
QUEUING SYSTEMS WITH STRATEGIC AND LEARNING CUSTOMERS

Yichen Tu

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in

partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department

of Statistics and Operations Research.

Chapel Hill

2019

Approved by:

Nur Sunar

Serhan Ziya

Nilay Tanik Argon

Chuanshu Ji

Vidyadhar Kulkarni



c©2019

Yichen Tu

ALL RIGHTS RESERVED

ii



ABSTRACT

YICHEN TU: QUEUING DESIGN WHEN CUSTOMERS ARE STRATEGIC

(Under the direction of Nur Sunar and Serhan Ziya)

In many service systems customers are strategic and can make their own decisions. In particular,

customers can be delay-sensitive and they will leave the system if they think the waiting time is too

long. For the service provider, it is important to understand customers’ behaviors and choose the

appropriate system design. This dissertation consists of two research projects.

The first project studies the pooling decision when customers are strategic. It is generally

accepted that operating with a combined (i.e., pooled) queue rather than separate (i.e., dedicated)

queues is beneficial mainly because pooling queues reduces long-run average sojourn time. In fact,

this is a well-established result in the literature when jobs cannot make decisions and servers and

jobs are identical. An important corollary of this finding is that pooling queues improves social

welfare in the aforementioned setting. We consider an observable multi-server queueing system

which can be operated with either dedicated queues or a pooled one. Customers are delay-sensitive

and they decide to join or balk based on queue length information upon arrival. In this setting, we

prove that, contrary to the common understanding, pooling queues can considerably increase the

long-run average sojourn time so that the pooled system results in strictly smaller social welfare (and

strictly smaller consumer surplus) than the dedicated system under certain conditions. Specifically,

pooling queues leads to performance loss when the arrival-rate-to-service-rate ratio and the relative

benefit of service are both large. We also prove that performance loss due to pooling queues can be

significant. Our numerical studies demonstrate that pooling queues can decrease the social welfare

(and the consumer surplus) by more than 95%. The benefit of pooling is commonly believed to

increase with the system size. In contrast to this belief, our analysis shows that when delay-sensitive

customers make rational joining decisions, the magnitude of the performance loss due to pooling

can strictly increase with the system size.
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The second project studies the learning behavior when customers don’t have full information

of the service speed. We consider a single-server queueing system where customers make join-

ing and abandonment decisions when the service rate is unknown. We study different ways in

which customers process service-related information, and how these impact the performance of a

service provider. Specifically, we analyze forward-looking, myopic and naive information process-

ing behaviors by customers. Forward-looking customers learn about the service rate in a Bayesian

framework by using their observations while waiting in the queue. Moreover, they make their

abandonment decisions considering both belief and potential future payoffs. On the other hand,

naive customers ignore the available information when they make their decisions. We prove that

regardless of the way in which the information is processed by customers, a customer’s optimal

joining and abandonment policy is of threshold-type. There is a rich literature that establishes that

forward-looking customers are detrimental to a firm in settings different than queueing. In contrast

to this common understanding, we prove that for service systems, forward-looking customers are

beneficial to the firm under certain conditions.
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CHAPTER 1

Introduction

One of the fundamental questions for services that are operated by multiple servers has been whether

to run the system with separated queues or a combined one. These queueing configurations are called

dedicated and pooled, respectively. It is not difficult to see why pooling separate queues might be appealing:

a pooled system uses the available service capacity more efficiently because under pooling no server idles as

long as there are customers waiting, a possibility that exists when individual queues are kept separated. The

benefit of pooling is well established in the operations management literature: when servers are identical and

customers are homogeneous in their service requirements, pooling queues is proven to improve efficiency

by reducing idleness and the expected waiting time in the system.

When studying the age-old question of to pool or not to pool, the vast majority of the literature implicitly

assumed that customers are indifferent about how long they wait for service and have no say in their joining

decisions. However, a common feature of many queueing systems in practice is that customers are delay-

sensitive and decide whether to join a queue depending on their expected delay. Thus, it is important to

analyze systems with such customers, and understand if pooling is still preferable in these systems. This is

the primary objective of this paper.

The question of whether to operate a dedicated system or a pooled system is relevant in many service

settings from shipping lines at the ports to voting lines in elections (The Financial Times, 2015; Hong et al.,

2015; Cattani and Schmidt, 2005; Karacostas, 2018; The NYTimes, 2016). The first project studies this

question by analyzing a model in which delay-sensitive customers have access to their expected delay infor-

mation (e.g., through observing the queue length or by receiving delay information) and make their joining

decisions based on that information. Our model is motivated by various practical settings where the service

is provided for free. Two of these settings are explained below.
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The first example is the design of call centers. Many organizations are grappling with the question of

whether to consolidate their call centers or not (Rodriguez, 2014; Xerox, 2013; Southwest, 2012). With

consolidation, calls are processed in a single large call center, rather than separate, smaller and typically

region-specific call centers. In practice, the key benefit of consolidation is believed to be the efficient use

of resources due to pooling, thereby improving customer satisfaction with the same or even less number of

resources (Xerox, 2013). However, these anticipated benefits do not take customer behavior into account. In

many call centers, callers receive queue length or expected delay information, and based on that information,

they may choose not to join the system. (See Ibrahim (2018) for a literature review of such systems.)

The second example is the design of internal services in large organizations. For such organizations,

there has long been a discussion on whether support services such as information technology, consulting

and purchasing should be shared across different units of the organization or administered in a decentral-

ized manner where these services are provided within each individual unit (Schmidt, 1997; Azziz, 2014;

Bondarouk, 2014). Thus, in the management of internal services, the question of whether to operate a

dedicated system or a pooled one is of paramount importance. Within many organizations, such as govern-

ment agencies and universities, internal services are provided for free (see, e.g., page 113 of (Armbrüster,

2006) and (UAFS, 2018)), and successful implementations of such services typically rely on information

sharing, which enables members of the organization to observe and identify inefficiencies such as service

congestion and delays (Campbell Public Affairs Institute, 2017). Sharing support services is aimed to im-

prove organizational efficiency by tapping into the operational benefit of pooling (Mader and Roth, 2015;

U.S. Department of the Treasury, 2017). However, the design of such services also needs to account for the

user behavior: if users within an organization face long delays in their service requests, they could give up

solutions offered by the organization.

It is perhaps worth noting that the dedicated designs in both of these examples share a key feature: An

arrival has the options of only joining her dedicated line or leaving the system.

Motivated by these practical settings, our objective is to develop and analyze a stylized formulation that

centers on the following three questions: (i) How do delay-sensitive customers’ rational joining decisions

alter the basic calculus for the choice between pooled and dedicated systems in services with observable

queue length (or delay information)? If pooling is not always preferable in such settings, what are the

conditions under which the dedicated system is preferable? (ii) How large is the performance gain due to

switching from one system design to another? (iii) How does the system size impact such performance

2



gain? We are not aware of any prior work that provides a theoretical analysis of the comparison between

pooled versus dedicated queues for an observable queueing system when customers make rational joining

decisions.

In the traditional pooling literature, the long-run average throughput time is a typical performance metric

used to compare pooled and dedicated systems. We also use it as a performance metric. Furthermore,

studying delay-sensitive self-optimizing customers allows us to analyze an additional performance metric,

i.e., social welfare, which is equivalent to consumer surplus in our setting.

The second project studies the learning behavior of customers when they don’t have full information

about the service speed. There is growing literature on strategic behaviors of customers since the semi-

nar work by (Naor, 1969). Some recent papers extend Naor’s model by considering incomplete informa-

tion of system parameters to the customers, and study the effect of information on system performance

((Cui and Veeraraghavan, 2016),(Hu et al., 2018), (Hassin and Roet-Green, 2017a), etc).

Call center has been extensively studied in operations literature since it plays an important role to in-

teract with customers in service industry. Customers usually need to wait on hold when they call customer

service. 75% of people reported they were ”highly annoyed” when they could not get someone on the phone

in a reasonable amount of time according to a 2015 consumer report. As a result, customers feel frustrated

and abandon the service. Delay information can be announced to customers to improve their experience. A

common type of delay announcements is to inform the customers about the number of people ahead peri-

odically ((Jouini et al., 2011)). In this setting, customers are usually unknown with the system parameters.

They make abandonment decisions with the evolving information from the announcements.

Ticket queue is also prevalent in service industry. In this setting, customers come to a queue and get

a ticket with their order of arrival and know the number of customer in service upon arrival. Then they

can go away and check later. There is no physical queue. Customers can balk upon arrival or abandon

the service later ((Pender and Jennings, 2015)). Recently some technology solutions emerge to manage the

ticket queue via mobile device, kiosk or web browser (for instance, Nemo-Q and QLess), which makes

real-time information communication possible. In the ticket queue literature, it is common to assume that (i)

customers have constant patience, (ii) customers treat all tickets ahead as real customers and (iii) customers

do not update their decisions, yet only (ii) holds ((Kuzu, 2015)). (Kuzu et al., 2017) empirically study

the customers’ abandonment behaviors in a ticket queue incorporating the dynamic updating decision of

customers. In this model, the decision epoch follows Poisson process. The customer updates his forecast
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waiting time based on her current ticket position and number of servers, and reneges if it is larger than

reneging patience, which follows exponential distribution.

Motivated by these practical settings, we raise the following questions. What policy should the customer

use to make joining decision and abandonment decision without full information? Is it always beneficial to

be forward-looking? From the service provider’s perspective, should he share the information with the

customers?

We study these research problems in a discrete time single-server queue setting. Customers do not know

the true service rate and have a Bernoulli prior belief on the service rate distribution. The service provider

inform the customers with the queue position upon arrival. The customers make joining decisions either

based on their expected payoff by joining in a myopic way, or in a more complicated way by dynamic pro-

gramming. We also consider the abandonment behaviors when customers update their beliefs in a Bayesian

framework based on the service completion information provided by the service provider. We characterize

the structural properties of three alternative policies, i.e., simple policy, myopic policy and forward-looking

policy. It is shown that being complicated may result in loss of total expected benefit for the customer. We

also conduct throughput comparison between systems with different types of customers.

Our paper has three main contributions. First, to our best knowledge, there is no prior theoretical work

studying customers’ alternative policies in a queueing system without assuming the service parameters as

common knowledge. Second, the paper provides novel insights about the realizations of each policy from

customers’ perspective and shows that it is not always beneficial to be bayesian and forward-looking. Finally,

the throughput comparison between systems with different types of customers provides managerial insights

for the service provider.
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CHAPTER 2

Pooled or Dedicated Queues when Customers are Delay-Sensitive

In this chapter, we consider a system which can be run as either the dedicated system or the pooled

system. We consider the optimal system choice in terms of long-run average throughput time and social

welfare.

2.0.1 Summary of Main Results

Considering delay-sensitive customers’ rational joining decisions in the comparison of pooled versus

dedicated queues gives rise to the following three unexpected results for the observable systems.

First, Smith and Whitt (1981) establish that if every arrival joins the system (without making decisions),

pooling queues is beneficial in the case of identical servers and jobs. In contrast, our paper proves (in

Theorem 1-(a)) that if arriving customers decide to join or balk, the dedicated system can outperform the

pooled system depending on the following two factors: (i) relative benefit of service, which is the ratio of

service benefit to customer’s waiting cost per unit time, and (ii) potential system load, which is the ratio

of arrival rate to service rate. Specifically, if both the relative benefit of service and the potential system

load are large, pooling queues strictly increases the average sojourn time and this increase is so large that,

compared to the dedicated system, the pooled system results in strictly smaller social welfare.

Second, our analysis and numerical studies show that the performance improvement due to separating

queues can be drastic. Specifically, our paper proves (in Theorem 2) that the percentage increase in the

social welfare with dedicated queues can be arbitrarily large, compared to the case with a pooled queue.

Third, in the case of nonstrategic and identical jobs and servers, the benefit of pooling queues is well-

known to increase with the number of servers (keeping the arrival rate to service rate ratio the same)

(Calabrese, 1992; Benjaafar, 1995). In contrast, our paper proves (in Theorem 3) that when customers
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make their own joining decisions, the magnitude of the performance loss due to pooling can strictly increase

with the number of servers (keeping the arrival rate to service rate ratio the same).

To provide a complete picture, our paper also identifies conditions under which the pooled system

results in smaller average sojourn time and hence larger social welfare than the dedicated system. (Those

conditions can be found in Theorem 1-(b).)

Our paper also studies variants of the base model. Some of the key messages from this additional

analysis (in Section 2.3) are as follows: (i) The observability of queue length or real-time expected delay

information is necessary for our unexpected results to hold. (ii) The dedicated system may outperform

the pooled system even when customers are allowed to choose the shortest queue in the dedicated system.

(iii) All of our results extend when customers incur a fixed fee upon service completion. 1 (iv) When

a social planner could charge a different service fee under each queue configuration to maximize social

welfare, pooling queues improves the social welfare. Thus, the welfare advantage of pooling queues can be

recovered if the social planner has the pricing lever.

2.0.2 Relevant Literature

Our paper belongs to the literature that studies pooled versus dedicated queues. To the best of our

knowledge, there is no prior work that theoretically analyzes the comparison of pooled versus dedicated

queues in an observable system when delay-sensitive customers make their own joining decisions. Our

paper provides such an analysis.

The analysis of pooling queues has long been an interest in the queueing literature. To our knowl-

edge, (Smith and Whitt, 1981) were the first to provide a mathematical investigation of pooling queues.

(Smith and Whitt, 1981) showed that when jobs (e.g., customers) are homogeneous in their service require-

ments and servers are identical, pooling separate queues increases the system efficiency by reducing the

expected steady-state waiting time. Since the publication of this seminal work, many articles studied the

benefit of pooling queues in different contexts and under a variety of conditions. (Calabrese, 1992) pro-

vided an alternative proof to show the benefit of pooling for system efficiency. (Benjaafar, 1995) deter-

mined bounds on performance improvements through pooling. Gans et al. (2003a) illustrated the benefits

of pooling call centers (in different geographical locations) into one. Using approximation formulas for a

two-server queueing system, van Dijk and van der Sluis (2008) made the observation that when customers

1A fixed service fee represents a price-taker service provider, which emerges in a perfectly competitive service environment.
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are identical, a pooled system results in smaller long-run average waiting time than its dedicated counterpart.

(Andradóttir et al., 2017) showed that even if servers are subject to failures, pooling queues always results

in smaller expected steady-state number of jobs in the system and hence smaller long-run average waiting

average time, compared to the system with dedicated queues.

Unlike what has been established in this literature, our paper proves that when delay-sensitive customers

make their joining decisions in an observable system, pooling queues can result in much worse performance

than a dedicated system even with identical servers and homogeneous customers.

There have been observations that pooling parallel queues is not always beneficial and may result in

performance degradation; these observations are attributed to three main factors explained in (a) through (c)

below. Our paper identifies a different factor not previously identified in the pooling literature: observable

queue and customers’ ability to make a joining/balking decision. We now explain the aforementioned three

factors in (a) through (c) below, and discuss the relevant literature.

(a) If jobs are heterogeneous in their service requirements or servers are not identical, the pooled sys-

tem may perform worse than the dedicated system. (Smith and Whitt, 1981) included a numerical ex-

ample with heterogeneous servers to make this point. (Rothkopf and Rech, 1987) discussed that if jobs

require different service times, combining separate queues into a single one can increase the average de-

lay. Section 5.3 of Mandelbaum and Reiman (1998) briefly discussed this effect of heterogeneous servers

in a parallel multi-server setting without providing proofs (as there are no exact formulas available in

that setting). Using approximation formulas for queueing models, van Dijk and van der Sluis (2008) and

van Dijk and van der Sluis (2009) constructed numerical examples to illustrate the aforementioned effect of

these factors.

(b) Pooling queues may also result in worse performance (e.g., larger expected steady-state waiting

time) due to server slowdown and other server-related issues. (Rothkopf and Rech, 1987) argued that when

service times increase due to combining separate queues into a single one, the pooled system may result

in larger average delay than the dedicated one. (Gilbert and Weng, 1998) studied a setting where there are

two self-interested servers and a principle that compensates servers based on their performance. In this

setting, authors established that pooling queues can be undesirable for the principle due to server incentives.

(Shunko et al., 2018) conducted controlled lab experiments to find an evidence of server slowdown due to

pooling queues. (Jouini et al., 2008) numerically demonstrated that the dedicated system can outperform

the pooled system if each agent works slower in the pooled system potentially due to decreased customer
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ownership. (Song et al., 2015) empirically investigated the effects of pooling in an emergency department

and found that the dedicated system is superior to the pooled system with respect to the average waiting time

and the average length-of-stay. The paper attributes this to physicians’ increased ownership of the patients

under the dedicated system. Do et al. (2015) theoretically analyzed the implications of server slowdown due

to pooling, and showed that the pooled system can result in larger expected waiting time than the dedicated

system. Using a data set from a supermarket, Wang and Zhou (2017) provided an empirical evidence that

pooling queues can increase the service time. The main driver of this finding was explained to be the

social loafing effect with a pooled queue. (Armony et al., 2017) considered a two-server queueing system

where servers can choose their long-run average service rates, and incur a cost for the expected workload or

busyness. Armony et al. (2017) showed that if servers are workload-averse, pooling queues always achieves

lower expected queue length but can result in larger expected work-in-process (WIP).

(c) Apart from two factors explained in (a) and (b), (Rothkopf and Rech, 1987) conjectured that when

jockeying (i.e., switching from one queue to another) among parallel queues is possible for customers, under

very mild conditions, the average waiting time under the pooled system can be larger than that under the

dedicated system.

It is worth emphasizing that none of the papers mentioned in (a) through (c) theoretically analyzes

customers that can make their own joining decisions. Unlike all of the papers mentioned above, our work

provides a theoretical analysis of such self-optimizing customers in the context of pooling queues. In our

problem formulation, to avoid any performance advantage to the dedicated system and to analyze the effect

of customers’ joining decisions in isolation, we will exclude the above factors that were previously observed

to cause pooling to potentially perform worse than the dedicated system.

Lu et al. (2013) empirically analyzed a data set from a supermarket’s checkout line. Considering a

specific queue setting, Lu et al. (2013) found evidence that the queue length can be an important driver of

customers’ purchasing behaviors. Based on this, Lu et al. (2013) argued that if there existed a practical set-

ting in which customers’ purchasing behaviors under pooled and dedicated systems were both the same as

the one identified by the authors, pooling queues may decrease average waiting time due to balking. Lu et al.

(2013) considered a specific queue setting in their study, and hence did not empirically investigate the trade-

offs between pooled and dedicated systems. (Thus, empirically identifying the aforementioned hypothetical

practical setting in which customers’ purchasing behaviors under pooled and dedicated systems are the same

is still an open question.) Unlike Lu et al. (2013), our paper theoretically compares pooled versus dedicated
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systems by considering rational customers’ joining decisions. Moreover, the main performance metric in

our paper is social welfare, which is the same as consumer surplus in our setting.

Our work is also relevant to the literature that studies delay-sensitive rational customers making their

own decisions in observable queueing systems. (The comparison of pooled versus dedicated queues has

not been investigated in this literature.) Our formulation of customers builds on the framework developed

and analyzed in the seminal work by (Naor, 1969). (Naor, 1969) considered a single-server queue where

customers can observe the queue length and decide whether to join the queue or balk depending on their

expected net benefit of joining the queue. In his setting, a balking customer gains zero expected net benefit,

while each joining customer incurs a constant waiting cost per unit time spent in the system, and receives

a reward upon service completion. One of the main findings of (Naor, 1969) is that allowing customers to

make their own decisions results in social welfare loss compared to the maximum achievable welfare. Many

articles extend the model analyzed in (Naor, 1969) in various dimensions. The comprehensive review of

these papers can be found in (Hassin and Haviv, 2003) and (Hassin, 2016a). But, two of them are espe-

cially worth highlighting here. (Debo and Veeraraghavan, 2014) extended Naor’s model by carrying out an

equilibrium analysis for a queue with incomplete information. In their setting, customers observe the queue

length but they do not exactly know the service value and the expected service time before making a join or

balk decision. The authors proved that customers’ joining probability does not necessarily decrease with the

queue length. (Cui and Veeraraghavan, 2016) built on Naor’s model to analyze a setting where customers

have different beliefs about the service time, and the service provider can reveal service information. They

established that revealing service information can significantly hurt the social welfare and consumer surplus.

2.0.3 Outline of the Paper

The remainder of our paper is organized as follows. Section 3.1 introduces the model and includes

preliminary analysis. Section 3.3 includes the main results and their interpretations. Section 2.3 studies

several extensions of the base model. Section 3.7 includes concluding remarks. Proofs of all formal results

as well as supplementary results and their proofs are presented in Appendices A.1 through A.15 of the

Electronic Companion.
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2.1 Model

Consider a first-come-first-served (FCFS) queueing system with N ≥ 2 servers. The service time of

each server is exponentially distributed with rate µ > 0.2 The system can be run with either dedicated

queues or a pooled queue. These two alternatives will be called dedicated and pooled systems, and indexed

by j = d and j = p, respectively.

The dedicated system contains N separate queues, each served by a separate server. In this setting, a

server together with its queue is called a dedicated sub-system. In the dedicated system, customers arrive

to each queue according to a Poisson process with rate Λd = λ, and a server provides service only to

customers in his own queue.3 In contrast, in the pooled system, separate queues are combined into a single

one, and customers arrive to the queue according to a Poisson process with rate Λp = Nλ. Whenever a

server completes serving a customer, he serves the next customer waiting in the queue. Here, Λd and Λp can

be interpreted as potential arrival rate for a queue in the associated system. In light of this, the ratio

ρ
.
= λ/µ (2.1)

is called the potential system load. As will be explained later, the actual arrival rate to a queue is different

than the potential arrival rate because the former is determined by customers’ joining decisions.

Customers make their own joining decisions. Regardless of the system type, upon arrival, each customer

first observes the queue length and then decides whether to join the queue or balk. If an arriving customer

decides to join the queue, the customer incurs cost c > 0 per unit time she spends in the system. A customer

gains a benefit R after service completion, and the service is free of charge. Considering a queueing system

that provides free of charge service is common in the literature. Although their research questions are very

different than ours, several studies analyze such systems. (See, for instance, Hassin (1985), Armony et al.

(2009), Gai et al. (2011) and Haviv and Oz (2016).) Section 2.3.1 explains that all of our results and their

proofs extend in a straightforward fashion if customers pay a fixed fee f > 0 upon service completion. In

2Our model considers identical servers to tease out the effect of customers’ joining decisions; heterogeneous servers were already

observed to cause pooling to potentially perform worse than the dedicated system.

3Considering a dedicated arrival stream for each server is common in the formulation of dedicated queueing systems. See, for

instance, Smith and Whitt (1981) and Yu et al. (2015). Section 2.3.3 demonstrates that if customers are allowed to choose the

shortest queue in the dedicated system, the key phenomenon proved in Theorem 1-(a) extends under certain conditions.
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our formulation, all model parameters are common knowledge. This implies that for customers, observing

the queue length is the same as observing their real-time expected sojourn time.

As in Naor (1969), if an arriving customer decides to balk, she neither gets a benefit nor incurs a cost,

and hence she gains zero expected net benefit. If a customer arrives to a particular queue, the customer

receives the following expected net benefit by joining the queue:

E [U(n; j)] = R− W̄j(n+ 1)c, j ∈ {d, p}. (2.2)

Here, W̄j(n + 1) represents the expected time spent by the arriving customer in the system; for the pooled

system, n represents the number of customers that are already in the system, and for the dedicated system,

n corresponds to the number of customers that are already in the arrived sub-system. A customer joins the

queue if and only if her expected net benefit is non-negative, which is equivalent to the following by (2.2):

E [U(n; j)] = R− W̄j(n+ 1)c ≥ 0;

otherwise she balks. This suggests that an arriving customer optimally joins the queue if and only if the

number of customers in the queue and its associated service is smaller than a threshold that depends on the

system type; otherwise, the customer balks.

The aforementioned optimal threshold rule implies two key characteristics of the systems in our anal-

ysis. First, the rate at which customers join the queue, which is represented by λe,j , is always smaller than

the potential arrival rate Λj for j ∈ {d, p}. Second, regardless of the value of the potential system load ρ,

both pooled and dedicated systems are stable.4

Our primary goal is to analyze the implications of pooling for social welfare. In doing so, we will also

study the implications of pooling for long-run average time spent in the system, that is, average sojourn

time.

Denote by Wj , the average sojourn time in the system j ∈ {d, p}. In our setting, the social welfare

equals the consumer surplus, which is the sum of long-run average net gains of all customers in a system.

As a result, the social welfare in the system j ∈ {d, p} is equal to the multiplication of these two factors: (i)

a single customer’s long-run average net benefit R−Wjc and (ii) the long-run average number of customers

4Similarly, the M/M/1 system studied by (Naor, 1969) is stable regardless of ρ. This property was further explained by

(Gilboa-Freedman et al., 2014).
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served, that is, throughput, θj:

SWj = (R−Wjc)θj
.
=





(R −Wjc)λe,j = Rλe,j − cLj if j = p,

(R −Wjc)λe,jN = Rλe,jN − cLjN if j = d.

(2.3)

Here, Lp is the long-run average number of customers in the pooled system, Ld represents its counterpart in

one of the N dedicated sub-systems, and the throughput θj satisfies the following:

θj =





λe,j if j = p,

λe,jN if j = d.

(2.4)

According to (2.3), the average sojourn time and the throughput are the two key determinants of the

social welfare.

2.1.1 Preliminary Analysis

To avoid trivialities, this paper focuses on a case where

k
.
=

⌊
Rµ

c

⌋
≥ 1. (2.5)

Here, ⌊·⌋ is the standard floor function. The condition (2.5) means that a customer always joins an empty

system.

Lemma 1. In the pooled system, an arriving customer joins the queue if and only if the number of customers

already in the system is n ≤ K − 1, where

K
.
=

⌊
RNµ

c

⌋
. (2.6)
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Furthermore, in the pooled system, for K > N , the average sojourn time and social welfare are respectively

given by

Wp =

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑K
i=N iρi(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)
Nλ

, (2.7)

SWp =

(
1−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
RNλ−

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑K
i=N iρi

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

c, (2.8)

where ρ is as defined in (2.1).

Lemma 2. In the dedicated system, an arriving customer joins the queue if and only if the number of

customers already in that sub-system is n ≤ k − 1, where k is as defined in (2.5). Furthermore, in the

dedicated system, the average sojourn time and social welfare are respectively given by

Wd =

∑k
i=0 iρ

i

(∑k−1
i=0 ρi

)
λ

and SWd =

(
1−

ρk
∑k

i=0 ρ
i

)
RNλ−

∑k
i=0 iρ

i

∑k
i=0 ρ

i
Nc, (2.9)

where ρ is as defined in (2.1).

Based on Lemmas 1 and 2, hereafter, we refer to k as the balking threshold in the dedicated system and

K as the balking threshold in the pooled system. Note that the balking thresholds satisfy

K ≥ Nk. (2.10)

2.2 Analysis

We begin the analysis with one of our main results.

Theorem 1. There exist constants η and η̄ such that the following results hold:

(a) The dedicated system results in (i) strictly smaller average sojourn time and (ii) strictly larger social

welfare than the pooled system, i.e., Wd < Wp and SWd > SWp, respectively, if

ρ > 1 and R/c > η, (2.11)

where η is finite when ρ > 1, and does not depend on either R or c.

(b) The pooled system results in (i) smaller average sojourn time and (ii) strictly larger social welfare than
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the dedicated system, i.e., Wp ≤ Wd and SWp > SWd, respectively, if either

(⋆) R/c < (N + 1)/(Nµ) or (⋆⋆) ρ < 1 and R/c > η̄, (2.12)

where η̄ is finite when ρ < 1, and does not depend on either R or c.

Theorem 1-(a) establishes that when customers make their own joining decisions, pooling queues can

be undesirable even with identical servers and customers. There are two main drivers of this result: (i) The

system is observable. Each customer makes the joining decision based on her own expected sojourn time,

and joins as long as this sojourn time is (weakly) smaller than the longest one, which is experienced by the

customer who joins at the balking threshold. Thus, customers do not account for negative externality they

impose on customers behind in their joining decisions, leading to very congested systems. This situation is

in contrast to an unobservable queueing system where customers make their joining decisions based on the

average sojourn time across all customers that join the system. (ii) When the system has a large potential

load, i.e., ρ > 1, the stationary probability of having l customers in the system is convex increasing in l.

Theorem 1-(b) proves that the benefit of pooling is recovered under conditions (2.12). A detailed expla-

nation of Theorem 1 is provided in Section 2.2.1.

2.2.1 Explanation of Theorem 1

We will first provide a step-by-step analysis to establish and explain Theorem 1-(a), which is our key

result. Because the throughput is an important determinant of social welfare by (2.3), we begin our analysis

with the following result.

Proposition 1. The dedicated system results in strictly smaller throughput than the pooled system, i.e.,

θd < θp.

The rationale behind Proposition 1 is as follows. The dedicated system has N sub-systems, and each

of them is a single-server queueing system with a balking threshold k. Thus, there can be a situation

where a customer arrives to a dedicated sub-system, and finds out that there are already k customers in

the sub-system whereas other dedicated sub-systems have not reached their balking thresholds. Such a

situation is not possible in the pooled system because the pooled system has a single queue with balking

threshold K , which is more than N times the dedicated system balking threshold k by (2.10). In addition,

14



the pooled system also reduces idleness; this makes it less likely for the pooled system to operate at the

balking threshold than the dedicated system. Because of all these reasons, the pooled system results in

smaller balking probability and hence larger throughput than the dedicated system, as proved in Proposition

1.

Proposition 1 and (2.3) suggest that even if the dedicated system has a smaller average sojourn time

than the pooled system, the pooled system can still outperform the dedicated one in terms of social welfare.

The dedicated system can outperform the pooled system in terms of social welfare only when the former

has a sufficiently lower average sojourn time that offsets the lower throughput.

We now introduce a “scaled queueing system,” i.e., SQ system, as a bridge for the comparison between

the dedicated and pooled systems. We consider the SQ system because comparing the dedicated system

with the SQ system or comparing the pooled system with the SQ system is analytically more tractable than

directly comparing the dedicated system with the pooled system.

Definition 2.1. An SQ system is a single-server queueing system indexed by j = s with the following

properties: (a) Customers arrive to the system according to a Poisson process with rate λN . (b) The service

time has an exponential distribution with rate µN . (c) Each arriving customer balks if and only if the number

of customers already in the system is larger than K (as defined in (2.6)); otherwise, she joins the system.

Let Ws and SWs be the average sojourn time and social welfare in the SQ system, respectively. Then,

we have the following result.

Proposition 2. (SQ versus Pooled) Compared to the pooled system, the SQ system results in (a) strictly

smaller average sojourn time, i.e., Ws < Wp, and (b) strictly larger social welfare, i.e., SWs > SWp.

There are two key observations related to the SQ system: (i) The SQ and pooled systems have the same

balking threshold K . (ii) The service rate in the SQ system is larger than the one in the pooled system for any

given number of customers in the system, and the former is strictly larger than the latter when the number

of customers in the system is small. Then, by (i) and (ii), the SQ system results in strictly smaller average

sojourn time than the pooled system, as proved in Proposition 2-(a). The throughput in the SQ system is

strictly larger than the one in the pooled system by the proof of Proposition 2. 56 This and Proposition 2-(a)

immediately imply Proposition 2-(b).

5See inequality (A.41) in the proof of Proposition 2.

6This result and Proposition 1 imply θs > θp > θd where θs is the throughput in the SQ system.
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Proposition 3. (SQ versus Dedicated) The dedicated system results in (a) strictly smaller average sojourn

time and (b) strictly larger social welfare than the SQ system, i.e., Wd < Ws and SWd > SWs, respectively,

if

ρ > 1 and R/c > η, (2.13)

where η is the same constant as the one in Theorem 1-(a).

Remark 2.2.1. There exists a constant η̃ such that if ρ < 1 and R/c > η̃, then Wd > Ws and SWd < SWs.

This result is stated as Proposition 20 in Appendix A.5 of the Electronic Companion. Its proof can be found

in the same appendix.

Let us explain the rationale behind Proposition 3. To that end, denote by Ls the steady-state average

number of customers in the SQ system. Recall that θs and θd are the throughputs of the SQ and dedicated

systems, respectively, and Ld is the steady-state average number of customers in each of the N dedicated

sub-systems. Based on this notation, let us first explain part (a) of the proposition. As will be explained in

detail below, Ls > NLd when ρ > 1. Consequently, if (2.13) holds, then Ws > Wd due to the following

two reasons: (i) When the relative benefit of service is large, i.e., R/c > η, the balking thresholds in each

dedicated sub-system and the SQ system are both large, which implies that the throughputs θs and θd are

very close to each other. (ii) By Little’s Law, Ws = Ls/θs and Wd = NLd/θd. Since θs and θd are very

close to each other, this implies part (a), i.e., Ws > Wd. To explain part (b) of the proposition, we note

the following. As stated above, when R/c > η, the throughputs θs and θd are very close to each other, and

thus, the average sojourn time is the determining factor in the comparison of social welfare in the SQ and

dedicated systems. As a result, part (b) holds.

We now explain why Ls > NLd when ρ > 1. For this purpose, let πd(i) (respectively, πs(i)) be the

steady-state probability of having i customers in a dedicated sub-system (respectively, in the SQ system).

Then, Ld =
∑k

i=0 πd(i)i and Ls =
∑K

i=0 πs(i)i, where k and K are the balking thresholds in a dedicated

sub-system and the SQ system, respectively. When ρ > 1, the steady-state probabilities πd(i) and πs(i)

are convex increasing in i, the number of customers. Thus, in the summations Ld =
∑k

i=0 πd(i)i and

Ls =
∑K

i=0 πs(i)i, the weight of the term i is convex increasing in i when ρ > 1. Because these weights

are probabilities that sum up to 1, we note that when ρ > 1, a larger i has a larger weight in both Ls and

Ld. Since K > k, the support of πs(i), namely {i : i = 0, 1, . . . ,K}, extends to larger values of i, than the
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support of πd(i), which is {i : i = 0, 1, . . . , k}. As a result, πs(·) puts even more weight to larger values of

i, compared to πd(·). Therefore, when ρ > 1, the convex increasing property of the steady-state distribution

is more pronounced in the SQ system than in the dedicated system. Combining this with (2.10), we deduce

that the sum Ls =
∑K

i=0 πs(i)i is strictly larger than the sum NLd = N
∑k

i=0 πd(i)i.

By Propositions 2 and 3, if (2.13) holds, Wd < Ws < Wp and SWd > SWs > SWp. Thus, we

have Theorem 1-(a). These orderings are in contrast to the classical understanding that is based on no-

customer-balking assumption. In the absence of customer balking, one would have Ws < Wp < Wd and

SWs > SWp > SWd, where j = s here is the modified scaled system that satisfies properties (a) and (b) in

Definition 2.1, and assumes no balking.7

We now explain the conditions in Theorem 1-(b). If (2.12)-(⋆) holds, a joining customer immediately

enters the service in both dedicated and pooled systems because k = 1 and K = N under that condition.

Thus, dedicated and pooled systems have the same average sojourn time Wj and provide the same long-run

average net benefit to each joining customer. This and strictly larger throughput in the pooled system (by

Proposition 1) imply strictly larger social welfare for the pooled system if (2.12)-(⋆) holds.

The conditions in (2.12)-(⋆⋆) can be explained as follows. When the benefit is large (i.e., R/c > η̄),

balking thresholds are large in both systems. With a relatively small potential load, i.e., ρ < 1, dedicated and

pooled systems barely achieve their balking thresholds, implying very small expected number of balking

customers for both systems. Thus, the pooled and dedicated systems have very close throughputs under

(2.12)-(⋆⋆). Moreover, under these conditions, there is significant idleness in the dedicated system. As

a result, pooling results in smaller average sojourn time by reducing idleness in the system. This and

Proposition 1 imply larger social welfare for the pooled system.

2.2.2 Numerical Comparison of the Pooled and Dedicated Systems

Figure 2.1 pictures conditions under which the dedicated system outperforms the pooled system for

a numerical example. In this figure, SWd > SWp if and only if (R/c, ρ) pair lies in either Region III

or Region IV (i.e., the region to the right of the solid line). Thus, for a wide range of parameters, the

7When customers cannot balk, throughputs are the same for j ∈ {s, d, p} because every arrival joins. As the service rate is larger in

the modified scaled system than in the pooled system for any given number of customers in the system, Ws < Wp in the absence

of customer balking. (The proof of this statement is similar to the proof of Proposition 2, and hence omitted). We already know

from Smith and Whitt (1981) that Wp < Wd when customers cannot balk. Combining these, we have Ws < Wp < Wd. Then,

SWs > SWp > SWd in the absence of customer balking because SWj = Nλ(R − cWj) for j ∈ {s, d, p} in that setting.
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Figure 2.1: Comparison of pooled and dedicated systems when c = 1, µ = 1, N = 10. The displayed dashed and

solid boundaries between regions are non-smooth and zigzagged because of the floor function in k and K . In this

figure, Wd ≥ Wp if and only if (R/c, ρ) pair is in Region I, and SWp ≥ SWd if and only if (R/c, ρ) pair is either in

Region I or in Region II. Region IV is as explained in Section 3.2.

dedicated system results in strictly larger social welfare than the pooled system. Region IV corresponds to

the parameter space identified in (2.11). We can see that the sufficient condition (2.11) constitutes a large

portion of the parameter set in which SWd > SWp.

Figure 2.1 demonstrates that the dedicated system results in strictly larger social welfare than the pooled

system for a given service rate if and only if R/c is not too small and ρ > ρSW for some constant ρSW . In

this figure, Wd < Wp if and only if (R/c, ρ) pair lies in either Region II, III or IV. This suggests that the

dedicated system results in strictly smaller average sojourn time than the pooled system if and only if R/c

is not too small and ρ > ρW for some constant ρW ≤ ρSW . We have ρSW ≥ ρW because if the dedicated

system results in larger social welfare than the pooled system at a given ρ, then, by (2.3) and Proposition 1,

it must also result in strictly smaller average sojourn time than the pooled system at the same ρ.

Observe from Figure 2.1 that ρW < 1 for certain values of R/c. Our further numerical analysis shows

that ρSW can also be smaller than 1 for some R/c. This means that ρ > 1 is not a necessary condition

for the superior performance of the dedicated system. We also numerically observed that SWd > SWp for

ρ < 1 when R/c is not too large and Rµ/c is not an integer. Thus, we conjecture that the parameter region

in which SWd > SWp with ρ < 1 is much smaller compared to the one with ρ > 1.
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Figure 2.2: Throughput time ratio and social welfare ratio. The following parameters are used: R = 75, c = 4,

N = 10 and µ = 0.15.

Note from (2.5) and (2.6) that the potential arrival rate λ does not affect the balking thresholds k and K .

However, Theorem 1 and Figure 2.1 demonstrate that λ plays an important role in the comparison between

the dedicated system and the pooled system through ρ. Figure 2.2 above sheds more light on the effect of ρ

on the comparison between the pooled and dedicated systems.

Figure 2.2 demonstrates the percentages βW
.
= (Wp − Wd)/Wd × 100% and βSW

.
= (SWd −

SWp)/SWp × 100% for a numerical example. A key message from this figure is that the dedicated system

can result in significantly larger social welfare than the pooled system for large ρ.8 Among other properties,

the steep increase in βW around ρ = 1 in Figure 2.2 shows that when ρ is close to 1, the average sojourn

time can increase in the potential load significantly faster under the pooled system, than under the dedicated

system. This increase eventually leads to welfare loss under pooling. Note from Figure 2.2 that the ex-

plained sojourn time phenomenon cannot be observed as ρ → 0 or ρ → ∞. (The aforementioned sojourn

time observations are analytically verified by (A.73), (A.75) and (A.76) in Lemma 13, which is in Appendix

A.6 of the Electronic Companion.) Overall, Figure 2.2 underscores the importance of judiciously evaluating

the pooled and dedicated systems for services, as the relative performance of a system can be very sensitive

to a change in ρ.

8One can show that the ratio SWd/SWp can increase unboundedly as ρ → ∞ for example when Rµ/c = k + 1/N . Our further

numerical studies suggest that the ratio SWd/SWp can be bounded as ρ → ∞ when Rµ/c is an integer.
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2.2.3 The Impact of Benefit R and Number of Servers N

Theorem 1 naturally brings forth the following question: What is the percentage improvement in the

social welfare SW if the dedicated system is implemented instead of the pooled system? Theorem 2 below

answers this question by identifying a lower bound for the achievable aforementioned percentage under

certain conditions.

The parameter R is one of the determinants of SW because it affects both the throughput and the

average sojourn time through the balking thresholds k and K . In Theorem 2, we will include R as an

argument of SW (·) to emphasize its dependence on R. After presenting Theorem 2, we will further discuss

the effect of R.

Theorem 2. Compared to the pooled system, the percentage increase in the social welfare under the dedi-

cated system satisfies the following for ρ > 1:

max
R

{
βSW (R)

.
=

SWd(R)− SWp(R)

SWp(R)
× 100%

}
> (N − 2)× 100%. (2.14)

Figure 2.3 displays how βSW (R) (defined in (2.14)) changes with R for a given system size. Because

welfare loss under the pooled system is due to the large increase in the average sojourn time with pooling,

it could also be worthwhile to see the percentage increase in the average sojourn time W due to pooling

queues. Thus, Figure 2.3 also displays βW (R)
.
=

Wp(R)−Wd(R)
Wd(R) × 100% with respect to R. There are a few

key observations in this figure: (i) Operating a system with dedicated queues rather than a pooled one can

significantly improve the social welfare in both small-scale and large-scale systems. (ii) Such significant

performance gain does not require a very large R. For example, when N = 50, the percentage improvement

in social welfare under the dedicated system is larger than 100% for R ≥ 7.5. The reason is that pooling

queues can drastically increase the average sojourn time even at moderate benefit R; in fact, the maximum

βW (R) is typically observed at moderate R, as displayed in Figure 2.3.

Consider a sequence of systems indexed by n = {2, 3, . . .} such that in the nth system, there are N = n

servers and the total potential arrival rate in the system is nλ. In this context, n can be seen as a proxy

for the system size. Theorem 2 suggests that pooling queues can be detrimental especially when the system
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Figure 2.3: The percentages βW (R) and βSW (R) when λ = 0.35, c = 1, µ = 0.3. The displayed functions are

non-smooth and zigzagged because of the floor function in k and K . Total potential arrival rate in the system with N
servers is λN . Thus, N can be seen as the scale of the system.

size is large. Specifically, Theorem 2 shows that, compared to the pooled system, the dedicated system may

improve social welfare in a way that the percentage improvement in social welfare eventually takes values

larger than any fixed value as the system size increases.

It is well established in the literature that pooling queues in a larger system provides larger performance

benefits. For instance, Benjaafar (1995) demonstrates that when there is no balking, the average delay

decreases with the system size when multiple M/M/1 systems are combined and run as a pooled system.

An important implication of this observation in their setting is that the social welfare benefit of pooling

also increases with the system size. In contrast, Figure 2.3 shows a numerical example where pooling in

a larger system results in larger percentage loss in social welfare for each R when customers make their

own joining decisions. Specifically, for any R, βSW (R) with N = 50 is larger than that with N = 5 in

Figure 2.3. An important driver of this is that under the considered parameters, the percentage increase in

the average sojourn time due to pooling is larger in a larger system. (See βW (R) in Figure 2.3.) Motivated

by these observations, Figure 2.4 provides a deeper numerical analysis on the impact of the system size on

the percentages βW (N) and βSW (N). Here, we include N as an argument of the performance metric under

consideration to emphasize its dependence on N .

