Supplementary Materials for "Causal inference with multiple concurrent medications: a comparison of methods and an application in multidrug-resistant tuberculosis"

Arman Alam Siddique, Mireille E. Schnitzer et al.

1. Brief Overview of the Data Generation Mechanisms along with their \mathbf{R} code

This section gives a brief introduction to the Data Generation Scenarios as mentioned in Section 3.1.

Data Generation Scenario 1: We generate 12 independent baseline covariates represented by X_{1}, \ldots, X_{12} which follow a standard uniform distribution. We then generate 4 medications represented by A^{1}, \ldots, A^{4} using the baseline covariates and sample them from a multinomial bernoulli distribution. We also have a positive pairwise correlation of 0.15 between A^{1} and A^{2} and a 0.25 correlation between A^{3} and A^{4}. None of the other treatments were correlated otherwise. This sampling was performed using the rmvbin function in the package bindata. The outcome variable Y was generated using a logistic model using the baseline covariates and the medications, which includes first order interactions between $\left(X_{i}, X_{j}\right),\left(X_{i}, A^{j}\right)$ and $\left(A^{i}, A^{j}\right)$. The R code for the generation of this data is as follows:

```
library(bindata)
n <- 500
set.seed(2010)
#Covariate Generation
X_1 <- runif(n,0,1)
X_2 <- runif(n,0,1)
X_3 <- runif(n,0,1)
X_4 <- runif(n,0,1)
X_5 <- runif(n,0,1)
X_6 <- runif(n,0,1)
X_7 <- runif (n,0,1)
X_8 <- runif(n,0,1)
X_9 <- runif(n,0,1)
X_10 <- runif(n,0,1)
X_11 <- runif(n,0,1)
X_12 <- runif(n,0,1)
#Medication Generation
pA_1 <- plogis(0.7*X_1 - 0.87*X_3 + X_5 + X_7 + 0.8*X_2 - 1.6*X_4)
pA_2 <- plogis(0.9*X_1 - 0.66*X_3 + 0.8*X_5 + X_7 - 0.8*X_6)
pA_3 <- plogis(1.4*X_1 - 0.45*X_3 + 0.4*X_5 - X_7 - X_8)
pA_4 <- plogis(1.8*X_1 - 0.95*X_3 - 0.1*X_5 - X_7 - X_12)
m <- diag(4)
m[1,2] <- 0.15
m[2,1] <- 0.15
m[4,3] <- 0.25
m[3,4] <- 0.25
```

```
#Considering positive binary correlations between A_1, A_2 as 0.15 and A_3, A_4 as 0.25
A <- matrix(nrow=n,ncol=4)
for (i in 1:n){
    prob <- c(pA_1[i],pA_2[i],pA_3[i],pA_4[i])
    A[i,] <- rmvbin(1, margprob = prob, bincorr = m)
}
#Separating the array obtained above into separate medications
Gap <- as.data.frame(A)
A_1 <- Gap[,1]
A_2 <- Gap[,2]
A_3 <- Gap[,3]
A_4 <- Gap[,4]
#Generating the outcome model
pY <- plogis(-1.8 + 1.2*X_1*A_3 + 2.15*X_3*A_1 - 0.5*X_5*X_9 + 3.89*X_7*X_1
    + X_10*A_2 - 1.5*X_11*A_4 + 4.2*(1-A_1)*A_3 + 15*(1-A_2)*A_4)
Y <- rbinom(n, 1, prob=pY)
```

