
Understanding and Diagnosing the Potential

for Bias when using Machine Learning

Methods with Doubly Robust Causal

Estimators

Asma Bahamyirou1, Lucie Blais1, Amélie Forget1,2 and Mireille
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Abstract

Data-adaptive methods have been proposed to estimate nuisance parameters when

using doubly robust semiparametric methods for estimating marginal causal effects.

However, in the presence of near practical positivity violations, these methods can

produce a separation of the two exposure groups in terms of propensity score

densities which can lead to biased estimates of the treatment effect. To motivate

the problem, we evaluated the Targeted Minimum Loss-based Estimation procedure

using a simulation scenario to estimate the average treatment effect. We highlight the

divergence in estimates obtained when using parametric and data-adaptive methods

to estimate the propensity score. We then adapted an existing diagnostic tool based

on a bootstrap resampling of the subjects and simulation of the outcome data in order

to show that the estimation using data-adaptive methods for the propensity score in

this study may lead to large bias and poor coverage. The adapted bootstrap procedure

is able to identify this instability and can be used as a diagnostic tool.
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Introduction

Positivity, or the experimental treatment assumption, is one of the requirements

for causal inference, along with conditional exchangeability (i.e., no unmeasured

confounders), no interference, and well-defined interventions.1 Positivity requires

that the probability of receiving any level of the treatment conditional on the

covariates must be positive for each individual in the population. Near practical

positivity violations occur when some patients have an estimated probability of

receiving some level of treatment close to zero. This can occur even when the

theoretical positivity holds, for instance, due to insufficient observations in some

covariate strata.

In order to estimate a treatment effect, propensity score methods,2 where the

propensity score is defined as the conditional probability of receiving a given

treatment, have been increasing in popularity. For example, marginal effects such

as the average treatment effect (ATE) can be estimated by weighting outcomes

by the inverse of the estimated propensity score (IPTW).3 For these methods,

correct specification of the propensity score model is required for unbiased or

consistent estimation.

Doubly robust semiparametric methods such as Targeted Minimum Loss-Based

Estimation (TMLE)4, which is closely related to previously existing methods35,36

have been proposed to remove the dependence on the propensity score model

specification. The term doubly robust comes from the fact that the method

requires both the estimation of the propensity score and the outcome expectation

conditional on treatment and covariates, while only one of which needs to be

correctly specified to have consistent estimation. Therefore, when the outcome

model is consistent, a correct specification of the propensity score is unnecessary

and vice versa.

To increase the chance of correct specification, Machine Learning (ML) methods5

are often recommended.4,6 However, flexible modeling of the propensity score may

result in the selection of strong predictors of the treatment which may or may

not be true confounders,7 giving rise to extreme probabilities. TMLE involves

the inverse of the propensity score and any near violations of practical positivity

can cause unstable parameter estimates and potential bias due to highly variable

weights. This can be aggravated, notably by using ML to predict the probability

of receiving treatment level (in IPTW/TMLE).7 In order to resolve these issues,

one may use truncation of the weights to reduce the standard error,8,9 though
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selection of the level of truncation is usually ad-hoc.

In a large covariate space, Collaborative Targeted Minimum Loss-Based

Estimation (C-TMLE),10 an extension of TMLE which incorporates a variable

selection strategy in the propensity score model, can further improve the mean

squared error particularly in the presence of near positivity violations. However,

current implementations of C-TMLE rely on parametric estimation of the

propensity score.

The first objective of this paper is to show that under a partially misspecified

outcome model, flexible modeling of the propensity score can increase bias when

there is potential for practical positivity violations. In the second objective of

this paper, we have adapted the parametric bootstrap diagnostic tool, proposed

by Peterson et al.9 to inform whether, in a given analysis, a doubly robust

estimator was likely destabilized by the estimation of the propensity score. The

final objective is to demonstrate the usage of the diagnostic tool in a real data

exemple.

In Section 2, we use the potential outcomes framework to define the target causal

parameter of interest and review standard implementations of IPTW, TMLE and

C-TMLE for the estimation of the parameter of interest. In Section 3, we show

in a simulation scenario that finite-sample bias can increase under a partially

misspecified outcome model and when ML methods are used. In Section 4, we

present the adapted version of the diagnostic tool9 and apply this procedure to

our simulated data. We present an analysis of the safety of asthma medications

during pregnancy in Section 5. We discuss the results obtained in Section 6.

Estimators

In this section, we will briefly present the algorithms of IPTW,11 TMLE and

C-TMLE.4,10

Targeted estimation

In order to define the target parameter, we use the counterfactual framework of

Rubin.12 The observed data can be represented as O = (W,A, Y ), where W is the

baseline covariates of a patient, A is the treatment which equals 1 if the patient

received treatment and 0 otherwise, and Y is the observed continuous outcome.

