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PPH (Postpartum Hemorrhage) is defined as blood loss greater than or equal to 1000 ml 
following delivery.  PPH is among the leading causes of maternal death; however, the 
existing predictive mechanism used by UNC-CH hospital is oversensitive by flagging too 
many patients as high risk and is generally abandoned by medical providers. This study is 
aimed to applying the trending machine learning classifying models to better predict the 
risk of PPH. Actual dataset was extracted and integrated from EHRS (Electronic Health 
Record System) with 12 variables considered to be highly relevant to PPH occurrence. 
Six machine learning models including Logistic Regression, Decision Trees, Random 
Forest, KNN, SVM and ANN (a deep learning model) were tried and compared in terms 
of their predicting accuracy and other metrics such as precision and recall. Random 
Forest stood out as the best model with the accuracy being 89%.   
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BACKGROUND 

Blood loss in the immediate postpartum period is expected for all women; however, an 

excessive amount can have serious consequences and is among the leading causes of 

maternal mortality globally (Say L et al., 2014). There is no consensus regarding what 

constitutes excessive blood loss. The most cited definition is specified by the World 

Health Organization (WHO), defining PPH as ≥500 ml blood loss within 24 hours of a 

vaginal birth and ≥1000 ml blood loss following a cesarean birth (WHO, 2012;  

Arulkumaran,  Mavrides and Penney, 2009). The criteria of PPH was formed in the 1950s 

and 1960s, when articles provided rationale for the 500 ml threshold (De Boer, 1955; 

Newton, Egli, Gifford and Hull, 1961; Pritchard, 1965; Theobald, 1950). However, there 

is little published evidence indicating that this amount can result in PPH-related 

morbidity (Kerr, 2017) and evidence from studies that treated women at later thresholds 

of bleeding (e.g. 700 ml) suggests that many women who bleed 500 ml may be fine 

without intervention (Blum et al., 2010; Winikoff et al., 2010).  Notably, in many 

scenarios all over the world, the 500 ml definition continues to be a guiding norm that is 

used in clinical practice guidelines, program evaluation approaches and research studies. 

Nonetheless, the American College of Obstetricians and Gynecologists (ACOG) 

published their definition of PPH to be “blood loss greater than or equal to 1000 ml or 

blood loss accompanied by signs or symptoms of hypovolemia”( Menard, Main, and 

Currigan, 2014). Thus, in our project, we will use 999 ml as the threshold to define PPH 

and label the datapoints
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Thanks to advances in the management of postpartum bleeding (e,g, uterotonic 

medications and transfusion medicine), maternal death from PPH trended downward 

between 1994 and 2006 (Callaghan, Kuklina and Berg, 2008). Despite the lives saved, 

PPH remains a major contributor to maternal morbidity (Callaghan, Kuklina and Berg, 

2010), but there is evidence this tragedy can be prevented. In case reviews of near-miss 

and severe maternal morbidity within one perinatal network of U.S. hospitals, experts 

concluded that 54% of cases were potentially preventable. In particular, the panel pointed 

out that 43% of the preventable cases involved a ‘delay in diagnosis.’ (Berg et al., 2005) 

Another review of pregnancy-related deaths conducted by an expert panel showed that 

maternal deaths involving hemorrhage were mostly preventable (Glover 2003).  

 

 On Jul. 26 2018, an investigative series titled “Deadly Deliveries” was published by 

USA Today (https://www.usatoday.com/deadly-deliveries/interactive/how-hospitals-are-

failing-new-moms-in-graphics/). One article in the series highlighted several NC 

hospitals who are not adequately preventing PPH, so this is a very visible patient safety 

issue. UNC Medical Center (UNCMC) currently uses a risk assessment tool embedded in 

Epic to assess hemorrhage risk for every patient, which follows the recommendation of 

the Alliance for Innovation on Maternal Health (AIM). This tool is based on guidance 

from the PPH project (pphproject.org) conducted by AWHONN (Association of 

Women’s Health, Obstetric and Neonatal Nurses). Based on the tool’s assessed risk of

the patient, clinical decisions are made and ‘anticipatory interventions’ are recommended 

for those patients deemed high risk. Examples of ‘anticipatory interventions’ are: blood 

sample type and cross match, heightened postpartum assessment surveillance (requiring 
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increased nursing workload), insertion of second large bore IV, and preparing the OR 

team. 

MOTIVATION 

Having a reliable PPH risk assessment tool is the first step in decreasing  rate of maternal 

deaths from hemorrhage, as well as reducing blood transfusions, length of stay, and ICU 

admissions.  

