A Regional Storm Surge Model for the Alaska Region and Updating Sea Ice Options in ADCIRC

Brian Joyce¹, Joannes Westerink¹, Dam Wiraset¹, Andre Van der Westhuysen² and Robert Grumbine²

¹Computational Hydraulics Laboratory Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame

²NWS/NCEP/Environmental Modeling Center, National Oceanic and Atmospheric Administration,College Park, Maryland

April 2018

Western Alaska LCC

- Model Description
- Sea Ice Implementation to Circulation Modelling
- Modelling Storm Surge in the Presence of Ice Coverage
 - November 2011
 - February 2011
 - January 2017
- Moving Forward

- Model Description
- Sea Ice Implementation to Circulation Modelling
- Modelling Storm Surge in the Presence of Ice Coverage
 - November 2011
 - February 2011
 - January 2017
- Moving Forward

Model Description

- Sea Ice Implementation to Circulation Modelling
- Modelling Storm Surge in the Presence of Ice Coverage
 - November 2011
 - February 2011
 - January 2017
- Moving Forward

Region

B. Joyce (University of Notre Dame)

Grid Development

8070796 elements, 4061175 nodes, 25 m coastal resolution

Grid Development

Alaska Grid Spacings

8070796 elements, 4061175 nodes, 25 m coastal resolution

M_2 Amplitude

M_2 Validation

- Good performance everywhere but Kuskokwim River
- Includes SAL, parameterized internal tide dissipation, bottom friction - all contribute to accuracy of solution

- National Centers for Environmental Prediction's Climate Forecast System Reanalysis (CFSv2) [4].
- Hourly wind speeds at a 10 m height with a horizontal resolution of 0.205 degrees by 0.204 degrees
- Hourly atmospheric pressure at a resolution of 0.5 degrees.

Ice Free Storms - August 2012

Stations

August 2012 Validation

August 2012 Validation

Red Dog Dock

Model Description

• Sea Ice Implementation to Circulation Modelling

- Modelling Storm Surge in the Presence of Ice Coverage
 - November 2011
 - February 2011
 - January 2017
- Moving Forward

Base Implementation to ADCIRC

Used by ACOE (Chapman 2005, 2009)

$$C_{d,iceoriginal} = \max\left(C_{d,Garratt}, C_{d,Chapman}\right). \tag{1}$$

where

$$C_{d,Chapman} = 0.00075 + 0.0075AF - 0.009AF^2 + 0.002AF^3$$
⁽²⁾

Fig. 2. Mean neutral drag coefficients at 10 m height $c_{\rm dato}$ derived from observations (Hartmann et al., 1994; Kottmeier et al., 1994) as a function of ice concentration $\mathcal{A}_{1}.$

- AF = area fraction ice
- Observation based
- Solely a function on AF
- Under high wind speeds, this drag coefficient essentially ignores the presence of ice coverage

[?]

$$C_D = (AF)C_{D,is} + (1 - AF)C_{D,w} + C_{D,if}$$
(3)

$$\begin{array}{l} C_{D,is} = 0.0015 \\ C_{D,w} = GarrattDrag \\ C_{D,if}(0) = 0, \ C_{D,if}(1) = 0 \\ C_{D,if}(.5) = C_{D,if,max} = .0025 \end{array}$$

- Decompose the flux coefficient into contributions which are a function of both wind speed and ice coverage
- Area weighted approach [6, 1, 2]
- Considers both the form and skin drag over ice floes
- Form drag determined by number of ice face/obstacles
- Sea ice concentration from NCEP Automated Sea Ice Concentration Analysis - 5' resolution, satellite based

Ice Parameterization - C_d

- Model Description
- Sea Ice Implementation to Circulation Modelling

• Modelling Storm Surge in the Presence of Ice Coverage

- November 2011
- February 2011
- January 2017
- Moving Forward

November 2011 Ice Coverage

Nov 2011 Ice

February 2011 Ice Coverage

Feb 2011 Ice

January 2017 Ice Coverage

Jan 2017 Ice

November 2011 Ice Coverage

Nov 2011 Ice

Stations

November 2011 Validation

November 2011 Validation

Red Dog Dock

November 2011 Ice Coverage

Nov 2011 Ice

November 2011 Effect of Ice

B. Joyce (University of Notre Dame)

February 2011 Ice Coverage

Feb 2011 Ice

February 2011 Validation

Nome

February 2011 Validation

Red Dog Dock

February 2011 Ice Coverage

Feb 2011 Ice

February 2011 Effect of Ice

January 2017 Ice Coverage

Jan 2017 Ice

Stations

January 2017 Validation

January 2017 Validation

Unalakleet

January 2017 Validation

Red Dog Dock

January 2017 Ice Coverage

Jan 2017 Ice

January 2017 Effect of Ice

- Model Description
- Sea Ice Implementation to Circulation Modelling
- Modelling Storm Surge in the Presence of Ice Coverage
 - November 2011
 - February 2011
 - January 2017
- Moving Forward

