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ABSTRACT

Yanni Lai: Multigrid Methods for the Bidomain Equations
(Under the direction of Boyce Griffith)

The study of cardiac electrophysiology has many applications in medical practice. One

important model is the bidomain equations. In the thesis, the bidomain equations for the muscle

and for the muscle and the bath are considered. By implementing multigrid algorithms as the

preconditioner, we explore the block factorization approach for solving the bidomain equations.

The dissertation consists two parts, aiming to present the biological background and dis-

cretization for the bidomain equations, as well as the multigrid algorithms. In the first part, we

present the derivation of the formula of bidomain equations, the finite difference and finite element

discretization for the bidomain system, and semi-implicit time stepping.

In the second part, we study the key facts of both geometric multigrid and algebraic multigrid

method. We consider the with and without fibrosis cases. We implement the two multigrid methods

as both the solver for the bidomain system and the preconditioner for the block factorization

approach, and conclude that block factorization works efficiently, especially compared with the

performance of the algebraic multigrid solver. We also test the block factorization with algebraic

multigrid preconditioner on a realistic three-dimensional geometry, and obtain only a small increase

in solver iterations as the mesh becomes finer.

We discuss useful extensions of this block factorization approach on solving the bidomain

system. Since algebraic multigrid works best for Poisson-like problems, we can factorize the original

matrix into blocks with poisson like form, and apply algebraic multigrid as preconditioner to each

block to achieve good convergence.
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CHAPTER 1

Introduction

1.1 Biological Background

1.1.1 Cardiac Electrophysiology

The study of cardiac electrophysiology is concerned with the electrical activity of the heart

muscle. In a cell, the cell membrane separates its interior, which is the intracellular space, and

its exterior, which is the extracellular space. Through the membrane there are proteins called ion

channels. The difference in electric charge between the inside and outside of the cell across a cellular

membrane is the transmembrane voltage difference. When the transmembrane voltage difference

changes, the ion channels of an excitable cell can become activated, and ions can flow across the cell

membrane through the channels [2]. The nearly constant transmembrane voltage difference under

resting conditions is called the resting potential [3].

The action potential is the rapid rise and eventual fall of the transmembrane voltage. The

action potential consists of five phases: upstoke, partial re-polarization, plateau, re-polarization,

resting. A cell under resting conditions has the capacity for a change of transmembrane voltage to

more positive, which is called depolarization. The action potential begins with the upstroke, which

is the rapid depolarization. During the upstroke, there is a rapid activation of sodium channels.

Sodium ions flow into the cell through these channels, adding positive charge to the inside of the cell.

When the upstroke ends, sodium channels close rapidly. After the upstroke, the potassium channels

open, allowing the potassium ions flowing outward of the cell, making membrane potential more

negative, which is the partial re-polarization phase. The plateau phase, which is characterized by

a balance between the inward calcium current and the outward potassium current, happens after

the partial re-polarization. Following the plateau, the cell experiences the re-polarization phase,

in which the calcium channels close while the potassium channels remain open. In this phase, the

potassium ions keep moving out of the cell, causing the transmembrane voltage to more negative.
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After re-polarization, the cell return to its resting potential [4].

Figure 1.1: Five phases of the action potential: phase 0 is upstroke, phase 1 is par-

tial re-polarization, phase 2 is plateau, phase 3 is re-polarization, and phase 4 is resting.

https://www.sciencedirect.com/topics/immunology-and-microbiology/heart-contraction

1.1.2 The Structure of Cardiac Muscle

In the heart, the upper chambers are called the atria, and the lower chambers are called the

ventricles. The artria act as primer pumps that ensure blood flow to the ventricles, whereas the

ventricles are powerful pumping chambers. The left ventricle pumps oxygenated blood from the

lungs throughout the body, and the right ventricle pumps deoxygenated blood back to the lungs.

A myocyte is the spindle-shaped cell found in muscle tissue. Cardiacmyocyte is the myocyte

that account for most of the mass of the atrial and ventricular muscle. A typical cardiomyocyte

is approximately 100 µm in length and 10-25 µm in diameter. Cardiomyocytes have the ability

to contract, which allows the heart to pump. Each cardiomyocyte’s contraction is in coordination

with its neighbors. In between individual cardiomyocytes, there are intercalated disks to join them

together. The gap junctions, which are small ionic channels in cylinder shape, are contained in

the intercalated disks [5]. Most of the gap junctions in cardiac tissue are coupled end-to-end. Gap

junctions allow the transmission of ionic currents and the spread of action potentials from cell to

cell. The length of the gap junctions is about 2-12 nm, with a diameter of 2 nm [6].

There is spatial variation in the arrangement and morphology of cardiacmyocytes in the heart.

Specifically, those in the atria are different from those in the ventricle [7]. Atrial myocytes have

different gene expression patterns regarding the transcription factors, and different fibrous proteins

from the ventricular myocytes. The distribution of ion channels also differs in different locations,

leading to the regional differences of action potential shape and conduction velocity, which is the

2



velocity that cardiac muscle cells send signals to heart muscle to cause it to contract [8].

The network of macromolecules in cardiac tissue is called the extracellular matrix [9]. The

main structural protein in the extracellular matrix is the collagen. Cardiscyocytes are surrounded by

the extracellular matrix. The extracellular matrix provides structured biochemical support around

the cells, and is important for cells’ reorganization and differentiation. Collagen densities vary with

tissue type. For example, in the ventricular myocardium, which is the thick middle layer of the heart

wall, the density of collagen is higher compared with that in the inner and outer layers [7].

Figure 1.2: Cardiacmyocytes have a cylindrical shape. They are connected with each other by

the intercalated disks. There are gap junctions formed of small ionic channels contained in the

intercalated disks. https://courses.lumenlearning.com/austincc-ap1/chapter/cardiac-muscle-tissue

1.1.3 Cardiac Conduction System

In the cardiac conduction system, a group of cells send signals to the heart muscle, leading

to the contraction [2]. There are five major components of the cardiac conduction system, includ-

ing the sinoatrial (SA) node, the muscular heart tissue, the atrioventricular (AV) node, the AV

bundle, and the Purkinje fibers. Located in the upper part of the wall of the right atrium, the SA

node generates the action potential to stimulate the contraction. The excitation spreads through

the atrial myocardium and reaches the AV node located in the lower part of the right atrium.

Upon receiving the signal, the AV node fires, and excitation spreads down the bundle brunches in

the ventricles. Finally, the Purkinje fibers distribute the extraction to the ventricular myocardium [2].

3



Figure 1.3: There are five major components of the cardiac conduction system, including the

SA node, the muscular heart tissue, the AV node, the AV bundle, and the Purkinje fibers.

https://courses.lumenlearning.com/suny-ap2/chapter/cardiac-muscle-and-electrical-activity

The nodal cells refer to the cells within the SA and AV nodes. While having an action potential,

these cells have no true resting potential. There are three phases for the SA nodal action potentials:

the spontaneous depolarization that triggers the action potential, the depolarization of the action

potential, and the re-polarization. The cycle is spontaneously repeated. The membrane potential

changes in different phases corresponds primarily to the movements of calcium and potassium ions

through the ion channels [10].

1.2 Discrete Cellular Models

There are two basic types of models of cardiac electrophysiology: discrete models and con-

tinuous models. In discrete models, cardiac tissue is characterized based on individual cells, while

in continuous models, cardiac tissue is treated as a functional syncytium (cells are linked with

each other and are viewed as a whole system). Discrete models of cardiac tissue include simple

cellular automaton models, coupled map lattices [11], and lattices of the system of coupled ordinary

differential equations (ODE) [12].

In cellular automaton models, each cell is coupled to its neighbors, and has a finite number of

states. The state of cell in each time step is updated based on its state in the previous time step, as

4



well as the state of its neighbors. The same transition rule applies simultaneously to every cell. This

kind of model is easy to implement, and is computationally inexpensive [13]. One revision of the

cellular automaton models is the coupled map lattices, which involve the continuous states. The

states in these models are decided by the interactions within a lattice. To allow modeling anisotropic

propagation, the coupling strength of each interaction is different [14]. A further development of the

previous models is to add the ODEs. With this kind of model, the detailed tissue architecture at

the cell level can be modeled through the ODEs. [15]. However, this approach is computationally

expensive. Also, extra information is needed to complete these models: the composition of the

extracellular space, the information of cell size and capacitance, and the conductance of the gap

junctions [16].

1.3 Continuous Models

In the continuous models, we view cardiac tissue as a single unit composed of electrically

connected cells. The classic bidomain and monodomain models are two examples of continuous

models of cardiac muscle. The bidomain system represents cardiac tissue as a functional unit

comprised of intracellular and extracellular compartments. We assume the two compartments to be

continuous and overlapping, and are separated by a continuous cell membrane [17].

1.3.1 Derivation

The bidomain model is based on a generalized version of Ohm’s law, which states that in a

conducting body, the current density J at a specific location is proportional to the electric field E at

that location,

J = �E, (1.3.1)

where � is the conductivity of the material [18]. The electric field E is defined as the gradient of a

scalar potential �

E = �r�. (1.3.2)
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Thus

J = ��r�. (1.3.3)

The intracellular and extracellular current density Ji and Je are defined by:

Ji = ��ir�i,

Je = ��er�e,

(1.3.4)

where �i and �e represent the intracellular and extracellular conductivity tensors respectively, and

�i and �e are the electrical potential in the intracellular and extracellular space. The conductivity

tensors �i and �e account for the anisotropy of cardiac tissue.

Assume there is no external source of charge, for a volume ⌦, and denote the surface of ⌦ as

�. Then

ˆ
�
n · (Ji + Je)dS = 0. (1.3.5)

By the divergence theorem, we have

ˆ
⌦
r · (Ji + Je)d~x = 0. (1.3.6)

As the above equation should hold for all specific volumes ⌦ in the domain, thus we have

r · (Ji + Je) = 0. (1.3.7)

As a consequence of Kirchhoff’s law, any change in intracellular or extracellular current should be

due to the transmembrane current (It)

r · Ji = It = �r · Je. (1.3.8)
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Substitute Ji and Je in equations (1.3.4) to equation (1.3.8):

r · (�ir�i) = It,

r · (�er�e) = �It.
(1.3.9)

The transmembrane current (It) equals to the sum of a capacitive current (Ic), a resistive

current (Iion), and a stimuli applied across the membrane (Isti, take the positive to be the outward

direction) [19]

It = �(Ic + Iion)� Isti, (1.3.10)

where � is the surface area-to-volume ratio of the cell, and Iion represents the current flowing through

the ion channels [17]. The capacitance current is modeled by

Ic = Cm

@V

@t
. (1.3.11)

Substituting Ic in (1.3.11) into (1.3.10), we have

It = �(Cm

@V

@t
+ Iion)� Isti. (1.3.12)

Equating the first equation of (1.3.9) and (1.3.12) yields the first parabolic equation of the bidomain

system

�(Cm

@V

@t
+ Iion)� Isti = r · (�ir�i). (1.3.13)

Equating the second equation of (1.3.9) and (1.3.12) yields the second parabolic equation of the

bidomain system

��(Cm

@V

@t
+ Iion) + Isti = r · (�er�e). (1.3.14)
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1.3.2 Two Forms

Combine equation (1.3.13) and (1.3.14). For the applied stimuli, take the positive to be the

direction into the intracellular space, and Isti in equation (1.3.13) should be positive (I(vol)

i
), while

Isti in equation (1.3.14) should be negative (�I(vol)

e ). The parabolic-parabolic form of the bidomain

equations is:

r · (�ir�i) = �(Cm

@V

@t
+ Iion(u, V ))� I

(vol)

i
, (1.3.15)

r · (�er�e) = ��(Cm

@V

@t
+ Iion(u, V ))� I

(vol)

e . (1.3.16)

In equation (1.3.15), u is a set of cell-level variables, such as ionic concentrations. Functional forms

of Iion is obtained from specific electrophysiological cell models [20]. Equation (1.3.15) represents

the local conservation of current in the intracellular region, and equation (1.3.16) represents that in

the extracellular region.

The first equation of the parabolic-elliptic form of bidomain system is equation (1.3.16), with

the substitution of �i = V + �e. We obtain the second equation by adding equation (1.3.15) and

(1.3.16) together, such that

8
>>>>><

>>>>>:

r · (�ir�i) +r · (�er�e) = r · (�ir(V + �e)) +r · (�er�e),

�(Cm

@V

@t
+ Iion(u, V ))� �(Cm

@V

@t
+ Iion(u, V )) = 0,

�I(vol)

i
� I

(vol)

e = �(I(vol)

i
+ I

(vol)

e ) = �I(vol)

total
,

(1.3.17)

where I
(vol)

total
is the sum of applied stimuli. The parabolic-elliptic form is the one implemented in the

numerical tests considered herein. The complete form of the parabolic-elliptic bidomain equations is

r · (�ir(V + �e)) = �(Cm

@V

@t
+ Iion(u, V ))� I

(vol)

i
, (1.3.18)

r · ((�i + �e)r�e) = �r · (�irV )� I
(vol)

total
. (1.3.19)

We will assume I
(vol)

total
= 0, which corresponds to having I

(vol)

e = �I(vol)

i
, meaning to apply

an extracellular stimulus equal and opposite to the intracellular stimulus. The positive I
(vol)

i
and

negative I
(vol)

e corresponds to the conservation of current by injecting current into the intracellular
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space while simultaneously pulling the same amount out of the extracellular space [20].

The properties of equation (1.3.18) is similar to a parabolic PDE, specifically, a reaction-

diffusion system. Equation (1.3.19) resembles a boundary value problem, which is an elliptic PDE.

1.3.3 Boundary Condition

To solve the bidomain model, we should add the boundary conditions. Suppose the model

is defined on a volume ⌦ with � that at the boundary of the tissue. Similar as in section (1.3.1),

let Ji and Je be the intracellular and extracellular current density across the boundary respectively.