We use Oi = (Wi, Ai, Yi) to represent the i-th observation of the data. Let Y a
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denote the potential outcome that would have occurred under the treatment

value A = a. In this paper, we focus on the average treatment effect (ATE) which

we denote ψ0. If we assume that we observe Y = Y a when A = a (consistency),13

no interference,1 and no unmeasured confounders,1 the target parameter can be

defined nonparametrically as:

ψ0 = E0(Y 1)− E0(Y 0)

= EW,0{E0(Y |A = 1,W )︸ ︷︷ ︸
Q̄0(1,W )

−E0(Y |A = 0,W )︸ ︷︷ ︸
Q̄0(0,W )

}. (1)

where E0 is the expectation with respect to the outcome and EW,0 is the

expectation with respect to the baseline covariates.

Inverse Probability of Treatment Weighting (IPTW)

Horvitz and Thompson11 proposed the idea of weighting observed values by

inverse probabilities of selection in the context of sampling methods. The

same idea is used in causal inference to estimate the ATE if we consider the

counterfactual outcomes which we don’t observe to be missing. Weighting

estimators provide ways to obtain large-sample unbiased estimates of the

ATE using the propensity score. We denote g0(A|W ) = P (A = 1|W ) as the

propensity score. Now, in order to estimate the average causal effect, the

treated and untreated subjects are assigned the weights wi = 1/gn(1|Wi) and

wi = 1/(1− gn(1|Wi)) respectively, where gn(1|Wi) = Pn(Ai = 1|Wi) is the

estimated probability of treatment for subject i. By weighting subjects, a

pseudo-population is created, where the distribution of covariates is comparable

between the two treatment groups as in a randomized experiment.8 The IPTW

estimator is given by:

ψIPTW
n =

1

n

n∑
i=1

(2Ai − 1)wiYi.

IPTW estimators can be unstable when the weights are large for some subjects

due to a very low apparent probability of receiving the treatment received. Several

methods exist to address this issue such as weight truncation,8 in which weights

that exceed a specified threshold are each set to that threshold and trimming,14
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in which subjects with very large weights are dropped from the analysis. These

methods can help to reduce the variance but may increase bias in the estimation

of the ATE. Data-adaptive methods have also been proposed to select a beneficial

truncation level.15

Targeted Minimum Loss-Based Estimation

Targeted Minimum Loss-based Estimation (TMLE)16, is a general framework to

produce semiparametric efficient and doubly robust plug-in estimators. TMLE4

is efficient (i.e. minimal variance in large samples) when all models contain the

truth. We denote Q̄0(a,W ) = E0(Y |A = a,W ) and let Q̄n be an estimate of Q̄0.

For the estimation of the ATE, TMLE is a one-step procedure where we first

obtain an estimate of the outcome model Q̄0 and then use the treatment model

g0 to update the estimate. A TMLE procedure16 for the estimation of E0(Y a),

where a = 0 or 1, is the following:

Algorithm 1 Targeted Minimum Loss-Based Estimation for E0(Y a)

1: Construct an initial estimate of the outcome expectation Q̄n(a,W ) =

En(Y |A = a,W ) for each subject.

2: Obtain the estimated propensity score gn(a|W ) = Pn(A = a|W ) for each

subject.

3: Update the initial outcome estimates using the estimated propensity score to

obtain Q̄∗
n(a,W ) by following steps (a)-(d).

(a) Define a covariate as H(a,W ) = I(A = a)/gn(a|W ).

(b) Fit an intercept-free logistic regression of Y ∼ Offset

{Logit(Q̄n(a,W ))}+H(a,W ).

(c) Obtain εn, the estimated coefficient of H(a,W ), which is referred as a

fluctuation parameter.

(d) Set Q̄∗
n(a,Wi) = expit{logit(Q̄n(a,Wi)) + εn/gn(a|Wi)}

4: The final estimate is 1
n

∑n
i=1 Q̄

∗
n(a,Wi).

For a continuous and bounded outcome Y ∈ [a, b] with a < b, Y must first

be transformed into Y ∗ ∈ [0, 1] by shifting and scaling using constants.17 The

doubly robust nature of TMLE means that just one of the regression models

(propensity or outcome) must be correctly specified to produce large-sample
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unbiased estimation. In large samples, the variance of TMLE, which is the variance

of its influence function4 divided by the sample size, is less than or equal to

the variance of all semiparametric estimators, when the initial outcome and the

propensity score models are both correctly specified (local efficiency). With an

estimate of the standard error σn of TMLE, we can construct a Wald-type 95%

confidence interval as ψn ± 1.96σn. R packages for implementing TMLE in single

and longitudinal point exposure studies are avalaible.18,19 A SAS macro for TMLE

for a binary point exposure has also been developed.20

Super Learner

Doubly robust estimators involve the estimation of both the conditional outcome

and propensity score models. Logistic regression can be used in both cases if we

are in the context of a binary outcome and treatment, but to take advantage of the

local efficiency of TMLE, we may prefer nonparametric estimators to increase the

chances of correct model specification.4 Ensemble learning methods such as Super

Learner (SL)5 are often recommended.21 Super Learner combines predictions

from a set of user-specified candidate models that may include parametric

regression models, semiparametric regression models, and ML methods. The

algorithm chooses the best weighted combination of these estimators using

cross-validation and performs generally at least as well as or better than the

best candidate estimator in the library in terms of prediction.5 Specifically,

each method produces a cross-validated prediction and the optimal weight is

determined by minimizing the cross-validated prediction error which is formulated