Nevertheless, providers perceive the AWHONN Method to be doubtful because it is 

oversensitive, flagging too many of the patients as high risk;  they assert that overreacting 

to false positives leads to overutilization of resources, since implementing ‘anticipatory 

interventions’ for patients who are improperly flagged as high risk leads to tremendous 

waste (blood bank time and cost, nursing time, etc.) and causes ‘alarm fatigue,’ as 

clinicians are less likely to heed the warning of an over-sensitive system.  Another reason 

providers are doubting the predictive capability of the current AWHONN tool in Epic is 

because it indicates a sharp drop in risk acuity immediately after delivery: about half of 

high risk patients suddenly become low risk. When queried, an AWHONN representative 

stated, “Since some factors remain constant and others involve interventions that occur 

during the trajectory of intrapartum and postpartum care, transitioning from high to low 

risk is not uncommon.” Clinicians are skeptical of this response, since conventional 

wisdom indicates that risk for hemorrhage is cumulative throughout admission and 

should not reduce. Clinicians would prefer to use resources already in place and in the 

EHRS workflow (via Epic) to explore a stand-alone tool or module outside of Epic - and 

this paper explores the use of Machine Learning for prediction of PPH.  
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Machine learning (ML) based prediction of clinical outcomes can be used for appropriate 

decision making and can lead to better patient care. Machine learning prediction model 

can accurately predict the risk of PPH as categorized into three classes, namely, ‘no’, 

‘low risk’ and ‘high risk’. ML also has advantages compared with traditional statistical 

models in terms of high power and accuracy to predict disease. However, there is no 

specific algorithm that performs better for the prediction model. We, therefore, conducted 

most commonly used algorithms and compared their performance in the prediction of 

PPH. 

METHOD 

Data Collection 
Data was collected from EPIC Clarity, Epic’s relational database for analytical reports 

that was created via ETL(Extract, Transform and Load) from EPIC Chronicles (Epic’s 

LIVE hierarchical database). Records of patients who delivered their babies from “NC 

Women’s Hospital” at UNC-CH Medical Center in Chapel Hill, NC during Dec. 2018 to 

May 2019 inclusive was extracted and de-identified. As to which variables should be 

queried and retrieved from the database, professional opinions from medical providers 

from UNC-CH Women’s Hospital were consulted and published papers in this regard 

were reviewed (Kramer et al., 2013; Oyelese and Ananth, 2010; Briley et al., 2014; 

Stones, Paterson and Saunders, 1993; Tessier and Pierre, 2004). The following variables 

are included in the dataset thus retrieved: 

• Mom_ID: masked ID for Mom  

• race: mom’s race( Latino, NL White, NL Black, NL Asian, NL Other) 

• age: mom’s age at delivery  
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• gravida: the total number of confirmed pregnancies that a woman has had, 

regardless of the outcome.  

• para: the number of births that a woman has had after 20 weeks gestation. 

• PUS(prior_uterine_surgery): 1 (=yes) or 0 (=no) [obtained if CS_Indications 

includes “Prior Uterine Surgery”]  

• multiple: 0 (=no, or singlenton) or 1 (=yes to multiple, twins or triplets or more)  

• MBP(mom_bmi_pg): mom’s BMI pre-gravida  

• prev_cs: 0 (=no previous C-Section) or 1 (=yes, mom had at least one previous C-

Section) 

• DSLC(days_since_last_cs): days since last C-Section  

• GA: gestational age (if multiples, is max ga) – it has a couple of NULLs 

• deltype: delivery type (if multiples, C-Section if one of the deliveries was a C-

Section, Vaginal otherwise)  

• induction: 0 (=no induction was performed on delivery) or 1 (=yes for induction)  

• BL_total= Blood Loss Total – it is the sum of BL_surgery and 

BL_flowsheet_EBL 

 

Machine Learning 
The primary objective of this study is to select potential prognostic factors to predict 

PPH. To this end, the entire prediction model building was divided into four steps: 

First, the raw data was preprocessed.  This process consisted of EDA, data cleaning, 

missing data handling, data integration, data transformation, and data reduction. Second,  
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I identified the most relevant variables which can augment the effectiveness of the 

predictive model. Third, the models were built. Finally, the classification models were 

evaluated using confusion matrices, ROC, precision, recall, f1 score, and cross validation 

score. 