There are two key observations related to Figure 2.4: First and most important, the percentages βW (N)

and βSW (N) display an increasing trend in N . Theorem 3 below will formalize this observation. Second,
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Figure 2.4: The percentages βW (N)
.
=

Wp(N)−Wd(N)
Wd(N) × 100% and βSW (N)

.
=

SWd(N)−SWp(N)
SWp(N) × 100% when

λ = 0.35, c = 1, µ = 0.3.

both βW (N) and βSW (N) display a certain non-monotone pattern. In particular, the percentages increase

with N for five data points, and switch to a different level, and then increases with N for 5 more data

points. This pattern repeats itself. Our additional numerical analysis suggests that such a pattern is observed

when Rµ/c is not an integer (because of the floor function in k and K); if Rµ/c is an integer, βW (N) and

βSW (N) both strictly increase with N . Theorem 3 below will shed more light on this behavior.

To state Theorem 3, we shall introduce new notation. Let m be the minimum system size n that makes

Rnµ/c an integer:

m
.
= min

{
n ∈ N+ :

Rnµ

c
∈ N+

}
. (2.15)

For instance, in Figure 2.4, m = 5. Because of this, we observe a repeating pattern (in which percentages

increase with N ) for every fifth consecutive data point starting from any single point on Figure 2.4. We now

define a subsequence that considers every ith system size in each repeating pattern. Specifically, for each

i = 1, 2,. . . ,m, define a system size subsequence Si
.
= {Ni,0, Ni,1, Ni,2, Ni,3,. . . } such that

Ni,ℓ = i+ ℓm, ℓ = 0, 1, . . . (2.16)
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For example, in Figure 2.4, the system size subsequence S3 = {3, 8, 13, 18,. . . } includes the third system

size (i = 3) in each repeating pattern that consists of 5 data points (m = 5).

Theorem 3. Let i = 1, 2. . . ,m. Then, we have the following results:

(a) There exists a constant η1 such that the subsequence βW (Ni,·)
.
=

{
(Wp(Ni,ℓ)−Wd(Ni,ℓ))

Wd(Ni,ℓ)
× 100%, ℓ = 0, 1, . . .

}
is non-negative and strictly increasing in the system

size if ρ > 1 and R/c > η1. The constant η1 is finite when ρ > 1, and does not depend on either R or c.

(b) There exists a constant η2 such that the subsequence βSW (Ni,·)
.
=

{
(SWd(Ni,ℓ)−SWp(Ni,ℓ))

SWp(Ni,ℓ)
× 100%, ℓ = 0, 1, . . .

}
is non-negative and strictly increasing in the system

size if ρ > 1 and R/c > η2. The constant η2 is finite when ρ > 1, and does not depend on either R or c.

Figure 2.4 displays an example where both βW (N) and βSW (N) are positive and strictly increase in N

for N ∈ S3 = {3, 8, 13, 18,. . . }, as suggested by Theorem 3.

There are two main drivers of Theorem 3: (i) In both dedicated sub-system and pooled system, the

stationary probability of having l customers in the system is convex and increasing in l for ρ > 1, and (ii)

the balking threshold in the pooled system increases in N . Because of these, when there is a performance

loss due to pooling, the loss is exacerbated even more with an increase in the system size.

The reason for the contrast between Theorem 3 and the classical finding in Benjaafar (1995) about the

effect of system size on the benefit of pooling is the following. In Benjaafar (1995), customers are not delay

sensitive and join the system regardless. Therefore, that study assumes an infinite queue capacity and ρ < 1

for stability. In contrast, our paper considers rational joining decisions of delay-sensitive customers (which

imply a finite balking threshold) and allows for ρ > 1.

2.3 Extensions

With this section, we aim to check the robustness of our key result in Theorem 1-(a). This analysis will

also help us further investigate what causes the dedicated system to outperform the pooled system in terms

of social welfare.

2.3.1 Fixed Price

Consider a setting where all modeling elements are the same as in Section 3.1, except each customer

pays a fixed price f > 0 upon service completion. This setting represents a service environment where the
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service provider does not have any control over price. All our proofs can be extended in a straightforward

fashion by replacing R with R − f in k and K . Thus, Theorems 1(a)-(i) and 1-(b) hold after replacing

R with R − f . The statement of Theorem 1-(a)-(ii) requires an additional condition that f < f̄ for some

threshold fee f̄ .

2.3.2 Optimal Pricing

Suppose that each customer pays a fee upon service completion in the system j ∈ {d, p}, and this

service fee is set to either maximize the service provider’s revenue or the social welfare. All other modeling

elements are the same as in Section 3.1.

Based on this, we will compare the pooled and dedicated systems under the following two formulations:

(i) Welfare-maximizing fee: For each system j ∈ {d, p}, a service fee fj is set to maximize the social welfare:

max
fj≥0

SWj
.
= (R− cWj(fj))θj(fj), j ∈ {d, p}, (2.17)

where θj(·) is the throughput in the system j ∈ {d, p}. The social welfare does not include the term fjθj(fj)

because the total collected fee is just a transfer between customers and the fee collector.

(ii) Revenue-maximizing fee: For each system j ∈ {d, p}, a service fee fj is set to maximize the service

provider’s revenue:

max
fj≥0

RVj
.
= fjθj(fj), j ∈ {d, p}. (2.18)

Proposition 4. (a) Under formulation (2.17), the maximum social welfare in the pooled system is larger

than that in the dedicated system.

(b) Under formulation (2.18), the maximum revenue in the pooled system is larger than that in the dedicated

system.

Under formulation (2.17), the service fee affects the social welfare only through the resulting balking

threshold. By setting the fee, the social planner prevents the system from becoming too congested, and hence

customers cannot over-utilize the system. In that case, the pooled system improves the system efficiency

by reducing idleness in the system. To sum up, under formulation (2.17), in the pooled system, by setting

the fee, the social planner not only changes customers’ joining behaviors in a socially-optimal way but also
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achieves the system efficiency. As a result, as proved in Proposition 4-(a), the pooled system outperforms

the dedicated system when formulation (2.17) is considered.

Proposition 4-(b) follows from two facts: (i) For any fixed service fee, the pooled system results in

strictly larger throughput than the dedicated system. The rationale behind this fact is the same as the one

explained for Proposition 1. This fact implies that at any given fee, the revenue under the pooled system is

strictly larger than that under the dedicated system. (ii) Under formulation (2.18), the optimal fee for the

dedicated system is feasible but not necessarily optimal for the pooled system.

Lemma 3. Under formulation (2.18), the social welfare under the pooled system is strictly smaller than the

one under the dedicated system if R/c is in a moderate range, i.e., R/c ∈ (r, r̄) for some constants r and r̄.

Under the stated conditions in Lemma 3, the balking thresholds of dedicated and pooled systems are

both equal to N , which implies that the average sojourn time under the dedicated system is strictly larger

than the one under the pooled system. However, when R/c ∈ (r, r̄), the dedicated system results in such a

larger throughput than the pooled system that we obtain the result in Lemma 3. For example, when R is in

(118, 173), c = 7, N = 2, λ = 0.1 and µ = 0.5, the dedicated system results in strictly larger social welfare

than the pooled system under formulation (2.18).

Apart from these results, one can show that when the relative benefit of service is moderate, the dedi-

cated system can result in strictly smaller average sojourn time than the pooled system under formulations

(2.17) and (2.18). Our additional numerical studies suggest that, under formulation (2.17), pooling queues

can significantly increase the average sojourn time.

2.3.3 Join-the-Shortest-Queue Policy

In Section 3.1, there is a separate arrival stream for each queue in the dedicated system. Consider an

alternative dedicated queueing system where an arriving customer observes the number of customers in

each of N queues, and then decides whether to join a queue or balk. We will refer to this system as the

alternative system, and denote it by the index j = a. In the alternative system, if an arriving customer

decides to join, she optimally chooses the shortest queue. When multiple queues are in a tie, we assume that

the customer chooses the queue with the smallest index. (Another way to break the tie is to pick a queue

randomly with equal probability. This alternative tie-breaking rule would not alter any of our insights.) In
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this setting, an arriving customer optimally balks if and only if each of the N dedicated sub-systems already

has k customers.

It is well known in the literature that the exact analysis of the join-the-shortest-queue (JSQ) policy

in a first-come first-served queueing system is typically intractable (Gupta et al., 2007). There were some

efforts to analyze a system under the JSQ policy with 2 servers (see, for instance, (Kingman, 1961) and

(Flatto and McKean, 1977)). However, even such analysis was found to be difficult (Selen et al., 2016;

Haight, 1958). Because the exact analysis of the JSQ policy with more than two servers still remains infea-

sible (Gupta et al., 2007), the vast majority of the literature focuses on approximations or numerical analysis

to evaluate the performance of the JSQ policy (see, for instance, (Grassmann, 1980), (Rao and Posner, 1987)

and (Nelson and Philips, 1993), among others). In short, the general theoretical analysis of the JSQ policy

with delay-sensitive rational customers is hard. However, as we explain below, under certain conditions, we

can compare the performance of the alternative system with those of the pooled and dedicated systems.

The following proposition considers a queueing system with N ≥ 2 servers.

Proposition 5. Suppose that K−Nk > 0, which holds when Rµ/c−⌊Rµ/c⌋ ≥ 1/N . Then, as λ → ∞, the

average sojourn time under the alternative system is strictly smaller than the one under the pooled system,

i.e., Wa(λ) < Wp(λ), and the social welfare under the alternative system is strictly larger than the one

under the pooled system, i.e., SWa(λ) > SWp(λ).

Thus, even if customers are allowed to choose which queue to join in the dedicated system, separating

queues yields a superior performance under some conditions. The rationale behind Proposition 5 is as

follows. As the arrival rate gets very large (i.e., λ → ∞), both alternative and pooled systems mostly

operate at their respective balking thresholds. This means that in the limit (i.e., λ → ∞), as soon as a

customer is served, a new customer joins the system. That is, as λ → ∞, every joined customer joins as the

last customer before the system reaches its balking threshold, and hence experiences the longest (feasible)

expected sojourn time in the system almost surely. The condition K − Nk > 0 implies that the longest

expected sojourn time in the pooled system is strictly larger than that in the alternative system. Thus, the

average sojourn time in the pooled system is strictly larger than that in the alternative system. Furthermore,

because servers are busy with probability 1 as λ → ∞, throughputs of the pooled and alternative systems

are the same and both equal to the total service rate (Nµ). Combining this and the aforementioned average
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sojourn time comparison, we conclude that the social welfare under the pooled system is strictly smaller

than that under the alternative system.

Figure 2.5 pictures a numerical example to compare the performances of alternative and pooled sys-

tems. All numerical examples in this section use exact balance equations to identify the steady-state queue

length distribution in the alternative system. The left panel of Figure 2.5 displays βa
W , which represents

the percentage increase in the average sojourn time due to pooling queues. The right panel of Figure 2.5

pictures βa
SW , which represents the percentage increase in the social welfare under the alternative system,

compared to the case under the pooled system. Note from Figure 2.5 that the alternative system can signif-

icantly outperform the pooled system in terms of social welfare. Another observation is that ρ > 1 is not

necessary for the alternative system to outperform the pooled system.
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Figure 2.5: The percentages are defined as βa
W

.
=

Wp−Wa

Wa
× 100% and βa

SW

.
=

SWa−SWp

SWp
× 100%. The following

parameters are used: c = 6, µ = 0.5, N = 2.

Similar to the observations in Section 2.2.2, our numerical examples with K − Nk > 0 demonstrate

that for a given service rate, the alternative system results in (i) strictly smaller average sojourn time than

the pooled one if and only if ρ > ρa
W

, and (ii) strictly larger social welfare than the pooled system if and

only if ρ > ρa
SW

. Table 2.1 displays these thresholds and their counterparts ρ
W

and ρ
SW

in Section 2.2.2 for

a particular set of parameters. Observe that for each listed R, each of ρa
W

and ρa
SW

is strictly smaller than

its counterpart in Section 2.2.2. This means that for these values of R, the parameter region in which the

pooled system is dominated is larger when the pooled system is compared with the alternative system rather
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Table 2.1: The thresholds with the following parameters: µ = 1, c = 2, and N = 2.

R ρa
W

ρ
W

ρa
SW

ρ
SW

5 0.55 0.7 0.74 1.04

7 0.75 0.86 0.85 1.05

9 0.84 0.92 0.89 1.04

11 0.88 0.95 0.92 1.03

13 0.9 0.97 0.93 1.03

than with the dedicated system. Our further numerical study suggests that this conclusion is valid even for

large values of R.

It could be valuable to identify which system among the three (i.e., alternative, dedicated and pooled

systems) maximizes social welfare. Our numerical study suggests that the alternative system can outperform

both dedicated and pooled systems. For example, consider R = 5, µ = 1, c = 2 and N = 2. Then, among

the three systems, the alternative system results in maximum social welfare for medium range of ρ, i.e.,

when ρ ∈ (ρa
SW

, ρ̄a
SW

) for some threshold ρ̄a
SW

.9 For that example, among the three systems, the pooled

system generates the maximum social welfare for small ρ, i.e., ρ < ρa
SW

, and the dedicated system results in

maximum social welfare for large ρ, i.e., ρ > ρ̄a
SW

.10 A similar pattern is observed for all R listed in Table

2.1, as well as in many other numerical examples with K −Nk > 0.

2.3.4 Partial Pooling

This section considers partial pooling as an alternative system design, and demonstrates that even with

the partial pooling option, the dedicated system yields the best performance for a large set of parameters. In

our setting, partial pooling refers to combining only some of the separate queues (instead of all queues) to

form a single line.

9Under this condition, the alternative system achieves the maximum social welfare among the three systems intuitively because of

the following two reasons: (i) Balking probability in the pooled system is smaller than the one in the alternative system. Thus,

when the potential system load is considerably large, the pooled system is more over-utilized and yields larger average sojourn

time than the alternative system. The resulting increase in the average sojourn time under the pooled system is so large that the

alternative system performs strictly better than the pooled system in terms of social welfare. (ii) Compared to the dedicated system,

the alternative system improves the throughput by giving customers more discretion in their joining decisions. When the potential

system load is moderate, the larger throughput in the alternative system translates into the larger social welfare for the alternative

system.

10When the potential system load is large, the alternative system is much more congested than the dedicated system because

customers join the former system more. As a result, under the aforementioned condition, compared to the dedicated system, the

alternative system results in much larger average sojourn time, leading to strictly smaller social welfare in the alternative system.
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Figure 2.6 demonstrates a numerical example where there are N = 20 servers and partial pooling

is allowed. To focus on reasonable number of partial pooling scenarios, the example considers symmetric

partial pooling, meaning that each pooled sub-system (within the partially-pooled system) contains the same

number of servers. Thus, for this example, partial pooling refers to combining every M ∈ D
.
= {2, 4, 5, 10}

queues of the N = 20 queues into a separate single queue. For instance, if M = 2, the system consists

of 10 pooled sub-systems, each formed by combining 2 separate queues into one. Note that there are four

alternative partial pooling designs because other than 1 and 20, {2, 4, 5, 10} are all divisors of 20.

Figure 2.6 displays the system that results in the minimum average sojourn time and maximum social

welfare among all system designs. Based on this, when R/c is not too small, there exist a threshold ρpSW

such that the dedicated system generates maximum social welfare if and only if ρ > ρpSW . This implies a

very large region in which the dedicated system achieves the best performance among all systems. Moreover,

the parameter region in which the dedicated system achieves the maximum social welfare is a subset of the

one in which the dedicated system results in minimum average sojourn time. The explained observations

are similar to the ones in Section 3.3. Our further numerical study shows that the aforementioned threshold

is smaller in the absence of partial pooling option, which corresponds to the setting in Section 3.1. The

reason is as follows. Compared to the setting in Section 3.1, with partial pooling, there are more systems to

be compared with each other. The dedicated system is less likely to perform the best among more options.

Thus, the ρ threshold above which the dedicated system outperforms all other systems is smaller in the

absence of the partial pooling option.

It is feasible to identify some sufficient conditions under which the dedicated system achieves the best

performance among all designs. Specifically, the dedicated system outperforms all other designs under the

conditions in Theorem 1-(a), except that the threshold η in that theorem should be replaced with another

one. The proof of Theorem 1-(a) extends to this setting by replacing N with M when the dedicated system

is compared with a partially-pooled system that consists of N/M pooled sub-systems, each with M servers.

The reason why our key result - the superiority of the dedicated system under some conditions - extends

to the partial pooling setting can be explained as follows. Intuitively, when a system is partially pooled,

there is no interaction between distinct sub-systems of pooled queues, and thus, each sub-system of pooled

queues can be viewed as an independent system of pooled queues. Consequently, the comparison between a

partially-pooled system and its dedicated counterpart is equivalent to the comparison between each pooled

sub-system and the dedicated counterpart of that sub-system. To be more precise, the dedicated system
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with N servers outperforms a partially-pooled system with N servers and N/M symmetric sub-systems of

pooled queues if and only if the dedicated system with M servers outperforms a completely pooled system

with M servers. In fact, using similar logic, it is feasible to identify similar sufficient conditions under which

the dedicated system performs the best in any type of partial pooling setting (including the non-symmetric

ones).
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Figure 2.6: The dedicated, partially-pooled and pooled systems achieve the best performance in black, grey and white

regions respectively. The following parameters are used: c = 1, µ = 1 and N = 20. The displayed boundaries

between regions are non-smooth because of the floor function in k and K .

As displayed in Figure 2.6, partial pooling outperforms both the dedicated and pooled systems when

R/c is moderate, and ρ is strictly larger than 1 but not very large. Under those conditions, compared to

the dedicated system, pooling some of the dedicated queues improves social welfare. The reason is that

with such a change, the system gets more congested, but the system’s throughput considerably increases

without a large increase in its average sojourn time. On the other hand, under the same conditions, if all of

these partially-pooled queues are further pooled into a single queue, the system gets even more congested,

leading to a considerable increase in the average sojourn time compared to the partially pooled case. In

that case, the increase in throughput (due to complete pooling) is not large enough to dominate the effect

of the aforementioned increase in the average sojourn time on social welfare. As a result, partial pooling

maximizes social welfare when R/c is moderate, and ρ is strictly larger than 1 but not very large.
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2.3.5 Unobservable System

Different from the setting in Section 3.1, the queue length information or real-time expected delay infor-

mation is not available to customers in the unobservable system. Thus, this section is related to the literature

that studies strategic, delay-sensitive customers that cannot observe the queue length but make decisions

based on steady-state information. (Littlechild, 1974), (Edelson and Hilderbrand, 1975) and (Mendelson,

1985) are among the first who analyze single-server queueing models in unobservable settings. There is a

rich literature that extends these papers in various dimensions. (See, e.g., Afèche (2013), Yang et al. (2017)

and Ravner and Shamir (2017) for some of the novel problems studied in this context.) (Hassin and Haviv,

2003) include an excellent review of relevant papers that predate 2003. (Hassin, 2016a) includes other

relevant papers that are published after 2003.

This section offers two key insights: If queue length information is not available to customers, (i) the

pooled system always results in larger social welfare than the dedicated system when the service is free of

charge, and (ii) the pooled system still dominates the dedicated system in terms of social welfare (revenue)

when a fee is set to maximize social welfare (the provider’s revenue).

We now explain our formulation. Arriving customers decide whether to join or balk based on the

potential arrival rate Λj and average sojourn time in the system j ∈ {d, p}. A customer’s joining/balking

strategy is determined by a joining probability qj for j ∈ {d, p}; a customer joins the queue with probability

qj and balks with probability (1−qj). The unique equilibrium in this setting is characterized and explained at

the beginning of Appendix A.12.1 of the Electronic Companion. Let ŜW j and Ŵj represent the equilibrium

social welfare and average sojourn time in the system j ∈ {d, p}, respectively. Moreover, let L̂p the long-run

average number of customers in the pooled system, and L̂d be the long-run average number of customers in

one of the N dedicated sub-systems in equilibrium. Then,

ŜW j =





(
R− cŴj

)
λ̂e,j = Rλ̂e,j − cL̂j if j = p

(
R− cŴj

)
λ̂e,jN =

(
Rλ̂e,j − cL̂j

)
N if j = d,

(2.19)

where λ̂e,p is the equilibrium effective arrival rate in the pooled system and λ̂e,d is the equilibrium effective

arrival rate in one of the N dedicated sub-systems.11

11It is perhaps worth noting that (2.19) and (2.3) are different as (2.19) is concerned with the equilibrium performance measures,

such as Ŵj , λ̂e,j and L̂j .
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Proposition 6. In equilibrium, the unobservable pooled system results in larger social welfare (and smaller

average sojourn time) than the unobservable dedicated system.

The proof of this result is presented for a more general case with any given fixed fee f ≥ 0. Thus,

Proposition 6 is valid in a more general setting. Proposition 7 shows that the result extends to the case with

heterogeneous service rewards.

Proposition 7. Suppose that the customer service reward is distributed with a general distribution function

G(·) defined on any bounded support. Then, in equilibrium, the unobservable pooled system results in larger

social welfare (and smaller average sojourn time) than the unobservable dedicated system, i.e., ŜW p ≥

ŜW d.

Below, we will further check the robustness of the result in Proposition 6 under the following two

formulations:

(i) Welfare-maximizing fee: For each system j ∈ {d, p}, a fee fj is chosen to maximize the social welfare:

max
fj≥0

ŜW j
.
= (R− cŴj(fj))Nλq̂j(fj), j ∈ {d, p}. (2.20)

(ii) Revenue-maximizing fee: For each system j ∈ {d, p}, a fee fj is chosen to maximize the service

provider’s revenue:

max
fj≥0

R̂V j
.
= Nλq̂j(fj)fj, j ∈ {d, p}. (2.21)

In both (2.20) and (2.21), q̂j(fj) represents the equilibrium joining probability for j ∈ {d, p}.

Proposition 8. (a) Under formulation (2.20), the unobservable pooled system outperforms the unobservable

dedicated system in terms of the equilibrium social welfare at the welfare-maximizing fee, i.e., ŜW
∗
p ≥

ŜW
∗
d.

(b) Under formulation (2.21), the unobservable pooled system outperforms the unobservable dedicated

system in terms of the equilibrium social welfare at the revenue-maximizing fee, i.e., ŜW
∗∗
p ≥ ŜW

∗∗
d .

It is straightforward to extend Proposition 8-(a) to the case with heterogeneous service rewards, and

hence the proof of this extension is omitted. An immediate corollary of Proposition 8-(b) is that under
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formulation (2.21), the maximum revenue under the unobservable pooled system is larger than that un-

der the unobservable dedicated system in equilibrium. This is consistent with numerical observations by

Ros and Tuffin (2004) that consider a queueing system with two “divisible” servers. These results and

Propositions 6 through 8 suggest that in our formulation, the observability of queue (or customers having

access to their real-time expected delay information) is a necessary condition for the dedicated system to

outperform the pooled system in terms of social welfare.

The contrast between the results in the observable versus unobservable queue settings (i.e., Theorem

1 versus Propositions 6 through 8) can be explained as follows. In the observable system, each customer

decides whether to join the system or not based on her own expected sojourn time. Specifically, each

customer joins if and only if her own expected sojourn time is (weakly) smaller than the longest one, which

is experienced by the customer who joins at the balking threshold. This joining behavior can lead to large

congestion in the system. In contrast, when the system is unobservable, every customer makes her joining

decision based on the equilibrium system state, i.e., average sojourn time across all customers that join the

system. In equilibrium, every customer’s joining probability is such that the effective arrival rate is always

strictly smaller than the service rate. This is true even at large potential load. As a result, a key driver of

Theorem 1, i.e., convex increasing stationary distribution of number of customers in the system, does not

exist in the unobservable queue setting. In fact, because the effective system load is always strictly smaller

than 1 and there is no queue capacity in the unobservable system, pooled and dedicated systems in the

unobservable system behave similar to the ones studied by Smith and Whitt (1981). Hence, the classical

benefit of pooling is recovered in the unobservable setting.

2.3.6 Observability as a System Feature

There could be practical scenarios in which running a system with an observable or unobservable queue

are both feasible options. In such cases, a system can be run in one of the following four alternative ways:

pooled observable, pooled unobservable, dedicated observable and dedicated unobservable. Considering

these four alternatives, we proved Proposition 9 and Lemma 4. These results and the discussion following

them complement the literature that studies an M/M/1 setting to understand if revealing queue length infor-

mation improves the social welfare (see, for instance, (Hassin, 1986), Hassin and Roet-Green (2017b) and

Hu et al. (2018)).
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Proposition 9. (a) When there is no service fee, the observable pooled system results in larger social welfare

than both the unobservable pooled system and the unobservable dedicated system in equilibrium.

(b) When a fee is set to maximize the social welfare in each system, the observable pooled system results in

the maximum social welfare among the four systems.

Lemma 4. When a fee is set to maximize the service provider’s revenue in each system, the unobservable

pooled system results in maximum social welfare among four systems, if R/c is moderate and ρ is not too

large (i.e., (N + 1)/(Nµ) < R/c <
(
(1 + ρ)2/λ+ 1/µ

)
and λ < λ̄ for some constant λ̄).

A key implication of Proposition 9-(a) is that when there is no service fee, hiding queue length never

improves the social welfare. Furthermore, Theorem 1-(a) and Proposition 9-(a) imply that when there is

no service fee, the observable dedicated system results in maximum social welfare among the four systems

if the conditions in (2.11) hold. By Proposition 9-(b), when all of the four systems are feasible options

and a service fee is set to maximize the social welfare, hiding queue length cannot be welfare-maximizing.

Lemma 4 shows that hiding queue length information can be welfare-maximizing when the service fee is

set to maximize the provider’s revenue. In the same setting, one can also show that among the four systems,

the observable pooled system results in maximum social welfare when ρ and R/c are large.

2.4 Concluding Remarks

Our paper provides key insights for service management. Theorems 1 through 3 suggest that the pooling

option should be evaluated very carefully in queueing systems as pooling queues may significantly decrease

the social welfare and consumer surplus by considerably increasing the average sojourn time. Services with

large benefit and large potential load are particularly prone to the potential harm of pooling when the queue

length information is available to customers and pricing control is not a feasible option. For these type of

services, the magnitude of the performance loss due to pooling can be even larger in large scale systems.

When pooling queues is inevitable and pricing control is not feasible for an observable queueing system,

there could be other operational levers to improve social welfare and consumer surplus in the pooled system.

In some practical settings, the number of servers could be a feasible operational lever. By changing the

number of servers in the pooled system, one might improve the social welfare and the customer surplus under

the pooled system. In fact, our numerical studies demonstrate that when the dedicated system outperforms

the pooled system, by sufficiently increasing the number of servers in the pooled system, the performance
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of the pooled systems achieves or exceeds the performance of the dedicated system. We also numerically

observe that the minimum number of additional servers required in the pooled system to achieve or exceed

the dedicated system’s performance increases with the potential system load. This means that, when there is

an increase in the potential system load, more server addition is necessary for the pooled system to perform

as good as the dedicated system.

Another operational lever for performance improvement in the pooled system could be limiting the

queue length under pooling. Our numerical studies suggest that when the potential system load is large,

the social welfare and consumer surplus in the pooled system can be improved by choosing an appropriate

buffer size for the pooled system. Such queue length control improves the system performance by mitigating

over-utilization in the system, especially when the potential system load is very large. Our further numerical

studies yield that the social welfare (and consumer surplus) in the pooled system is increasing and then

decreasing with the buffer size. This means that the appropriate buffer size for the pooled system is a

moderate one, which is typically smaller than the maximum number of customers in the dedicated system.

Note that in the context of customer service, not being able to receive service from a particular channel,

say, a call center, is not always equivalent to giving up service entirely. In various practical settings (e.g.,

e-commerce), a customer who does not join the call center queue can still receive service via a less desirable

alternative channel such as a web form or e-mail. The strategy of trying to meet some of the customer

service demand through these less desirable alternatives instead of adding servers to the call center could be

a reason why some call centers might operate with a large potential load.

In certain practical settings, the observability of queue itself can be an operational lever. However, our

analysis shows that when there is no service fee and pooling queues is inevitable, hiding the queue length or

the real-time expected delay information never improves social welfare or consumer surplus.

This paper studies a setting where each customer gains the same reward R upon service completion.

Our extensive numerical study shows that our main insights extend if customers’ rewards are allowed to be

different. As explained in Section 3.0.2, the literature suggests that the heterogeneity in jobs tends to benefit

the dedicated system over the pooled system. Although these papers study settings that are very different

than ours, our numerical observation that the dedicated system can continue to outperform pooled system

when the customer reward is heterogeneous is consistent with the literature.
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CHAPTER 3

Dynamic Learning and Rational Customers in Services

In this chapter, we consider the statistical learning of customers when they do not have full information

of the service speed. They can learn the service speed based on their observations in the system and behave

as forward-looking customers. We study the effect of learning and the operational implications for the

service provider.

3.0.1 Summary of Main Results and Insights

We study three alternative policies for the strategic customers in a single-server queue: the naive policy,

the myopic policy and the forward-looking policy.

Proposition 11 through 13 show that all the three alternative policies have threshold structures, and the

forward-looking policy has smaller belief thresholds compared to the myopic policy and the naive policy.

It implies that the forward-looking customer is more likely to join the queue when the true service rate is

unknown to the customer. Proposition 14 characterizes the joining threshold of customers with different

policies.

Proposition 18 shows that the expected value of learning is non-monotone in queue position assuming

all the other customers are simple. The value is maximal at moderate queue position. It also shows that the

expected value of learning is non-monotone in service reward and waiting cost per unit of time, and it is

maximal at intermediate value. Proposition 19 compares the alternative policies given service rate is high or

low.

We extend our model by allowing all the customers in the system belong to the same type. Proposition

15 through 17 compare the throughput of the system with each type of customers. We also consider the

case where customers are fully rational. They can incorporate the estimates of the abandonment probability

of all other customers ahead in next time period when they use dynamic programming to make decision.
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We conduct extensive simulations to study the impact of fully rational behavior on system performance and

study the value of learning in this complicated case.

3.0.2 Relevant Literature

Our work also contributes to the literature on strategic customers. (Hassin and Haviv, 2003) and

(Hassin, 2016b) provide a comprehensive literature review in this area. The literature usually assumes

all parameters are common knowledge, but it is not the case for the majority of the time. Customers can

also learn over time. We review a few papers closely related to our work. (Cui and Veeraraghavan, 2016)

consider an observable queue where customers do not know the true service rate and have different beliefs.

It is shown that information revealing can decrease the social welfare. (Hassin and Roet-Green, 2017a) con-

sider a model that customers have three options: join, balk, or inspect the queue length with a cost in an

unobservable single-server queue. They characterize the optimal disclosure policy for revenue maximization

and social welfare maximization. (Veeraraghavan et al., 2018) studied a model where customers learn the

service rate distribution and estimate their expected remaining sojourn time based on their posterior belief

of the service rate. Customers are not forward-looking and they make abandonment decisions based on the

expected utility.

Exogenous abandonments have been studied in the literature. (Gans et al., 2003b) and (Ward, 2012)

provide literature review on call centers with chapters on asymptotic analysis of queueing systems with

customers’ abandonment. (Whitt, 1999) studies the impact of information on state and remaining service

time of all customers on a M/M/s/r queueing system, where the delay tolerance is exponentially distributed

with a fixed rate. (Jouini et al., 2009) and (Jouini et al., 2011) consider call center models where patience

time follows exponential distribution. (Garnett et al., 2002) and (Whitt, 2004) consider the heavy-traffic

approximation for queues with abandonments. Endogenous abandonments are also studied in the literature.

(Mandelbaum and Shimkin, 2000) considers heterogeneous customers whose patience time depends on the

customers’ belief about the distribution of the waiting time. (Afeche and Sarhangian, 2015) analyzes the

equilibrium abandonment strategy of low-priority class customer for an observable queue with two-class pri-

ority customers. The impact of waiting time information is also studied in the literature. (Guo and Zipkin,

2007) and (Armony et al., 2009) consider the impact of delay announcement upon arrival.(Ata and Peng,

2017) consider endogenous abandonment of customers who are forward-looking. (Zohar et al., 2002) con-

siders an invisible multi-server queue where customers’ patience time distribution depends on the mean
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waiting time in queue. (Hassin and Haviv, 1995) considers equilibrium strategies of impatient customers

where the service reward drops to 0 if the waiting time exceeds a threshold. (Aksin et al., 2007) surveys the

recent literature on the operation management of call centers.

Forward-looking behavior is also considered in the literature. (Yu et al., 2016) empirically study

the impact of delay information on customers’ strategic behaviors using the data from a call center.

(Emadi and Swaminathan, 2017) empirically study the abandonment behavior using the data from a bank

call center. They consider a model where customers update their beliefs on the waiting time distribution

parameters through waiting experience by Bayes Rule, and apply the optimal stopping model to make aban-

donment decision. In our model, customers update their belief about service rate in a Bayesian framework

based on service completion information, and they solve their optimal stopping problem based on their

queue position and belief. We also compare this forward-looking policy with other alternative policies:

myopic policy and naive policy from the perspectives of customers and the service provider.

It is generally accepted that strategic customers’ behavior will hurt the firm, but there are also ob-

servations that it can be beneficial. Since the seminar work of (Coase, 1972), which pointed out that

the market power of the durable good monopolist will be eliminated when consumers anticipate future

price changes and can delay their purchase, there is growing literature on the adverse effects of cus-

tomers’ forward-looking behavior ((Stokey, 1979), (Besanko and Winston, 1990), (Su and Zhang, 2008),

(Cachon and Swinney, 2009), (Aviv and Pazgal, 2008), (Parlaktürk, 2012),(Liu and Zhang, 2013)). In con-

trast, in some cases it is shown that the forward-looking behaviors of customers can be beneficial. (Su, 2007)

finds that the strategic waiting of low-value customers can increase the willingness of high-value customers

to pay. (Swinney, 2011) finds that the strategic customer behavior can be beneficial for the firm because of

avoiding restocking costs. (Li et al., 2014) points out that strategic customer behavior may not hurt revenue

because it also drives up demand when driving down price. (Lin et al., 2018)) finds that the strategic behavior

is always beneficial for the manufacturer because of higher sales quantity. We compare the forward-looking

policy with myopic policy and naive policy, and identify the conditions when the forward-looking behavior

is beneficial or it is detrimental for either the customer or the service provider.

3.0.3 Outline of the Section

The section is organized as follows. Section 3.1 describes the model. Section 3.2 gives the preliminary

results on three types of policies we consider. Section 3.3 states our main results about the structural proper-
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ties of the policies. Section 3.5 compares the three alternative policies given the service rate is either high or

low when there is a single strategic customer in the queue. Section 3.4 extends the model such that everyone

in the system is strategic and uses the same policy. It presents results on the throughput comparison between

different policies.

3.1 Model

Consider a first-come-first-served (FCFS) queuing system with one server in a discrete-time setting.

Time is indexed by t = 1, 2, . . .. It takes S periods to serve a customer and S has a geometric distribution

with parameter p:

P(S = k) = (1− p)k−1p, k = 1, 2, 3, . . . . (3.1)

At the beginning of period 1, a new customer arrives to the system with probability γ ∈ (0, 1). The

arriving customer (he) does not know the parameter p but has a binary prior belief about it: he believes that

p = pH with probability α0 and p = pL with probability 1− α0 where pL and pH are known constants that

satisfy 0 < pL < pH < 1. Upon arrival, the customer observes the number of customers in the system, and

decides whether to join the queue or leave the system based on the number of customers in the system and his

prior belief α0. Initially, there are N0 customers in the system. If the customer chooses to leave the system,

he never comes back. If the customer chooses to join the line, then at the end of each period t = 1, 2, 3, . . .,

the customer decides whether to continue waiting or abandon the system based on his posterior belief at the

end of period t, that is αt, and the number of customers in the system in front of him at the end of period t,

that is Nt.

Define the stochastic process X
.
= {Xt : t = 1, 2, . . .} such that

Xt
.
=





1 if there is a service completion in period t

0 if the service is not completed in period t

(3.2)

In period t = 1, 2, . . ., if the customer waits, then he observes Xt. Using the observation Xt and αt−1,

the customer forms its posterior belief at the end of period t as follows.

αt = P(p = pH |Ft)
(⋆)
= P(p = pH |αt−1,Xt). (3.3)
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Here, Ft represents the entire information available to the customer up to the beginning of period t. Please

note that (⋆) indicates that the belief is a sufficient statistic, i.e., αt−1 includes all the necessary information

until the end of period t− 1. We will use y as a generic notation for the customer’s belief.

The cost of waiting in line to the customer is c > 0 for one period. The customer receives reward R as

soon as he is in service. When the customer abandons the system, he receives zero payoff.

At each decision epoch, At ∈ {0, 1}, where 0 stands for stay and 1 stands for leave. It is adapted to Ft.

The stopping time τ is defined as below:

τ = min{t : customer abandons the queue or receives service at the beginning of time period t}. (3.4)

An admissible policy for a customer is a non-anticipating finite stopping time τ , at which customer abandons

the queue or receives service. The expected total benefit is:

E

[
τ∑

t=0

r(Nt, At)|N0 = n, α0 = y

]
(3.5)

where r(Nt, At) is the reward in time period t given the action is At. It is given as below:

r(Nt, At) =





−c if At = 0,

R if At = 1 and Nt = 0,

0 if At = 1 and Nt > 0.

(3.6)

3.2 Preliminary Analysis

The customer uses Bayesian rule to update his belief at the end of each time period t = 1, 2, . . . . We

can calculate the posterior belief according to the following lemma.

Lemma 5. A customer’s posterior belief process {αt, t = 1, 2, . . .} satisfies

αt = P(p = pH |αt−1,Xt) =
pXt

H (1− pH)1−Xtαt−1

pXt

H (1− pH)1−Xtαt−1 + pXt

L (1− pL)1−Xt(1− αt−1)
, t = 1, 2, . . . .

(3.7)
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3.2.1 Forward-Looking Customer

Forward-looking customer uses dynamic programming to choose policy in order to achieve maximal

expected total benefit:

VF (n, y)
.
= maxE

[
τ∑

t=0

r(Nt, At)|N0 = n, α0 = y

]
. (3.8)

VF (n, α) satisfies the following dynamic programming equation:

VF (n, y) = max

{
0,− c+ (ypH + (1− y)pL)VF

(
n− 1,

pHy

pHy + pL(1− y)

)
+

(y(1 − pH) + (1− y)(1− pL))VF

(
n,

(1− pH)y

(1− pH)y + (1− pL)(1 − y)

)}
(3.9)

subject to the boundary condition:

VF (0, y) = R, y ∈ [0, 1]. (3.10)

3.2.2 Myopic Customer

Myopic customer also updates his belief according to (3.7). Instead of using dynamic programming, he

makes decision in order to maximize his expected total benefit based on current belief yt and queue position

Nt at the end of each time period t = 1, 2, . . . .

The customer will join the system at the beginning of t = 1 if and only if

R−

(
n0

pH
α0 +

n0

pL
(1− α0)

)
c ≥ 0. (3.11)

He will continue waiting at the end of each time period t = 1, 2, 3, . . . if and only if

R−

(
nt

pH
αt +

nt

pL
(1− αt)

)
c ≥ 0. (3.12)
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We can also get the optimality equation for the expected total benefit of myopic learner as below:

VM (n, y) =





0, if R <
(
y n
pH

+ (1− y) n
pL

)
c,

−c+ (ypH + (1− y)pL)VM

(
n− 1, pHy

pHy+pL(1−y)

)

+(y(1− pH) + (1− y)(1− pL))VM

(
n, (1−pH )y

(1−pH )y+(1−pL)(1−y)

)
, otherwise.

(3.13)

The boundary condition is as below:

VM (0, y) = R, y ∈ [0, 1]. (3.14)

3.2.3 Naive Customer

A naive customer makes joining decision based on the expected total benefit VN (n, y).

VN (n, y) = max

{
0, R−

(
n

pH
y +

n

pL
(1− y)

)
c

}
. (3.15)

Similar to myopic learner, naive customer will join the system at the beginning of t = 1 if and only if

R−

(
n0

pH
α0 +

n0

pL
(1− α0)

)
c ≥ 0. (3.16)

Different from myopic learner, naive customer does not update his belief in consecutive time periods. Thus,

once a naive customer has chosen to join the system, he will never abandon the service and he will leave the

system once the service is complete.

3.3 Analysis

Lemma 6. (a) There exists a function VF that satisfies the dynamic programming equation (3.9)

subject to the boundary condition (3.10) and can be attained by an admissible policy π∗, i.e.,

E
π∗

[∑T
t=0 r(Nt, At)|N0 = n, α0 = y

]
= VF (n, y).

Lemma 6 indicates that there exists an optimal solution in our dynamic programming problem, and it

can be attained by an optimal policy. Thus, forward- looking customers can determine their policy using the

optimality equation in (3.9).
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Proposition 10. A forward-looking customer’s optimal expected total benefit VF (n, y) is

(a) decreasing in n for any given y ∈ [0, 1], (b) increasing in y for any given n ∈ N, (c) increasing in R,

(d) decreasing in c. (e)convex in queue position n for given y, y ∈ [0, 1].

Proposition 10 describes the expected total benefit of a forward-looking customer in n and y.

It is shown that the VF (n, y) is decreasing more slowly as n increases. Eventually, when n is sufficiently

large, the forward-looking customer will not join the system and will get a zero expected total benefit.

The expected total benefit of the naive customer and the myopic learner are also decreasing in n and

increasing in y, increasing in R and decreasing in c. In addition, the expected total benefit of the naive

customer is piecewise linear.

Figure 3.1 below displays an example of the value function VF (n, y). As shown in Proposition 10,

VF (n, y) is decreasing in n and increasing in y.

n y
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)
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Figure 3.1: Value function when R = 100, c = 5, pH = 0.6, pL = 0.2.

Proposition 11 and 12 identify and compare the structure of the forward-looking policy, naive policy

and myopic policy.
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Proposition 11. For any given n, there exist thresholds βF (n),βM (n),βN (n) such that

(a) a forward-looking customer will wait if y ≥ βF (n) and leave if y < βF (n).

(b) a myopic learner will wait if y ≥ βM (n) and leave if y < βM (n). In addition, a naive customer will

wait if y ≥ βN (n) and leave if y < βN (n).

Proposition 12. The belief threshold satisfy βM (n) = βN (n) ≥ βF (n).

Proposition 13. For a forward-looking customer, the threshold βF (n) has the following properties: (a)

βF (n) ∈ (0, 1) if and only if n ∈ (n̄1, n̄2), where

n̄1
.
=

RpL
c

and n̄2
.
=

RpH
c

. (3.17)

(b) βF (n) is increasing in n, (c) βF (n) is decreasing in R and increasing in c, (d) βM (n) or βN (n) satisfies

that βM (n), βN (n) ∈ (0, 1) if and only if n ∈ (n̄1, n̄2) and they are increasing in n, decreasing in R, and

increasing in c.

According to Proposition 10, VF (n, y) is decreasing in n, increasing in R and decreasing in c. Thus,

we can get the results in parts (a) and (b) for optimal threshold. In part (c), It shows that the customer will

not abandon the service for any y ∈ [0, 1] when n is sufficiently small, i.e., n < RpL
c ; βF (n) = 0 when

n = RpL
c ; the customer will always abandon for any y ∈ [0, 1] when n is sufficiently large, i.e., n ≥ RpH

c .