as a regression of the outcome Y on the cross-validated predictions. R packages

for implementing SL are available.22

Collaborative Targeted Minimum Loss-Based Estimation

The double robustness property of TMLE guarantees large-sample unbiased

estimation if at least one of the models (outcome or treatment) is estimated

correctly. In addition, large-sample unbiased estimation occurs when the

propensity score model conditions on a set of covariates that explains the residual

bias of Q̄n with respect to Q̄0 even if neither model is correctly specified.23

When estimating the propensity score with data-adaptive methods, optimizing

the treatment model fit would favor covariates that may be unrelated to the

Prepared using



Bahamyirou et al. 7

outcome and strongly predictive of the treatment7 and updating the outcome

regression based on this propensity score estimate can inflate estimation variance

(or cause computational instability) and potentially bias the estimation.24 C-

TMLE,23 as an extension of TMLE, has been proposed to avoid such situations

by collaboratively building the propensity score based on the outcome model

fit. A forwards stepwise variable selection C-TMLE procedure for E0(Y a) is the

following. Firstly, one needs to define a loss function to evaluate the error in Q̄n.

For example the logistic likelihood loss function L(Q̄n) = −
∑
Y {log(Q̄n) + (1−

Y ) log(1− Q̄n)} can be used for a binary or bounded continuous outcome.

Algorithm 2 Collaborative-TMLE for E0(Y a)

1: Construct the initial “current” estimate of the outcome model Q̄c
n(a,W ) =

En(Y |A = a,W ).

2: Use a forward selection algorithm to create a sequence of nested g models

improving in fit: g1,n, g2,n, ..., gK,n where K is the number of covariates.

(a) Variables are added to gn as long as they improve the value of the error

of Q̄∗
k,n(a,W ) (obtained by updating Q̄c

n(a,W ) w.r.t gk,n). The variable

that offers the greatest improvement is added at each step.

(b) If no forward selection step improves the error, update the current Q̄c
n

with the current gk,n to obtain a new current Q̄c
n. Then repeat step (a).

3: This procedure creates estimators Q̄∗
1,n(a,W ),...,Q̄∗

K,n(a,W ) that are strictly

decreasing in error. Use V-fold cross-validation to select the final number of

steps, k, that minimizes the error in Q̄∗
n.

4: The final estimate is 1
n

∑n
i=1 Q̄

∗
k,n(a,Wi).

Because ψn can still be asymptotically unbiased if the propensity score model

adjusts for the residual bias of Q̄n(a,W ),23 the C-TMLE procedure attempts to

select only the set of covariates needed using a forward selection algorithm to fit

the propensity score model. This can greatly reduce the variance of the resulting

estimator.4 It should be noted that, in the presence of near positivity violations,

C-TMLE will generally avoid full adjustment due to a perceived increase in the

cross-validated error. This allows for extrapolation using the outcome model which

may mask the true incomparability of the treatment groups. One weakness of the

above implementation of C-TMLE is that it does not incorporate machine learning
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methods. However, one may also include non-linear combinations of covariates as

additional candidates to be selected to improve the flexibility of the models.

Simulation Scenario

In this section, we present a simulation scenario to describe the problem and

highlight a specific problematic scenario that may arise in practice.

Simulated data

In this simulation, we generated datasets with two confounders, two instruments

(pure predictors of treatment), and one pure risk factor of the outcome. The two

confounders W = (W1,W2) were generated as bivariate normal with µ = (0.5, 1)

and Σ =

∣∣∣∣∣2 1

1 1

∣∣∣∣∣ and were subsequently bounded between [−3, 4]. The instruments

were generated with normal distributions: I1 ∼ N(1, 2), I2 ∼ N(1, 1.9), the pure

risk factor for the outcome as normal P ∼ N(1, 1.5) and all were bounded between

[−3, 3]. The treatment mechanism g0 was set as a Bernoulli with the probability

generated nonlinearly in one confounder variable and one instrument.

P0(A = 1|W ) = Expit{0.2 +W1 + 0.3I1 +W1I1 − 0.2(W2 + I2)2}

The observed outcome Y was Gaussian with a mean generated nonlinearly on the

confounders and one pure risk factor.

Y = 1 +A+W1 + 2W2 + 0.5(W1 + P )2 +N(0, 1)

The true ATE (ψ0) equals 1. With this treatment mechanism, the probability of

treatment will always fall within [3× 10−5, 1], resulting in near or full practical

positivity violations for many generated datasets.

