ter regulations with secondary maximum 
contaminant levels (SMCLs) that are not 
federally enforceable or considered a threat 
to public health (USEPA 2017b). SMCLs are 
regulated mainly because of poor aesthetic 
water quality (e.g., metallic taste, odor, color, 
etc.). In addition to primary and secondary 
drinking water regulations, the Standards 
include states, U. S. Territories, and tribal 
lands (USEPA 2018). The USA drinking wa-
ter and recreational water are also protected 
from pollution and degradation of discharges 
from municipal and industrial wastewater 

treatment plants into navigable water by the 
Clean Water Act (USEPA 1972). The U.S. 
Geological Survey (USGS 2017) researches 
water quality in states and U. S. Territories 
and reports stream flow and aquatic data in 
real-time from gaging stations by satellites. 
The Commission for Environmental Cooper-
ation (CEC 2011) was a multi-year effort by 
Canada, Mexico, and the USA government 
agencies that developed and published North 
American Terrestrial Ecoregions—Level III. 
Each of the above countries described their 
ecoregions similarly by location, climate, 
vegetation, hydrology, terrain, wildlife, and 
land/human use. The regions relevant to this 
paper are listed in Table 1 concerning base-
lines and danger factors in USA Ecoregions 
(Wiken 2011a, b, c, d). Low precipitation 
included: a) Warm desert, b) Cold desert, 
c) Steepes, and d) as compared to High 
precipitation. The U.S. Centers for Disease 
Control and Prevention (USCDC 2015), sets 
pH, chlorine and other safety ranges. The 
U.S. Coast Guard (USCG 2017) presents 
annual statistics on water and boat related 
fatalities and accidents and issued the 2016 
annual statistics report on inland waters 
(USCG 2017). This inland report compiles 
water statistics from data on rafts and boats 
and combines statistics with the states, U. S. 
Territories and media reports of recreational 
waters for related accidents, fatalities (that 
include drowning), and causes.

Fig. 1. Warning sign on approach to river below a spillway of large dam. 
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Table 1. Fourteen baseline metric values compared to exceeded metric values and ex-
tremes in freshwater ecosystems when collecting benthic macroinvertebrates as given in 
citations. 
	 Baseline		  Excessive 
Danger factors	 metric values	 References 1	 metric values2	 References1

1. Chemical hazards	 Selenium (Se): 	 USEPA 2017a	 Se: 0.58 mg/l	 Merriam et al.
		  0.05 mg/l			   2011
	 Iron (Fe): 0.3 mg/l	 USEPA 2018	 Fe: 31.0 mg/ l	� Lencioni et al. 

2012
	 Nitrate NO3:	 USEPA 2017a
	 < 10 mg/l			 
	 Sulfate S04: 	 Davis 1980c	 S04: 1,725 mg/ l	 Davis 1980b
	 3–10 mg/l	
	 Dissolved oxygen: 	 USEPA 2018	 O2:   0.29 mg/l	 Tobler et al. 
	 Class 1: >9.5 mg/l3 			   2006
	 Class 2: ≥ 8.0 mg/l3	

2.Temperature (Hot)	 25-28◦C (77-82°F)	 Olympic swimming 	 54◦C ~ Human	 PSEG 2017
		  pool 2019	 scald point 	
			   42°C Sinkhole 	 Bednarz 1979
			   bottom water 	
                          (Cold)	 In open water 	 Olympic open	 0–14°C Extreme	 NCCWS 2017
	 wetsuit required 	 water 2019	 cold		
	 if < 18°C	   
			   0–14°C Scuba 	 Rennie and
			   dives	 Evans 2012

3. Discharge	 1.0 m3/sec	 Gore 2006	 ≥ 937 m3/sec	 Blinn et al. 1995

4. Maximum 	 0.4 m4	 McDowell et al. 	 ~ 0.6 to 1.5 m	 Barber and
    wade depth 		  2008		  Minckley 1983

5. pH  (Low)	 6.5 neutral	 USCDC 2015	 pH: 3.2	 Smucker and 	
				    Morgan 2011
           (High)	 8.5 neutral	 USCDC 2015	 pH: 10.3	 Davis 1980b

6. Low precipitation	 50-900 mm/yr	 Wiken et al. 2011a	 50 mm/yr Death	 Wiken et al.
    (Warm desert)	 Mojave Desert		  Valley area, CA	 2011a
    (Cold desert)	 800-2,000◦C 	 Wiken et al. 2011b	 100–150 mm/yr	 Wiken et al.
	 Aleutian Islands, 		  Tundra, n	 2011b
	 Alaska, Southern Arctic	 Northern Arctic	
    (Steepe)	 518 mm/yr	 Wiken et al. 2011c	 300 mm/yr 	 Barber & 
				    Minckley 1983
7. High precipitation	 2,500 mm/y 	 Wiken et al. 2011d	 3,397 mm/yr 	 Rosser &
	 Eastern Cascades, 			   Pearson 1995
	 WA-CA	  

8. Turbid	 Maximum: 1 	 CCWP 2015	 NTU:  450	 O’Neill and
	 NTU/ sample or 			   Thorp 2011
	 any month 95% of 
	 samples < 0.3 NTU	
	 NTU not to exceed: 	USEPA 2017a	 NTU: 450	 Rosser and
	 5.0 for non-			   Pearson 1995
	 conventional 
	 filtration and field	