EDA(Exploratory Data Analysis) 
As is demonstrated by Figure 1, there are 1988 instances in the dataset, which means that 

it is fairly small by Machine Learning standards, but it’s perfect to get started. More 

datapoints will be available along with the progress of ETL effort and this study is meant 

to test the performance of various machine learning classifying algorithms in preparation 

for the final model building that can make prediction of PPH risks against streamlined 

dataset.  Notice that the para and ga attributes have null values, which necessitates 

dropping null values. 

All attributes are numerical, except the race and deltype fields. Their type is object, so it 

could hold any kind of Python object, but since they are loaded from a CSV file 

so they must be a text attribute. Most machine learning algorithms prefer to work with 

numbers, so the text labels will be converted to numerical ones using LabelEncoder, a 

transformer from python library Scikit-Learn.  
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Figure 1: Data information 
 
 
 
Figure 2 illustrates the summary of the numeric attributes. The count, mean, min, and 

max rows are self-explanatory. Note that the null values are ignored. The std row shows 

the standard deviation, which measures how dispersed the values are. The 25%, 50%, and 

75% rows show the corresponding percentiles: a percentile indicates the value below 

which a given percentage of observations in a group of observations falls.  

All fields on the data set are for the current delivery except: PUS,  prev_cs, DSLC. It is 

worth mentioning that DSLC will be 0 when the woman never had a C-Section, which 

does not make sense as this attribute measures the extent of recovery from the previous 

C-Section; thus the bigger the number is, the healthier the patient is supposed to be. This 

being the case, zero may be interpreted as extremely poor physical condition on the part 

of the patient as if the patient had received C-Section the day before the delivery. The 

remedy of this issue is as follows: transform the zero values to the maximum number of 
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this variable, since those who have never had C-Section should be considered the 

sturdiest ones, thus assigned the largest number. 

The target variable is BL_total, which is originally a continuous number recording the 

actual amount of PPH. According to the definition of PPH published by the ACOG, we 

split the cases of this field into two classes, namely, PPH (1) with values greater than or 

equal to 1000 ml and none-PPH (0) with values less than 1000 ml.   

 

 

 

Figure 2: Summary of each numeric attribute  

Another quick way to get a feel of the type of data you are dealing with is to plot a 

histogram for each numerical attribute. A histogram shows the number of instances (on 

the vertical axis) that have a given value range (on the horizontal axis).  
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Figure 3: The histogram of each numeric attribute 

From Figure 3, we can see that these attributes have very different scales. With few 

exceptions, Machine Learning algorithms don’t perform well when the input numerical 

attributes have very different scales. This is the case for the PPH data: the total number of 

DSLC ranges from about 312 to 6687, while the age only range from 14 to 50. Note that 

scaling the target values is generally not required.  

There are two common ways to get all attributes to have the same scale: min-max scaling 

and standardization.  

Min-max scaling (many people call this normalization) is quite simple: values are shifted 

and rescaled so that they end up ranging from 0 to 1. We do this by subtracting the min 
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value and dividing by the max minus the min. Scikit-Learn provides a transformer called 

MinMaxScaler for this. It has a feature_range hyperparameter that lets you change the 

range if you don’t want 0–1 for some reason.  

Standardization is quite different: first it subtracts the mean value (so standardized values 

always have a zero mean), and then it divides by the standard deviation so that the 

resulting distribution has unit variance. Unlike min-max scaling, standardization does not 

bound values to a specific range, which may be a problem for some algorithms (e.g., 

neural networks often expect an input value ranging from 0 to 1). However, 

standardization is much less affected by outliers. Scikit-Learn provides a transformer 

called StandardScaler for standardization.  

Standardization is employed in our study to normalize the data in light of the fact that for 

some variables such as DSLC, a majority of values are of great difference with the other 

values.  

Another outstanding finding from Figure 3 is that there are many zeros in the MBP 

attribute, which doesn’t make sense. After consulting the data manager, it turned out that 

these zeros are actually missing values. I will use median value of this variable to fill 

these missing ones, as is the common practice of data preprocessing for machine learning 

algorithms.  
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Figure 4: Scatter matrix of correlation among attributes 

One essential task of EDA is to explore the correlation of each attribute to others.  The 

main diagonal (top left to bottom right) would be full of straight lines if Pandas plotted 

each variable against itself, which would not be very useful. So instead Pandas displays a 

histogram of each attribute, as is shown in Figure 4.  The less dispersed the points are, the 

more corelated the two variables are. From this figure, we can see that the most 

promising variable to predict PPH are age and DSLC. Notably, para and gravida are the 

least correlated with other features, which means they are the variables that contribute 

new information not being captured by other variables.  
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However, categorical features are not included in this figure, so the next step is to convert 

the categorical variables into numeric using get_dummies function from python. After the 

dummification, more in-depth analysis can be conducted. 