Data Generation Scenario II: We generate 14 independent baseline covariates represented by X_{1}, \ldots, X_{14} which follow a standard uniform distribution or a standard normal distribution. We then generate 8 medications represented by A^{1}, \ldots, A^{8} using the baseline covariates and sample them from a multinomial bernoulli distribution. We also have a positive pairwise correlation of 0.15 between A^{1} and A^{2}, a 0.25 correlation between A^{3} and A^{4}, a 0.15 correlation between A^{5} and A^{6} and a 0.25 correlation between A^{7} and A^{8}. None of the other treatments were correlated otherwise. This sampling was again performed using the rmvbin function in the package bindata. The outcome variable Y was generated using a logistic model using the baseline covariates and the medications, which also includes first order interactions and second order interactions. The R code for the generation of this data is as follows:

```
set.seed(2100)
#Covariate Generation
n <- 500
X_1 <- runif(n,0,1)
X_2 <- runif(n,0,1)
X_3 <- runif(n,0,1)
X_4 <- runif(n,0,1)
X_5 <- runif(n,0,1)
X_6 <- runif(n,0,1)
X_7 <- runif(n,0,1)
X_8 <- runif(n,0,1)
X_9 <- rnorm(n,0,1)
X_10 <- runif(n,0,1)
X_11 <- runif(n,0,1)
X_12 <- rnorm(n,0,1)
X_13 <- runif(n,0,1)
X_14 <- runif(n,0,1)
#Medication Generation
pA_1 <- plogis(0.5*X_1 + 2.3*X_2 + 0.74*X_3 - 1.8*X_4)
```

```
pA_2 <- plogis(0.4*X_1 + 2.5*X_2 + 0.87*X_3 - 1.5*X_5)
pA_3 <- plogis(0.8*X_1 - 0.4*X_2 + 0.34*X_3 + 0.8*X_6)
pA_4 <- plogis(0.7*X_1 - 0.65*X_2 + 0.55*X_3 + 1.1*X_7)
pA_5 <- plogis(1.9*X_1 - 0.33*X_2 + 1.67*X_3 - 0.6*X_8)
pA_6 <- plogis(1.5*X_1 - 0.53*X_2 + 1.88*X_3 - 0.3*X_9)
pA_7 <- plogis(-0.85*X_1 + 1.35*X_2 - 0.99*X_3 + 1.4*X_7)
pA_8 <- plogis(-0.65*X_1 + 1.03*X_2 - 0.875*X_3 + 1.1*X_6)
m <- diag(4)
m[1,2] <- 0.15
m[2,1] <- 0.15
m[4,3] <- 0.25
m[3,4] <- 0.25
#Considering positive binary correlations between A_1, A_2 as 0.15 and A_3, A_4 as 0.25
A <- matrix(nrow=n,ncol=4)
for (i in 1:n){
    prob <- c(pA_1[i],pA_2[i],pA_3[i],pA_4[i])
    A[i,] <- rmvbin(1, margprob = prob, bincorr = m)
}
#Considering positive binary correlations between A_5, A_6 as 0.15 and A_7, A_8 as 0.25
B <- matrix(nrow=n,ncol=4)
for (i in 1:n){
    prob <- c(pA_5[i],pA_6[i],pA_7[i],pA_8[i])
    B[i,] <- rmvbin(1, margprob = prob, bincorr = m)
}
#Separating the array obtained above into separate medications
Gap <- as.data.frame(A)
A_1 <- Gap[,1]
A_2 <- Gap[,2]
A_3 <- Gap[,3]
A_4 <- Gap[,4]
Gap <- as.data.frame(B)
A_5 <- Gap[,1]
A_6 <- Gap[,2]
A_7 <- Gap[,3]
A_8 <- Gap[,4]
#Generating the outcome model
pY <- plogis(-1.3 + 0.8*X_1 + 0.89*X_2*A_2 + 1.5*X_11*A_8 - 1.8*X_13
    + 0.9*X_14*A_1*A_8 + 0.4*A_1*A_2*A_5 + 7. 2*(1-A_2)*X_9*X_12
    - 15*(1-A_7)*A_6 - 12*X_9*(1-A_7) - X_10*(1-A_8)*(1-A_7)
```



```
Y <- rbinom(n, 1, prob=pY)
```


2. Comparison of methods with a large number of possible regimens

We generated 1,000 datasets of sample size $n=500$, using Data Generation Scenario 2. In our simulation data, out of the 256 possible regimens, roughly 150 different regimens occurred in each dataset. Some of these regimens were only followed by several subjects, making the corresponding GPSs difficult to estimate. In order to speed up the computation of the multi-class classification, one might consider removing the observations with the most sparsely observed regimens in order to fit the model. It is expected that this should not affect the prediction of the probabilities of the most prevalent regimens as they represent a very small part of the overall regimen probability space.

To investigate this, we considered three different approaches. The first approach took the entire dataset and classified for all of the regimens observed in the model. We then created a new dataset containing 80% of the original regimens in the data, by removing the subjects with the least occurring 20% of regimens. This new subsetted data became the basis for obtaining the model for SVMs and Softmax Regression. The fitted model was then used to compute the GPS for regimen 1 for all n individuals in the dataset. The final simulation was carried out by performing the modeling after removal of the 30% of the least occurring regimens in the original dataset and carrying out the same method as explained above.

