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Abstract 

With smart-devices becoming increasingly more commonplace, methods of capturing an individual’s 

activities are becoming feasible. This is more generally performed through questionnaires or within 

unnatural environments bringing drawbacks in accuracy or requiring impractical conditions. This 

paper presents a simpler method of data collection which reduces the complications of typical 

activity data collection by collecting labels directly from a user. Instead of capturing activity 

beginning and end times, user requests are made at time intervals and labels are populated to 

feature vectors. These methods can provide a simpler method of data collection and could provide a 

solution to the annotation problem within activity recognition. 

 

Keywords – Gaussian Means; Activity Recognition; Multiple-Instance Learning; Random Forest; 

Support Vector Machines 

 

1. Introduction 

Globally, an increasing number of people are using smartphones daily. Many of these devices 

contain embedded sensors which accurately measure acceleration and orientation, providing 

solutions to challenging issues associated with activity recognition.  
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Healthcare advancements have resulted in an aging population, where the elderly have become a 

larger percentage of the overall population [1], bringing with it associated rises in operating costs 

[2]. Therefore, methods of reducing these costs are advantageous, for instance, activity recognition 

for patient rehabilitation [3]  and monitoring [4].  Additionally, activity recognition uses are not 

limited to the medical sector with systems being developed for exercise tracking [5] and biometrics 

[6]. While smartphone sensors allow for the simple capture of raw data, traditional supervised 

machine learning requires detailed labels or annotations in conjunction with the raw data. Raw 

sensor data is readily available however acquiring annotations is a laborious, costly and time 

consuming task [7]. This is both due to the complexities regarding setup of data collection 

experiments [8] and ensuring that annotations collected are sufficient and accurate. To ensure the 

accuracy of annotations provided, most of these experiments are performed within a laboratory 

where participant’s movements can be closely monitored.  

 

A potential solution to this annotation problem is to bring activity recognition into naturalistic 

settings and utilize embedded smart device sensors to provide data for discrimination of activities. 

Annotations can be collected from users via a diary study technique known as experience sampling 

[7]. This method of data collection is similar to the physician-administered questionnaires which the 

medical field currently uses for activity recognition [9]. However, an in the moment request from a 

user’s device will be less likely to be affected by recall bias then questionnaires and questionnaires 

performance is relatively low compared with laboratory-based experiments [10]. However, as this 

solution provides much fewer and less accurate annotations than a standard supervised classifier, 

it could potentially affect classifier performance. 

 



This paper sets out to show that even when weak and noisy annotations are collected via a heavily 

restricted collection process in comparison to a standard supervised training set, methods can be 

utilized to reduce the associated negative impact on classifier performance. While these methods 

are unlikely to fully equal that of a comprehensively annotated training set, they provide 

foundations for a practical approach to activity recognition. Weak supervision methodologies, 

rather than fully supervised learning, will be utilized to extract supervision signals, or training 

annotations, from these noisy sources with the overall goal of reducing the burden and cost 

associated with detailed annotation of activity training sets. The key contributions of this paper are 

evaluation of bespoke methods for activity recognition, using concepts from weak supervision and 

experience sampling.  

 

Experiments will be performed using ideas from Multiple Instance Learning, a weak supervision 

methodology which places feature vectors into collections known as bags [11]. Simulated collection 

of bag level labels will be performed, resulting in each label being assigned too many feature vectors. 

As it cannot be known what activities are performed in the bag, it will be difficult to tell which 

features the bag level label applies to. A Gaussian Means [12] hierarchical clustering algorithm can 

be used to assign bag labels to feature vectors. Following this, we can investigate several methods 

to further increase bag classification accuracy. Validation methods will then be performed to test 

how well the weakly labelled training set performs in comparison to the best-case scenario of a fully 

annotated training set.  The methodology is provided in section 3, section 4 outlines the results, 

section 5 discusses the results and finally, section 6 provides conclusions and some future work. 

 



2. Related Work 

Annotations have previously been gathered using experience sampling for activity recognition. 

Some of these have annotated a single feature vector [13], [14] whereas others have captured 

annotations for multiple feature vectors [7], [15]. Different structures of user requests have also 

been applied, ranging from asking what activity a user is currently performing [13] to the activity 

they have performed the most over a certain time frame [7].  Several methods have also been tested 

to populate these experience sampling captured annotations to a larger pool of unlabeled data. 

Multiple Instance Learning, which places multiple feature vectors in bags and uses modified 

classifiers which can handle these bags, has shown efficacy [7]. Other methods such as Graph Label 

Propagation [7] and Active Learning [15] have also been tested. Weakly supervised techniques 

running at a substantial experience sampling interval of 10 minutes allowed an increase in classifier 

accuracy from 70.2% to 84.8% by populating labels based on Euclidean distance [13].  Another 

consideration is that even with experience sampling, users may not accept a system if it is overly 

intrusive, for instance, making excessive user requests for input. While not tested specifically for 

activity recognition, methods of reducing user requests by employing a cost vs benefit ratio have 

been investigated [16]. Other work has tried to reduce the number of user requests by making 

predictions on future requests. This was performed by calculating the measure of confidence a 

classifier had in each prediction. This method was shown to reduce the number of user requests by 

up to 35% with insignificant effects on classifier accuracy [14]. Transition-aware systems have been 

tested previously, however, they have only been used in fully supervised systems [17]. This work 

approaches the issue differently by gathering user-provided weak labels in combination with zero-

shot learning to find these transitions. Although this means that we will never have the contextual 

labels e.g. sitting-to-standing, it may be possible to infer them. 