Already running with ADCIRC+SWAN — no real ice physics

WAVEWATCH III wave model

- Incorporated ice physics developed as part of an Office of Naval Research (ONR) Directed Research Initiative (DRI)
- Four different options for wave dissipation due to ice that covers a variety of ice conditions. 3 are physics based, one empirical
- Allows for two wave scattering and dispersion due to ice as well as an option for ice breakup due to waves
- Earth System Modelling Framework (ESMF) provides structure and communication paradigm for coupling to be completed

Ice Parameterization - Assumptions and Limitations

- Still significant uncertainty in air-sea-ice interaction in this context
- Only considers atmospheric side
 - Assumes proportional relationship between the wind speed and the ice drift-ocean current differential
 - Assumes proportional relationship between air-ice drag and ice-ocean drag
 - Assumes no direction change in ice drift wrt wind speed
 - Does not affect tidal solution
- Doesn't consider fast ice
- Data limitations
 - Relatively low resolution in time (only daily evolution of the ice field)
 - Missing important sea ice parameters (only area fraction at high spatial resolution)

• Couple to a sea ice model (ex. Los Alamos Sea Ice Model (CICE))

- Computes a number of factors including ice floe size, ridge height, and the presence of melt ponds
- Includes a well developed description of the drag coefficient on both the atmosphere-ice and ice-ocean interfaces [5]
- Computes ice drift speeds

$$C_{d,a-i} = C_{d,skin} + C_{d,ridge} + C_{d,floe} + C_{d,pond}$$
(4)

$$C_{d,i-o} = C_{d,skin} + C_{d,ridge} + C_{d,floe}$$
(5)

Ice ocean stress [3]

$$\tau_{i-o} = \rho_w C_{d,i-o} |u_i - u_o| (u_i - u_o)$$
(6)

Total ocean stress

$$\tau_{ocn} = (1 - AF)\tau_{a-o} + (AF)\tau_{i-o} \tag{7}$$

- Compliant with ESMF for coupling with both ADCIRC+WWIII
- Requires wind velocity, specific humidity, air potential temperature, air temperature, incoming shortwave and longwave radiation, rainfall, snowfall, sea surface temperature and salinity (Through ESMF/other model solutions)
- ADCIRC+WAVEWATCH III will be capable of providing ocean currents and sea surface gradients

- Model Description
- Sea Ice Implementation to Circulation Modelling
- Modelling Storm Surge in the Presence of Ice Coverage
 - November 2011
 - February 2011
 - January 2017
- Moving Forward

$$WSX = (1 - AF) * (WSX) + AF * WSX_{ice}$$
(8)

$$WSX_{ice} = C_{d-ice} * (IceDriftX - U/0.86) * IceDriftDiffMag$$
(9)

- Built into NWS options (NCICE = 13)
- Depth averaged current used to estimate surface current
- $C_{d-ice} = [0.0025, 0.018]$, highly dependent on sea ice type/size/thickness etc.
- Currently testing two approaches :
 - Data Driven Sea Ice Drift from CFSv2 (0.5 degree resolution)
 - Parametric Ice Drift 2 % at 30 degrees to the right of the wind speed (Nansen's rule)

Sea Ice Drift - November 2011

Paramterized Wind Drag

Sea Ice Drift

Sea Ice Drift - January 2017

Paramterized Wind Drag

Sea Ice Drift

Sea Ice Drift - Tide Impact

Sea Ice Drift Effect on M_2 amplitude

Sea Ice Drift Effect on M_2 phase

References I

LÜPKES, C., AND BIRNBAUM, G.

Surface Drag in the Arctic Marginal Sea-ice Zone: A Comparison of Different Parameterisation Concepts.

Boundary-Layer Meteorology 117, 2 (2005), 179–211.

Lüpkes, C., Gryanik, V. M., Rösel, A., Birnbaum, G., and Kaleschke, L.

Effect of sea ice morphology during Arctic summer on atmospheric drag coefficients used in climate models.

Geophysical Research Letters 40 (2013), 446-451.

MARTIN, T., TSAMADOS, M., SCHROEDER, D., AND FELTHAM, D. L.

The impact of variable sea ice roughness on changes in arctic ocean surface stress: A model study.

Journal of Geophysical Research: Oceans 121, 3 (2016), 1931–1952.

SAHA, S., MOORTHI, S., WU, X., WANG, J., NADIGA, S., TRIPP, P., BEHRINGER, D., HOU, Y.-T., YA CHUANG, H., IREDELL, M., EK, M., MENG, J., YANG, R., MENDEZ, M. P., VAN DEN DOOL, H., ZHANG, Q., WANG, W., CHEN, M., AND BECKER, E. The NCEP Climate Forecast System Version 2.

Journal of Climate 27, 6 (2014), 2185–2208.

TSAMADOS, M., FELTHAM, D. L., SCHROEDER, D., FLOCCO, D., FARRELL, S. L., KURTZ, N., LAXON, S. W., AND BACON, S.

Impact of Variable Atmospheric and Oceanic Form Drag on Simulations of Arctic Sea Ice.

Journal of Physical Oceanography 44, 5 (2014), 1329–1353.

ZIPPEL, S., AND THOMPSON, J.

Air-sea interactions in the marginal ice zone.

Elem Sci Anth 4, 95 (2016).