Table 1 displays the simulation results for this case (using the same statistical methods described in Section 3.3 of the manuscript). Without subsetting, only TMLE was nearly unbiased when implemented with all GPS methods though PSA(I) had low bias when implemented with GBMs. The results obtained after removing the rarest 20% and 30% were consistent with the full sample results for all methods. The computational times taken by SVMs on a local laptop computer when removing $0 \%, 20 \%$ and 30% of the original regimens were 5,3 , and 2 seconds, respectively. Similarly, the runtimes taken by Softmax regression for the same three datasets were 412,234 , and 202 seconds, respectively. The GBMs implemented in the twang package estimate the probability of every regimen separately versus all others. Therefore, removing the observations with rare regimens would not help the estimation speed or accuracy. The runtime results suggest that this subsetting approach can greatly reduce computational time for SVMs and Softmax regression without affecting the statistical results.

Table 1: Monte Carlo means and standard errors for different causal estimators that utilize the generalized propensity score. Data with a sample size of $n=500$ were drawn from Data Generation Scenario 2 and 1,000 replicates were used. The true value for regimen 1 is $\mathbb{E}\left(Y^{1}\right)=0.55$. SVM: Support Vector Machine; GBM: Generalized Boosted Model; IPTW: Inverse Probability of Treatment Weighting; PSA: Propensity Score Adjustment; TMLE: Targeted Maximum Likelihood Estimation. Outcome regression models were fit by (I) regimen and (II) treatments as main terms covariates. Q_{n} corr indicates whether the outcome model includes the true treatment-treatment interactions.

Class Truncation \%		0	20	30
Median n observations removed	Q_{n} corr	0	30	45
		Reg 1	Reg 1	Reg 1
SVM				
IPTW	N/A	0.58(0.08)	0.58(0.08)	0.58(0.08)
PSA(1)	Y	0.57(0.08)	0.57(0.08)	0.57(0.08)
PSA(II)	N	0.45(0.05)	0.45(0.05)	0.45(0.05)
TMLE(I)	Y	0.55(0.11)	0.54(0.11)	0.55(0.11)
TMLE(II)	N	0.56(0.08)	0.55(0.09)	0.55(0.09)
Softmax Regression				
IPTW	N/A	0.55(0.13)	0.55(0.13)	0.56(0.13)
PSA(1)	Y	0.57(0.08)	0.57(0.08)	0.57(0.08)
PSA(II)	N	0.44(0.05)	0.44(0.05)	0.45(0.05)
TMLE(I)	Y	0.55(0.11)	0.55(0.11)	0.55(0.11)
TMLE(II)	N	0.55(0.12)	0.55(0.12)	0.55(0.12)
GBM				
IPTW	N/A	0.57(0.09)	-	-
PSA(I)	Y	0.56(0.12)	-	-
PSA(II)	N	0.42(0.05)	-	-
TMLE(I)	Y	0.54(0.11)	-	-
TMLE(II)	N	0.55(0.09)	-	-

3. Summary statistics for the support of the regimens in the simulation studies

This section presents the tables for summary statistics and the plots for the supports for regimens 1 and 2 for simulation study I and regimen 1 for simulation study II, where simulation study I refers to the simulation study presented in Section 3 of the paper and simulation study II refers to the simulation study presented in Section 2 of the supplementary material. We define the "support" of a regimen to be the number of patients exposed to that regimen in the dataset.

Table 2: Summary Statistics for support for regimen 1 and regimen 2 for simulation study 1.

	$n=500$		$n=1000$	
	Reg 1	Reg 2	Reg 1	Reg 2
Minimum	68.00	29.00	147.00	74.00
$1^{\text {st }}$ Quantile	87.00	46.00	177.00	94.00
Median	92.00	51.00	185.00	101.00
Mean	92.48	51.04	184.90	100.90
$3^{r d}$ Quantile	98.00	56.00	193.00	107.00
Maximum	122.00	75.00	226.00	131.00

Table 3: Summary Statistics for support for regimen 1 for simulation study II with $n=500$.

	$\operatorname{Reg} 1$
Minimum	16.00
$1^{\text {st }}$ Quantile	33.00
Median	37.00
Mean	36.75
$3^{\text {rd }}$ Quantile	41.00
Maximum	55.00

Figure 1: Histogram for the support of the top 2 regimens for Simulation Study I for $n=500$.

