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Abstract

Background—The term Fetal Alcohol Spectrum Disorders (FASD) defines the full range of 

ethanol-induced birth defects. Numerous variables influence the phenotypic outcomes of 

embryonic ethanol exposure. Among these variables, genetics appears to play an important role 

yet our understanding of the genetic predisposition to FASD is still in its infancy.

Methods—We review the current literature that relates to the genetics of FASD susceptibility and 

gene-ethanol interactions. Where possible, we comment on potential mechanisms of reported 

gene-ethanol interactions.

Results—Early indications of genetic sensitivity to FASD came from human and animal studies 

using twins or inbred strains, respectively. These analyses prompted searches for susceptibility loci 

involved in ethanol metabolism and analyses of candidate loci, based on phenotypes observed in 

FASD. More recently, genetic screens in animal models have provided additional insight into the 

genetics of FASD

Conclusions—Understanding FASD requires that we understand the many factors influencing 

phenotypic outcome following embryonic ethanol exposure. We are gaining ground on 

understanding some of the genetics behind FASD, yet much work remains to be done. Coordinated 

analyses using human patients and animal models are likely to be highly fruitful in uncovering the 

genetics behind FASD.

Introduction

Alcohol exposure is the most common cause of environmentally induced human birth 

defects. Despite this, it was not appreciated until 1968 that a suite of birth defects may be 

associated with prenatal ethanol exposure (Lemoine et al., 1968) and 1973 when Fetal 

Alcohol Syndrome (FAS) was clinically recognized (Jones and Smith, 1973). We now know 

that ethanol can cause a wide range of birth defects, that are collectively referred to as Fetal 

Alcohol Spectrum Disorders (Riley et al., 2011).
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While ethanol exposure causes FASD, not all exposures result in recognizable FASD. For 

instance only 4.3% of children with heavy exposure to ethanol will develop full blown FAS 

(Abel, 1995), suggesting additional susceptibility factors are involved. As early as 1988, an 

indication of a role of genetics in susceptibility to FAS was identified due to families with a 

child with FAS being dramatically more likely to have a second child with FAS (Abel, 

1988). While genetics is merely one possible reason for this association, twin studies 

provided compelling evidence for genetics. In a study of monozygotic and dizygotic twins, 

monozygotic twins were 100% concordant for diagnosis while dizygotic twins were only 

64% concordant (Streissguth and Dehaene, 1993). This study strongly suggests that genetic 

loci regulating susceptibility to, or resistance against, FASD must be present in the human 

population.

Similar to humans, the initial evidence for genetic basis for FASD in animal models came 

from studies of closely related individuals. Inbreeding has generated strains of organisms 

with high levels of homozygosity within the strain. Either through selective breeding or 

genetic drift in isolated populations, numerous substrains of rodents, chicks and fish have 

arisen in the scientific community. Amongst these strains and substrains of any particular 

species there are differences in their inherent susceptibility to the teratogenic effects of 

developmental ethanol exposure. Interestingly, the susceptibility to the effects of ethanol 

often depend on the dependent variable tested and the time of exposure. As we examine 

these strains, their respective genetic differences and careful attention to the relevant 

embryology and developmental neurobiology will assist in identifying either specific 

mechanisms or genetic pathways involved in ethanol’s teratogenesis at specific 

developmental stages and on particular systems.

One of the first studies demonstrating strain differences was by Chernoff (1980), who 

maintained three strains of mice on a liquid diet containing ethanol prior to and throughout 

pregnancy and then examined the incidence and severity of fetal abnormalities. The CBA/J 

strain exhibited the most abnormalities, followed by C3H/lg mice and then the C57BL/6J 

strain. Not surprisingly, the incidence of defects was directly related to maternal blood 

alcohol concentration (BAC) and inversely related to liver ADH activity. It is unknown if the 

pregnant dams consumed the same amount of diet, and thus alcohol, but assuming they did, 

this study indicates a significant maternal factor, rather than fetal factors.

Since this characterization, numerous other studies since have compared the relative 

teratogenicity of ethanol in various strains of mice and have kept the amount of alcohol 

consistent. In a comparison of C57BL/10 vs. DBA/1 mice following early gestational 

ethanol exposure, both strains exhibited lower thresholds to audiogenic seizures, but this 

effect was much greater in the C57BL/10 mice, possibly due to an altered serotonergic 

system (Yanai, 1983). The C57BL/10 mice were also hypoactive, whereas the DBAs were 

not, and while both strains demonstrated reduced predatory behavior, this effect was much 

greater in the DBA strain. The various C57 substrains are consistently more susceptible to 

the effect of developmental ethanol exposure. In a whole embryo culture model of 

neurulation-stage ethanol exposure, both the C57BL/6N and DBA/2 strain exhibited 

significant malformations of the forebrain, optic system and hindbrain, although there was a 

differential sensitivity outside of the central nervous system (Ogawa et al., 2005). However, 
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a later study by this group with a narrower exposure window found delays of the forebrain, 

optic vesicle, midbrain hindbrain, and other derivatives of the caudal neural tube in the 

C57BL/6N strain, but only forebrain and optic vesicle deficiencies in the DBA/2 strain, 

while the 129S6/SvEvTac strain was not affected at all (Chen et al., 2011). These studies 

demonstrated interesting rostrocaudal and exposure period differential susceptibility that 

could be leveraged to focus on more specific mechanisms and genetic differences.