3. Methodology 

3.1.  Dataset 

The dataset used was the Human Activities and Postural Transitions dataset [17], this dataset was 

deemed appropriate as it was captured on smart devices, which has an emphasis on naturalistic 

data collection. The dataset contains static and dynamic activities and the postural transitions 

between the static activities. The data is captured from 30 participants which range in age from 19-

48 years. Data is collected using a smartphone which is attached to the participant’s waist, both the 

accelerometer and gyroscope signals are captured at a rate of 50Hz.  The distribution of labels in 

both the training and test set are evenly distributed except for the transitions, however, we expect 

this to have lower occurrences as they only happen for a few seconds at a time. 

 

3.2.  Feature Extraction 

As certain activities can be difficult to differentiate on acceleration values alone [18],  features are 

computed from both accelerometer and gyroscope data. Both embedded sensors capture tri-axial 

data providing 6 axes from which features can be computed. Raw values are applied to a median 

filter, and then de-noised using a low pass Butterworth filter. The filter had a corner frequency 

specified at 20Hz. A second Butterworth filter with a corner frequency of 0.3Hz is then applied to 

the accelerometer data; this splits the accelerometer data into body acceleration and acceleration 

due to gravity. This body acceleration, along with angular velocity is then used to calculate signal 

Jerk.  Signal magnitude is also calculated from the body acceleration, gravity acceleration, body Jerk, 

body gyroscopic data, and the gyroscopic Jerk. This magnitude is calculated using Euclidean Norms. 

A fast Fourier transform is applied to body acceleration, body Jerk, body gyroscopic data, bodily 

acceleration magnitude, gyroscopic magnitude, and gyroscopic Jerk magnitude. From these signals 



we then calculate mean, standard deviation, median absolute deviation, maximum value, minimum 

value, signal magnitude area, energy measure, interquartile range, signal entropy,  correlation 

coefficients between two signals, auto-regression coefficient, frequency component with the largest 

magnitude, mean frequency with a weight average, skewness, kurtosis, frequency interval energy 

of the Fourier transform window and the angle between vectors.  These calculations result in a 561-

width feature vector, each of which is captured from a sliding window of approximately 2.56 

seconds [17].  

 

3.3.  Experience Sampling (ES) 

Experience sampling is a type of diary study method which captures data from users, within an 

activity recognition system it provides a feasible method of capturing labels [7]. Previous work has 

used different methods of applying the labels gathered by experience sampling to feature vectors. 

In some cases, the label gathered has been directly applied to a single feature vector which was 

generated from the signal data at the time of the request [13]. While in another method the labels 

are applied to a “bag” of feature vectors [7]. One advantage of gathering a label for a single feature 

vector is that it ensures that the feature vector has the correct label. However, in reality, this 

approach could be problematic, the user may not actually be willing at that time to provide a label, 

and the physical movement of a device, while a label is being provided, could also cause issues in 

selecting the correct feature vector.  However, gathering a label for a bag of feature vectors is much 

more feasible. For example, if the system is being used by someone monitoring a patient, it allows 

them to provide a label at any time within a time interval. However, this also leaves the difficult 

problem of estimating which feature vectors the label applies to within the bag. Obviously, 

requesting data from a user could cause problems with the user’s acceptance of the system [16], so 



of these two methods of applying labels to data the “bagging” method will be used as it does not 

require the user to immediately respond.  

 

 

As we are collecting a single label from the user and have no way of knowing when one activity 

begins and another ends. Therefore, experience sampling will be simulated by contacting the 

original ground truth at certain intervals. These intervals are going to be pre-defined as 0.5, 1, 1.5, 

2, 2.5, 10, 30 and 60 minutes. Ideally, to minimize the user burden associated with data collection, 

longer bags would be an advantage, but they could reduce the amount of data available to the 

classifier. With all likelihood, the activities will either be longer or shorter than the specified time 

interval, requiring some method to decipher which feature vectors within the bag correctly apply to 

the activity label. In a real-world scenario, the user request would ask for which activity was 

performed the most during the time interval. In order to simulate this the label which occurs the 

most within the bag will be captured from the ground truth. If in any cases there is no clear majority 

label within the bag, the bag will be skipped. 

 

3.4.  Multiple-Instance Learning 

Where normal fully supervised models learn from individual feature vectors, multiple instance 

learning places data into collections. These collections are known as “bags”, meaning that a single 

Algorithm 1 - Find clusters with Gaussian Means 

1: {Input: b = feature vector of bag to be clustered, s = g-means strictness 

value} 

2: b_GM = GMEANS(b, s) 

3: c = findBiggestCluster(b_GM) 

4: return c 

 



label can have multiple sets of feature vectors associated with it [11]. These bags are then placed 

into a modified supervised classifier, an example is a bag level classifier known as MI-SVM [19]. 