 

Figure 5: Correlation between each attribute 
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Figure 6: Correlation between each attribute based on chi-square/chi-contingency 

 

Figure 5 depicts the correlation based on the standard correlation coefficient (also called 

Pearson’s r) between every pair of attributes using the corr( ) method. The correlation 

coefficient ranges from –1 to 1. When it is close to 1, it means that there is a strong 

positive correlation. When the coefficient is close to –1, it means that there is a strong 

negative correlation. Finally, coefficients close to zero mean that there is no linear 

correlation. The attribute target is transformed from BL_total, splitting the continuous 

values into two classes based on the definition of PPH stipulated by ACOG. 

To plot Figure 6, I have created a function that returns correlation value based on chi-

square/chi-contingency, this ranges from 0 to 1.  Generally, chi-square is a non-

parametric test that is used to show association between two qualitative variables (like 
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deltype and race) ; while correlation (Pearson’s r) is used to test the correlation between 

two real-valued variables (like BMI and age).  

It can be clearly seen from the two heat maps that variables generally have low 

correlation scores with the target variable, with the highest ones being 0.19 and 0.22, 

which doesn’t bode well for the later machine learning results. Nonetheless, it has to be 

pointed out that the above correlation coefficients only measure linear correlations (“if x 

goes up, then y generally goes up/down”). It may completely miss out on nonlinear 

relationships (e.g., “if x is close to zero then y generally goes up”).  

 

Data preprocessing 
Data cleaning: All variables will be removed that contained missing values accounting 

for more than 50% of the entire data points. If the variable contains missing values, 

occupying less than 5% of the number of datapoints, we will fill it up with median value - 

this is used as a common approach when dealing with missing data in machine learning 

(Peng and Lei, 2005). Scikit-Learn provides a handy class to take care of missing values: 

SimpleImputer. We can fit the imputer instance to the dataset using the fit() method. The 

imputer has simply computed the median of each attribute and stored the result in its 

statistics_ instance variable.  Then, we can use this “trained” imputer to transform the 

dataset by replacing missing values by the learned medians. 

Oversampling using SMOTE:  
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Figure 7: Unbalanced target attribute 

As is illustrated by Figure 7, the target variable is imbalanced, which could affect the 

correlation between variables and affect the result. We can balance the data through 

undersampling or oversampling. 

Undersampling is reducing the larger class (target=0) and bring it equal to smaller class ( 

target=1). Oversampling is randomly generating samples of minority class(1 here) and 

bring it equal to majority class (0 in our dataset). This can be achieved through SMOTE 

(Synthetic Minority Over-sampling Technique). 

 

Figure 8: Balanced dataset after SMOTE 
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Now we have a perfect balanced data. I over-sampled only on the training data, because 

by oversampling only on the training data, none of the information in the test data is 

being used to create synthetic observations, therefore, no information will bleed from test 

data into the model training. 

Recursive Feature Elimination (RFE):  Recursive Feature Elimination (RFE) is based 

on the idea to repeatedly construct a model and choose either the best or worst 

performing feature, setting the feature aside and then repeating the process with the rest 

of the features. This process is applied until all features in the dataset are exhausted. The 

goal of RFE is to select features by recursively considering smaller and smaller sets of 

features. It is worth mentioning that REF was only applied to measuring the performance 

of features from the training data, not the test data,  

Dummification: For better visualization and more in depth analysis, we need to convert 

these categorical variables into numeric using get_dummies function. This function 

create different columns for each category and mark the category used to create column 

as 1 and rest other as 0.  

 

Model building 
Six classification models, namely, Random forest (RF), artificial neural network (ANN), 

Decision tree (DT), support vector machine (SVM), logistic regression (LR), and K-

nearest neighbors (KNN) were used to predict PPH risks. These models are commonly 

used to conduct classifications for supervised machine learning. 

 

Cross-validation 
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The model validation technique, 10-fold cross-validation was used assessed models 

performance and estimation of general error during the whole machine process. In this 

process, entire dataset was divided into equal 10 folds which are approximately the same 

number of events. Nine-folds was used as the training set, and the remaining 1 fold as the 

test set. It continued until each fold was used once for evaluation. The results from 10 

times validation models were then combined to provide a measure of the overall 

performance.  