The C57BL/6J mice, one of the original C57 strains, were the first to be shown capable of 

recapitulating the craniofacial aspects of FAS and are more susceptible to ethanol 

teratogenesis during neurulation than many other strains, including, DBA/2, short-sleep, 

long-sleep, A/J, A/lbg, and 129S6 mice (Boehm et al., 1997; Downing et al., 2009; Downing 

et al., 2012; Sulik et al., 1981). In fact, the C57BL/6J mice are probably the most susceptible 

of the C57 sub-strains as demonstrated in a recent study comparing the C57BL/6J and 

C57BL/6N sub-strains during gastrulation-stage exposure, where the 6J mice exhibited 

ocular defects (rostrally-derived structures) at nearly twice the rate of their 6N counterparts 

(Dou et al., 2013). Finally, a recent experiment involving embryo transfers between 

C57BL/6J and DBA/2 mice confirmed that, with the possible exception of the maternal 

alcohol metabolizing enzymes, it is the genotype of the embryo and not the maternal 

genotype that is a more critical genetic determinant of an individual’s susceptibility to 

ethanol’s teratogenesis (Gilliam, 2014).

Rats have also been useful in assessing genetic contributions to FASD. In a third trimester 

equivalent model, the MR strain of rat demonstrated significant cerebellar deficiencies 

similar to the well-characterized Sprague-Dawley rat, whereas the M520 was less affected 

(Goodlett et al., 1989). However, the M520s exhibited body and brain growth restrictions by 

adulthood, perhaps demonstrating abnormalities of the pituitary gland, a structure partially 

derived from more rostral midline structures. While the anatomical defects are unknown, 

alcohol exposure throughout gestation increased seizure susceptibility in a strain of rat 

specifically bred to be more prone to convulsive epilepsies, while the WAG/Rij strain did not 

demonstrate this effect (Russo et al., 2008). Many FASD studies have been performed in the 

Sprague-Dawley rat, and two substrains of this strain have been developed that differ in their 

susceptibility to a neurulation-stage ethanol exposure (Wentzel and Eriksson, 2008). While 

these substrains metabolize ethanol at different rates, the more susceptible U strain still 

exhibited a greater incidence of ethanol-induced birth defects in an embryo culture system. 

Follow-up comparisons of these closely related sub-strains could reveal important ethanol 

susceptibility genes.

Strain-dependent susceptibility to the effects of developmental ethanol exposure are not 

restricted to rodents. A study by Debelak and Smith (2000) examined 11 strains of chick 

embryos following ethanol exposure during early neurulation and found that the strains 

could be classified into very sensitive, moderately sensitive or insensitive to ethanol-induced 

apoptosis of cranial neural crest cells, which give rise to facial structures. Another study in 

gastrulation-stage embryos found that the craniofacial effects of these various strains can be 

separated into those who exhibit midfacial flattening, overall facial flattening, or even facial 

expansion (Su et al., 2001). Interestingly, in this latter study it appears that more factors than 

apoptosis alone contribute to facial morphology as some strains that had excessive ethanol-
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induced apoptosis did not have any facial dysmorphology and degree of facial 

dysmorphology in susceptible strains did not correlate with the amount of apoptosis. It is 

possible that the gastrulation-stage exposure results in a down-regulation of Shh, which is 

necessary for normal face and brain development, or that both mechanisms act together. 

Subsequent transcriptomic comparisons of two chick strains, one susceptible [W98S] and 

one resistant [W98D], during late neurulation revealed numerous strain differences, mostly 

in genes involved in ribosome biosynthesis, among many others, demonstrating the potential 

of this approach in elucidating underlying genetic susceptibilities (Garic et al., 2014).

Due to external fertilization, ease in genetic and transgenic procedures and their similarity 

during early development to mammals, zebrafish are an excellent model in which to study 

FASD susceptibility genes. As with other species, fish also have multiple strains that differ 

in their sensitivity to developmental ethanol exposure. The first study examined three strains 

of zebrafish (EK, AB and TU) for survival and craniofacial malformations following ethanol 

exposure (Loucks and Carvan, 2004). The EK strain exhibited the most cell death, and both 

the EK and AB strains had more craniofacial malformations than the TU strain. 

Interestingly, different craniofacial skeletal elements were affected by ethanol exposure in 

each strain, a finding that could assist in uncovering both genetic factors and mechanisms. 

The lower amount of craniofacial dysmorphology in the TU strain may be due to increased 

embryo lethality in the TU strain (i.e., ethanol may be killing the most-affected embryos). 

However, another study demonstrated that a shorter exposure to alcohol resulted in 

significantly different brain neurochemistry in the AB strain, while the TU strain was 

resistant to the effects of ethanol (Mahabir et al., 2014). Further demonstration of the EK 

strain’s sensitivity has also been shown in a study of ethanol during eye morphogenesis 

(Arenzana et al., 2006).

Defining differences among various strains in terms of their sensitivity to developmental 

ethanol exposure is most useful if we actually know the genetic differences among these 

strains. Luckily, we are at a point where we can begin to explore these genetic differences 

using technologies such as whole transcriptome sequencing (RNA-seq) and other high-

throughput sequencing techniques. However, it must be cautioned that as we go forward 

with these studies that we are aware of potential strain differences in developmental 

trajectories, particularly in early development. For example, the C57BL/6N substrain begins 

gastrulation approximately 6 hours sooner than does the closely related C57BL/6J substrain 

(Dou et al., 2013). In rapidly developing species such as mice or fish, a 6 hour difference is 

substantial in terms of early embryonic events. Likewise, researchers should pay careful 

attention to the relevant embryology/developmental biology and ensure that we are studying 

the appropriate areas/cell types from which an affected structure is derived. If we design our 

studies carefully, we can make great progress in understanding specific genes that modify 

susceptibility to prenatal ethanol exposure.