Both the naive customer and the myopic learner use expected total benefit to make decision only based

on current belief and queue position, thus they have the same threshold. The difference is that naive cus-

tomer only makes joining decision based on the threshold, and he will never abandon the service in con-

secutive time periods. The forward-looking customer uses dynamic programming to make decision. Since

the forward-looking policy can achieve larger expected total benefit for given n and y, thus his threshold is

smaller.

Figure3.2 displays an example of the threshold comparison. βM (n) = βN (n) = βF (n) = 0 when n is

sufficiently small (n ≤ 4). βF (n) ≤ βN (n) = βM (n) for moderate n (5 ≤ n ≤ 16). All types of customers

will not join when n is large (n > 16).
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Figure 3.2: Belief threshold comparison when R = 100, c = 5, pH = 0.8, pL = 0.2.

Corollary 1. When all other customers are naive customers, the forward-looking customer has a smaller

abandonment probability than the myopic learner, i.e., BF (n) ≤ BM (n).

When all other customers behave like naive customers, we do not need to consider the possibility of

abandonment of other customers. According to Proposition 12, βM (n) ≥ βF (n), for any n ∈ N. Also we

know that myopic learner and forward-looking customer have the same belief updating process. Consider

any given sample path for myopic learner and forward-looking customer who join the system with n people

ahead and initial belief y. If forward-looking customer abandons the service at the end of time period t, it

implies that yt ≤ βF (Nt) ≤ βM (Nt), then myopic learner also abandons service if he has not abandoned

earlier. Thus, the forward-looking customer has a smaller abandonment probability than the myopic learner.

Proposition 14. For any given initial belief y, there exist nS(y) and nF (y), nS(y) ≤ nF (y), such that

for n ≤ nS(y), both forward-looking and naive customers will join; and for n in (nS(y), nF (y)], forward-

looking customer joins and naive customer does not join; for n > nF (y), neither type of customer will

join.

According to Proposition 12, βM (n) ≥ βF (n), for any n ∈ N. Thus, the forward-looking customer is

more likely to join.

3.4 Throughput comparison

We use the system throughput as the key performance metric, which is defined as the average number

of service completions per time period for a given length of time. The formulas for the system with only

45



forward-looking customers and the system with only naive customers are as below:

θF =

τ∑

t=1

C∗
F (t)/τ (3.18)

and

θN =

τ∑

t=1

C∗
N (t)/τ, (3.19)

where C∗
F (t) and C∗

N (t) denote whether there is a service completion during time period t for the forward-

looking customer and the naive customers, respectively.

Proposition 15. When R
c > 1

pH−pL
, there exist y and ȳ such that when initial belief α0 ∈ (y, ȳ), the system

with forward-looking customers results in strictly larger average throughput than the system with naive

customers, i.e., θF (τ) > θN (τ), for any finite time horizon τ when τ > 2⌊n̄1⌋ + 3, where n1 is defined in

(3.17).

Proposition 15 shows that when the service reward is not too small compared to waiting cost per unit

time, and α0 is moderate, then the system with forward-looking customers results in larger average through-

put than the system with naive customers. This is due to the fact that forward-looking customers are more

likely to join the system, and they rarely abandon under conditions of this proposition.

Proposition 16. (a) There exists a ¯̄y such that when the initial belief α0 ≥ ¯̄y, the system with forward-

looking customers results in strictly smaller average throughput than the system with naive customers, i.e.,

θF (τ) < θN (τ), for any finite time horizon τ , where τ ≥ 2⌊n̄2⌋+ t1 + 1 and n̄2 is defined as in (3.17).

(b) The system with forward-looking customers results same average throughput as the system with

naive customers, i.e., θF = θN , if either

(i)
RpH
c

−
RpL
c

< 1 or (ii) α0 < y (3.20)

where y = βF (⌊n̄1⌋+ 1), n̄1 is defined in (3.17).

Proposition 16 shows that when initial belief α0 is sufficiently large, the system with naive customer

results in larger throughput than forward- looking customer. For sufficiently large initial belief, naive cus-
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tomer and forward-looking customer have similar joining behavior, and naive customer will never abandon

the service, which results in larger throughput.

It shows that the system with forward-looking customers has same throughput with the system with

naive customers if (3.20). Under condition (i) in (3.20), both forward-looking customer and naive customer

will always join/stay or always balk/abandon regardless of the belief for any queue position. Under condition

(ii) in (3.20), initial belief is small enough that both forward-looking customer and naive customer will only

join the system when n ≤ n̄1, where the customer will never abandon regardless of the belief. Thus, they

result in same throughput under these conditions.

Proposition 17. The system with naive customers always results in larger average throughput than the

system with myopic learners, i.e., θN ≥ θM .

Proposition 17 shows that the system with naive customers always results in larger throughput than

that with myopic learners. This is because naive customers and myopic learners have the same joining

threshold, but myopic learners may abandon the service in consecutive time periods while naive customers

never abandon.

We use simulation to compare the throughput of the system where all the customers are forward-looking

with the system where all the customers are naive. We use 75 replications for 50000 time periods and the

we choose 10000 warm-up periods. Table 3.1 below gives the throughput comparison for 9 pairs of relative

reward R/c and initial belief α0. Let γ = θF−θN
θN

· 100. The tables below display γ. The percentage can be

larger than 19% when R = 30 and α0 = 0.35.

Table 3.1: Throughput difference in percentage between the system with all the forward-looking customers and the

system with all the naive customers

α0 0.35 0.65 0.95

R = 25 [14.2085%, 14.2355%] [4.6019%, 4.6151%] [2.4257%, 2.4350%]

R = 30 [19.0781%, 19.1096%] [5.9369%, 5.9541%] [0.8989%, 0.9069%]

R = 35 [19.0676%, 19.0996%] [5.9249%, 5.9423%] [0.8998%, 0.9075%]

c = 5, p = pH = 0.6, pL = 0.1, λ = 0.65
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Figure 3.3 and 3.4 show a example about the throughput difference in percentage of the system with

a fraction w1 of the customers are forward-looking with and the system where all the customers are naive.

When the initial belief α0 is moderate, the system with forward-looking customers results in larger through-

put than the system with naive customers. The system with naive customers has larger throughput when the

initial belief α0 is large.
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Figure 3.3: Throughput comparison when R = 20, c = 5, pH = 0.4, pL = 0.2, α0 = 0.35
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Figure 3.4: Throughput comparison when R = 20, c = 5, pH = 0.4, pL = 0.2, α0 = 0.6
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Figure 3.5 below shows how the throughput difference in percentage change with the initial belief y.

When the initial belief is small, the throughput of the system with forward-looking customers is larger than

the system with naive customers. It means if the reputation of the service provider is bad, the forward-

looking policy will benefit the service provider in terms of throughput. The reason is that the forward-

looking customers are more likely to join the system than the naive customers
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Figure 3.5: Throught comparison when R = 20, c = 5, λ = 0.4, pH = 0.4, pL = 0.2. The red dot lines show the

95% confidence interval

3.5 Value of Learning For Customers

Let U j
N (n, y), j ∈ {H,L}, denotes the expected total benefit of naive customer with belief y when there

are n people ahead upon arrival given p = pj . Since naive customer will never abandon the service once he

has chosen to join the system, the expected total benefit is as below:

U j
N (n, y) =





R− c n
pj

if R− (y n
pH

+ (1− y) n
pL

)c > 0,

0 otherwise.

(3.21)

where j ∈ {H,L}.

Let U j
F (n, y), j ∈ {H,L}, denotes the expected total benefit of the forward-looking customer with

belief y when there are n people ahead of him upon arrival given p = pj . Then we have the following
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optimality equations.

U j
F (n, y) =





0 if f(n, y) < 0,

−c+ pjU
j
F (n− 1, g1(y)) + (1− pj)U

j
F (n, g2(y)) if f(n, y) ≥ 0,

(3.22)

U j
F (0, y) = R. (3.23)

Here f(n, y) is defined in (B.4). g1(y) = ypH
ypH+(1−y)pL

and g2(y) = y(1−pH )
y(1−pH )+(1−y)(1−pL) as defined in

(B.2) and (B.3).

The value of learning is defined as the gain in expected total benefit for the customer who is forward-

looking instead of being naive given p = pH or p = pL.

∆j(n, y) = U j
F (n, y)− U j

N (n, y), (3.24)

where j ∈ {H,L}.

The expected value of learning ∆(n, y) is as below:

∆(n, y) =∆H(n, y)y +∆L(n, y)(1 − y)

=(UH
F (n, y)− UH

N (n, y))y + (UL
F (n, y)− UL

N (n, y))(1 − y))

=UH
F (n, y)y + UL

F (n, y)(1 − y)− (UH
N (n, y)y + UL

N (n, y)(1− y))

=VF (n, y)− VN (n, y) (3.25)

Proposition 18. The expected value of learning for a forward-looking customer ∆(n, y) is (a) non-

monotone with respect to queue length. In particular, there exists a threshold n̄ such that the expected

value of learning increases with the queue position n if n < n̄; otherwise the expected value of learning de-

creases with the queue length, (b) increasing and then decreasing in R, (c) increasing and then decreasing

in c.
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Figure 3.6: The expected value of learning when R = 100, c = 5, pH = 0.7, pL = 0.2. In the left panel, α0 = 0.8.

In the right panel, n = 10

Proposition 18(a) is due to the fact that the expected benefit for forward-looking customer is convex in

n, and the expected benefit of naive customer is piecewise linear in n. Also, we know that it is larger for

forward-looking customer. Thus, the expected value of learning is non-monotone in n.

Proposition 18 shows that the value of learning is non-monotone in service reward R. It achieves

maximum at some moderate R. The reason is that the expected total benefit of forward-looking customer is

convex in R for any given n and y, while the value of naive customer is piecewise linear in R.

The proposition also states that the value of learning is non-monotone in waiting cost per unit time c.

It achieves maximum value at some moderate c. The reason is that the expected total benefit of forward-

looking customer is convex in c for any given n and y, while the value of naive customer is piecewise linear

in c.

Is the ex-post value of learning still always positive? Next we study how the ex-post value of learning

is affected by the initial belief and the queue position.

3.5.1 Impact of y

Proposition 19. When there are n people ahead upon arrival and the initial belief α0 = y, if ȳ1(n) ∈ (0, 1),

where ȳ1(n) is defined in (3.26), then there exists ȳ2(n) ∈ (0, 1) such that only the forward-looking customer
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joins when ȳ2(n) < y ≤ ȳ1(n),and all types of customers join when y > ȳ1(n),

ȳ1(n) =
1/pL −R/cn

1/pL − 1/pH
, (3.26)

Furthermore,

(a) if p = pH and y > ȳ1(n), the naive policy results in the maximum expected total benefit among all three

policies. The value of learning is non-positive, i.e., ∆H(n, y) ≤ 0. The loss from learning −∆H(n, y) is

decreasing in y.

(b) if p = pL and y > ȳ1(n), the myopic policy results in the maximum expected total benefit among all

three policies. The value of learning is non-negative, i.e., ∆L(n, y) ≥ 0. The gain from learning ∆L(n, y)

is decreasing with y.

(c) if p = pH and ȳ2(n) < y ≤ ȳ1(n), the forward-looking policy results in the maximum expected total

benefit among all three policies. The value of learning is non-negative, that is, ∆H(n, y) ≥ 0. The gain

∆H(n, y) is increasing with y.

(d) if p = pL and ȳ2(n) < y ≤ ȳ1(n), the naive policy and myopic policy result in the maximum expected

total benefit among all three policies. The value of learning is non-positive, that is, ∆L(n, y) ≤ 0. The loss

−∆L(n, y) is increasing with y.

Proposition 19 shows that being forward-looking is not better than being naive when the service rate is

high given that both forward-looking customer and naive customer join the system. This is because naive

customer does not update his belief and will never abandon the service once he has joined, which can be

a good choice when service rate is high. The forward- looking customer will update his belief in each

time period and his belief can decrease due to the failure of service completion. Since he only stays in the

system for finite periods, his belief can be misleading due to the randomness of service completion. Thus,

the forward-looking policy results in smaller expected total benefit. The result is completely opposite if the

service rate is low.

Proposition 19 also shows that when belief is moderate, only forward-looking customer joins while

naive customer does not join. It is better to use forward-looking policy when the service rate is high since

the joining customer will receive positive expected total benefit. The result is opposite when service rate is

low.
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Figure 3.7: Value of Learning when R = 100, c = 5, pH = 0.7, pL = 0.2, n = 10.

Figure 3.7 pictures a numerical example for the value of learning as y increases for n = 10. When y is

sufficiently small, both the forward-looking customer and the naive customer will not join the queue and thus

the value of learning is 0. For moderate y, only the forward-looking customer joins. The forward-looking

customer gains from learning and the gain is increasing in y when p = pH . In contrast, the gain from

learning is negative and the loss is increasing in y when p = pL. When y is large, both the forward-looking

customer and the naive customer join. The value of learning is negative and the loss is decreasing in y when

p = pH . It is positive and the gain is decreasing in y when p = pL.
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3.5.2 Impact of n
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Figure 3.8: Value of Learning when R = 100, c = 5, pH = 0.7, pL = 0.2, y = 0.5.

Figure 3.8 pictures a numerical example for value of learning as n increases given y = 0.5. Specifically,

the left panel pictures the value of learning when the true service rate is high. There is no value of learning

when n is small (n ≤ 4) since both types of customers will never abandon the service regardless of the

belief. When n is moderate (n = 5 and n = 6), both types of customers join, the value of learning is

negative since it is better to stay in the queue when the service rate is high in this range of n. When n is

large (n ≥ 7), only the forward-looking customer joins the queue while the naive customer balks. The value

of learning is positive in this case, and it is decreasing with n. The right panel pictures the value of learning

when the true service rate is low. In contrast, the value of learning is positive when n is moderate (n = 5

and n = 6) since it is better to leave the system in this range of n given p = pL. The value of learning

is negative when n is large (n ≥ 7) since only the forward-looking customer joins and the expected total

benefit is negative given p = pL. The loss of learning is non-monotone in n in this example.

We also consider the value of learning when all the others are forward-looking by numerical studies.

Even when all the others are forward-looking, the structure will be preserved. The value of learning is

non-monotone and unimodal.
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3.6 An Extension and Simulation Study

3.6.1 Fully Rational Customers

In previous sections, we considered customers that use Markov decision process to make join-

ing/abandonment decisions assuming all the other customers do not abandon the service. In this section,

we extend our model by considering the fully rational customers who can also incorporate others’ abandon

behaviors in their decision making process.

We consider a system with both fully rational customers and naive customers. The fraction of fully

rational customers is w1. The customers do not have full information about this fraction, and they think the

fraction is w2.

Recall that n̄1 = RpL
c . For customers in queue position n (n customers ahead in the system, including

the one in service), n ≤ n̄1, they will never abandon by the proof of Proposition 13. So we focus on the

decision policy of customers in queue position n ≥ n̄1 + 1.

Let ai(y) denote the optimal action of the customer in position i with belief y, where 0 stands for leave

and 1 stands for stay.

For a customer in queue position n (n customers ahead), he assumes the customer in position i (i =

0, 1, 2, . . . , n− 1) has a posterior belief with uniform distribution over Bi, where Bi
.
= {y ∈ [0, 1] : ai(y) =

1}. Let p(i) denotes the abandonment probability of the customer in position i if the service is not completed

in the following time period given this customer is fully rational.

p(i) = P

(
(1− pH)y

(1− pH)y + (1− pL)(1− y)
/∈ Bi|y ∈ Bi

)
=

P

(
(1−pH )y

(1−pH )y+(1−pL)(1−y) /∈ Bi, y ∈ Bi

)

P(y ∈ Bi)
.

(3.27)
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Let Zi denotes the number of abandonments among the first i customers in the following time period if the

service is not completed, and we have

P(Zi = 0) =1, if i ≤ n̄1 + 1. (3.28)

P(Zi = 0) =P(Zi−1 = 0)(1− p(i)w2), if i ≥ n̄1 + 2 (3.29)

P(Zi = j) =P(Zi−1 = j)(1 − p(i)w2) + P(Zi−1 = j − 1)p(i)w2, if i ≥ n̄1 + 2, 1 ≤ j ≤ i− (n̄1 + 1).

(3.30)

Denote the value function in this case as VR(n, y). The optimality equation is as below:

VR(n, y) = max

{
0,− c+ (ypH + (1− y)pL)VR

(
n− 1,

pHy

pHy + pL(1− y)

)

+ (y(1− pH) + (1− y)(1− pL))

(
P (Zn = 0)VR

(
n,

(1− pH)y

(1− pH)y + (1− pL)(1 − y)

)

+ P (Zn = 1)VR

(
n− 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)

)

+ P (Zn = 2)VR

(
n− 2,

(1− pH)y

(1− pH)y + (1− pL)(1− y)

)

+ . . . . . .

+P (Zn = n− n̄1 − 1)VR

(
n̄1 + 1,

(1− pH)y

(1− pH)y + (1− pL)(1 − y)

))}
. (3.31)

VR(0, y) = R for y ∈ [0, 1]. (3.32)

3.6.2 Numerical Study for the Optimal Policy

We numerically calculate the value function and thresholds sequentially for the fully rational policy by

the value iteration algorithm using equation (3.27) through (3.31). We find the policy of the fully rational

customers is of threshold type. Denote the belief threshold for the customer in the nth position as τR(n). It

has similar properties with the belief threshold of the forward-looking customers.

Figure 3.9 pictures a numerical example on how the thresholds τss(n) change as w2 changes. It indicates

that the threshold is smaller with larger w2. When w2 is larger, the fully rational customer expect that the

number of abandonments ahead of her is larger in the following period and she has a larger expected total

benefit given current belief and queue position. Thus, the threshold is smaller with larger w2.
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Figure 3.9: Threshold comparison when R = 100, c = 5, pH = 0.8, pL = 0.2.

Note that w2 = 0 corresponds to the case that the customer assumes all the other customers are naive

and the policy is equivalent to the forward-looking policy.

3.6.3 Simulation

We conduct simulation studies to evaluate the performance of the system with fully rational customers

comparing to the system with only naive customers. We choose the long-run average throughput as the

performance metric.

3.6.3.1 Throughput

Let θR denote the long-run average throughput of the system with both fully rational customers and

naive customers, and θN denote that of the system with only naive customers. We use βθ to denote the

throughput difference in percentage and it is given as below:

βθ
.
=

θR − θN
θN

100. (3.33)

Figure 3.10 displays βθ(λ) with λ as an argument for three choices of w1 and the initial belief is

moderate. The difference in percentage is positive for either p = pH or p = pL, and usually achieves

maximal at a moderate λ, and it increases as w1 increases.
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Figure 3.10: Throughput comparison when R = 20, c = 5, pH = 0.4, pL = 0.2, w2 = w1, α0 = 0.35.

3.6.4 Value of Learning

We compare the system with naive customers and the system with a combination of naive customers

and fully rational customers. We define the value of learning ∆̂j(n, y), j ∈ {L,H}, as the difference of

expected utility of customers with given position n and initial belief y for these two systems. In the system

with a combination of fully rational customers and naive customers, let Û j
R(n, y) and Û j

S(n, y) denote the

expected utility of a customer with queue position n and initial belief y for these two systems given p = pj ,

respectively. The the value of learning is as below:

∆̂j(n, y) = Û j
R(n, y)− Û j

S(n, y), j ∈ {L,H}. (3.34)

It has similar patterns with the value of learning when customers are forward-looking instead of fully

rational. Figure 3.11 below shows that the value of learning is monotone with the fraction of the fully-

rational customers.
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Figure 3.11: Expected Value of Learning when R = 100, c = 5, pH = 0.8, pL = 0.1, α0 = 0.8, n = 6, λ = 0.9,

w2 = w1.

3.7 Concluding Remarks

This paper studies the dynamic learning behavior of customers when they do not have full informa-

tion about the service rate. Customers can learn the service rate when they are waiting in the queue and

use Markov decision policy to make abandonment decisions. We compare this policy with other heuristic

policies and look at the value of such learning behaviors when there is only one strategic customer. The

expected value of learning is positive and it achieves maximum at moderate queue position. In contrast, the

ex-post value of learning can be negative given the service rate. We identify the conditions under which

such learning behavior can hurt the customer’s benefit and study how it is affected by the initial belief and

the queue position.

We also compare the long-run average throughput for the system with different types of customers. It is

commonly known that the customers being too smart are not good for the service provider. Surprisingly we

find that the forward-looking customers can improve the system throughput. The improvement in percentage

can be larger than 15%.

In addition, we consider the fully rational customers who can also consider the others’ abandonment

behavior when they make decisions. The optimal policy again has a threshold structure like the forward-

looking policy. Our main results for the throughput comparison still carry through when customers are

fully-rational according to the simulation.
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APPENDIX A

PROOF OF RESULTS IN CHAPTER 2

A.1 Proofs of Lemmas 1 and 2 and a Supplementary Result

Proof of Lemma 1: Consider the pooled system described in Section 3.1. If there are already n ≥ N

customers in the system, the expected time that an arriving customer spends in the system is W̄p(n + 1) =

(n+1)/(Nµ). The reason is as follows. The arriving customer enters the service after (n−N+1) customers

ahead of her are served. Then, because there are N servers, it follows from standard probability arguments

that the total expected time to complete the service of (n−N +1) customers ahead of the arriving customer

is (n−N+1)/(Nµ). This gives the expected waiting time of the arriving customer in the queue. In addition

to this, the expected service time of the aforementioned customer is 1/µ. Combining the expected waiting

time in the queue and the expected service time, the expected time that the arriving customer spends in the

system is (n−N + 1)/(Nµ) + 1/µ = (n+ 1)/(Nµ). This and (2.2) imply that such an arriving customer

joins the system if and only if R − ((n + 1)c/(Nµ)) ≥ 0 which is equivalent to n ≤ (RNµ)/c − 1. This

implies that the maximum number customers in the system is equal to K where K is as defined in (2.6).

To find the average sojourn time, we first identify the steady-state probability distribution of the number

of customers in the system. Let πi be the steady-state probability that there are i customers in the system.

Because K ≥ N by (2.5), the balance equations of this system are the following: Nλπi = (i+1)µπi+1 for

i = 0, . . . , N − 1 and πiλ = πi+1µ for i = N, . . . ,K − 1. From these and the fact that
∑K

i=0 πi = 1, we

have

π0 =

(
N−1∑

i=0

N i

i!
ρi +

NN

N !

K∑

i=N

ρi

)−1

, (A.1)

πi = π0N
iρi/i! for i = 1, . . . , N and πi = π0N

Nρi/N ! for i = N + 1, . . . ,K. (A.2)
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Using these, we get the following expressions for the long-run average number of customers in the system

and the throughput, respectively:

Lp =

K∑

i=0

πii =

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑K
i=N iρi

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

(A.3)

λe,p = (1− πK)Nλ =

(
1−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
Nλ. (A.4)

Because Wp = Lp/λe,p by Little’s law, (2.7) immediately follows from (A.3) and (A.4). Replacing (A.3)

and (A.4) in place of Lp and λe,p, respectively, in the SWp formula (2.3), we get (2.8). �

Proof of Lemma 2: Recall that the dedicated system consists of N separate sub-systems each with a line

dedicated to one server. Suppose that a customer arrives to one of these dedicated queues and observes

that there are n customers in that sub-system. Then, the expected time the arriving customer spends in that

sub-system is W̄d(n+1) = (n+1)/µ. This means by (2.2) that a customer joins the dedicated queue if and

only if R − (n + 1)c/µ ≥ 0 which is equivalent to n ≤ (Rµ)/c − 1. Note that the later inequality implies

that the maximum number of customers in each separate sub-system is k where k is as defined in (2.5). As

a result, each separate sub-system can be considered as an M/M/1/k system. Then, the long-run average

number of customers and the throughput in one of the dedicated sub-systems are as follows, respectively

(see Table 4 on page 149 of Sztrik (2012)).

Ld =





ρ[1−(k+1)ρk+kρk+1]
(1−ρ)(1−ρk+1)

= ρ
1−ρ − (k+1)ρk+1

1−ρk+1 if ρ 6= 1

k
2 if ρ = 1.

(A.5)

λe,d =





λ
(
1− (1−ρ)ρk

1−ρk+1

)
= λ

(
1−ρk

1−ρk+1

)
if ρ 6= 1

λ
(

k
k+1

)
if ρ = 1.

(A.6)

By Little’s Law, Wd = Ld/λe,d. From this, (A.5) and (A.6), we get (A.7) below. Similarly, by substituting

Ld and λe,d respectively with (A.5) and (A.6) in the SWd formula (2.3), we get (A.8) below.
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Wd =





ρ−(k+1)ρk+1+kρk+2

λ(1−ρ)(1−ρk)
if ρ 6= 1

k+1
2λ if ρ = 1,

(A.7)

SWd =





(
1−ρk

1−ρk+1

)
RNλ−

(
ρ

1−ρ − (k+1)ρk+1

1−ρk+1

)
Nc if ρ 6= 1

k
k+1RNλ− k

2Nc if ρ = 1.

(A.8)

The fact that (A.7) and (A.8) are equivalent to Wd and SWd expressions in the lemma, respectively, com-

pletes the proof. �

We now state and prove a supplementary lemma which we will use in the remainder of the Appendix.

Lemma 7. Consider an M/M/1/K queueing system (indexed by j = s) with the potential arrival rate λN

and the service rate µN and K is as defined in (2.6). Suppose that there is no service fee as in Section 3.1.

Then, (a) the throughput is

λe,s =





Nλ
(

1−ρK

1−ρK+1

)
if ρ 6= 1

Nλ K
K+1 if ρ = 1.

(A.9)

(b) The long-run average number of customers in the system is

Ls =





ρ
1−ρ − (K+1)ρK+1

1−ρK+1 if ρ 6= 1

K
2 if ρ = 1.

(A.10)

(c) The average sojourn time is

Ws =





ρ−(K+1)ρK+1+KρK+2

(1−ρ)(1−ρK )Nλ
if ρ 6= 1

K+1
2Nλ if ρ = 1.

(A.11)
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(d) The social welfare is

SWs =





(
1−ρK

1−ρK+1

)
RNλ−

(
ρ

1−ρ − (K+1)ρK+1

1−ρK+1

)
c if ρ 6= 1

K
K+1RNλ− K

2 c if ρ = 1.

(A.12)

Proof of Lemma 7: Because the ratio of the potential arrival rate to the service rate in the described system

is Nλ
Nµ = ρ, which is same as in each dedicated sub-system (which consists of one dedicated queue and

one server), the balance equations for the described M/M/1/K system are the same as the ones for the

M/M/1/k system analyzed in the proof of Lemma 2, with the exception that k must be replaced with

K . Replacing k with K in λe,d/λ, we get (1 − π̃K) where π̃K is the steady-state probability of having K

customers in the described M/M/1/K system. From this and the fact that the throughput in M/M/1/K

system is equal to (1 − π̃K)Nλ, we complete the proof of part (a). Similarly, replacing k with K in Ld

we get Ls in part (b). Because the average sojourn time is Ws =
Ls

λe,s
by Little’s Law, part (c) immediately

follows. Finally, by replacing λ with Nλ, µ with Nµ and k with K in SW d/N (from (A.8)), we get part

(d). �

A.2 Proof of Theorem 1

A.2.1 Proof of Theorem 1 - Part (a):

Proposition 3 will show that if (2.13), then Wd < Ws and SWd > SWs. This and the facts that

Ws < Wp and SWs > SWp by Proposition 2 complete the proof of the claim in part (a). We provide the

proofs of Propositions 2 and 3 in Appendices A.4 and A.5, respectively. �

A.2.2 Proof of Theorem 1 - Part (b):

We will first state and prove a lemma. Using this lemma, we will then prove parts (i) and (ii) under the

condition (⋆) in (2.12), and then we will prove same claims under the condition (⋆⋆) in (2.12).

Lemma 8. Compared to the dedicated system, the pooled system results in strictly larger throughput than

the pooled system, i.e., θd = Nλe,d < θp = λe,p.

63



Proof of Lemma 8: Let bd and bp denote the balking probabilities in the dedicated and pooled systems,

respectively. The proofs of Lemmas 1 and 2 imply that

bd = π̄k =
ρk

1 + ρ+ · · ·+ ρk
and bp = πK =

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

, (A.13)

where π̄k is the stationary probability that there are k customers in one of the N sub-systems in the dedicated

one. Based on these, observe that regardless of the value of ρ, we have

bd − bp

=
ρk

∑k
i=0 ρ

i
−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

=
1

(
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi)

∑k
i=0 ρ

i

(
N−1∑

i=0

N i

i!
ρi+k +

NN

N !

K+k∑

i=N+k

ρi −
NN

N !

K+k∑

i=K

ρi

)

=
1

(
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi)

∑k
i=0 ρ

i

(
N−2∑

i=0

N i

i!
ρi+k +

NN

N !

K+k∑

i=N+k−1

ρi −
NN

N !

K+k∑

i=K

ρi

)
(A.14)

≥
1

(
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi)

∑k
i=0 ρ

i

(
N−2∑

i=0

N i

i!
ρi+k

)
(A.15)

>0 (A.16)

The equation (A.14) is because NN−1

(N−1)!ρ
N+k−1 = NN

N ! ρ
N+k−1. The inequality (A.15) follows from the

fact that N + k − 1 ≤ K since N + k − 1 − K ≤ N + k − 1 − Nk = (N − 1)(1 − k) ≤ 0. Because

λe,p = (1 − bp)Nλ and λe,d = (1 − bd)λ, and the balking probability in the dedicated system is strictly

larger than the one in the pooled system by (A.16), we have λe,dN < λe,p. �

Proof of Theorem 1 - Part (b) under the condition (⋆) in (2.12): If R
c < N+1

Nµ , then Rµ
c < N+1

N and

RNµ
c < N + 1. This and (2.5) imply that k = 1 and K = N . Thus, under the condition (⋆), there is no

waiting line and a joining customer immediately gets the service. As a result,

Wd = Wp =
1

µ
,
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which is the claim in part (i). Recall the definition of the social welfare from (2.3):

SWd = λe,dN(R− cWd) = λe,dN

(
R−

c

µ

)
and SWp = λe,p(R − cWp) = λe,p

(
R−

c

µ

)
.

Based on this, because λe,dN < λe,p by Lemma 8, SWd < SWp. �

Proof of Theorem 1 - Part (b) under the condition (⋆⋆) in (2.12): Define

η̄
.
= (z3 + 1)/µ, (A.17)

where

z3
.
= inf

{
z ∈ R : z > −(ln(ρ)−1 + 3) and (z + 3)ρz−1 < (N − 1)/N

}
. (A.18)

In light of this, the outline of the remainder of the proof is as follows. First, we will state and prove Lemma

9 that shows the existence of the constant z3 which will be used in the remainder of the proof. Then, we will

show in Lemma 10 that if ρ < 1 and k > z3, we have Lp −NLd < 0. Finally, we will use this inequality to

prove the claims in parts (i) and (ii) for ρ < 1 and k > z3. This and the fact that R
c > z3+1

µ implies k > z3

complete the proof of part (b).

Lemma 9. For ρ < 1, the constant z3 defined in (A.18) exists and it is finite.

Proof of Lemma 9: Define g4(z)
.
= (z + 3)ρz−1. Then, note that the definition in (A.18) is equivalent to

z3
.
= inf{z ∈ R : g4(z) < (N − 1)/N and z > −1/ ln(ρ) − 3}. Observe that g4(·) is strictly decreasing

for ρ < 1 and z > − 1
ln(ρ) − 3 because

g′4(z) = ρz−1 + (z + 3)ρz−1 ln(ρ) = ρz−1(1 + (z + 3) ln(ρ)) < 0. (A.19)

In addition, by an application of L’Hopital’s Rule, we have

lim
z→∞

g4(z) = lim
z→∞

(z + 3)ρz−1 = 0. (A.20)

From (A.19) and (A.20), the claim follows. �

65



Lemma 10. For ρ < 1 and k > z3, the long-run average number of customers in the dedicated system,

that is, NLd, and the long-run average number of customers in the pooled system satisfy the following

inequality:

Lp −NLd < 0. (A.21)

Proof of Lemma 10: Recall Lp and Ld from (A.3) and (A.5). Then, we have

Lp −NLd

=

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑K
i=N iρi

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

−N
ρ
(
1− (k + 1)ρk + kρk+1

)

(1− ρ)(1 − ρk+1)

=
1(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

·

[(
N−1∑

i=0

N i

i!
iρi +

NN

N !

K∑

i=N

iρi

)
(1 − ρ)(1 − ρk+1)

− Nρ
(
1− (k + 1)ρk + kρk+1

)(N−1∑

i=0

N i

i!
ρi +

NN

N !

K∑

i=N

ρi

)]
(A.22)

Note that we have

N−1∑

i=0

N i

i!
iρi =

N−1∑

i=1

N i

i!
iρi =

N−1∑

i=1

N i

(i− 1)!
ρi = Nρ

N−1∑

i=1

N i−1

(i− 1)!
ρi−1 = Nρ

N−2∑

i=0

N i

i!
ρi,

N−1∑

i=0

N i

i!
ρi +

NN

N !

K∑

i=N

ρi =
N−2∑

i=0

N i

i!
ρi +

NN

N !

K∑

i=N−1

ρi =
N−2∑

i=0

N i

i!
ρi +

NN

N !

ρN−1 − ρK+1

1− ρ
.
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Thus, (A.22) and Lp −NLd are equivalent to

=

(
Nρ

∑N−2
i=0

N i

i! ρ
i + NN

N !

∑K
i=N iρi

)
(1− ρ)(1− ρk+1)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

−
Nρ

(
1− (k + 1)ρk + kρk+1

)(∑N−2
i=0

N i

i! ρ
i + NN

N !
ρN−1−ρK+1

1−ρ

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

=

∑N−2
i=0

N i

i! ρ
i
(
Nρ(1− ρ)(1− ρk+1)−Nρ

(
1− (k + 1)ρk + kρk+1

))
(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1 − ρk+1)

+
NN

N !(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1 − ρk+1)

·

(
−(K + 1)ρK+1 +KρK+2 +NρN − (N − 1)ρN+1

(1 − ρ)2
(1− ρ)(1− ρk+1)

−Nρ
(
1− (k + 1)ρk + kρk+1

) ρN−1 − ρK+1

1− ρ

)
(A.23)

=

(
−ρ+ (k + 1)ρk − (k + 1)ρk+1 + ρk+2

)
Nρ

∑N−2
i=0

N i

i! ρ
i

(
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi)(1− ρ)(1− ρk+1)

+
(NN/N !)

[
−(N − 1)ρN+1 − (K + 1)ρK+1 −N(k + 1)ρN+k+1 +N(k + 1)ρN+k + (N − 1)ρN+k+2

]
(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)2(1− ρk+1)

+
(NN/N !)

[
(K +N)ρK+2 + (K + 1−Nk −N)ρK+k+2 + (Nk −K)ρK+k+3

]
(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)2(1− ρk+1)

. (A.24)

Equation (A.23) holds because

K∑

i=N

iρi = ρ
∂

∂ρ

(
ρN + ρN+1 + . . .+ ρK

)

=
−(K + 1)ρK+1 +KρK+2 +NρN − (N − 1)ρN+1

(1− ρ)2
. (A.25)
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The expression in (A.24), which is equivalent to Lp −NLd, satisfies the following relations:

(
−ρ+ (k + 1)ρk − (k + 1)ρk+1 + ρk+2

)
Nρ

∑N−2
i=0

N i

i! ρ
i

(
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi)(1− ρ)(1− ρk+1)

+

[
−(N − 1)ρN+1 − (K + 1)ρK+1 −N(k + 1)ρN+k+1 +N(k + 1)ρN+k + (N − 1)ρN+k+2

]
(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)2(1− ρk+1)

·
NN

N !

+
(NN/N !)

[
(K +N)ρK+2 + (K + 1−Nk −N)ρK+k+2 + (Nk −K)ρK+k+3

]
(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)2(1− ρk+1)

<

(
−ρ+ (k + 1)ρk

)
Nρ

∑N−2
i=0

N i

i! ρ
i

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

+

NN

N !
1

1−ρ

(
−(N − 1)ρN+1 − (K + 1)ρK+1 +N(k + 1)ρN+k + (N − 1)ρN+k+2 + (K +N)ρK+2

)
(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

(A.26)

<

(
−ρ+ (k + 1)ρk

)
Nρ

∑N−2
i=0

N i

i! ρ
i

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

+

NN

N !
1

1−ρ

(
−(N − 1)ρN+1 + (N − 1)ρNk+1 +N(k + 1)ρN+k + (N − 1)ρN+k+2

)
(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1 − ρk+1)

(A.27)

<

(
−ρ+ (k + 1)ρk

)
Nρ

∑N−2
i=0

N i

i! ρ
i

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

+

1
1−ρ(−(N − 1)ρN+1 +N(k + 3)ρN+k)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
(1− ρ)(1− ρk+1)

NN

N !
(A.28)

< 0. (A.29)

The inequality (A.29) completes the proof of Lemma 10. Below we will explain how we obtain each of the

inequalities above.
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The inequality (A.26) holds because −(k + 1)ρk+1 + ρk+2 < −(k + 1)ρk+1 + ρk+1 < 0 for ρ < 1,

Nk ≤ K ≤ Nk +N − 1, and

−N(k + 1)ρN+k+1 + (K + 1−Nk −N)ρK+k+2 + (Nk −K)ρK+k+3 < 0.

The inequality (A.27) follows from the fact that K ≥ Nk and we have the following for ρ < 1:

−(K + 1)ρK+1 + (K +N)ρK+2 < −(K + 1)ρK+1 + (K +N)ρK+1

= (N − 1)ρK+1 ≤ (N − 1)ρNk+1

The inequality (A.28) is because

− (N − 1)ρN+1 + (N − 1)ρNk+1 +N(k + 1)ρN+k + (N − 1)ρN+k+2

<− (N − 1)ρN+1 + (N − 1)ρN+k +N(k + 1)ρN+k + (N − 1)ρN+k

<− (N − 1)ρN+1 +N(k + 3)ρN+k.

The inequality (A.29) is due to the fact that −ρ+(k+1)ρk < 0 and −(N − 1)ρN+1 +N(k+3)ρN+k < 0

for ρ < 1 and k > z3. Below we will prove these two inequalities. We already know from the proof of

Lemma 9 that g4(z)
.
= (z + 3)ρz−1 is strictly decreasing in z for ρ < 1 and z > − 1

ln(ρ) − 3. Recall the

definition of z3 in (A.18). Because z3 ≥ − 1
ln(ρ) − 3 and (z3 + 3)ρz3−1 ≤ N−1

N , we have the following for

k > z3:

(k + 3)ρk−1 < (N − 1)/N.

Then,

− ρ+ (k + 1)ρk = ρ(−1 + (k + 1)ρk−1) < ρ

(
−1 + (k + 1)

N − 1

N(k + 3)

)
< 0,

− (N − 1)ρN+1 +N(k + 3)ρN+k = (N − 1)ρN+1

(
−1 +

N

N − 1
(k + 3)ρk−1

)
< 0. (A.30)

This completes the proofs of the claims that −ρ+(k+1)ρk < 0 and −(N −1)ρN+1+N(k+3)ρN+k < 0

for ρ < 1 and k > z3. �
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We now use the result in Lemma 10 to prove Theorem 1-(b)-(i) under the condition (⋆⋆) in (2.12). For

ρ < 1 and k > z3,

Wp −Wd =
Lp

λe,p
−

Ld

λe,d
(A.31)

<
NLd

λe,p
−

Ld

λe,d
(A.32)

<
NLd

Nλe,d
−

Ld

λe,d
(A.33)

= 0. (A.34)

The inequality (A.31) follows from Little’s Law. The inequality (A.32) holds because Lp < NLd by Lemma

10. Recall from Lemma 8 that λe,p > Nλe,d regardless of the value of ρ. This implies the inequality (A.33).

The definition of k and (A.34) complete the proof of Theorem 1-(b)-(i) under the condition (⋆⋆).

We now show Theorem 1-(b)-(ii) under the condition (⋆⋆) in (2.12). Recall that

SWd = λe,dN(R − cWd) and SWp = λe,p(R − cWp).

Because λe,dN < λe,p by Lemma 8 and Wd > Wp by part (b)-(i), we have SWd < SWp. This completes

the proof of Theorem 1-(b)-(ii) under the condition (⋆⋆) in (2.12). �

A.3 Proof of Proposition 1

The proof follows from Lemma 8 in Appendix A.2 of the Electronic Companion. �

A.4 Proof of Proposition 2

Denote by Xs the number of customers in the SQ system in the steady-state, and let Xp be the corre-

sponding figure in the pooled system. Note that the SQ system is the same as the M/M/1/K system described

in Lemma 7. To show our claim, we will use the standard likelihood comparison technique. Let γs(m+ 1)

be the transition rate from state m + 1 to m in the SQ system, γp(m + 1) be the transition rate from state

m+ 1 to m in the pooled system, for any m = 0, 1, . . . K − 1. Because γp(m+ 1) ≤ γs(m+ 1) for each

70



m, in the steady-state, we have

P(Xp = m)Nλ ≤ P(Xp = m+ 1)γs(m+ 1) and P(Xs = m)Nλ = P(Xs = m+ 1)γs(m+ 1).

Thus, we have

P(Xp = m+ 1)

P(Xp = m)
≥

Nλ

γs(m+ 1)
=

P(Xs = m+ 1)

P(Xs = m)
. (A.35)

Using this, we now show that Lp
.
= E(Xp) ≥ Ls

.
= E(Xs). Note that (A.35) implies that

P(Xp=j)
P(Xp=i) ≥

P(Xs=j)
P(Xs=i) for all i ≤ j, i, j ∈ {0, 1, . . . ,K}, which is equivalent to

P(Xp = j)P(Xs = i) ≥ P(Xp = i)P(Xs = j). (A.36)

The summation on both sides of (A.36) over i from 0 to j gives

P(Xp = j)P(Xs ≤ j) ≥ P(Xp ≤ j)P(Xs = j). (A.37)

Similarly, the summation on both sides of (A.36) over j from i+ 1 to K results in

P(Xp ≥ i+ 1)P(Xs = i) ≥ P(Xp = i)P(Xs ≥ i+ 1). (A.38)

Combining (A.37) and (A.38) and letting i = j = a, we have

P(Xp ≥ a+ 1)

P(Xs ≥ a+ 1)
≥

P(Xp = a)

P(Xs = a)
≥

P(Xp ≤ a)

P(Xs ≤ a)
. (A.39)

Thus, P(Xp ≤ a) ≤ P(Xs ≤ a) for any a ∈ {0, 1, 2, . . . ,K}, hence

Lp = E(Xp) =

K∑

i=0

(1− P(Xp ≤ i)) ≥

K∑

i=0

(1− P(Xs ≤ i)) = E(Xs) = Ls. (A.40)

Recall λe,p and λe,s from (A.4) and (A.9), respectively. Then,

λe,p =

(
1−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
Nλ <

(
1−

ρK
∑K

i=0 ρ
i

)
Nλ = λe,s. (A.41)
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By (A.40), (A.41) and Little’s Law,

Wp =
Lp

λe,p
≥

Ls

λe,p
>

Ls

λe,s
= Ws.