Denoting I
(surf)

i
and I

(surf)

e as the intracellular and extracellular currents per unit area applied across

the boundary, we have

n · Ji = I
(surf)

i
,

n · Je = I
(surf)

e ,

(1.3.20)

where n denotes the outward normal to the boundary. Substituting Ji and Je in (1.3.20) with those

in (1.3.4), the boundary conditions are

n · (�ir(V + �e)) = I
(surf)

i
, (1.3.21)

n · (�er�e) = I
(surf)

e . (1.3.22)
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1.3.4 Bidomain System with Bath

Figure 1.4: Domain with a myocardium subregion (⌦m) and two bath regions (⌦b).

The boundaries of only the myocardium are denoted as �m, those of only the bath

are denoted as �b, and those between the myocardium and the bath are denoted as

�i.https://www.frontiersin.org/articles/10.3389/fphys.2018.01344/full

Consider adding a conductive bath besides the myocardium, and denote the bath domain as

⌦b (figure (1.4)). In this case, the transmembrane voltage V is defined on the muscle part only,

the extracellular potential �e in the muscle is defined on the muscle and the boundary between

muscle and bath, and the extracellular potential �b in the bath is defined on the bath part and the

boundary between muscle and bath. In ⌦b, the current density Jb is

Jb = ��br�b, (1.3.23)

where �b is the conductivity in the bath region.

Assume there is no external source of charge, which means that for a volume ⌦b, the total

current entering it equals that leaves it. Denoting the surface of the volume as �b and the outward

surface normal as n, we have that

ˆ
�b

n · JbdS = 0. (1.3.24)
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Using the divergence theorem, we have

ˆ
⌦b

r · Jbd~x = 0. (1.3.25)

As the above equation should hold for all specific volumes ⌦b in the domain, thus we have

r · Jb = 0. (1.3.26)

Substituting Jb in equations (1.3.23)—(1.3.26), �b satisfies:

r · (�br�b) = 0. (1.3.27)

Let �i denote the boundary between muscle and bath. The boundary conditions for the muscle

part are

n · Ji = I
(surf)

i
, on �m,

n · Je = I
(surf)

e , on �m \ �i.

(1.3.28)

The boundary condition for the bath part is

n · Jb = I
(surf)

b
, on �b \ �i. (1.3.29)

The boundary conditions on the boundary between the muscle and the bath are

n · Je = �n · Jb, on �i and

�e = �b, on �i.

(1.3.30)
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Thus the boundary conditions for the bidomain with bath problem are

n · (�ir(V + �e)) = I
(surf)

i
, on �m, (1.3.31)

n · (�br�e) = I
(surf)

e , on �m \ �i, (1.3.32)

n · (�br�b) = I
(surf)

b
, on �b \ �i, (1.3.33)

n · (�er�e) = �n · (�br�b), on �i, (1.3.34)

�e = �b, on �i. (1.3.35)

1.3.5 The Monodomain Model

Anisotropy means that the electrical properties of cardiac tissue are different in different

directions. Assuming the the intracellular and extracellular regions to be equally anisotropic, we can

modify the bidomain system to the monodomain system. For example, we assume the conductivity

in the extracellular space to be proportional to that of the intracellular space:

�e = ��i, (1.3.36)

with ratio �. If setting I
(vol)

total
to be zero as mentioned in section 1.3.2, the equation (1.3.19) can be

written as

r · (�ir�e) = �
1

1 + �
r · (�irV ). (1.3.37)

Substituting equation (1.3.37) into equation (1.3.18) with I
(vol)

i
= 0

r · �

1 + �
(�irV ) = �(Cm

@V

@t
+ Iion(u, V )). (1.3.38)

Letting � = �

1+�
�i, the final form of monodomain equation is

r · (�rV ) = �(Cm

@V

@t
+ Iion(u, V )). (1.3.39)
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The boundary condition of this system is

n · (�rV ) = 0, (1.3.40)

assuming zero flux across the boundary.

From a computational standpoint, the major difference between the monodomain and bidomain

equations is that the monodomain equations does not include the elliptic constraint (1.3.19). The

presence of the elliptic constraint complicates the solution of the bidomain equations. From a

modeling standpoint, accounting for extracellular currents, as done in the bidomain equations but

not in the monodomain equations, is necessary to describe extracellular current sources, as in

defibrillation, and to describe the details of current flow through electrodes.

1.4 Spatial Discretization

To discretize the Bidomain system, the finite-difference method (FDM), the finite-element

method (FEM) and finite-volume method (FVM) are most commonly applied [21]. The FEM and

FVM solve the weak form of the governing equations while the FDM solve the strong form. The

advantage of using the weak form is that the boundary conditions can be easily imposed.

The FDM approximates the spatial derivatives of the continuous equations by difference

quotients. With this method, the domain is usually divided into uniform grids. The approximation

of the partial derivatives at each point are obtained from a truncated Taylor’s series expansion of

the dependent variable in terms of the values of its neighbors. This method is commonly applied

to structured meshes. FDM has been widely implemented for discretizing the monodomain and

bidomain equations [22]. Previous work [23] compared monodomain and bidomain models for action

potential propagation using FDM. They concluded that in the absence of applied currents, the

differences of the activation propogation between monodomain and bidomain models are extremely

small if the monodomain model is discretized with high-resolution grids. Saleheen [24] presented

the FDM for bidomain system with an inhomogeneous anisotropic tissue on a cubic uniform mesh.

Specifically, the entries of the conductivity tensor matrix of tissue are functions of the direction of

the fiber rotation. Another study [25] presented a higher order finite difference scheme for solving

the monodomain equation. In this study, the authors expanded the transmembrane potential in

terms of Lagrangian interpolating polynomials. By differentiating the polynomial expansion, they
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obtained the finite difference approximation, and the order of the approximation can vary according

to the order of the polynomial expansion. They tested the higher order discretization scheme for

the monodomain system on an idealized cubic geometry. For more complex geometries, in Sharma

et al. [26], the authors solved the bidomain equations on a complex fiber geometry with the FDM.

Huiskamp [27] discretized the model of the ventricle representing the myocardium of a dog using

FDM. However, this creates jagged edges on curved boundaries, which influences the calculation of

the boundary current flows. The advantage of FDM is the simplicity for implementation. But for

irregular geometries and non-uniform meshes, FDM is difficult to apply.

The FEM is also a popular method for the monodomain and bidomain equations. With this

method, the cardiac region is divided into elements. The elements can have non-uniform size and

shape. The solution is approximated by interpolating nodal values for each element using basis

functions. A previous study [28] applied FEM for solving the monodomain model to simulate the

propagation of the excitation in the cardiac tissues. The ionic currents in this work were expressed

by a modified FitzHugh-Nagumo model. Stienbach and Yang [29] studied a space-time FEM for

the bidomain equations. In their work, The discretization was based on a space-time variational

formulation involving both piecewise and continuous finite elements in the spatial and temporal

directions. Seemann et al. [30] proposed a framework using the scientific computing library PETSc to

pre-condition and solve the bidomain equation with FEM discretization. In addition, in Dal et al. [31],

a fully implicit FEM algorithm for the bidomain equations were presented. Compared with FDM,

FEM can be applied to more complex geometries [32]. In Costa et al. [33], FEM discretization was

implemented for modeling the fibrotic clefts in the heart, which are microstructural discontinuities

that disrupt the intracellular matrix. The authors developed a discontinuous finite element approach

for discretizing the bidomain equations. They compared the new approach with the traditional high

resolution continuous finite element models, and claimed the new method to be significantly more

computationally efficient. Compared with FDM, FEM is more difficult to implement in terms of

programming. To resolve these problems, a new method named finite element derived finite difference

method was developed for solving the bidomain equations [34]. In this method, a FDM mesh is

created over the FE geometry. Another limitation of FEM is indicated by Trew et al. [35], which

mentioned that FEM imposes substantial computational costs especially if the bidomain system is

solved in a discontinuous domain. To solve this problem, FVM can be considered.
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The FVM considers the small volume surrounding each node point on a mesh. With this

method, the volume integrals in a PDE that contains a divergence term are converted to surface

integrals by applying the divergence theorem. These divergence terms are considered as fluxes at the

surface of each finite volume. FVM can be easily formulated for unstructured meshes, and is popular

for the bidomain and monodomain system with complex meshes. Coudiere et al. [36] analyzed

the stability and convergence of FVM for the bidomain system with two time-stepping methods.

A previous work [37] presented solving the bidomain equations on complex geometries with fibre

rotation with FVM. In Penland et al. [38], unstructured FVM was implemented for the bidomain

equations. Trew et al. [35] developed a FVM for bidomain electrical activation in discontinuous

cardiac tissue. They considered modeling the cleavage planes, in which case the FVM method is

desirable, since no-flux boundary conditions can be easily imposed. They mentioned that FVM

has advantages over FEM for modeling cleavage planes, since FEM formulation represents cleavage

planes as whole element units and thus a cleavage plane cannot have a thickness less than the mesh

resolution. However, the FVM is a conservative discretization, since the flux entering a given volume

is assumed to be identical to that leaving the volume.

In the numerical simulations in this thesis, I will use FDM for the geometric multigrid method

(GMG) with simple two-dimensional (2D) geometries. I will use FEM for the algebraic multigrid

method (AMG) with 2D and three-dimensional (3D) geometries.

1.5 Time Discretization

The choice of time-stepping methods for the bidomain system has a strong impact on the

computational time and stability. In numerical implementation, if a direct computation of the

dependent variables can be made based on known values, the method is called explicit. For example,

the forward-Euler method is one of the basic explicit methods. With forward-Euler, the new solution

is updated based on the derivative and the solution of the previous time-step. In contrast, when the

solution is obtained by solving equations involving the current state, it is an implicit method. A

basic example of this kind of methods is the backward-Euler method. With backward-Euler, the new

solution is updated based on the derivative of the current step and the solution of the previous step.

Low order explicit time-stepping methods are very popular for solving the bidomain equations.

In Puwal et al. [39], the authors calculated the stability of the 2D homogeneous anisotropic bidomain

model discretized using FDM with forward-Euler. In Muzikant et al. [40], a modeling study of the
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bidomain system considering the fiber orientation on a 3D mesh was presented. In this study, a

two-step explicit method was used. The first step is to compute a new extracellular potential with

the elliptic equation and the transmembrane potential at the previous time step. The second step is

to apply the explicit forward-Euler method to update the transmembrane potential to the current

time-step with the parabolic equation. Santos et al. [41] presented an explicit three-step scheme

for solving the transmembrane potential with the parabolic PDE, and used the forward-Euler to

solve for the extracellular potential. Explicit methods are easy to implement. However, they suffer a

limitation in the size of time-step due to the stability issue [42].

Some research used fully implicit methods to solve the bidomain equations. In Ethier et al.

[43], the propogation of electrical potential waves with the bidomain model with the ODEs was

analyzed. Different implicit time-stepping methods of order 1 (backward-Euler) and 2 (implicit

Gear) were presented to discretize the bidomain system. According to the research, even with very

fine grids, backward-Euler can hardly provide a wave speed error below 1%. It is only by reducing

the time-step as small as that used for the forward-Euler, that the backward-Euler method provides

accurate results. In Murillo et al. [44], the implicit backward-Euler method was implemented to

solve the bidomain equations on a 2D square discretized uniformly with the FDM. Another study

[45] also used the implicit second-order Gear method for the anisotropic bidomain model discretized

on an unstructured grids. In addition, Munteanu and Pavarino [46] presented a parallel bidomain

solver with the implicit backward-Euler method. Implicit methods have a much weaker limitation

on the time-step size in terms of stability. But for bidomain equations, because they may involve

a large system of nonlinear equations, the Iion term, solving the equations involves simultaneously

updating the solutions for that large system of nonlinear equations at every time-step, which is

computationally expensive.

To take the advantage of the stability of implicit methods and the simplicity of the explicit

methods for nonlinear problems, we consider semi-implicit methods. For solving the bidomain

equations, these methods treat the Iion term explicitly and the other terms implicitly. These methods

are more stable than the explicit methods, and are less computationally expensive compared with

the fully implicit methods, since they require the solution of a linear system of equations at each

time-step, instead of a non-linear system. Multiple semi-implicit methods for bidomain equations

were introduced in Ethier et al. [43]. In that work, the authors applied first-order forward-Euler
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scheme, second-order Crank-Nicolson-Adams-Bashfort (CNAB) method, and third-order backward

differentiation formula to the diffusion term. For the method with CNAB, the second-order Adams-

Bashforth was implemented for both the ODEs and the parabolic PDEs, while Crank-Nicolson was

only applied to the PDEs. For all the methods mentioned in this research, the elliptic equation was

time-discretized using the forward-Euler.

Most implementations of the semi-implicit methods for the bidomain equations are first- or

second-order methods [47]. In Franzonem et al. [48], the authors simulated a full normal heartbeat

using the bidomain equations with ODEs. Researchers adaptively changed the time-step for different

phases (the upstroke, plateau, and downstroke). The semi-implicit method in this research discretized

the diffusion term by the backward-Euler method, and the non-linear reaction term was discretized

by the forward-Euler method. In addition, In Whiteley’s work [49], the semi-implicit method was

applied to update V and �e, and the backward-Euler was applied for the ODEs. Whiteley [50]

also developed a semi-implicit scheme which allows an adaptive numerical solution in both time

and space for the bidomain equations. The Crank-Nicolson-forward-Euler method, a second-order

semi-implicit method, averages the current and previous V and �e terms in the parabolic PDE of

the bidomain system. According to Ethier et al. [43], this method is considered accurate, as the

parabolic part has a truncation error that is second-order in time. However, One disadvantage of

this method is that when applying to irregular meshes, it is complicated to calculate the time-step

size to satisfy the stability requirement [51].