Statistical analysis 
Descriptive characteristics of the study population were provided including continuous 

variables as a mean ± standard deviation. The ROC (Receiver-Operating Curve) was used 

to assess the performance of these models. Python software (version 3.6) was used to 

analyze the basic statistical problem and to construct the ANN prediction model. All 

statistical tests were two-tailed and p<0.05 will be considered significant. 

Model evaluation 
Confusion matrix: the confusion matrix has been widely used for summarizing the 

performance of the classification model. 

Accuracy: Accuracy of a model is defined as the total positive instances of the model are 

divided by the total number of instances. Accuracy parameter provides the percentage of 

correctly classified instances. The accuracy of model is defined as 

Accuracy = TP+TN/ TP+FP+TN+FN 

Precision: This parameter is used to determine the degree of the attribute to correctly 

classify the person with risk of PPH and is defined as 

Precision = TP/ TP+FN 
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Recall: This parameter is used to determine the degree of the attribute to correctly 

classify the person with non-PPH and is defined as 

Recall = TN/TN+FP 

F-measure (F1 score): Since we have two measures (Precision and Recall) it helps to 

have a measurement that represents both of them. We calculate an F-measure which uses 

Harmonic Mean in place of Arithmetic Mean as it punishes the extreme values more. The 

F-Measure will always be nearer to the smaller value of Precision or Recall. 

F1 score = 2*(Precision_/*Recall)/(Precision+Recall) 

The precision, recall and F1score are also known as quality parameters and used to define 

the quality of the predicted class. To determine the goodness of the medical diagnosis 

model,  basically four parameters are used, these three parameters are accuracy, 

precision, recall and F1. 

 



20 

 

RESULTS 

 
Figure 9: Confusion Matrices  
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Figure 10: Results from ANN model 
 
Based on Figure 9 and Figure 10, Table 1 and Figure 11 summarize the metrics of the 
performance of the six models.  
 
Models Average CV 

Accuracy (10 
folds) 

Accuracy Precision Recall F1 Score 

Logistic 
Regression 

0.56 0.61 0.82 0.61 0.68 

Decision Trees 0.88 0.77 0.81 0.77 0.79 

Random Forest 0.93 0.89 0.85 0.89 0.85 

KNN 0.75 0.87 0.78 0.87 0.83 
SVM 0.69 0.86 0.81 0.86 0.83 
ANN NA 0.88 NA NA NA 

 
Table 1: Metrics of each model 
 
Given that the data is skewed towards non-PPH, the accuracy of a degenerate baseline 
that always predicts non-PPH is calculated as 0.88 by assuming all the predictions are 
zeros.  
 
High recall, low precision: This means that most of the positive examples are correctly 
recognized (low FN) but there are a lot of false positives. 
 
Low recall, high precision: This shows that we miss a lot of positive examples (high 
FN) but those we predict as positive are indeed positive (low FP) 
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Figure 11: Comparison of the accuracy of each model 
 
 
 

 
Figure 12: ROC Curve 
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ROC is plot of True positive Rate (Recall) vs False Positive Rate. The farther the line is 

above the red dotted line the better is our prediction.  The more area we have under ROC 

curve, the better the fit. 

DISCUSSION 

PPH is a major public health concern worldwide. A major impediment to timely 

recognition and management of PPH is the ineffective mechanism to predict it. Early 

diagnosis and timely screening would help to increase the quality of a patient’s care. 

Therefore, there is a great need for the ability to predict the treatment outcome to be used 

in the proper and timely treatment decision. However, there is no exact tool in the clinical 

setting that is designed to distinguish PPH and non-PPH patients with higher accuracy. In 

this study, I developed and assessed prediction models which are based on the machine 

learning algorithms and data were collected from actual EHRS records. Nine variables 

are used to predict the target value, which is the high risk PPH with the total blood loss 

equal to or greater than 1000 ml.  Recursive Feature Elimination (RFE) finds all the 

variables relevant to the prediction of PPH and heatmap of correlations indicate that 

traditionally important factors such as age, BMI, number of babies carried, days before 

the last C-Section and induction are of great significance to the potential risk of PPH. Of 

all the models, Random Forest stands out as the best one in terms of accuracy, precision, 

recall, f1 score and cross validation score. It is worth noting that ANN, as a deep learning 

algorithm, generated the second best accuracy with a slight difference (0.01) with the one 

of Random Forest.  
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Random forest won for the following reasons. First,  it reduces overfitting problem in 

decision trees and also reduces the variance and therefore improves the accuracy by 

creating as many trees on the subset of the data and combining the output of all the trees. 