FASD Genetics

Despite the magnitude of the problem, our understanding of the genetics underlying FASD is 

still very much in its infancy. Here, we provide a background and evidence of gene-ethanol 

interactions causing FASD in humans and animal models (See Table 1 for a current list of 
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genes shown to modulate the teratogenicity of ethanol). As with the classic definition of 

gene-gene interactions, a gene-ethanol interaction merely relates to a resulting phenotype 

and should not be taken to mean a direct physical binding of a gene product and ethanol. 

Indeed, for some of these interactions, the endogenous gene product is nonexistent and 

therefore physical interactions are impossible. Reciprocally, the physical binding of ethanol 

to a gene product would not necessarily have to lead to a genetic interaction, although 

physical binding is one possible mechanism for a genetic interaction. For the vast majority 

of the gene-ethanol interactions discussed here, we do not know the precise molecular 

mechanisms that lead to ethanol-induced phenotypes. However, where possible we comment 

on potential causes of these gene-ethanol interactions.

Genes involved in ethanol metabolism

Ethanol is cleared from the body first by its conversion to the highly reactive and toxic 

acetaldehyde, which is, in turn, converted to acetate. The predominant enzyme involved in 

alcohol conversion to acetaldehyde is Alcohol Dehydrogenase (ADH), with CYP2E1 and 

Catalase playing smaller roles. Acetaldehyde is subsequently converted to acetate via 

Aldehyde Dehydrogenase (ALDH). Studies in mouse have shown that inhibition of Adh 

activity but not Aldh increases the teratogenicity of ethanol (Ukita et al., 1993; Webster et 

al., 1983), suggesting that the clearance of alcohol itself is critical to avoid teratogenesis. On 

the other hand, direct administration of acetaldehyde is teratogenic in both mouse and 

zebrafish (Reimers et al., 2004; Webster et al., 1983), suggesting there may be some role for 

this metabolite in FASD. However, across several strains of chickens levels of acetaldehyde 

had to be beyond physiological levels to cause embryo malformations (Hartl and Shibley, 

2002). Ethanol-exposure alters the activity of Adh and Aldh enzymes in rat (Boleda et al., 

1992; Messiha and Varma, 1983), further complicating which metabolic enzymes are most 

relevant to FASD. Thus, there is mixed evidence for the actual teratogenic agent associated 

with ethanol consumption. It is likely that, depending upon context, either ethanol or 

acetaldehyde can be teratogenic and that until ethanol is metabolized to acetate the 

developing embryo is susceptible to harm.

In the human population, the rate of metabolism of these teratogenic substances may vary 

due to allelic differences in alcohol metabolizing enzymes. A more complete discussion of 

these alleles and their rates of metabolism can be found elsewhere (Warren and Li, 2005). 

While alleles of ADH and ALDH effect the overall risk of alcoholism (Crabb et al., 2004), 

to date the focus of study in human FASD has been on the major ethanol metabolic enzyme, 

ADH1.

ADH1 forms as a complex of proteins synthesized from three loci: ADH1A, ADH1B and 

ADH1C. Three alleles of both ADH1C and ADH1B have been described each with differing 

affinities for alcohol (Crabb et al., 2004). Of these, only the three alleles of ADH1B have 

been tested for the rate of clearance of ethanol in humans. In a Japanese population, 

individuals carrying ADH1B*2 or ADH1B*3 alleles cleared ethanol at a significantly higher 

rate than individuals homozygous for ADH1B*1 (Neumark et al., 2004), consistent with 

their in vitro kinetics (Crabb et al., 2004). However, in other studies examining African 

American individuals there were no significant differences in clearance based on ADH1B 
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genotype (Marshall et al., 2014; McCarthy et al., 2010; Taylor et al., 2008). These apparent 

differences could be due to study population or sample size differences, although it also 

likely that the genotype at a single locus will not be completely predictive of overall ethanol 

clearance. Regardless, enzymes affecting the rate at which alcohol and/or acetaldehyde are 

cleared remain likely candidate loci regulating FASD susceptibility.

In humans, there is evidence that ADH alleles predicted to rapidly metabolize ethanol 

protect against FASD. The ADH1B*2 allele is significantly underrepresented in mothers and 

their non-FAS-affected children (Viljoen et al., 2001). Maternal genotypes with at least one 

ADH1B*3 allele also correlate with a lower incidence of FASD (Das et al., 2004; Jacobson 

et al., 2006; McCarver et al., 1997). These studies differ in whether offspring genotype 

associated with outcome. Similarly, the slow metabolizing ADH1C variant, ADH1C*2, 

associates with increased risk of ethanol-associated oral clefting (Boyles et al., 2010). In 

contrast, a different study suggests that a maternal ADH1B*1/ADH1B*3 genotype is the 

most susceptible to having offspring with FASD (Stoler et al., 2002). While there are 

associations of differing ADH alleles with overall alcohol consumption, which could 

complicate some of these findings (Jacobson et al., 2006; Stoler et al., 2002; Warren and Li, 

2005), at least 3 of these studies showed no differences in reported overall drinking across 

genotypes (Boyles et al., 2010; Das et al., 2004; McCarver et al., 1997). Collectively, this 

provides support for an involvement of ADH alleles in FASD, with alleles predicted to 

metabolize ethanol more quickly being underrepresented in FASD. The precise nature of this 

correlation remains unknown. Unfortunately, there are no reports on genetic interactions 

with ADH causing FASD in animal models, which could help resolve these results.