A different approach was the operator splitting technique, in which case the PDEs and ODEs

are decoupled in several ways, and are solved by different time discretization schemes. This approach

follows the idea that most ODEs in the bidomain system are non-linear and highly complex, and

thus by splitting these equations from the PDEs, the computational cost will be significantly reduced

[52]. One operator-splitting method was proposed by Sundnes et al. [53]. In this work, the authors

solved the system of ODEs using a forward method first, and used the updated u for the Iion term.

After that they applied a fully implicit scheme for the coupled PDE system. They mentioned in the

paper that this scheme had a much looser stability constraint for the time-step size compared with

the previous stated semi-implicit methods.
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1.6 Solver Approaches

After the time and spatial discretization, a linear system Ax = b is formed for the bidomain

system, which will be shown in chapter 2. In previous research, iterative solvers, geometric multigrid

solvers, and algebraic multigrid solvers were applied for solving the bidomain equations.

Iterative method starts at an approximate solution. It applies to the problem repeatedly to

reduce the error. Usually the stopping criterion is a value of the norm of the change in residual

between two iterations. One method of this type is the conjugate gradient method (CG), which

can be applied to large sparse systems that cannot be handled by direct methods. CG changes

the original problem of finding the solution of a linear into an optimization problem. A further

development of CG is the preconditioned conjugate gradient (PCG), which performs an additional

step in CG to make the original problem well-conditioned. The performance of PCG methods

depends significantly on the preconditioner applied. Generally, more expensive preconditioners lead

to less iterations to achieve the desired accuracy, with higher computational cost per iteration. In

Eason et al. [54], diagonal preconditioner was implemented for solving the bidomain system. One

preconditioner that is widely applied is the incomplete LU (ILU), which is a sparse approximation

of the LU decomposition. With this method, only parts of the original decomposed matrices are

retained, and the product of the upper and lower triangular matrix will not be the exact original

matrix. The ILU preconditioner was compared with diagonal preconditioner for the bidomain system

in a work presented by Potse et al. [23]. According to the results, the diagonal preconditioner was

much faster than ILU per iteration. However, the number of convergence iterations for the diagonal

preconditioner was greater than that of ILU. Consequently, the total runtime with the diagonal

preconditioner was twice greater than that with ILU.

Applying ILU as the preconditioner for the bidomain equations, more fill-in (a less sparse

approximation) of the approximation matrix represents the true decomposed matrix better, while

resulting in more memory cost [55]. In Gerardo-Giorda et al. [56], applying PCG-ILU to the bidomain

equations significantly reduced the number of iterations with a higher level of fill-in. When running

in parallel, the matrix is divided among processors, and each portion is solved independently by

a processor. Since there is no interaction between the submatrices, the solution in parallel only

approximates the true solution. As the amount of fill-in increases, the matrices are denser, and the

time for each PCG iteration increases. In this way, the advantage of time-saving of parallelization
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decreases. A study [41] showed that by applying the block-Jacobi decomposition, in which case ILU

is performed for the main diagonal block of the iteration matrix, PCG-ILU with a high level of

fill-in was also fast when performing with parallel processors for the bidomain equations. Successive

Over-Relaation (SOR) can also be used as a preconditioner for the bidomain system. SOR is a

variation of the Gauss-Seidel method. It uses a parameter to overweight the correction term, and

leads to a faster convergence. The symmetric SOR (SSOR) combines two SOR sweeps together, in a

way that the new iteration matrix is similar to a symmetric matrix. SSOR can be shown to provide

a speed-up compared with diagonal preconditioners as a bidomain equations’ preconditioner [55].

Weber dos Santos [57] showed that SSOR PCG provide a spped-up over diagonal preconditioning.

Other popular preconditioners for the bidomain equations are block preconditioners. With this

method, the preconditioning system is partitioned into disjoint sets of equations, and each set can

be preconditioned differently. Well-known block preconditioners for the bidomain equations with

CG are the block Jacobi and block SSOR methods. In Franzone et al. [48], a parallel solver with the

block Jacobi PCG was applied to solve the 3D monodomain and bidomain system. Pennacchino

and Simoncini [47] showed that block SSOR PCG substantially reduces the time spent to solve the

linear system, without increasing the memory requirements..

For iterative solver for large sparse problem, the generalized minimal residual method (GMRES)

is another common choice. In Pathmanathan et al. [20], performance of GMRES preconditioned

with block Jacobi was compared with GMRES without preconditioner on the bidomain model.

The authors concluded that with block Jacobi, the solving time was noticeably reduced compared

with the no preconditioner case. They also considered CG, and mentioned that the difference

of the performances of CG and GMRES were not significant. In Gerardo-Giorda et al. [56], in

order to reduce CPU time, the researchers applied the flexible GMRES (FGMRES) and solved the

preconditioner inaccurately for the monodomain and bidomain equations.

Multigrid methods(MG) are multilevel methods that recursively transfer the residual from the

finer grid to the coarser grid in order to handle the low frequency components. After solving the

problem directly on the coarsest level, the residual is interpolated back to the original fine grids.

There are multiple schemes for the interpolation and extrapolation, for example, the V-cycle, where

one starts at the finest level, working to the coarsest, and then work back to the finest. In the

numerical application, the iteration at a certain grid level is called the smoothing process, because it
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can smooth out the high frequency component of the error. The matrix transferring values from a

finer level to a coarser level is the restriction matrix, while the prolongation matrix transfer values

from the opposite. At each grid level except the coarsest one, iterative methods such as jacobi

or Gauss-seidel are applied to reduce error. Previous studies applied MG as direct solver for the

bidomain equations and obtained fast convergence [58]. In Sundnes et al. [53], the authors applied

MG for bidomain system on a 2D cardiac mesh, and concluded this method to be an efficient

solver. In Austin et al. [59], the black-box MG (BBMG), which is a revision of classical MG to deal

with discontinuous coefficients, was implemented for test problems with discontinuities arising from

inserted plunge electrodes in the heart mesh. The authors concluded that BBMG had a much faster

performance compared with classical MG. MG can also be applied as the preconditioner for PCG.

In Santos et al [41], the MG preconditioned CG was shown to be suited for quickly and accurately

solving the bidomain system, compared with direct MG solver and CG with ILU preconditioner.

Geometric multigrid (GMG) is one type of the MG that the different levels of meshes for the

same geometry are created by the user. This method is usually applied for structured methes. To

maximize the performance of GMG, it is critical to determine the number of levels. If applying

GMG as the bidomain solver in parallel, as the number of processors increases, the number of MG

levels should also increase [55]. This is due to the balance of the advantage of parallelism and the

computational cost for solving on the coarsest grid for each processor. As the coarsest grid was

solved one by one on the processors, less MG levels results in more grids in the coarsest level and

a heavier computational cost for solving on the coarsest level. In addition, memory usage should

also be considered when deciding the number of grid levels. According to Vigmond et al. [55], the

memory demand for GMG is less than direct solver, but is greater than PCG-ILU. Multiple previous

works also explored applying GMG as a preconditioner. In Weber Dos Santos et al. [41], for solving

the bidomain problem, PCG-GMG showed a much faster speed than that of PCG-ILU on both 2D

and 3D electric propagation problems. Another study [60] reported a significant smaller number

of iterations using PCG-GMG for the bidomain system than using PCG-ILU. Also, in parallel, as

the penalty for domain decomposition of ILU is substantial, the total number of iterations using

PCG-ILU suffers a large increase. However, this problem does not apply to PCG-GMG [55]. In

Weber Dos Santos et al. [61], PCG-ILU outperformed PCG-ILU with similar memory requirement

and about a 20 times faster speed with 8 and 16 processors on a 2D tissue geometry.
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Algebraic Multigrid (AMG) is another MG method that can be applied for solving the bidomain

equations. The difference between AMG an GMG is that, no information concerning the grid is

required for AMG; while the coarser grids are constructed from the finer grids for GMG. By simply

examining the matrix structure, the prolongation and restriction operatiors, as well as the coarser

representations of the matrix are generated [55]. For unstructured meshes, AMG is useful considering

the difficulties of constructing the coarser meshes. This advantage can be used when solving the

bidomain equations on the real cardiac meshes, which account for the curved surface of the heart.

In Austin et al. [62], the performance of AMG solver and PCG-ILU were compared for solving the

elliptic component of the bidomain equations on a 2D cardiac tissue. According to the results, AMG

solved the problem much faster than PCG-ILU. However, since the coarser levels components should

be setup for AMG, this method required a significant more memory than PCG-ILU. In addition,

AMG is commonly applied as a preconditioner for solving the bidomain equations [55]. In Plank et

al. [63], the performance of PCG-AMG was compared with PCG-ILU to solve the bidomain system

on two 3D rabbit ventricles meshes. The researchers concluded that AMG preconditioner is clearly

superior to the ILU preconditioner in terms of the speed of solving. Pennacchio and Simoncini

[64] applied PCG-AMG to the block form of the coefficient matrix of the bidomain system and

obtained a constant growth of 1 iteration until 168, 577 finite element discretization elements with

12 iterations to converge to a relative tolerance of 10�9. The authors’ later work [65] implemented

AMG as a preconditioner for FGMRES to the 3D left ventricle mesh, using the block form of the

coefficient matrix. The results showed an increasing of 0 or 1 iteration until 1, 841, 622 elements

with 10 iterations to converge to a relative tolerance of 10�6.
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CHAPTER 2

Basic Numerical Methods for the Bidomain Model

2.1 Finite-Difference Spatial Discretization

In the numerical experiment with geometric multigrid methods (GMG) in 2D, I use a second-

order finite-difference discretization of the bidomain equations. Consider the grid-aligned case, in

which case the conductivities are

�i =

2

64
�ix 0

0 �iy

3

75 , �e =

2

64
�ex 0

0 �ey

3

75 , �b (2.1.1)

The bidomain with bath system is

�(Cm

@V

@t
+ Iion)� I

(vol)

i
= �ix(

@
2
�e

@x2
+
@
2
V

@x2
) + �iy(

@
2
�e

@y2
+
@
2
V

@y2
),

�ix

@
2
V

@x2
+ �iy

@
2
V

@y2
+ (�ix + �ex)

@
2
�e

@x2
+ (�iy + �ey)

@
2
�e

@y2
= �I(vol)

total
,

�b

@
2
�b

@x2
+ �b

@
2
�b

@y2
= 0.

(2.1.2)

I will describe the non-aligned case in chapter 4. The spatial approximation for this system uses

second-order central differences. For example, �ix

@
2
Vi,j

@x2 + �iy

@
2
Vi,j

@y2
is approximated as

�ix

Vi+1,j + Vi�1,j � 2Vi,j

�x2
+ �iy

Vi,j+1 + Vi,j�1 � 2Vi,j

�y2
(2.1.3)

where �x
2 and �y

2 are the node spacing in the x and y directions. In the numerical simulation in

this thesis, I use uniform grids, in which case �x = �y = h.

2.2 Finite-Element Spatial Discretization

2.2.1 Bidomain Equations without Bath

To spatially discretize the bidomain equations without bath using the finite-element method,

the first step is to transform the system into its weak form, which is obtained by multiplying each
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term in the equations by a test function, together with the boundary conditions. Choosing the test

function  2 H
1(⌦) and multiplying it against the strong form of the equations, we have

ˆ
⌦
�Cm

@V

@t
 d~x�

ˆ
⌦
r · (�ir(V + �e)) d~x

+

ˆ
⌦
(�Iion(~u, V )� I

(vol)
i

) d~x�
ˆ
�m

 n · (�ir(V + �e))dS = 0,

ˆ
⌦
r · (�irV + (�i + �e)r�e) d~x+

ˆ
⌦
I

(vol)

total
 d~x�

ˆ
�m

 n · (�irV + (�i + �e)�e)dS = 0.

(2.2.1)

To obtain a weak form of the system, we apply the integration by parts, so that

ˆ
⌦
�Cm

@V

@t
 d~x+

ˆ
⌦
�ir(V + �e)r d~x

+

ˆ
⌦
(�Iion(~u, V )� I

(vol)
i

) d~x�
ˆ
�m

n · (�ir(V + �e)) dS = 0,

ˆ
⌦
�irVr d~x+

ˆ
⌦
(�i + �e)r�er d~x+

ˆ
⌦
I

(vol)

total
 d~x�

ˆ
�m

n · (�irV + (�i + �e)�e) dS = 0.

(2.2.2)

According to boundary condition (1.3.21) and (1.3.22) we have

ˆ
�m

n · (�ir(V + �e)) dS = I
(surf)

i
,

ˆ
�m

n · (�er�e) dS = I
(surf)

e .

(2.2.3)

The weak statement of the bidomain equations is

ˆ
⌦
�Cm

@V

@t
 d~x�

ˆ
⌦
(�ir(V + �e))r d~x+

ˆ
⌦
(�Iion(~u, V )� I

(vol)
i

) d~x�
ˆ
�m

 I
(surf)

i
dS = 0,

ˆ
⌦
(�irV + (�i + �e)r�e)r d~x+

ˆ
⌦
I

(vol)

total
 d~x�

ˆ
�m

 (I(surf)

e + I
(surf)

i
)dS = 0.

(2.2.4)

To obtain a numerical approximation of the weak form, we triangulate the domain into a set

of N nodes, and choose a set of basis functions  1, 2, ..., N spanning a finite-dimensional subspace

of ⌦. The basis functions used in this study satisfy an interpolation property, so that  i(xj) = �ij ,

where xj is the jth node, and the �ij is the so-called Kronecker delta function. This yields the
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Lagrangian finite element basis functions. Let

V =
X

Vi i,

�e =
X

�i i.

(2.2.5)

Let Ks be the stiffness matrix for the sth subdomain, s = i, e, or b:

(Ki)jk =

ˆ
r j · (�ir k)d~x,

(Kj)jk =

ˆ
r j · (�jr k)d~x,

(Kb)jk =

ˆ
r j · (�br k)d~x.