Multiple Instance Learning operates on the principles that; a bag will be labelled negative if all 

instances within it are negative and a bag will be labelled positive if at least one instance within it is 

positive [20]. 

 

 

 

 

A key problem in the case of this work is we have no way of identifying “negative” bags. Since we 

are only capturing a single label per bag, it is likely that a bag will contain activities other than the 

activity identified as the majority activity. It is therefore not possible to accurately define any bag as 

negative due to the unknown activities which may occur in the bag. This combined with an aim to 

predict individual feature vectors rather than bag labels means this work will only use Multiple-

Instance classifiers for comparison. An experience sampling interval refers to the time between 

requests given to the user to provide a label. While the frequency in requests at this stage can be 

quite high, they are much easier to provide. For instance, the 1-minute window will have 4.3% of 

the original training sets labels and require that 337 user requests be simulated. However, instead 

of requiring start times, end times, and ensuring the accuracy of these times the user only needs to 

Figure 1 – Population of bag-level labels to individual feature vectors 



provide the name of the activity which they performed the most.  MI-SVM classification has 

previously been used for activity recognition [7] so it provides a good baseline for comparison with 

other methods provided within this paper.  

 

3.5.  Finding the activity within bags 

Since each user request only collects a single label which encompasses multiple feature vectors, we 

investigate methods to eliminate feature vectors which the label applies to. Based on the 

assumption that the collected label is the one performed the most over the specified time frame, 

the investigated methods will identify similar feature vectors within the bag. Two main methods to 

perform this similarity measure will be investigated: 

 

1. Single Instance Learning: Assign the bag level label to each feature vector within the bag. It 

is a ‘naïve’ learner in that it will incorrectly label a large number of feature vectors, but has 

been shown to be effective in certain cases [21]. 

2. Bag clustering: Use of a clustering algorithm to search for the largest single cluster within 

the bag. 

 

These methods including the experience sampling are shown within Figure 1. Experience sampling 

shows to only have bag level labels, single instance learning has given each feature vector within 

the bags the same label as the bag label. The clustering-based algorithm has discovered the largest 

cluster within the bag and only applied labels to these feature vectors. Figure 1 demonstrates that 

for a certain time interval, experience sampling will gather one label for a bag of multiple feature 

vectors but does not label any specific feature vectors. Single Instance Learning then populates each  



 

of these bag labels to the entire bag, resulting in a high per bag recall rate, but potentially poor 

precision rate. The cluster analysis approach attempts to only provide the appropriate feature 

vectors in the bag with the bag label, hopefully maintaining a similar recall rate to Single Instance 

Learning while improving the precision rate. 

 

3.6.  Bag Clustering 

Since many clustering algorithms require the number of clusters to be specified, this presents a 

problem. The core aim of the proposed bag clustering is to cluster the bag into a set of K clusters, 

where each cluster represents a different activity. Each user request provides only a single label. 

There is therefore no way of knowing the number of possible clusters in a bag.  

In order to estimate the number of clusters and therefore the largest of these clusters, we propose 

the use of a method known as Gaussian means clustering (g-means) which attempts to find the k 

value in k-means. The g-means algorithm incrementally grows the number of k-means centers and 

checks to ensure the data comes from a Gaussian distribution. For each of the centers found, if the 

data appears to be from a Gaussian distribution then this center will be accepted. However, if it isn’t 

from a Gaussian distribution then a larger number for k may be required.  

 

Algorithm 2 - Detect and reduce outliers 

1: {Input: c = feature vectors of biggest cluster, t = percentage of data 

points to keep} 

2: centre = findCentrePosition(c) 

3: For each feature vector j within c: 

4: d{j} = EuclideanDistance(c{j}, centre) 

5: s_d = sortByMinimumFirst(d) 

6: n = size(s_d) * t 

7: return s_d{0:n) 

 



 

Once g-means has detected and found the clusters within the data, the largest of these clusters will 

be extracted and the user’s label applied to the corresponding feature vectors. Feature vectors 

which are outside of the largest cluster are removed from the bag.  This idea is illustrated in 

Algorithm 1 where the bag of feature vectors b and the strictness value s for g-means are input. It 

then clusters the bag, resulting in a number of clusters b_GM. The biggest cluster within b_GM is 

then found and returned as c.   

 

3.7.  Reducing outliers 

Even with the g-Means algorithm discovering the largest cluster within the bag, it is still possible for 

incorrect feature vectors to exist within the cluster. To reduce this chance, the centroid position 

within the cluster is found and the Euclidean distance from each feature vector to the centroid 

calculated. Any feature vectors which lie outside of a threshold from the cluster centroid position 

can be assumed to be outliers and removed from the cluster. 