Recall the definition of social welfare from (2.3):

SWp = λe,p(R− cWp) and SWs = λe,s(R− cWs).

Because λe,s > λe,p and Ws < Wp, SWs > SWp. This completes the proof of the claim. �

A.5 Proof of Proposition 3 and the Statement and the Proof of Proposition 20

Recall Lemmas 1, 2 and 7. To prove Proposition 3, we shall define some constants. Let

η
.
= (z1 + 1) /µ

where

z1
.
= inf

{
z ∈ R : z >

1

ln(ρ)
− 1,max

{
(z + 1)Nρ

ρz+1 − 1
−

N − 1

4(ρ− 1)2
,
(z + 1)N

(N − 1)ρz
−

1

2

}
< 0

}
. (A.42)

Proof of Proposition 3: The outline of our proof is as follows. First, we will state and prove Lemma 11

that shows the existence of the constant z1 defined in (A.42). Then, we will show that if ρ > 1 and k > z1,

SWd − SWs > c
(N − 1)

(ρ− 1)4
. (A.43)

This and the fact that R
c > z1+1

µ implies k > z1 complete the proof of social welfare claim in

Proposition 3-(b). Recall the social welfare from (2.3). Because SWd > SWs by Proposition 3-(b), and

λe,dN < λe,s by Proposition 1 and the proof of Proposition 2, Wd < Ws. Thus, the average sojourn time

claim in part (a) follows.

Lemma 11. For ρ > 1, the constant z1 defined in (A.42) exists and z1 ∈ [1,∞).

Proof of Lemma 11: Define g1(z)
.
= Nρ(z+1)

ρz+1−1
and g2(z)

.
= N(z+1)

N−1 ρ−z. Then, note that the definition in

(A.42) is equivalent to z1
.
= inf{z ∈ R : g1(z) < (N−1)/(4(ρ−1)2), g2(z) < 1/2 and z > 1/ ln(ρ)−1}.
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Both g1(·) and g2(·) are strictly decreasing when ρ > 1 and z > 1
ln(ρ) − 1 because

g′1(z) = Nρ
ρz+1 − 1− (z + 1)ρz+1 ln(ρ)

(ρz+1 − 1)2
= Nρ

ρz+1 (1− (z + 1) ln(ρ))− 1

(ρz+1 − 1)2
< 0, and (A.44)

g′2(z) =
N

N − 1

ρz − (z + 1)ρz ln(ρ)

ρ2z
=

N

N − 1

ρz (1− (z + 1) ln(ρ))

ρ2z
< 0, (A.45)

for ρ > 1 and z > 1
ln(ρ) − 1. In addition, we have

lim
z→∞

g1(z) = 0 and lim
z→∞

g2(z) = 0. (A.46)

It follows from (A.44) through (A.46) that z1 exists and it is finite. We now show that z1 ≥ 1 for ρ > 1.

Suppose for a contradiction that z1 < 1. Because g1(z) and g2(z) are strictly decreasing for ρ > 1 and

z > 1
ln(ρ) − 1, and z1 ≥ 1

ln(ρ) − 1 by definition of z1, at z = 1 the following inequalities must hold:

g1(1) <
N−1

4(ρ−1)2
and g2(1) <

1
2 . Note that

g2(1) =
2N

(N − 1)ρ
<

1

2
⇔ ρ >

4N

N − 1
, (A.47)

which implies that ρ > 4. Observe also that

g1(1) =
2Nρ

ρ2 − 1
<

N − 1

4(ρ− 1)2
⇔

(
(ρ− 1)2Nρ

ρ+ 1
−

N − 1

4

)
1

(ρ− 1)2
< 0. (A.48)

But, for ρ > 4,

(ρ− 1)2Nρ

ρ+ 1
−

N − 1

4
>

24N

5
−

N − 1

4
> 0,

which contradicts (A.48). Thus, z1 ≥ 1. �

We begin with the proof of Proposition 3-(b). Recall from (A.8) that the social welfare in the dedicated

system is

SWd =

(
1− ρk

1− ρk+1

)
RNλ−

(
ρ

1− ρ
−

(k + 1)ρk+1

1− ρk+1

)
Nc

= RNλ−
1− ρ

1− ρk+1

(
NλRρk +Nc

ρ− (1 + k)ρk+1 + kρk+2

(ρ− 1)2

)
. (A.49)
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Recall also from (A.12) that

SWs =

(
1− ρK

1− ρK+1

)
RNλ−

(
ρ

1− ρ
−

(K + 1)ρK+1

1− ρK+1

)
c

= RNλ−
1− ρ

1− ρK+1

(
NλRρK + c

ρ− (1 +K)ρK+1 +KρK+2

(ρ− 1)2

)
. (A.50)

From (A.49) and (A.50), it follows that SWd − SWs > c (N−1)
(ρ−1)4 if and only if

1

ρk+1 − 1

(
RNλρk +Nc

ρ− (1 + k)ρk+1 + kρk+2

(ρ− 1)2

)

−
1

ρK+1 − 1

(
RNλρK + c

ρ− (1 +K)ρK+1 +KρK+2

(ρ− 1)2

)
< −c

(N − 1)

4(ρ− 1)2
.

Note that the left hand side of the above inequality is equivalent to

RNλ

(
ρk

ρk+1 − 1
−

ρK

ρK+1 − 1

)
− c

(
ρ− (1 +K)ρK+1 +KρK+2

(ρ− 1)2(ρK+1 − 1)
−N

ρ− (1 + k)ρk+1 + kρk+2

(ρ− 1)2(ρk+1 − 1)

)
.

Rearranging this, we conclude that SWd − SWs > c (N−1)
(ρ−1)4 if and only if

Nλ
R

c

(
ρk

ρk+1 − 1
−

ρK

ρK+1 − 1

)

︸ ︷︷ ︸
First Term

−

(
ρ− (1 +K)ρK+1 +KρK+2

(ρ− 1)2(ρK+1 − 1)
−N

ρ− (1 + k)ρk+1 + kρk+2

(ρ− 1)2(ρk+1 − 1)

)

︸ ︷︷ ︸
Second Term

< −
(N − 1)

4(ρ− 1)2
(A.51)

We claim and show below that the first term in (A.51) is bounded above by (N−1)/(4(ρ−1)2) if ρ > 1

and k > z1. Next we will show that the second term in (A.51) is bounded below by (N − 1)/(2(ρ− 1)2) if

ρ > 1 and k > z1. These two results imply that if ρ > 1 and k > z1, we have (A.51). From this, Proposition

3-(b) follows.

74



We now show our claim that if ρ > 1 and k > z1, the first term in (A.51) is bounded above by

(N − 1)/(4(ρ − 1)2). Suppose that ρ > 1. Then, the first term in (A.51) satisfies the following inequality:

Nλ
R

c

(
ρk

ρk+1 − 1
−

ρK

ρK+1 − 1

)
< Nλ

k + 1

µ

(
ρk

ρk+1 − 1
−

ρK

ρK+1 − 1

)
(A.52)

< Nλ
k + 1

µ

(
ρk

ρk+1 − 1
−

ρNk+N

ρNk+N+1 − 1

)
(A.53)

= Nρ(k + 1)
ρNk+N − ρk

(ρk+1 − 1)(ρNk+N+1 − 1)
(A.54)

<
Nρ(k + 1)

(ρk+1 − 1)
. (A.55)

The inequality (A.52) above follows from the definition of k in (2.5) and the fact that the first term in (A.51)

is positive. Note from the definitions of k and K in (2.5) and (2.6) that we also have K < Nk+N . Then, the

inequality (A.53) follows because K < Nk +N and ρK

ρK+1−1
is decreasing in K for ρ > 1. The inequality

(A.55) is because ρNk+N − ρk < ρNk+N+1 − 1 for ρ > 1.

We already know from the proof of Lemma 11 that g1(z)
.
= (z+1)Nρ

(ρz+1−1)
is strictly decreasing in z for ρ > 1

and z > 1
ln(ρ) − 1. Recall the definition of z1 in (A.42). Because z1 ≥ 1

ln(ρ) − 1 and
(z1+1)Nρ
(ρz1+1−1)

≤ N−1
4(ρ−1)2 ,

we have the following for k > z1:

Nρ(k + 1)

(ρk+1 − 1)
<

N − 1

4(ρ− 1)2
,

which together with (A.55) implies that

Nλ
R

c

(
ρk

ρk+1 − 1
−

ρK

ρK+1 − 1

)
<

N − 1

4(ρ− 1)2
. (A.56)

This completes our arguments for the proof of our first claim above that the first term in (A.51) is bounded

above by (N − 1)/(4(ρ − 1)2) if ρ > 1 and k > z1.

We now show our claim that if ρ > 1 and k > z1, the second term in (A.51) is bounded below by

(N − 1)/(2(ρ− 1)2). To prove this claim, we first prove that h(ρ, x)
.
= ρ−(1+x)ρx+1+xρx+2

(ρ−1)2(ρx+1−1)
is increasing in
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x for ρ > 1. Note that

h(ρ, x) =
1

ρ− 1

ρ− (1 + x)ρx+1 + xρx+2

(ρ− 1)(ρx+1 − 1)
=

1

ρ− 1

ρ− (1 + x)ρx+1 + xρx+2

(1− ρ)(1− ρx+1)

=
1

ρ− 1

(
ρ

1− ρ
−

(x+ 1)ρx+1

1− ρx+1

)
.

Then,

∂h(ρ, x)

∂x
=−

ρx+1

(ρ− 1)(1− ρx+1)2
(1− ρx+1 + (x+ 1) ln(ρ)). (A.57)

Let v(ρ, x)
.
= 1−ρx+1+(x+1) ln(ρ) and observe from (A.57) that v(ρ, x) and

∂h(ρ,x)
∂x have opposite signs

for ρ > 1. Note that v(1, x) = 0 for any x, and for ρ > 1 and x ≥ 0,

∂v(ρ, x)

∂ρ
= −(x+ 1)ρx + (x+ 1)

1

ρ
= (x+ 1)

(
−ρx +

1

ρ

)
< 0.

This immediately implies that
∂h(ρ,x)

∂x > 0 for ρ > 1 and x ≥ 0. Based on this, for ρ > 1, the second term

in (A.51) satisfies

ρ− (1 +K)ρK+1 +KρK+2

(ρ− 1)2(ρK+1 − 1)
−N

ρ− (1 + k)ρk+1 + kρk+2

(ρ− 1)2(ρk+1 − 1)

≥
ρ− (1 +Nk)ρNk+1 +NkρNk+2

(ρ− 1)2(ρNk+1 − 1)
−N

ρ− (1 + k)ρk+1 + kρk+2

(ρ− 1)2(ρk+1 − 1)
(A.58)

=
(N − 1)ρ(N+1)k+2 −N(k + 1)ρNk+2 + (Nk + 1)ρNk+1 + ρk+2 − ρ+N(ρ− (1 + k)ρk+1 + kρk+2)

(ρNk+1 − 1)(ρk+1 − 1)

·
1

(ρ− 1)2

>
1

(ρ− 1)2
(N − 1)ρ(N+1)k+2 −N(k + 1)ρNk+2

(ρNk+1 − 1)(ρk+1 − 1)
(A.59)

=
1

(ρ− 1)2
(N − 1)ρ(N+1)k+2 −N(k + 1)ρNk+2

ρ(N+1)k+2 − ρNk+1 − ρk+1 + 1

=
N − 1

(ρ− 1)2
1− N(k+1)

N−1 ρ−k

1− ρ−k−1 − ρ−Nk−1 + ρ−(Nk+k+2)
. (A.60)

We have (A.58) because K ≥ Nk and as we showed earlier, h(ρ, x) = ρ−(1+x)ρx+1+xρx+2

(ρ−1)2(ρx+1−1) is increasing in

x for ρ > 1. The inequality (A.59) holds because Wd > 0 in the first line of (A.7) implies that ρ − (1 +

k)ρk+1 + kρk+2 > 0. We already know from the proof of Lemma 11 that g2(z) = (z+1)N
N−1 ρ−z is strictly
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decreasing in z if z > 1
ln(ρ) − 1 and ρ > 1, and limz→∞ g2(z) = 0. This, the definition of z1 in (A.42) and

the fact that (1− ρ−k−1 − ρ−Nk−1 + ρ−(Nk+k+2)) ∈ (0, 1) for ρ > 1 imply that

N − 1

(ρ− 1)2
1− N(k+1)

N−1 ρ−k

1− ρ−k−1 − ρ−Nk−1 + ρ−(Nk+k+2)
>

N − 1

2(ρ− 1)2
for k > z1, ρ > 1. (A.61)

Combining this and (A.60), it follows that if ρ > 1 and k > z1,

ρ− (1 +K)ρK+1 +KρK+2

(ρ− 1)2(ρK+1 − 1)
−N

ρ− (1 + k)ρk+1 + kρk+2

(ρ− 1)2(ρk+1 − 1)
>

N − 1

2(ρ− 1)2
. (A.62)

This completes the proof of our claim that if ρ > 1 and k > z1, the second term in (A.51) is bounded below

by (N − 1)/(2(ρ − 1)2), and hence completes our arguments for the proof of Proposition 3-(b).

Now we prove Proposition 3-(a). Recall that

SWd = λe,dN(R− cWd) and SWs = λe,s(R− cWs).

By Proposition 1, λe,dN < λe,p and we already know from the proof of Proposition 2 that λe,p < λe,s.

These imply

λe,dN < λe,s. (A.63)

From this and Proposition 3-(b), the claim immediately follows. �

Proposition 20. The dedicated system results in (i) strictly larger average sojourn time and (ii) strictly

smaller social welfare than the SQ system, i.e., Wd > Ws and SWd < SWs, respectively, if

ρ < 1 and R/c > η̃
.
= (z2 + 1) /µ, (A.64)

where

z2
.
= inf {z ∈ R : z > −1/ ln(ρ), zρz < (N − 1)/N} . (A.65)

Proof of Proposition 20: We first prove a lemma which will be used in the remainder of the proof.
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Lemma 12. For ρ < 1, the constant z2 defined in (A.65) exists and it is finite.

Proof of Lemma 12: Define g3(z)
.
= zρz . Then, note that the definition in (A.65) is equivalent to z2

.
=

inf{z ∈ R : g3(z) < (N − 1)/N, and z > −1/ ln(ρ)}. The function g3(·) is strictly decreasing when

ρ < 1 and z > − 1
ln(ρ) because

g′3(z) = ρz + zρz ln(ρ) = ρz(1 + z ln(ρ)) < 0, (A.66)

for ρ < 1 and z > − 1
ln(ρ) . In addition, we have

lim
z→∞

g3(z) = 0. (A.67)

It follows from (A.66) and (A.67) that z2 exists and it is finite. �

Recall from (A.7) that when ρ < 1, the average sojourn time in the dedicated system is

Wd =
ρ− (k + 1)ρk+1 + kρk+2

λ(ρk − 1)(ρ − 1)
.

Recall from (A.11) that when ρ < 1, the average sojourn time in the SQ system is

Ws =
1

Nλ(ρ− 1)

KρK+2 − (K + 1)ρK+1 + ρ

ρK − 1
.
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If ρ < 1 and k > z2,

Wd −Ws

=
ρ− (k + 1)ρk+1 + kρk+2

λ(ρk − 1)(ρ− 1)
−

1

Nλ(ρ− 1)

KρK+2 − (K + 1)ρK+1 + ρ

ρK − 1

≥
ρ− (k + 1)ρk+1 + kρk+2

λ(ρk − 1)(ρ− 1)
−

1

Nλ(ρ− 1)

(Nk +N − 1)ρNk+N+1 − (Nk +N)ρNk+N + ρ

ρNk+N−1 − 1
(A.68)

=
(
(N − 1)(ρNk+k+N+1 − ρNk+N+1 − ρk+1 + ρ) +Nk(ρNk+N − ρNk+N+1 + ρk+2 − ρk+1)

)

1

(1− ρ)(1− ρk)(1− ρNk+N−1)Nλ

=
(
(N − 1)(ρ− ρNk+N+1)(1− ρk)−Nk(ρk+1 − ρNk+N)(1 − ρ)

) 1

(1− ρ)(1 − ρk)(1 − ρNk+N−1)Nλ

>
(
(N − 1)(ρ− ρNk+N+1)−Nk(ρk+1 − ρNk+N)

) 1

(1− ρk)(1− ρNk+N−1)Nλ

>
(
(N − 1)ρ−k −Nk

) ρk+1 − ρNk+N

(1− ρk)(1 − ρNk+N−1)Nλ
(A.69)

>0, (A.70)

which proves the claim in part (i).

We now explain why the inequalities in (A.68) and (A.70) hold. Note that Ws is increasing in K because

∂( 1
Nλ(ρ−1)

KρK+2−(K+1)ρK+1+ρ
ρK−1

)

∂K

=
1

Nλ(ρ− 1)

−ρK+2 −KρK+2 ln(ρ) + ρK+1 +KρK+1 ln(ρ) + ρ2K+2 − ρ2K+1

(ρK − 1)2

=
1

Nλ(ρ− 1)
·
(ρ− 1)ρK+1(ρK −K ln(ρ)− 1)

(ρK − 1)2

=
1

Nλ
·
ρK+1(ρK −K ln(ρ)− 1)

(ρK − 1)2

≥0. (A.71)

(Here, (A.71) follows from the fact that ρK − K ln(ρ) − 1 ≥ 0, which is because
∂(ρK−K ln(ρ)−1)

∂ρ =

KρK−1− K
ρ = K

ρ (ρ
K − 1) and thus ρK −K ln(ρ)− 1 achieves the minimum, which is 0, at ρ = 1.) Then,

(A.68) follows from the fact that K ≤ Nk +N − 1 and Ws is increasing in K , as shown above.
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The reason for (A.70) is as follows. We already know from the proof of Lemma 12 that g3(z)
.
= zρz is

strictly decreasing in z for ρ < 1 and z > − 1
ln(ρ) . Recall the definition of z2 in (A.65). Because z2 ≥ − 1

ln(ρ)

and z2ρ
z2 ≤ N−1

N , we have kρk < N−1
N for ρ < 1 and k > z2.

We now prove the claim in part (ii). Recall from (2.3) that

SWd = λe,dN(R− cWd) and SWs = λe,s(R− cWs).

Since λe,dN < λe,s by Proposition 1 and the proof of Proposition 2, part (i) implies part (ii). �

A.6 Statement and Proof of Lemma 13

Lemma 13. Consider any fixed service rate µ. (a) As ρ → ∞, Wd and Wp satisfy the following relations:

lim
ρ→∞

Wd(ρ) =
⌊Rµ/c⌋

µ
≤ lim

ρ→∞
Wp(ρ) =

⌊RNµ/c⌋

Nµ
, (A.72)

lim
ρ→∞

W ′
d(ρ) = lim

ρ→∞
W ′

p(ρ) = 0. (A.73)

(b) As ρ → 1, Wd and Wp satisfy the following relations:

lim
ρ→1

[Wp(ρ)−Wd(ρ)] > 0 (A.74)

if ⌊RNµ/c⌋ −N⌊Rµ/c⌋ >
(∑N−2

i=0 N i/i!
)
/
(
NN/N !

)
, and for R/c > 10/µ,

lim
ρ→1

[
W ′

p(ρ)−W ′
d(ρ)

]
> (⌊Rµ/c⌋)2 γ(N)/µ2 > 0, (A.75)

where γ(N) > 0 is a linear function of N and does not depend on other parameters.

(c) As ρ → 0, Wd and Wp satisfy the following relations:

lim
ρ→0

Wd(ρ) = lim
ρ→0

Wp(ρ) =
1

µ
and lim

ρ→0
W ′

d(ρ) ≥ lim
ρ→0

W ′
p(ρ) = 0. (A.76)

Note that for a fixed µ, the limits ρ → 0, ρ → 1 and ρ → ∞ are equivalent to λ → 0, λ → µ and

λ → ∞, respectively. In this proof, we will use these equivalent limits.
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We first identify W ′
d(λ) and W ′

p(λ) and we will use those expressions to prove parts (a) through (c) of

Proposition 13. Recall from (A.7) that the average sojourn time in the dedicated system is

Wd(λ) =
ρ− (k + 1)ρk+1 + kρk+2

λ(ρk − 1)(ρ− 1)
=

1

µ

(
1− (k + 1)ρk + kρk+1

)

(ρk − 1)(ρ − 1)
, ρ 6= 1. (A.77)

Thus, we have

W ′
d(λ) =

1

µ2

(−(k + 1)kρk−1 + k(k + 1)ρk)(ρk − 1)(ρ− 1)− (1− (k + 1)ρk + kρk+1)

(ρ− 1)2(ρk − 1)2

· ((k + 1)ρk − kρk−1 − 1)

=
1

µ2

ρ2k − k2ρk+1 + (2k2 − 2)ρk − k2ρk−1 + 1

(ρ− 1)2(ρk − 1)2
. (A.78)

Recall (2.7). When K = N ,

Wp(λ) =
1

µ
, (A.79)

and when K > N ,

Wp(λ) =

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑K
i=N iρi(∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)
Nλ

(A.80)

=

∑N
i=0

N i

i! iρ
i + NN

N !

∑K
i=N+1 iρ

i

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)
Nλ

=
1

(Nµ)ρ

Nρ
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

(A.81)

=
1

Nµ

N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

. (A.82)

The equation (A.81) is due to the fact that

N∑

i=0

N i

i!
iρi =

N∑

i=1

N i

(i− 1)!
ρi = Nρ

N∑

i=1

N i−1

(i− 1)!
ρi−1 = Nρ

N−1∑

i=0

N i

i!
ρi.
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Based on (A.79) and (A.82),

W ′
p(λ) = 0 (A.83)

for K = N , and when K > N , we have

W ′
p(λ) =

[
∂

∂ρ

(
N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)]
1

Nµ2

=

(
N
∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K
i=N+1 i(i− 1)ρi−2

)(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2
Nµ2

−

(
N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1
)(∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K−1
i=N iρi−1

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2
Nµ2

. (A.84)

Proof of Part (a): From (A.77), we have

lim
λ→∞

Wd(λ) = lim
λ→∞

1

µ

(
1− (k + 1)ρk + kρk+1

)

(ρk − 1)(ρ− 1)
=

k

µ
(A.85)

because the leading term in the above numerator is kρk+1 and the leading term in the above denominator is

µρk+1 as λ → ∞.

From (A.79), when K = N ,

lim
λ→∞

Wp(λ) =
1

µ
=

K

Nµ
. (A.86)

From (A.82), it follows that for K > N ,

lim
λ→∞

Wp(λ) =
1

Nµ
lim
λ→∞

N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

=
1

Nµ
lim
λ→∞

N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

=
K

Nµ
. (A.87)
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Combining (A.85) (A.86), and (A.87), and using the definitions of k and K , we get the relation in (A.72).

To prove (A.73), recall (A.78), (A.83) and (A.84). Then,

lim
λ→∞

W ′
d(λ) =

1

µ2
lim
λ→∞

ρ2k − k2ρk+1 + (2k2 − 2)ρk − k2ρk−1 + 1

(ρ− 1)2(ρk − 1)2
= 0.

Furthermore, when K = N ,

lim
λ→∞

W ′
p(λ) = 0

and for K > N ,

lim
λ→∞

W ′
p(λ)

= lim
λ→∞

(
N
∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K
i=N+1 i(i− 1)ρi−2

)(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2
Nµ2

− lim
λ→∞

(
N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1
)(∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K−1
i=N iρi−1

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2
Nµ2

=
1

Nµ2
lim
λ→∞

(
N
∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K
i=N+1 i(i− 1)ρi−2

)(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2

−
1

Nµ2
lim
λ→∞

(
N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1
)(∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K−1
i=N iρi−1

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2

=0.

This completes the proof of (A.73). �

Proof of Part (b): Note from (A.77) that Wd(λ) can also be expressed as the following:

Wd(λ) =

∑k
i=0 iρ

i

λ
∑k−1

i=0 ρi
=

∑k
i=0 iρ

i

µρ
∑k−1

i=0 ρi
. (A.88)
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Then, we have

lim
λ→µ

Wd(λ) =
1

µ

(
lim
λ→µ

∑k
i=0 iρ

i

ρ
∑k−1

i=0 ρi

)
=

k + 1

2µ
. (A.89)

In addition, observe from (A.82) that when K > N ,

lim
λ→µ

Wp(λ) =
1

Nµ
lim
λ→µ

N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

=
N
∑N−1

i=0
N i

i! + NN

N !

∑K
i=N+1 i∑N−1

i=0
N i

i! + NN

N ! (K −N)

(
1

Nµ

)

=
N
∑N−1

i=0
N i

i! + NN

N !
(K+N+1)(K−N)

2∑N−1
i=0

N i

i! + NN

N ! (K −N)

(
1

Nµ

)

=

(
N +

1

2

NN

N ! (K −N + 1)(K −N)
∑N−2

i=0
N i

i! + NN

N ! (K −N + 1)

)(
1

Nµ

)
. (A.90)

The equation (A.90) also holds when K = N since Wp(λ) =
1
µ when K = N .

By (A.90) and the definitions of k and K from (2.5) and (2.6), we have

lim
λ→µ

Wp(λ) =

(
N +

1

2

NN

N ! (K −N + 1)(K −N)
∑N−2

i=0
N i

i! + NN

N ! (K −N + 1)

)
1

Nµ

=

(
N +

K −N

2
−

K −N

2
+

1

2

NN

N ! (K −N + 1)(K −N)
∑N−2

i=0
N i

i! + NN

N ! (K −N + 1)

)
1

Nµ

=

(
K +N

2
−

(K −N)
∑N−2

i=0
N i

i!

2(
∑N−2

i=0
N i

i! + NN

N ! (K −N + 1))

)
1

Nµ

>

(
K +N

2
−

(K −N)
∑N−2

i=0
N i

i!

2(N
N

N ! (K −N + 1))

)
1

Nµ

>

(
K +N −

∑N−2
i=0

N i

i!
NN

N !

)
1

2Nµ
. (A.91)

We already know from (A.89) that limλ→µWd(λ) =
k+1
2µ . This and (A.91) imply that

lim
λ→µ

[Wp(λ)−Wd(λ)] >

(
K +N −

∑N−2
i=0

N i

i!
NN

N !

)
1

2Nµ
−

k + 1

2µ

=

(
K −Nk −

∑N−2
i=0

N i

i!
NN

N !

)
1

2Nµ
.
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Therefore, if K −Nk >
∑N−2

i=0
Ni

i!
NN

N!

, limλ→µ [Wp(λ)−Wd(λ)] > 0.

We now show (A.75). Suppose that R/c > 10/µ. Then, k ≥ 10 and K > N . Recall (A.88). Then,

lim
λ→µ

W ′
d(λ) =

1

µ2
lim
λ→µ

∂

∂ρ

( ∑k
i=0 iρ

i

ρ
∑k−1

i=0 ρi

)

=
1

µ2
lim
λ→µ

(∑k
i=1 i

2ρi−1
)(∑k

i=1 ρ
i
)
−
(∑k

i=0 iρ
i
)(∑k

i=1 iρ
i−1
)

(
∑k

i=1 ρ
i)2

=
1

µ2

k(k+1)(2k+1)
6 k − k(k+1)

2
k(k+1)

2

k2

=
k2 − 1

12µ2
. (A.92)
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Recalling (A.84), we now find limλ→µ W ′
p(λ):

lim
λ→µ

W ′
p(λ)

=
1

Nµ2
lim
λ→µ

(
N
∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K
i=N+1 i(i− 1)ρi−2

)(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2

−
1

Nµ2
lim
λ→µ

(
N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1
)(∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K−1
i=N iρi−1

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2

=
1

Nµ2

(
N
∑N−1

i=1
N i

i! i+
NN

N !

∑K
i=N+1 i(i− 1)

) (∑N−1
i=0

N i

i! + NN

N ! (K −N)
)

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

−
1

Nµ2

(
N
∑N−1

i=0
N i

i! + NN

N !

∑K
i=N+1 i

)(∑N−1
i=1

N i

i! i+
NN

N !

∑K−1
i=N i

)

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

>
1

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

Nµ2

(A.93)

·

(
NN

N !

K∑

i=N+1

i(i− 1)

)(
NN

N !
(K −N)

)
−

(
N

N−1∑

i=0

NN

N !
+

NN

N !

K∑

i=N+1

i

)(
N−1∑

i=1

NN

N !
i+

NN

N !

K−1∑

i=N

i

)

=

(
NN

N !

)2 [(∑K
i=N+1 i(i− 1)(K −N)

)
−
(
K2+N2+K−N

2

)(
K(K−1)

2

)]

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

Nµ2

=

(
NN

N !

)2 [(K(K+1)(2K+1)−N(N+1)(2N+1)
6 − (K+N+1)(K−N)

2

)
(K −N)−

(
K2+K+N2−N

2

)(
K(K−1)

2

)]

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

Nµ2

>

(
NN

N !

)2 [(K(K+1)(2K+1)−N(N+1)(2N+1)
6 − K2+K

2

)
(K −N)−

(
K2+K+N2−N

2

)(
K(K−1)

2

)]

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

Nµ2

.

(A.94)

The inequality (A.93) is because N i

i! < NN

N ! for i ∈ {1, 2, . . . , N − 2} and NN−1

(N−1)! = NN

N ! . Note that the

condition R/c > 10/µ in the statement of part (b) is equivalent to k ≥ 10. Then, because K ≥ Nk, k ≥ 10
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implies N ≤ K
10 . Using this and (A.94), we have

lim
λ→µ

W ′
p(λ)

>

(
NN

N !

)2 [(
K(K+1)(2K+1)−N(N+1)(2N+1)

6 − K2+K
2

)
(K −N)−

(
K2+K+N2−N

2

)(
K(K−1)

2

)]

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

Nµ2

≥

(
NN

N !

)2 [(K(K+1)(2K+1)−K
10(

K
10

+1)( 2K
10

+1)
6 − K2+K

2

)
(K −N)−

(
K2+K+(K

10
)2−K

10
2

)(
K(K−1)

2

)]

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

Nµ2

(A.95)

≥

(
NN

N !

)2 [(K(K+1)(2K+1)−K
10(

K
10

+1)( 2K
10

+1)
6 − K2+K

2

)(
K − K

10

)
−

(
K2+K+(K

10
)2−K

10
2

)(
K(K−1)

2

)]

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

Nµ2

(A.96)

=

(
NN

N !

)2
(236K2 + 115K − 450)K2

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

5000Nµ2

>

(
NN

N !

)2
236N2k2K2

(∑N−1
i=0

N i

i! + NN

N ! (K −N)
)2

5000Nµ2

(A.97)

>

(
NN

N !

)2
K2

(∑N−1
i=0

NN

N ! + NN

N ! (K −N)
)2

Nµ2

236N2k2

5000

=
236Nk2

5000µ2
(A.98)

>
k2 − 1

12µ2
= lim

λ→µ
W ′

d(λ). (A.99)

The inequality (A.95) is because K − N > 0,
K(K−1)

2 > 0, and N ≤ K
10 . The inequality (A.96) holds

because N ≤ K
10 and

K(K+1)(2K+1)−K
10(

K
10

+1)( 2K
10

+1)
6 − K2+K

2 > 0 as K ≥ Nk ≥ 20. The inequality

(A.97) follows from the fact that K ≥ Nk and 115K − 450 > 0 because K ≥ Nk ≥ 20 for N ≥ 2 and

k ≥ 10. The inequality (A.99) follows from the fact that N ≥ 2. Thus, limλ→µW
′
p(λ) > limλ→µW

′
d(λ)

for k ≥ 10. Based on the inequalities above we now show (A.75). Using (A.92) and (A.98), we have

lim
λ→µ

[
W ′

p(λ)−W ′
d(λ)

]
>

236Nk2

5000µ2
−

k2 − 1

12µ2
>

k2

µ2
γ(N) > 0, (A.100)
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where γ(N)
.
=
(
236N
5000 − 1

12

)
. This completes the proof of our claim in (A.75). �

Proof of Part (c): Recall (A.77), (A.78), (A.79), (A.82), (A.83) and (A.84). Then, we have

lim
λ→0

Wd(λ) =
1

µ
lim
λ→0

(
1− (k + 1)ρk + kρk+1

)

(ρk − 1)(ρ− 1)
=

1

µ
.

If k > 1, we get

lim
λ→0

W ′
d(λ) =

1

µ2
lim
λ→0

ρ2k − k2ρk+1 + (2k2 − 2)ρk − k2ρk−1 + 1

(ρ− 1)2(ρk − 1)2
=

1

µ2
;

otherwise, that is, if k = 1, limλ→0W
′
d(λ) = 0. In addition, for K = N ,

lim
λ→0

Wp(λ) =
1

µ
and lim

λ→0
W ′

p(λ) = 0.

and for K > N ,

lim
λ→0

Wp(λ) =
1

Nµ
lim
λ→0

N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

=
1

Nµ
N =

1

µ
,

and

lim
λ→0

W ′
p(λ)

−
1

Nµ2
lim
λ→0

(
N
∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K
i=N+1 i(i − 1)ρi−2

)(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2

−
1

Nµ2
lim
λ→0

(
N
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑K
i=N+1 iρ

i−1
)(∑N−1

i=1
N i

i! iρ
i−1 + NN

N !

∑K−1
i=N iρi−1

)

(∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K−1
i=N ρi

)2 (A.101)

=
1

Nµ2
(N2 −N2) = 0. (A.102)

This completes the proof of part (c). �
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A.7 Proof of Theorem 2

Because SWs(R) > SWp(R) by Proposition 2,

SWd(R)− SWp(R)

SWp(R)
>

SWd(R)− SWs(R)

SWs(R)
. (A.103)

Define

r
.
=

Rµ

c
− k and r2

.
=

RNµ

c
−K. (A.104)

Then 0 ≤ r < 1, 0 ≤ r2 < 1 and r2 = rN − ⌊rN⌋. Recall from (A.8) that the social welfare in the

dedicated system is

SWd(R) =

(
1− ρk

1− ρk+1

)
RNλ−

(
ρ

1− ρ
−

(k + 1)ρk+1

1− ρk+1

)
Nc

=N
λR(ρk − 1)(ρ− 1)− c(ρ− (k + 1)ρk+1 + kρk+2)

(ρk+1 − 1)(ρ− 1)

=
Nc

(ρk+1 − 1)(ρ− 1)

(
Rµ

c
ρ(ρk − 1)(ρ − 1)− (ρ− (k + 1)ρk+1 + kρk+2)

)

=
Nc

(ρk+1 − 1)(ρ− 1)

(
(k + r)ρ(ρk − 1)(ρ− 1)− (ρ− (k + 1)ρk+1 + kρk+2)

)

=
Nc

(ρk+1 − 1)(ρ− 1)

(
rρk+2 + (1− r)ρk+1 − (k + r)ρ2 + (k + r − 1)ρ

)
. (A.105)

Similarly, the social welfare in the M/M/1/K system described in Lemma 7 can be expressed as follows.

SWs(R) =
c

(ρK+1 − 1)(ρ− 1)

(
r2ρ

K+2 + (1− r2)ρ
K+1 − (K + r2)ρ

2 + (K + r2 − 1)ρ
)
. (A.106)

Define a benefit subsequence {Rn, n ∈ N+} such that Rn
.
= nc

µ for n ∈ N+. This implies that if

R = Rn, then k = n, K = Nn, r = 0 and r2 = 0. Thus, (A.105) and (A.106) reduce to

SWd(Rn) =
Nc

(ρn+1 − 1)(ρ− 1)

(
ρn+1 − nρ2 + (n− 1)ρ

)
(A.107)

SWs(Rn) =
c

(ρNn+1 − 1)(ρ− 1)

(
ρNn+1 −Nnρ2 + (Nn− 1)ρ

)
. (A.108)
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These and (A.103) imply that for ρ > 1

lim
n→∞

SWd(Rn)− SWp(Rn)

SWp(Rn)

≥ lim
n→∞

SWd(Rn)− SWs(Rn)

SWs(Rn)

= lim
n→∞

Nc
(ρn+1−1)(ρ−1)

(
ρn+1 − nρ2 + (n− 1)ρ

)
− c

(ρNn+1−1)(ρ−1)

(
ρNn+1 −Nnρ2 + (Nn− 1)ρ

)

c
(ρNn+1−1)(ρ−1)

(ρNn+1 −Nnρ2 + (Nn− 1)ρ)

=

Nc
ρ−1 −

c
ρ−1

c
ρ−1

= (N − 1).

Thus,

max
R

SWd(R)− SWp(R)

SWp(R)
≥ max

n

SWd(Rn)− SWp(Rn)

SWp(Rn)
> (N − 2).

This completes the proof. �

A.8 Proof of Theorem 3

First, let us define some constants which will be used in the remainder of the proof:

η1
.
= (max{z0, z4, z5}+ 1)/µ and η2

.
= (max{z0, z6, z7, z8}+ 1)/µ, (A.109)

where

z0
.
= inf

{
z ∈ R :

2(z + 1)ρ

ρz+1 − 1
<

1

4(ρ− 1)2
,
z + 1

ρz
<

1

4
and z >

1

ln(ρ)
− 1

}
, (A.110)

z4
.
= inf

{
z ∈ R :

(ρz − 1)2

z2ρz
> 2(ρ− 1) ln(ρ) and z >

2

ln(ρ)

}
, (A.111)

z5
.
= inf

{
z ∈ R :

2(z + 1)

ρz−1 − 1
<

ρ

2(ρ− 1)2
and z >

3

ln(ρ)
+ 1

}
, (A.112)

z6
.
= inf

{
z ∈ R :

z

(ρz − 1)
<

3

8ρ2
, z >

1

ln(ρ)

}
, (A.113)

z7
.
= inf

{
z ∈ R :

(ρz − 1)

z3
> ln(ρ)4ρ2, z >

3

ln(ρ)

}
, (A.114)

z8
.
= inf

{
z ∈ R : 2(z + 2)

1

ρ(z−2) − 1
<

1

10(ρ − 1)
, z >

2

ln(ρ)
+ 2

}
. (A.115)
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We now state and prove Lemma 14 that shows the existence of constants z0 and z4 through z8, which

are defined in (A.110) through (A.115), respectively.

Lemma 14. The following claims hold for ρ > 1: (a)The constant z4 defined in (A.111) exists and it is

finite. (b) The constant z5 defined in (A.112) exists and it is finite. (c) The constant z6 defined in (A.113)

exists and it is finite. (d) The constant z7 defined in (A.114) exists and it is finite. (e) The constant z8 defined

in (A.115) exists and it is finite. (f) The constant z0 defined in (A.110) exists and it is finite.

Proof of Lemma 14: Part (a): Define g5(z)
.
= (ρz−1)2

z2ρz
. Then, note that the definition in (A.111) is

equivalent to z4
.
= inf{z ∈ R : g5(z) > 2(ρ − 1) ln(ρ) and z > 2/ ln(ρ)}. The function g5(·) is strictly

increasing when ρ > 1 and z > 2
ln(ρ) because

g′5(z) =
2(ρz − 1)ρz ln(ρ)z2ρz − (ρz − 1)2(2zρz + z2ρz ln(ρ))

(z2ρz)2

>
2(ρz − 1)ρz ln(ρ)z2ρz − ρz(ρz − 1)(2zρz + z2ρz ln(ρ))

(z2ρz)2

=
(ρz − 1)zρ2z(2 ln(ρ)z − (2 + ln(ρ)z))

(z2ρz)2

=
(ρz − 1)(ln(ρ)z − 2)

z3

>0 (A.116)

for ρ > 1 and z > 2
ln(ρ) . In addition, when ρ > 1, we have

lim
z→∞

g5(z) = lim
z→∞

(ρz − 1)2

z2ρz
= lim

z→∞
2(ρz − 1)ρz ln(ρ)

2zρz + z2ρz ln(ρ)
= lim

z→∞
2(ρz − 1) ln(ρ)

2z + z2 ln(ρ)
= lim

z→∞
2ρz(ln(ρ))2

2 + 2z ln(ρ)
= ∞.

(A.117)

It follows from (A.116) and (A.117) that z4 exists and it is finite. � Part (b): Define g6(z)
.
= 2(z+1)

ρz−1−1
.

Then, the definition in (A.112) is equivalent to z5
.
= inf{z ∈ R : g6(z) <

ρ
2(ρ−1)2 and z > 3

ln(ρ) + 1}. The

function g6(·) is strictly decreasing when ρ > 1 and z > 3
ln(ρ) + 1 because

g′6(z) =
2(ρz−1 − 1)− 2(z + 1)(ρz−1) ln(ρ)

(ρz−1 − 1)2
<

2ρz−1(1− (z + 1) ln(ρ))

(ρz−1 − 1)2
< 0 (A.118)
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for ρ > 1 and z > 3
ln(ρ) + 1. Furthermore, when ρ > 1, we have

lim
z→∞

g6(z) = lim
z→∞

2(z + 1)

ρz−1 − 1
= lim

z→∞
2

ρz−1 ln(ρ)
= 0. (A.119)

It follows from (A.118) and (A.119) that z5 exists and it is finite. � Part (c): Define g7(z)
.
= z

(ρz−1) . Then,

the definition in (A.113) is equivalent to z6 = inf{z ∈ R : g7(z) <
3

8ρ2
, z > 1

ln(ρ)}. The function g7(·) is

strictly decreasing when ρ > 1 and z > 1
ln(ρ) because

g′7(z) =
ρz − 1− zρz ln(ρ)

(ρz − 1)2
<

ρz(1− zln(ρ))

(ρz − 1)2
< 0 (A.120)

for ρ > 1 and z > 1
ln(ρ) . Moreover, when ρ > 1, we have

lim
z→∞

g7(z) = lim
z→∞

z

(ρz − 1)
= lim

z→∞
1

ρz ln(ρ)
= 0. (A.121)

It follows from (A.120) and (A.121) that z6 exists and it is finite. � Part (d): Define g8(z)
.
= (ρz−1)

z3
. Then,

the definition in (A.114) is equivalent to z7 = inf{z ∈ R : g8(z) > ln(ρ)4ρ2, z > 3
ln(ρ)}. The function

g8(·) is strictly increasing when ρ > 1 and z > 3
ln(ρ) because

g′8(z) =
ρz ln(ρ)z3 − (ρz − 1)3z2

z6
>

(ln(ρ)z − 3)ρz

z4
> 0 (A.122)

for ρ > 1 and z > 3
ln(ρ) . Also, for ρ > 1, we have

lim
z→∞

g8(z) = lim
z→∞

(ρz − 1)

z3
= lim

z→∞
ρz ln(ρ)

3z2
= lim

z→∞
ρz(ln(ρ))2

6z
= lim

z→∞
ρz(ln(ρ))3

6
= ∞. (A.123)

By (A.122) and (A.123), z7 exists and it is finite. � Part (e): Define g9(z)
.
= 2(z + 2) 1

ρ(z−2)−1
. Then, the

definition in (A.115) is equivalent to z8 = inf{z ∈ R : g9(z) <
1

10(ρ−1) , z > 2
ln(ρ) + 2}. Note that g9(z) is

strictly decreasing when ρ > 1 and z > 2
ln(ρ) + 2 because

g′9(z) = 2
(ρ(z−2) − 1)− (z + 2)ρ(z−2) ln(ρ)

(ρ(z−2) − 1)2
< 2(ρ(z−2) − 1)

1 − (z + 2) ln(ρ)

(ρ(z−2) − 1)2
< 0 (A.124)
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for ρ > 1 and z > 2
ln(ρ) + 2. Furthermore, for ρ > 1, we have

lim
z→∞

g9(z) = lim
z→∞

2(z + 2)
1

ρ(z−2) − 1
= lim

z→∞
2

ρ(z−2) ln(ρ)
= 0. (A.125)

By (A.124) and (A.125), z8 exists and it is finite. Part (f): Define g10(z)
.
= 2(z+1)ρ

ρz+1−1
and g11(z)

.
= z+1

ρz .