9. Gradient	 ≤ 4%	 Charlebois and 	 33%	 Wallace et al.
		  Lamberti 1996		  1995

(Continued on next page)
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Many water accidents and drownings 
occurred in swift streams and rivers after 
spring rains and snow melt when discharge 
exceeded tolerance for aquatic researcher 
survival, especially when combined with low-
head dams (Tschanz 2015). This seasonal 
trend occurred in states subject to intense 
precipitation in regional and mountain ar-
eas (Short and Ward 1980, Jacobi and Cary 
1996), in fast tributaries of the Great Plains 
(Gray et al. 1983), and internationally such 
as the Shinano River in Japan (Kobayashi et 
al. 2013). Drownings also often occurred in 
streams and rivers and near low-head dams 
after spring melt through summer due to 
hidden hazards (Tschanz 2015). However, 
no accidents occurred at Alabama mill dams 
(low-head dams) in 20 streams with intact 

(unbroken), relic (broken and no spillway), 
and breached (some footings remained) low-
head dams studied for fish assemblages in 
shallow water (mean depth ranged 0.16 – 
0.50 m) (Helms et al. 2011). In a separate 
Alabama study of mollusks assemblages in 
22 other small, low-head mill dams (height 
< 10 m), no accidents occurred by wading, 
snorkel, and scuba used in deeper sections 
(mean depth > 1.0 m) (Gangloff et al. 2011).

Materials and Methods

The selection of journals was partly 
from a list of 22 journals in FW aquatic 
ecology (Feminella and Hawkins 1995) and 
similar journals accessed mainly on-line, 
and the Colorado State University library. 

Table 1. (Continued). 
	 Baseline		  Excessive 
Danger factors	 metric values	 References1	 metric values2	 References1

10. Sewage	 Heterotrophic 	 USEPA 2017a	 1,000 colonies/	 Dewailly et al. 
	 plate count is 		  100 ml sample	 1986
	 acceptable if the 
	 count is < 500 
	 colonies per ml		
	 BOD5: < 1.0 mg/l 	 Chapman 1996	 BOD5: 	 Hoang et al.
	 (pristine)		  7.2-9.7 mg/l	 2010

11. Electrical 	 EC: 4.6 µS/cm	 Luoto et al. 2013	 EC: 1,255 µS/cm	 Hartman et al.
      conductivity (EC)	 2010
	 EC: 358 µS/cm	 Davis 1980c	 EC: 11,500 µS/cm	 Davis 1980b

12. Wind 	 small	 Light breeze: 	 Beaufort scale = 2	 Gentle breeze: 	 Beaufort
      effects	  ≤ 6 m	 1.6-3.3 m/s, 	 Beaufort scale 2017	 to 5.4 m/s, 	 scale = 3	 : 
      on boats		  > waves 0.2 m high		 ≥ waves 0.6 m	 Beaufort 
				    high	 scale 2017
	 large	 Moderate breeze:  	 Beaufort scale = 4	 Near gale: 	 Beaufort 
	 ≥ 21 m	 4.0 m/s > waves 	 Beaufort scale 2017	 13.9-17.1	 scale = 7
		  3.0 m ht		  >waves 4.0 m 	 Beaufort
				    high	 scale 2017

13. High altitude	  ≤ 2,424 m 	 Rock 2002	 3,538 m asl	 Finn and Poff	
		  (8,000 ft)			   2011
				    3,200 m asl .	� Heinhold et al. 

2013

14. Total dissolved 	 TDS: ≤ 245 mg/L	 Davis 1980c	 TDS: 3,811 mg/l	 Canton 1982
      solids (TDS)	
				    TDS: 9,000 mg/l	� Barber and 

Minckley 1983
1 References are listed in literature cited
2 Exceeds USEPA primary contaminant level and/or baseline metric safety limit from authorities in 
citations. Unmarked USEPA    chemicals are baseline secondary contaminant maximum levels.
3 Class 1 standard is extraordinary water quality for drinking, domestic, and agriculture use. Class 
2 standard is for excellent water quality for drinking, domestic, agriculture and fishery (salmon) 
migration.
4 Researcher to adjust height to fit the equivalent of 0.4 m safe wade depth limit see Methods sec-
tion.
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The prioritized features were: 1) well-edited 
research papers, 2) papers recognized by 
indexing research engines (e.g., Web of Sci-
ence and others), 3) papers on field ecology, 
FW BMIs including aquatic insect vectors, 
natural history, and conservation, and 4) 
papers from USA, regional, national, and 
international areas. The selected journals 
met each of the above priorities but varied 
by geographical emphasis of research in 
three areas: USA regionally, (e.g., Wiken 
et al. 2011a, b, c, d), nationally, and inter-
nationally). Journals selected that met the 
priorities were: Annual Review of Entomol-
ogy (AREnt), Journal of Freshwater Ecology 
(JFWE), Journal of the North American 
Benthological Society (JNABS) (renamed 
as Freshwater Science (FWS) in 2011), The 
Prairie Naturalist (PrNat), and The South-
western Naturalist (SWAN).

Referenced journals, their citations, 
and prominent textbooks (e.g., Rosenberg 
and Resh 1993, Hauer and Lamberti 2006, 
Merritt et al. 2008, Thorp and Rogers 2015) 
were consulted.