Figure 2: Histogram for the support of the top 2 regimens for Simulation Study I for $n=1000$.

Figure 3: Histogram for the support of Regimen 1 for Simulation Study II for $n=500$.

4. Summary Statistics for the weights obtained by the different estimating methods

This section contains the summary statistics of the weights obtained by SVM, Softmax Regression and GBM over 50 datasets for the regimens in simulation study I.

Table 4: Summary Statistics for the weights obtained by the different estimating methods for regimen 1 for simulation study I over 50 datasets with $n=1000$.

	SVM	Softmax Regression	GBM
Minimum	2.66	1.39	1.12
$1^{\text {st }}$ Quantile	4.44	4.04	4.35
Median	5.37	6.19	6.23
Mean	6.11	8.38	7.20
$3^{\text {rd }}$ Quantile	6.97	10.08	8.88
Maximum	39.30	229.67	106.49

Table 5: Summary Statistics for the weights obtained by the different estimating methods for regimen 2 for simulation study I over 50 datasets with $n=1000$.

	SVM	Softmax Regression	GBM
Minimum	3.09	1.44	1.05
$1^{\text {st }}$ Quantile	7.80	6.87	8.25
Median	11.08	12.99	13.73
Mean	13.11	23.98	17.06
$3^{\text {rd }}$ Quantile	16.27	26.93	21.33
Maximum	96.00	1163.50	544.76

5. Summary for the Generalized Propensity Scores for the MDR-TB Data

This section contains the summary of the truncated and the untruncated GPS obtained for the MDR-TB data using the different machine learning methods explained in Section 2.2. The GPS of the regimens are given by pi1 to pi10, where pi1 denotes GPS for Regimen 1 in our study and pi10 denotes the GPS for Regimen 10 in the study as mentioned in Section 4. The summary contains the following values:

- Min.: Minimum value of the GPS for the regimen in the sample study
- 1st Qu.: Value of the first quantile of the GPS for the regimen in the sample study
- Median: Median value of the GPS for the regimen in the sample study
- Mean: Mean value of the GPS for the regimen in the sample study
- 3rd Qu.: Value of the third quantile of the GPS for the regimen in the sample study
- Max.: Maximum value of the GPS for the regimen in the sample study
summary(Algorithm_Untruncated) denotes the summary of the untruncated GPS obtained using Algorithm whereas summary (Algorithm__Truncated) denotes the summary of the truncated GPS (20% truncation) obtained using Algorithm as mentioned in Section 4.
summary (SVM_Untruncated)

\#\#	pi1	pi2	pi3
\#\#	Min. 00.0000844	Min. 0.0001795	Min. 0.0000585
\#\#	1st Qu.:0.0003483	1st Qu.:0.0008688	1st Qu.:0.0007783
\#\#	Median :0.0007693	Median :0.0016455	Median :0.0031000
\#\#	Mean :0.1568600	Mean :0.0376882	Mean :0.0280186
\#\#	3rd Qu.:0.0084027	3rd Qu.:0.0056493	3rd Qu.:0.0157749
\#\#	Max. :0.6704224	Max. :0.1603302	Max. :0.1602677
\#\#	pi4	pi5	pi6
\#\#	Min. 0.0000540	Min. 0.0000441	Min. 0.0004766
\#\#	1st Qu.:0.0005957	1st Qu.:0.0006334	1st Qu.:0.0020562
\#\#	Median :0.0029060	Median :0.0014290	Median :0.0053386
\#\#	Mean :0.0283911	Mean :0.0207455	Mean :0.0294543
\#\#	3rd Qu.:0.0282561	3rd Qu.:0.0025562	3rd Qu.:0.0256537
\#\#	Max. :0.3174220	Max. 00.1382175	Max. 00.2802544
\#\#	pi7	pi8	pi9
\#\#	Min. 0.0001285	Min. 0.0002740	Min. 0.0000968
\#\#	1st Qu.:0.0005905	1st Qu.:0.0005881	1st Qu.:0.0009952
\#\#	Median :0.0012020	Median :0.0011180	Median :0.0026187
\#\#	Mean :0.0180373	Mean :0.0159779	Mean :0.0156337
\#\#	3rd Qu.:0.0049643	3rd Qu.:0.0019540	3rd Qu.:0.0054387
\#\#	Max. 00.0815344	Max. 0.1821654	Max. 0.1104928
\#\#	pi10		
\#\#	Min. :0.0002061		
\#\#	1st Qu.:0.0006178		
\#\#	Median :0.0008883		
\#\#	Mean :0.0133153		
\#\#	3rd Qu.:0.0323348		
\#\#	Max. :0.0620212		
summary (Softmax_Untruncated)			