Then, the definition in (A.110) is equivalent to z0 = inf{z ∈ R : g10(z) < 1
4(ρ−1)2

, g11(z) < 1
4 , z >

1
ln(ρ) − 1}. Note that both g10(z) and g11(z) are strictly decreasing when ρ > 1 and z > 1

ln(ρ) − 1 because

g′10(z) = 2ρ
(ρz+1 − 1)− (z + 1)(ρz+1 ln(ρ))

(ρz+1 − 1)2
= 2ρ

ρz+1(1− (z + 1) ln(ρ)) − 1

(ρz+1 − 1)2
< 0 and (A.126)

g′11(z) =
1− (z + 1) ln(ρ)

ρz
< 0 (A.127)

for ρ > 1 and z > 1
ln(ρ) − 1. In addition, for ρ > 1, we have

lim
z→∞

g10(z) = lim
z→∞

2(z + 1)ρ

ρ(z+1) − 1
= lim

z→∞
2ρ

ρ(z+1) ln(ρ)
= 0. (A.128)

lim
z→∞

g11(z) = lim
z→∞

z + 1

ρz
= lim

z→∞
1

ρz ln(ρ)
= 0. (A.129)

By (A.126) through (A.129), z0 exists and it is finite. �

Proof of Theorem 3 - Part (a): Take any i ∈ {1, 2, . . . ,m}. Recall the definition of η1 from (A.109).

First, we will show that the percentage subsequence βW (Ni,·) is non-negative under the stated conditions

in part (a). When Ni,ℓ = 1,
Wp(Ni,ℓ)−Wd(Ni,ℓ)

Wp(Ni,ℓ)
= 0. Recall the definition of z1 from (A.42). Below we will

show by (A.130) through (A.132) that z0 ≥ z1(Ni,ℓ) for any Ni,ℓ ≥ 2 when ρ > 1. Thus, k > z0 implies

k > z1(Ni,ℓ) for ρ > 1. Then, it follows from Theorem 1-(a)-(i) that Wp(Ni,ℓ) − Wd(Ni,ℓ) > 0 for any

Ni,ℓ ≥ 2 and hence
Wp(Ni,ℓ)−Wd(Ni,ℓ)

Wp(Ni,ℓ)
> 0 when ρ > 1 and k > z0. This and the fact that R/c > (z0+1)/µ

implies k > z0 complete our argument for the statement that βW (Ni,·) subsequence is non-negative for any

i under the stated conditions in part (a). We now show our above claim that z0 ≥ z1(Ni,ℓ) for any Ni,ℓ ≥ 2

when ρ > 1. To do so, for any Ni,ℓ ≥ 2, we will first show that z0 already meets the conditions z1(Ni,ℓ)

93



meets.

(z0 + 1)Ni,ℓρ

ρz0+1 − 1
−

Ni,ℓ − 1

4(ρ− 1)2
= (Ni,ℓ − 1)

(
Ni,ℓ

Ni,ℓ − 1

(z0 + 1)ρ

ρz0+1 − 1
−

1

4(ρ− 1)2

)

≤ (Ni,ℓ − 1)

(
2
(z0 + 1)ρ

ρz0+1 − 1
−

1

4(ρ − 1)2

)

≤ 0, (A.130)

(z0 + 1)Ni,ℓ

(Ni,ℓ − 1)ρz0
−

1

2
≤

2(z0 + 1)

ρz0
−

1

2
≤ 0, (A.131)

z0 >
1

ln(ρ)
− 1. (A.132)

Based on these, suppose for a contradiction that z0 < z1(Ni,ℓ) for some Ni,ℓ ≥ 2. Then, for any z ∈

(z0, z1(Ni,ℓ)), z satisfies the set of constraints that defines z1(Ni,ℓ) since g1(z) and g2(z) (defined in the

proof of Proposition 3) are strictly decreasing in z when ρ > 1 and z > 1/ ln(ρ) − 1. But, this contradicts

with the definition of z1(Ni,ℓ). Thus, z0 ≥ z1(Ni,ℓ).

Next, we prove that the percentage subsequence is strictly increasing when ρ > 1 and k > max{z4, z5}.

Take any ℓ1 ∈ N and ℓ2 ∈ N+ such that ℓ1 < ℓ2. Let N1
.
= i+ ℓ1m and N2

.
= i + ℓ2m, which imply that

N1 < N2 and {N1, N2} ⊂ {Ni,ℓ : ℓ = 0, 1, . . .}.Based on these, the outline of the remainder of our proof

is as follows. By Proposition 2, Wp(N2) > Ws(N2). Thus,

Wp(N2)−Wp(N1) > Ws(N2)−Wp(N1) (A.133)

= Ws(N2)−Ws(N1)− (Wp(N1)−Ws(N1)). (A.134)

We claim and show below that if ρ > 1 and k > max{z4, z5},

Ws(N2)−Ws(N1) >
ρ− 1

λN1(N1 + 1)

ρ

2(ρ− 1)2
, (A.135)

and

Wp(N1)−Ws(N1) <
ρ− 1

λN1(N1 + 1)

ρ

2(ρ− 1)2
. (A.136)
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Combining (A.134) through (A.136), we have

Wp(N2)−Wp(N1) > 0 (A.137)

if ρ > 1 and k > max{z4, z5}. Recall from (A.7) that

Wd(N1) = Wd(N2) =
1

λ(ρ− 1)

kρk+2 − (k + 1)ρk+1 + ρ

ρk − 1
.

Since Wd(N) does not depend on N , by (A.137), Wp(Ni,ℓ)−Wd(Ni,ℓ) is strictly increasing in ℓ when ρ > 1

and k > max{z4, z5}. As a result, βW (Ni,·) =
(Wp(Ni,·)−Wd(Ni,·))

Wd(Ni,·)
is also strictly increasing in system size

(i.e., ℓ) when ρ > 1 and k > max{z4, z5}. We already know that
Wp(Ni,ℓ)−Wd(Ni,ℓ)

Wp(Ni,ℓ)
is non-negative when

ρ > 1 and k > z0. Because R/c > η1
.
= (max{z0, z4, z5} + 1)/µ implies k > max{z0, z4, z5}, part (a)

follows.

We now show (A.135). To do so, we first derive the preliminary inequality (A.139), which will be used

in later steps of the proof. Recall that N1 = i+ ℓ1m and N2 = i+ ℓ2m, where ℓ1 < ℓ2. Then, the balking

threshold in the system with N1 servers is K1 = ⌊ (i+mℓ1)Rµ
c ⌋ = ⌊ iRµ

c ⌋+ℓ1
Rmµ
c , whereas the corresponding

figure in the one with N2 servers is K2 = ⌊ (i+mℓ2)Rµ
c ⌋ = ⌊ iRµ

c ⌋+ ℓ2
Rmµ
c . Then,

K2

N2
−

K1

N1
=

⌊ iRµ
c ⌋+ ℓ2

Rmµ
c

i+mℓ2
−

⌊ iRµ
c ⌋+ ℓ1

Rmµ
c

i+mℓ1
=
(mℓ1 −mℓ2)⌊

iRµ
c ⌋+ (ℓ2 − ℓ1)

iRmµ
c

(i+mℓ1)(i +mℓ2)

=
(ℓ2 − ℓ1)(

iRmµ
c −m⌊ iRµ

c ⌋)

(i+mℓ1)(i+mℓ2)

≥0. (A.138)

We can represent K1 as K1 = N1(k + d), where 0 ≤ d < 1. Thus, (A.138) implies

K2 ≥
N2

N1
K1 = N2(k + d). (A.139)
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Recall from (A.11) the average sojourn time in the SQ system. Then, because K1 = N1(k + d), in the

SQ system with N1 servers, we have

Ws(N1) =
1

N1λ(ρ− 1)

K1ρ
K1+2 − (K1 + 1)ρK1+1 + ρ

ρK1 − 1

=
1

N1λ(ρ− 1)

N1(k + d)ρN1(k+d)+2 − (N1(k + d) + 1)ρN1(k+d)+1 + ρ

ρN1(k+d) − 1

=
1

λ(ρ− 1)

(k + d)ρN1(k+d)+2 − ((k + d) + 1
N1

)ρN1(k+d)+1 + 1
N1

ρ

ρN1(k+d) − 1

=
1

λ(ρ− 1)

(
(k + d)ρ2 −

(
k + d+

1

N1

)
ρ+

(k + d)ρ2 − (k + d)ρ

ρN1(k+d) − 1

)
. (A.140)

In the SQ system with N2 servers,

Ws(N2) =
1

N2λ(ρ− 1)

K2ρ
K2+2 − (K2 + 1)ρK2+1 + ρ

ρK2 − 1

≥
1

N2λ(ρ− 1)

N2(k + d)ρN2(k+d)+2 − (N2(k + d) + 1)ρN2(k+d)+1 + ρ

ρN2(k+d) − 1
(A.141)

=
1

λ(ρ− 1)

(k + d)ρN2(k+d)+2 − ((k + d) + 1
N2

)ρN2(k+d)+1 + 1
N2

ρ

ρN2(k+d) − 1

=
1

λ(ρ− 1)

(
(k + d)ρ2 −

(
k + d+

1

N2

)
ρ+

(k + d)ρ2 − (k + d)ρ

ρN2(k+d) − 1

)
. (A.142)

We have (A.141) because Ws is increasing in K by (A.71) and K2 ≥ N2(k + d) from (A.139). Based on

(A.140) and (A.142), we have

Ws(N2)−Ws(N1) ≥

∫ N2

N1

f ′
1(γ)dγ, (A.143)
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where f1(γ)
.
= 1

λ(ρ−1)

(
(k + d)ρ2 − (k + d+ 1

γ )ρ+
(k+d)ρ2−(k+d)ρ

ργ(k+d)−1

)
for γ ≥ 1. Note that when k > z4,

f ′
1(γ) =

1

λ(ρ− 1)

(
1

γ2
ρ−

((k + d)ρ2 − (k + d)ρ)ργ(k+d)(k + d) ln(ρ)

(ργ(k+d) − 1)2

)

=
1

λ(ρ− 1)γ2(ργ(k+d) − 1)2

(
ρ(ργ(k+d) − 1)2 − γ2(k + d)2(ρ2 − ρ)ργ(k+d) ln(ρ)

)

=
ρ

λ(ρ− 1)γ2(ργ(k+d) − 1)2

(
(ργ(k+d) − 1)2 − γ2(k + d)2ργ(k+d)(ρ− 1) ln(ρ)

)

>
ρ

λ(ρ− 1)γ2(ργ(k+d) − 1)2
1

2
(ργ(k+d) − 1)2 (A.144)

=
ρ

2λ(ρ− 1)γ2
. (A.145)

The inequality (A.144) is because when k > z4 and γ ≥ 1, γ(k + d) > z4 and
(ρ(k+d)γ−1)2

γ2(k+d)2ρ(k+d)γ > 2(ρ −

1) ln(ρ) by (A.111), thus

γ2(k + d)2ρ(k+d)γ(ρ− 1) ln(ρ)−
1

2
(ρ(k+d)γ − 1)2

=
1

2
γ2(k + d)2ρ(k+d)γ

(
2(ρ− 1) ln(ρ)−

(ρ(k+d)γ − 1)2

γ2(k + d)2ρ(k+d)γ

)

<0.

It follows from (A.143) and (A.145) that if ρ > 1 and k > z4

Ws(N2)−Ws(N1) >

∫ N2

N1

ρ

2λ(ρ− 1)γ2
dγ =

ρ

2λ(ρ− 1)

(
1

N1
−

1

N2

)
≥

ρ

2λ(ρ− 1)

(
1

N1
−

1

N1 + 1

)

=
ρ− 1

λN1(N1 + 1)

ρ

2(ρ− 1)2
,

which proves the inequality in (A.135).
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We now show (A.136). Recall from (2.7) and (A.11) the average sojourn time in the pooled and SQ

systems, respectively. Then, if ρ > 1 and k > z5,

Wp(N1)−Ws(N1)

=

∑N1−1
j=0

Nj
1

j! jρ
j +

N
N1
1

N1!

∑K1
j=N1

jρj
(∑N1−1

j=0
Nj

1
j! ρ

j +
N

N1
1

N1!

∑K1−1
j=N1

ρj
)
N1λ

−

∑K1
j=0 jρ

j

(∑K1−1
j=0 ρj

)
N1λ

=

∑N1−1
j=0

Nj
1

j! jρ
j +

N
N1
1

N1!

∑K1
j=N1

jρj
(∑N1−1

j=0
Nj

1
j! ρ

j +
N

N1
1

N1!

∑K1−1
j=N1

ρj
)
N1λ

−

∑N1−1
j=0

N
N1
1

N1!
jρj +

N
N1
1

N1!

∑K1
j=N1

jρj(∑N1−1
j=0

N
N1
1

N1!
ρj +

N
N1
1

N1!

∑K1−1
j=N1

ρj
)
N1λ

<

∑N1−1
j=0

N
N1
1

N1!
jρj +

N
N1
1

N1!

∑K1
j=N1

jρj(∑N1−1
j=0

Nj
1

j! ρ
j +

N
N1
1

N1!

∑K1−1
j=N1

ρj
)
N1λ

−

∑N1−1
j=0

N
N1
1

N1!
jρj +

N
N1
1

N1!

∑K1
j=N1

jρj(∑N1−1
j=0

N
N1
1

N1!
ρj +

N
N1
1

N1!

∑K1−1
j=N1

ρj
)
N1λ

(A.146)

=

∑N1−1
j=0

N
N1
1

N1!
jρj +

N
N1
1

N1!

∑K1
j=N1

jρj

N1λ

·

∑N1−1
j=0 (

N
N1
1

N1!
−

Nj
1

j! )ρ
j

(∑N1−1
j=0

Nj
1

j! ρ
j +

N
N1
1

N1!

∑K1−1
j=N1

ρj
)(∑N1−1

j=0
N

N1
1

N1!
ρj +

N
N1
1

N1!

∑K1−1
j=N1

ρj
)

=

∑K1
j=0 jρ

j

(∑K1−1
j=0 ρj

)
N1λ

∑N1−1
j=0 (

N
N1
1

N1!
−

Nj
1

j! )ρ
j

(∑N1−1
j=0

Nj
1

j! ρ
j +

N
N1
1

N1!

∑K1−1
j=N1

ρj
)

<
K1

N1µ

N1(
N

N1
1

N1!
)ρN1−1

N
N1
1

N1!

∑K1−1
j=N1

ρj
(A.147)

=
K1

N1µ

N1ρ
N1−1

(ρK1 − ρN1)/(ρ− 1)

<
k + 1

µ

N1(ρ− 1)

ρ(ρK1−N1 − 1)
(A.148)

=
k + 1

λ

N1(ρ− 1)

ρK1−N1 − 1

≤
k + 1

λ

N1(ρ− 1)

ρN1k−N1 − 1
(A.149)

=
ρ− 1

λN1(N1 + 1)

(
N2

1 (N1 + 1)(k + 1)

ρN1k−N1 − 1

)

≤
ρ− 1

λN1(N1 + 1)

(
2(k + 1)

ρk−1 − 1

)
(A.150)

<
ρ− 1

λN1(N1 + 1)

ρ

2(ρ− 1)2
, (A.151)
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which proves the inequality in (A.136). Let us explain why each of the inequalities in (A.146) through

(A.151) holds. The inequality (A.146) is because
Nj

1
j! <

N
N1
1

N1!
for j ∈ {1, 2, . . . , N1 − 2} and

Nj
1

j! =
N

N1
1

N1!
for

j = N1 − 1. The inequality (A.147) is because

∑K1
j=0 jρ

j

(∑K1−1
j=0 ρj

)
N1λ

≤
K1
∑K1

j=1 ρ
j

(∑K1−1
j=0 ρj

)
N1λ

=
K1

N1µ

and for ρ > 1 and j ∈ {1, 2, . . . , N1 − 1},

(
NN1

1

N1!
−

N j
1

j!

)
ρj <

NN1
1

N1!
ρN1−1.

The inequality (A.148) follows from the fact that

K1

N1µ
<

(k + 1)N1

N1µ
=

k + 1

µ
.

We have (A.149) because K1 ≥ N1k and ρ > 1. The inequality (A.150) is due to the fact that f2(γ)
.
=

γ2(γ+1)(k+1)
ργk−γ−1

is decreasing in γ when k > z5 and γ ≥ 1, which is shown below, and hence
N2

1 (N1+1)(k+1)

ρN1k−N1−1
≤

2(k+1)
ρk−1−1

. When k > z5, we have k > 3
ln(ρ) + 1, and thus

f ′
2(γ) =(k + 1)

(3γ2 + 2γ)(ργk−γ − 1)− γ2(γ + 1)(ργk−γ)(k − 1) ln(ρ)

(ργk−γ − 1)2

<(k + 1)
3γ2(γ + 1)(ργk−γ)− γ2(γ + 1)(ργk−γ)(k − 1) ln(ρ)

(ργk−γ − 1)2

=(k + 1)
γ2(γ + 1)(ργk−γ)(3− (k − 1) ln(ρ))

(ργk−γ − 1)2

<0.

Finally, the inequality (A.151) is because when ρ > 1 and k > z5,
ρ

2(ρ−1)2 > 2(k+1)
ρk−1−1

by (A.112). �

Proof of Theorem 3 - Part (b): Take any i ∈ {1, 2, . . . ,m}, and consider the system size subse-

quence {Ni,ℓ = i + ℓm, ℓ = 0, 1, . . .}. Recall the definition of η2 from (A.109). When Ni,ℓ = 1,

SWd(i+mℓ)−SWp(i+mℓ)
SWp(i+mℓ) = 0. For any Ni,ℓ ≥ 2, according to the proof of part (a), the conditions in Theorem

1-(a) are satisfied and thus
SWd(i+mℓ)−SWp(i+mℓ)

SWp(i+mℓ) > 0 when k > z0 and ρ > 1. As a result, the percentage

subsequence for social welfare is non-negative under the conditions stated in part (b).

99



We now show that if ρ > 1 and k > max{z6, z7, z8}, then
SWd(i+mℓ)−SWp(i+mℓ)

SWp(i+mℓ) is strictly increasing

in ℓ, ℓ ∈ N. By the definition of the subsequence {Ni,ℓ, ℓ = 0, 1, . . .}, the system size is equal to i + ℓm.

Then the balking threshold in the pooled system is

K = di + ℓdm, (A.152)

where

di
.
= ⌊Riµ/c⌋ and dm = Rmµ/c. (A.153)

Throughout this proof, we will include the system size as an argument of SWd(·), SWs(·) and SWp(·);

here, the index j = s represents the SQ system. The following lemma identifies a bound, which we will use

later in the proof.

Lemma 15. If ρ > 1 and k > max{z6, z7},

SWd(i+m(ℓ+ 1)) − SWs(i+m(ℓ+ 1))

SWs(i+m(ℓ+ 1))
−

SWd(i+ ℓm)− SWs(i+ ℓm)

SWs(i+ ℓm)
>

SWd(i+ ℓm)

SWs(i+ ℓm)

1

2(ℓ+ 2)
.

Proof of Lemma 15: Recall from Lemmas 2 and 7 that

SWd(i+ ℓm) =

(
1− ρk

1− ρk+1
Rλ−

ρ− (k + 1)ρk+1 + kρk+2

(ρ− 1)(ρk+1 − 1)
c

)
(i+ ℓm), (A.154)

and

SWs(i+ ℓm) =
1− ρdi+ℓdm

1− ρdi+ℓdm+1
R(i+ ℓm)λ−

ρ− (di + ℓdm + 1)ρdi+ℓdm+1 + (di + ℓdm)ρdi+ℓdm+2

(ρ− 1)(ρdi+ℓdm+1 − 1)
c.

(A.155)

We will prove this lemma under each of the two possible cases about ℓ.

Case 1: First, we prove Lemma 15 for ℓ = 0, i.e.,

SWd(i+m)− SWs(i+m)

SWs(i+m)
−

SWd(i)− SWs(i)

SWs(i)
>

SWd(i)

SWs(i)

1

4
,
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which is equivalent to

SWd(i+m)

SWd(i)
>

5

4

SWs(i+m)

SWs(i)
. (A.156)

Using (A.154) and the fact that 1 ≤ i ≤ m,

SWd(i+m)

SWd(i)
=

i+m

i
≥ 2. (A.157)

Recall the definition of di and dm from (A.153), define

r̄i
.
=

Riµ

c
− di. (A.158)

Then 0 ≤ r̄i < 1. Since Rmµ
c is an integer, then

R(i+ℓm)µ
c − (di + ℓdm) = r̄i for ℓ ∈ N.

Recall the social welfare for the scaled queuing system from (A.106). Replacing K with di + ℓdm and

r2 with r̄i in that expression for SWs(N = i+ ℓm), we have

SWs(i+ ℓm)

=
(
r̄iρ

di+ℓdm+2 + (1− r̄i)ρ
di+ℓdm+1 − (di + ℓdm + r̄i)ρ

2 + (di + ℓdm + r̄i − 1)ρ
)

·
c

(ρdi+ℓdm+1 − 1)(ρ− 1)

Then, for ℓ = 0, we have the following when ρ > 1 and k > z6:

SWs(i) =
c

(ρdi+1 − 1)(ρ− 1)

(
r̄iρ

di+2 + (1− r̄i)ρ
di+1 − (di + r̄i)ρ

2 + (di + r̄i − 1)ρ
)

=
c

ρ− 1

(
r̄iρ+ (1− r̄i) +

r̄iρ+ (1− r̄i)− (di + r̄i)ρ
2 + (di + r̄i − 1)ρ

ρdi+1 − 1

)

>
c

ρ− 1

(
r̄iρ+ (1− r̄i) +

r̄iρ+ (1− r̄i)− (di + 1)ρ2

ρdi+1 − 1

)

>
c

ρ− 1

(
5

8
(r̄iρ+ (1− r̄i)) +

r̄iρ+ (1− r̄i)

ρdi+1 − 1

)
(A.159)

>
5c

8(ρ− 1)

(
r̄iρ+ (1− r̄i) +

r̄iρ+ (1− r̄i)

ρdi+1 − 1

)
(A.160)
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The inequality (A.159) is because
(di+1)ρ2

ρdi+1−1
< 3

8 < 3
8 (r̄iρ + (1 − r̄i)) when ρ > 1 and di + 1 > k > z6

since z
ρz−1 is strictly decreasing when ρ > 1 and z > 1

ln(ρ) according to the proof of Lemma 14-(c) and

z6
ρz6−1 < 3

8ρ2 according to (A.113). Moreover,

SWs(i+m)

=
c

(ρdi+dm+1 − 1)(ρ − 1)

(
r̄iρ

di+dm+2 + (1− r̄i)ρ
di+dm+1 − (di + dm + r̄i)ρ

2 + (di + dm + r̄i − 1)ρ
)

=
c

ρ− 1

(
r̄iρ+ (1− r̄i) +

r̄iρ+ (1− r̄i)− (di + dm + r̄i)ρ
2 + (di + dm + r̄i − 1)ρ

ρdi+dm+1 − 1

)

<
c

ρ− 1

(
r̄iρ+ (1− r̄i) +

r̄iρ+ (1− r̄i)

ρdi+dm+1 − 1

)

<
c

ρ− 1

(
r̄iρ+ (1− r̄i) +

r̄iρ+ (1− r̄i)

ρdi+1 − 1

)
(A.161)

Combing (A.160) and (A.161), we have

SWs(i+m)

SWs(i)
<

8

5
. (A.162)

Combining (A.157) and (A.162), (A.156) follows. Thus, the lemma holds for ℓ = 0.

Case 2: Now, we focus on the case that ℓ ≥ 1. When ρ > 1 and k > max{z6, z7},

SWs(i+ ℓm)

=
1− ρdi+ℓdm

1− ρdi+ℓdm+1
R(i+ ℓm)λ−

ρ− (di + ℓdm + 1)ρdi+ℓdm+1 + (di + ℓdm)ρdi+ℓdm+2

(ρ− 1)(ρdi+ℓdm+1 − 1)
c

=
ρdi+ℓdm − 1

ρdi+ℓdm+1 − 1
R(i+ ℓm)λ−

(
(di + ℓdm)ρ− (di + ℓdm + 1) +

(di + ℓdm + 1)(ρ− 1)

ρdi+ℓdm+1 − 1

)
c

ρ− 1

=

((
1

ρ
−

1− 1
ρ

ρdi+ℓdm+1 − 1

)
R(i+ ℓm)λ

c
− (di + ℓdm)−

di + ℓdm + 1

ρdi+ℓdm+1 − 1
+

1

ρ− 1

)
c

=

((
1−

ρ− 1

ρdi+ℓdm+1 − 1

)
R(i+ ℓm)µ

c
− (di + ℓdm)−

di + ℓdm + 1

ρdi+ℓdm+1 − 1
+

1

ρ− 1

)
c. (A.163)

To get a preliminary bound, we now assume that ℓ ∈ R+ and ℓ ≥ 1, which imply that the social welfare

is a continuous function of ℓ. Later, we will eliminate that assumption to focus on ℓ ∈ N+ and use this
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preliminary bound to prove the statement in Lemma 15. Taking the derivative of (A.163), we get:

∂SWs(i+ ℓm)

∂ℓ

=

((
1−

ρ− 1

ρdi+ℓdm+1 − 1

)
Rmµ

c
+

ρ− 1

(ρdi+ℓdm+1 − 1)2
ρdi+ℓdm+1dm ln(ρ)

R(i+ ℓm)µ

c
− dm

)
c

−

(
dm(ρdi+ℓdm+1 − 1)− (di + ℓdm + 1)ρdi+ℓdm+1dm ln(ρ)

(ρdi+ℓdm+1 − 1)2

)
c

<

((
1−

ρ− 1

ρdi+ℓdm+1 − 1

)
dm +

ρ− 1

(ρdi+ℓdm+1 − 1)2
ρdi+ℓdm+1dm ln(ρ)(di + ℓdm + 1)− dm

)
c

−

(
dm(ρdi+ℓdm+1 − 1)− (di + ℓdm + 1)ρdi+ℓdm+1dm ln(ρ)

(ρdi+ℓdm+1 − 1)2

)
c (A.164)

<

(
ρ

(ρdi+ℓdm+1 − 1)2
ρdi+ℓdm+1dm ln(ρ)(di + ℓdm + 1)

)
c

=

(
ρdi+ℓdm+2(di + ℓdm + 1)dm ln(ρ)

(ρdi+ℓdm+1 − 1)2

)
c

<

(
ρdi+ℓdm+2(di + ℓdm + 1)2 ln(ρ)

(ρdi+ℓdm+1 − 1)2

)
c (A.165)

≤

(
(di + ℓdm + 1)2ρ2 ln(ρ)

(ρ− 1)(ρdi+ℓdm+1 − 1)

)
c (A.166)

<
c

4(ρ− 1)(di + ℓdm + 1)
(A.167)

≤
c

4(ρ− 1)(ℓ+ 1)
. (A.168)

Here, the inequality (A.164) follows from the facts that Rmµ
c = dm and

R(i+ℓm)µ
c < K+1 = di+ ℓdm+1.

The inequality (A.165) is because dm < di+ℓdm+1 when ℓ ≥ 1. We have (A.166) because ρdi+ℓdm+2

ρdi+ℓdm+1−1
≤

ρ2

ρ−1 . The reason for (A.167) is as follows. By the proof of Lemma 14-(d), if ρ > 1 and k > z7, which

implies di + ℓdm + 1 > K > z7, ρdi+ℓdm+1−1
(di+ℓdm+1)3 > 4ρ2 ln(ρ), i.e.,

(
(di+ℓdm+1)2ρ2 ln(ρ)

(ρdi+ℓdm+1−1)

)
< 1

4(di+ℓdm+1) .
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Based on these, we have

∂

∂ℓ

(
SWd(i+ ℓm)− SWs(i+ ℓm)

SWs(i+ ℓm)

)

=
∂

∂ℓ

(
SWd(i+ ℓm)

SWs(i+ ℓm)

)

=
∂SWd(i+ℓm)

∂ℓ SWs(i+ ℓm)− SWd(i+ ℓm)∂SWs(i+ℓm)
∂ℓ

(SWs(i+ ℓm))2

=
SWd(i+ ℓm) m

i+ℓmSWs(i+ ℓm)− SWd(i+ ℓm)∂SWs(i+ℓm)
∂ℓ

(SWs(i+ ℓm))2

=SWd(i+ ℓm)
m

i+ℓmSWs(i+ ℓm)− ∂SWs(i+ℓm)
∂ℓ

(SWs(i+ ℓm))2

=
SWd(i+ ℓm)

SWs(i+ ℓm)

(
m

i+ ℓm
−

∂SWs(i+ ℓm)

∂ℓ
/SWs(i+ ℓm)

)

≥
SWd(i+ ℓm)

SWs(i+ ℓm)

(
1

ℓ+ 1
−

∂SWs(i+ ℓm)

∂ℓ
/SWs(i+ ℓm)

)
(A.169)

>
SWd(i+ ℓm)

SWs(i+ ℓm)

(
1

ℓ+ 1
−

c

4(ρ− 1)(ℓ+ 1)

/
c

2(ρ− 1)

)
(A.170)

=
SWd(i+ ℓm)

SWs(i+ ℓm)

(
1

2(ℓ+ 1)

)
. (A.171)

The above inequality in (A.169) is because i ≤ m, and the inequality in (A.170) follows from (A.168) and

(A.173), which will be shown below. We now show (A.173). We have

SWs(i+ ℓm) ≥

((
1−

ρ− 1

ρdi+ℓdm+1 − 1

)
(di + ℓdm)− (di + ℓdm)−

di + ℓdm + 1

ρdi+ℓdm+1 − 1
+

1

ρ− 1

)
c

(A.172)

=

(
1

ρ− 1
−

(ρ− 1)(di + ℓdm)

ρdi+ℓdm+1 − 1
−

(di + ℓdm + 1)

ρdi+ℓdm+1 − 1

)
c

>

(
1

ρ− 1
−

(di + ℓdm + 1)ρ

ρdi+ℓdm+1 − 1

)
c

>
c

2(ρ− 1)
. (A.173)

Here, the inequality (A.172) follows because (A.163) holds and
R(i+ℓm)µ

c ≥ di + ℓdm, and the reason for

(A.173) is as follows. By the proof of Lemma 14-(c), z
ρz−1 is strictly decreasing when ρ > 1 and z > 1

ln(ρ) .

Also, z6
ρz6−1 ≤ 3

8ρ2
< 1

2ρ(ρ−1) according to (A.113). Thus, when ρ > 1 and k > z6,
(di+ℓdm+1)ρ

ρdi+ℓdm+1−1
< 1

2(ρ−1)

since k > z6 implies di + ℓdm + 1 > z6. (It is obvious that di ≥ k since i ≥ 1.)
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Based on the analysis above, we now show the statement in the lemma. If ρ > 1 and k > max{z6, z7},

SWd(i+m(ℓ+ 1))− SWs(i+m(ℓ+ 1))

SWs(i+m(ℓ+ 1))
−

SWd(i+ ℓm)− SWs(i+ ℓm)

SWs(i+ ℓm)

>

∫ ℓ+1

ℓ

SWd(i+mx)

SWs(i+mx)

1

2(x+ 1)
dx (A.174)

>

∫ ℓ+1

ℓ

SWd(i+ ℓm)

SWs(i+ ℓm)

1

2(ℓ+ 2)
dx (A.175)

=
SWd(i+ ℓm)

SWs(i+ ℓm)

1

2(ℓ+ 2)
. (A.176)

Above, (A.174) follows from (A.171); (A.175) is because
SWd(i+mx)
SWs(i+mx) ≥ SWd(i+mℓ)

SWs(i+mℓ) as
SWd(i+mx)
SWs(i+mx) is in-

creasing in x for ρ > 1, k > z7, and ℓ ≤ x ≤ ℓ + 1 by (A.171). These complete the proof of Lemma 15.

�
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For any system size N , we have

SWs(N)− SWp(N)

=

(
NN

N ! ρ
K

∑N−1
j=0

Nj

j! ρ
j +

∑K
j=N

NN

N ! ρ
j
−

NN

N ! ρ
K

∑N−1
j=0

NN

N ! ρ
j +

∑K
j=N

NN

N ! ρ
j

)
RNλ

+

(∑N−1
j=0

Nj

j! jρ
j +

∑K
j=N

NN

N ! jρ
j

∑N−1
j=0

Nj

j! ρ
j +

∑K
j=N

NN

N ! ρ
j

−

∑N−1
j=0

NN

N ! jρ
j +

∑K
j=N

NN

N ! jρ
j

∑N−1
j=0

NN

N ! ρ
j +

∑K
j=N

NN

N ! ρ
j

)
c

<
NN

N !
ρK

( ∑N−1
j=0 (N

N

N ! − Nj

j! )ρ
j

(
∑N−1

j=0
Nj

j! ρ
j +

∑K
j=N

NN

N ! ρ
j)(
∑N−1

j=0
NN

N ! ρ
j +

∑K
j=N

NN

N ! ρ
j)

)
RNλ

+




N−1∑

j=0

NN

N !
jρj +

K∑

j=N

NN

N !
jρj



( ∑N−1

j=0 (N
N

N ! − Nj

j! )ρ
j

(
∑N−1

j=0
Nj

j! ρ
j +

∑K
j=N

NN

N ! ρ
j)(
∑N−1

j=0
NN

N ! ρ
j +

∑K
j=N

NN

N ! ρ
j)

)
c

<

( ∑N−1
j=0 (N

N

N ! − Nj

j! )ρ
j

(
∑N−1

j=0
Nj

j! ρ
j +

∑K
j=N

NN

N ! ρ
j)(
∑N−1

j=0
NN

N ! ρ
j +

∑K
j=N

NN

N ! ρ
j)

NN

N !
ρK(K + 1)ρ

)
c

+






N−1∑

j=0

NN

N !
jρj +

K∑

j=N

NN

N !
jρj




∑N−1
j=0 (N

N

N ! − Nj

j! )ρ
j

(
∑N−1

j=0
Nj

j! ρ
j +

∑K
j=N

NN

N ! ρ
j)(
∑N−1

j=0
NN

N ! ρ
j +

∑K
j=N

NN

N ! ρ
j)


 c

<

( ∑N−1
j=0

NN

N ! ρ
j

(
∑K

j=N
NN

N ! ρ
j)2

NN

N !
(K + 1)ρK+1

)
c

+




N−1∑

j=0

NN

N !
jρj +

K∑

j=N

NN

N !
jρj




∑N−1
j=0

NN

N ! ρ
j

(
∑K

j=N
NN

N ! ρ
j)(
∑N−1

j=0
NN

N ! ρ
j +

∑K
j=N

NN

N ! ρ
j)
c

<

( ∑N−1
j=0 ρj

(
∑K

j=N ρj)2
(K + 1)ρK+1 +K

∑N−1
j=0 ρj

∑K
j=N ρj

)
c

=

(
(K + 1)ρK+1 (ρ

N − 1)(ρ− 1)

(ρK+1 − ρN )2
+K

ρN − 1

ρK+1 − ρN

)
c (A.177)

Based on this, we have the following lemma.

Lemma 16. Recall that N = i+ ℓm and K = di + ℓdm. Then, for ρ > 1 and k > z8,

SWs(i+ ℓm)− SWp(i+ ℓm) <
c

2(ρ− 1)

1

2ℓ+ 5
.
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Proof of Lemma 16:We have the the following for ρ > 1 and k > z8:

SWs(i+ ℓm)− SWp(i+ ℓm)

<

(
(di + ℓdm + 1)ρdi+ℓdm+1 (ρi+ℓm − 1)(ρ− 1)

(ρdi+ℓdm+1 − ρi+ℓm)2
+ (di + ℓdm)

ρi+ℓm − 1

ρdi+ℓdm+1 − ρi+ℓm

)
c (A.178)

<

(
(di + ℓdm + 1)ρdi+ℓdm+1 (ρi+ℓm − 1)ρ

(ρdi+ℓdm+1 − ρi+ℓm)2

)
c

<

(
(di + ℓdm + 1)ρdi+ℓdm+2 ρi+ℓm

(ρdi+ℓdm+1 − ρi+ℓm)2

)
c

≤

(
((k + 1)(i+ ℓm) + 1)ρ(k+1)(i+ℓm)+2 ρi+ℓm

(ρk(i+ℓm)+1 − ρi+ℓm)2

)
c (A.179)

=((k + 1)(i+mℓ) + 1)
ρ(k+1)(i+mℓ)+2

(ρk(i+mℓ)+1 − ρi+mℓ)

ρi+mℓ

(ρk(i+mℓ)+1 − ρi+mℓ)
c

=((k + 1)(i+mℓ) + 1)ρi+mℓ+1 1

1− ρ(i+mℓ)(1−k)−1

1

ρ(k−1)(i+mℓ)+1 − 1
c

<((k + 1)(i+mℓ) + 1)2ρi+mℓ+1 1

ρ(k−1)(i+mℓ)+1 − 1
c (A.180)

<2((k + 1)(i +mℓ) + 1)
1

ρ(k−2)(i+mℓ) − 1
c

≤2(k + 2)(i+mℓ)
1

ρ(k−2)(i+mℓ) − 1
c (A.181)

=2(k + 2)(i+mℓ)2
1

ρ(k−2)(i+mℓ) − 1

c

i+ ℓm

≤2(k + 2)
1

ρ(k−2) − 1

c

i+ ℓm
(A.182)

<
1

10(ρ− 1)

c

i+ ℓm
(A.183)

≤
c

2(ρ− 1)

1

2ℓ+ 5
. (A.184)

We now explain how we obtain the numbered inequalities above. The inequality (A.178) is due to (A.177).

Because ki ≤ di < (k + 1)i and kℓm ≤ ℓdm < (k + 1)ℓm, (A.179) follows from the fact that di + ℓdm ≤

(k+1)i+(k+1)ℓm. The inequality (A.180) is because ρ(i+mℓ)(1−k)−1 ≤ ρ(−k) < 1
2 when i+mℓ ≥ 1, ρ > 1

and k > z8 ≥
2

ln(ρ) +2. The inequality (A.181) is because i+mℓ ≥ 1. The inequality (A.182) is due to the

fact that f3(γ)
.
= γ2 1

ρ(k−2)γ−1
is strictly decreasing in γ when ρ > 1, γ ≥ 1 and k > z8 ≥

2
ln(ρ)+2 as shown

at the end of the proof. By the proof of Lemma 14-(e), if ρ > 1 and k > z8, 2(k+2) 1
ρ(k−2)−1

< 1
10(ρ−1) and

thus (A.183) follows. Finally, the inequality (A.184) is because 5(i + ℓm) ≥ 2ℓ + 5 when i ∈ {1, . . . ,m}

and ℓ = 0, 1, . . . .
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It only remains to prove that f ′
3(γ) < 0 assuming that γ ∈ R+ and γ ≥ 1. Note that

f ′
3(γ) =

2γ(ρ(k−2)γ − 1)− γ2ρ(k−2)γ(k − 2) ln(ρ)

(ρ(k−2)γ−1)2

<γρ(k−2)γ 2− γ(k − 2) ln(ρ)

(ρ(k−2)γ − 1)2

≤γρ(k−2)γ 2− (k − 2) ln(ρ)

(ρ(k−2)γ − 1)2
(A.185)

<0.

Here, (A.185) because γ ≥ 1, ρ > 1 and k > z8 ≥
2

ln(ρ) + 2. �

We already know from (A.173) that SWs(i + ℓm) > c
2(ρ−1) when ρ > 1 and k > max{z6, z7}.

Combining this with Lemma 16, we have the following for ρ > 1 and k > max{z6, z7, z8}:

SWp(i+ ℓm) > SWs(i+ ℓm)−
c

2(ρ− 1)

1

2ℓ+ 5
>

c

2(ρ− 1)
−

c

2(ρ− 1)

1

2ℓ+ 5
=

c

2(ρ− 1)

2ℓ+ 4

2ℓ+ 5
.

(A.186)

This and Lemma 16 together imply that for ρ > 1 and k > max{z6, z7, z8},

SWs(i+ ℓm)

SWp(i+ ℓm)
= 1 +

SWs(i+ ℓm)− SWp(i+ ℓm)

SWp(i+ ℓm)
< 1 +

1

2ℓ+ 4
. (A.187)

Then, if ρ > 1 and k > max{z6, z7, z8}, we have the following for any i ∈ {1, 2, . . . ,m} and ℓ ∈ N:

SWd(i+m(ℓ+ 1))− SWp(i+m(ℓ+ 1))

SWp(i+m(ℓ+ 1))
−

SWd(i+mℓ)− SWp(i+mℓ)

SWp(i+mℓ)

>
SWd(i+m(ℓ+ 1))− SWs(i+m(ℓ+ 1))

SWs(i+m(ℓ+ 1))
−

SWd(i+mℓ)− SWp(i+mℓ)

SWp(i+mℓ)
(A.188)

=
SWd(i+m(ℓ+ 1))− SWs(i+m(ℓ+ 1))

SWs(i+m(ℓ+ 1))
−

SWd(i+mℓ)− SWs(i+mℓ)

SWs(i+mℓ)

+
SWd(i+mℓ)− SWs(i+mℓ)

SWs(i+mℓ)
−

SWd(i+mℓ)− SWp(i+mℓ)

SWp(i+mℓ)

>
SWd(i+mℓ)

SWs(i+mℓ)

(
1

2(ℓ+ 2)
+ 1−

SWs(i+mℓ)

SWp(i+mℓ)

)
(A.189)

>0. (A.190)
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Here, the inequality (A.188) is because SWp(i +m(ℓ + 1) < SWs(i +m(ℓ + 1)) by Proposition 2. The

inequality (A.189) is due to Lemma 15. The inequality (A.190) follows from (A.187).

Based on (A.190), for any given i ∈ N+,
SWd(Ni,ℓ)−SWp(Ni,ℓ)

SWp(Ni,ℓ)
is increasing in ℓ if ρ > 1 and k >

max{z6, z7, z8}. We already know that the subsequence is non-negative when ρ > 1 and k > z0. This and

the fact that R/c > η2 = (max{z0, z6, z7, z8}+ 1)/µ implies k > max{z0, z6, z7, z8} complete the proof

of the claim. �

A.9 Proof of Proposition 4

Proof of Part (a): In both dedicated and pooled systems, the service fee affects the social welfare only

through balking thresholds. In the dedicated system, suppose that the fee that maximizes welfare is f∗
d and

the resulting balking threshold is k∗d. Consider another system called “dedicated help system,” which is a

variation of the dedicated system. In this system, there are N single-server systems. The total arrival for

the system follows Poisson distribution with an arrival rate Nλ, and each customer is routed to a server

with probability 1
N . Thus, the arrival for each single-server system is a Poisson process with rate λ. In

the dedicated help system, all servers are homogeneous and service time of each server is exponentially

distributed with rate µ. As soon as a single-server system has no customers, the server gets into “help”

mode and he randomly chooses another single-server system in which there is at least one customer waiting

(in addition to the customer the server of that queue is serving) and starts serving that customer. If there is

no such system, the server stays idle until either a customer arrives to that server or a customer arrives to

another queue whose server is busy. (If there is more than one server idling in the “help” mode, one of the

servers, who will help, can be chosen randomly whenever a customer arrives at the queue of a busy server.)