I counted danger factors listed in Ta-
bles 2–4 by items per paper of journals, such 
as, lotic habitats (flowing waters) and lentic 
habitats (non-flowing waters), caves with 
aquatic habitats (Howarth 1983; Howarth 
and Stone 1990; James 2010; Tobler 2006, 
2013), cold flowing waters (0–14°C) (Short 
and Ward 1980, Lencioni et al. 2012, Na-
tional Center for Cold Water Safety (NCCWS 
2017), and hot springs (few aquatic insects 
have adapted to exceed 39-42°C) (Bednarz 
1979, Ward and Kondratieff 1992, Nolte et 
al. 1996, Alexander et al. 2011). Lotic water 
included discharge below dams and lentic 
water included marshes, lakes, and im-
poundments, e.g., reservoirs of dams. Large 
and small boats were counted with reference 
to size, currents, wave height, wind speed, 
and heavy and light water samplers. I count-
ed tributaries that increased in discharge 
from precipitation and snow melt. Counts 
included insect vectors (Culicidae: Anopheles 
gambiae Giles complex) (Takken and Knols 
1999) and dangerous animals (Courtenay 
et al. 2012). Drinking water contaminants 
and their frequency per site were counted. 
The extensive Standards contained a lon-
ger list of hazardous chemicals than in the 
examples (Table 1, item 1) of the MCLs for 
drinking water. Examples of drinking wa-
ter contaminants with hazardous and toxic 
chemicals in the Standards were: 2-4-D and 
lindane, herbicides (diquat), inorganics (e.g., 
antimony, cadmium, lead, mercury, and se-
lenium), disinfectants (chlorine), fumigants, 
pharmaceuticals, nitrates, and radionuclides 
(including radium and uranium), etc. In 
addition to the Standards, chemical contam-
inants were named and cited by authorities. 

(e.g., scientists with expertise in FW Ecology, 
BMIs, and in government regulatory agen-
cies presented in Literature Cited). Of 15 
SMCLs, several examples are given in Table 
1 with baseline values: iron, Fe: 0.3 mg/l, 
sulfate: SO4: 250 mg/l, and total dissolved 
solids, TDS: 500 mg/l (USEPA 2017a) and 
high and low extremes by authorities. Pho-
tos of dangerous large and low-head dams 
were accessed from an interactive database 
(Hotchkiss et al. 2014).

Shallow water samplers to study BMIs 
on substrate were mostly conducted with 
only a few of many types of available stan-
dard samplers e.g., Surber, to depths of 0.3 
m, Hess to 0.5 m, D-frame to 0.3 m, kick net 
or Stanford-Hauer kick net from 0.2 to 1.0 
m, (Surber 1937, Barbour et al. 1999, Hauer 
and Resh 2008, Merritt et al. 2008). No defi-
nitions were found in the literature on shal-
low water samplers related to human height 
or gender concerning wade depth limit for 
safety. However, a large statistical study in 
physical anthropology included age, race, 
ethnicity, gender, and height measurements 
(McDowell et al. 2008). A data summary 
of this work included: males 20 years and 
older: n = 4,482, xµ ht = 176.3 cm, SE = 0.07; 
for females 20 years and older: n = 4, 857, 
xµ ht = 162.2 cm, SE = 0.06. Here, I propose 
a method to apply the statistical data (Mc-
Dowell et al. 2008) of height and means per 
gender to compare with researcher height 
and to obtain a safe shallow water wade 
depth. Also, I explain how to apply the means 
to prepare for safe wades. For example, the 
mean height for males was 1.76 m (or 176 cm 
in the above data summary) and if he works 
any of the standard samplers except the kick-
net, due to his height he will be safe at 0.4 m. 
The same sampler depths safe for the male 
would be safe for the female at a mean ht of 
1.62 m. However, for deeper kick-net wades 
up to 1.0 m, the male would be safe even if 
he stepped into a hole up to ~ 0.4 m (up to 
his hip in water). For the same female, her 
height would be unsafe (0.4 m for sampler + 
0.4 m for a hole) and she would be in deeper 
water relative to the male at 0.8 m.

If river depth is unknown, the re-
searcher should assess depth with numbered 
metric wading staff, or with a 1.0 m ruler, or 
consult USGS (2017) for ~ depth and veloci-
ty/river. The above samplers were designed 
for shallow streams and rivers with mostly 
cobble, gravel, and sand mixed substrate 
(e.g., Barbour et al. 1999, Hauer and Resh 
2008, Merritt et al. 2008,) and were rela-
tively uniform across channel width minus 
protruding objects (Gore 2006). Risk usu-
ally includes streams with combinations of 
dangers, e.g., collecting in a deep riffle (0.65 
m) with swift currents (0.72–1.40 m/s) with 
substrate gravel and large cobble (Kobayashi 
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Table 2.   Frequency of 28 freshwater danger factors, habitats, and event counts of safety 
concern to researchers in papers from reviewed journals with most total per journal 
given from top down.

Number of Events in Journal Papers1

Danger factors with metric values	 PR 
and non-metrics	 NAT	 SWAN	 JNABS	 FWS	 JFWE	 AAREnt	 Total