Estimation

In this simulation, let us assume that the analyst is not aware of the true

data generating mechanism. Suppose then that the analyst uses an outcome

model with only main terms in a GLM: Y ∼ A+W1 +W2 + P . The analyst

missed the interaction and the squared terms in the regression, which may often

happen in practice. This means that the second step of TMLE will be needed,
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and therefore εn will be non-null. Using εn, the second stage of the algorithm

updates the initial outcome estimate using the estimated propensity score. For

the estimation of the propensity score, the analyst must decide whether to

use a parametric model such as a logistic regression of A on all main terms

in a GLM or, as suggested in the literature, a more flexible model such as

SL. The SL library in this simulation study includes: “glm” for main terms

logistic regression, “glm.interaction” for logistic regression with main terms

and all first-order interaction terms, “gam” for generalized additive model and

“glmnet” for Lasso with main terms. We generated 500 datasets and ran TMLE

and IPTW implemented with these two different approaches for the estimation of

the propensity score. While no true bounds exist for the continuous outcome, we

nevertheless scaled Y to (0,1) using the sample maximum and minimum values.

We then fit the outcome model using a logistic regression as specified above.

C-TMLE was implementated with GLM and all main terms and interactions

were included in the set of variables to be used in the sequence of propensity

score models, thereby allowing the C-TMLE to possibly select the true model.

We present the median and mean statistics in order to summarize the average

performance of the estimators. The coverage probability was obtained as the

proportion of estimated confidence intervals throughout the 500 generated

datasets that contained the true effect, ψ0 = 1. The results for 500 replications

are shown in Table 1. We present box plots of the parameter estimates in Figure

1 and density plots of the log of the true and estimated weights in Figure 2.

The IPTW estimators performed poorly whether we used ML or a parametric

regression for the estimation of the propensity score with the exception of GLM

with 2.5% truncation. IPTW just relies on the propensity score model which

was misspecified here. TMLE with a parametric regression for gn (GLM with all

main terms) performed far better than TMLE with SL for gn across all measures.

TMLE with GLM for gn produced a slightly biased estimate but, overall, the

bias and median squared error decreased when we increased the truncation level.

When TMLE was fit with SL for gn, its performance deteriorated across all

measures for both sample sizes. C-TMLE with a stepwise variable selection for

gn remained unbiased and achieved the lowest median squared error overall.

However, its coverage was sub-optimal for n = 5000. From the boxplots in Figure

1, we see again that C-TMLE and TMLE with a GLM for the propensity score

model produced estimates with the lowest bias and variability. The density plots
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of the log of the estimated weights show that the weights obtained using SL were

closer to the true weights (i.e. the weights corresponding with the true propensity

score) than those estimated using GLM. In particular, large weights were more

prevalent when using SL.

Table 1. Median and mean bias, median squared error and coverage for different bounds of
gn. Estimates taken over 500 generated datasets for different sample sizes, n.

Bounds on gn

n = 1000 n = 5000

Methods 0% 2.5% 5% 0% 2.5% 5%

TMLE-GLM for gn

Mean Bias 0.11 0.06 0.07 0.14 0.08 0.08

Median Bias 0.10 0.06 0.07 0.14 0.08 0.10

Median Sq E 0.10 0.09 0.08 0.03 0.02 0.02

Coverage 0.99 0.98 0.97 1.00 0.99 0.96

TMLE-SL for gn

Mean Bias 0.38 0.16 0.07 0.37 0.13 0.06

Median Bias 0.37 0.16 0.07 0.36 0.13 0.06

Median Sq E 0.39 0.12 0.06 0.24 0.04 0.01

Coverage 0.47 0.74 0.87 0.34 0.65 0.83

IPTW-GLM for gn

Mean Bias 1.90 0.01 0.77 1.95 0.05 0.75

Median Bias 1.80 0.01 0.77 1.92 0.05 0.76

Median Sq E 3.85 0.10 0.60 3.84 0.02 0.60

Coverage 0.28 0.99 0.67 0.02 0.99 0.06

IPTW-SL for gn

Mean Bias 1.04 1.50 1.72 0.80 1.47 1.69

Median Bias 1.07 1.51 1.72 0.90 1.47 1.70

Median Sq E 1.26 2.33 3.02 0.86 2.18 2.92

Coverage 0.37 0.00 0.00 0.14 0.00 0.00

C-TMLE-GLM for gn

Mean Bias 0.02 0.03 0.03 0.00 0.00 0.00

Median Bias 0.03 0.03 0.03 0.02 0.03 0.03

Median Sq E 0.05 0.05 0.05 0.04 0.04 0.03

Coverage 0.94 0.94 0.94 0.82 0.82 0.83

The simulation study demonstrated that, in the presence of practical positivity

violations, when the outcome model is misspecified, using machine learning to
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predict the treatment mechanism can hurt performance compared to a simple

parametric regression. It is known that large weights (caused by near practical

positivity violations) can destabilize estimation. TMLE may incorporate the

weights when the outcome model is misspecified. So the question remains, how

can an analyst detect such instability? In the next section, we suggest an adapted

version of the Peterson et al.9 diagnostic tool in order to identify such problems.