(2.2.6)

The discretization of the parabolic equation (1.3.18) is

�CmMV̇ +KiV +Ki�e + I = 0, (2.2.7)

where V = (V1, ..., VN ) and �e = (�1, ...,�N ) are vectors of nodal coefficients. The mass matrix Mij

is

Mij =

ˆ
 i jd~x, (2.2.8)

and

Ij =

ˆ
⌦
(I(vol)

i
+ �Iion(~u, V )) jd~x�

ˆ
�m

 jI
(surf)

i
dS. (2.2.9)

The discretization of the elliptic equation is

KiV + (Ki +Ke)�e + J = 0, (2.2.10)

where ˆ
⌦
I

(vol)

total
 jd~x�

ˆ
�m

 j(I
(surf)

i
+ I

(surf)

e )dS = Jj = 0. (2.2.11)

Applying the assumption that I
(vol)

e = �I(vol)

i
and I

(surf)

e = �I(surf)

i
, implying an extracellular

stimulus at every point where there is an intracellular stimulus with a magnitude equal and opposite.
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Since
I

(surf)

total
= I

(vol)

e + I
(vol)

i
,

I
(surf)

total
= I

(surf)

e + I
(surf)

i
,

(2.2.12)

we have ˆ
⌦
I

(vol)

total
 jd~x�

ˆ
�m

I
(surf)

total
 jd~x = Jj = 0. (2.2.13)

2.2.2 Bidomain Equation with Bath

For the bidomain problem with a conductive bath, suppose there are two disjoint domains ⌦

and ⌦b , denoting the muscle and the bath, respectively. We form the first equation of the weak

form by multiplying by a test function ⌫ 2 H
1(⌦) and integrating using the divergence theorem:

ˆ
⌦
�Cm

@V

@t
⌫d~x�

ˆ
⌦
(�ir(V + �e))r⌫d~x+

ˆ
⌦
(�Iion(~u, V )� I

(vol)
i

)⌫d~x�
ˆ
�m

⌫I
(surf)

i
dS = 0.

(2.2.14)

We form the second equation of the weak form by multiplying by a test function ' 2 H
1(⌦), and

integrating using the divergence theorem:

ˆ
⌦
(�irV + (�i + �e)r�e)r'd~x+

ˆ
⌦
I

(vol)

total
'd~x�

ˆ
�m

'(I(surf)

e + I
(surf)

i
)dS

�
ˆ
�m

n · (�er�e)'dS �
ˆ
�i

'(I(surf)

e + I
(surf)

i
)dS �

ˆ
�i

n · (�er�e)'dS = 0.
(2.2.15)

Applying the assumption that I
(vol)

e = �I(vol)

i
and I

(surf)

e = �I(surf)

i
on ⌦ and �m, respectively, we

have

ˆ
⌦
(�irV + (�i + �e)r�e)r'd~x�

ˆ
�m

n · (�er�e)'dS �
ˆ
�i

n · (�er�e)'dS = 0. (2.2.16)

Recall equation (1.3.27) for �b. To transfer this equation into its weak form, I multiply

equation (1.3.27) and the boundary condition (1.3.33) by a test function ! 2 H
1(⌦b),

ˆ
⌦b

r · (�br�b)!d~x�
ˆ
�b

n · (�br�b)!dS �
ˆ
�i

n · (�br�b)!dS = 0. (2.2.17)
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To reduce the second-order derivatives in the system, we apply the integration by parts, such that

ˆ
⌦b

�br�br!d~x�
ˆ
�b

n · (�br�b)!dS �
ˆ
�i

n · (�br�b)!dS = 0. (2.2.18)

According to boundary condition (1.3.33), the weak formula of the bath part is

ˆ
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�br�br!d~x�
ˆ
�b

!I
(surf)

b
dS �

ˆ
�i

n · (�br�b)!dS = 0. (2.2.19)

Taking ! =  on @�i, and summing equation (2.2.16) and (2.2.19), we get

ˆ
⌦
(�irV + (�i + �e)r�e)r'd~x+

ˆ
⌦b
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Due to the boundary condition (1.3.34), we have

ˆ
⌦
(�irV + (�i + �e)r�e)r'd~x+

ˆ
⌦b

�br�br!d~x�
ˆ
�b

!I
(surf)

b
dS = 0. (2.2.21)

To describe the finite-element method for the bidomain with bath case, assume there are K

nodes in ⌦, N �K nodes in �i, and M nodes in ⌦b. Suppose x1, ..., xK are in ⌦, xK+1, .., xN are in

�i, and xN+1, ..., xN+M are in ⌦b. The basis functions become

 1, ..., K , K+1, ..., N , N+1, ..., N+M , (2.2.22)

where  1, ..., K are zero in ⌦b, and  N+1, ..., N+M are zero in ⌦.

For the discretization of equation (2.1.14), let V =
P

N

j=1 Vj j , and �e =
P

N

j=1 �j j , indicating

that V and �e are considered only in ⌦ for this equation. Let V = (V1, ..., VN ) and �e = (�1, ...,�N ).

Letting  =  j , j = 1, ..., N in equation (2.1.14), the discretized first equation is

�CmMV̇ +KiV +Ki�e + I = 0, (2.2.23)
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where

Ij =

ˆ
⌦
(I(vol)

i
+ �Iion(~u, V )) jd~x�

ˆ
�m

 jI
(surf)

i
dS, (2.2.24)

and M is the N ⇥N mass stiffness matrix, and Ki is the N ⇥N stiffness matrix using �i.

For the discretization of (2.2.21), we consider V and �e in the tissue, and �b in the bath, let

' =  1, ..., N and ! =  K+1, ..., N+M . The discretization is

NX

k=1

(Vk

ˆ
⌦
(�ir k) ·r jd~x+ �k

ˆ
⌦
((�i + �e)r k) ·r jd~x) +

N+MX
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�k(

ˆ
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(�br k) ·r jd~x

�
ˆ
�b

I
(surf)

b
 jdS) = 0,

(2.2.25)

Written in matrix form, and let �b = (�K+1, ...,�M ), the discretization is

KiV + (Ki +Ke)�e = 0,

Kb�b �T = 0.
(2.2.26)

where

Tj =

ˆ
�b

I
(surf)

b
 jdS. (2.2.27)

2.3 Semi-Implicit Time Stepping Method

In the numerical experiments, we use the semi-implicit time discretization. Given the

time-step size �t, we use the notation

8
>>>>>>><

>>>>>>>:

V
n(x) = V (x, n�t),

�
n
e (x) = �e(x, n�t),

~u
n(x) = ~u(x, n�t),

�
n

b
(x) = �b(x, n�t).

(2.3.1)

In equation (2.1.23), we discretize �CmMV̇ as

�CmM(Vn �Vn�1)

�t
. (2.3.2)
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In the time discretization, the diffusion term KiV +Ki�e is treated implicitly as

KiV
n +Ki�

n

e .
(2.3.3)

We treat the reaction term Iion in equation (2.1.23) explicitly as I
n�1
ion

.

We discretize equations in (2.1.26) as

KiV
n + (Ki +Ke)�

n

e = 0,

Kb�
n

b �T = 0.
(2.3.4)

The discretized bidomain system with bath in matrix form is

2

66664

�Cm
�t

M +Ki Ki 0

Ki (1,1) (1,2)

0 (2,1) (2,2)

3

77775

2

66664

Vn

�n

�n

b

3

77775
=

2

66664

�Cm
�t

MVn�1 � I

0

T

3

77775
(2.3.5)

where the entries in the 2 by 2 matrix

2

64
(1,1) (1,2)

(2,1) (2,2)

3

75 (2.3.6)

are

kj =

ˆ
⌦
((�i + �e)r�k) ·r�j)d~x+

ˆ
⌦b

(�br�k) ·r�j)d~x. (2.3.7)
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CHAPTER 3

Multigrid for Elliptic PDEs

3.1 Classical Iterative Methods for Linear Systems

Iterative methods use an initial guess to generate a sequence of approximated solutions, and

each of the approximation is generated from the previous ones. For a linear system Ax = b, basic

iterative methods usually split the A matrix into a sum of several matrices. For example, if splitting

A into Q� (Q�A), we have

Qx = b+ (Q�A)x. (3.1.1)

This splitting can motivate an iterative process,

Qxm = b+ (Q�A)xm�1
. (3.1.2)

We can initiate the iterative process with the initial value x0. We hope to be able to choose the

matrix Q so that the iterative process will converge to the true solution x with a small number of

iterations. The following three schemes are examples of commonly used classical iterative methods:

• Richardson iteration: Q = I

xm = b+ (I �A)xm�1
. (3.1.3)

• Jacobi iteration: Q = diag(A), denoted as D

xm = D
�1(b�Rxm�1), (3.1.4)

where R = A�D.

• Gauss-Seidel: Q is the strictly lower triangular part of A, denoted as L

xm = (D + L)�1(b� Uxm�1), (3.1.5)
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where U is the strictly upper triangular part of A, with A = L+D + U .

We can rearrange equation (3.1.2) as

xm = Q
�1(Q�A)xm�1 +Q

�1b

= (I �Q
�1

A)xm-1 +Q
�1b.

(3.1.6)

For convergence analysis, subtract x = (I �Q
�1

A)x+Q
�1b from xm = (I �Q

�1
A)xm�1 +Q

�1b,

we have

(xm � x) = (I �Q
�1

A)(xm�1 � x). (3.1.7)

Take the norms on both sides:

||(xm � x)|| = ||(I �Q
�1

A)(xm�1 � x)||

 ||(I �Q
�1

A)||||(xm�1 � x)||

 ||(I �Q
�1

A)||2||(xm�2 � x)||
...

 ||(I �Q
�1

A)||m||(x0 � x)||.

(3.1.8)

Thus if

lim
m!1

||(I �Q
�1

A)||m = 0. (3.1.9)

the iterative process converges. Since for any matrix M ,

⇢(M)  ||M ||. (3.1.10)

For the natural matrix norm || · ||, where

⇢(M) = max(|�1|, ..., |�n|). (3.1.11)

If

⇢(I �Q
�1

A) < 1, (3.1.12)

the iterative process converges.
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3.1.1 Basic Idea for Multigrid Methods

Suppose for an one dimensional elliptic equation with Dirichlet boundary

�u00 = f, x 2 (0, 1) u(0) = u(1) = 0. (3.1.13)

If applying the second-order finite difference discretization

u
00(xi) ⇡

1

h2
(ui+1 � 2ui + ui�1), (3.1.14)

the linear system Au = b will be formed, where

A =
1

h2

2

66666664

�2 1 0 ...

�1 �2 1 ...

. . .

... 0 1 �2

3

77777775

, b = (b1, ..., bi), bi = f(xi). (3.1.15)

To calculate the eigenvalues for A, we are solving

�(ui+1 � 2ui + ui�1)

h2
= �ui, i = 1, ..., n, u0 = un+1 = 0. (3.1.16)

Rearranging terms

ui+1 = (2� h
2
�)ui � ui�1. (3.1.17)

which is similar to the Chebyshev polynomials of the second kind.

U0(x) = 1,

U1(x) = 2x,

Un+1(x) = 2xUn(x)� Un�1(x).

(3.1.18)

In order to transfer (3.1.17) to match the form of Chebyshev polynomials of the second kind, let

2↵ = (2� h
2
�). Assume u1 6= 0, and scale the associated eigenvector so that u1 = 1. The recurrence
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relation is
u0 = 0,

u1 = 1,

ui+1 = 2↵ui + ui�1.

(3.1.19)

Consider Uk as the kth Chebyshev polynomial of the second kind, and let ↵ satisfy

uk+1 = Uk(↵),

u1 = U0(↵) = 1,

u2 = U1(↵) = 2↵u1 � u0 = 2↵.

(3.1.20)

which match the form of Chebyshev polynomial of the second kind. As un+1 = 0,

Un(↵) = 0. (3.1.21)

Thus ↵ will be the root of the nth Chebyshev polynomial of the second kind. The roots are

↵k = cos
✓

k⇡

n+ 1

◆
. (3.1.22)

Plugging these into equation 2↵ = (2� h
2
�)

2cos
✓

k⇡

n+ 1

◆
= �h2�k + 2. (3.1.23)

Solving for �k

�k =
2

h2


1� cos

✓
k⇡

n+ 1

◆�
. (3.1.24)

Using the triggonometric formula, this can be simplified to

�k =
2

h2
sin2

✓
k⇡

2(n+ 1)

◆
. (3.1.25)

In equation (3.1.25), the integer k is the frequency. If k in the range
⇥
1, 12(n+ 1)

�
, it is a low

frequency; if it is in the range
⇥
1
2(n+ 1), n

⇤
, it is a high frequency. To show that classic iteration

methods smooth the high frequency part of the error quickly, while leaving the low frequency part
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slowly, consider the example of Richardson iteration,

uk+1 = uk + !(b�Auk). (3.1.26)

The error equation is

u� uk+1

= u� uk � !(Au�Auk)

= (I � !A)(u� uk).

(3.1.27)

Therefore
u� um = (I � !A)m(u� u0),

em = (I � !A)me0.
(3.1.28)

To show the error decay rate for different frequency, expand e0 = u� u0

e0 =
NX

k=1

�k⇠
k
, (3.1.29)

where ⇠ are the eigenvectors of A. Then

em = (I � !A)me0 =
NX

k=1

�m,k⇠
k
, (3.1.30)

where

�m,k = (1� !�k)m�k. (3.1.31)

For the kth component, the coefficient decays with rate

|�m,k|  |1� !�k|m|�k|. (3.1.32)

Plugging in values for �k,

|1� !�k| = 1� 2!

h2

✓
1� cos

✓
k⇡

n+ 1

◆◆
. (3.1.33)
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For simplicity, choose ! = h
2

4

|1� !�k| =
1

2

✓
1 + cos

✓
k⇡

n+ 1

◆◆
. (3.1.34)

According to (3.1.34), For the low frequency case, |1� !�k| 2 [12 , 1); while for the high frequency

case, |1� !�k| 2 (0, 12). According to this example, classical iterative methods, such as Richardson

iteration, only damp the high frequency components fast.