	 1.	 Lotic water habitats (e.g., flowing rivers,
		  streams, springs, and aquifers)	 38	 208	 310	 196	   85	 406	 1,243
	 2.	 Unlisted dangers (e.g., shifting river 
		  substrate sands)	 30	   71	 295	 240	   70	 281	    987
	 3.	 Chemical water hazards (e.g., 
		  pesticides, nutrients, gases)2	 49	   77	 140	 143	 105	 313	    827
	 4. 	Impoundments	 Dams	 10	   24	   55	   24	   19	 29	
			   Total	 19	   56	 161	 153	   54	 220	   663
			   Reservoirs, lakes, pools	 9	   32	 106	 129	   35	 191	
	 5. 	Temperatures of Cold 	 Cold 	 27	   47	 174	   94	   57	 189
		  ≤ 0–21ºC & Hot ≥ 40ºC b	 Total 	 27	   50	 176	   95	   57	 229	 634
			   Hot 	 0	     3	     2	     1	     0	   40	
	 6. 	Substrate hazards 3	 45	   52	 152	 171	   75	   61	 557
	 7. 	Discharge ~1m3/s2	 6	   51	 113	   54	   23	 131	 378
	 8. 	Dangerous animals and insect vectors	 2	     7	     0	     3	     7	 286	 305
	 9.	 Exceeded maximum depth of 0.4 m2	 17	     5	 134	   42	   60	     5	 263
	10.	 Boats, cables, grabs, nets, seines4	 45	   57	   27	   26	   62	   25	 242
	11.	 Floods & Flash floods per study	 18	   24	   25	   47	   10	   88	 212
	12.	 Total pH ≤ 6.5 – ≥ 8.52	 High	 8   	   20	   38	   14	   12	   21	
			   Total	 8	 25a	   49	   58	   18	   43	 201   
			   Low	 0	     5	   11	   44	     6	   22	
	13.	 Low precipitation ≤ 500 mm/y
		  (e.g., deserts, Steppes, Tundra)2	 3	   37	   18	   36	     9	   81	 184
	14.	 High precipitation > 2500 mm/yr2	 3	   22	   15	     6	     9	 114	 169
	15. 	Marsh, swamp, bog	 6	   11	     7	     5	     6	 129	 164
	16.	 Night & twilight in aquatic habitats	 17	   10	   10	     5	   22	   81	 145
	17.	 Turbid water ≥ 5 NTUs2	 12	   27	   43	   24	   23	     5	 134
	18.	 SCUBA/Snorkel swims, dives with  
		  wide range of depths, time underwater, 
		  discharge, distance, and temperature	 0	   13	   86	   13	     7	     1	 12
	19.	 Gradient ≥ 4 % m/km2	 0	     8	   42	   48	     6	   10	 114
	20.	 Sewage ≥ USEPA test limit of total/fecal 
		  coliform/MPN, BOD2	 0	   10	   27	     7	   19	   34	 104
	21.	 Conductivity 400 µS/cm2	 9	   26	   39	     7	     9	     7	 97
	22.	 Caves with aquatic habitats (e.g., 
		  streams, waterfalls, & seeps)	 0	   35	   12	     2	     0	   46	 95
	23.	 High physical effort (e.g., collect near 
		  hazardous dams/swift tailwaters, in deep 
		  sinkholes)	 7	   16	   21	   16	     8	   14	 82
	24.	 High winds > 3-5 m/s (8-12 mph)2	 16	     5	     5	     2	     5	   39	 72
	25.	 High altitude ≥ 2,425 m (8000 ft)2	 0	   25	   11	     3	     1	   30	 70
	26.	 Many sampling sites ≥ 40	 1	     7	     7	   14	     5	   16	 50
	27.	 TDS ≥ 500 mg/2 	 0	   34	     0	     0	     4	     2	 40
	28.	 Waterfalls	 0	     5	     3	     4	     1	   16	 29
1 Abbreviations from complete journal titles given in Table 4.
2 Exceeded USEPA primary contaminant level or metric baseline safety limit from authorities in 
citations.
3 Substrate physical hazards: Sharp metal, glass, ice, rocks, holes, roots, snags, algae with mucus, 
stumps, vascular plants, etc.
4 Boats: small, e.g., canoe in swift currents, waves to 0.6 m; large boats with large net, grabs to trawl 
deep water, e.g., ≥ 21 m, waves to 4 m.
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et al. 2013), and increases in cold water with 
a slippery substrate (Wellnitz et al. 1996).

Reviewed papers were excluded if: 
1) they were ambiguous, 2) BMIs were not 
resolved at least to family to be of value as 
a bioindicator and for BMI vector surveys 
(Rosenberg and Resh 1993), 3) BMIs were 
not identified from a natural, FW habitat by 
location and date, 4) the author or co-author 
never entered the water in a survey of a FW 
habitat, 5) BMIs were < 1.0 mm, 6) study 
was speculative, 7) specimens were petrified 
fossils, 8) data were not original. Two papers 
(Hotchkiss et al. 2014, Kern 2014) were ex-
ceptions to above exclusions in this review 
because of a timely civil engineering thesis 
on low-head dam dangers, an interactive 
database and practical solutions to prevent 
accidents in drownings.

If authors indicated moderate or high 
turbidity, swift discharge, or slippery water-
falls, their professional judgement was ac-
cepted. Aircraft were considered equivalent 
to boats in deep, swift water Paragamian 
(2010) as potentially dangerous. Helicopters 
and a few fixed winged aircraft that were 
deployed in early eradication projects over 
African fast streams and rivers (Davies et al. 
1962), with pesticides applied at spillways of 
large dams and in rapids (Davies 1994) were 
included. Helicopters utilized in difficult to 
access locations such as the Mackenzie River, 
its tributaries, and Canadian wetlands (Scott 
et al. 2011) were also included.

The term, unlisted dangers, is de-
fined here as an infrequently occurring and 
non-metric danger (e.g., sinkhole at cave 
entrance, Howarth 1973), collections below 
high hazard dam (Davis 1980b), runaway 
barges on large rivers and shifting bottom 
sands (Way et al. 1995).

In Table 3, non-metric danger factors 
were not ranked because they vary with con-
ditions, including slippery substrate, thin ice 
over streams and ponds, obscured deep holes 
in rivers, underwater snags, stumps, and 
unique events (e.g., a cave passageway with 
a surprise flood or rockslide). Other dangers 
possibly overlooked by researchers: barbed 
wire on substrate of shallow, turbid streams, 
sloughs, and lakes (RDS unpublished).

Table 3 presents examples of a safe 
stream with few dangers in the Devil’s River, 
Texas --- a clear, riffle bearing stream with 
springs, intermittent pools, low waterfalls, 
limestone substrate, excellent water quality, 
and high BMI diversity (Davis 1980c). In 
Table 1, baseline studies were presented first 
with safe low metric values and compared 
to metric highs and extremes as examples 
of contrast in collection safety.