Bootstrap algorithm

In order to introduce the diagnostic tool to inform whether TMLE (or doubly

robust estimators) might be destabilized by the use of ML to fit the propensity

score, a simple bootstrap simulation of the outcome was employed. Bootstrap

resampling,25 relies on resampling subjects many times with replacement. The

main idea of our simulation follows those of Peterson et al.9, Lendle et al.26

and Franklin et al.27 But instead of simulating both treatment and outcome

conditional on the resampled baseline variables, we keep the observed treatment

of each resampled subject and only generate the outcome in order to preserve

the associations and structure among covariates and between the covariates and

treatment. As the question in our setting is to inform at which point the propensity

score estimation can introduce instability, it is important to keep the observed

treatment and its natural connection to the observed baseline variables. Since the

outcome in our example is continuous, we present this algorithm for use with

a continuous Y . However, similar implementations can be easily produced for a

binary outcome. Let n denote the sample size of the observed data. The simulation

procedure is the following:
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Algorithm 3 Adapted Bootstrap Diagnostic Tool (BDT)

1: Consider the two observed subgroups of subjects with A = 1 and A = 0,

respectively. For a = 1 and a = 0,

• For subjects with A = a, fit a linear regression of Y on W in order

to obtain the intercept β̂0a
, coefficients β̂Wa

, and σ̂2
a, the estimated

conditional variance of Y .

2: Sample n subjects with replacement, and delete the observed outcome values.

3: Using β̂0a
, β̂Wa

and σ̂2
a obtained in step 1, generate the two potential

outcomes from a N (µa, σ
2
a) distribution with µa = β̂0a

+ β̂Wa
W , a ∈ {0, 1},

corresponding to Y 1 and Y 0, for each individual.

4: Taking the resampled data with the simulated outcomes, estimate the

parameter of interest with the estimator using a “correct” specification of

the outcome model (correct linear regression) and 1) SL and 2) GLM for gn.

5: Repeat steps 2-4 M times and compute the average bias, variance and Monte-

Carlo mean squared error for both approaches.

Since the true data generating distribution is known in the algorithm, the

“true” effect in the bootstrap data is known and can be used to assess whether

there is a bias increase due to the method used for the estimation of the

propensity score. The “true” effect is derived from a contrast of the two

potential outcomes, which are computed by simulating exposed and unexposed

counterfactual outcomes for all subjects in the population. The average bias is

calculated by comparing the mean of the estimator across all bootstrap samples

with the true value of the target parameter. The Monte Carlo mean squared

error (the squared difference between the true effect and the estimates over all

simulations) is used as a measure of estimation variability.

BDT for a single data set

In this section, we apply TMLE, C-TMLE and IPTW on a single dataset obtained

using the same data generation and estimation procedure presented in section 3

along with sample size n = 1000. We therefore know that the true ATE is ψ0 = 1.

TMLE was implemented using both parametric models (GLM) and SL for the

estimation of the outcome expectation and propensity score. All of the covariates

were included as main terms in the propensity score model as well as in the
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Table 2. Results from one data set (estimates of the average treatment effect and
standard error).

Methods ATE STD
TMLE-GLM for gn 1.01 0.35
TMLE-SL for gn 1.15 0.17
IPTW-GLM for gn 1.16 0.51
IPTW-SL for gn 2.22 0.39
C-TMLE-GLM for gn 0.98 0.18

outcome model. We used the same SL library as in Section 3.2. Table 2 shows the

average treatment effect estimates and standard errors based on a single dataset.

TMLE and C-TMLE gave unbiased estimates when a parametric regression was

used for the estimation of the propensity score. However, TMLE with SL for the

propensity score exhibited a larger bias but reduced the estimated standard error.

IPTW produced a larger bias and high standard error for both implementations.

In our example, we notice that the use of SL increased the point estimate. If we

didn’t know the true data generating mechanism, we would not know whether the

change in estimate produced by using a more flexible method for the propensity

score is an improvement in estimation or an instability. We can then use the

adapted Bootstrap Diagnostic Tool (BDT) to clarify the change in estimate

obtained in Table 2. We also present the results of the bootstrap tool proposed

by Peterson et al., where the treatments are simulated using a correctly specified

propensity score model (P1) and with an incorrectly specified model that only

includes the main covariate terms and no interactions (P2).

Based on M = 500 resamples (100 for C-TMLE), the absolute average bias, the

mean squared error (MSE) and the percent coverage (COV) for the estimates of

the average treatment effect are tabulated below. Different bounds for the values of

gn were used: 0% (no bounding), 2.5% and 5%. The “true” sample effect obtained

by the calculation in the bootstrap data was 0.91. Results are presented in Table

3

When we fit the true outcome expectation (regression of Y on main terms), TMLE

remained unbiased overall when we used a parametric regression for the estimation

of the propensity score. The average estimated bias was around 0.08 and remained

stable when increasing the truncation level. However, using SL for the estimation

of the propensity score in the update step of TMLE increased the average bias and

decreased the percent coverage. Even though IPTW with GLM for gn produced a

better coverage as compared to TMLE with SL, overall, the TMLE outperformed
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IPTW. The mean bias and squared error of C-TMLE decreased when increasing

the truncation level. The IPTW bias and squared error improved when using SL

but the coverage decreased substantially.