3.2 Multigrid Methods

The key ideas of multigrid methods (MG) are that, simple iterative methods often can be

constructed to rapidly eliminate high frequency errors, and that the low-frequency component of

errors on a fine mesh become high-frequency component of errors on a coarser mesh. At least for

idealized problems, through transferring the error from a fine grid to a coarse grid, we can smooth

out the original low-frequency component by classical iterative methods.

Two types of MG will be compared in this thesis, GMG and AMG. There are two types of

grid transferring in MG: restriction and prolongation. The restriction operator transfers values from

fine grids to coarse grids, while the prolongation operator extends data from coarse grids to fine

grids. The difference between AMG and GMG are the grid transferring process. For GMG, the

transferring operators are based on the geometric information (figure (3.1)).

Figure 3.1: For GMG, we use restriction operators to transfer the original problem to a coarser

mesh. After solving on the coarser mesh, we transfer the residual back to the finer mesh using the

interpolation operator. http://feflow.info/uploads/media/Stueben.pdf
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For AMG we completely ignore the geometric information when performing the grid transferring

(figure (3.2)). AMG extract all needed information from the system matrix. When the original A

matrix is given, the linear systems on the "coarser" levels are automatically constructed, without

the knowledge of the mesh.

Figure 3.2: For AMG, we ignore the geometric information when constructing the linear systems on

the "coarser" levels. http://feflow.info/uploads/media/Stueben.pdf

3.2.1 Operator Construction

According to Briggs et al. [1], it is almost universal that the coarse grid has twice the grid

spacing of the next finest grid, since using grid spacings with a ratio more than 2 provides no

advantage. For most MG practice, linear interpolation, which is the simplest of the interpolation

methods, is applied. Denoting the linear interpolation operator as Ih2h. For one dimensional problems,

it takes coarse-grid vectors and generates fine-grid vectors according to I
h

2hv
2h = vh, where

v
h

2j = v
2h
j ,

v
h

2j+1 =
1

2
(v2hj + v

2h
j+1), 0  j  n

2
� 1.

(3.2.1)
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Figure 3.3: Prolongation in 1D https://scholar.najah.edu/sites/default/files/all-thesis/

In this case, at even-numbered points, the values are transferred directly from ⌦2h to ⌦h;

while at odd-numbered points, the values are the average of the adjacent coarse-grid values [1].

Writing in matrix form, it becomes

I
h

2hv
2h =

1

2

2

666666666666666664

1

2

1 1

2

1 1

2

1

3

777777777777777775

2

66664

v1

v2

v3

3

77775

2h

=

2

666666666666666664

v1

v2

v3

v4

v5

v6

v7

3

777777777777777775

h

= vh
. (3.2.2)

For two-dimensional problems, the interpolation operator can be written as

8
>>>>>>><

>>>>>>>:

v
h

2i,2j = v
2h
i,j
, for coarse grid points

v
h

2i+1,2j =
1
2(v

2h
i,j

+ v
2h
i+1,j), for points between the two coarse grid points horizontally

v
h

2i,2j+1 =
1
2(v

2h
i,j

+ v
2h
i,j+1), for points between the two coarse grid points vertically

v
h

2i+1,2j+1 =
1
4(v

2h
i,j

+ v
2h
i,j+1 + v

2h
i,j+1 + v

2h
i+1,j+1), for points on the vertex of the square

(3.2.3)
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Figure 3.4: Prolongation in 2D https://scholar.najah.edu/sites/default/files/all-thesis/

According to Briggs et al. [1], if the real error is smooth, assuming the approximation is exact

at the coarse level, when this approximation is interpolated to the fine level, the interpolation is

smooth, and thus we should obtain a good approximation of the error in the fine level (figure (3.5a)).

However, if the real error is oscillatory, even the exact approximation of the error at the coarse level

produces a not accurate approximation of the error in the fine level after the interpolation (figure

(3.5b)).

Figure 3.5: (a) If the error (dots in the figure) on the coarse level is smooth, the interpolation (line

connecting the dots) should give a a good approximation of the error on the fine level. (b) If the

error (dots in the figure) on the coarse level is oscillatory, the interpolation (line connecting the dots)

cannot give a a good approximation of the error on the fine level [1].

To transfer from the fine level to the coarse level, we apply the restriction operators (I2h
h

).
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One common restriction operator is the full weighting operator, which is defined by

v
2h
j =

1

4
(vh2j�1 + 2vh2j + v

h

2j+1), 1  j  n

2
� 1. (3.2.4)

Writing in matrix form, it becomes

I
2h
h
vh =

1

4

2

66664

1 2 1

1 2 1

1 2 1

3

77775

2

666666666666666664

v1

v2

v3

v4

v5

v6

v7

3

777777777777777775

h

=

2

66664

v1

v2

v3

3

77775

2h

= v2h
. (3.2.5)

Figure 3.6: Restriction in 1D https://scholar.najah.edu/sites/default/files/all-thesis/

According to Briggs et al. [1], if choosing the full weighting restriction operator, we have

I
h

2h = c(Ih2h)
T
, (3.2.6)

for a scalar c, so that the prolongation and restriction operators are rescaled to be the transposes of

each other.
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In 2D the full weighting restriction operator can be written as

v
2h
ij =

1

16
[vh2i�1,2j�1 + v

h

2i�1,2j+1 + v
h

2i+1,2j�1 + v
h

2i+1,2j+1

+ 2(vh2i,2j�1 + v
h

2i,2j+1 + v
h

2i�1,2j + v
h

2i+1,2j)

+ 4vh2i,2j ], 1  i, j  n

2
� 1.

(3.2.7)

Figure 3.7: Restriction in 2D https://scholar.najah.edu/sites/default/files/all-thesis/

3.2.2 Two-grid Simple Case

MG begins with a smoothing process for the error. After the smoothing step, we reduce the

high frequency components of error. To reduce the low frequency components, we apply a coarse-grid

correction procedure. Once the problem on the coarser grid is solved, we interpolate the solution

back to the fine grid, in order to correct the fine grid approximation of the low frequency errors.

The two-grid GMG only involves one fine level and one coarse level. Suppose the elliptic PDE

after discretization on uniform grid with mesh size h is

Ahuh = fh. (3.2.8)

Let uk

h
be the approximate solution after k relaxation sweeps, the error will be

ek
h
= uh � uk

h
. (3.2.9)

The steps for a two-grid GMG are

• Approximate solution uk

h
by a classical iterative method

• Compute the residual rk
h
= fh �Ahuk

h
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• Transfer the residual to the coarse grid rk
H

= I
h

h
rk
h

• Solve the residual equation AHek
H

= rk
H

• Transfer the error to the fine grid ek
h
= I

h

H
ek
H

• Compute the new approximation uk+1
h

= uk

h
+ ek

h

In practice, we usually apply 1 to 3 relaxation sweeps before transferring to the next level.

Relaxation on the fine grid eliminates the oscillatory components of the error, leaving the error to

be smooth, which makes the interpolation work well.

3.2.3 GMG V-cycle

We can extend the two grid V-cycle to more levels. For example, in the V-cycle in figure

3.8, the GMG algorithm goes down to coarser grids (2h, 4h, 8h), and then back to (4h, 2h, h). The

algorithm is the recursive application of the following steps on each level:

Figure 3.8: Multigrid V-cycle on four levels. https://www.researchgate.net/figure/Schedule-of-grids-for-a-

V-cycle-b-W-cycle-and-c-FMG-scheme-all-on-four-levels_fig10_220690328

uh  M
h(uh

, fh)

• Pre-smoothing: apply the smoother k times to A
huh = fh with initial guess uh

0

• If ⌦h is the coarsest grid, then solve the problem

else

– Restrict the residual to the next coarser grid: r2h  R
2h
h
(fh �A

huh)

– On the coarser gird, set initial guess u2h
0 = 0
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– Apply the V-cycle for the next coarser grid

u2h  M
2h(u2h

, f2h) (3.2.10)

– Update the solution with prolongation matrix: uh  uh + P
h

2hu
2h

– Post smoothing: apply the smoother k1 times to A
huh = fh with initial guess uh

0

3.3 Algebraic Multigrid for Elliptic Equations

For all MG algorithms, the fundamental components are the sequence of grids, the intergrid

transferring operators, the relaxation scheme, and the solver on the coarsest grid. Different from

GMG, Algebraic Multigrid (AMG) requires no explicit knowledge of the problem geometry. AMG

determines coarse grids and inter-grid transfer operators based on the entries of the A matrix only.

3.3.1 Basic Idea

Suppose the one dimensional elliptic equation

�u00 = 0, x 2 ⌦ (3.3.1)

is discretized on mesh (figure 3.9) with piecewise-linear finite elements.

Figure 3.9: Discretization mesh for equation (3.3.1) http://citeseerx.ist.psu.edu/viewdoc/

Choose the test function  and multiplying it against the strong form of the equations, we

have ˆ
xn+1

x0

u
00
 dx = 0. (3.3.2)

Applying integration by parts, we have

ˆ
xn+1

x0

u
0
 
0
dx = 0. (3.3.3)
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Choose a set of basis function  1, 2, ..., N (figure (3.10)), let

u =
n+1X

i=0

ci i. (3.3.4)

Figure 3.10: Node grid xi in 1D and the basis functions  i https://www.geophysik.uni-muenchen.de

we have ˆ
xn+1

x0

 
n+1X

i=0

ci i

!0

 k
0
dx = 0,

)
n+1X

i=0

ci

ˆ
xn+1

x0

 
0
i 

0
k
dx = 0.

(3.3.5)

The entry Aik in the discretization matrix is

Aik =

ˆ
xn+1

x0

 
0
i 

0
k
dx. (3.3.6)

where
Aii =

ˆ
xn+1

x0

 
0
i 

0
idx,

=

ˆ
xi

xi�h
i� 1

2

 
0
i 

0
idx+

ˆ
xi+h

i+1
2

xi

 
0
i 

0
idx,

=

ˆ
xi

xi�h
i� 1

2

1

h
i� 1

2

1

h
i� 1

2

dx+

ˆ
xi+h

i+1
2

xi

�1
h
i+ 1

2

�1
h
i+ 1

2

dx,

=
1

h
i� 1

2

+
1

h
i+ 1

2

, for i 6= 1 or n.

(3.3.7)

Use the similar process, the ith discrete equation for u
00 is

�
 

1

h
i� 1

2

!
ui�1 +

 
1

h
i� 1

2

+
1

h
i+ 1

2

!
ui �

 
1

h
i+ 1

2

!
ui+1. (3.3.8)
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Consider another one dimensional problem with coefficients in the discrete operator

�(kux)x = 0, x 2 ⌦. (3.3.9)

If k(x) has large jumps, interpolation used in GMG can yield poor performance for this problem.

We discretize this equation with piecewise-linear finite elements. The mesh is shown in figure (3.11).

Figure 3.11: Discretization mesh for equation (3.3.9) http://citeseerx.ist.psu.edu/viewdoc

In this case, the ith discrete equation for (kux)x is

�
 
k
i� 1

2

h

!
ui�1 +

 
k
i� 1

2

h
+

k
i+ 1

2

h

!
ui �

 
k
i+ 1

2

h

!
ui+1. (3.3.10)

with each km with no jumps. If the grid spacing satisfying h
i� 1

2
= h

k
i� 1

2

, and substitute h
i� 1

2
and

h
i+ 1

2
in (3.2.8) as h

k
i� 1

2

and h

k
i+1

2

respectively, the second problem is equivalent to the first problem

�
 
k
i� 1

2

h

!
ui�1 +

 
k
i� 1

2

h
+

k
i+ 1

2

h

!
ui �

 
h
i+ 1

2

h

!
ui+1 = 0,

) ui =

 
k
i+ 1

2

k
i+ 1

2
+ k

i� 1
2

!
ui�1 +

 
k
i� 1

2

k
i+ 1

2
+ k

i� 1
2

!
ui+1.

(3.3.11)

This example provides the key idea of AMG. For both of the examples, AMG only take

into account the discretization matrix information, and construct the coarser levels based on these

information. This resolves the problem when geometric information alone is not enough for some

classes of problems, such as the second example. If considering the ith term in the discretization

matrix of the two examples

(Au)i = ai,i�1ui�1 + ai,iui + ai,i+1ui+1. (3.3.12)
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For the first example, ai,i�1 = �
✓

1
h
i� 1

2

◆
, ai,i =

✓
1

h
i� 1

2

+ 1
h
i+1

2

◆
, and ai,i+1 = �

✓
1

h
i+1

2

◆
. For

the second example, ai,i�1 = �
✓

k
i� 1

2
h

◆
, ai,i =

✓
k
i� 1

2
h

+
k
i+1

2
h

◆
, and ai,i+1 = �

✓
k
i+1

2
h

◆
.

3.3.2 AMG Algorithm

The symmetric positive definite (SPD) matrix is a symmetric matrix with all positive

eigenvalues. Consider solving the linear system

Au = f . (3.3.13)

where A is a SPD n ⇥ n matrix, and u and f are vectors in Rn. AMG algorithm is originally

developed based on the assumption that A is SPD. If A is not SPD, standard AMG will not work

effectively. Let the fine-grid points with the indices 1, 2, ..., n. According to Briggs et al. [1], the

connections within grids are determined by the undirected adjacency graph of matrix A. For entry

aij in A, if aij 6= 0, we view it as an association of vertix i and j in the graph. For example, in figure

(3.12), Xs are non-zero entries in A, which are related to links in the undirected adjacency graph

between nods. In this way, the grids and their connections can be entirely defined by matrix A.

Figure 3.12: The matrix A and the related undirected adjacency graph. Xs are non-zero entries in

A, and they are related to links in the undirected adjacency graph. http://www.math.ust.hk/

For selecting the coarse grid, AMG does not require the smooth functions to be geometrically

smooth [1]. In GMG, we choose the coarse grid that represents the smooth functions accurately, and

apply the intergrid operators that transfer the smooth functions between grids accurately. Instead,

with AMG, we only select the coarse versions of operator A, and we do not have the physical grid.
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The smoothness is defined algebraically, which is any error that is not reduced effectively by the

relaxation process.