Open the following web address (at the 
BYU website) to access the USA low-head 
dam interactive database (Hotchkiss et al. 
2014) with a color map of the states showing 
one or more fatalities at these structures 
http://krcproject.groups.et.byu.net/browse.
php The reader can see the total fatalities 
recorded was 555 from 276 sites. This in-
formation was found by accessing the above 
website on 19 December 2018, as shown on 
the colored map of 39 state locations with 
submerged fatality points at intact dams. 
New incidents may be reported by clicking 
the tab on top of the color map page (Hotch-
kiss et al. 2014).

Results

Six refereed journals in Table 4 con-
taining 2,075 papers were reviewed for field 
research resulting in 505 FW BMI papers 
and of these, 265 (52%) contained danger. 
However, the above 505 journal papers re-
ported only 90 (18%) with danger.

Extreme high and low frequency totals 
per journal were reported in Table 2. The 
most reported frequency total for combined 
journals with danger that exceeded other 
metric threshold values was lotic waters with 
a total of 1,243. The most common non-met-
ric danger near the top of Table 2 with most 
reported dangers was unlisted dangers with 
a total of 987. Of the lows with three reported 
zeroes per journal, TDS (metric) included a 
total of 40. The least reported low per journal 
was waterfalls (non-metric) with a total of 
only 29. Each of these extreme highs and 
lows were explained in the discussion.

Of the 14 metric dangers listed in Ta-
ble 2, only 12 represent one metric danger 
value. However, when the two other danger 
factors, were included (e.g., chemical water 
hazards and sewage effluents), they account 
for the total 14 metric values. Sewage in-
volved several required microbiological and 
chemical tests to express their values (e.g., 
total and fecal coliform counts per sample 
and biological oxygen demand (BOD5) in 
mg/l). For a complete list of chemicals with 
safety thresholds for drinking water quality, 
the Standards should be consulted in addi-
tion to examples in Table 1, for any of the 
above test groups.

The 14 non-metric danger factors may 
be considered on a large scale with examples 
reported by specific location and other fea-
tures. Some examples were: low-head dams 
with a history of multiple fatalities, un-
managed old dams, remote caves that flood, 
deep caves with difficult access and exit, and 
remote waterfalls especially slippery during 
high seasonal flow (Holzenthal 1995).
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In 2016 the US Coast Guard reported 
437 drownings for recreational boats and 
10 drownings at dams and locks in states 
and U.S. Territories, but did not mention 
low-head dams. However, low-head dams 
have recently been recognized as a public 
danger, mainly due to the Kern thesis and 
were included in this paper because of the 
high drowning rate and increase in fatality 
postings on the interactive database. Recent 
statistics from the interactive database with 
89 photos of dams (Hotchkiss et al. 2014) 
were accessed on 19 December 2018 by RDS. 
This database indicated that low-head dams 
in 39 states accounted for 555 drowning 
fatalities, the number of fatality sites was 
276, and had a maximum of 12 fatalities at a 
single site. Photos of 84 intact low-head dams 
were on streams and rivers, and photos of 15 
large dams with locks were on rivers in the 
above database where drownings occurred.

Discussion
To my knowledge this may be the first 

paper to find, document, and discuss danger 
factors were mostly unreported in the FW 
ecological research and imperiled researcher 
safety. This paper originated after an inquiry 
to determine if six peer reviewed journals 
reported the occurrence of danger together 
with their subject matter in FW ecological 
field research of BMIs. This inquiry led to the 
objectives of this paper with some new and 
surprising and results and recommendations 
to enhance FW researcher safety. Beginning 
here is an overview of five objectives that 
confirm 28 dangers were found.

In objective one, hidden dangers 
occurred, but few (18%) were reported or 
presented a warning to the reader. However, 
52% of the journal papers contained dangers 
(Table 4). The sparse journal information 
on unreported danger implies that FW re-
searchers may have depended on swimming 
ability, experience, and other information to 
avoid danger. However, some researchers 
are: unable to swim, inexperienced, or had 
minimal safety training, and some dangers 
are hidden and difficult to anticipate or have 
a deceptive calm appearance (e.g., low-head 
dams). Examples of the danger factors in-
volved were from a wide range of sources 
in addition to the journal papers such as 
prominent textbooks (Hauer and Lamberti 
2006, Merritt et al. 2008, Thorp and Rogers 
2015), and research scientists in the Litera-
ture Cited section (Howarth 1983, Lencioni 
et al. 2012, Mebane et al. 2012, Kern 2014, 
and many others).

The image of a warning sign in the 
Introduction illustrated how some states 
warn public waders of swift currents and 
rising water level danger below hydroelectric 

dams. Some states advise of danger on-line 
and post warning signs to boaters upstream 
of low-head dam hazards at portals to pre-
vent fatalities.

In objective two, hidden dangers 
caused accidents and especially drown-
ings fatalities that were traced to metric 
threshold values (e.g., chemical hazards) 
and non-metric dangers (e.g, caves with FW 
habitats and or night collections in water) 
from field results and cited papers. However, 
only one mention of a scientific researcher 
was found as an example of extreme risk in 
deep (dives > 30 m) (Miyanishi et al. 2006). 
Some other examples of taking high risks 
include investigations in remote, deep caves 
with water hazards (Howarth 1973) and 
toxic gases (Howarth and Stone 1990, James 
2010), deep arctic lakes (Luoto et al. 2013), 
desert sinkholes (Bednarz 1979, Macanowicz 
et al. 2013). Hidden dangers that involved 
fatalities were reported mainly at intake 
points upstream near large dams and below 
the dam release points for high discharge 
near and downstream of spillways, but 
most drownings occurred at low-head dams 
(Tschanz 2015). Videos and many photos of 
low-head dams and larger dams identified 
danger and drowning points seen on an 
interactive database and map of 39 states 
was revealed by the thesis in civil engineer-
ing hydraulics (Kern 2014). One of the most 
inconspicuous and deadly hidden dangers is 
low-head dams. Waders that venture on the 
dam and swimmers and boaters, canoers, 
and kayakers that flow over the dam were 
found trapped in a strong reverse backflow 
currents and in turbulence near and down-
side of the dam according to Kern (2014) and 
Tschanz (2015).