\#\#	pi1		pi2		pi3	
\#\#	Min. $: 0.001606$	Min. $: 0.001009$	Min. $: 0.0009516$			
\#\#	1st Qu.:0.017372	1st Qu.:0.007144	1st Qu.:0.0085008			

\#\#	Median :0.067361	Median :0.021264	Median :0.0225757
\#\#	Mean :0.143315	Mean :0.039558	Mean :0.0366144
\#\#	3rd Qu.:0.192485	3rd Qu.:0.055097	3rd Qu.:0.0490858
\#\#	Max. :0.673014	Max. 00.177946	Max. :0.1515242
\#\#	pi4	pi5	pi6
\#\#	Min. :0.001242	Min. :0.0006062	Min. 00.003809
\#\#	1st Qu.:0.005267	1st Qu.:0.0053993	1st Qu.:0.011288
\#\#	Median :0.013764	Median :0.0150462	Median :0.018037
\#\#	Mean :0.032116	Mean :0.0272295	Mean :0.025229
\#\#	3rd Qu.:0.029981	3rd Qu.:0.0373691	3rd Qu.:0.031908
\#\#	Max. 00.298142	Max. $: 0.1224405$	Max. :0.146441
\#\#	pi7	pi8	pi9
\#\#	Min. :0.0008831	Min. :0.0006065	Min. :0.0006481
\#\#	1st Qu.:0.0041477	1st Qu.:0.0061504	1st Qu.:0.0046522
\#\#	Median :0.0123683	Median :0.0129524	Median :0.0124783
\#\#	Mean :0.0193383	Mean :0.0212144	Mean :0.0219139
\#\#	3rd Qu.:0.0276799	3rd Qu.:0.0239001	3rd Qu.:0.0314892
\#\#	Max. :0.0876790	Max. :0.1267092	Max. :0.0955858
\#\#	pi10		
\#\#	Min. 0.0004913		
\#\#	1st Qu.:0.0048800		
\#\#	Median :0.0114627		
\#\#	Mean :0.0162796		
\#	3rd Qu.:0.0284771		
\#\#	Max. :0.0625170		
summary (GBM_Untruncated)			
\#\#	pi1	pi2	pi3
\#\#	Min. 00.002027	Min. :0.0007163	Min. 00.007166
\#\#	1st Qu.:0.003807	1st Qu.:0.0009530	1st Qu.:0.007206
\#\#	Median :0.006176	Median :0.0019908	Median :0.008290
\#\#	Mean :0.168206	Mean :0.0404401	Mean :0.029222
\#\#	3rd Qu.:0.010221	3rd Qu.:0.0041522	3rd Qu.:0.010328
\#\#	Max. 00.764830	Max. :0.3301783	Max. 00.179817
\#\#	pi4	pi5	pi6
\#\#	Min. 0.0000014	Min. 00.0000003	Min. :0.007889
\#\#	1st Qu.:0.0000777	1st Qu.:0.0000354	1st Qu.:0.012612
\#\#	Median :0.0004492	Median :0.0003447	Median :0.013787
\#\#	Mean :0.0263304	Mean :0.0232197	Mean :0.022999
\#\#	3rd Qu.:0.0167375	3rd Qu.:0.0005962	3rd Qu.:0.016079
\#\#	Max. :0.9999966	Max. $: 0.3551773$	Max. :0.307409
\#\#	pi7	pi8	pi9
\#\#	Min. 0.0009184	Min. 00.008467	Min. $: 0.0000007$
\#\#	1st Qu.:0.0011354	1st Qu.:0.009411	1st Qu.:0.0000590
\#\#	Median :0.0020279	Median :0.009560	Median :0.0004007
\#\#	Mean :0.0197763	Mean :0.017003	Mean :0.0167759
\#\#	3rd Qu.:0.0038864	3rd Qu.:0.011996	3rd Qu.:0.0027138
\#\#	Max. :0.1147831	Max. 0.053754	Max. 00.9586112
\#\#	pi10		
\#\#	Min. 0.0000003		
\#\#	1st Qu.:0.0000269		
\#\#	Median :0.0000887		
\#\#	Mean :0.0152205		
\#\#	3rd Qu.:0.0221909		


```
summary(Softmax_Truncated)
```