According to equation (3.1.7), we have

em  (I �Q
�1

A)em�1
. (3.3.14)

In this case, algebraic smoothness means the size of em is not significantly less than em�1 [1]. If

choosing

||e||A = (Ae, e)
1
2 , (3.3.15)

algebraically smooth errors should have the property that equation (3.3.14)

||(I �Q
�1

A)em||A ⇡ ||em�1||A. (3.3.16)

Let the restriction matrix be R and the prolongation matrix be P , the two-level AMG algorithm

is

uh  AMG(uh
, fh)

• Perform k smoothing steps on A
huh = fh using classical iterative methods

• Compute residual rh = fh �A
huh = A

heh, and restrict it to the coarse grid by r2h = Rrh

• Solve A
2he2h = r2h on ⌦2h

• Interpolate the coarse-grid error to the fine grid and correct uh  uh + Pe
2h

• Do k smoothing steps on A
huh = fh

In AMG, the grid levels are not corresponding to a real grid, which is different from GMG.

To obtain the formula for the prolongation operator, consider dividing the points on the fine level

into group C and group F . Points i 2 C are points on both the coarse-grid and the fine-grid, while

points i 2 F are points on the fine-grid only. Suppose ei, i 2 C, represents the error that will be

interpolated from the coarse-grid to the fine-grid. For i 2 F , let the coarse-grid points that transfer

information to i belong to Ci.
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The prolongation operator P can be defined as

(Pe)i =

8
>>>><

>>>>:

ei, i 2 C,

P
j2Ci

!ijej , i 2 F.

(3.3.17)

The error at the point on both coarse-grid and fine-grid is kept the same. For error at the point only

on the fine-grid, we add the interpolation weights !ij .

Before the solution converges, there will be a vector associated with the approximated solution

Auapprox � f = �r. (3.3.18)

We seek a correction ucor to uapprox so that the exact solution is given by

u = uapprox + ucor. (3.3.19)

Substitute equation (3.3.19) to (3.3.13)

A(uapprox + ucor)� f = 0,

) Aucor + (uapprox � f) = 0.
(3.3.20)

Substitute (3.3.18) to (3.3.20)

Aucor � r = 0. (3.3.21)

which is the equation for the correction in terms of the fine level operator A and the residual r. To

solve for the correction on the coarse level, we need to transfer the residual from the fine level to the

coarse level using the restriction operator R.

Acu
c

cor �Rr = 0. (3.3.22)

We use the solution to (3.3.22) to update the solution on the finer level

unew

approx = uapprox + Puc

cor = 0. (3.3.23)
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where P is the prolongation operator. For AMG, the restriction and prolongation operator usually

have the relationship

P = R
T
. (3.3.24)

The coarse level operator Ac is constructed by the Galerkin approach. Since the residual associated

with the corrected fine level solution should vanish when transferring back to the coarse level

Rrnew = 0. (3.3.25)

Substituting (3.3.13) and (3.3.23) for rnew and unew
approx

R[Aunew

approx � f ] = 0,

) [A(uapprox + Puc

cor)� f ] = 0.
(3.3.26)

We can rearrange the second equation to

RAPuc

cor +R(Auapprox � f ]) = 0. (3.3.27)

Thus

RAPuc

cor �Rr = 0. (3.3.28)

Compare equation (3.3.28) with equation (3.3.22), the coarse level operator Ac is

Ac = RAP = P
T
AP. (3.3.29)
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CHAPTER 4

Algorithmic Aspects of Multigrid Methods for the Bidomain Equations

4.1 Preconditioning

In numerical analysis, the condition number of a function measures the change of the output

value when there is a small change in the input. For a linear system Ax = b, if choosing a slightly

different right hand side b̂, we will get a different solution x̂. The condition number of matrix

A measures how much the relative error of the right hand side influence the relative error of the

solution. We have A(x̂� x) = b̂� b, therefore

||x̂� x|| = ||A�1(b̂� b)||  ||A�1||||(b̂� b||. (4.1.1)

Since we have ||b|| = ||Ax||  ||A||||x||,

||x̂� x||
||x||  ||A||||A�1|| ||(b̂� b)||

||b|| . (4.1.2)

The number cond(A) = ||A||||A�1|| is the condition number of matrix A. The idea of preconditioning

for iterative solvers is to modify the A matrix in the linear system with another matrix Â which has

a smaller condition number. The standard formula for solving the left preconditioned system is to

use a nonsingular matrix P

P
�1

Ax = P
�1b, (4.1.3)

where P
�1

A is hopefully better conditioned than A. For the iterative methods

P
�1(Ax� b) = P

�1r,

) xn

k+1 = xn

k
+ P

�1rn
k
.

(4.1.4)

The goal of using the preconditioned system is to reduce the condition number of the original

system by considering the preconditioned matrix P
�1

A with a smaller condition number.
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4.2 Block Preconditioners

To solve the bidomain system, we can use block factorization, in which case we split the

discretization matrix into blocks. After that, we get two sub-systems Ax = b, the two A matrix

are the diagonal blocks of the original discretization of the bidomain system. In this chapter, I will

implement block factorization for both GMG tests and AMG tests, and compare its performance

with GMG and AMG direct solvers. We can write the bidomain system as

2

64
AV V AV �

A�V A��

3

75

2

64
Vn

�n

3

75 =

2

64
rV

r�

3

75 (4.2.1)

Without a bath, we have

AV V =
�Cm

4t
M +Ki,

AV � = Ki,

A�V = Ki,

A�� = Ki +Ke.

(4.2.2)

With a bath, the blocks are

AV V =
�Cm

4t
M +Ki,

AV � =


Ki 0

�
,

A�V =

2

64
Ki

0

3

75 ,

A�� =

2

64
(1,1) (1,2)

(2,1) (2,2)

3

75 .

(4.2.3)

We can define the residual as

rn
k
=

2

64
rn
V k

rn
�k

3

75 =

2

64
rV �AV V Vn

k
�AV ��n

k

r� �AV �Vn

k
�A���n

k

3

75 . (4.2.4)
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In the numerical experiments, we can use block Jacobi as the block preconditioner, in which case P

is the diagonal of A

P =

2

64
AV V 0

0 A��

3

75 , P
�1 =

2

64
A

-1

V V
0

0 A
-1

��

3

75 , (4.2.5)

which means that
Vn

k+1 = Vn

k
+A

-1

V V r
n

V k
= Vn

k
+ r̂n

V k
,

�n

k+1 = �n

k
+A

-1

��
rn
�k

= �n

k
+ r̂n

�k
.

(4.2.6)

At every time-step, we solve the parabolic problem

AV V r̂
n

V k
= rn

V k
. (4.2.7)

and the elliptic problem

A��r̂
n

�k
= rn

�k
. (4.2.8)

Another block preconditioner is the block Gauss-Seidel, in which case P is the lower triangular of

the original A matrix

P =

2

64
AV V 0

AV � A��

3

75 , P
-1

2

64
A

-1

V V
0

�A-1

��
AV �A

-1

V V
A

-1

��

3

75 . (4.2.9)

The block decomposition is

P
-1 =

2

64
I 0

0 A
-1

��

3

75 ,

2

64
I 0

�A�V I

3

75

2

64
A

-1

VV
0

0 I

3

75 . (4.2.10)

In this way

Vn

k+1 = Vn

k
+A

-1

V V r
n

V k
= Vn

k
+ r̂n

V k
,

�n

k+1 = �n

k
�A

-1

��
AV �A

-1

V V r
n

V k
+A

-1

��
rn
�k

= �n

k
+A

-1

��
(�A�V r̂

n

V k
+ rn

�k
) = �n

k
+ r̂nnew k .

(4.2.11)

At each step we solve the parabolic problem

AV V r̂
n

V k
= rn

V k
. (4.2.12)
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and the elliptic problem

A��r̂
n

new k = �A�V r̂
n

V k
+ rn

�k
. (4.2.13)

4.3 Simulation

4.3.1 GMG Performance for Simple 2D Geometries

This section considers the finite-difference discretization for the bidomain system. I will apply

GMG as a solver, GMG as a preconditioner for GMRES for the whole system, as well as GMG as a

preconditioner for the block factorization to solve the bidomain equations. Consider the discretized

bidomain system, to apply GMG, I perform k smoothing steps with classical iterative methods, such

as SOR. Decompose matrix A into the diagonal component D, the strictly lower triangular matrix

L, and the strictly upper triangular matrix U ,

A = D + L+ U. (4.3.1)

We have
Au� f = 0,

) !(Au� f)� 0,

) Du = Du+ !(Au� f),

) Du = Du+ !(L+ U �D)u� !f ,

) (D � !L)u = (+(1� !)D)u+ !(L+ U �D)u� !f ,

) (D � !L)un = (+(1� !)D)u+ !(L+ U �D)un�1 � !f .

(4.3.2)

The iteration matrix is

PSOR = (D � !L)�1(!U + (1� !)D). (4.3.3)

If ! = 1, the SOR simplifies to the Gauss-Seidel method, which is

Au� f = 0,

(D � L)un = Uun�1 + f .
(4.3.4)

which I will use as the smoother for GMG in the numerical simulation.

In the numerical tests of the anisotropy bidomain system without bath, I use Cm = 1 µFcm�2
,� =
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1400 cm�1, and

�i =

2

64
1.7 0

0 0.19

3

75 , �e =

2

64
6.2 0

0 2.4

3

75 , �b = 20, (4.3.5)

the units is mScm�1. Denote this set of conductivity values as �1, which is from Clerc’s work [66].

In the bidomain system, Iion, is the sum of ionic current I of specific types of ions. In the numerical

simulation, I use

Iion = (V � Vdepolarization)(V � Vrest)(V � Vthreshold), (4.3.6)

where Vdepolarization is maximum transmembrane voltage at depolarization, Vrest is the transmembrane

voltage at the resting condition, and Vthreshold is the transmembrane voltage when the sodium channel

opens. In the numerical experiment, Vdepolarization = 30 mV, Vrest = �85 mV, and Vthreshold =

�57 mV. The parameters are similar as those in Pathmanathan et al. [20]. The domain size is 2

cm⇥2 cm, and the mesh is discretized uniformly. Within a square of 1 cm⇥1 cm at the center of

the mesh, the initial value of V is set to 30 mV, which is similar as the maximum transmembrane

voltage difference during depolarization. Outside that square, the initial value of V is set to -85 mV,

which is the transmembrane voltage at the resting condition (figure (4.1)). At each GMG levels, the

operators are directly re-discretized using FDM. As the grids in x and y directions of the coarser

level are half of those of the finer level, if the discretization matrix of an operator in the finer level is

of size N ⇥N , that of the coarser level is of size N

2 ⇥
N

2 .

Figure (4.2) shows the relative residual plot for 32⇥ 32, 64⇥ 64, 128⇥ 128, 256⇥ 256, and

512⇥ 512 grids with with Neumann boundary conditions, for both the GMG solver and GMG as

a preconditioner for GMRES. The relative tolerance is set as 10�12 for the GMG preconditioner,

and the number of V-cycles for the GMG solver is 20. The number of sweeps at each GMG level is

2. For the GMG preconditioner, I only use 1 V-cycle at each GMRES iteration. The convergence

iterations for different time-steps are shown in table (4.1).
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Figure 4.1: Initial condition for the bidomain system without bath using a 32⇥ 32 grid

Figure 4.2: Relative residual plot for GMG solver and GMG preconditioner for GMRES with �1 for

the bidomain without bath system, with �t = 0.0125 ms
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Grid �t = 0.05 ms �t = 0.0125 ms

32⇥ 32 13 12

64⇥ 64 14 12

128⇥ 128 14 13

256⇥ 256 15 13

512⇥ 512 15 13

Table 4.1: Convergence iterations for GMG as a preconditioner approach with �1 for the bidomain

without bath system

The solution plots V and �e at t = 1 ms, and t = 5 ms are shown in figure (4.3).

Figure 4.3: Solution plots at t = 1 ms, and t = 5 ms (from left to right) showing V (top) and �e

(bottom)

According to the figures, the propagation along the x direction is faster than along the y
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direction. This is because the � in the x direction is greater than that in the y direction.

I also tried a different set of conductivity tensor values, as suggested in Granham et al. [67].

�i =

2

64
2.8. 0

0 0.26

3

75 , �e =

2

64
2.2 0

0 1.3

3

75 , (4.3.7)

in units mScm�1. Denote this set of conductivity values as �2. Figure (4.4) and table (4.2) show the

relative residual plot, as well as the convergence iterations.

Figure 4.4: Relative residual plot for GMG solver and GMG preconditioner for GMRES with �2 for

the bidomain without bath system, with �t = 0.0125 ms
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Grid �t = 0.05 ms �t = 0.0125 ms

32⇥ 32 13 12

64⇥ 64 15 13

128⇥ 128 16 13

256⇥ 256 18 14

512⇥ 512 19 14

Table 4.2: Convergence iterations for GMG as a preconditioner approach with �2 for the bidomain

without bath system

According to the results, the convergence iterations for �t = 0.05 ms are greater than those for

�t = 0.0125 ms. For different anisotropy ratios, the convergence iterations do not differ significantly

for �t = 0.0125 ms. Using GMG as a preconditioner for GMRES converges more rapidly than using

GMG as a solver. For the same grids with the same time-step size, the convergence iterations of

GMG preconditioner are 4-5 less than those of the the GMG solver.