The animal data available on ethanol metabolizing enzymes have focused on Aldh and 

highlight the potential for complex interactions of maternal and zygotic genotypes in the 

genesis of FASD. Fanconi anemia is a disease in human caused by mutation in any one of a 

number of FANC genes, whose products form an assembly that repairs DNA damage (Duxin 

and Walter, 2015). In mouse, Fancd2 interacts with Aldh2 in the susceptibility of embryos to 

FASD (Langevin et al., 2011). Aldh2−/−;Fancd2−/− and Aldh2+/−;Fancd2−/− pups born to 

Aldh2+/− dams had a significantly elevated occurrence of eye defects and exencephaly 

(Langevin et al., 2011). Other zygotic genotypes were not susceptible to these ethanol-

induced defects (Langevin et al., 2011). It is unclear if this complex interaction is involved 

in human FASD. However, it is interesting to note that individuals with Fanconi Anemia are 

predisposed to cancer due to DNA damage, predominantly due to reactive aldehydes, (Duxin 

and Walter, 2015) and rat models suggest that embryonic alcohol exposure may speed the 

acquisition of tumors (Polanco et al., 2010; Zhang et al., 2016). We know virtually nothing 

about the long-term health issues faced by individuals with FASD (Moore and Riley, 2015) 

and these findings may provide insight into these life long issues.

An alternative (or additional) potential mechanism for ADH-ethanol interactions

In 1991, two authors separately published a hypothetical cause of FASD in which alcohol 

teratogenicity involves ADH but is a secondary effect due to altered cell signaling. ADH is 

also responsible for the conversion of retinol (vitamin A) into retinaldehyde, an essential 

step in the generation of retinoic acid. Because retinoic acid is a critical morphogen in the 
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development of many structures sensitive to ethanol teratogenesis (Cunningham and 

Duester, 2015), Duester and Pullarkat independently proposed that competition between 

ethanol and retinol for ADH could reduce retinoic acid levels, resulting in birth defects 

(Duester, 1991; Pullarkat, 1991). Several reports in a rat model, even prior to the publication 

of these hypotheses, demonstrated that maternal ethanol consumption alters the levels of 

some, but not all, RA pathway constituents in fetal tissues (Grummer et al., 1993; Grummer 

and Zachman, 1990, 1995). Most in support of the retinoic acid hypothesis is the finding that 

maternal ethanol consumption results in elevated levels of retinol but reduced levels of 

retinoic acid in fetal heart (DeJonge and Zachman, 1995) and that ethanol appears to alter 

the activity of RAR transgenic expression in cultured mouse embryos (Deltour et al., 1996). 

Increasing the levels of retinoic acid partially restores development in avian, amphibian and 

fish models of FASD (Aksamija et al., 2009; Marrs et al., 2010; Muralidharan et al., 2015; 

Satiroglu-Tufan and Tufan, 2004; Twal and Zile, 1997) and, reciprocally, ethanol can reduce 

the teratogenicity of excess retinoic acid signaling in frog (Yelin et al., 2005). Collectively, 

results across different model systems support the hypothesis that ethanol can disrupt 

retinoic acid signaling.

The effect of ethanol on retinoic acid signaling may be highly dependent upon cell type. In 

contrast to the prediction of the retinoic acid hypothesis, ethanol greatly elevates the levels 

of retinoic acid in the hippocampus of fetal mice (Kane et al., 2010). Ethanol-induced 

microphthalmia in zebrafish is not rescued by elevating retinoic acid signaling (Kashyap et 

al., 2011; Zhang et al., 2015). Chen and colleagues found that while ethanol did inhibit the 

generation of retinoic acid from liver extracts, it failed to do so from zygotic extracts (Chen 

et al., 1996). Further, as noted below in “Candidate Genes: Facial Clefting in Humans”, in a 

human data set a receptor for retinoic acid failed to associate with ethanol and craniofacial 

defects (Etheredge et al., 2005). Thus, despite decades of study and the molecular evidence 

for the retinoic acid hypothesis it remains unknown if mutation of any pathway members 

associates with susceptibility to FASD.

The Genetics of Ethanol-Induced Facial Clefting in Humans

Drinking during pregnancy is a risk factor for isolated cleft lip with or without cleft palate 

(Munger et al., 1996). There has been extensive study into the genetics regulating orofacial 

development (Bush and Jiang, 2012) and several human studies have sought to determine if 

some of these candidate genes associated with ethanol and facial clefts. These studies have 

focused on members of the Transforming growth factor (TGF) pathway, the Bmp target, 

MSX1, and the Retinoic Acid receptor, RAR-α. In a study of 316 Danish children born with 

either cleft lip and/or palate, neither of the candidate genes TGF-β3 or MSX1 associated 

with ethanol usage and facial clefting (Mitchell et al., 2001). Similarly, a log-linear approach 

to more sensitively identify gene-environment interactions in a group of 222 children from 

Denmark with non-syndromic cleft lip/palate, failed to find association with TGF-β3 and 

MSX1 (Etheredge et al., 2005). This study also found no evidence for gene-ethanol 

interactions with RAR-α or TGF-α (Etheredge et al., 2005). Analyses of 214 cleft lip and/or 

palate cases in the Iowa birth defects registry found a significant association of ethanol 

consumption and MSX1, but not TGF-α or TGF-β3 in cleft lip and/or palate (Romitti et al., 
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1999). Thus, these candidate approaches in humans have had limited success in identifying 

loci mediating susceptibility to FASD.