	pi1	pi2	pi3
\#\#	Min. :0.01423	Min. 00.005934	Min. :0.006702
	1st Qu.:0.01737	1st Qu.:0.007144	1st Qu.:0.008501
\#\#	Median :0.06736	Median :0.021264	Median :0.022576
\#\#	Mean :0.14408	Mean :0.039938	Mean :0.037119
\#\#	3rd Qu.:0.19248	3rd Qu.:0.055097	3rd Qu.:0.049086
\#\#	Max. :0.67301	Max. $: 0.177946$	Max. $: 0.151524$
	pi4	pi5	pi6
\#\#	Min. 00.004416	Min. 00.004763	Min. 00.01005
	1st Qu.:0.005267	1st Qu.:0.005399	1st Qu.:0.01129
\#\#	Median :0.013764	Median :0.015046	Median :0.01804
\#\#	Mean :0.032373	Mean :0.027548	Mean :0.02563
\#\#	3rd Qu.:0.029981	3rd Qu.:0.037369	3rd Qu.:0.03191
\#\#	Max. :0.298142	Max. :0.122440	Max. :0.14644
\#\#	pi7	pi8	pi9
\#\#	Min. 00.003598	Min. 00.005216	Min. 0.004309
\#\#	1st Qu.:0.004148	1st Qu.:0.006150	1st Qu.:0.004652
\#\#	Median :0.012368	Median :0.012952	Median :0.012478
\#\#	Mean :0.019558	Mean :0.021613	Mean :0.022207
\#\#	3rd Qu.:0.027680	3rd Qu.:0.023900	3rd Qu.:0.0314

```
## Max. :0.087679 Max. :0.126709 Max. :0.095586
## pi10
## Min. :0.003998
## 1st Qu.:0.004880
## Median :0.011463
## Mean :0.016521
## 3rd Qu.:0.028477
## Max. :0.062517
summary(GBM_Truncated)
\begin{tabular}{|c|c|c|c|}
\hline \# & pi1 & pi2 & i3 \\
\hline \#\# & Min. 00.003807 & Min. :0.0009182 & Min. 00.007206 \\
\hline \#\# & 1st Qu.:0.003807 & 1st Qu.:0.0009530 & 1st Qu.:0.007206 \\
\hline \#\# & Median :0.006176 & Median :0.0019908 & Median :0.008290 \\
\hline \#\# & Mean :0.168406 & Mean :0.0404581 & Mean :0.029225 \\
\hline \#\# & 3rd Qu.:0.010221 & 3rd Qu.:0.0041522 & 3rd Qu.:0.010328 \\
\hline \#\# & Max. :0.764830 & Max. :0.3301783 & Max. :0.179817 \\
\hline \#\# & pi4 & pi5 & pi6 \\
\hline \#\# & Min. :0.0000389 & Min. :0.0000300 & Min. :0.01138 \\
\hline \#\# & 1st Qu.:0.0000777 & 1st Qu.:0.0000354 & 1st Qu.:0.01261 \\
\hline \#\# & Median :0.0004492 & Median :0.0003447 & Median :0.01379 \\
\hline \#\# & Mean :0.0263347 & Mean :0.0232217 & Mean :0.02349 \\
\hline \#\# & 3rd Qu.:0.0167375 & 3rd Qu.:0.0005962 & 3rd Qu.:0.01608 \\
\hline \#\# & Max. :0.9999966 & Max. :0.3551773 & Max. :0.30741 \\
\hline \#\# & pi7 & pi8 & pi9 \\
\hline \#\# & Min. 00.001127 & Min. 0.009411 & Min. 0.0000432 \\
\hline \#\# & 1st Qu.:0.001135 & 1st Qu.:0.009411 & 1st Qu.:0.0000590 \\
\hline \#\# & Median :0.002028 & Median :0.009560 & Median :0.0004007 \\
\hline \#\# & Mean :0.019807 & Mean :0.017013 & Mean :0.0167803 \\
\hline \#\# & 3rd Qu.:0.003886 & 3rd Qu.:0.011996 & 3rd Qu.:0.0027138 \\
\hline \#\# & Max. :0.114783 & Max. :0.053754 & Max. :0.9586112 \\
\hline
\end{tabular}
## pi10
## Min. :0.0000189
## 1st Qu.:0.0000269
## Median :0.0000887
## Mean :0.0152223
## 3rd Qu.:0.0221909
## Max. :0.3435316
```