For the bidomain with bath problem, a bath of size 2 cm⇥2 cm is added to the right of the

muscle part (figure(4.1)). The initial condition in the bath region is 0 mV. The grid spacing in the

muscle part is the same as in the bath part. The numerical results with �1 [66] are shown in figure

(4.5) and table (4.3).
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Figure 4.5: Relative residual plot for GMG solver and GMG preconditioner for GMRES with �1 for

the bidomain with bath system, with �t = 0.0125 ms

Grid �t = 0.05 ms �t = 0.0125 ms

32⇥ 32 12 11

64⇥ 64 13 12

128⇥ 128 13 13

256⇥ 256 14 13

512⇥ 512 14 13

Table 4.3: Convergence iterations for GMG as a preconditioner approach with �1 for the bidomain

with bath system

According to the results, the convergence rates for the with bath case are similar as the

without bath case with �1. The iterations do not increase significantly as the number of grids

increases.

In addition to GMG as a direct solver and as a preconditioner for GMRES, I also experiment

with the block factorization approach. I use the block Jacobi as the preconditioner for GMRES. For

each block, I use GMG as the preconditioner, in which case I perform 1 V-cycle of GMG for each
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GMRES iteration. The results for the without and with bath cases are shown in figure (4.6) and

(4.7) and table (4.4) and (4.5).

Figure 4.6: Relative residual plot for GMG solver and GMG preconditioner for GMRES with �1 for

the bidomain without bath system, with �t = 0.0125 ms

Grid �t = 0.05 ms �t = 0.0125 ms

32⇥ 32 12 12

64⇥ 64 13 13

128⇥ 128 14 14

256⇥ 256 14 14

512⇥ 512 16 16

Table 4.4: Convergence iterations for block factorization approach with �1 for the bidomain without

bath system
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Figure 4.7: Relative residual plot for block factorization approach with �1 for the bidomain with

bath system, with �t = 0.0125 ms

Grid �t = 0.05 ms �t = 0.0125 ms

32⇥ 32 13 12

64⇥ 64 13 13

128⇥ 128 14 14

256⇥ 256 15 14

512⇥ 512 16 16

Table 4.5: Convergence iterations for block factorization approach with �1 for the bidomain with

bath system

According to the results, the convergence iterations increase by 1 or 2 for both the with

and without bath cases as the number of grids increases. The number of iterations is smaller than

that of the GMG solver, while slightly greater than that of the GMG preconditioner.

I also considered the fibrosis case. Fibrosis is the situation of the expansion of extracellular

matrix and the increasing of the number of fibroblasts [68]. The existance of fibrosis forces electrical

propagation to take a zigzag pattern, which slows the conduction velocity [69] (figure 4.8). In
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numerical experiments, I generated random numbers between 0 and 1, and related different numbers

to the entries of the discretization matrix. I studied 30%, 70%, and 90% of nodes related to

fibrosis. I only consider the fibrosis in the intra-cellular space. If the random number is less than

that percentage, the associated matrix entry becomes zero. For each MG level, I re-discretize the

operators.

Figure 4.8: The existence of fibrosis (red region) forces electrical propagation to take a zigzag

pattern, which slows the conduction velocity https://www.semanticscholar.org/paper/Fibrosis-and-cardiac-

arrhythmias.-Jong-Veen/06bfb1ad1ac8028a6baa5277b215e5128f81a2a1/figure/2

Table (4.6) show the results for bidomain without bath problem, and table (4.7) shows the with

bath case. The results are using the GMG preconditioner for GMRES.

30% 70% 90%

32⇥ 32 12 11 11

64⇥ 64 12 12 11

128⇥ 128 13 12 11

128⇥ 128 13 12 12

256⇥ 256 13 12 12

512⇥ 512 14 13 12

Table 4.6: Convergence iterations for the fibrosis case with GMG as a preconditioner approach with

�1 and �t = 0.0125 ms for the bidomain without bath system
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30% 70% 90%

32⇥ 32 12 12 11

64⇥ 64 12 12 11

128⇥ 128 12 12 11

256⇥ 256 13 12 12

512⇥ 512 14 13 12

Table 4.7: Convergence iterations for the fibrosis case with GMG as a preconditioner approach with

�1 and �t = 0.0125 ms for the bidomain with bath system

According to the tables, the results for the with and without bath cases do not differ

substantially when considering the fibrosis. The convergence rate for the 90% fibrosis is slightly

higher compared with the other cases considered here.

Figure (4.8) shows the 70% fibrosis solution plot.

fibrosisplot.pdf

Figure 4.9: Solution plot for 70% at t = 1 ms fibrosis

I also explore using the block factorization approach for the fibrosis problem. Table (4.8) and

(4.9) show the results with and without baths.

30% 70% 90%

32⇥ 32 12 12 11

64⇥ 64 13 12 12

128⇥ 128 13 13 12

256⇥ 256 14 14 12

512⇥ 512 15 14 13

Table 4.8: Convergence iterations for the fibrosis case with the block factorization approach with �1

and �t = 0.0125 ms for the bidomain without bath system
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30% 70% 90%

32⇥ 32 12 12 11

64⇥ 64 13 12 12

128⇥ 128 13 13 13

256⇥ 256 14 13 13

512⇥ 512 16 14 13

Table 4.9: Convergence iterations for the fibrosis case with the block factorization approach with �1

and �t = 0.0125 ms for the bidomain with bath system

The results for block factorization shows the similar trend as using the GMG preconditioner for

GMRES. The convergence iterations do not differ significantly of different fibrosis percentage. The

convergence rate for the 90% fibrosis is the highest. Convergence iterations of GMG preconditioner

is about 0-2 less than that of the block factorization with the same grids and the same fibrosis

percentage, for the without and with bath cases.

4.3.2 AMG Performance for Simple 2D Geometries

In this section, I will present the results for applying AMG to the bidomain equations with

and without bath. The AMG algorithm is provided by PETSc (GAMG). I will show results of both

the block factorization approach and AMG applied to the full bidomain system.

As in the previous section, I set the domain size as 2 cm⇥2 cm. The initial condition is

set so that if 0.5 cm < x, y < 1.5 cm, V = 30 mV, otherwise V = 85 mV. The 1 cm⇥1 cm

square is the initially activated region(figure (4.10)). I performed numerical experiments with

16⇥ 16, 32⇥ 32, 64⇥ 64, 128⇥ 128, 256⇥ 256, 512⇥ 512, 1024⇥ 1024 grids, and with t = 0.5, 0.0125

ms. For the block factorization approach, I considered both block Jacobi and block Gauss-Seidel to

split the bidomain system into blocks. For each block, I used SOR or AMG. For the AMG applied

to the full bidomain system, I used SOR as the smoother. The relative tolerance is 10�12.

In the numerical simulations, I used the finite element discretization. I tested both the

four-noded rectangular element (QUAD4) and the three-noded triangular element (TRI3). Table

(4.10)(4.11) and figure (4.11)(4.13) show the results with conductivity �1. In the tables, BGS_S/G

denotes the block Gauss-Seidel with SOR preconditioning the parabolic block and AMG precondition-

ing for the elliptic block. J_S/G denotes the block Jacobi with SOR preconditioning the parabolic
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block and AMG preconditioning for the elliptic block. BGS_G/G denotes the block Gauss-Seidel

with AMG preconditioning for both of the parabolic and the elliptic block. AMG denotes AMG

applied to the full bidomain system.

Figure 4.10: Initial condition plot for the bidomain without bath tests

�t = 0.05ms BGS_S/G J_S/G BGS_G/G AMG

16⇥ 16 7 8 8 7

32⇥ 32 8 8 9 12

64⇥ 64 11 11 12 18

128⇥ 128 13 13 13 35

256⇥ 256 15 15 15 86

512⇥ 512 16 16 16 163

1024⇥ 1024 18 18 18 231

�t = 0.0125ms BGS_S/G J_S/G BGS_G/G AMG

16⇥ 16 7 7 7 7

32⇥ 32 8 8 8 12

64⇥ 64 10 10 11 25

128⇥ 128 12 12 12 16

256⇥ 256 13 13 13 56

512⇥ 512 14 14 15 155

1024⇥ 1024 15 15 16 286

Table 4.10: Convergence iterations with �1 for the bidomain without bath system, with element type

QUAD4
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Figure 4.11: Iteration plot for BGS_G/G and �1 for the bidomain without bath system, with

�t = 0.0125 ms and element type QUAD4

Solution plots at t = 1 ms of V and �e are shown in figure (4.12). The ionic current propagation

are similar as in figure (4.3).

Figure 4.12: Solution plots at t = 1 ms of V (left) and �e (right)
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�t = 0.05ms BGS_S/G J_S/G BGS_G/G AMG

16⇥ 16 8 6 8 9

32⇥ 32 9 8 9 14

64⇥ 64 9 10 10 21

128⇥ 128 11 11 11 51

256⇥ 256 12 12 12 120

512⇥ 512 14 14 14 160

1024⇥ 1024 16 16 16 288

�t = 0.0125ms BGS_S/G J_S/G BGS_G/G AMG

16⇥ 16 6 6 7 9

32⇥ 32 7 7 8 15

64⇥ 64 8 8 9 25

128⇥ 128 9 9 10 38

256⇥ 256 11 11 11 84

512⇥ 512 12 12 12 191

1024⇥ 1024 13 13 13 267

Table 4.11: Convergence iterations with �1 for the bidomain without bath system, with element type

TRI3
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Figure 4.13: Iteration plot for BGS_G/G and �1 for the bidomain without bath system, with

�t = 0.0125 ms and element type TRI3

According to the results, the number of iterations required to reach 10�12 increase slowly

with the increase of the number of grids with the block factorization approach. The convergence

iterations are similar for the block algorithms. The AMG solver works poorly especially for the

larger grid spacing. Thus I only tested block Gauss-Seidel with AMG preconditioning for both the

parabolic and the elliptic block for the other tests in this section.

Figure (4.14) and table (4.12) show the results with �2 [67] for the two types of elements.

QUAD4 �t = 0.05 ms �t = 0.0125 ms TRI3 �t = 0.05 ms �t = 0.0125 ms

16⇥ 16 7 7 7 6

32⇥ 32 9 8 9 8

64⇥ 64 12 10 13 10

128⇥ 128 14 13 14 11

256⇥ 256 16 15 15 13

512⇥ 512 16 16 15 14

1024⇥ 1024 18 18 17 16

Table 4.12: Convergence iterations for BGS_G/G with �2 for the bidomain without bath system
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Figure 4.14: Iteration plot for BGS_G/G and �2 for the bidomain without bath system, with

�t = 0.0125 ms, for QUAD4 (left) and TRI3 (right)

From the results, the convergence iterations with �t = 0.05 ms are slightly more than those

with �t = 0.0125 ms, which is similar as in section 4.2. In addition, the convergence iterations with

�2 are not very different from with �1, indicating that the block factorization approach is efficient

for different conductivities.

For the bidomain with bath problem, I divided the domain into two equal-spaced regions,

representing the bath and the muscle. In the muscle part, the initially activated region is of size 0.5

cm⇥1 cm (figure (4.15)).

Figure 4.15: Initial condition plot for the bidomain with bath tests

Table (4.13) and figure (4.16) show the results with �1 and the plots for �t = 0.0125 ms.
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QUAD4 �t = 0.05 ms �t = 0.0125 ms TRI3 �t = 0.05 ms �t = 0.0125 ms

16⇥ 16 6 6 6 6

32⇥ 32 7 7 7 7

64⇥ 64 10 8 8 7

128⇥ 128 11 10 9 9

256⇥ 256 12 11 10 9

512⇥ 512 13 12 11 10

1024⇥ 1024 16 14 13 11

Table 4.13: Convergence iterations for BGS_G/G with �1 for the bidomain with bath system

Figure 4.16: Iteration plot for BGS_G/G and �1 for the bidomain with bath system, with �t = 0.0125

ms, for QUAD4 (left) and TRI3 (right)

Figure (4.17) shows the solution plot of V, �e, and �b at t = 1 ms. The ionic current

propagation matches that in section 4.3.1.
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Figure 4.17: Solution plots at t = 1 ms of V (left), �e (middle), and �b (right)

Table (4.14) and figure (4.18) show the results with �2 [67] and the plots for �t = 0.0125 ms.

QUAD4 �t = 0.05 ms �t = 0.0125 ms TRI3 �t = 0.05 ms �t = 0.0125 ms

16⇥ 16 7 6 7 6

32⇥ 32 8 7 8 7

64⇥ 64 11 8 11 8

128⇥ 128 13 10 13 10

256⇥ 256 14 13 14 13

512⇥ 512 14 14 14 14

1024⇥ 1024 17 16 16 15

Table 4.14: Convergence iterations for BGS_G/G with �2 for the bidomain with bath system
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Figure 4.18: Iteration plot for BGS_G/G and �2 for the bidomain with bath system, with �t = 0.0125

ms, for QUAD4 (left) and TRI3 (right)

According to the tables, the convergence iterations for the different elements do not differ

significantly, which is similar as the without bath case. The convergence iterations of the with and

without bath cases are also close to each other, suggesting that block factorization works efficiently

for the two cases.

Besides the grid aligned case, I also tested the non-aligned anisotropy. In this situation, the

anisotropic direction is not aligned with the grid discretization. The direction I used was with

✓ = 22.5�. The results for the without bath (table (4.15) and figure (4.19)) and without bath (table

(4.16) and figure (4.20)) are shown. The solution plots for the with base case at t = 1 ms, t = 5 ms,

and t = 10 ms are shown in figure (4.21).
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�t = 0.05 ms �t = 0.0125 ms

16⇥ 16 8 7

32⇥ 32 9 8

64⇥ 64 11 9

128⇥ 128 13 11

256⇥ 256 14 13

512⇥ 512 15 14

1024⇥ 1024 15 15

Table 4.15: Convergence of the non-aligned case with BGS_G/G and �1 for the bidomain without

bath system, with QUAD4

Figure 4.19: Iteration plot or the non-aligned case with BGS_G/G and �1 for the bidomain without

bath system, with �t = 0.0125 ms and QUAD4
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�t = 0.05 ms �t = 0.0125 ms

16⇥ 16 7 7

32⇥ 32 9 8

64⇥ 64 10 9

128⇥ 128 12 10

256⇥ 256 14 13

512⇥ 512 15 14

1024⇥ 1024 15 14

Table 4.16: Convergence the non-aligned case with BGS_G/G and �2 for the bidomain with bath

system, with QUAD4

Figure 4.20: Iteration plot or the non-aligned case with BGS_G/G and �2 for the bidomain with

bath system, with �t = 0.0125 ms and QUAD4
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Figure 4.21: Solution plots at t = 1, 5, 10 ms (from left to right) of V (top) and �e (bottom), for the

non-aligned without bath case

In the solution plot, the ionic current propagates quicker in the lower-left-corner than to the

upper-right-corner direction, which is due to the tensor value with 22.5� of the direction of the grid

discretization. According to the results, the non-aligned case yields similar convergence iterations

with both �1 and �2. The convergence iterations are slightly less for the non-aligned situations than

for the aligned case.