There are even a more limited number of genome-wide association studies (GWAS) that 

have been performed to identify gene-ethanol interaction. In a GWAS analysis of 550 case-

parent trios of non-syndromic cleft palate cases for gene-environment interactions, SNPs in 

MLLT3 and SMC2 were significantly associated with ethanol usage and facial clefting 

(Beaty et al., 2011). MLLT3 contains a nuclear targeting sequence and translocation fusions 

between it and MLL result in leukemia (Strissel et al., 2000). In mouse, regions of the CNS, 

limb buds, facial prominences and skeletal primordia express Mllt3 and Mllt3 mutants have 

vertebral fusions consistent with disrupted Hox signaling (Collins et al., 2002), the facial 

skeleton was not specifically analyzed in these mice. SMC2 is part of the Structural 

Maintenance of Chromosomes gene family and functions in the Condensin complex 

(Hirano, 2002). This complex maintains chromosome condensation during mitosis and it 

critical for proper chromosome segregation (Hirano, 2002). SMC2 also appears to have non-

mitosis functions, as in vitro depletion of SMC2 disrupts nuclear shape (George et al., 

2014). To our knowledge, in vivo phenotypes of Smc2 loss-of-function in vertebrates are 

unknown, however RNAi-mediated knockdown of Smc2 results in increased death of 

embryonic stem cells (Fazzio and Panning, 2010). Continued genome-wide analyses in 

humans with follow-up analyses in animal models should help provide insight into how 

these genes and others are involved in FASD.

The Sonic Hedgehog (Shh) Pathway

Shh is a morphogen that, like retinoic acid, is critical for the development of many structures 

affected in FASD. A more extensive review of Shh signaling can be found elsewhere 

(Ingham and Placzek, 2006), but briefly Shh is a secreted ligand that binds the receptor 

Patched (Ptch). In the absence of ligand, Ptch represses the activity of the 7 pass 

transmembrane protein Smoothened (Smo). In the presence of ligand, Smo is derepressed 

and processes Gli transcription factors, notably Gli1 and Gli2, into activator forms to turn on 

gene expression. Other cell surface proteins, Cdon and Boc, act as Shh coreceptors and 

assist in activating the Shh pathway.

The Shh pathway was initially implicated in FAS due to phenotype. The facial and neural 

phenotypes associated with FAS in humans and animal models resemble those of 

holoprosencephaly (Sulik, 2014) and embryonic ethanol exposure is a risk factor for 

holoprosencephaly in humans (Cohen and Shiota, 2002). Most mutations known to cause 

holoprosencephaly disrupt the Shh pathway (Solomon et al., 2010). Further, a chicken model 

of FASD resulted in craniofacial defects and neural crest apoptosis similar to that observed 

when Shh signaling was blocked by antibodies (Ahlgren and Bronner-Fraser, 1999; 

Cartwright and Smith, 1995). In this system, ectopic application of Shh rescued these 

defects (Ahlgren et al., 2002). Collectively, these findings lead to the hypothesis that one 

teratogenic mechanism of ethanol was the inhibition of Shh signaling.

Despite these early indications of a role of Shh in ethanol teratogenesis, it wasn’t until a 

decade later that there was direct evidence for a genetic interaction between ethanol and the 

Shh pathway. Under normal conditions, loss of Cdon in a 129S6 genetic background only 
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results in mild defects similar to microform holoprosencephaly. This genotype is highly 

sensitive to ethanol exposure and displays profound neural and facial phenotypes covering 

the range of holoprosencephaly as well as palatal defects following embryonic ethanol 

exposure (Hong and Krauss, 2012). Wild-type and heterozygous littermates were largely 

normal in these analyses (Hong and Krauss, 2012). In a set of follow up experiments, the 

same group found that elevating Shh signaling by loss of a single allele of Ptch1 was able to 

restore proper development in ethanol-treated Cdon mutant embryos (Hong and Krauss, 

2013). In humans, haploinsufficiency for CDON causes holoprosencephaly (Bae et al., 

2011), however, ethanol only appears to exacerbate the homozygous mutant phenotype in 

this mouse strain (Hong and Krauss, 2012). The reason for this discrepancy is unclear, but it 

may relate to the use of the 129S6 genetic background because mouse Cdon mutants on a 

C57BL/6N background have more severe holoprosencephaly (Hong and Krauss, 2012).

In addition to CDON, haploinsufficiency of either GLI2 (Roessler et al., 2003) or SHH 
(Roessler et al., 1996) causes holoprosencephaly in humans. Under control conditions, 

mouse Shh and Gli2 heterozygotes develop normally (Chiang et al., 1996; Mo et al., 1997). 