Several danger factors such as scuba 
and caves with FW BMI habitats may be 
metric or non-metric dangers depending 
on danger intensity, e.g., zero oxygen level 
in a scuba air tank if in deep water or in a 
deep cave. However, scuba dives in deep 
water were few and the exception. Also, the 
large caves of Mulu (Indonesia) and Undara 
(Australia) had challenges minimized be-
cause of carefully planned expeditions with 
experienced cave scientists, new and more 
precise technological equipment to map 
and report data, and required permits that 
specify conditions to explore, collect speci-
mens, and include regulated time limits by 
country officials.

Data that supports important con-
clusions on hidden dangers originated in 
Table 4. Three examples show that Table 4 
presents a wide range of data from the six 
reviewed journals but, requires some inter-
pretation. For example, on inspection of row 
3, column 3, it shows the journal with the 
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Table 3. A list of the 14 non-metric danger factors identified with cited references, exam-
ples, and locations.
Non-metric danger factors	 References	 Danger factor	 Location
	1.	 Lotic water habitats, e.g., 	 Blinn et al. 1995	 Collected benthos in	 Colorado River at
		  river, streams, and springs 		  substrate below large dam	 Glen Canyon
		  (Partly metric)		  in fast current and 25 km	 Dam and Lees
				    downstream at 6.8 m depth	 Ferry, AZ
				    by snorkel and scuba	
			   Naiman 1979	 Death Valley drying 	 Near Tecopa, CA
				    spring with slow flow	

	2.	 Unlisted dangers	 Way et al. 1995	 Collecting in river, with 	 Marshalls Point
				    heavy barges, and in 	 Mississippi
				    shifting river sands to 	 River, MS
				    set and retrieve BMI 
				    underwater traps by scuba
			   Macanowicz 	 Accessed sinkhole with	 Bitter lake,
			   et al. 2013	 groundwater and steep 	 NWLR, NM
				    sides (90◦ angle)	

	3.	 Impoundments e.g., Dams 	 Adams 2011	 Collect crayfish down-	 Upper Little
		  and lentic waters e.g., 		  stream and near old, 	 Tallahatchie
		  reservoirs, lakes and pools		  remote, unstaffed 	 River, sub-basin,
				    dams and impoundments	 northern MS 
			   Davis 1980b	 High hazard dam 	 The upper Pecos
				    seeping saline water	 River, TX
			   Kern 2014	 Author developed 	 See authors data-
				    interactive database of 	 base under Hotch-
				    fatalities at low-head 	 kiss et al., 2014
				    dams in USA states with 	 in literature cited
				    details and many photos	� and click on 

hypertext

	4.	 Substrate/physical water 	 Helms et al. 2011	 Relic low-head mill dams	 20 old mill river
		  hazards1		  with scattered concrete 	 sites in AL
				    pieces mixed in substrate		
			   Wellnitz et al. 	 Slippery rocks on biofilm 	 High altitude
			   1996		  stream, St. Louis 	
					     Creek, Rocky Mt. 	
					     National Park, 	
					     CO

	5.	 Dangerous animals and	 Davies et al.  	 Vector control of Simulium	 Rivers, falls,
		  insect vectors	 1992, 	 damnosum complex an	 rapids of East
			   Davies 1994	 important vector of 	 and central Africa
				    onchocerciasis or river 
				    blindness disease	
			   Takken and 	 Surveys of Anopheles	 Sub-Sahara,
			   Knoles 1999	 gambiae complex and 	 Africa and Ara-
				    important malaria vector	 bian Peninsula
			   Townsend et al. 	 Crocodile slide at field site	 Darby River,
			   2012		  tropical Australia
			   Waidt et al. 2013	 Electric eels collected in 	 Hannacroix
				    mud flats and marsh with 	 Creek, a tributary
				�    electro-shocker, and in float	 to Hudson River,	

traps at night to 2 m depth	 NY

	6.	 Boat size, wave heights, 	 Macanowicz	 Enter desert sinkholes, 	 Bitter Lake
		  nets, sampling, grabs, etc.2	 et al. 2013	 walls top to bottom at a 	 NWLR, NM
				    steep angle
			   Schoenebeck and 	 Night collection by boat	 Lake Cochran
			   Brown 2010	 with heavy sampling 	 and Lake
				    equipment, e.g., grabs, 	 Madison, SD
				    cables, and long nets	
			   Way et al. 1995	 Boat, cables, and winch to 	 Marshall’s Point,
				    guide concrete blocks by 	 Mississippi River,
				    scuba, on river substrate	 MS

(Continued on next page)
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Table 3. Continued.
Non-metric danger factors	 References	 Danger factor	 Location
	7.	 Floods and Flash floods	 Barber and 	 Sonoran Desert flash floods	 Araviaca Creek,
			   Minckley 1966, 	 at macrobenthic stream	 AZ
			   1983	 sites	
			   Fisher 2011	 Missouri and Yellowstone 	 McKenzie Co.,
				    rivers flood rate studies	 Northwest ND
			   Gray 1983	 Spring flash floods from 	 Piceance Basin,
				    snow melt in headwater 	 CO
				    streams of collection sites 	
			   Howarth 1973	 Danger occurs when lava 	 Lava tube on
				    cracks release floods from 	 Island of Kauai,
				    surface rain and irrigation 	 HI
				    water into passageway	