Table 3. Results from the BDT and alternative method used on a single simulated data
set investigating the absolute average bias, mean squared error and coverage for IPTW and
TMLE for different bounds of gn.

BDT P1 P2

Bounds on gn Bounds on gn Bounds on gn

Methods 0% 2.5% 5% 0% 2.5% 5% 0% 2.5% 5%

TMLE-GLM for gn

Mean Bias 0.08 0.09 0.11 0.12 0.14 0.16 0.12 0.14 0.14

Mean Sq E 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.08

Coverage 0.95 0.94 0.92 0.96 0.95 0.92 0.88 0.88 0.88

TMLE-SL for gn

Mean Bias 0.42 0.23 0.19 0.38 0.24 0.22 0.13 0.14 0.14

Mean Sq E 0.52 0.21 0.14 0.52 0.22 0.15 0.09 0.09 0.08

Coverage 0.39 0.55 0.62 0.48 0.62 0.69 0.87 0.87 0.87

IPTW-GLM for gn

Mean Bias 1.43 0.18 0.84 1.49 0.11 0.76 0.11 0.59 0.92

Mean Sq E 2.39 0.13 0.82 2.56 0.12 0.67 0.19 0.43 0.93

Coverage 0.62 0.99 0.66 0.58 0.99 0.67 0.99 0.84 0.37

IPTW-SL for gn

Mean Bias 1.15 1.42 1.64 0.89 1.40 1.60 0.03 0.63 0.95

Mean Sq E 1.43 2.12 2.81 1.04 2.05 2.66 0.17 0.47 0.98

Coverage 0.30 0.03 0.06 0.55 0.01 0.00 0.99 0.80 0.34

C-TMLE-GLM for gn

Mean Bias 0.14 0.11 0.09 0.05 0.15 0.14 0.13 0.13 0.13

Mean Sq E 0.12 0.09 0.08 0.08 0.07 0.06 0.07 0.07 0.07

Coverage 0.82 0.85 0.87 0.87 0.86 0.86 0.90 0.91 0.91

Compared with our BDT, the algorithm proposed by Peterson et al. was also

able to detect the bias and undercoverage resulting from the usage of SL when

the propensity score model used to simulate the treatment was correctly specified.

However, when an incorrect propensity score model was used, this method failed

to diagnose the same magnitude of bias and low coverage as suggested by the

BDT. This is likely due to the generated values of A that do not represent

the true relationship between (W,A). In contrast, the BTD does not rely on a
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specification of the propensity score model and uses the existing values of (W,A)

in the procedure, thereby making it a more robust approach.

Table 3 demonstrates how the BDT can be used to investigate the influence of

ML for the estimation of the propensity score in the estimation of the treatment

effect. Because we used a correct linear regression for Y in the TMLEs, we would

expect to have an unbiased estimate of the treatment effect regardless of how the

propensity score model was fit. Based of the large amount of bias, MSE and the

poor coverage obtained by using ML as compared to the parametric methods, the

BDT accurately revealed the fact that the change in the TMLE point estimate

obtained in Table 2 was an instability and not an improvement which is due to

the estimation of the propensity score.

Data analysis: Asthma medication during pregnancy

In this section, we use the diagnostic test in an analysis of the safety of asthma

medications during pregnancy.

Data description

We used a cohort28 of pregnant women with asthma to study the effect of taking

inhaled corticosteroids (ICS) during pregnancy on birth weight. The population of

interest is pregnant women with asthma and a singleton delivery in Québe, Canada

between 1998-2008, aged ≤ 45 years. This cohort consists of a total of 7, 341

pregnancies. Our extraction includes all pregnancies (with at least one diagnosis

and prescription of asthma medication in the year before or during pregnancy)

indicated as having mild asthma, as they are clinically eligible to select between

taking ICS or not and represent more than 80% of the women in the cohort.28 For

simplicity, we considered only the first pregnancy for each woman in this period.

Asthma severity was defined according to an index that is based on the Canadian

Asthma Consensus Guidelines.29 A total of 4, 791 pregnancies in our database

fell into this category. All women who filled at least one prescription of ICS

during pregnancy were considered exposed, and those who did not were considered

unexposed. The outcome of interest is birth weight (continuous in grams). We

identified a variety of maternal baseline variables. These potential confounders

measured in the year before pregnancy, include demographic characteristics (e.g.,

provision of income security and place of residence), chronic diseases (e.g.,
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hypertension and diabetes) and variables related to asthma (e.g., at least one

hospitalization for asthma, at least one emergency department visit for asthma,

and oral corticosteroids). We also included the cumulative daily dose of ICS in the

year before pregnancy as a potential confounder. A full list of measured potential

confounders can be found in Table 6 in the Appendix.28,29 The target parameter

is the average treatment effect. For our pregnancy cohort, the average treatment

effect is the expected difference in the counterfactual birth weight if all women

were exposed to ICS during pregnancy versus the counterfactual birth weight if

all women were not.