When a server starts helping another server, the help service process is interrupted and canceled altogether,

and the customer being served goes back to her original queue either if a customer arrives to the queue of the

server who is helping or the server who is being helped finishes his service and becomes available to serve

the customer currently being served by the helper server. The new arrival to a server will be accepted if and

only if the number of customers which belong to that server (including the ones that are originally routed to

the queue of the server but are helped by other servers, and excluding the one (if any) that is under help of

the server) n satisfies n < k∗d.
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Let Xi
d(t) denote the number of customers that belong to the ith server of the dedicated system at time

t and denote by Xi
h(t) the number of customers that belong to the ith server of the dedicated help system

at time t. (The latter excludes the customer from other servers helped by the ith server, and includes the

customers from the ith queue helped by the other servers.) By sample path comparison, Xi
d(t) ≥ Xi

h(t),

t ≥ 0. Let λi
e,d and λi

e,h denote the throughput for the server i in the dedicated system and in the dedicated

help system, respectively. Then, we have λi
e,h ≥ λi

e,d because if an arrival joins the ith queue of the dedicated

system, it implies that the number of customers in the ith dedicated sub-system is less than k∗d, and so, she

will also join the help system since the number of customers customers that belong to the ith server of the

dedicated help system is even smaller. From this and the fact that Xi
d(t) ≥ Xi

h(t) t ≥ 0, it follows that the

average sojourn time for the arrivals to server i who join the dedicated help system is smaller than that who

join the dedicated system, i.e., W i
h ≤ W i

d.

Denote by SWh the social welfare under the described dedicated help system. By the throughput and

average sojourn time inequalities above, the dedicated help system results in larger social welfare than the

dedicated system with fee f∗
d , i.e., SWh ≥ SW ∗

d .

The dedicated help system can be thought as a kind of pooled system, but with a different admission

policy. Because the socially-optimal admission control for the pooled system is a deterministic threshold

policy and it can be achieved by setting a service fee, the pooled system with the socially-optimal fee (for

the pooled system) will result in larger social welfare than the dedicated help system, i.e., SW ∗
p ≥ SWh.

As a result, SW ∗
p ≥ SWh ≥ SW ∗

d . �

Proof of Part (b): Denote by f∗∗
d and f∗∗

p the optimal service fees that maximize the revenue in the dedicated

system and the pooled system, respectively. For any fee f ≥ 0, the revenue of the dedicated system is

RVd(f) = θd(f)f and the revenue of the pooled system is RVp(f) = θp(f)f. Replacing R with R − f∗∗
d

in the proof of Proposition 1 and applying the same ideas as in the proof of Proposition 1, one can show that

θp(f
∗∗
d ) > θd(f

∗∗
d ). Thus, RVp(f

∗∗
d ) > RVd(f

∗∗
d ). Then, RVp(f

∗∗
p ) ≥ RVp(f

∗∗
d ) > RVd(f

∗∗
d ) since f∗∗

p is

the fee that maximizes the revenue for the pooled system. �

A.10 Proof of Lemma 3

To prove this result, we first introduce some notation and some preliminary analysis. Let RVd(k) denote

the maximum revenue that can be obtained from the dedicated system when the balking threshold of each
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sub-system is k. Denote by RVp(K) the maximum revenue that can be obtained from the pooled system

with the balking threshold K . At any given fee f , k =
⌊
(R−f)µ

c

⌋
and K =

⌊
(R−f)Nµ

c

⌋
, which imply that

f ≤ R − ck
µ when the balking threshold is k in each dedicated sub-system, and f ≤ R − cK

Nµ when the

balking threshold is K in the pooled system. Using these and the throughput in both dedicated and pooled

systems, we get the following expressions for RVd(k) and RVp(K). When ρ = 1,

RVd(k) = Nλ

(
k

k + 1

)(
R−

ck

µ

)
and (A.191)

RVp(K) = Nλ

(
1−

NN

N !∑N−1
i=0

N i

i! + NN

N ! (K + 1−N)

)(
R−

cK

Nµ

)
. (A.192)

When ρ 6= 1,

RVd(k) = Nλ

(
1− ρk

1− ρk+1

)(
R−

ck

µ

)
and (A.193)

RVp(K) = Nλ

(
1−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !
ρK+1−ρN

ρ−1

)(
R−

cK

Nµ

)
. (A.194)

Lemma 17. RVd(k) is strictly concave and thus unimodal in k; RVp(K) is strictly concave and thus

unimodal in K .

Proof of Lemma 17: When ρ = 1,

RV ′′
d (k) = Nλ

(
−

2

(k + 1)3

(
R−

ck

µ

)
+

1

(k + 1)2

(
−
c

µ

)
+

1

(k + 1)2

(
−
c

µ

))
< 0
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and

RV ′′
p (K)

=

(
−2(N

N

N ! )
3

(
∑N−1

i=0
N i

i! + NN

N ! (K + 1−N))3

(
R−

cK

Nµ

)
+

(N
N

N ! )
2

(
∑N−1

i=0
N i

i! + NN

N ! (K + 1−N))2

(
−

c

Nµ

))
Nλ

+

(
(N

N

N ! )
2

(
∑N−1

i=0
N i

i! + NN

N ! (K + 1−N))2

)(
−

c

Nµ

)
Nλ

<0.

When ρ 6= 1,

RV ′′
d (k) = (ρ− 1) ln(ρ)

ρk ln(ρ)(1 − ρ2k+2)

(1− ρk+1)4

(
R−

ck

µ

)
Nλ+ 2

(ρ− 1)ρk ln(ρ)

(1− ρk+1)2

(
−
c

µ

)
Nλ < 0.

Moreover, if ρ 6= 1, because

RV ′
p(K) =

−NN

N ! ρ
K ln(ρ)(

∑N−1
i=0

N i

i! ρ
i + NN

N !
−ρN

ρ−1 )

(
∑N−1

i=0
N i

i! ρ
i + NN

N !
ρK+1−ρN

ρ−1 )2

(
R−

cK

Nµ

)
Nλ

+

(
1−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !
ρK+1−ρN

ρ−1

)(
−

c

Nµ

)
Nλ

we have

RV ′′
p (K)

=
ρK ln(ρ)(

∑N−1
i=0

N i

i! ρ
i + NN

N !
ρK+1−ρN

ρ−1 )(
∑N−1

i=0
N i

i! ρ
i − NN

N !
ρK+1+ρN

ρ−1 )

(
∑N−1

i=0
N i

i! ρ
i + NN

N !
ρK+1−ρN

ρ−1 )4

(
−
NN

N !
ln(ρ)

)

(
N−1∑

i=0

N i

i!
ρi +

NN

N !

−ρN

ρ− 1

)(
R−

cK

Nµ

)
Nλ+

−NN

N ! ρ
K ln(ρ)(

∑N−1
i=0

N i

i! ρ
i + NN

N !
−ρN

ρ−1 )

(
∑N−1

i=0
N i

i! ρ
i + NN

N !
ρK+1−ρN

ρ−1 )2

(
−

c

Nµ

)
Nλ

+
−NN

N ! ρ
K ln(ρ)(

∑N−1
i=0

N i

i! ρ
i + NN

N !
−ρN

ρ−1 )

(
∑N−1

i=0
N i

i! ρ
i + NN

N !
ρK+1−ρN

ρ−1 )2

(
−

c

Nµ

)
Nλ (A.195)

<0. (A.196)
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The inequality (A.196) follows from the fact that each of the three terms in (A.195) are negative. The reason

is that when ρ > 1,

N−1∑

i=0

N i

i!
ρi −

NN

N !

ρK+1 + ρN

ρ− 1
<

NN

N !

ρN − 1

ρ− 1
−

NN

N !

ρK+1 + ρN

ρ− 1
< 0,

N−1∑

i=0

N i

i!
ρi +

NN

N !

−ρN

ρ− 1
<

NN

N !

ρN − 1

ρ− 1
−

NN

N !

ρN

ρ− 1
< 0;

when ρ < 1,

N−1∑

i=0

N i

i!
ρi −

NN

N !

ρK+1 + ρN

ρ− 1
> 0 and

N−1∑

i=0

N i

i!
ρi +

NN

N !

−ρN

ρ− 1
> 0.

As a result, RVd(k) is strictly concave and unimodal with respect to k, and RVp(K) is strictly concave and

unimodal with respect to K . �

Denote by SWd(k) and SWp(K), the social welfare under dedicated and pooled systems for any fixed

balking thresholds k and K , respectively. Note that SWp(K) and SWd(k) are as in (2.8) and (A.8), and the

fee affects the social welfare only through balking thresholds. We will prove the result under each of the

possible two cases about ρ: ρ = 1 and ρ 6= 1. Case 1: ρ 6= 1. Then, RVd(·) and RVp(·) are as in (A.193)

and (A.194), respectively, and SWd(·) and SWp(·) are as follows:

SWd(k) =

(
1− ρk

1− ρk+1

)
RNλ−

(
ρ

1− ρ
−

(k + 1)ρk+1

1− ρk+1

)
Nc,

SWp(K) =

(
1−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
RNλ−

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑K
i=N iρi

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

c.

Note also that choosing a service fee to maximize the revenue is equivalent to choosing balking threshold

(i.e., k in the dedicated system and K in the pooled system) to maximize the revenue. Define constants r, r,

η11 and η12 as

r = η11, r = η12, (A.197)
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and

η11
.
= max





(
(ρN − 1)2

ρN−1(1− ρ)2
+N − 1

)/
µ,




ρ−(N+1)ρN+1+NρN+2

(1−ρ)(1−ρN+1)
N −

∑N
i=0

Ni

i!
iρi

∑N
i=0

Ni

i!
ρi(

NN

N!
ρN

∑N
i=0

Ni

i!
ρi

− (1−ρ)ρN

1−ρN+1

)
Nρ



/

µ





,

(A.198)

η12
.
= min

{(
(1− ρN )(1 − ρN+2)

ρN (1− ρ)2
+N + 1

)/
µ , (A.199)




∑N−1
i=0

N i

i! ρ
i
(∑N

i=0
N i

i! ρ
i + NN

N ! ρ
N+1

)

NN

N ! ρ
N
∑N

i=0
N i

i! ρ
i − NN

N ! ρ
N+1

∑N−1
i=0

N i

i! ρ
i
+N + 1



/

Nµ



 .

Suppose that R
c ∈ (η11, η12). Then,

RVd(N)

RVd(N − 1)
=

1−ρN

1−ρN+1 (R− cN
µ )

1−ρN−1

1−ρN
(R− c(N−1)

µ )
=


1−

c
µ

R− c(N−1)
µ


 (1− ρN )2

(1− ρN−1)(1 − ρN+1)

=

(
1−

1
Rµ
c − (N − 1)

)
(1− ρN )2

(1− ρN−1)(1 − ρN+1)

>

(
1−

ρN−1(1− ρ)2

(1− ρN )2

)
(1− ρN )2

(1− ρN−1)(1− ρN+1)
(A.200)

=1,

which implies that

RVd(N) > RVd(N − 1). (A.201)

The inequality (A.200) above follows from the fact that R
c > η11 ≥

(
(ρN−1)2

ρN−1(1−ρ)2
+N − 1

)/
µ. The

inequality (A.201) is because
RVd(N)

RVd(N−1) > 1 and RVd(N − 1) = 1−ρN−1

1−ρN
(R − c(N−1)

µ ) > 0 as R/c >

η11 > N−1
µ . Since RVd(N) > RVd(N − 1) and the revenue is unimodal in balking threshold, RVd(N) >

RVd(1) ≥ 0. Based on this, when RVd(N + 1) ≤ 0, RVd(N) > RVd(N + 1). Consider the case where
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RVd(N + 1) > 0, i.e., R− c(N+1)
µ > 0. Then,

RVd(N)

RVd(N + 1)
=

1−ρN

1−ρN+1 (R− cN
µ )

1−ρN+1

1−ρN+2 (R− c(N+1)
µ )

=


1 +

c
µ

R− c(N+1)
µ


 (1− ρN )(1 − ρN+2)

(1− ρN+1)2

=

(
1 +

1
Rµ
c − (N + 1)

)
(1− ρN )(1− ρN+2)

(1− ρN+1)2

>

(
1 +

ρN (1− ρ)2

(1− ρN )(1− ρN+2)

)
(1− ρN )(1− ρN+2)

(1− ρN+1)2
(A.202)

= 1,

which implies that

RVd(N) > RVd(N + 1). (A.203)

The inequality (A.202) holds because R
c < η12 ≤

(
(1−ρN )(1−ρN+2)

ρN (1−ρ)2
+N + 1

)/
µ.

As a result, since the revenue is unimodal in balking threshold by Lemma 17, by (A.201) and (A.203),

RVd(k) achieves the maximum at k = N and the corresponding social welfare is SWd(N) when R
c ∈

(η11, η12).

We now show a certain inequality for the revenue under the pooled system when R/c ∈ (η11, η12),

and this inequality will be used later in the proof. There can be three cases about the sign of

RVp(N + 1). Case (i): Suppose that RVp(N + 1) =

(
1−

NN

N!
ρN+1

∑N
i=0

Ni

i!
ρi+NN

N!
ρN+1

)(
R− c(N+1)

Nµ

)
<

0. Then, RVp(N) ≥ 0 > RVp(N + 1) since R − c
µ ≥ 0. Case (ii): Suppose that RVp(N +

1) =

(
1−

NN

N!
ρN+1

∑N
i=0

Ni

i!
ρi+NN

N!
ρN+1

)(
R− c(N+1)

Nµ

)
= 0. Then, R − c(N+1)

Nµ = 0 and RVp(N) =
(
1−

NN

N!
ρN

∑N
i=0

Ni

i!
ρi

)(
R− c

µ

)
> 0 = RVp(N + 1) as R− c

µ ≥ 0. Case (iii): Suppose that RVp(N + 1) > 0.
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Then, regarding the revenue from the pooled system, when R/c ∈ (η11, η12),

RVp(N)

RVp(N + 1)

=

(
1−

NN

N!
ρN

∑N
i=0

Ni

i!
ρi

)(
R− c

µ

)

(
1−

NN

N!
ρN+1

∑N
i=0

Ni

i!
ρi+NN

N!
ρN+1

)(
R− c(N+1)

Nµ

)

=


1 +

c
Nµ

R− c(N+1)
Nµ




1−
NN

N!
ρN

∑N
i=0

Ni

i!
ρi

1−
NN

N!
ρN+1

∑N
i=0
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i!
ρi+NN

N!
ρN+1

=

(
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1
RNµ
c − (N + 1)

) 1−
NN

N!
ρN

∑N
i=0

Ni

i!
ρi

1−
NN

N!
ρN+1

∑N
i=0
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i!
ρi+NN

N!
ρN+1

>
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NN

N ! ρ
N
∑N

i=0
N i

i! ρ
i − NN

N ! ρ
N+1

∑N−1
i=0

N i

i! ρ
i

∑N−1
i=0

N i

i! ρ
i
(∑N

i=0
N i

i! ρ
i + NN

N ! ρ
N+1

)



(
(
∑N−1

i=0
N i

i! ρ
i)(
∑N

i=0
N i

i! ρ
i + NN

N ! ρ
N+1)

(
∑N

i=0
N i

i! ρ
i)2

)

(A.204)

=1,

which implies that

RVp(N) > RVp(N + 1). (A.205)

((A.204) follows from R
c < η12 ≤

( ∑N−1
i=0

Ni

i!
ρi
(∑N

i=0
Ni

i!
ρi+NN

N!
ρN+1

)

NN

N!
ρN
∑N

i=0
Ni

i!
ρi−NN

N!
ρN+1

∑N−1
i=0

Ni

i!
ρi

+N + 1

)/
(Nµ).) Combin-

ing Cases (i) through (iii), since the revenue is unimodal in balking threshold for the pooled system as well

by Lemma 17, RVp(K) achieves the maximum at K = N and the corresponding social welfare is SWp(N).

Then, the social welfare difference between dedicated and pooled systems under the revenue-maximizing
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fee formulation satisfies the following relations when R/c ∈ (η11, η12):

SWd(N)− SWp(N)

=

(
1− ρN

1− ρN+1

)
RNλ−

(
ρ

1− ρ
−

(N + 1)ρN+1

1− ρN+1

)
Nc−

(
1−

NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i

)
RNλ+

∑N
i=0

N i

i! iρ
i

∑N
i=0

N i

i! ρ
i
c

=

(
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
−

(1− ρ)ρN

1− ρN+1

)
RNλ−

(
ρ− (N + 1)ρN+1 +NρN+2

(1− ρ)(1 − ρN+1)
N −

∑N
i=0

N i

i! iρ
i

∑N
i=0

N i

i! ρ
i

)
c

=

((
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
−

(1− ρ)ρN

1− ρN+1

)
Rµ

c
Nρ−

(
ρ− (N + 1)ρN+1 +NρN+2

(1− ρ)(1− ρN+1)
N −

∑N
i=0

N i

i! iρ
i

∑N
i=0

N i

i! ρ
i

))
c

>0, (A.206)

which implies that

SWd(N) > SWp(N). (A.207)

The inequality (A.206) follows from that fact that R
c > η11 ≥




ρ−(N+1)ρN+1+NρN+2

(1−ρ)(1−ρN+1)
N−

∑N
i=0

Ni

i!
iρi

∑N
i=0

Ni

i!
ρi(

NN

N!
ρN

∑N
i=0

Ni

i!
ρi

− (1−ρ)ρN

1−ρN+1

)
Nρ



/

µ.

The inequality (A.207) completes the proof that when the fee is set to maximize the revenue, the social

welfare of the dedicated system is strictly higher than that of the pooled system if ρ 6= 1 and R/c ∈

(η11, η12).

Case 2: Suppose that ρ = 1. Then, RVd(k) and RVp(K) are as in (A.191) and (A.192), respectively.

Moreover, by (2.8) and (A.8), SWp(K) and SWd(k) are as follows:

SWd(k) =

(
k

k + 1

)
RNλ−

(
k

2

)
Nc,

SWp(K) =

(
1−

NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

)
RNλ−

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑K
i=N iρi

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑K
i=N ρi

c.
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Define constants r and r as

r
.
= max




(N2 +N − 1)/µ,




N2

2 −
∑N

i=0
Ni

i!
i

∑N
i=0

Ni

i!(
NN

N!∑N
i=0

Ni

i!

− 1
N+1

)
N



/

µ





, (A.208)

r
.
= min



(N2 + 3N + 1)/µ,



∑N−1

i=0
N i

i!

(∑N
i=0

N i

i! + NN

N !

)

(N
N

N ! )
2

+N + 1



/

(Nµ)



 . (A.209)

Using the similar ideas as in the case of ρ 6= 1, we can prove the following inequalities:

RVd(N) > RVd(N − 1), RVd(N) > RVd(N + 1), RVp(N) > RVp(N + 1),

and SWd(N) > SWp(N).

Then, because RVd(·) and RVp(·) are unimodal by Lemma 17, RVd(·) and RVp(·) both achieve their maxi-

mums at k = N and K = N , respectively.

Combining Cases 1 and 2, SWd(N) > SWp(N) under the revenue-maximizing fee formulation when

R/c ∈ (r, r). It is straightforward to show that (r, r) is non-empty, for example when N = 2 and ρ <
√
3−1
2 .

�

A.11 Proof of Proposition 5

When K > Nk,

lim
λ→∞

Wa(λ) ≤
k

µ
<

K

Nµ
= lim

λ→∞
Wp(λ)

The “≤” follows from the fact that there are at most k customers in the system. The “=” above follows from

(A.87). Then, the throughputs in the alternative system and in the pooled system satisfy the following:

lim
λ→∞

θa(λ) = lim
λ→∞

θp(λ) = Nµ.

118



Hence,

lim
λ→∞

SWa(λ) = Nµ(R− c lim
λ→∞

Wa(λ)) > Nµ(R− c lim
λ→∞

Wp(λ)) = lim
λ→∞

SWp(λ)

This completes our proof. �

A.12 Explanations and Proofs of Statements in Subsection 2.3.5

A.12.1 Preliminary Analysis

Remark A.12.1. To present the supplementary results in full generality, we will consider an unobservable

system with any fixed fee f ≥ 0. Obviously, the analysis with f = 0 is a special case of the analysis

presented here.

Let W̃j(x) represent the average sojourn time in the system j ∈ {d, p} given that the effective arrival

rate to a queue is x. Then, W̃d(x)
.
= ∞ if x ≥ µ, and W̃p(x)

.
= ∞ if x ≥ Nµ. In line with (2.5), we

consider a benefit that is not extremely small, i.e.,

(R − f)µ/c > 1. (A.210)

Specifically, the condition in (A.210) implies that the service is valuable enough that the unobservable

system is not empty all the time.

Based on these, there exists a unique symmetric equilibrium such that the equilibrium joining probabil-

ity q̂j for j ∈ {d, p} is

q̂j =





q∗j if W̃j(0) <
R−f
c < W̃j(Λj)

1 if W̃j(Λj) ≤
R−f
c ,

(A.211)

where q∗j is the unique solution of R − f − cW̃j(Λjq
∗
j ) = 0 under the stated conditions in the first line of

(A.211).

Let us explain the conditions in (A.211). The condition W̃j(Λj) ≤ R−f
c , which is equivalent to R −

f − cW̃j(Λj) ≥ 0, means that even if all potential customers join (i.e., the effective arrival rate is equal

to the potential arrival rate), each customer gains a non-negative long-run average net benefit by joining.

Thus, joining with probability 1 is the unique equilibrium strategy for all customers. We now explain the

119



case with W̃j(0) < R−f
c < W̃j(Λj) in (A.211). The condition W̃j(0) < R−f

c < W̃j(Λj) implies that if

all potential customers join, each joining customer gets a negative long-run average net benefit. Because a

customer is better off by balking in that case, joining with probability 1 cannot be an equilibrium strategy.

The aforementioned condition also implies that if none of the potential customers join, a customer is better

off by joining the queue as its long-run average net benefit would be non-negative in that case. Thus, balking

with probability 1 cannot be an equilibrium strategy either. The unique equilibrium strategy is such that the

joining probability is the solution of R−f − cW̃j(Λjq
∗
j ) = 0, which makes the long-run average net benefit

zero. Note that (A.211) does not include the case W̃j(0) ≥ R−f
c . This is because (A.210) implies that

W̃j(0) <
R−f
c .

Based on (A.211), in equilibrium, the effective arrival rate to a queue is

λ̂e,j = Λj q̂j , j ∈ {d, p}, (A.212)

and the average sojourn time in the system j is

Ŵj = W̃j(λ̂e,j), j ∈ {d, p}. (A.213)

It is worth noting that λq̂j < µ, and thus, in equilibrium, each system j ∈ {d, p} is stable regardless of the

fact that ρ < 1 or ρ ≥ 1.

We first state and prove Lemmas 18 and 19 that will be used in proving results in Section 2.3.5. For

these lemmas, recall the notation ρ
.
= λ/µ.

Lemma 18. Recall Remark A.12.1. In the unobservable pooled system, the average sojourn time and social

welfare in equilibrium are respectively given by

Ŵp =





R−f
c if ρ < 1 and

R−f
c <

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi(∑N−1
i=0

Ni

i!
ρi+NN

N!

∑
∞

i=N ρi
)
Nλ

, or ρ ≥ 1,

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi(∑N−1
i=0

Ni

i!
ρi+NN

N!

∑
∞

i=N ρi
)
Nλ

if ρ < 1 and

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi(∑N−1
i=0

Ni

i!
ρi+NN

N!

∑
∞

i=N ρi
)
Nλ

≤ R−f
c ,

(A.214)
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ŜW p =





Nλq∗pf, if ρ < 1 and
R−f
c <

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi(∑N−1
i=0

Ni

i!
ρi+NN

N!

∑
∞

i=N ρi
)
Nλ

, or ρ ≥ 1

RNλ− c
∑N−1

i=0
Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

∑N−1
i=0

Ni

i!
ρi+NN

N!

∑
∞

i=N ρi
, if ρ < 1 and

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi(∑N−1
i=0

Ni

i!
ρi+NN

N!

∑
∞

i=N ρi
)
Nλ

≤ R−f
c

(A.215)

where q∗p is the equilibrium joining probability and satisfies the following equation under the stated condi-

tions in the first line of (A.215):

W̃p(Nλq∗p) =

∑N−1
i=0

N i

i! i(λq
∗
p/µ)

i + NN

N !

∑∞
i=N i(λq∗p/µ)

i

(∑N−1
i=0

N i

i! (λq
∗
p/µ)

i + NN

N !

∑∞
i=N (λq∗p/µ)i

)
Nλq∗p

=
R− f

c
. (A.216)

Remark A.12.2. By the proof of Lemma 18, there exists a unique q∗p that satisfies (A.216) if ρ ≥ 1, or

ρ < 1 and R−f
c <

(∑N−1
i=0

N i

i! iρ
i + NN

N !

∑∞
i=N iρi

)
/
((∑N−1

i=0
N i

i! ρ
i + NN

N !

∑∞
i=N ρi

)
Nλ
)

.

Proof of Lemma 18: Consider the unobservable pooled system, which is an M/M/N queueing system.

Recall that the service rate of each server is µ and suppose that the effective arrival rate is x < Nµ. Then,

the stationary probability distribution of the number of customers in this system is as follows (see Section

7.3.3 of Kulkarni (2010)):

π̂0(x) =

(
N−1∑

i=0

N i

i!
ρix +

NN

N !

∞∑

i=N

ρix

)−1

, (A.217)

π̂i(x) = π̂0(x)N
iρix/i! for i = 1, . . . , N and π̂i(x) = π̂0(x)N

Nρix/N ! for i = N + 1, N + 2 . . .

(A.218)

where ρx
.
= x

Nµ . Then, in this system, the long-run average number of customers is

L̃p(x) =

∞∑

i=0

π̂i(x)i =

∑N−1
i=0

N i

i! iρ
i
x +

NN

N !

∑∞
i=N iρix∑N−1

i=0
N i

i! ρ
i
x +

NN

N !

∑∞
i=N ρix

.

Because W̃p(x) = L̃p(x)/x by Little’s law, we have

W̃p(x) =

∞∑

i=0

π̂i(x)i/x =

∑N−1
i=0

N i

i! iρ
i
x +

NN

N !

∑∞
i=N iρix

(
∑N−1

i=0
N i

i! ρ
i
x +

NN

N !

∑∞
i=N ρix)x

.
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Based on this, if the effective arrival rate is Λp and Λp = Nλ < Nµ, which is equivalent to ρ < 1,

W̃p(Λp) = W̃p(Nλ) =

∑N−1
i=0

N i

i! iρ
i + NN

N !

∑∞
i=N iρi

(
∑N−1

i=0
N i

i! ρ
i + NN

N !

∑∞
i=N ρi)Nλ

.

On the other hand, if the effective arrival rate is Λp and ρ ≥ 1, we have W̃p(Λp) = ∞. Combining these

two cases with the fact that W̃p(0) = 1/µ, it follows from (A.211) and (A.212) that the effective arrival rate

in equilibrium is

λ̂e,p =





Nλq∗p if ρ < 1 and R−f
c <

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

(
∑N−1

i=0
Ni

i!
ρi+NN

N!

∑
∞

i=N ρi)Nλ
, or ρ ≥ 1,

Nλ if ρ < 1 and

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

(
∑N−1

i=0
Ni

i!
ρi+NN

N!

∑
∞

i=N ρi)Nλ
≤ R−f

c ,

(A.219)

where the equilibrium joining probability q∗p is chosen such that W̃p(Nλq∗p) = R−f
c . (It is perhaps worth

noting that we did not include the condition 1/µ < (R − f)/c in the first line of (A.219) because (A.210)

already implies that.) The solution q∗p exists and is unique if W̃p(Nλ) > (R − f)/c, which is equivalent

to the conditions in the first line of (A.219). The reason is as follows. It is shown at the end of this proof

that W̃p(Ny) strictly increases with y for y < µ. We already know that W̃p(·) is a continuous function for

y < µ. These and the facts that limy→0 W̃p(y) = 1/µ < (R− f)/c by (A.210) and W̃p(Nλ) > (R− f)/c

imply the existence and the uniqueness of q∗p .

Based on these, by (A.213), in equilibrium, the long-run average sojourn time is

Ŵp =





R−f
c if ρ < 1 and R−f

c <
∑N−1

i=0
Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

(
∑N−1

i=0
Ni

i!
ρi+NN

N!

∑
∞

i=N ρi)Nλ
, or ρ ≥ 1,

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

(
∑N−1

i=0
Ni

i!
ρi+NN

N!

∑
∞

i=N ρi)Nλ
if ρ < 1 and

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

(
∑N−1

i=0
Ni

i!
ρi+NN

N!

∑
∞

i=N ρi)Nλ
≤ R−f

c .

By Little’s Law, L̂p = λ̂e,pŴp. Therefore, in equilibrium, the long-run average number of customers in the

system is

L̂p =





Nλq∗p
R−f
c if ρ < 1 and R−f

c <
∑N−1

i=0
Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

(
∑N−1

i=0
Ni

i!
ρi+NN

N!

∑
∞

i=N ρi)Nλ
, or ρ ≥ 1,

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

∑N−1
i=0

Ni

i!
ρi+NN

N!

∑
∞

i=N ρi
if ρ < 1 and

∑N−1
i=0

Ni

i!
iρi+NN

N!

∑
∞

i=N iρi

(
∑N−1

i=0
Ni

i!
ρi+NN

N!

∑
∞

i=N ρi)Nλ
≤ R−f

c .
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Recall the social welfare from (2.19). Then, using the expressions above, (A.215) immediately follow.

We now show that W̃p(Ny) is strictly increasing with y. Note that

W̃p(Ny) =

∑N−1
i=0

N i

i! i(y/µ)
i + NN

N !

∑∞
i=N i(y/µ)i(∑N−1

i=0
N i

i! (y/µ)
i + NN

N !

∑∞
i=N (y/µ)i

)
Ny

=
1

Nµ

∑N−1
i=1

N i

(i−1)!(y/µ)
i−1 + NN

N !

∑∞
i=N i(y/µ)i−1

∑N−1
i=0

N i

i! (y/µ)
i + NN

N !

∑∞
i=N (y/µ)i

=
1

Nµ

N
∑N−2

i=0
N i

i! (y/µ)
i + NN

N !

∑∞
i=N−1(i+ 1)(y/µ)i

∑N−1
i=0

N i

i! (y/µ)
i + NN

N !

∑∞
i=N (y/µ)i

=
1

Nµ

(
N +

NN

N !

∑∞
i=N (i+ 1−N)(y/µ)i

∑N−1
i=0

N i

i! (y/µ)
i + NN

N !

∑∞
i=N (y/µ)i

)

=
1

Nµ


N +

NN

N !
(y/µ)N

(1−y/µ)2

∑N−1
i=0

N i

i! (y/µ)
i + NN

N !
(y/µ)N

1−y/µ




=
1

Nµ

(
N +

NN

N !∑N−1
i=0

N i

i! (y/µ)
i−N (1− y/µ)2 + NN

N ! (1− y/µ)

)
.

Because
∑N−1

i=0
N i

i! (y/µ)
i−N (1 − y/µ)2 + NN

N ! (1 − y/µ) is strictly decreasing in y for y < µ, W̃p(Ny) is

strictly increasing in y. �

Lemma 19. Recall Remark A.12.1. In the unobservable dedicated system, the average sojourn time and

social welfare in equilibrium are respectively given as

Ŵd =





R−f
c if ρ < 1 and

R−f
c < 1

µ−λ , or ρ ≥ 1

1
µ−λ if ρ < 1 and 1

µ−λ ≤ R−f
c ,

(A.220)

ŜW d =





(
µ− c

R−f

)
fN if ρ < 1 and

R−f
c < 1

µ−λ , or ρ ≥ 1

(
Rλ− cλ

µ−λ

)
N if ρ < 1 and 1

µ−λ ≤ R−f
c .

(A.221)

Proof of Lemma 19: Each unobservable dedicated queue is an M/M/1 queue with service rate µ. Suppose

that the effective arrival rate in a queue is x < µ. Then, by Section 7.3.1 of (Kulkarni, 2010), the average

sojourn time is W̃d(x) =
1

µ−x and the average number of customers in one of the N separate sub-systems

is L̃d(x) =
x

µ−x . Based on this,
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W̃d(Λd) = W̃d(λ) =





1
µ−λ if λ < µ

∞ if λ ≥ µ.

Using (A.211) through (A.213), the equilibrium effective arrival rate in each queue is

λ̂e,d =





λq∗d = µ− c/(R − f) if ρ < 1 and R−f
c < 1

µ−λ , or ρ ≥ 1

λ if ρ < 1 and 1
µ−λ ≤ R−f

c ,

(A.222)

where q∗d = (µ− c/(R − f))λ−1 is the unique solution of 1/(µ − λq∗d) = (R− f)/c, and the equilibrium

average sojourn time is

Ŵd =





R−f
c if ρ < 1 and R−f

c < 1
µ−λ , or ρ ≥ 1

1
µ−λ if ρ < 1 and 1

µ−λ ≤ R−f
c .

(Note that we did not include the condition 1/µ < (R − f)/c in the first line of (A.222) because (A.210)

already implies that.) From Little’s law, we have L̂d = λ̂e,dŴd. Therefore,

L̂d =





(R−f)µ
c − 1 if ρ < 1 and R−f

c < 1
µ−λ , or ρ ≥ 1

λ
µ−λ if ρ < 1 and 1

µ−λ ≤ R−f
c .

Plugging the expressions above in ŜW d formula (2.19), we complete the proof of Lemma 19. �

A.12.2 Proof of Proposition 6

Recall Remark A.12.1. Recall also Lemmas 18 and 19, and their proofs. Note that the unobservable

pooled system is an M/M/N system with the equilibrium effective arrival rate (A.219) and each unobserv-

able dedicated sub-system (that consists of one dedicated line and its server) is an M/M/1 system with the

equilibrium effective arrival rate (A.222). Note also that W̃p(Nx) represents the average sojourn time in the

M/M/N system with the total effective arrival rate Nx and the service rate µ for each server, and W̃d(x)
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represents the average sojourn time in the M/M/1 system with the effective arrival rate x and service rate

µ.

We claim and show in Lemma 20 at the end of this section that

W̃p(Nx) ≤ W̃d(x) for x < µ, (A.223)

and hence

W̃p(Nλ) ≤ W̃d(λ) for ρ < 1. (A.224)

Using (A.224), we will prove the claim in Proposition 6 under two main cases. Case 1: Suppose that ρ < 1

and 1
µ−λ ≤ R−f

c . Then, by Lemma 19 and its proof, Ŵd = 1
µ−λ , q̂d = 1 and λ̂e,d = λ in equilibrium.

This and (A.224) imply that W̃p(Nλ) ≤ R−f
c . Then, by the proof of Lemma 18, q̂p = 1 and λ̂e,p = Nλ in

equilibrium. As a result,

Ŵp = W̃p(Nλ) ≤ W̃d(λ) = Ŵd. (A.225)

Recall the social welfare from (2.19), and recall that λ̂e,dN = λ̂e,p = Nλ. Then,

ŜW d = (R− cŴd)λ̂e,dN = (R− cŴd)λN and ŜW p = (R− cŴp)λ̂e,p = (R− cŴp)λN.

Because Ŵp ≤ Ŵd by (A.225), ŜW p ≥ ŜW d. This completes the proof of Proposition 6 under Case 1.

Case 2: Suppose now that either ρ < 1 and R−f
c < 1

µ−λ , or ρ ≥ 1. From Lemma 19, it follows that, in

equilibrium, the average sojourn time in the unobservable dedicated system is

Ŵd =
R− f

c
, (A.226)

and the equilibrium social welfare in the dedicated system is

ŜW d = (R − cŴd)λ̂e,dN = fλ̂e,dN. (A.227)
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Given these performance metrics in the dedicated system, we now prove the claim by considering the fol-

lowing two subcases for W̃p(Nλ).

Case 2.1: Suppose that W̃p(Nλ) ≥ R−f
c . Then, by Lemma 18, the equilibrium average sojourn time in the

pooled system is Ŵp =
R−f
c , which is equal to Ŵd by (A.226). Thus, by Lemma 18,

ŜW p = (R− cŴp)λ̂e,p = fλ̂e,p. (A.228)

We now show that

λ̂e,p ≥ λ̂e,dN. (A.229)

Suppose for a contradiction that λ̂e,p < Nλ̂e,d. Then, (A.223) and the fact that W̃p(x) strictly increases in

x for x < Nµ imply that

Ŵp = W̃p(λ̂e,p) < W̃p(Nλ̂e,d) ≤ W̃d(λ̂e,d) = Ŵd. (A.230)

But, this contradicts with Ŵp = Ŵd. Thus, we have (A.229). Based on (A.229), from (A.227) and (A.228),

it follows that ŜW p ≥ ŜW d.

Case 2.2: Suppose that W̃p(Nλ) < R−f
c . Then, q̂p = 1 and λ̂e,p = Nλ in equilibrium. Thus, R−f−cŴp =

R − f − cW̃p(Nλ) > 0, which implies that the equilibrium long-run average sojourn time in the pooled

system satisfies Ŵp <
R−f
c = Ŵd. Thus, the equilibrium social welfare in the pooled system is

ŜW p = (R− cŴp)λ̂e,p = (R − cŴp)Nλ > (R− cŴd)Nλ ≥ (R − cŴd)λ̂e,dN = ŜW d,

which completes the proof of Case 2.2.

Note that combining Case 1 and Case 2 covers the entire parameter space. Thus, the claim in Proposition

6 follows.

The following lemma shows our claim in (A.223).

Lemma 20. W̃p(Nx) ≤ W̃d(x) for x/µ < 1.

Proof of Lemma 20: Suppose that x/µ < 1. Recall that W̃p(Nx) represents the average sojourn time in the

M/M/N system with the total effective arrival rate Nx and the service rate µ for each server, and W̃d(x)

represents the average sojourn time in the M/M/1 system with the effective arrival rate x and service rate
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µ. Denote by Xd total number of customers in N of the M/M/1 lines in the steady-state, and let Xp be the

corresponding figure in the aforementioned M/M/N system. Based on this, to show our claim, we will use

standard likelihood comparison technique (see, for instance, (Smith and Whitt, 1981)). Let θp(m+1) be the

transition rate from state m+1 to m in the pooled system (in the steady-state), θd(m+1|St) be the transition

rate from state m+ 1 to m in the dedicated system and St is the state of the dedicated system (i.e., number

of customers in each of the N lines) at time t, for any m = 0, 1, . . .. Because θd(m + 1|St) ≤ θp(m + 1)

for each m regardless of St, in the steady-state, we have

P(Xd = m)Nx ≤ P(Xd = m+ 1)θp(m+ 1) and P(Xp = m)Nx = P(Xp = m+ 1)θp(m+ 1).

Thus, we have

P(Xd = m+ 1)

P(Xd = m)
≥

Nx

θp(m+ 1)
=

P(Xp = m+ 1)

P(Xp = m)
. (A.231)

Using this, we now show that E(Xd) ≥ E(Xp). Note that (A.231) implies that
P(Xd=j)
P(Xd=i) ≥

P(Xp=j)
P(Xp=i) for

all i ≤ j, i, j ∈ N, which is equivalent to

P(Xd = j)P(Xp = i) ≥ P(Xd = i)P(Xp = j). (A.232)

The summation on both sides of (A.232) over i from 0 to j gives

P(Xd = j)P(Xp ≤ j) ≥ P(Xd ≤ j)P(Xp = j). (A.233)

Similarly, the summation on both sides of (A.232) over j from i+ 1 to ∞ results in

P(Xd ≥ i+ 1)P(Xp = i) ≥ P(Xd = i)P(Xp ≥ i+ 1). (A.234)

Combining (A.233) and (A.234) and letting i = j = a, we have

P(Xd ≥ a+ 1)

P(Xp ≥ a+ 1)
≥

P(Xd = a)

P(Xp = a)
≥

P(Xd ≤ a)

P(Xp ≤ a)
. (A.235)
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Thus, P(Xd ≤ a) ≤ P(Xp ≤ a) for any non-negative integer a, and hence

E(Xd) =

∞∑

i=0

(1− P(Xd ≤ i)) ≥

∞∑

i=0

(1− P(Xp ≤ i)) = E(Xp). (A.236)

Observe that the long-run average number of customers in one of the N separate dedicated sub-systems (i.e.,

L̃d) and the long-run average number of customers in the pooled system (i.e., L̃p) satisfy L̃d = E(Xd)/N

and L̃p
.
= E(Xp). Then, by Little’s Law and (A.236),

W̃d (x) =
L̃d(x)

x
=

E(Xd)/N

x
=

E(Xd)

Nx
≥

E(Xp)

Nx
=

L̃p(Nx)

Nx
= W̃p(Nx).

This completes the proof of the claim. � �

A.13 Proof of Proposition 7

Suppose that the reward has a general distribution with the p.d.f. g(·) and the c.d.f G(·) defined on the

support [L,H], and consider unobservable systems. We prove the claim under each of the three possible

cases about cW̃d(·) below:

Case 1: Suppose that cW̃d(λ) ≤ L. Then, λ < µ must be true and in equilibrium all customers join the

dedicated system. By Lemma 20, cW̃p(Nλ) ≤ cW̃d(λ) ≤ L, thus all customers in the pooled system also

join. As a result, in equilibrium, Ŵp = W̃p(Nλ) ≤ W̃d(λ) = Ŵd and ŜW p = Nλ
∫ H
L g(x)(x−cŴp)dx ≥

Nλ
∫ H
L g(x)(x − cŴd)dx = ŜW d.

Case 2: Suppose that cW̃d(0) =
c
µ > H . Then, no customer in the dedicated system joins. Moreover,

no customer joins in the pooled system as well since cW̃p(0) =
c
µ > H .

Case 3: Suppose that cW̃d(λ) > L and cW̃d(0) ≤ H . Then, there exits a threshold reward aed such

that only customers with reward larger than aed join in equilibrium and aed = cW̃d(λḠ(aed)) where Ḡ(x)
.
=

1 − G(x). Note that aed is the intersection point of functions y1(x)
.
= x and y2(x)

.
= cW̃d(λḠ(x)) for

x ∈ [L,H]. (The intersection point exists and is unique as y1(·) is strictly increasing and y2(·) is strictly

decreasing.) We consider two possible subcases: Case 3.1: Suppose that cW̃p(Nλ) ≤ L. Then, in the pooled

system, all customers join. Because cW̃p(Nλ) ≤ L < aed = cW̃d(λḠ(aed)), W̃p(Nλ) < W̃d(λḠ(aed)), i.e.,

Ŵp < Ŵd, and ŜW p = Nλ
∫ H
L g(x)(x − cŴp)dx > Nλ

∫H
ae
d
g(x)(x − cŴp)dx > Nλ

∫ H
ae
d
g(x)(x −

cŴd)dx = ŜW d. Case 3.2: Suppose that cW̃p(Nλ) > L and cW̃p(0) ≤ H . Then, there exits a threshold
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reward aep such that only customers with reward larger than aep join in equilibrium and aep = cW̃p(NλḠ(aep)).