	8.	 Marsh, swamp, bog	 Batzer and 	 Study of population and	 From
			   Wissinger 1996	 community ecology in large 	 Newfoundland
				    wetlands including insect 	 bogs to
				    vectors	 Everglades, FL
	9.	 Night and twilight in 	 Fisher 2011	 Night micro-crustacean 	 Missouri and
		  aquatic habitats		  surveys at seasonal 	 Yellowstone rivers
				    river pulse	 in northwest ND
			   Kershner and 	 Night crayfish census	 Northern Lakes,
			   Lodge 1995		  WI

10. Scuba/snorkel dives3	 Hovarth et al. 	 Snorkel-scuba dives: 6 lakes	 St Joseph R., IN
			   1996	 and 38 streams to find 	 and MI
				    zebra mussels dispersal 
				    and populations	
			   Vaughn and 	 Snorkel and scuba dives in	 Little River
			   Taylor 1999	 reservoirs and river census	 (tributary), dam 
				    of clams for ecological 	 areas, and main
				    status	� stem of Red River, 

OK
			   Wisniewski et al. 	 Strenuous snorkel dives	 Flint River, GA
			   2013	 against current to search 
				    for glochidia on rare fish in 
				    sharp rock crevices	

	11.	Caves and their aquatic 	 Howarth 1983	 Pioneering study of	 Kauai, Hawaii,
		  habitats 	 (cite #64)	 troglobites in 50 lava tubes	 Maui, Oahu
		  (Partly metric event)		       	 Islands, HI
			   Howarth and 	 First troglobite arthropod	 Bayliss is largest
			   Stone 1990	 community study in deep 	 cave of Undara
				    cave with high humidity, 	 volcano lava tube
				    high CO2, level 200% more 	 complex,
				    than ambient air outside 	 Queensland, 
				    entrance and zero level O2 	 Australia
				    at 830 m inside.	

	12.	High physical effort	 Charlebois and 	 Extensive snorkeling and	 Middle Branch,
			   Lamberti 1996	 swims to monitor effect of 	 Ontonagon River,
				    invasive crayfish consumers 	MI
				    of BMIs and periphyton	
			   Fisher 2011	 Missouri and Yellowstone	 McKenzie Co., ND 
				    rivers flood rate studies	
			   Ozersky et al. 	 16-year Scuba monitoring 	 Lake Simcoe,  
			   2011	 at bottom of Canadian cold 	 Canada
				    lake for zebra mussel ecology 		

	13.	Many sampling sites ≥ 40	 Larsen and 	 Conducted crayfish census	 Puget Sound
			   Olden  2013	 at 100 lake sites.	 lowlands, WA

	14.	Waterfalls	 Charlebois and 	 Bond Falls	 Ontonogon River,
			   Lamberti 1996		  MI
1 See list of substrate physical hazards at bottom of Table 2
2 See list of boat size, wave heights, nets, sampling grabs, etc. at bottom of Table 2 and effects of 
wind velocity on boats in Table 1.
3 See Discussion for explanation.
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most papers was the second lowest in aquatic 
dangers (column 7). However, row 2, column 
3 also shows that the journal with the lowest 
total papers surprisingly correlates with 
row 2, column 8 at 83% for the most danger 
papers per journal. This surprise result was 
because almost every paper submitted to the 
PrNat in the second case contained at least 
three dangers. However, the total number 
of dangers was gleaned from journal papers 
that required time consuming reads of text, 
tables, figures, and citations.

This paper included two innovative 
contributions from researchers. First the 
M.S. thesis below that identified dangers 
associated with low-head dams and present-
ed solutions to correct this problem (Kern 
2014). Second, an innovation (proposed by 
RDS) herein that FW researchers may use 
to evaluate their height by gender to means 
from a large database (McDowell et al. 2008) 
to prepare for safe wading when consider-
ing substrate holes and stream conditions. 

Researchers should know bottom depth and 
the conditions (e.g., substrate composition, 
water clarity, and current velocity). It is 
important to find wade depths up to 1.0 m 
so researchers know their height is ample for 
water depth and holes to 0.4 m depth or deep-
er before sampling substrate for FW MBIs.

In objective three, dangers were 
considered by frequency of occurrence. The 
frequency of occurrence for reviewed jour-
nals (Table 2) with dangers is explained 
here. Lotic waters were the most frequently 
reported metric partly because of many 
tributaries to streams and rivers and had 
the most citations of reported papers with 
danger (however, many were short term or 
less than a one-year study). Unlisted danger 
was the most reported non-metric with high 
frequency. Infrequent kinds of danger were 
experienced, sometimes resulting in a vari-
ety of incidents at one location (e.g., shifting 
bottom sands, and variable currents when 
scuba diving to place artificial substrates 

Table 4.  Six journals reviewed for danger during collection of freshwater benthic macro-
invertebrates.
			   Total	 BMI1		  BMI1 
			   Fresh-	 Papers	 Percent	 Papers	 Percent 
		  Total	 water	 with	 with	 with	 with 
		  Papers	 BMI*	 Implied	 Implied	 Reviewed	Reviewed 
Journal	 Years	 Reviewed	 Papers	 Danger	 Danger	 Danger	 Danger
Annual Review of	 1983–2000	 487	 78	 15	 19	 42 	 54
Entomology	 2011–2013
AREnt 2	