 

 

 

 

Algorithm 3 - Detect activity transitions 

1: {Input: RF = random forest trained on all labelled feature vectors, 

trainingData = full training data without labels} 

2: Transitions = vector of zeros the same length as training set 

3: Predictions = Get individual tree output from RF on training set 

4: For each output in Predictions: 

5: classesOutput = number of classes predicted in output 

6: if classesOutput equal to number of classes within training set: 

7:  transitions[output] = 1 

 



 

Although this method could reduce recall, it should improve precision. If a system of this type is to 

be used, label population performance could incrementally degrade due to previous poor label 

population performance, making a higher precision favorable. Pseudocode for this idea is provided 

in Algorithm 2. It takes the cluster c which contains the biggest cluster returned by Algorithm 1 and 

a percentage t which is the percentage of the cluster to keep as input. The centre position of c is 

found by calculating the mean. The Euclidean distance between each of the feature vectors in c and 

the centre is calculated and stored in d. This distances d are then sorted by smallest first and stored 

in s_d. The n smallest distances in s_d are found by multiplying the threshold t by the size of s_d. 

These n distances within s_d are then outputted. 

 

3.8.  Transition detection 

We propose training a model to provide further insight into the feature vector labels and specifically 

detect feature vectors which correspond to transition activities. Feature vectors will either remain 

as the label determined during g-means and outlier removal stages or will be given a new transition 

Algorithm 4 - Reduce manual user input 

1: {Input: RF = random forest trained on all labelled feature vectors, data = feature vector of 

bag, Threshold         = prediction threshold} 

2: Confidence = 2-width matrix of zeros the same length as data 

3: TreePredictions = GetIndividualTreeOutput(RF, data) 

4: For each output o in TreePredictions: 

5:  ModePrediction = mode(TreePredictions{output}) 

6: Confidence{output, 0} = RF.predict{data} 

7: Confidence{output, 1} = Percentage of Trees in TreePredictions which voted for in 

ModePrediction 

8: BagMode = mode(Confidence{:, 0}) 

9: BagModePercent = Percentage of predictions in Confidence which contain the BagMode ** 

10: If bagModePercent >= Threshold: 

11: return bagMode 

12: else 

13:  return -1 

 



label. Due to the weakly supervised nature of this work, it is not feasible to classify transitions into 

specific types of transitions such as sitting-to-standing. We therefore classify all types of transitions 

the same.  Previous work has used an ensemble learner to provide insight into the confidence in a 

prediction [14]. We leverage the outputs of each individual tree in a Random Forest classifier and 

analyze these votes to determine how much confidence the classifier has in its prediction in order 

to detect transition activities. Experience sampling will only collect labels of actual activities rather 

than the transitions between them. We can therefore look for transitions in bags by looking for the 

feature vectors which the classifier has extremely low confidence. Algorithm 3 shows how the 

transition detection is implemented. A supervised random forest classifier is trained on feature 

vectors and labels identified through g-means and outlier reduction steps described in Sections 3.6 

and 3.7. Each feature vector is then tested on the trained random forest classifier and feature 

vectors which the classifier has a low classification confidence of for all classes is given a transition 

label. Confidence is determined by counting how many classes the individual trees voted for against 

each feature vector. If they have voted for a number of classes equal to the number of classes in the 

weakly labelled training set then its confidence is low. If the random forest is not confident that the 

feature vector relates to a specific activity, the feature vector is therefore classified as a transition.  

 As Random Forest can output the votes from each tree individually and for each feature vector, we 

can look at the variance in these votes and determine how much confidence the classifier has in its 

prediction. This same idea could be used for the detection of transitions. As the simulated 

experience sampling will only be collecting the labels of actual activities rather than the transitions 

between them, we can look for transitions in bags by simply looking for feature vectors which the 

classifier has extremely low confidence.  

 



 

3.9.  Reducing manual user inputs 

As an extension to the random forest confidence methods of finding the transitions within bags, the 

same principle will be applied to reduce the number of user requests and more importantly any 

future requests. This is performed in two stages. The first stage is an initial training stage using an 

experience sampling process where users will provide labels via experience sampling. The second 

stage utilizes what is learnt from stage 1 to make attempt to make automatic predictions for bag 

labels as opposed to asking users to provide bag labels.  Bag predictions will be made in instances 

where the classifier has a high confidence, otherwise it will revert to asking the user to provide the 

label. By having each individual tree in a Random Forest make a prediction on each point within the 

bag. The votes for each point from each tree are then aggregated into the mode vote label for each 

feature vector and the percentage of the votes for the most common label. 

For a bag of 10 feature vectors long, it will output a matrix holding the mode vote for each of these 

feature vectors and their percentage of the total votes. The mode of all the mode votes is found and 

its percentage of the aggregated votes is found. If this percentage is above a threshold then the 

prediction is used, if not, then the experience sampling request will be performed. Once this process 

has finished for the current bag the Random Forest will be retrained with the new data and the 

same process will be repeated for the next bag. 

 

 

 

 

 



 

Algorithm 4 provides implementation details on this idea. It takes a Random Forest RF which has 

been pre-trained on all known labelled feature vectors, data with is the feature vectors of the bag 

to be predicted upon and Threshold which will be our prediction threshold all as input. First an 

empty matrix Confidence, equal in length to data and 2-width, is created to store our confidence 

values. For each output o from TreePredictions, the mode tree vote will be calculated. RF’s 

prediction for the data placed and the percentage of individual trees which voted for the mode 

prediction will be stored in Confidence. After the loop, the mode prediction for data is calculated 

and stored in BagMode. The percentage of predictions for this BagMode is calculated and if this 

value is over the Threshold the bagMode will be taken as a prediction for the bag. Otherwise, the 

algorithm will return -1 in which case the system will ignore the prediction made and make a user 

request instead. 