However, heterozygosity for Shh significantly enhanced the facial and neural defects caused 

by ethanol and this enhancement was even more profound in Gli2 heterozygotes (Kietzman 

et al., 2014). Similar results are found in a zebrafish FASD model in which partial 

knockdown of shha via morpholinos sensitizes embryos to ethanol-induced neural 

differentiation defects (Zhang et al., 2013). Interestingly, ethanol does not appear to cause 

haploinsufficiency, at least for facial phenotypes, in zebrafish smo mutants (McCarthy et al., 

2013), but does appear to enhance facial defects in a hypomorphic shha mutant line (our 

unpublished results). Collectively, these results demonstrate that the Shh pathway does 

genetically interact with ethanol, but not all members of the pathway interact equally. The 

reason for this “inequality” is not clear, but has important implications in determining 

genetic risk for FASD in human populations.

There are several possibilities for why ethanol genetically interacts with the Shh pathway. 

As mentioned above, ethanol may compete with retinol for ADH (RADH), inhibiting 

retinoic acid production. Retinoic acid is initially critical for inducing Shh expression in the 

notochord and overlying neural plate and continues to be an important morphogen and 

signaling molecule throughout development. The developing forelimb also requires RA for 

initial induction of forelimb outgrowth, and reductions of RA, or inhibition of the RA 

receptor results in postaxial ectrodactyly (loss of digits) similar to prenatal ethanol exposure 

(Johnson et al., 2007). Exogenous RA administration can rescue at least some of these 

effects. Further proof of this as a causative mechanism for some of the more severe brain 

(e.g. holoprosencephaly), craniofacial and digital effects of ethanol exposure is that the 

timing of the ethanol exposure is just slightly prior to the onset of Shh expression. In 

contrast, direct inhibition of Shh signaling via cyclopamine, a potent Smo antagonist, 

induces holoprosencephaly only at slightly later stages of development, when Shh is actively 

expressed (Heyne et al., 2015; Lipinski et al., 2014). This mechanism would also explain 

why ethanol exposure reduces Shh expression during gastrulation, but apparently not during 

neurulation. It is still unclear if ethanol is preventing the induction of Shh expression 

through inhibition of RA production, or through another mechanism.

Eberhart and Parnell Page 9

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A second possibility for an ethanol-induced disruption of the Shh pathway is based on the 

finding that Shh proteins must undergo post-translational modification in order to be 

properly packaged, secreted and to diffuse to its target cells (Dennis et al., 2012; Porter et 

al., 1996a; Porter et al., 1996b). One of these key modifications is the addition of cholesterol 

to the N-terminal end of Shh and the lack of this lipid modification results in altered Shh 

signal propagation. It was observed nearly 20 years ago that disruption of cholesterol 

homeostasis either through chemical inhibition of cholesterol biosynthesis during 

gastrulation or mutation of key cholesterol synthesis genes (i.e. DHRC7, which is mutated in 

Smith-Lemli-Opitz syndrome) results in dysmorphologies similar to those observed in 

ethanol exposure during gastrulation and these effects are likely exerted through the Shh 

pathway (Dehart et al., 1997; Lanoue et al., 1997; Porter et al., 1996b). This hypothesis is 

supported by the finding in zebrafish that ethanol can block the modification of Shh by 

cholesterol, resulting in decreased Shh pathway activation, and supplementation with 

cholesterol can rescue ethanol’s effects (Li et al., 2007). This same group has also 

demonstrated that ethanol exposure can inhibit Caveolin-1/Shh complexes (Mao et al., 

2009). Caveolin-1 is both dependent on, and modulates cholesterol homeostasis, and 

decreasing caveolin-1/Shh complexes results in decreased Shh secretion and subsequent 

signaling (Frank et al., 2006; Hailstones et al., 1998). Together, these data suggest that 

ethanol exposure can alter Shh signaling through a mechanism involving cholesterol, 

although more research is needed to fully understand this phenomenon.

Finally, the possibilities surrounding ethanol-induced cell death and disruptions in Shh 

signaling must also be considered. Ethanol has often been demonstrated to directly induce 

apoptosis at many periods of development (see below) and ethanol exposure during 

gastrulation has been shown to induce cell death in the general region of the embryo that 

will give rise to the face and brain (Dunty et al., 2001). However, at these early stages, these 

spatiotemporal data are difficult to interpret and it is not clear if these dying cells are 

causative or merely ancillary. For these reasons, it is unclear if ethanol is killing the cells 

expressing Shh or the cells receiving the Shh signal. Adding to the confusion is the fact that 

Shh itself is a potent cell survival factor and decreasing Shh expression, secretion or 

transduction may cause massive apoptosis secondary to the ethanol exposure (Delloye-

Bourgeois et al., 2014; Thibert et al., 2003). Some of our recent unpublished data has 

demonstrated that mice lacking either one or both copies of the pro-apoptotic gene Bax show 

an inverse gene dose-dependent resistance to the detrimental effects of a gastrulation-stage 

ethanol exposure. Additional data from our lab and others showing that reducing oxidative 

stress (e.g. through administration of NAC) can at least partially ameliorate the effects of 

ethanol during early gestation also point to a mechanism involving cell death (Chen et al., 

2013; Chen et al., 2015; Parnell et al., 2010; Wentzel and Eriksson, 2008; Wentzel et al., 

2006). These data showing a clear relation between apoptotic cell death and resiliency to 

ethanol-induced dysmorphology demonstrate that cell death may interact with Shh signaling 

to mediate ethanol’s teratogenesis. Regardless of the relationship, the idea of cell death must 

be considered alongside studies designed to investigate genes involved in modulating the 

effects of prenatal alcohol exposure.
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Nitric oxide synthase 1 (Nos1)