6. Tables for the Probability estimates of treatment success of the truncated GPS(20\% truncation) as mentioned in Section 4 for MDR-TB data

In a sensitivity analysis, 20% truncation was used to remove the smallest values of the Generalized Propensity Score for the top 10 available regimens. The point estimates of $\mathbb{E}\left(Y^{r}\right)$ and the confidence intervals for the top 10 regimens are presented in Table 6 and 7. The GPS truncation resulted in at most small changes in the point estimates as opposed to the results obtained without the truncation of GPS and had similar conclusions to it.

Table 6: Estimates of the probability of treatment success along with the confidence intervals under regimens 1-5 for the MDR-TB application in Section 4 after 20\% truncation of the GPS. SVM: Support Vector Machine; GBM: Generalized Boosted Model; IPTW: Inverse Probability of Treatment Weighting; PSA: Propensity Score Adjustment; TMLE: Targeted Maximum Likelihood Estimation. Outcome regression models were fit by (I) regimen and (II) treatments as main terms covariates.

Regimen	1	2	3	4	5
	OFX-KM-	OFX-KM-	OFX-KM-		OFX-SM-
	Z-EMB-	Z-	PTO-	Z-EMB-	PTO-
	ETH	ETH-CS	CS-PAS	RBT	CS-PAS
SVM					
IPTW	0.47	0.71	0.59	0.27	0.31
	$(0.44,0.49)$	$(0.62,0.80)$	$(0.47,0.70)$	$(0.10,0.44)$	$(0.17,0.46)$
PSA(I)	0.44	0.68	0.64	0.32	0.55
PSA(II)	0.66	0.69	0.64	0.42	0.68
TMLE(I)	0.61	0.78	0.64	0.54	0.31
	$(0.60,0.61)$	$(0.76,0.80)$	$(0.63,0.65)$	$(0.52,0.56)$	$(0.28,0.34)$
TMLE(II)	0.49	0.69	0.60	0.34	0.37
	$(0.48,0.50)$	$(0.67,0.71)$	$(0.58,0.63)$	$(0.29,0.38)$	$(0.33,0.41)$
Softmax					
Regression			0.65	0.56	0.27
IPTW	0.46	0.65	0.37		
	$(0.43,0.49)$	$(0.59,0.70)$	$(0.49,0.64)$	$(0.18,0.36)$	$(0.29,0.44)$
PSA(I)	0.38	0.64	0.55	0.22	0.45
PSA(II)	0.56	0.65	0.59	0.36	0.62
TMLE(I)	0.61	0.69	0.61	0.56	0.37
	$(0.60,0.63)$	$(0.67,0.71)$	$(0.58,0.63)$	$(0.53,0.59)$	$(0.35,0.39)$
TMLE(II)	0.48	0.64	0.59	0.26	0.45
	$(0.47,0.50)$	$(0.62,0.67)$	$(0.57,0.62)$	$(0.22,0.30)$	$(0.42,0.48)$
GBM					
IPTW	0.55	0.80	0.59	0.25	0.27
	$(0.39,0.72)$	$(0.65,0.96)$	$(0.47,0.70)$	$(0.11,0.40)$	$(0.02,0.52)$
PSA(I)	0.43	0.68	0.63	0.35	0.55
PSA(II)	0.65	0.68	0.64	0.37	0.66
TMLE(I)	0.63	0.84	0.60	0.54	0.27
	$(0.58,0.68)$	$(0.79,0.87)$	$(0.54,0.67)$	$(0.52,0.56)$	$(0.23,0.31)$
TMLE(II)	0.55	0.77	0.57	0.34	0.30
	$(0.50,0.60)$	$(0.72,0.81)$	$(0.50,0.64)$	$(0.29,0.38)$	$(0.24,0.36)$

Table 7: Estimates of the probability of treatment success along with the confidence intervals under regimens 6-10 for the MDR-TB application in Section 4 after 20% truncation of the GPS. SVM: Support Vector Machine; GBM: Generalized Boosted Model; IPTW: Inverse Probability of Treatment Weighting; PSA: Propensity Score Adjustment; TMLE: Targeted Maximum Likelihood Estimation. Outcome regression models were fit by (I) regimen and (II) treatments as main terms covariates.