Algorithm 5 - Activity Recognition System 

1: {Input: trainingData = matrix of all training feature vectors, testingData = matrix of all testing 

feature vectors, trainingLabels = vector of all training labels, testingLabels = vector of all testing 

labels, outlierThreshold = Percentage of data points to keep in outlier removal} 

2: WeaklySupervisedLabels = Matrix of zeros the same length as data 

3: Bags = ConvertToBags(trainingData, bagSize) 

4: For each Bag b in Bags: 

5: //Capture label or make prediction 

6: If index of Bag b > Total number of Bags: 

7:  bagLabel = Run Algorithm 4 on Bags[b] 

8: Else: 

9:  bagLabel = Capture label by experience sampling  

11: //Find the positions in the bag the label applies  

12: LabelPositions = Run Algorithm 1 on Bags[b] 

13: //Reduce outliers 

14: LabelPositions = Run Algorithm 2 on LabelPositions with outlierThreshold 

16: //Apply these labels to WeaklySupervisedLabels 

17:  WeaklySupervisedLabels[LabelPositions * b] = bagLabel 

18: End For 

20: //Find transitions 

21: Train a Random Forest on WeaklySupervisedLabels and Training Data 

22: Transitions = Run Algorithm 3 with this Random Forest on TrainingData 

23: WeaklySupervisedLabels[Transitions] = TransitionLabel 

25://Validate on classifiers 

 



3.10. Full Algorithm Implementation 

Algorithm 5 provides details on the full implementation of this system. It begins by taking the 

training and testing data as input parameters. A matrix of zeros the same length as the training data 

is created to store the labels obtained through weak supervision. The training data is then converted 

into bag form. For each of these bags, it first checks if more than half of the bags have been 

processed. If we have passed the half-way point, then it will begin trying to make predictions on the 

bag labels by running Algorithm 4. Otherwise it will capture the bag through simulated experience 

sampling. Algorithm 1 run now be run on Bag b, this cluster returned by Algorithm 1 will be run 

through Algorithm 2 to try to reduce any bag outliers with outlierThreshold. The resultant cluster 

will now be applied to WeaklySupervisedLabels with the label gathered either through the 

experience sampling or bag prediction performed earlier. Once all bags have been processed, a 

random forest RF is trained on WeaklySupervisedLabels and the feature vectors in trainingData by 

running Algorithm 3. These transitions are then added the WeaklySupervisedLabels and the data 

can now be validated on a classifier. 

 

3.11. Classification 

Several classifiers are being used as part of this work, one of which will be used for confidence 

measurements and the other which will be used for final testing of the system. 

3.11.1. Random Forest 

Random Forest is an ensemble learner which is made up of a collection of decision trees. This 

Random Forest [21], implementation is being used as it provides an output of the individual votes 

from each tree. Using these votes, we can infer the classifiers confidence in its prediction, and 



therefore look for feature vectors which the system has very low confidence in. These positions may 

then be marked as potential transition points. This Random Forest is also used for the prediction of 

the future bag level labels. 

3.11.2. Support Vector Machines (SVM) 

Support vector machines have been previously proven to perform well in the classification of activity 

data [6]. They are also capable of handling a large feature space without significant performance 

impact [22], useful in this situation as activity recognition systems are destined to be applied to 

lower power devices where efficiency is important.   

3.11.3. K-Nearest Neighbours 

A lazy classifier which uses Euclidean distance to find the nearest feature vectors within the feature 

space. This classifier has been shown to be capable in classifying activity data and it generally 

outperforms Naïve Bayes [23]. 

3.11.4. Multi-layer Perceptron 

A Multilayer Perceptron is a type of feedforward neural network. Previous work has shown that it 

can classify activity data relatively well. It has been shown to outperform logistic regression and 

decision trees [24]. 

 

4. Results 

4.1. Evaluation protocol 

Evaluation will be performed using a training/test split. To reduce bias, the participants in the 

training set will be completely independent of those in the test set. The training set will comprise of 

70% of the data and the test set will contain the remaining 30%. Cross validation is not being used 



as the training/test split allows comparison with other methods. Since this paper sets out to test 

how usable a training set captured using experience sampling is, we will remove all ground truth 

labels from the training set. A small number of labels will then be captured with simulated user 

requests and then populated to other unlabelled feature vectors.  

 

4.2. Full ground truth 

Before conducting experiments to evaluate the performance of the weakly supervised techniques 

we first perform baseline performance evaluations on a fully supervised system to ascertain the 

“gold standard” performance. In order to find this the fully labelled training set will be used in 

multiple supervised classifiers. They are SVM, Random Forest, k-Nearest Neighbours  [22] and Multi-

layer Perceptron [23]. A grid search has been employed to optimize each of the four classifiers. This 

was initially performed in previous experimentation and resulted in the following parameters. 