In vitro studies have shown that cerebellar granule cells are highly sensitive to ethanol-

induced cell death (Pantazis et al., 1993). While nitric oxide can be pro-apoptotic (Brune et 

al., 1998), it has been shown to protect neurons from apoptosis (Ciani et al., 2002), making it 

a candidate to protect against ethanol-induced neuronal cell death. Indeed, elevating nitric 

oxide levels protects against ethanol-induced cerebellar granule cell death (Pantazis et al., 

1998). This protective effect suggested that reduced nitric oxide could sensitize embryos to 

ethanol teratogenesis. Indeed, the ethanol-induced reduction in cortical, cerebellar and 

hippocampal size and neuronal cell loss was significantly more severe in Nos1 mutants, 

compared to wild-type embryos (Bonthius et al., 2002; Karacay et al., 2015). These 

cerebellar neuronal losses are associated with poorer performance on balance beam and 

rotorod tests, demonstrating an associated behavioral deficit (Bonthius et al., 2015). Thus, 

the genesis of neural and behavioral deficits in FASD may depend, at least partly, on nitric 

oxide signaling.

How ethanol interacts with the nitric oxide signaling pathway remains to be elucidated and 

is likely to be complex. In cultured cerebellar neurons, NF-kB signaling acts downstream of 

nitric oxide signaling, with activation of NF-kB being required for the protective effects of 

nitric oxide signaling (Bonthius et al., 2009). In a rat model of FASD, ethanol reduces the 

levels of DNA-bound NF-kB in the cerebellum (Acquaah-Mensah et al., 2002), suggesting a 

possible mechanism for the Nos1-ethanol interaction. However, in whole embryo mouse and 

Xenopus models of FASD, ethanol elevates the level of NF-kB (Peng et al., 2005; Zheng et 

al., 2014). Additionally, Nerve growth factor and Fibroblast growth factor 2, but not Brain-

derived neurotrophic factor, require nitric oxide signaling for their neuroprotective effects 

against ethanol (Bonthius et al., 2003). Thus, as is likely to be the case for most gene-

ethanol interactions, the Nos1-ethanol interaction is likely to be context dependent.

Platelet-derived growth factor receptor alpha (Pdgfra)/PI3K/mTOR

We recently combined a candidate gene and genetic screening approach to identify 

mutations that enhanced the teratogenicity of ethanol (McCarthy et al., 2013). We tested five 

mutants with disrupted facial development for ethanol sensitivity and discovered that pdgfra 
interacted strongly with ethanol. Notably, while under normal conditions pdgfra 
heterozygotes develop without defect, a normally subteratogenic dose of ethanol causes 

profound facial defects in two-thirds of heterozygous embryos (McCarthy et al., 2013). The 

strength of this interaction prompted us to examine a human dataset generated by the 

Collaborative Initiative on FASD, where we found strong support for gene-ethanol 

interactions with both PDGF receptors, PDGFRA and PDGFRB. Using zebrafish, we found 

that the pdgfra-ethanol interaction was synergistic in nature as ethanol greatly elevated the 

levels of apoptosis in mutants and heterozygotes relative to untreated mutants or ethanol-

treated wild-type embryos. These data provide compelling support in both a model organism 

and human that ethanol interacts genetically with the Pdgf signaling pathway.

Insight into how ethanol may interact with the Pdgf pathway came from in vitro work with 

ethanol and in vivo analyses in mouse and frog. In mouse, the major effector of Pdgfra 

signaling during facial development is PI3K (Klinghoffer et al., 2002) and PI3K functions 
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downstream of Pdgfra to promote survival of mesoderm in frog (Van Stry et al., 2005). PI3K 

can activate AKT, which in turn can activate mTOR, an important pathway in cell survival 

(Dibble and Cantley, 2015). In vitro studies have demonstrated that ethanol can inhibit the 

PI3K/AKT/mTOR pathway at multiple levels (Hong-Brown et al., 2010; Xu et al., 2003). 

We found that activation of this pathway rescued mutants from the effects of ethanol and that 

signaling at or downstream of mTOR was disrupted in ethanol-treated pdgfra mutants 

(McCarthy et al., 2013). This finding suggests that other growth factor pathways, such as 

Insulin, that use the PI3K/AKT/mTOR pathway are likely to be ethanol-sensitive loci. While 

this prediction has yet to be tested, elevating Insulin signaling protects against FASD in a 

Drosophila model (McClure et al., 2011) and ethanol reduces Insulin-PI3K signaling in 

cerebella of rat pups (Xu et al., 2003). Because PI3K/AKT/mTOR is a major pathway 

linking nutrient sensing and growth factor signaling, it is possible that multifactorial gene-

environment interactions through this pathway mediate FASD susceptibility.

Others

In a follow-up genetic screen, we determined if ethanol interacted with mutant lines of 

zebrafish available from the Zebrafish International Resource Center (Swartz et al., 2014). 

We screened 20 mutant lines and found that a minority of them, 5, interacted with ethanol to 

produce exacerbated facial and/or neural defects. Ethanol exacerbated the phenotypes of 

hinfp, foxi1, mars and plk1 mutants. The fifth mutant, vangl2, is a member of the Wnt 

Planar Cell Polarity (Wnt/PCP) pathway and interacted strongly with ethanol, causing 

cyclopia in all mutants and revealing haploinsufficiency. The cyclopic phenotype observed 

in the ethanol-vangl2 interaction closely parallels phenotypes observed in zebrafish embryos 

treated with high doses of ethanol (Blader and Strahle, 1998). The Wnt/PCP pathway is 

critical for regulating convergent/extension movements in the early embryo that elongate the 

body axis, and separate the eye fields in zebrafish. There are several reports of ethanol 

disrupting convergent/extension movements (Sarmah et al., 2013; Yelin et al., 2005). Thus, it 

is likely that combined genetic and environmental inhibition of Wnt/PCP signaling is 

responsible for the vangl2-ethanol interaction, yet the mechanism by which ethanol may 

inhibit Wnt/PCP signaling remains to be determined.