Note that aep is the intersection point of functions y1(x) and y3(x)
.
= cW̃p(NλḠ(x)) for x ∈ [L,H]. Since

y3(x) = cW̃p(NλḠ(x)) ≤ cW̃d(λḠ(x)) = y2(x) for any x ∈ [L,H], aep ≤ aed and W̃p(NλḠ(aep)) ≤

W̃d(λḠ(aed)), i.e., Ŵp ≤ Ŵd. As a result, ŜW p = Nλ
∫ H
aep

g(x)(x−cŴp)dx ≥ Nλ
∫ H
ae
d
g(x)(x−cŴp)dx ≥

Nλ
∫ H
ae
d
g(x)(x − cŴd)dx = ŜW d. �

A.13.1 Proof of Proposition 8

Proof of Proposition 8 - Part (a): Recall that the maximum social welfare under the welfare maxi-

mization formulation is as in (2.20). Note that (2.20), i.e., choosing the fee to maximize equilibrium social

welfare, is equivalent to choosing the effective arrival rate to maximize equilibrium social welfare as below:

ŜW
∗
j =





max0≤x≤λ(R− cW̃j(x))xN if j = d,

max0≤x≤λ(R− cW̃j(Nx))xN if j = p.

(A.237)

We only need to focus on the case that x < µ in both systems since the the system will be unstable otherwise.

We already know that W̃p(Nx) ≤ W̃d(x) for x/µ < 1 according to Lemma 20. Thus, ŜW
∗
p ≥ ŜW

∗
d.�

Proof of Proposition 8 - Part (b): Note that (2.21) is equivalent to choosing the effective arrival rate to

maximize the equilibrium revenue

R̂V
∗∗
j =





max0≤x≤λ(R − cW̃j(x))xN if j = d,

max0≤x≤λ(R − cW̃j(Nx))xN if j = p.

(A.238)

This and (A.237) imply that the maximum revenue is the same as the maximum social welfare in equilibrium.

Then, the claim in part (b) immediately follows from part (a). �

A.14 Proof of Proposition 9

A.14.1 Proof of Part (a)

We already proved in Proposition 6 that the unobservable pooled system outperforms the unobservable

dedicated system in social welfare. Based on this, we only need to compare the unobservable pooled system
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with the observable pooled system to prove Proposition 9-(a). Below, we will show that the observable

pooled system results in larger equilibrium social welfare than the unobservable pooled system. There can

be two cases related to W̃p(Nλ):

Case A: Suppose that W̃p(Nλ) > R
c . Then, by Lemma 18, in the unobservable pooled system, average

sojourn time and social welfare in equilibrium are the following, respectively:

Ŵp =
R

c
and ŜW p = (R − cŴp)λ̂e,p = 0. (A.239)

Recall the social welfare SWp in the observable pooled system from Lemma 1. We claim and show below

that SWp > 0. Combining this with (A.239), we have ŜW p < SWp.

It only remains to prove our claim that SWp > 0. Recall from (A.210) that Rµ
c > 1. Then, each

joining customer receives a non-negative expected net benefit by joining. Furthermore, a customer that finds

n ≤ N − 1 customers in the system upon arrival receives strictly positive expected net benefit R− W̄p(n+

1)c = R− 1
µc > 0 for Rµ

c > 1. As a result, SWp > 0 in this case.

Case B: Suppose that W̃p(Nλ) ≤ R
c . Then, by Lemma 18 and its proof, q̂p = 1 and λ̂e,p = Nλ for

the unobservable pooled system. We now show that the observable pooled system results in strictly larger

social welfare than the unobservable pooled system, i.e., SWp > ŜW p. Recall the SWp from Lemma 1,

and observe that using the stationary probability distribution {π0, π1, . . . , πK} for the number of customers
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in the observable pooled system (in the proof of Lemma 1), SWp can also be expressed as follows:

SWp =Nλ

(
N−1∑

i=0

(
R−

c

µ

)
N i

i!
ρi +

K−1∑

i=N

(
R−

(i+ 1)c

Nµ

)
NN

N !
ρi

)/(N−1∑

i=0

N i

i!
ρi +

K∑

i=N

NN

N !
ρi

)

=Nλ

(
N−1∑

i=0

(R− W̄p(i+ 1)c)
N i

i!
ρi +

K−1∑

i=N

(R− W̄p(i+ 1)c)
NN

N !
ρi

)/(N−1∑

i=0

N i

i!
ρi +

K∑

i=N

NN

N !
ρi

)

>Nλ

(
N−1∑

i=0

(R− W̄p(i+ 1)c)
N i

i!
ρi +

∞∑

i=N

(R− W̄p(i+ 1)c)
NN

N !
ρi

)/(N−1∑

i=0

N i

i!
ρi +

∞∑

i=N

NN

N !
ρi

)

(A.240)

=NλR− cNλ

(
N−1∑

i=0

W̄p(i+ 1)
N i

i!
ρi +

∞∑

i=N

W̄p(i+ 1)
NN

N !
ρi

)/(N−1∑

i=0

N i

i!
ρi +

∞∑

i=N

NN

N !
ρi

)

=NλR− cNλ

(
N−1∑

i=0

1

µ

N i

i!
ρi +

∞∑

i=N

i+ 1

Nµ

NN

N !
ρi

)/(N−1∑

i=0

N i

i!
ρi +

∞∑

i=N

NN

N !
ρi

)

=NλR− c

(
N−1∑

i=0

N i+1

i!
ρi+1 +

∞∑

i=N

NN

N !
(i+ 1)ρi+1

)/(N−1∑

i=0

N i

i!
ρi +

∞∑

i=N

NN

N !
ρi

)

=NλR− c

(
N−1∑

i=0

N i

i!
iρi +

∞∑

i=N

NN

N !
iρi

)/(N−1∑

i=0

N i

i!
ρi +

∞∑

i=N

NN

N !
ρi

)
(A.241)

=ŜW p

Here, the inequality (A.240) holds because R− W̄p(i+ 1)c = R− i+1
Nµ c < 0 for any i ≥ K

.
= ⌊RNµ

c ⌋.

Combining Cases A and B, it follows that the observable pooled systems results in larger social welfare

than the unobservable pooled system. This and Proposition 6 complete our proof for Proposition 9-(a). �

A.14.2 Proof of Part (b)

According to Propositions 4 and 8, when the service fee is set to maximize the social welfare, the

maximum social welfare in the pooled system is larger than that in the dedicated system for both observable

and unobservable cases. Thus, to prove the claim, we only need to compare the observable pooled system

with the unobservable pooled system. To do so, consider an alternative setting in which admissions to

an M/M/N system can be controlled rather than customers making their own joining/balking decisions.

Among all admission control policies (including the randomized ones), the optimal admission rule that

maximizes the social welfare is a deterministic control limit rule that induces a queue capacity. (This is

because this alternative formulation corresponds to a finite state Markov decision process.) Because that
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optimal queue capacity can be achieved by imposing a service fee in the observable pooled system where

customers make their own joining decisions, the observable pooled system achieves larger maximum social

welfare than the unobservable pooled system when in each system, the fee is set to maximize the social

welfare. From this, the claim immediately follows. �

A.15 Proof of Lemma 4

We will first state and prove three lemmas, statements of which will be used in the remainder of the

proof.

Lemma 21. When the service fee is set to maximize the revenue, there exists a constant λ̄1 such that if the

arrival rate parameter λ satisfies λ < λ̄1, then the maximum revenue in the unobservable pooled system is

achieved with the effective arrival rate Nλ.

Proof of Lemma 21: By (A.210), we only need to consider the case that R − c
µ > 0, which implies

W̃p(0) =
1
µ < R

c . From the proof of Lemma 18, we already know that W̃p(Ny) is a continuous function

for y < µ and it is strictly increasing in y. Thus, there exists λ̄0 such that W̃p(Nλ) ≤ R
c for λ < λ̄0. Then,

as a function of effective arrival rate Nx for 0 ≤ x < µ, the revenue in the unobservable pooled system is

R̂V p(Nx) = (R− cW̃p(Nx))Nx

= NRx−



∑N−1

i=0
N i

i! i(x/µ)
i + NN

N !

∑∞
i=N i(x/µ)i(∑N−1

i=0
N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)


 c

= NRx−



∑N

i=1
N i

i! i(x/µ)
i + NN

N !

∑∞
i=N+1 i(x/µ)

i

(∑N−1
i=0

N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)


 c

= NRx−



∑N−1

i=0
N i

i! (x/µ)
iNx/µ+ NN

N !

∑∞
i=N (i+ 1)(x/µ)i+1

(∑N−1
i=0

N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)


 c

= NRx−
Nx

µ
c−

NN

N !

∑∞
i=N (i+ 1−N)(x/µ)i+1

(∑N−1
i=0

N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)c.
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Thus,

dR̂V p(Nx)

dx

=NR−
Nc

µ
−

(
NN

N !

∑∞
i=N (i+ 1−N)(i+ 1)(x/µ)i 1µ

)(∑N−1
i=0

N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)

(∑N−1
i=0

N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)2 c

+

(
NN

N !

∑∞
i=N (i+ 1−N)(x/µ)i+1

)(∑N−1
i=1

N i

i! i(x/µ)
i−1 1

µ + NN

N !

∑∞
i=N i(x/µ)i−1 1

µ

)

(∑N−1
i=0

N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)2 c

>NR−
Nc

µ
−

NN

N !

∑∞
i=N (i+ 1−N)(i+ 1)(x/µ)i 1µ(∑N−1

i=0
N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)c

>NR−
Nc

µ
−

NN

N !

∑∞
i=N (i+ 1)2(x/µ)i 1µ(∑N−1

i=0
N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)c

≥NR−
Nc

µ
−

NN

N !

∑∞
i=1(i+ 1)2(x/µ)i 1µ(∑N−1

i=0
N i

i! (x/µ)
i + NN

N !

∑∞
i=N (x/µ)i

)c

>NR−
Nc

µ
−

NN

N !

∞∑

i=2

i2(x/µ)i−1 c

µ

=NR−
Nc

µ
−

NN

N !

((x/µ)2 − 3(x/µ) + 4)(x/µ)

(1− x/µ)3
c

µ
.

Recall that NR − Nc
µ > 0. Because

((x/µ)2−3(x/µ)+4)(x/µ)
(1−x/µ)3

c
µ is continuous and increasing in x, and

limx→0
NN

N !
((x/µ)2−3(x/µ)+4)(x/µ)

(1−x/µ)3
c
µ = 0, there exists λ̄1 such that λ̄1 < λ̄0 and for x < λ̄1,

NN

N !

((x/µ)2 − 3(x/µ) + 4)(x/µ)

(1− x/µ)3
c

µ
< NR−

Nc

µ
. (A.242)

As a result,
dR̂V p(Nx)

dx > 0 for x < λ̄1. This implies that when the market size parameter λ < λ̄1, R̂V p(Nx)

is increasing in x and the revenue is maximized when Nx = Nλ. �

Lemma 22. When the service fee is set to maximize revenue, there exists a constant λ̄2 such that if the

arrival rate parameter λ < λ̄2, then the optimal service fee in the observable pooled system is f∗∗
p = R− c

µ

and the corresponding system capacity is K∗∗
p = N .
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Proof of Lemma 22: Consider any fixed balking threshold (i.e., capacity) K such that N ≤ K ≤ ⌊RNµ
c ⌋.

Then, the revenue in the observable pooled system as a function of capacity K is

RVp(K) = Nλ(1− bp(K))

(
R−

cK

Nµ

)
,

where bp(K) is the balking probability in the observable pooled system when the capacity is K . Thus,

RV ′
p(K) = Nλ

(
−b′p(K)

(
R−

cK

Nµ

)
− (1 − bp(K))

c

Nµ

)
.

Because by (A.13), the balking probability is

bp(K) =
NN

N ! ρ
K

∑N−1
i=0

N i

i! ρ
i +
∑K

i=N
NN

N ! ρ
i
,

b′p(K) =
NN

N ! ρ
K ln(ρ)

∑N−1
i=0

N i

i! ρ
i +
∑K

i=N
NN

N ! ρ
i
−

NN

N ! ρ
K NN

N !
ρK+1 ln(ρ)

ρ−1

(
∑N−1

i=0
N i

i! ρ
i +
∑K

i=N
NN

N ! ρ
i)2

< 0.

Thus,

bp(K) ≤ bp(N) =
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
. (A.243)

Note that when ρ < 1 and K ≥ N ,

−b′p(K) ≤ −
NN

N ! ρ
N ln(ρ)

∑N
i=0

N i

i! ρ
i
+

NN

N ! ρ
N NN

N !
ρN+1 ln(ρ)

ρ−1

(
∑N

i=0
N i

i! ρ
i)2

,

bp(N) and −
NN

N!
ρN ln(ρ)

∑N
i=0

Ni

i!
ρi

+
NN

N!
ρN NN

N!
ρN+1 ln(ρ)

ρ−1

(
∑N

i=0
Ni

i!
ρi)2

are both continuous in ρ, and satisfy the following relations:

lim
ρ→0

bp(N) = lim
ρ→0

NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
= 0

lim
ρ→0

−
NN

N ! ρ
N ln(ρ)

∑N
i=0

N i

i! ρ
i
+

NN

N ! ρ
N NN

N !
ρN+1 ln(ρ)

ρ−1

(
∑N

i=0
N i

i! ρ
i)2

= 0. (A.244)
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Thus, there exists a constant λ̄2 < µ such that λ < λ̄2 and K ≥ N imply −b′p(K) < 1
2

c
(Rµ−c)N and

bp(K) ≤ bp(N) < 1
2 . As a result, when λ < λ̄2 and K ≥ N ,

RV ′
p(K) = Nλ

(
−b′p(K)

(
R−

cK

Nµ

)
− (1− bp(K))

c

Nµ

)

< Nλ

(
1

2

c

(Rµ− c)N

(
R−

cN

Nµ

)
−

1

2

c

Nµ

)
= 0,

which implies that RVp(K) achieves the maximum with the fee f∗∗
p = R− c

µ and the corresponding capacity

K∗∗
p = N . �

Lemma 23. When the fee is set to maximize the revenue, there exists a constant λ̄ such that if
Rµ
c > N+1

N

and λ < λ̄, the social welfare in the unobservable pooled system is strictly larger than that in the observable

pooled system, i.e., ŜW
∗∗
p > SW ∗∗

p .

Proof of Lemma 23: According to Lemmas 21 and 22, when the service fee is set to maximize the revenue

and λ < min{λ̄1, λ̄2} < µ, the social welfare of the unobservable pooled system and the social welfare of

the observable pooled system are respectively as follows.

ŜW
∗∗
p = NλR−

(∑N−1
i=0

N i

i! iρ
i + NN

N !

∑∞
i=N iρi

∑N−1
i=0

N i

i! ρ
i + NN

N !

∑∞
i=N ρi

)
c. (A.245)

SW ∗∗
p = NλR

(
1−

NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i

)
−

(∑N
i=0

N i

i! iρ
i

∑N
i=0

N i

i! ρ
i

)
c. (A.246)
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Then,

ŜW
∗∗
p − SW ∗∗

p = NλR
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
−

(∑N−1
i=0

N i

i! iρ
i + NN

N !
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c
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NN
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N
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N i
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i
−

(∑N−1
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N i

i! iρ
i + NN

N !
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∑N
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N i

i! ρ
i

−

∑N
i=0

N i

i! iρ
i

∑N
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N i

i! ρ
i

)
c
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NN

N ! ρ
N

∑N
i=0
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i! ρ
i
−

(
NN

N !

∑∞
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i
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N i
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i

)
c

=
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
c

(
NλR

c
−

∑∞
i=N+1 iρ

i

ρN

)

=
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
c


NλR

c
−

(N+1)ρN+1−NρN+2

(1−ρ)2

ρN




=
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
c

(
NλR

c
−

(N + 1)ρ−Nρ2

(1− ρ)2

)

>
NN

N ! ρ
N

∑N
i=0

N i

i! ρ
i
cρ

(
NRµ

c
−

(N + 1)

(1− ρ)2

)
. (A.247)

If Rµ
c > N+1

N ,

lim
λ→0

NRµ

c
−

(N + 1)

(1− ρ)2
=

NRµ

c
− (N + 1) > 0.

Because NRµ
c − (N+1)

(1−ρ)2
is continuous and decreasing in λ, when Rµ

c > N+1
N , there exists a constant λ̄3

such that NRµ
c − (N+1)

(1−ρ)2 > 0 for λ < λ̄3. Define λ̄
.
= min{λ̄1, λ̄2, λ̄3}. Then, it follows from (A.247) that

ŜW
∗∗
p > SW ∗∗

p when λ < λ̄ and Rµ
c > N+1

N . �

Define η̂ as

η̂
.
=

(
(1 + ρ)2

ρ
+ 1

)
1

µ
.

Recall also the notation RVd(·) from the proof of Lemma 3. Suppose that R/c < η̂. Note that R/c < η̂ if

and only if

Rρ < (1 + ρ2 + 3ρ)
c

µ
⇐⇒Nλ

(
1

1 + ρ

)(
R−

c

µ

)
> Nλ

(
1 + ρ

1 + ρ+ ρ2

)(
R−

2c

µ

)

⇐⇒RVd(1) > RVd(2).

136



This and the fact that RVd(·) is unimodal by Lemma 17 imply that when the service fee is set to maximize

the revenue, the resulting optimal balking threshold is k∗∗d = 1. As a result, the average sojourn time

in the dedicated system is W ∗∗
d = 1

µ , and the corresponding optimal service fee is f∗∗
d = R − c

µ . Thus,

R−f∗∗
d −cW ∗∗

d = 0, implying that the dedicated system’s consumer surplus is 0 and the dedicated system’s

social welfare with revenue-maximizing fee is

SW ∗∗
d = RV ∗∗

d . (A.248)

Using the same arguments as in the proof of Proposition 1, one can show that the throughput of the ob-

servable pooled system is larger than that of the observable dedicated system for any fixed fee. Then, the

maximum revenues (at the revenue-maximizing fees) satisfy the following for the observable pooled and

observable dedicated systems:

RV ∗∗
p ≥ RV ∗∗

d . (A.249)

This is because with any fixed service fee, the observable pooled system results in larger revenue than the

observable dedicated system. Combining (A.248) and (A.249), we have

SW ∗∗
p ≥ RV ∗∗

p ≥ RV ∗∗
d = SW ∗∗

d (A.250)

when R/c < η̂, i.e., R/c <
(
(1+ρ)2

ρ + 1
)

1
µ . Here, SW ∗∗

j represents the social welfare of the observable

system j ∈ {p, d} when the fee is set to maximize revenue.

We already know from Lemma 23 that when the fee is set to maximize revenue, the social welfare in the

unobservable pooled system is strictly larger than that in the observable pooled system, i.e., ŜW
∗∗
p > SW ∗∗

p ,

if Rµ
c > N+1

N and λ < λ̄. Combining this, (A.250) and Proposition 8 - (b), the claim in Lemma 4 follows.

Note that
(
(1+ρ)2

ρ + 1
)

1
µ > 3

µ > N+1
N

1
µ . Thus, the set

(
N+1
N

1
µ ,
(
(1+ρ)2

ρ + 1
)

1
µ

)
is non-empty. �
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APPENDIX B

PROOF OF RESULTS IN CHAPTER 3

B.1 Proof of Lemma 5

It follows from an application of Bayes rule that

yt = P(p = pH |yt−1,Xt)

=
P(p = pH ,Xt|yt−1)

P(Xt|yt−1)

=
P(p = pH ,Xt|yt−1)

P(p = pH ,Xt|yt−1) + P(p = pL,Xt|yt−1)

=
P(Xt|p = pH , yt−1)P(p = pH |yt−1)

P(Xt|p = pH , yt−1)P(p = pH |yt−1) + P(Xt|p = pL, yt−1)P(p = pL|yt−1)

=
pXt

H (1− pH)1−Xtyt−1

pXt

H (1− pH)1−Xtyt−1 + pXt

L (1− pL)1−Xt(1− yt−1)
.

�

B.2 Proof of Proposition 10

Proof of Part (a): Recall the optimality equation from (3.9),

VF (n, y) =





max

{
0,−c+ (ypH + (1− y)pL)VF

(
n− 1, pHy

pHy+pL(1−y)

)
+

(y(1 − pH) + (1− y)(1− pL))VF

(
n, (1−pH)y

(1−pH)y+(1−pL)(1−y)

)}
if n ≥ 1,

R if n = 0.
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Define

p(y)
.
= ypH + (1− y)pL, (B.1)

g1(y)
.
=

pHy

pHy + pL(1− y)
, (B.2)

g2(y)
.
=

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, (B.3)

f(n, y)
.
=





−c+ p(y)VF (n− 1, g1(y)) + (1− p(y))VF (n, g2(y)), if n ≥ 1,

R, if n = 0.

(B.4)

Then the optimality equation for dynamic programming can be rewritten as below:

VF (n, y) = max{0, f(n, y)}. (B.5)

We will use induction to prove VF (n, y) is decreasing in n, i.e., VF (n, y) ≤ VF (n − 1, y) for any

n ∈ N+ and y ∈ [0, 1].

When n = 1, VF (n, y) ≤ VF (n− 1, y) since VF (1, y) ≤ R = VF (0, y) for any y ∈ [0, 1].

Suppose VF (n, y) ≤ VF (n− 1, y) when n = 1, 2, . . . , k− 1. Now we need to show that it is true when

n = k, i.e.,VF (k, y) ≤ VF (k − 1, y) for any y ∈ [0, 1].

Suppose it does not hold for n = k, then there exists y ∈ [0, 1] such that VF (k, y) > VF (k − 1, y). Let

d1
.
= VF (k, y)− VF (k − 1, y) > 0. (B.6)

By (B.5), we have

(B.7)

VF (k, y) =max {0, f(k, y)} (B.8)

VF (k − 1, y) =max {0, f(k − 1, y)} . (B.9)
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Combining (B.6), (B.8) and (B.9), we have

f(k, y)− f(k − 1, y) ≥ d1 (B.10)

since VF (k, y) = f(k, y) and VF (k − 1, y) ≥ f(k − 1, y).

Recall the definition of f(k, y) from (B.4). Since k ≥ 2, we have

f(k, y) =− c+ p(y)VF (k − 1, g1(y)) + (1− p(y))VF (k, g2(y)) (B.11)

f(k − 1, y) =− c+ p(y)VF (k − 2, g1(y)) + (1− p(y))VF (k − 1, g2(y)). (B.12)

Combining (B.10), (B.11), (B.12), it follows that

p(y)(VF (k − 1, g1(y))− VF (k − 2, g1(y))) + (1− p(y))(VF (k, g2(y))− VF (k − 1, g2(y))) ≥ d1

⇒VF (k, g2(y))− VF (k − 1, g2(y)) ≥ d1/(1− p(y)) (B.13)

⇒VF (k, g2(y))− VF (k − 1, g2(y)) ≥ d1/(1− pL). (B.14)

The inequality (B.13) follows from VF (k − 1, g1(y)) ≤ VF (k − 2, g1(y)) by induction hypothesis. The

inequality (B.14) follows from the fact that 1− pH ≤ 1− p(y) ≤ 1− pL since p(y) = ypH + (1− y)pL ∈

[pL, pH ].

Replace y with g2(y), then y ∈ [0, 1] and V (k, y)− V (k − 1, y) ≥ d1/(1− pL).

Let

h1
.
=

⌈
ln(d1/R)

ln(1− pL)

⌉
+ 1. (B.15)

After repeating the above procedure h1 times, we get y ∈ [0, 1] and VF (k, y) − VF (k − 1, y)) ≥ d1/(1 −

pL)
h1 > R. It contradicts with the fact that 0 ≤ VF (k, y) ≤ R for any y ∈ [0, 1]. Thus, for any y ∈ [0, 1],

VF (k, y) ≤ VF (k − 1, y).

By induction, VF (n, y) is decreasing in n for fixed y. �

Proof of Part (b): We will use induction to prove this claim.

When n = 0, VF (n, y) is increasing in y since VF (0, y) = R for any y ∈ [0, 1].
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Suppose VF (n, y) is increasing in y when n = 0, 1, 2, . . . , k−1. We need to prove that VF (k, y) is also

increasing in y.

Suppose there exist y1, y2 ∈ [0, 1] such that y1 < y2 and VF (k, y1) > VF (k, y2). Let

d2
.
= VF (k, y1)− VF (k, y2) > 0. (B.16)

By (B.5), we have

VF (k, y1) =max {0, f(k, y1)} (B.17)

VF (k, y2) =max {0, f(k, y2)} . (B.18)

Combing (B.16), (B.17) and (B.18),

f(k, y1)− f(k, y2) ≥ d2. (B.19)

The inequality (B.19) is because VF (k, y1) > VF (k, y2) ≥ 0, which implies VF (k, y1) = f(k, y1), and

VF (k, y2) ≥ f(k, y2).

Recall the definition of f(n, y) from (B.4). Since k ≥ 1, we have

f(k, y1) = −c+ p(y1)VF (k − 1, g1(y1)) + (1− p(y1))VF (k, g2(y1))

≤ −c+ p(y2)VF (k − 1, g1(y1)) + (1− p(y2))VF (k, g2(y1)) (B.20)

≤ −c+ p(y2)VF (k − 1, g1(y2)) + (1− p(y2))VF (k, g2(y1)) (B.21)

f(k, y2) = −c+ p(y2)VF (k − 1, g1(y2)) + (1− p(y2))VF (k, g2(y2)). (B.22)

The inequality (B.20) is because p(y1) < p(y2) when y1 < y2 and VF (k − 1, g1(y)) ≥ VF (k −

1, g2(y)) ≥ VF (k, g2(y)), which follows from the induction hypothesis, g1(y) ≥ y ≥ g2(y) and Proposition

10-(a). The inequality (B.21) follows from the induction hypothesis and the fact that g1(y1) < g1(y2) when

y1 < y2.
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Combining (B.19), (B.21) and (B.22), we have

VF (k, g2(y1))− VF (k, g2(y2)) ≥ d2/(1 − p(y2)) ≥ d2/(1− pL). (B.23)

The second ” ≥ ” in the inequality (B.23) is because p(y2) ≥ pL for any y2 ∈ [0, 1].

Set y1 = g2(y1) and y2 = g2(y2), then y1, y2 ∈ [0, 1] and y1 < y2 since g(y) is strictly increasing in y.

Then VF (k, y1)− VF (k, y2) ≥ d2/(1− pL) according to (B.23).

Let

h2
.
=

⌈
ln(d2/R)

ln(1− pL)

⌉
+ 1. (B.24)

After repeating the above procedure h2 times, we get y1, y2 ∈ [0, 1] and y1 < y2, VF (k, y1))−VF (k, y2)) ≥

d2/(1 − pL)
h2 > R. It contradicts with the fact that 0 ≤ VF (k, y) ≤ R for any y ∈ [0, 1]. Thus, VF (k, y)

is also increasing in y.

By induction, VF (n, y) is increasing in y. �

Proof of Part (c): Consider two situations with different reward R1 and R2, R1 > R2, while other param-

eters are same. Let π∗
1 and π∗

2 denote the forward-looking policy for each situation, respectively. And let

V
(1)
F (n, y) and V

(2)
F (n, y) denote the expected total benefit, respectively.

Recall the VF (n, y) from (3.8),

V
(j)
F (n, y)

.
= maxE

[
T∑

t=0

rj(Nt, At)|N0 = n, α0 = y

]
. (B.25)

where rj(Nt, At) is the reward in time period t given the action is At for system j:

rj(Nt, At) =





−c if At = 1

Rj if At = 0 and Nt = 0

0 if At = 0 and Nt > 0

(B.26)
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Thus,

V
(1)
F (n, y) =Eπ∗

1

[
T∑

t=0

r1(Nt, At)|N0 = n, α0 = y

]

≥Eπ∗

2

[
T∑

t=0

r1(Nt, At)|N0 = n, α0 = y

]
(B.27)

≥Eπ∗

2

[
T∑

t=0

r2(Nt, At)|N0 = n, α0 = y

]
(B.28)

=V
(2)
F (n, y)

The inequality (B.27) is because π∗
1 is the forward-looking policy when the reward is R1. The inequality

(B.28) is because r1(Nt, At) ≥ r2(Nt, At) for any (Nt, At).

Thus, V (n, y) is increasing in R. �

Proof of Part (d): The proof is similar to part (c).

Consider two situations with different costs c1 and c2, c1 < c2, while other parameters are same. Let π̄∗
1

and π̄∗
2 denote the forward-looking policy for each situation, respectively. And let V̄

(1)
F (n, y) and V̄

(2)
F (n, y)

denote the expected total benefit, respectively.

Recall the VF (n, y) from (3.8),

V̄
(j)
F (n, y)

.
= maxE

[
T∑

t=0

r̄j(Nt, At)|N0 = n, α0 = y

]
. (B.29)

where r̄j(Nt, At) is given as below:

r̄j(Nt, At) =





−cj if At = 1

R if At = 0 and Nt = 0

0 if At = 0 and Nt > 0

(B.30)
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Thus,

V̄
(1)
F (n, y) =Eπ̄∗

1

[
T∑

t=0

r̄1(Nt, At)|N0 = n, α0 = y

]

≥Eπ̄∗

2

[
T∑

t=0

r̄1(Nt, At)|N0 = n, α0 = y

]
(B.31)

≥Eπ̄∗

2

[
T∑

t=0

r̄2(Nt, At)|N0 = n, α0 = y

]
(B.32)

=V̄
(2)
F (n, y)

The inequality (B.31) is because π̄∗
1 is the forward-looking policy when the cost per unit time is c1. The

inequality (B.32) is because r̄1(Nt, At) ≥ r̄2(Nt, At) for any (Nt, At).

Thus, V (n, y) is decreasing in c. �

Proof of Part (e):

Since n is an non-negative integer, in order to prove the convexity of VF (n, y) in n, it is sufficient to

show that VF (n+ 1, y) + VF (n− 1, y) ≥ 2VF (n, y) for any y ∈ [0, 1] and n ∈ {1, 2, . . . }.

First, we prove that VF (n+1, y) + VF (n− 1, y) ≥ 2VF (n, y) is true for n = 1 and any y ∈ [0, 1], i.e.,

VF (2, y) + VF (0, y) ≥ 2VF (1, y) for any y ∈ [0, 1].

VF (0, y) = R for any y ∈ [0, 1]. We consider two cases for VF (1, y).

Case 1: VF (1, y) = 0. Then VF (2, y) = 0 since VF (n, y) is decreasing in n by Proposition 10-(a).

VF (2, y) + VF (0, y) = R ≥ 2VF (1, y).

Case 2: VF (1, y) > 0. Recall the optimality equation from (3.9), we have

VF (1, y) =− c+ (ypH + (1− y)pL)R + (y(1− pH) + (1− y)(1− pL))VF (1, g2(y))

≤− c+ (ypH + (1− y)pL)R + (y(1− pH) + (1− y)(1− pL))VF (1, y) (B.33)

⇒ VF (1, y) ≤R−
c

ypH + (1− y)pL
(B.34)

(B.33) follows from the fact that g2(y) ≤ y and VF (n, y) is increasing in y according to Proposition 10-(b).

Next, we consider two cases for VF (2, y).
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Case 2.1 VF (2, y) = 0. Recall the optimality equation from (3.9), we have

− c+ (ypH + (1− y)pL)VF (1, g1(y)) + (y(1− pH) + (1− y)(1− pL))VF (2, g2(y)) ≤ 0 (B.35)

⇒VF (1, y) ≤ VF (1, g1(y)) ≤
c

ypH + (1− y)pL
. (B.36)

The first ” ≤ ” in (B.36) is because VF (n, y) is increasing in y according to Proposition 10-(b) and y ≤

g1(y). The second ” ≤ ” in (B.36) follows from (B.35) and the fact that VF (2, g2(y)) ≥ 0. Combing (B.34)

and (B.36), it implies that

2VF (1, y) ≤ R.

Thus,

VF (2, y) + VF (0, y) = R ≥ 2VF (1, y).

Case 2.2 VF (2, y) > 0.

Consider two systems in parallel. In the first system, there is one forward-looking customer in the queue

with state (1, y) while another customer is in service. This forward-looking customer will use the optimal

policy. In the second system, there are two customers in the queue waiting for the service. The customer in

the first position in queue is a simple customer and he will not leave the system until he completes the service.

The customer in the second position in queue use the following policy: before the service completion, if the

forward-looking customer in the first system leaves, then she will follow the forward-looking customer to

leave. If she does not leave before the customer in service finishes the service, then she moves to the first

position in queue and apply the optimal policy for state (1, y) from this point.

Let τ1 denotes the random variable for the time till the customer in service leaves the system for the

customer in state (1, y), and let τ2 denotes the random variable for the time till the customer in state (1, y)

abandons the service. If the customer doesn’t abandon the service, τ2 = +∞.

VF (1, y) = E(R− cτ1|τ1 ≤ τ2)P(τ1 ≤ τ2)− cE(τ2|τ1 > τ2)(1 − P(τ1 ≤ τ2)) (B.37)
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The equation (B.37) is because the customer will get an expected benefit of R−cτ1 if he does not leave until

she is in service at τ1, and the expected total benefit is −cτ2 is she leaves the system before getting served

at τ2. Suppose the customer with state (2, y) uses the same policy for state (1, y) until a service completes.

Thus,

VF (2, y) ≥ E(VF (1, y) − cτ1|τ1 ≤ τ2)P(τ1 ≤ τ2)− cE(τ2|τ1 > τ2)(1 − P(τ1 ≤ τ2)). (B.38)

The inequality (B.38) follows from the fact that VF (2, y) is the expected value the customer in state (2, y)

gets with the optimal policy and E(VF (1, y) − cτ1|τ1 ≤ τ2)P(τ1 ≤ τ2) − cE(τ2|τ1 > τ2)(1 − P(τ1 ≤ τ2))

is the value she can get with the policy described. By (B.37) and (B.38), we have

VF (1, y) − VF (2, y) ≤ (R− VF (1, y))P(τ1 ≤ τ2) ≤ R− VF (1, y)

⇒2VF (1, y) ≤ VF (0, y) + VF (2, y) (B.39)

Thus, VF (0, y) + VF (2, y) ≥ 2VF (1, y).

Suppose VF (n+ 1, y) + VF (n− 1, y) ≥ 2VF (n, y) is true for any y when n = 1, 2, . . . , k − 1.

When n = k, if there exists y ∈ [0, 1] such that VF (n+ 1, y) + VF (n − 1, y) < 2VF (n, y). Let

d3
.
= 2VF (k, y)− VF (k + 1, y)− VF (k − 1, y) > 0. (B.40)

Then VF (k, y) > 0 and VF (k − 1, y) ≥ VF (k, y) > 0 since VF (n, y) is decreasing in n by Proposition

10-(a).

Recall the optimality equation from (3.9). Since k ≥ 2, we have

VF (k, y) = −c+ (ypH + (1− y)pL)VF (k − 1, g1(y)) + (y(1− pH) + (1− y)(1− pL))VF (k, g2(y))

(B.41)

VF (k − 1, y) = −c+ (ypH + (1− y)pL)VF (k − 2, g1(y))

+ (y(1 − pH) + (1− y)(1− pL))VF (k − 1, g2(y)) (B.42)

VF (k + 1, y) ≥ −c+ (ypH + (1− y)pL)VF (k, g1(y)) + (y(1− pH) + (1− y)(1− pL))VF (k + 1, g2(y))

(B.43)

146



By (B.41), (B.42) and (B.43), we have

(ypH + (1− y)pL)(2VF (k − 1, g1(y))− VF (k − 2, g1(y))− VF (k, g1(y)))

+(y(1− pH) + (1− y)(1− pL))(2VF (k, g2(y))− VF (k − 1, g2(y))− VF (k + 1, g2(y)))

≥2VF (k, y)− VF (k − 1, y) − VF (k + 1, y) = d3

⇒(y(1− pH) + (1− y)(1− pL))(2VF (k, g2(y))− VF (k − 1, g2(y))− VF (k + 1, g2(y))) ≥ d3 (B.44)

⇒2VF (k, g2(y))− VF (k − 1, g2(y))− VF (k + 1, g2(y)) ≥
d3

1− pL
(B.45)

The inequality (B.44) follows from the fact that 2VF (k − 1, g1(y))− VF (k − 2, g1(y))− VF (k, g1(y)) ≤ 0

by induction hypothesis. The inequality (B.45) follows from the fact that 1 − pH ≤ (y(1 − pH) + (1 −

y)(1− pL)) ≤ 1− pL.

Replace y with g2(y), we get y ∈ [0, 1] and 2VF (k, y)− VF (k − 1, y)− VF (k + 1, y) ≥ d3
1−pL

.

Let

h3
.
=

⌈
ln(d3/R)

ln(1− pL)

⌉
+ 1. (B.46)

After repeating the above procedure h3 times, we gat y ∈ [0, 1] and

2VF (k, g2(y))− VF (k − 1, g2(y))− VF (k + 1, g2(y)) ≥
d3

(1− pL)h3
> R. (B.47)

It contradicts with the fact that 2VF (k, g2(y))−VF (k− 1, g2(y))−VF (k+1, g2(y)) ≤ VF (k, g2(y)) ≤ R.

Thus, VF (n+ 1, y) + VF (n− 1, y) ≥ 2VF (n, y) for any y when n = k.

By induction, VF (n+1, y) + VF (n− 1, y) ≥ 2VF (n, y) is true for any non-negative integer n and any

y ∈ [0, 1]. Thus, VF (n, y) is convex in n. �

B.3 Proof of Proposition 11

Proof of Part (a): We prove two lemmas first, which will be used in the remainder of the proof.

Lemma 24. VF (n, 0) = max{R− cn
pL

, 0} and VF (n, 1) = max{R − cn
pH

, 0}.

147



Proof of Lemma 24: Recall the optimality equation from (3.9),

VF (n, 0) =max{0,−c+ pLVF (n− 1, 0) + (1− pL)VF (n, 0)},

VF (n, 1) =max{0,−c+ pHVF (n− 1, 1) + (1− pH)VF (n, 1)},

VF (0, 0) =R,

VF (0, 1) =R.

We consider two cases for VF (n, 0). Case 1: If VF (n − 1, 0) ≥ c/pL, then −c + pLVF (n − 1, 0) +

(1 − pL)VF (n, 0) ≥ 0 and then VF (n, 0) = −c + pLVF (n − 1, 0) + (1 − pL)VF (n, 0), which implies

VF (n, 0) = VF (n − 1, 0) − c/pL. Case 2: If VF (n − 1, 0) < c/pL, then −c + pLVF (n − 1, 0) + (1 −

pL)VF (n, 0) < (1−pL)VF (n, 0). Suppose VF (n, 0) > 0, then VF (n, 0) < (1−pL)VF (n, 0). It contradicts

with VF (n, 0) > 0 and thus VF (n, 0) = 0.

Based on these and the fact that VF (0, 0) = R,

VF (n, 0) = max

{
0, R−

cn

pL

}
. (B.48)

Similarly, we can find VF (n, 1) by replacing pL with pH in the above analysis. We have

VF (n, 1) = max

{
0, R −

cn

pH

}
. (B.49)

�

Lemma 25. f(n, y) defined in (B.4) is increasing in y for any given n.

Proof of Lemma 25: When n = 0, f(n, y) = R and thus f(n, y) is increasing in y.
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When n ≥ 1, for y1, y2 ∈ [0, 1] and y1 < y2, it is easy to show that p(y1) < p(y2), g1(y1) < g1(y2)

and g2(y1) < g2(y2).

f(n, y1) = −c+ p(y1)VF (n− 1, g1(y1)) + (1− p(y1))VF (n, g2(y1))

≤ −c+ p(y2)VF (n− 1, g1(y1)) + (1− p(y2))VF (n, g2(y1)) (B.50)

≤ −c+ p(y2)VF (n− 1, g1(y2)) + (1− p(y2))VF (n, g2(y2)) (B.51)

= f(n, y2)

The inequality (B.50) follows from the fact that p(y1) < p(y2), VF (n − 1, g1(y1)) ≥ VF (n −

1, g2(y1)) ≥ VF (n, g2(y1)) since g1(y1) ≥ g2(y1) according to Proposition 10-(a)(b), and p(y1) < p(y2).

The inequality (B.51) follows from g1(y1) < g1(y2), g2(y1) < g2(y2) and the fact that VF (n, y) is increas-

ing in y according to Proposition 10-(b).

Thus, f(n, y) is increasing in y. �

Recall the optimality equation from (B.5),

VF (n, y) = max{0, f(n, y)}.

The forward-looking customer will leave if and only if f(n, y) < 0.

By Lemma 24, f(n, 1) = R − cn
pH

. When n > RpH
c , f(n, 1) = R − cn

pH
< 0. Thus f(n, y) < 0 for

∀y ∈ [0, 1] since f(n, y) is increasing in y by Lemma 25. The customer leaves regardless of y.

For n ∈ {0, 1, 2, . . . , ⌊RpH
c ⌋}, define

βF (n)
.
= inf{y : y ∈ [0, 1], f(n, y) ≥ 0}. (B.52)

Since f(n, y) is increasing in y by Lemma 25, the forward-looking customer will leave whenever y <

βF (n), and continue whenever y ≥ βF (n). �

Proof of Part (b): By (3.12) and (3.16), the myopic learner or naive customer continues if and only if

R−

(
n

pH
y +

n

pL
(1− y)

)
c ≥ 0 ⇆ y ≥

(
n

pL
−

R

c

)/(
n

pL
−

n

pH

)
. (B.53)
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Define

s(n, y)
.
= R−

(
n

pH
y +

n

pL
(1− y)

)
c. (B.54)

When n > RpH
c , s(n, y) < 0 for ∀y ∈ [0, 1] and the customer leaves regardless of y.

For n ∈ {0, 1, 2, . . . , ⌊RpH
c ⌋}, define

βM (n) = βN (n)
.
= inf{y : y ∈ [0, 1], s(n, y) ≥ 0}. (B.55)

By (B.53), we have

βM (n) = βN (n) = max

{(
n

pL
−

R

c

)/(
n

pL
−

n

pH

)
, 0

}
. (B.56)

The claim follows. �

B.4 Proof of Proposition 12

Recall the expected total benefit for the forward-looking customer and the naive customer from (B.5)

and (3.15), respectively.

VF (n, y) = max{0, f(n, y)},

VN (n, y) = max

{
0, R−

(
n

pH
y +

n

pL
(1− y)

)
c

}
.

Recall f(n, y) from (B.4).

f(n, y)
.
=





−c+ p(y)VF (n− 1, g1(y)) + (1− p(y))VF (n, g2(y)), if n ≥ 1,

R, if n = 0.

Recall s(n, y) from (B.54),

s(n, y) = R−

(
n

pH
y +

n

pL
(1− y)

)
c. (B.57)
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Then VN (n, y) = max{0, s(n, y}.

When n = 0, f(n, y) = s(n, y) = R. When n ≥ 1, since p(y) = ypH + (1 − y)pL, g1(y) =

pHy
pHy+pL(1−y) and g2(y) =

(1−pH)y
(1−pH)y+(1−pL)(1−y) by (B.2) through (B.3), by elementary calculations we have

s(n, y) =− c+ p(y)s (n− 1, g1(y)) + (1− p(y))s (n, g2(y))

≤− c+ p(y)VN (n− 1, g1(y)) + (1− p(y))VN (n, g2(y)) (B.58)

≤− c+ p(y)VF (n− 1, g1(y)) + (1− p(y))VF (n, g2(y)) = f(n, y). (B.59)

The inequality (B.58) is because VN (n, y) = max(0, s(n, y)) ≥ s(n, y) for ∀(n, y). The inequality (B.59)

follows from the fact that VF (n, y) ≥ VN (n, y) for ∀(n, y) by the definition of VF (n, y) from (3.8).