Results of the Analysis

Baseline characteristics of the pregnancy cohort are presented in Table 6. TMLE

was implemented using both parametric models (GLM) and SL, for the estimation

of the outcome expectation and propensity score. All of the covariates were

included as main terms in the propensity score model as well as in the outcome

model. The candidate learners in the SL library were: regression (logistic or linear)

with main terms, stepwise regression with main terms, and random forests.31 C-

TMLE and TMLE were implemented with both a linear regression and SL for the

outcome model. Logistic regression was used to estimate the propensity scores in

C-TMLE and in TMLE (with GML for gn). Results are shown in the Table 4.

Table 4. Estimates of the effect of exposure to ICS on birth weight (n = 4791).

Methods ATE STD 95% CI P-value

IPTW–GLM for gn(trunc 5%) 13.54 86.96 [−156.90, 183.98] 0.42
IPTW-SL for gn(trunc 5%) 18.39 18.18 [−17.24, 54.03] 0.27
TMLE-GLM for gn & Q̄0

n 38.12 30.85 [−22.35, 98.58] 0.22
TMLE-GLM for gn, SL for Q̄0

n 38.19 28.78 [−17.85, 93.69] 0.18
TMLE-SL for gn & Q̄0

n 65.13 11.55 [38.58, 84.62] < 0.01
TMLE-SL for gn GLM for Q̄0

n 34.58 12.12 [10.82, 58.34] < 0.01
C-TMLE-GLM for Q̄0

n 12.09 17.67 [−21.83, 44.06] 0.49
C-TMLE-SL for Q̄0

n 12.75 16.22 [−19.02, 44.54] 0.43

IPTW produced a point estimate of 13.54 with a relatively large standard

error. However, IPTW with SL for the propensity score produced a point estimate

around 18 but improved the estimated standard error. TMLE with a parametric

regression for the propensity score produced estimates near 38 with a large

reduction in the standard error as compared to IPTW with GLM regardless of

how the outcome model was fit. When TMLE was fit with SL for the propensity
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score and the outcome expectation model, the estimate increased to 65.13, and

hypothesis testing concluded that a difference exists. TMLE with SL for gn and

GLM for Q̄0
n produced a similar significant result with point estimate around

34. The performance of TMLE with SL for gn produced the smallest estimated

standard deviation among all the estimators. C-TMLE limited the variables

included in gn (26 variables selected from the 37). The point estimates of C-

TMLE using either a parametric form or SL for the initial outcome expectation

model were near 12 with an important improvement in the standard error as

compared to TMLE with parametric models. Only the TMLE with SL for gn

concluded that the mean difference in birth weight if all versus no women filled at

least one prescription of ICS during pregnancy is different from the null. For an

analyst, it is difficult to choose between those models and determine whether the

change in estimate produced by the TMLE with SL was due to an instability or

due to a true improvement in estimation. We therefore use the BDT algorithm in

the next section. While we use this application as a numerical example, we also

point out the limitations in a causal interpretation of the results. In particular,

unmeasured confounding may be violated by the absence of a measure of smoking.

In addition, we likely have a violation of the well-defined intervention assumption.

In our data, exposed women didn’t necessarily have the same cumulative dose of

ICS, because the outcome may depend on the dose, which likely violates the

consistency assumption. Difficulty in assessing exact medication exposure is a

common limitation in studies involving electronic health data.30

Bootstrap diagnostic test

Results for the BDT are presented in Table 5. The “true”effect obtained in

this bootstrap data is equal to 19.10. Based on M = 500 resamples (with a

random outcome generation), the absolute average bias, the Monte Carlo standard

deviation (STD) and root mean squared error (RMSE) and percent coverage

(COV) for the effect estimates are tabulated below. We also ran C-TMLE with a

correctly specified outcome model in order to compare its performance.

In Table 5 when adjusting for all covariates, TMLE remained unbiased when we

fit the true outcome model and used a logistic regression for gn. The contribution

of the propensity score did not impact the bias. However, the bias and the root

mean squared error increased when SL was used for gn. IPTW produced a larger

bias and acceptable coverage in the bootstrap simulations. The bias suggests that
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Table 5. BDT results investigating the absolute average bias, root mean squared error and
the percent coverage for TMLE, C-TMLE and IPTW.

Methods Bias STD RMSE COV

TMLE-GLM for gn & Q̄n 0.05 34.33 34.31 0.88
TMLE-SL for gn, GLM for Q̄n 13.68 69.23 70.51 0.30
IPTW-GLM for gn 15.41 17.09 23.01 0.86
IPTW-SL for gn 13.29 18.01 22.37 0.87
C-TMLE-GLM for Q̄n 5.23 32.14 32.52 0.89

the parametric model for gn is misspecified. C-TMLE by its variable selection

procedure improved the estimate in root mean squared error by introducing a little

bias. TMLE with machine learning for the propensity score produced confidence

intervals that failed to cover the “true” effect compared to the TMLE and C-

TMLE that used parametric specifications for gn. The BDT was able to clarify

that SL for the estimation of the propensity score likely did not improve the

TMLE point estimate based on the larger bias and poor coverage obtained in the

bootstrap data with a correctly specified outcome model. An analyst could then

conclude that the adjusted mean difference in birth weight is likely not different

from the null.