• Random Forest: 50 estimators with no maximum depth 

• Multi-layer perceptron: Uses the Adam stochastic gradient descent optimization method 

with a Relu activation layer, a hidden layer size of 100 is used with an alpha value of 0.001 

• SVM: An RBF kernel is used with a C value of one with an automated gamma value 

• k-Nearest Neighbours: Uses a number of nearest neighbours set to 5. 

As can be seen from table 1, of the classifiers given Multi-Layer Perceptron and SVM have shown 

the best performance in both accuracy and F1 score. 

Table 1 – Accuracy and F1 Score of fully labelled ground truth 

Classifier Accuracy F1 Score 

SVM 94.10% 94.29% 

K-Nearest Neighbours 89.80% 90.14% 

Random Forest 91.00% 91.14% 

ML Perceptron 94.84% 94.43% 
 



4.3. Populating bag-level labels to instance level 

Two methods of automatically assigning bag labels to the individual feature vectors are going to be 

tested. As a baseline comparison, we first evaluate a naïve labelling method where no attempt to 

restrict the labels is performed and bag level labels are assigned to all the feature vectors within 

each bag. The second method will use the proposed Gaussian Means based method to cluster the 

data before applying labels, while they method may reduce the overall number of true positives 

found, we postulate that the removal of feature vectors using g-means will decrease the false 

discover rate. The Gaussian means algorithm uses a “strictness” value. Preliminary experiments 

identified that a strictness value of 4 provided the desired balance between precision and recall. 

 

4.3.1. Single Instance Learning 

Single instance learning will indiscriminately assign the bag label to all feature vectors in the given 

bag.  Table 2 shows the precision and recall scores for propagating a single label to each bag. As 

expected, performance is significantly reduced each time the time interval is increased. However, 

even with the smaller bags, the performance does not compare with the performance of fully 

supervised training. 

4.3.2. Proposed Method 

For this method to assign labels to the feature vectors within the bag, it will first cluster the data 

using g-means clustering. Once the largest cluster has been found, the bag label will be applied to 

these feature vectors and the unused labels will be left unlabeled. The thresholding step to reduce 

Table 2 – Precision and Recall of Single Instance Learning 

ES Time 
Interval 

0.5 
mins 

1 
mins 

1.5 
mins 

2 
mins 

2.5 
mins 

10 
mins 

30 
mins 

60 
mins 

Precision 0.78 0.64 0.54 0.48 0.44 0.19 0.10 0.10 

Recall 0.81 0.67 0.55 0.51 0.45 0.23 0.19 0.19 
 



bag outliers will be applied with a threshold value of 95%, preliminary experiments found that this 

value provided the lowest reductions in recall.   Table 3 shows the results of training using the 

proposed weakly supervised method. The precision performance is excellent for the smaller 

windows, likely due to the lower chances of having noisy labels when compared to single instance 

learning. 

4.3.3. Label Propagation Discussion 

With the results of both methods collected, a decision can be made about which of the two label 

populating algorithms is most effective. Tables 2 and 3 show that of the two methods of assigning 

labels, the proposed algorithm performs significantly better in terms of precision. Recall is higher 

for single instance learning in the longer windows, however, performance has already degraded 

below usable by this point.  There is a chance that single instance learning will get a higher number 

of true positives, however, it is more important to get a higher percentage of correct labels. This is 

due to a false negative only reducing the amount of data a classifier must learn from, whereas a 

false positive will actively confuse the decision boundary of a classifier. The proposed algorithm 

shows superior results in all lengths of experience sampling window lengths, and thus further 

experiments will be carried out on that method.  

4.4. Transition Detection 

This section will describe experiments to evaluate the performance of the transition detection 

method described in Section 3.9. We propose detecting transitions by using a Random Forest 

trained on the completed weakly labelled training set. Transitions are classified by identifying 

feature vectors which have a very low classifier confidence for all activity classes. 

Table 3 – Precision and recall of Gaussian Means 

ES Time 
Interval 

0.5 
mins 

1 
mins 

1.5 
mins 

2 
mins 

2.5 
mins 

10 
mins 

30 
mins 

60 
mins 

Precision 0.94 0.87 0.74 0.72 0.65 0.31 0.18 0.31 

Recall 0.86 0.73 0.66 0.62 0.54 0.30 0.13 0.13 

 



The experience sampling label collection process will only ever capture actual activities and not 

transitions between them. In this weakly supervised scenario, labels specifically indicating the 

presence of transitions will therefore never be available. Figure 2 shows the precision and recall 

results of detecting the transitions. The shorter experience sampling windows perform with good 

precision and recall. We attribute this good performance to the fact that these classifiers are being 

provided with a large amount of data, this results in the classifier being confident in making 

predictions. It also means that it will be more likely to select positions in which confidence is low. 