Regimen	$\begin{aligned} & \hline 6 \\ & \text { None } \end{aligned}$	$\begin{aligned} & 7 \\ & \text { OFX-KM- } \\ & \text { Z- } \\ & \text { ETH } \end{aligned}$	```8 OFX-CM- Z- ETH-CS-PAS```	$\begin{aligned} & \hline 9 \\ & \text { OFX- } \\ & \text { PTO- } \\ & \text { CS-PAS } \end{aligned}$	$\begin{aligned} & 10 \\ & \text { OFX-KM- } \\ & \text { Z-EMB- } \\ & \text { ETH-CS } \end{aligned}$
SVM					
IPTW	$\begin{aligned} & 0.19 \\ & (0.08,0.31) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.49,0.64) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.55,0.80) \end{aligned}$	$\begin{aligned} & 0.57 \\ & (0.37,0.76) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.48,0.65) \end{aligned}$
PSA(1)	0.29	0.59	0.61	0.56	0.57
PSA(II)	0.38	0.63	0.61	0.58	0.67
TMLE(I)	$\begin{aligned} & 0.21 \\ & (0.18,0.23) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (0.56,0.60) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (0.65,0.67) \end{aligned}$	$\begin{aligned} & 0.62 \\ & (0.58,0.66) \end{aligned}$	$\begin{aligned} & 0.60 \\ & (0.58,0.62) \end{aligned}$
TMLE(II)	$\begin{aligned} & 0.24 \\ & (0.21,0.27) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (0.56,0.60) \end{aligned}$	$\begin{aligned} & 0.60 \\ & (0.58,0.62) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (0.53,0.62) \end{aligned}$	$\begin{aligned} & 0.57 \\ & (0.54,0.60) \end{aligned}$
Softmax Regression					
IPTW	$\begin{aligned} & 0.31 \\ & (0.24,0.38) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.48,0.64) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (0.61,0.78) \end{aligned}$	$\begin{aligned} & 0.45 \\ & (0.35,0.54) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.48,0.65) \end{aligned}$
PSA(1)	0.37	0.55	0.57	0.46	0.54
PSA(II)	0.38	0.56	0.59	0.50	0.65
TMLE(I)	$\begin{aligned} & 0.25 \\ & (0.22,0.28) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.53,0.60) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (0.67,0.71) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.53,0.58) \end{aligned}$	$\begin{aligned} & 0.59 \\ & (0.56,0.63) \end{aligned}$
TMLE(II)	$\begin{aligned} & 0.36 \\ & (0.30,0.41) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.53,0.60) \end{aligned}$	$\begin{aligned} & 0.62 \\ & (0.60,0.64) \end{aligned}$	$\begin{aligned} & 0.49 \\ & (0.47,0.52) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.52,0.61) \end{aligned}$
GBM					
IPTW	$\begin{aligned} & 0.24 \\ & (0.17,0.32) \end{aligned}$	$\begin{aligned} & 0.68 \\ & (0.42,0.94) \end{aligned}$	$\begin{aligned} & 0.75 \\ & (0.66,0.83) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.25,0.86) \end{aligned}$	$\begin{aligned} & 0.55 \\ & (0.45,0.65) \end{aligned}$
PSA(1)	0.38	0.60	0.60	0.54	0.57
PSA(II)	0.40	0.63	0.60	0.52	0.65
TMLE(I)	$\begin{aligned} & 0.25 \\ & (0.22,0.28) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.62,0.73) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (0.70,0.77) \end{aligned}$	$\begin{aligned} & 0.62 \\ & (0.56,0.67) \end{aligned}$	$\begin{aligned} & 0.59 \\ & (0.57,0.61) \end{aligned}$
TMLE(II)	$\begin{aligned} & 0.26 \\ & (0.22,0.31) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (0.60,0.70) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.63,0.71) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (0.52,0.64) \end{aligned}$	$\begin{aligned} & 0.55 \\ & (0.52,0.58) \end{aligned}$