Besides, it handles non-linear variables better than other algorithms and is robust to 

outliers. In our case, the variables are mostly not linearly corelated,  as is shown by 

Figure 4 and Figure 3 demonstrates that values of most variables are immensely 

unbalanced.  

ANN churned out the second best result also because, as Random Forest, it is more 

capable of exploiting interactions between features, as is described by Figure 13 and 

Figure 14. 

   

Figure 13: Artificial Neural Network          Figure 14: ANN flow chart  

Another important observation is that the accuracy is not an ideal metric to evaluate the 

predictive ability of these models. The chief reason behind this statement is that though 

we balanced the training dataset using SMOTE, the test dataset is extremely unbalanced, 

skewing toward the non-PPH cases. Plus, the relatively small size of the entire dataset 

worsens this problem to the extent that the accuracy of most models didn’t exceed the 

baseline. We may as well abandon accuracy as a metric; however, since our goal is to 
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compare the models in predicting PPH against the currently available data, this accuracy 

carries information in this respect and will definitely be more able to differentiate the 

models when more datapoints are available.  

LIMITATIONS  

PPH Measurement 
After a vaginal delivery, the patient’s blood loss is routinely assessed and recorded as 

part of the medical record. In the delivery room, the patient’s blood often saturates 

medical supplies like laparotomy sponges (“laps”), pads, and sheets. Spills on the floor 

are also normal. The standard practice for determining the volume of blood loss is a 

provider’s subjective visual estimate. Visual estimation of blood loss (VEBL) is widely 

known to be inaccurate, with several studies finding a 30-50% underestimation of blood 

losses, especially at higher volumes.  Another quantification tool is the calibrated 

collector bag, which can be placed under the patient’s buttocks to collect lost fluid. The 

bags are calibrated and marked with volume lines that serve as an objective guide for the 

provider. Measurement via calibrated collector bags can be falsely elevated when 

amniotic fluid, urine, or sponges fall into the collector bag during delivery (Shields et al., 

2011). 

The University of North Carolina Hospitals in Chapel Hill, NC is a tertiary care hospital 

with a busy labor and delivery (L&D) unit. Currently, it does not quantify blood loss as 

standard practice after vaginal deliveries. Instead, blood loss during delivery is collected 

in a clear, non-calibrated collector bag. At the end of each delivery encounter, blood loss 

is visually estimated by looking at blood-soaked supplies and contents of the collector 

bag. UNC uses three criteria for the diagnosis of postpartum hemorrhage after a vaginal 
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delivery: (1) estimated blood loss of greater than 500 mL, (2) significant vital sign 

changes (includes HR>110, BP<90/60, O2 saturation < 95%), or (3) three uterotonic 

medications given. When one of these is met, the provider initiates Stage 1 of the OB 

hemorrhage protocol, which requires quantification of blood loss every 5-10 minutes with 

gravimetric measurement of blood-soaked supplies (“UNC”, 2017).  However, this 

portion of the current protocol is not uniformly applied by all providers, partly due to the 

subjectivity of blood loss estimation. In light of this, the target value of the dataset that 

feeds the machine learning models is intrinsically inaccurate.  

Data Quality 
Only 1988 datapoints from the time range of half an year were collected. The size of 

dataset is far from ideal to feed machine learning models, especially for ANN, a deep 

learning model which favors large datasets. That is also one of the major reasons behind 

the fact that the accuracy of all the models tested are not far beyond the accuracy of the 

degenerate baseline.  Another limitation is that there are many missing values for the 

variable DSLC (Days Since Last C-Section) and BMI, which are among the most 

important risk factors contributing to PPH. Again, more datapoints will solve the this 

problem, making the proportion of missing values insignificant.   

 

CONCLUSION: 

This study is aimed to compare the performances of various machine learning models in 

predicting the risk of PPH using the actual EHRS data from UNC-CH Women’s hospital. 

Five machine learning models (Logistic Regression, Decision Trees, Random Forest, 
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KNN, SVM) and one deep learning model (ANN) are tried and their performances are 

evaluated by cross validation and performance metrics including accuracy, precision, 

recall, f1 score and ROC curve. Random forest stands out as the best model with the 

accuracy of 0.89 and ANN the second best with 0.88.  The small size of the dataset is the 

culprit of the low accuracy compared with the accuracy of the degenerate baseline (0.88). 
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