Concluding remarks

How extensive are gene-ethanol interactions? Or an oft-asked question: isn’t ethanol just 

making a sick embryo sicker? Due to the small size of ethanol and its pleiotropic effects it 

would seem possible that ethanol would interact with most genes. The collective body of 

work presented here though clearly demonstrates that not all genotypes are equally sensitive 

to ethanol. From the genetic screens that we have performed, where we have also reported 

on genes that did not appear to interact with ethanol, it would seem that only a minority of 

genes interacts with ethanol, at least for phenotypes we have examined. Six of the 25 loci 

that we have tested interacted with ethanol and only two of these showed haploinsufficiency. 

By their nature our screens have been skewed towards genes involved in early 

embryogenesis and, therefore, may be overrepresented in loci that predispose to FASD. Due 

to the high prevalence of FASD, homozygous null mutation at a locus is likely to only 

explain a tiny fraction of human FASD cases, therefore, haploinsufficiency may be a better 
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model of reduced gene function, caused by coding or enhancer variants in humans. Much 

more extensive shelf screens could give more accurate insight into the commonality of gene-

ethanol interactions, but based on our screens, it is likely that a low percentage of genes will 

interact strongly with ethanol. However, given the size of the human genome, currently 

estimated at 20,000 genes, even such a low percentage would result in many hundreds of 

ethanol sensitive loci. Clearly, much more work is needed to identify and characterize the 

effects of these genes involved in FASD susceptibility.

Given that many genes are likely to interact with ethanol, it might follow that there is no 

single functional type of gene that were sensitive to ethanol. Using the genes that have we 

have discussed that interact with ethanol, we performed gene function analysis in DAVID 

(https://david.ncifcrf.gov/home.jsp). This analysis examines co-occurrence between 

functional categories, such as gene ontology (GO) terms and a set of genes. Because Shh, 

Gli2 and Cdon are all part of the Hedgehog pathway, we only used Shh in the analyses to 

avoid skewing the dataset towards functions regulated by this pathway. This analysis 

uncovered 8 clusters of functional terms enriched in these ethanol-sensitive genes (See 

Supplemental File 1 for the raw data output). Fig. 1 lists these clusters in descending order 

of enrichment; clusters are named according to the general properties of the functional terms 

within the cluster (See Supplemental File 1 for a complete list). This analysis would suggest 

that there is not a defining functional characteristic of loci that genetically interact with 

ethanol. Continued identification of gene-ethanol interactions, in particular using unbiased 

approaches, will be critical to fully understand the many genetic functions that ethanol 

inhibits. However, it is of interest that these clusters relate to functional processes have been 

implicated in FASD (Dennery, 2007; Sant’Anna and Tosello, 2006; Shibley and Pennington, 

1997).

Why should we care about the genetics of FASD? Perhaps the most compelling reason is the 

fact that FASD is so widely variable in phenotypic outcome. We cannot fully appreciate how 

to deal with FASD medically unless we understand all of the factors that affect this 

phenotypic variability. As we understand how genetics leads to phenotypic outcomes, we 

will certainly be able to improve our diagnosis and ability to determine individual risk. 

Equally important, though, is that identifying a genetic interaction with ethanol gives insight 

into pathways, both genetic and signaling, that are causative of FASD and may provide 

interventions or preventatives against FASD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
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Table 1

List of Gene-ethanol interactions.

Gene(s) Species Phenotype Reference(s)

ADH1B Human FAS McCarver et al., 1997
Stoler et al., 2002
Das et al., 2004
Jacobson et al., 2006

ADH1C Human Oral clefting Boyles et al., 2010

MLLT3
SMC2

Human Oral clefting Beaty et al., 2011

Aldh2;Fancd2 Mouse Eye defects
Exencephaly

Langevin et al., 2011

Cdon
Gli2
Shh

Mouse

Zebrafish*
Holoprosencephaly,
Facial defects

Hong and Krauss, 2012
Kietzman et al., 2014
Zhang et al., 2013

Nos1 Mouse Neural and behavioral Bonthius et al., 2002
Karacay et al., 2015
Bonthius et al., 2015

PDGFRA Human
Zebrafish

Facial McCarthy et al., 2013

hinfp
foxi1
mars
plk1
vangl2

Zebrafish Facial
Some neural

Swartz et al., 2014

*
denotes an interaction using a morpholino.

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 June 01.


	Abstract
	Introduction
	FASD Genetics
	Genes involved in ethanol metabolism
	An alternative (or additional) potential mechanism for ADH-ethanol interactions
	The Genetics of Ethanol-Induced Facial Clefting in Humans
	The Sonic Hedgehog (Shh) Pathway
	Nitric oxide synthase 1 (Nos1)
	Platelet-derived growth factor receptor alpha (Pdgfra)/PI3K/mTOR
	Others

	Concluding remarks
	References
	Fig. 1
	Table 1