The results for the fibrosis cases without bath are shown in table (4.17).
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�t = 0.0125ms 30% 70% 90%

16⇥ 16 6 6 6

32⇥ 32 7 7 7

64⇥ 64 8 8 8

128⇥ 128 9 9 8

256⇥ 256 11 10 10

512⇥ 512 11 12 11

1024⇥ 1024 14 13 12

Table 4.17: Convergence iterations for 30%, 70%, 90% fibrosis with BGS_G/G, �t = 0.0125 ms, �1,

and QUAD4, for the without bath case

The results for the fibrosis cases with bath are shown in table (4.18).

�t = 0.0125ms 30% 70% 90%

16⇥ 16 6 6 6

32⇥ 32 7 7 7

64⇥ 64 8 7 7

128⇥ 128 9 9 8

256⇥ 256 10 10 9

512⇥ 512 11 11 10

1024⇥ 1024 13 13 12

Table 4.18: Convergence iterations for 30%, 70%, 90% fibrosis with BGS_G/G, �t = 0.0125 ms, �1,

and QUAD4, for the with bath case

According to the results, the convergence iterations of 30% and 70% fibrosis cases are quite

similar, while those of 90% fibrosis are less than the other cases.

Solution plots at t = 1 ms of V for the 70% fibrosis are shown in figure (4.22).
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Figure 4.22: Solution plots of V for the the 70% fibrosis case at t = 1 ms of V of the without bath

case and the with bath case

From the solution plot, we can view the fuzzy boundary of the activated region, which is due

to the fibrosis in the simulation. According to the result tables, the convergence iterations of the

with and without bath cases are similar. The convergence iterations of 90% fibrosis case are about 1

iteration smaller than the other fibrosis cases. Also, the convergence iterations of all the fibrosis

cases are 1-3 iterations less than the without fibrosis tests.

4.4 Conclusion

In this section, I compared the performance of GMG solver, GMG preconditioner for

GMRES, and block factorization with GMG preconditioner for both blocks on the idealized 2D

geometry, both with and without bath. For the non-fibrosis case, the GMG solver yields the highest

convergence iterations, while the GMG preconditioner yields the lowest. Convergence iterations

only grow about 0-2 as the grid doubles in x and y directions for the GMG preconditioner and the

block factorization approach. The convergence iterations of the block factorization is 1-3 more than

those of the GMG preconditioner, and is 2-4 fewer than those of the the GMG solver, with the same

time-step size and grids. For the fibrosis cases, the 90% fibrosis case yields the least convergence

iterations.

In the AMG tests, the AMG solver performs poorly, while the block factorization schemes

yield few convergence iterations. For both the with and without bath case, the convergence iterations

with �t = 0.0125 ms increase 0-2 as the grid doubles in x and y directions. In addition, similar as in

the GMG tests, the convergence of the 90% fibrosis case are about 1 iteration smaller than the other
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cases with the same time-step size and grids. Also, the convergence iterations of all the fibrosis cases

are fewer than those of the without fibrosis cases.

In the tests in this section, block factorization converges significantly faster than the AMG/GMG

solvers. One reason is that AMG/GMG work best for Poisson-like problems. After splitting the

system into blocks, each sub-block resembles a Poisson-like form, which is ideal for the AMG/gMG

preconditioner.
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CHAPTER 5

MG Performance for Realistic Three-Dimensional Geometries

5.1 Simulation Results for Real Geometry

In this section, I will show results obtained using a realistic three-dimensional geometry for

the bidomain model with bath. The mesh I use represents the whole posterior wall of the left atrium.

The detailed geometry was collected by fast anatomical mapping with a 2� 5� 2 PentaRay catheter

[70]. The muscle region is 1.5 mm, and the bath region is 2.85 mm. I will use the AMG for the

entire system as well as the block factorization approach. The meshes I use are shown in figure (5.1),

starting from the left corner, they are named are mesh0 (the coarsest), mesh 1, mesh 2, mesh 3,

and mesh 4 (the finest). The meshes are unstructured, with different elements in the muscle (blue)

and bath (red). Except for mesh 0 and mesh 1, the muscle part is finer than the bath part on the

meshes. This is due to the purpose of considering the real heart, which has relative large bath region

compared with muscle. A coarse mesh in the bath region saves computational cost.
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Figure 5.1: Mesh 0 (the coarsest), mesh 1, mesh 2, mesh 3, mesh 4 (the finest)

As in section 4.3.2, in the tables, BGS_S/G denotes the block Gauss-Seidel with SOR

preconditioning the parabolic block and AMG preconditioning for the elliptic block. J_S/G denotes

the block Jacobi with SOR preconditioning the parabolic block and AMG preconditioning for the

elliptic block. BGS_G/G denotes the block Gauss-Seidel with AMG preconditioning for both of the

parabolic and the elliptic block. AMG denotes AMG applied to the full bidomain system as the

preconditioner. I performed numerical experiment with �t = 0.125 ms and �t = 0.0625 ms. Table

(5.1) shows the results with conductivities obtained from Clerc [66] denoted as �1, for which

�i =

2

66664

1.7 0 0

0 0.19 0

0 0 0.19

3

77775
, �e =

2

66664

6.2 0 0

0 2.4 0

0 0 2.4

3

77775
, �b = 20, (5.1.1)

the units is mScm�1.
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�t=0.125 BGS_S/G J_S/G BGS_G/G AMG

mesh0 6 7 6 8

mesh1 9 9 9 15

mesh2 12 13 11 23

mesh3 15 15 13 33

mesh4 17 17 16 59

�t=0.0625 BGS_S/G J_S/G BGS_G/G AMG

mesh0 5 5 5 7

mesh1 8 8 8 15

mesh2 11 11 10 25

mesh3 14 15 12 34

mesh4 17 17 15 58

Table 5.1: Convergence iterations with �1.

Figure 5.2: Iteration plot for BGS_G/G and �1, with �t = 0.0625 ms.

According to the table and figure, the convergence rates for the same solver with the same

mesh and different time-steps do not differ significantly. Block Gauss-Seidel with AMG for both
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blocks gives the smallest iterations. The results for the block methods differ little, while AMG

preconditioner requires significantly more iterations to converge. Thus I only use Block Gauss-Seidel

with AMG for the two blocks in the other simulations. Table (5.2) and figure (5.4) show the results

with conductivities obtained from Graham et al. [67], denoted as �2, for which

�i =

2

66664

2.8 0 0

0 0.26 0

0 0 0.26

3

77775
, �e =

2

66664

2.2 0 0

0 1.3 0

0 0 1.3

3

77775
, �b = 20, (5.1.2)

the units is mScm�1.

Figure 5.3: Iteration plot for BGS_G/G and �2, with �t = 0.0625 ms.
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�t = 0.125 ms �t = 0.0625 ms

mesh 0 6 5

mesh 1 8 7

mesh 2 10 10

mesh 3 13 13

mesh 4 16 15

Table 5.2: Convergence iterations with �2.

The convergence rates are almost similar for �1 and �2 with block Gauss-Seidel with AMG

preconditioning for both blocks. For each finer mesh, the convergence iterations only increase 2 or 3

compared with the coarser mesh.

I also test for fibrosis case. Similar as in chapter 4, I tested 30%, 70%, and 90% fibrosis, with

�1 and different time-step. The results are shown in table (5.3) and (5.4).

�t = 0.125 ms 30% 70% 90%

mesh 0 6 6 7

mesh 1 7 7 8

mesh 2 11 11 12

mesh 3 13 13 13

mesh 4 16 16 15

Table 5.3: Convergence iterations for 30%, 70%, and 90% fibrosis with BGS_G/G, �t = 0.125 ms,

and �1.
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�t = 0.0625 ms 30% 70% 90%

mesh 0 6 5 5

mesh 1 7 6 6

mesh 2 10 9 9

mesh 3 13 12 11

mesh 4 15 14 14

Table 5.4: Convergence iterations for 30%, 70%, and 90% fibrosis with BGS_G/G, �t = 0.0625 ms,

and �1.

The convergence rates for the with fibrosis cases I tested are smaller compared with the

without fibrosis cases in table (5.1), which is similar as in the fibrosis tests in section 4.3 and section

4.4. The 90% fibrosis solution plot is shown in figure (5.5).

Figure 5.4: Solution plot for 90% fibrosis at t = 1 ms

5.2 Conclusion

In this section, I tested the AMG solver and the block factorization approach. As in the

simple 2D geometries problems, the AMG solver performs poorly for solving the bidomain system,

while the block factorization shows relatively good performance with only a mild increase in the

number of iterations under grid refinement. In addition, the convergence iterations with block Jacobi

and block Gauss-seidel do not differ significantly, for both the 2D and 3D tests in chapter 4 and 5.

Since AMG is developed based on the assumption that for Mx = b, M should be SPD, as

mentioned in chapter 3. For M not in the SPD form, we need to find other way to efficiently solve
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the linear system. The purpose of this thesis is to show that we can decompose M into blocks,

with each block resemble the Poisson-type problem, which is SPD. Then we can apply AMG as

the preconditioner for each block. According to the simulation results, this approach is efficient for

solving the bidomain equations, both with and without bath.
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CHAPTER 6

Conclusion

In this dissertation, I have:

1. showed that for idealized 2D geometry, block factorization with GMG preconditioner and

GMG as a precondiitoner for GMRES are efficient methods for solving the bidomain equations

(Chapter 4); and

2. showed that for idealized 2D geometry, block factorization with AMG preconditioner is an

efficient method for solving the bidomain equations (Chapter 4); and

3. showed that for 3D geometry representing the realistic whole posterior wall of the left atrium,

block factorization is an efficient method for solving the bidomain equations (Chapter 5); .

For the idealized geometries, I considered both bidomain equations with and without bath.

The realistic geometry contains both the myocardium and the bath. For all three cases listed above,

I considered different conductivities, as well as different time-step sizes. From the simulation results,

convergence iterations with �t = 0.0125 ms for the tests on the simple 2D geometries with block

factorization approach increase about 0-2 iterations as the grid doubles in both x and y directions

for the two different sets of conductivities.

In the GMG section, I experimented from 32⇥ 32 grids until 512⇥ 512 grids. For both the

with and without bath casess, the convergence iterations of GMG solver is 4-5 more than those of

the GMG preconditioner with the same conductivity and grids at �t = 0.0125 ms. The convergence

iterations of the block factorization is 1-3 more than those of the GMG preconditioner, while is 2-4

fewer than those of the the GMG solver. For the block factorization and the GMG preconditioner,

convergence iterations with time-step �t = 0.05 ms are about 1-3 more than those with �t = 0.0125

ms at the same grids. In addition, I considered the fibrosis case, which is the the expansion of

extracellular matrix and the increasing of the number of fibroblasts in the myocardium. I considered

30%, 70%, and 90% fibrosis cases, with GMG preconditioner and block factorization. Convergence
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iterations of GMG preconditioner is about 1-2 fewer than those of the block factorization of the same

grids with the same fibrosis percentage, both for the with and without bath casess. The convergence

iterations of the 90% case are about 1-2 iterations smaller than the other cases with the same grids.

In the AMG section, I experimented from 32⇥32 grids until 1024⇥1024 grids. The convergence

iterations of AMG direct solver are growing fast, while those of the block factorization approach

increase about 0-2 as the grid doubles in x and y directions. I considered three block factorization

approaches for the bidomain without bath case, and the convergence iterations are almost similar

of the three methods. Similar as in the GMG section, for the two different conductivities and for

both the with and without bath cases, the convergence iterations with �t = 0.0125 ms increase

0-2 as the grid doubles in x and y directions. In addition, I considered the non-aligned anisotropy

case, of which the ionic current does not propagate in the directions parallel to the grids. I tested

with 22.5�. In this case, convergence iterations increase at about 0-2 as the grid doubles in the

x and y directions, for both the with and without bath casess. The convergence iterations of the

non-aligned case are 1-2 fewer than those of the aligned case, when using the rectangular element

and �t = 0.0125 ms. I also considered the 30%, 70%, and 90% fibrosis. Similar as in the GMG

section, the convergence iterations of 90% fibrosis are 1 smaller than the other cases with the same

grids. Also, the convergence iterations of all the fibrosis cases are fewer than those without fibrosis

tests.

Similar as in the AMG section, in the realistic geometry section, the convergence iterations

with different block factorization approaches are quite similar, growing 2-3 iterations as the mesh

becomes finer. The AMG solver still performs poorly. For the fibrosis tests, similar as the in the

GMG and AMG section, the convergence iterations of 90% fibrosis is the smallest.

The main contribution of this thesis is to show that with the block factorization approach, of

which the sub-blocks are preconditioned with multigrid methods, we can obtain a mild increase in

the number of iterations under grid refinement for solving the bidomain equations. Since AMG and

GMG perform well for Poisson-like problems, for non-Poisson-like problems, such as the bidomain

equations, we can decompose the operator matrix into Poisson-like blocks using methods such as

block Jacobi and block Gauss-seidel, and apply AMG or GMG preconditioner to each sub-block.
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