Conversely, larger experience sampling windows provide the classifier with small amounts of data 

due to the limits in the dataset size at this sampling frequency. The transition points are validated 

by comparison with the transitions within the ground truth. The algorithm performs very well in 

finding transition points and up to an experience sampling window of 2.5 minutes. The recall results 

are high at the longer experience sampling windows with extremely low precision. This is due to the 

algorithm not having enough data to find these transitions accurately and it, in fact, labels almost 

every feature vector as a transition. This means it almost never misses any transitions, but when 

you compare the ratio of how many of these feature vectors are labelled correctly versus the total 

number of transitions labelled, it results in a low precision value. This issue is being solely caused by 

 

Figure 2 – Precision and recall of the detected transitions at multiple experience sampling window length 
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a lack of data and can be solved in real world scenarios by only allowing transitions to be discovered 

once a classifier has gathered a certain level of performance.  

4.5. Classification Results 

The following section will test the overall performance of the proposed algorithm combined with 

the transition detection algorithm and make direct comparisons with a fully supervised system.  

 

 

 

Table 4 – Classification results of multiple classifiers 

Accuracy  F1 Score 

SVM KNN RF MLP ES Time 
Interval 
(mins) 

SVM KNN RF MLP 

0.93 0.87 0.89 0.91 0.5 0.93 0.87 0.88 0.90 

0.88 0.79 0.81 0.78 1 0.88 0.77 0.80 0.77 

0.66 0.65 0.63 0.61 1.5 0.56 0.58 0.54 0.53 

0.49 0.47 0.46 0.44 2 0.38 0.40 0.39 0.38 

0.48 0.48 0.43 0.45 2.5 0.38 0.41 0.36 0.38 

0.05 0.12 0.08 0.09 10 0.01 0.11 0.06 0.08 

0.05 0.07 0.60 0.05 30 0.01 0.04 0.03 0.02 

0.05 0.09 0.05 0.06 60 0.01 0.06 0.02 0.02 

 

 

Figure 3 – Classification of individual activities with weak labels vs full ground truth 
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From Table 4, it is clear that the SVM performs best in all cases. However, after the one-minute 

window length the performance drops significantly, and at 2 minutes it has dropped below what 

could be considered reasonable performance. The SVM performs best of the four classifiers tested 

and as one minute shows the longest window where the system is still effective. We therefore 

further investigate the individual activity classification efficiency compared to a fully labelled 

training set for the SVM. Figure 3 shows the comparison of accuracy for both the fully labelled 

training set and the weakly labelled training set. It can be seen that most of the performance is lost 

in the walking downstairs and sitting activities.  However, in some cases, the weakly supervised 

system outperforms the fully labelled training set, this is apparent in the transitions and walking.  

Table 5 shows the confusion matrix for the classification results achieved using the weakly labelled 

training set at a one-minute interval with the SVM classifier. The reason for its reduced performance 

in classifying walking downstairs is due to it being confused with walking and walking upstairs. 

Similarly, sitting is being confused with standing. The reason for this is due to walking downstairs, 

walking and walking upstairs all being dynamic movements with a similar cyclic pattern. Whereas, 

sitting and standing are both static activities with no movement and hence provides similar 

acceleration profiles. These similarities in the activities mean they can be difficult for a classifier to 

discriminate, especially if the classifier has less information than normal.  We perform an additional 

Table 5 – Confusion matrix showing SVM performance at one-minute interval 

 

Walking 
Walking 
Upstairs 

Walking 
Downstairs Sitting Standing Laying Transitions 

Walking 494 0 2 0 0 0 0 

Walking 
Upstairs 

28 441 2 0 0 0 0 

Walking 
Downstairs 

83 46 289 0 0 0 2 

Sitting 0 0 0 368 132 0 8 

Standing 0 0 0 38 507 0 11 

Laying 0 0 0 0 0 534 11 

Transitions 2 0 0 0 1 0 163 

 



experiment to compare the proposed weakly supervised methods with Multiple Instance SVM (MI-

SVM), another weakly supervised algorithm which has been previously used for activity recognition 

[7]. 

Figure 4 shows the F1 score comparison between the proposed method and MI-SVM. These scores 

are taken from the 0.5-minute window, providing MI-SVM with the best opportunity to classify the 

data. The experiments found that although MI-SVM had good precision scores, the associated recall 

scores are very low, ultimately leading to the low F1 scores seen in Figure 4. As MI-SVM performance 

has degraded below what could be considered acceptable at the 0.5 minute intervals, the longer 

windows are not tested.   

4.6. Reducing manual user input 

In a real-world setting, we envisage the system collecting more and more bag labels as time 

progresses. There is an opportunity to pre-train a classifier which can be used automatically assign 

labels to bags. These automatically assigned labels can be used to further reduce the number of user 

requests performed and therefore reduce the overall burden on the user. A Random Forest will be 

retrained each time a user input request is performed, this classifier will then make predictions on 

the next bag to be labelled. Experiments to evaluate this technique will only be performed on the 

smaller experience sampling intervals due to the lack of information available in the larger intervals. 