	
The Prairie Naturalist	 2005–2013	 175	 18	 6	 33	 15	 83
PrNat 2	

The Southwestern 	 1979–1984	 773	 71	 14	 20	 37	 52
Naturalist	 2012–2013
SWAN 2	

	
Journal of 	 2010–2013	 246	 117	 20	 17	 62	 53
Freshwater Ecology
JFWEcol 2, 3	

Journal of the 	 1995–1996	 190	 110	 22	 2	 56	 51
North American 	 2011
Benthological Soc.
JNABS 2	

Freshwater Science	 2012–2013	 204	 111	 13	 12	 53	 48
FWS 2

Totals	 46	 2,075	 505	 90	 18	 265	 52
1 Abbreviation of BMI = benthic macroinvertebrate for this table.
2 Journal abbreviations apply to Tables 2 and 4.
3 In 2011 the Journal of the North American Benthological Society (JNABS) changed its name to 
Freshwater Science (FWS).
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on river bottom during heavy barge traffic, 
deep scuba dives (≥ 30 m) (Miyanishi et al. 
2006), wading across swift glacial streams 
(Orr 2017), collecting FW BMIs at or below 
hazardous, old, unattended, and abandoned 
dams (Davis 1980b, Adams 2013, Tschanz 
2015). TDS reported the most zero values 
per journal and second lowest frequency. 
Many papers were on specifics unrelated to 
TDS (e.g., surveys for endangered species, 
bioindicators of water quality, insect vectors, 
and biocontrol releases). However, TDS may 
have many origins in springs, streams, and 
rivers (e.g., groundwater with nitrates, and 
limestone aquifers, excessive turbidity, and 
sewage) (Davis 1980a, b, c). Hot springs 
(metric) and caves with aquatic habitats 
(non-metric) were reported as tied because 
they had two zero values per journal. Few pa-
pers reported BMIs (especially insects) in hot 
springs if water exceeded 39-42°C because 
of the lethal effect to most FW BMIs (Table 
1, item 2). AREnt and SWAN exceeded four 
other journals in reporting a combined total 
of 81 dangers in aquatic habitats of caves as 
a result of international surveys, including 
some Pacific island caves. Last reported 
were waterfalls because they had the fewest 
reported total frequency (non-metric) of any 
danger factor per journal. However, high 
waterfalls have common dangers that may 
lead to fatalities mainly because of slippery 
rocks in wet season (Holzenthal 1995) and 
may have treacherous, sharp rocks in dry 
or cold season, and require high elevation 
climbs. (Finn and Poff 2011).

In objective four, two danger groups 
considered equally dangerous for field safety, 
are explained here. The 14 non-metric dan-
gers were identified as not having specific 
measurable values and may not be normal-
ized because they are unique and have sep-
arate natural habitats such as caves, bogs, 
marshes, swamps, etc., (Table 3). Also, the 
non-metric dangers are characterized by 
their collective features (e.g., floods) and 
events (e.g., twilight). The 14 metrics in-
cluded measurable baseline threshold values 
having maximum safety limits (or minimum 
for low temperature, precipitation, and pH) 
or if extended beyond baseline values they 
are unsafe as compared in Table 1 (e.g., MCL 
chemical contaminant levels of the USEPA).

In objective five, recommendations 
begin with acceptance of individual respon-
sibility for adequate plans and preparation 
to complete safe FW ecological research 
studies that consider the presence of dan-
gers. Effective plans should include early 
advice from a knowledgeable mentor. In 
general, field site safety and location are 
site dependent and subject to a wide range 
of variables (e.g., site access, habitat condi-
tions, season, number of sites, and duration 

of study). Plan to have a colleague present 
for assistance and safety, advise a friend of 
when you will return and location of field 
sites, and plan for a means of escape at likely 
danger points. Also, researchers should keep 
to good physical condition for rigorous days 
of work requiring stamina and swimming 
ability pending research goals. Graduate 
students with inexperience in the field would 
be fortunate to have a mentor that is help-
ful and available for guidance such as site 
selection and timely feedback and advice 
on unique problems. Preparation includes 
ability to change plans for emergencies and 
unanticipated conditions (e.g., wading into 
a deep hole or drop off, slippery substrate 
rocks, sudden and severe weather changes, 
injuries, etc.). This also includes ability to 
apply first aid (and having a good first aid 
kit) and CPR in the field, having permission 
prior to the study from the owner or agency, 
required permits and following conditions, 
gate codes, and in cold climates have a 
change of clothes, towels, blankets, etc. to 
prevent hypothermia. Specific preparation 
should be adjusted to climate and project. 
Read the Texas River Guide to Safety (for 
lakes, rivers, whitewater, boats, rafts, cloth-
ing for cold water, good equipment gear, river 
hazards, spotting potential accident) in link 
below. below. https://tpwd.texas.gov/landwa-
ter/water/habitats/rivers/safety.phtml 

In conclusion, hidden dangers were 
discussed considering the five objectives 
based on six peer reviewed journals and 
supporting literature. Sparsely reported dan-
gers (or danger factors as a group) without 
a warning to researchers were discovered. 
The 28 danger factors were in two main 
groups: non-metric danger factors (e.g., caves 
with aquatic habitats) and metric danger 
factors with threshold values (e.g., stream 
discharge rates) and were documented. 
Danger factors were discussed by frequency 
of occurrence per journal papers and com-
pared by totals. Safe baseline metric values 
were compared to those that exceeded the 
unsafe metric threshold values. Practical 
and common-sense safety recommenda-
tions were presented as guidance plans and 
preparation to protect FW researchers and 
others that enter the water (e.g., scientists, 
and aquatic recreationalists and the public) 
were presented.
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