Discussion

In this paper, we have exhibited a situation where ML for the treatment

mechanism can increase bias of the treatment effect as compared to parametric

regression. We then provided an adapted version of the diagnostic tool of Peterson

et al.,9 to diagnose the instability introduced when machine learning is employed

for the estimation of the propensity score. We focused on the application of TMLE

to estimate the average treatment effect. We used parametric and data-adaptive

(SL) methods for the initial outcome expectation and propensity score models.

Through simulation studies and real data analysis, we illustrated that the BDT

can help diagnose whether TMLE was likely to be destabilized by the propensity

score. The main goal of the BDT is to inform at which point the estimation of

the propensity score with ML can hurt performance of the treatment effect. One

may also use BDT with IPTW, which is only based on the treatment mechanism,

to provide evidence for whether IPTW is producing unbiased estimation.

While the causal interpretation of our example is somewhat limited, the results

suggest that the usage of ICS during pregnancy for women with mild asthma
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does not affect birth weight. The results of the real study are consistent with the

results found in another study investigating the safety of ICS during pregnancy.28

However, the blind usage of TMLE with ML would have suggested a reduction

in birth weight for the women who didn’t receive ICS. The BDT enabled us to

conclude that this divergent result was likely due to the instability arising from the

weights rather than the improved estimation of the exposure model using machine

learning. This paper points to the importance of the new developments32–34

that produce valid inference and
√
n-convergence speeds even when ML methods

are used in TMLE. In conclusion, the diagnostic tools can provide important

insight when using data-adaptive methods to fit the propensity score and all

interpretation of the results should be made with caution.
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Table 6. Baseline Characteristics of mothers in the cohort extraction N = 4, 791
(Variables with asterisk denotes the ones selected in C-TMLE).

No ICS ICS
Characteristics N (%) N (%)
Cohort size 2317 (100) 2474 (100)
Age (years)(mean (sd))*

< 18 45 (1.9) 62 (2.5)
18 − 34 1996 (86.1) 2072 (83.8)
> 34 276 (11.9) 340 (13.7)

Provision of income security 1157(49.9) 1464(59.2)
Urban residence 413 (17.8) 477 (19.3)
Maternal chronic conditions

Hypertension* 62 (2.7) 83 (3.4)
Diabetes* 76 (3.3) 84 (3.4)
COPD 28(1.2) 59(2.4)

Cyanotic heart disease* 8 (0.3) 8 (0.3)
Uterine disorder* 272 (11.7) 338 (13.7)
Epilepsy* 20 (0.9) 23 (0.9)
Obesity 89 (3.8) 131 (5.3)
Collagen vascular disease* 6 (0.3) 6 (0.2)
Cushing Syndrome* 4 (0.2) 4 (0.2)
Cumulative dose of ICS in days (mean (sd)) 15.01 (31.8) 101.70 (126.2)
One year cumulative dose of ICS before pregnancy (mean (sd))* 51.37 (72.6) 54.19 (85.8)
Oral corticosteroids one year before pregnancy* 238 (10.3) 283 (11.4)
SABA use one year before pregnancy* 17 (0.7) 8 (0.3)
SABA use during pregnancy (doses per week)(mean (sd))*

0 769 (33.2) 1118 (45.2)
> 0 − 3 1214 (52.4) 1001 (40.5)
> 3 334 (14.4) 355 (14.3)

Leukoteriene-receptor antagonists* 33 (1.4) 30 (1.2)
Intranasal corticosteroids* 243 (10.5) 322 (13.0)
Folic acid one year before pregnancy* 19 (0.8) 43 (1.7)
Medicaition for epilepsie one year before pregnancy* 32 (1.4) 49 (2.0)
Medication for warfarine one year before pregnancy* 7 (0.3) 10 (0.4)
Use of RX beta-bloqueur one year before pregnancy* 21 (0.9) 26 (1.1)
Exacerbation for asthma one year before pregnancy (mean (sd))* 383 (16.5) 415 (16.8)
Emergency visit for asthma one year before pregnancy* 264 (11.4) 268 (10.8)
Ambulatory visit for asthma one year before pregnancy 1096 (47.3) 821 (33.2)
Hospitalization for asthma one year before pregnancy* 5 (0.2) 8 (0.3)
Chromosomal anomalies* 6 (0.3) 5 (0.2)
HIV* 4 (0.2) 3 (0.1)
Cytomegalovirus* 3 (0.1) 12 (0.5)
Antiphospholipid syndrome* 12 (0.5) 13 (0.5)

Prepared using


	Introduction
	Estimators
	Targeted estimation
	Inverse Probability of Treatment Weighting (IPTW)
	Targeted Minimum Loss-Based Estimation
	Super Learner
	Collaborative Targeted Minimum Loss-Based Estimation

	Simulation Scenario
	Simulated data
	Estimation

	Bootstrap algorithm
	BDT for a single data set

	Data analysis: Asthma medication during pregnancy
	Data description 
	 Results of the Analysis
	Bootstrap diagnostic test

	Discussion