This lack of information will lead to a system which may be able to make predictions after enough 

0
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Figure 4 – Comparison of F1 Scores of proposed method and MI-SVM 



time has passed, but within the constraints of the dataset will not have gained enough confidence 

to make accurate predictions.  However, as this method is deciding on an entire bag of feature 

vectors, a mistake here could result in many incorrectly labelled feature vectors resulting in a very 

significant impact on classifier accuracy. A threshold value of 0.95 was found to provide the best 

balance between incorrect predictions and number of predictions made. Due to the random nature 

of the random forest classifier, the entire experiment is repeated 10 times to smooth out any outlier 

performances. The train/test split does not change during these repeated experiments. The average 

reduction in predictions and prediction accuracy from each of the 10 iterations will then be taken. 

This experiment is not being run in tandem with the previous experiments as the dataset is not large 

enough to support the longer windows, rather it is being shown as a proof of concept. We found 

that at the 0.5-minute interval, 108 predictions are made on average. This reduces the overall 

number of predictions by approximately 16%. Of these 108 predictions, 98.3% are correct, this 

results in an insignificant degradation of overall classifier F1 score by 1%. However, at the 1-minute 

window, the number of user requests is only reduced by 2% and while all of these predictions where 

correct it shows that the shorter the window, the more predictions can be made. This is simply 

because more data is available for prediction and there is more chance that the system will have a 

higher confidence in its prediction.  The percentage reduction in predictions is the number of 

successful predictions the system made, and the accuracy figures show the number of extra 

predictions the system incorrectly made.  

 

5. Discussion 

Collecting labels via user request does have some limitations, mostly in that entire activities can be 

missed. Short activities can also be missed by the wording of the request or a very long-time interval. 



A possible solution could be through attempting to detect sequences of data which are more 

valuable to a classifier. For example, a weakly supervised system could look for sequences which a 

classifier has less confidence in. The fully supervised performance results in this work match fully 

supervised experiments in the literature in that SVM is a competent classifier for activity data. While 

the Multi-Layer Perceptron performed the best in the initial experiment with fully supervised data, 

this performance suffered once labels where restricted.  In terms of labelling instances within the 

bags, the g-means based method had far superior performance in ensuring that the labels are 

applied to the correct instances. The g-means based method in comparison to the naïve method of 

applying a single label to the entire bag aims to restrict the labels to feature vectors which the label 

most likely applies. Standard data collection experiments need accurate recording of activity start-

times, end-times and the activity label itself. These experiments are invasive, requiring laboratory 

conditions and continual user monitoring to maximize classification performance. With the training 

set contains approximately 769 points when one activity changes to another activity or transition, 

it would result in 1538 instances when a time would need to be logged. Our experiment set out to 

provide a simpler method of collecting data which could be performed within the user’s natural 

environment and even the very short 0.5-minute window would only require 674 instances when 

an activity label would need to be provided. In addition, the effort and time requires to provide a 

single weak activity label is significantly less than the effort required to specific the specific start and 

end time of a label. Experiments showed that both the 0.5 and 1 minute experience sampling time 

intervals provide a significantly more feasible and less burdensome data collection process with 

accuracy losses of only 1.4% and 6.1% respectively. The proposed algorithm also outperforms the 

MI-SVM classifier where results show that MI-SVM had significantly lower rates of recall. One issue 

not addressed is the compute performance impact of the experience sampling request prediction. 

The Random Forest is re-trained in a semi-online fashion, as each prediction or simulated user 



request provides more information for the next prediction. The retraining of this model may have 

negative effects on compute and battery performance. One possible workaround is to reduce the 

rate at which the Random Forest is retrained and instead provide several predictions before 

retraining. This, however, will likely reduce the effectiveness of the system. 

 

6. Conclusion 

The methods presented within this paper test the efficacy of several methods in reducing the 

requirement for infeasible data collection experiments. Instead of accurately collecting the 

beginning and end times of activities and having users placed within unnatural environments, users 

or individuals monitoring a user can provide a single label at a certain frequency. However, a fully 

supervised classifier is never going to be provided with noisy labels. This means that a weak classifier 

is always going to be somewhat less efficient and will either need extra correctly labelled feature 

vectors to compensate or employ a methodology which can handle these noisy labels. In this work 

we have attempted to reduce noisy labels through the correct tuning of the Gaussian Means 

algorithm. From this single label, g-means clustering based method is applied to the data to discover 

the appropriate labels within that time interval. Algorithms are then used to discover transitions 

within these activities and possibly reduce the number of future data requests. Results show that a 

0.5-minute experience sampling time interval only reduced classifier performance by 1.4% but also 

required substantially fewer labels than typical data collection experiments. The proposed method 

also outperforms MI-SVM. Multiple time intervals were tested but result show that the longer the 

intervals, the less data is available, and the dataset currently being used quickly runs out of data. 

This results in incrementally worse classifier accuracies, however, it does set a proof of concept that 

which could possibly allow a system to begin with small intervals and incrementally grow these 



intervals over time. Future work will consider removing the time intervals and instead focus on 

finding the start time of new activities. An example could be making a request at a time when a 

classifier has low confidence in the current data. This could have two effects; it could allow the 

discovery of new activities and it could also increase the classifier performance in activities. Another 

possible direction of this work is to first identify how many noisy labels are being created and 

measure the effect this has on classification performance relative to normal fully supervised 

learning. In the case that the noisy labels are causing a substantial performance impact then 

methods such as importance reweighting [24] can be tested. 
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