βF (n) = inf{y : y ∈ [0, 1], f(n, y) ≥ 0}.

When the customer with naive policy continues, s(n, y) ≥ 0.

f(n, y) ≥ s(n, y) ≥ 0.

It implies that the customer with forward-looking policy also joins the system.

Thus, βM (n) = βN (n) ≥ βF (n) by the definition of βF (n), βN (n) and βM (n) from (B.52) and (B.55).

�

B.5 Proof of Proposition 13

Proof of Part (a): By Lemma 24,

VF (n, 0) = max

{
0, R −

cn

pL

}
,

VF (n, 1) = max

{
0, R −

cn

pH

}
.

It implies that f(n, 0) = R− cn
pL

and f(n, 1) = R− cn
pH

.
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We consider three cases for the threshold analysis. Case 1: When n ≤ RpL
c , f(n, 0) = R − cn

pL
≥ 0.

Thus, f(n, y) ≥ 0 for any y ∈ [0, 1] since f(n, y) is increasing in y according to the proof of Proposition 11.

It implies that βF (n) = 0 by the definition of βF (n) from (B.52). Case 2: When n > RpL
c and n < RpH

c ,

f(n, 0) = R− cn
pL

< 0 and f(n, 1) = R− cn
pH

> 0, which implies βF (n) ∈ (0, 1). Case 3: When n = RpH
c ,

f(n, 1) = R− cn
pH

= 0 and f(n, y) < R− cn
pH

= 0 for any y ∈ [0, 1). It implies βF (n) = 1 by the definition

of βF (n) from (B.52).

Thus, the threshold for forward-looking policy βF (n) ∈ (0, 1) if and only if n̄1 < n < n̄2, where

n̄1 =
RpL
c and n̄2 =

RpH
c . �

Proof of Part (b): We now show f(n, y) is decreasing in n for given y. Recall f(n, y) from (B.4).

f(n, y)
.
=





−c+ p(y)VF (n− 1, g1(y)) + (1− p(y))VF (n, g2(y)), if n ≥ 1,

R, if n = 0.

It is obvious that f(n, y) is decreasing in n since VF (n− 1, g1(y)) and VF (n, g2(y)) are decreasing in n by

Proposition 10-(a).

Recall the definition of βF (n) from (B.52).

βF (n) = inf{y : y ∈ [0, 1], f(n, y) ≥ 0}.

Since f(n, y) is increasing in y by the Proof of Proposition 11 and decreasing in n, βF (n) is increasing in

n. �

Proof of Part (c): Recall f(n, y) from (B.4),

f(n, y) = −c+ p(y)VF (n− 1, g1(y)) + (1− p(y))VF (n, g2(y)).

By Proposition 10 -(c), VF (n, y) increases in R and decreases in c. It immediately follows that f(n, y)

increases in R and decreases in c since p(y) does not depend on R or c. Thus, the belief threshold βF (n)
.
=

inf{y : y ∈ [0, 1], f(n, y) ≥ 0} decreases in R and increases in c. �
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Proof of Part (d): By the threshold result for the myopic learner and the naive customer from (B.56), we

have

βM (n) = βN (n) = max

{(
n

pL
−

R

c

)/(
n

pL
−

n

pH

)
, 0

}
= max

{(
1

pL
−

R

cn

)/(
1

pL
−

1

pH

)
, 0

}
.

Thus, βM (n) ∈ (0, 1) or βN (n) ∈ (0, 1) when n ∈ (n̄1, n̄2), where n̄1 = RpL
c , n̄2 = RpH

c as defined

in (3.17).

It is obvious that βM (n) and βN (n) increase in n, decrease in R and increase in c. �

B.6 Proof of Proposition 14

When n = 0, f(n, y) = s(n, y) = R, both types of customers join the system. When n > RpH
c , both

types of customers will not join the system regardless of y by the proof of Proposition 11

We also know that f(n, y) is decreasing in n by the proof of Proposition 13-(b), and it is obvious that

s(n, y) = R− (y n
pH

+ (1− y) n
pL

)c is decreasing in n.

Thus, for any given y, there exist thresholds nS(y) and nF (y) such that the naive customer joins the

system if and only if n ≤ nS(y), while the forward-looking customer joins the system if and only if

n ≤ nF (y).

By Proposition 12, the naive policy results in larger belief threshold for any given n, i.e., βF (n) ≥

βN (n). It implies that forward-looking customer will also join when the naive customer joins. Thus,

nS(y) ≤ nF (y). In summary, both forward-looking and naive customers will join for n ≤ nS(y); forward-

looking customer joins and naive customer does not join when n in (nS(y), nF (y)]; both types of customers

will not join when n > nF (y). �

B.7 Proof of Proposition 15

Recall n̄1 from (3.17), n̄1 = RpL
c . For any n ≤ ⌊n̄1⌋, s(n, y) = R −

(
n
pH

y + n
pL

(1− y)
)
c ≥ 0

for ∀y ∈ [0, 1] and thus βN (n) = 0 for any n ≤ ⌊n̄1⌋. And βN (⌊n̄1⌋ + 1) ∈ (0, 1) since

s(⌊n̄1⌋+ 1, 0) = R−
(
⌊n̄1⌋+1

pL

)
c < 0 and s(⌊n̄1⌋+ 1, 1) = R−

(
⌊n̄1⌋+1

pH

)
c = c

pH

(
RpH
c − ⌊n̄1⌋ − 1

)
≥

c
pH

(
RpH
c − RpL

c − 1
)
> 0 when R

c > 1
pH−pL

. Thus, βF (⌊n̄1⌋+ 1) < βN (⌊n̄1⌋+ 1) by Lemma 29.

Let y = βF (⌊n̄1⌋ + 1) and ȳ = βN (⌊n̄1⌋ + 1). We already know that ȳ ∈ (0, 1), then y < ȳ < 1. In

addition, f(⌊n̄1⌋+ 1, 0) = R− c ⌊n̄1⌋+1
pL

< 0 by Lemma 24 and then y > 0. Thus, y ∈ (0, 1).
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When α0 ∈ (y, ȳ), the naive customer joins if and only if the number of customers ahead n0 satisfies

n0 ≤ ⌊n̄1⌋, while the forward-looking customers still join when the number of customers ahead is ⌊n̄1⌋+1.

Let {X−
t (ω), t ∈ N

+} and {X+
t (ω), t ∈ N

+} be the number of customers in the system with naive

customers at the beginning of each time period before arrival and after arrival, respectively, for a given

sample path ω. Let {Y −
t (ω), t ∈ N

+} and {Y +
t (ω), t ∈ N

+} be the number of customers in the system with

forward-looking customers at the beginning of each time period before arrival and after arrival, respectively,

for a given sample path ω.

We use {A1(ω), A2(ω), . . . } to denote the arrival process and use {C1(ω), C2(ω), . . . } to denote the

service completion process in both systems, where

At(ω) =





1 if there is an arrival at time period t,

0 else,

(B.60)

Ct(ω) =





1 a service is completed at time period t if the system is not empty,

0 else.

(B.61)

Each system is empty at the beginning, i.e., X−
1 (ω) = Y −

1 (ω) = 0 and then X+
1 (ω) = Y +

1 (ω) = A1(ω).

Suppose Y −
t (ω) ≥ X−

t (ω) when t = 1, . . . , i. We will consider two cases and prove that Y +
i (ω) ≥

X+
i (ω) and Y −

i+1(ω) ≥ X−
i+1(ω).

Case 1: Y −
i (ω) ≤ ⌊n̄1⌋. Then X−

i (ω) ≤ Y −
i (ω) ≤ ⌊n̄1⌋ by induction hypothesis. We consider four

sub-cases as below: Case 1.1: If Ai(ω) = 1 and Ci(ω) = 0, since βN (ni) ≤ 0 and βF (ni) ≤ 0 for

any ni ≤ ⌊n̄1⌋, the arrival with initial belief α0 ∈ (y, ȳ) will join for both systems. Thus, X+
i (ω) =

X−
i (ω) + 1 ≤ Y −

i (ω) + 1 = Y +
i (ω) ≤ ⌊n̄1⌋ + 1. Since βN (ni) ≤ 0 and βF (ni) ≤ 0 for any ni ≤ ⌊n̄1⌋,

no strategic customer will abandon at the end of time period i. Then X−
i+1(ω) = X+

i (ω) = X−
i (ω) + 1 and

Y −
i+1(ω) = Y +

i (ω) = Y −
i (ω) + 1. Thus, X−

i+1(ω) ≤ Y −
i+1(ω). Case 1.2: If Ai = 0 and Ci = 0, X−

i+1(ω) =

X+
i (ω) = X−

i (ω) and Y −
i+1(ω) = Y +

i (ω) = Y −
i (ω) since βF (ni) ≤ 0 for any ni ≤ ⌊n̄1⌋ and then no

forward-looking customer abandons the service. We also have that X+
i (ω) ≤ Y +

i (ω) and X−
i+1(ω) ≤

Y −
i+1(ω). Case 1.3: If Ai(ω) = 1 and Ci(ω) = 1, X+

i (ω) = X−
i (ω) + 1 and Y +

i (ω) = Y −
i (ω) + 1. Thus

X+
i (ω) ≤ Y +

i (ω). And X−
i+1(ω) ≤ Y −

i+1(ω) since X−
i+1(ω) = X−

i (ω) and Y −
i+1(ω) = Y −

i (ω). Case 1.4:
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If Ai(ω) = 0 and Ci(ω) = 1, X+
i (ω) = X−

i (ω) ≤ Y −
i (ω) = Y +

i (ω). And X−
i+1(ω) ≤ Y −

i+1(ω) since

X−
i+1(ω) = max{0,X+

i (ω)− 1} and Y −
i+1(ω) = max{0, Y +

i (ω)− 1} .

Case 2: Y −
i (ω) ≥ ⌊n̄1⌋ + 1. We know that X−

i (ω) ≤ ⌊n̄1⌋ + 1 and X+
i (ω) ≤ ⌊n̄1⌋ + 1 since

α0 < βN (⌊n̄1⌋ + 1). Case 2.1: If Ai(ω) = 1 and Ci(ω) = 0, Y +
i (ω) ≥ ⌊n̄1⌋ + 1 ≥ X+

i (ω), and

Y −
i+1(ω) ≥ ⌊n̄1⌋ + 1 ≥ X−

i+1(ω) since βF (ni) ≤ 0 for any ni ≤ ⌊n̄1⌋. Case 2.2: If Ai = 0 and Ci = 0,

Y −
i+1(ω) ≥ ⌊n̄1⌋ + 1 ≥ X−

i+1(ω) since βF (ni) ≤ 0 for any ni ≤ ⌊n̄1⌋. Case 2.3: If Ai(ω) = 1 and

Ci(ω) = 1, Y +
i (ω) ≥ ⌊n̄1⌋ + 1 ≥ X+

i (ω), and Y −
i+1(ω) ≥ ⌊n̄1⌋ + 1 ≥ X−

i+1(ω). Case 2.4: If Ai = 0 and

Ci = 1, Y +
i (ω) ≥ ⌊n̄1⌋+ 1 ≥ X+

i (ω), and Y −
i+1(ω) ≥ ⌊n̄1⌋ ≥ X−

i+1(ω).

Thus, X+
i (ω) ≤ Y +

i (ω) and X−
i+1(ω) ≤ Y −

i+1(ω). By induction, X−
t (ω) ≤ Y −

t (ω) and X+
t (ω) ≤

Y +
t (ω) for any t.

The average throughput θF (τ, ω) and θN(τ, ω) for finite time horizon τ are defined as below:

θN (τ, ω) =

τ∑

t=1

Ct(ω)I{X+
t (ω)>0}/τ (B.62)

θF (τ, ω) =
τ∑

t=1

Ct(ω)I{Y +
t (ω)>0}/τ (B.63)

Thus,

θN (τ, ω) =

τ∑

t=1

Ct(ω)I{X+
t (ω)>0}/τ ≤

τ∑

t=1

Ct(ω)I{Y +
t (ω)>0}/τ = θF (τ, ω)

Moreover, it is true for any given sample path ω based on the above analysis.

We construct a set of sample paths Ω1 as below. ω ∈ Ω1 if and only if At(ω) = 1 and Ct(ω) = 0 for

t ∈ {1, 2, . . . , ⌊n̄1⌋ + 1}, At(ω) = 1 and Ct(ω) = 1 for t = ⌊n̄1⌋ + 2, At(ω) = 0 and Ct(ω) = 1 for

t ∈ {⌊n̄1⌋+ 3⌊n̄1⌋+ 4, . . . , 2⌊n̄1⌋+3}. Then X+
t (ω) = Y +

t (ω) = t for t ∈ {1, 2, . . . , ⌊n̄1⌋+ 1} since all

arrivals join for both systems because βN (n) ≤ 0 and βF (n) ≤ 0 when n ≤ ⌊n̄1⌋. X+
⌊n̄1⌋+2(ω) = ⌊n̄1⌋+1

while Y +
⌊n̄1⌋+2(ω) = ⌊n̄1⌋+2 since α0 ∈ (βF (⌊n̄1⌋+1), βN (⌊n̄1⌋+1)). And X+

t (ω) = 2⌊n̄1⌋+3−t while

Y +
t (ω) = 2⌊n̄1⌋+ 4− t for t ∈ {⌊n̄1⌋+ 3, ⌊n̄1⌋+ 4, . . . , 2⌊n̄1⌋+ 3}. We have I{Y +

t (ω)>0} ≥ I{X+
t (ω)>0}

for any t since Y +
t (ω) ≥ X+

t (ω). In addition, Ct(ω)I{X+
t (ω)>0} = 0 and Ct(ω)I{Y +

t (ω)>0} = 1 when
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t = 2⌊n̄1⌋+ 3. Thus, when τ ≥ 2⌊n̄1⌋+ 3, for any ω ∈ Ω1, we have

θF (τ, ω) =

τ∑

t=1

Ct(ω)I{Y +
t (ω)>0}/τ >

τ∑

t=1

Ct(ω)I{X+
t (ω)>0}/τ = θN (τ, ω)

In addition, P(ω ∈ Ω1) > 0.

Thus, θF (τ) = EωθF (τ, ω) > EωθN (τ, ω) = θN (τ) when τ ≥ 2⌊n̄1⌋+ 3. �

B.8 Proof of Proposition 16

Proof of Part (a): Let

¯̄y
.
=

(
1

pL
−

R

cn̄2

)/( 1

pL
−

1

pH

)
. (B.64)

When α0 > ¯̄y,

α0 ≥

(
1

pL
−

R

cn̄2

)/( 1

pL
−

1

pH

)
⇐⇒ α0

(
1

pL
−

1

pH

)
≥

1

pL
−

R

cn̄2

⇐⇒
R

cn̄2
≥

α0

pH
+

1− α0

pL

⇐⇒ R− cn̄2

(
α0

pH
+

1− α0

pL

)
≥ 0.

Thus, naive customers will join the system when the number of customers ahead satisfies n ≤ ⌊n̄2⌋ by

(3.16). Also, forward-looking customers will join the system when the number of customers ahead satisfies

n ≤ ⌊n̄2⌋ since βF (n) ≤ βN (n) for any n by Proposition 12. When n ≥ ⌊n̄2⌋+ 1, n > RpH
c and then the

customers of both types will not join by the proof of Proposition 11.

Let {X−
t (ω), t ∈ N

+} and {X+
t (ω), t ∈ N

+} be the number of customers in the system with naive

customers at the beginning of each time period before arrival and after arrival, respectively, for a given

sample path ω. Let {Y −
t (ω), t ∈ N

+} and {Y +
t (ω), t ∈ N

+} be the number of customers in the system with

forward-looking customers at the beginning of each time period before arrival and after arrival, respectively,

for a given sample path ω.

Next, we will show that X−
t (ω) ≥ Y −

t (ω) and X+
t (ω) ≥ Y +

t (ω) for any given sample path ω, t =

1, 2 . . . .

X−
1 (ω) = Y −

1 (ω) = 0, and X+
1 (ω) = Y +

1 (ω) = A1(ω).
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Suppose X−
t (ω) ≥ Y −

t (ω) for t = 1, . . . , i. We will consider two cases below prove that X+
i (ω) ≥

Y +
i (ω) and X−

i+1(ω) ≥ Y −
i+1(ω).

Case 1: Y −
i (ω) ≤ X−

i (ω) ≤ ⌊n̄2⌋. Case 1.1: If Ai(ω) = 1 and Ci(ω) = 0, X+
i (ω) ≥ Y +

i (ω) since

X+
i (ω) = X−

i (ω) + 1 and Y +
i (ω) = Y −

i (ω) + 1. And X−
i+1(ω) ≥ Y −

i+1(ω) since X−
i+1(ω) = X−

i (ω) + 1

and Y −
i+1(ω) ≤ Y −

i (ω)+1. Case 1.2: If Ai(ω) = 0 and Ci(ω) = 0, X+
i (ω) = X−

i (ω) ≥ Y −
i (ω) = Y +

i (ω),

and X−
i+1(ω) = X−

i (ω) ≥ Y −
i (ω) ≥ Y −

i+1(ω). Case 1.3: If Ai(ω) = 1 and Ci(ω) = 1, X+
i (ω) ≥ Y +

i (ω)

since X+
i (ω) = X−

i (ω)+1 and Y +
i (ω) = Y −

i (ω)+1. And X−
i+1(ω) ≥ Y −

i+1(ω) since X−
i+1(ω) = X−

i (ω)

and Y −
i+1(ω) = Y −

i (ω). Case 1.4: If Ai = 0 and Ci = 1, X+
i (ω) = X−

i (ω) ≥ Y −
i (ω) = Y +

i (ω), and

X−
i+1(ω) ≥ Y −

i+1(ω) since X−
i+1(ω) = max{0,X+

i (ω)− 1} and Y −
i+1(ω) = max{0, Y +

i (ω)− 1}.

Case 2: X−
i (ω) = ⌊n̄2⌋+ 1 ≥ Y −

i (ω). Case 2.1: If Ai(ω) = 1 and Ci(ω) = 0, X+
i (ω) = ⌊n̄2⌋+ 1 ≥

Y +
i (ω), and X−

i+1(ω) = ⌊n̄2⌋ + 1 ≥ Y −
i+1(ω). Case 2.2: If Ai(ω) = 0 and Ci(ω) = 0, X+

i (ω) =

⌊n̄2⌋ + 1 ≥ Y +
i (ω), and X−

i+1(ω) = ⌊n̄2⌋ + 1 ≥ Y −
i+1(ω). Case 2.3: If Ai(ω) = 1 and Ci(ω) = 1,

X+
i (ω) = ⌊n̄2⌋ + 1 ≥ Y +

i (ω), and X−
i+1(ω) ≥ Y −

i+1(ω) since X−
i+1(ω) = ⌊n̄2⌋ and Y −

i+1(ω) ≤ ⌊n̄2⌋.

Case 2.4: If Ai(ω) = 0 and Ci(ω) = 1, X+
i (ω) = ⌊n̄2⌋ + 1 ≥ Y +

i (ω), and X−
i+1(ω) ≥ Y −

i+1(ω) since

X−
i+1(ω) = ⌊n̄2⌋ and Y −

i+1(ω) ≤ ⌊n̄2⌋.

Thus, X+
i (ω) ≥ Y +

i (ω) and X−
i+1(ω) ≥ Y −

i+1(ω). By induction, X−
t (ω) ≥ Y −

t (ω) and X+
t (ω) ≥

Y +
t (ω) for any t. It implies that θF (ω) ≤ θN (ω) according to (B.62) and (B.63). Moreover, it is true for

any given sample path based on the above analysis.

Let t1
.
= min{t ∈ N : g

(t1)
2 (α0) < βF (⌊n2⌋)}, where g2(·) is defined in (B.3). We construct a set of

samples paths Ω2 as below. ω ∈ Ω2 if and only if At(ω) = 1 and Ct(ω) = 0 for t ∈ {1, 2, . . . , ⌊n̄2⌋+ 1},

At(ω) = 0 and Ct(ω) = 0 for t ∈ {⌊n̄2⌋ + 2, . . . , ⌊n̄2⌋ + t1}, and At(ω) = 0 and Ct(ω) = 1 for

t ∈ {⌊n̄2⌋ + t1 + 1, . . . , 2⌊n̄2⌋ + t1 + 1}. Thus, Y +
t (ω) < ⌊n̄2⌋ + 1 = X+

t (ω) when t = ⌊n̄2⌋ + t1,

Y +
t (ω) = 1 and X+

t (ω) = 0 when t = 2⌊n̄2⌋+ t1 + 1.

Based on the above analysis, I{Y +
t (ω)>0} ≤ I{X+

t (ω)>0} for any t since Y +
t (ω) ≤ X+

t (ω). In addition,

Ct(ω)I{X+
t (ω)>0} = 1 and Ct(ω)I{Y +

t (ω)>0} = 0 when t = 2⌊n̄2⌋+ t1+1. Thus, when τ ≥ 2⌊n̄2⌋+ t1+1,

for any ω ∈ Ω2, we have

θF (τ, ω) =

τ∑

t=1

Ct(ω)I{Y +
t (ω)>0}/τ <

τ∑

t=1

Ct(ω)I{X+
t (ω)>0}/τ = θN (τ, ω).

In addition, P(ω ∈ Ω2) > 0.
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Thus, θF (τ) = EωθF (τ, ω) < EωθN (τ, ω) = θN (τ) when τ ≥ 2⌊n̄2⌋+ t1 + 1. �

Proof of Part (b) under condition (i) in (3.20): When α0 = 0, VF (n, 0) = max{0, R− cn
pL

} by Lemma 24.

Thus, f(n, 0) = R− cn
pL

= s(n, 0) and then there is no difference between the naive policy and the forward-

looking policy. θF = θN when α0 = 0. We can focus on the case that α0 > 0. By the definition of βN (n)

from (B.55), βN (n) = 0 for any n ≤ n̄1, where n̄1 =
RpL
c . It implies that βF (n) = 0 since βF (n) ≤ βN (n)

by Proposition 12. For any n ≥ n̄1 + 1, n > RpH
c since RpH

c − RpL
c < 1, the forward-looking customer

and the naive customer will not join by the proof of Proposition 11.f(n, 1) = R − c n
pH

by the proof of

Proposition 13. Thus, in both systems customers join if and only if the number of customers ahead satisfies

n ≤ n̄1. In addition, forward-looking customers never abandon the service since βF (n) = βN (n) = 0 for

any n ≤ n̄1. It immediately follows that θF = θN .

Proof of Part (b) under condition (ii) in (3.20): Similar to part (b) under condition (i), we can focus on the

case that α0 > 0. We already know that βN (n) = 0 and βF (n) = 0 for any n ≤ n̄1. For any n ≥ n̄1 + 1,

α0 < βF (n̄1 + 1) ≤ βF (n) by Proposition 13-(b) and βF (n) ≤ βN (n) by Proposition ??. Thus, the

customers of both types join the system if and only if the number of customers ahead satisfies n ≤ n̄1. In

addition, forward-looking customers never abandon the service. Thus θF = θN . �

B.9 Proof of Proposition 17

Let {Z−
t (ω), t ∈ N} and {Z+

t (ω), t ∈ N} be the number of customers in the system with myopic

learners at the beginning of each time period, before arrival and after arrival, respectively, for a given sample

path ω. {X−
t (ω), t ∈ N} and {X+

t (ω), t ∈ N} denote the number of naive customers as defined earlier. We

know that naive customers and myopic learners have the same belief threshold {βM (n), n ∈ N} for joining

decision.

Next, we will show that X−
t (ω) ≥ Z−

t (ω) and X+
t (ω) ≥ Z+

t (ω) for any t ∈ {1, 2, . . . }.

X−
1 (ω) = Z−

1 (ω) = 0. X+
1 (ω) = Z+

1 (ω) = A1(ω).

Suppose X−
t (ω) ≥ Z−

t (ω) for t = 1, 2, . . . , i. We consider two cases as below.

Case 1: X−
i (ω) = Z−

i (ω). Then X+
i (ω) = Z+

i (ω) and X−
i+1(ω) ≥ Z−

i+1(ω) since myopic learners

may abandon the service at the end of time period i. Case 2: X−
i (ω) ≥ Z−

i (ω)+1. Then X+
i (ω) ≥ Z+

i (ω)

and X−
i+1(ω) ≥ Z−

i+1(ω).
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Thus, X+
i (ω) ≥ Z+

i (ω) and X−
i+1(ω) ≥ Z−

i+1(ω). By induction, X−
t (ω) ≥ Z−

t (ω) and X+
t (ω) ≥

Z+
t (ω) for any t ∈ {1, 2, . . . }.

For myopic learners, denote the long-run average throughput with given sample path ω by θM(ω),

θM(ω) = lim
k→∞

k∑

t=1

Ct(ω)I{Z+
t (ω)>0}/k (B.65)

Recall the average throughput of naive customers from (B.62),

θN(ω) = lim
k→∞

k∑

t=1

Ct(ω)I{X+
t (ω)>0}/k ≥ lim

k→∞

k∑

t=1

Ct(ω)I{Z+
t (ω)>0}/k = θM (ω).

Moreover, it is true for any given sample path based on above analysis. Thus, θN ≥ θM . �

B.10 Proof of Proposition 18

Proof of Part (a): By the definition of the VF (n, y) from (3.8),

VF (n, y) ≥ VN (n, y) = R−

(
y
n

pH
+ (1− y)

n

pL

)
c. (B.66)

We also know that

VF (0, y) = R = VN (0, y). (B.67)

According to Proposition 14, for any given y, the threshold for naive policy and forward-looking policy

satisfy that nS(y) ≤ nF (y). Let n̄ = nS(y). When n ≤ n̄, both the naive customer and the forward-

looking customer join the system. Based on (B.66), (B.67), VF (n, y) is convex decreasing in n according

to Proposition 10-(a)(e), and VN (n, y) is linear decreasing in n, it follows that VF (n, y)− VN (n, y) is non-

negative and increasing in n when n ≤ n̄. When n > n̄, VN (n, y) = 0 since the naive customer does not

join. Thus, VF (n, y)− VN (n, y) = VF (n, y) is decreasing in n by Proposition 10-(a). �

Proof of Part (b): We denote the expected total benefit as VF (n, y,R) with R as an argument. We will use

induction to prove that VF (n, y,R) is convex in R for any (n, y).
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When n = 0, VF (n, y,R) = R. It is convex in R for any given (n, y). Suppose VF (n, y,R) is convex

in R when n = k for any given y, we will prove that VF (n, y,R) is convex in R when n = k + 1 for any

given y.

If there exists y such that VF (k + 1, y,R) is not convex in R. It implies that there exists R1, R2 and

t ∈ (0, 1) such that VF (k + 1, y, tR1 + (1− t)R2) > tVF (k + 1, y,R1) + (1− t)VF (k + 1, y,R2).

Define

d4
.
= VF (k + 1, y, tR1 + (1− t)R2)− (tVF (k + 1, y,R1) + (1− t)VF (k + 1, y,R2)). (B.68)

Then d4 > 0. Recall the optimality equation for forward-looking customer from (3.9),

VF (k + 1, y, tR1 + (1− t)R2)

=max

{
0,−c + (ypH + (1− y)pL)VF

(
k,

pHy

pHy + pL(1− y)
, tR1 + (1− t)R2

)

+(y(1− pH) + (1− y)(1− pL))VF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, tR1 + (1− t)R2

)}
.

Since VF (k + 1, y, tR1 + (1− t)R2) ≥ d4 > 0, then we have

VF (k + 1, y, tR1 + (1− t)R2)

=− c+ (ypH + (1− y)pL)VF

(
k,

pHy

pHy + pL(1− y)
, tR1 + (1− t)R2

)
(B.69)

+(y(1− pH) + (1− y)(1− pL))VF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, tR1 + (1− t)R2

)
.
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By optimality equation for forward-looking customer, we also have

VF (k + 1, y,R1) ≥− c+ (ypH + (1− y)pL)VF

(
k,

pHy

pHy + pL(1− y)
, R1

)

+(y(1− pH) + (1− y)(1− pL))VF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, R1

)
,

(B.70)

VF (k + 1, y,R2) ≥− c+ (ypH + (1− y)pL)VF

(
k,

pHy

pHy + pL(1− y)
, R2

)

+(y(1− pH) + (1− y)(1− pL))VF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
R2

)
.

(B.71)

By (B.68) through (B.71), it follows that

(ypH + (1− y)pL)

(
VF

(
k,

pHy

pHy + pL(1− y)
, tR1 + (1− t)R2

)
− tVF

(
k,

pHy

pHy + pL(1− y)
, R1

)

− (1− t)VF

(
k,

pHy

pHy + pL(1− y)
, R2

))

+(y(1− pH) + (1− y)(1− pL))

(
VF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, tR1 + (1− t)R2

)

−tVF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1 − y)
R1

)

− (1− t)VF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, R2

))

≥d4.

By induction hypothesis,

VF

(
k,

pHy

pHy + pL(1− y)
, tR1 + (1− t)R2

)

≤ tVF

(
k,

pHy

pHy + pL(1− y)
, R1

)
+ (1− t)VF

(
k,

pHy

pHy + pL(1 − y)
, R2

)
. (B.72)
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Thus,

VF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, tR1 + (1− t)R2

)

−tVF

(
k + 1,

(1− pH)y

(1− pH)y + (1− pL)(1− y)
, R1

)

−(1− t)VF

(
k + 1,

(1− pH)y

(1− pH)α0 + (1− pL)(1− y)
, R2

)

≥
d4

y(1− pH) + (1− y)(1− pL)
≥

d4
1− pL

.

Replace y with
(1−pH )y

(1−pH )y+(1−pL)(1−y) , then

VF (k + 1, y, tR1 + (1− t)R2)− (tVF (k + 1, y,R1) + (1− t)VF (k + 1, y,R2)) ≥
d4

1− pL
.

Define

h4
.
=

⌈
ln(d4/max{R1, R2})

ln(1− pL)

⌉
+ 1. (B.73)

Repeat this procedure h4 times, we can find y such that

VF (k + 1, y, tR1 + (1− t)R2)− (tVF (k + 1, y,R1) + (1− t)VF (k + 1, y,R2))

≥
d4

(1− pL)h4
> max{R1, R2}.

Since VF (k + 1, y,R1) ≥ 0 and VF (k + 1, y,R2) ≥ 0, it immediately follows that

VF (k + 1, y, tR1 + (1− t)R2) > max{R1, R2} > tR1 + (1− t)R2.

It contradicts with the fact that VF (k + 1, y, tR1 + (1 − t)R2) ≤ tR1 + (1 − t)R2. Thus, VF (k + 1, y,R)

is convex in R for any y.

By induction, VF (n, y,R) is convex in R for any (n, y). In addition, we know that VF (n, y,R) is

increasing in R by Proposition 10-(c).

For the naive policy, VN (n, y,R) = max
{
0, R −

(
n
pH

y + n
pL

(1− y)
)
c
}

. It is a piecewise linear and

increasing in R. We also know that VF (n, y,R) ≥ VN (n, y,R) by the definition of the forward-looking
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policy. In addition, VF (n, y,R) = VN (n, y,R) = 0 when R < n
pH

c since both types of customers do not

join by Proposition 11 and Proposition 12. And when R ≥ n
pL

c, βN (n) = 0 by (B.56) and βF (n) = 0 since

βF (n) ≤ βN (n) by Proposition 12. It implies that both types of customers will join and the forward-looking

customer will never abandon the service when R ≥ n
pL

c. Thus, VF (n, y,R) = VN (n, y,R) when R ≥ n
pL

c.

Combining the above results, we know that the expected value of learning VF (n, y,R) − VN (n, y,R)

is increasing and then decreasing in R. �

Proof of Part (c): Similarly, by using c as an argument instead of R, we prove that VF (n, y, c) is convex

in c for any (n, y). We also know that VF (n, y, c) is decreasing in c by Proposition 10-(d). In addition,

VN (n, y, c) is decreasing and piecewise linear in c, and VF (n, y), c) ≥ VN (n, y, c) by the definition of the

forward-looking policy.

When c ≤ RpL
n , βN (n) = 0 by (B.56) and thus βF (n) = 0 by Proposition 12. Thus VF (n, y, c) =

VN (n, y, c) when c ≤ RpL
n since both types of customers join the system and the forward-looking customer

will never abandon. When c ≥ RpH
n , VF (n, y, c) = VN (n, y, c) = 0 since both types of customers will not

join by Proposition 13 and 12.

Based on the above analysis, the expected value of learning VF (n, y, c)− VN (n, y, c) is increasing and

then decreasing in c. �

B.11 Proof of Proposition 19:

Proof of Part (a): First, we prove two lemmas, which will be used in the remainder of the proof.

Lemma 26. When p = pH , UH
F (n, y) ≥ VF (n, y).

Proof of Lemma 26: Recall the optimality equations for VF (n, y) and UH
F (n, y) from (3.9) and (3.22).

When f(n, y) < 0,

VF (n, y) = 0 and UH
F (n, y) = 0. (B.74)
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When f(n, y) ≥ 0,

VF (n, y) = −c+ (ypH + (1− y)pL)VF (n− 1, g1(y)) + (y(1− pH) + (1− y)(1− pL))VF (n, g2(y)),

(B.75)

UH
F (n, y) = −c+ pHUH

F (n− 1, g1(y)) + (1− pH)UH
F (n, g2(y)), (B.76)

where g1(y) and g2(y) are defined in (B.2) and (B.3).

We will use induction to prove the claim.

When n = 0, VF (n, y) = UH
F (n, y) = R. UH

F (n, y) ≥ VF (n, y) holds. Suppose UH
F (n, y) ≥ VF (n, y)

holds for n = 0, 1, . . . , k − 1. When n = k, suppose there exists y such that UH
F (n, y) < VF (n, y).

Define

d5
.
= VF (k, y)− UH

F (k, y). (B.77)

Then d5 > 0 and it implies that f(k, y) ≥ 0. By (B.75) and (B.76), we have

− c+ (ypH + (1− y)pL)VF (k − 1, g1(y)) + (y(1− pH) + (1− y)(1 − pL))VF (k, g2(y))−

(−c+ pHUH
F (k − 1, g1(y)) + (1− pH)UH

F (k, g2(y))) = d5. (B.78)

Since we know that VF (k − 1, g1(y)) ≥ VF (k, g1(y)) ≥ VF (k, g2(y)) since g1(y) ≥ g2(y) by Proposition

10 and VF (k − 1, g1(y)) ≤ UH
F (k − 1, g1(y)) by induction hypothesis, then we have

− c+ (ypH + (1− y)pL)VF (k − 1, g1(y)) + (y(1− pH) + (1− y)(1− pL))VF (k, g2(y))

≤− c+ pHVF (k − 1, g1(y)) + (1− pH)VF (k, g2(y)) (B.79)

≤− c+ pHUH
F (k − 1, g1(y)) + (1− pH)VF (k, g2(y)). (B.80)

Combining (B.78) and (B.80), we have

VF (k, g2(y))− UH
F (k, g2(y)) ≥

d5
1− pH

.

Replace y with g2(y), then y ∈ [0, 1] and VF (k, y)− UH
F (k, y) ≥ d5

1−pH
.
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Define

h5
.
=

⌈
ln(d5/(R + ck/pH)

ln(1− pH)

⌉
+ 1. (B.81)

Keep repeating the above procedure h5 times, we get y such that y ∈ [0, 1] and

VF (k, y)− UH
F (k, y) ≥

d5
(1− pH)h5

> R+
ck

pH
, (B.82)

which implies VF (k, y) ≥ UH
F (k, y) + d5

(1−pH )h5
> −c k

pH
+ d5

(1−pH )h5
> R. The reason that UH

F (k, y) >

−c k
pH

is E(τ) ≤ k
pH

, where τ is the stopping time of forward-looking customer. It contradicts with the fact

that VF (k, g2(y)) ≤ R.

Thus, UH
F (k, y) ≥ VF (k, y) for any y.

By induction, UH
F (n, y) ≥ VF (n, y) for any n and y ∈ [0, 1]. �

Lemma 27. Given p = pH , the expected total benefit for the forward-looking customer UH
F (n, y) is in-

creasing in y.

Proof of Lemma 27: We will use induction to prove the claim.

When n = 0, UH
F (n, y) = R, which is increasing.

Suppose UH
F (n, y) is increasing in y when n = 0, 1, . . . , k − 1. When n = k, suppose that there exists

y1 and y2 such that y1 > y2 and UH
F (n, y1) < UH

F (n, y2).

Define

d6
.
= UH

F (k, y2)− UH
F (k, y1). (B.83)

Then d6 > 0 and it implies that UH
F (k, y2) > 0 since UH

F (k, y1) ≥ VF (k, y1) ≥ 0 by Lemma 26. It

immediately follows that f(k, y2) ≥ 0 by UH
F (k, y2) > 0 and (3.22). Thus, f(k, y1) ≥ f(k, y2) ≥ 0 since

f(k, y) is increasing in y by Lemma 25.
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Recall the optimality equation given p = pH from (3.22), we have

UH
F (k, y1) =− c+ pHUH

F (k − 1, g1(y1)) + (1− pH)UH
F (k, g2(y1)) (B.84)

≥− c+ pHUH
F (k − 1, g1(y2)) + (1− pH)UH

F (k, g2(y1)). (B.85)

UH
F (k, y2) =− c+ pHUH

F (k − 1, g1(y2)) + (1− pH)UH
F (k, g2(y2)) (B.86)

The inequality (B.84) is because VF (k, y1) > 0. The inequality (B.85) follows from g1(y1) > g1(y2) since

g1(·) is an increasing function and UH
F (k − 1, y) is increasing in y by induction hypothesis.

By (B.83), (B.85) and (B.86), we have

UH
F (k, g2(y2))− UH

F (k, g2(y1)) ≥
d6

1− pH
. (B.87)

Replace y1 with g2(y1) and y2 with g2(y2), then y1, y2 ∈ [0, 1], y1 > y2 and UH
F (k, y2)−UH

F (k, y1) ≥

d6
1−pH

.

Define

h6
.
=

⌈
ln(d6/R)

ln(1− pH)

⌉
+ 1. (B.88)

Keep repeating this procedure h6 times, we have y1, y2 ∈ [0, 1], y1 > y2 and

UH
F (k, y2)− UH

F (k, y1) ≥
d6

(1− pH)h6
> R. (B.89)

It implies that UH
F (k, g2(y2)) > R since UH

F (k, y1) ≥ VF (k, y1) ≥ 0 by Lemma 26, which contradicts with

the fact that UH
F (k, g2(y2)) ≤ R. Thus, UH

F (k, y1) ≥ UH
F (k, y2) for any y1 > y2. UH

F (k, y) is increasing in

y.

By induction, UH
F (n, y) is increasing in y for any n. �

When y > ȳ1(n) =
1/pL−R/cn
1/pL−1/pH

, R −
(

n
pH

y + n
pL

(1− y)
)
c > 0. Thus, the customer using the naive

policy or the myopic policy joins the queue. By Proposition 12, βN (n) ≥ βF (n) and thus the forward-

looking customer also joins the queue.

Given p = pH , the expected total benefit for the naive customer is UH
N (n, y) = R− c n

pH
by (3.21).
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Since the forward-looking customer also joins, it implies that f(n, y) ≥ 0 and thus f(n, 1) ≥ 0 because

f(n, y) is increasing in y by Lemma 25. Also, f(k, 1) ≥ 0 for k ∈ {0, 1, . . . , n} due to the monotonicity

of f(n, y) in n by the proof of Proposition 13-(b). Recall the optimality equation from (3.22), for k ∈

{1, 2, . . . , n}, we have

UH
F (k, 1) = −c+ pHUH

F (k − 1, 1) + (1− pH)UH
F (k, 1). (B.90)

It implies that UH
F (k, 1) = − c

pH
+ UH

F (k − 1, 1). Since UH
F (0, 1) = R, we have

UH
F (n, 1) = R− c

n

pH
. (B.91)

Thus, UH
N (n, y) = UH

F (n, 1) ≥ UH
F (n, y) since UH

F (n, y) is increasing in y by Lemma 27.

The loss from learning UH
N (n, y)− UH

F (n, y) is decreasing with y since UH
N (n, y) = UH

F (n, 1), which

does not depend on y, and UH
F (n, y) is increasing with y from Lemma 27.

Next we compare the expected total benefit between the forward-looking policy and the myopic policy.

Define

T1 = min{t ∈ N+ : the myopic learner gets service at the end of time period t}, (B.92)

T2 = min{t ∈ N+ : the myopic learner abandons the service at the end of time period t}. (B.93)

When p = pH , we have

UH
F (n, y)− UH

M (n, y) =E[UH
F (nT2 , yT2)|T2 < T1]P (T2 < T1)

≥E[VF (nT2 , yT2)|T2 < T1]P (T2 < T1) (B.94)

≥0

The inequality (B.94) follows from the fact that UH
F (n, y) ≥ VF (n, y) for any n and y when p = pH by

Lemma 26.

Thus, UH
F (n, y)− UH

M (n, y) ≥ 0 when p = pH . The forward-looking policy results in larger expected

total benefit than the myopic policy given p = pH .
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Based on the above analysis, the naive policy results in the maximum expected total benefit when

y > ȳ1(n), where ȳ1(n) is defined in (3.26). �

Proof of Part (b): First, we introduce a lemma, which will be used in the remainder of the proof.

Lemma 28. Given p = pL, the expected total benefit for the forward-looking customer UL
F (n, y) is decreas-

ing in y.

Proof of Lemma 28: We will use induction to prove this claim.

When n = 0, UL
F (n, y) = R. It is decreasing when n = 0.

Suppose UL
F (n, y) is decreasing in y when n = 0, 1, . . . , k − 1. When n = k, suppose that there exist

y1, y2 ∈ [0, 1] such that y1 > y2 and UL
F (n, y1) > UL

F (n, y2).

Define

d7
.
= UL

F (k, y1)− UL
F (k, y2). (B.95)

Case 1: If f(k, y2) ≥ 0, then f(k, y1) ≥ f(k, y2) ≥ 0 by Lemma 25 since y1 > y2. Recall the

optimality equation for UL
F (n, y) from (3.22), we have

UL
F (k, y1) =− c+ pLU

L
F (k − 1, g1(y1)) + (1− pL)U

L
F (k, g2(y1))

≤− c+ pLU
L
F (k − 1, g1(y2)) + (1− pL)U

L
F (k, g2(y1)), (B.96)

UL
F (k, y2) =− c+ pLU

L
F (k − 1, g1(y2)) + (1− pL)U

L
F (k, g2(y2)). (B.97)

The inequality (B.96) follows from the fact that g1(y1) > g1(y2) since g1(y) is strictly increasing in y, and

UL
F (k − 1, y) is decreasing in y by induction hypothesis.

Combing (B.96) and (B.97), we have

UL
F (k, g2(y1))− UL

F (k, g2(y2)) ≥
d7

1− pL
. (B.98)
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Case 2: If f(k, y2) < 0, then UL
F (k, y2) = 0 by (3.22). Thus UL

F (k, y1) = d7 > 0 and it implies that

f(k, y1) ≥ 0.

UL
F (k, y1) =− c+ pLU

L
F (k − 1, g1(y1)) + (1− pL)U

L
F (k, g2(y1))

≤− c+ pLU
L
F (k − 1, g1(y2)) + (1− pL)U

L
F (k, g2(y1)) (B.99)

≤− c+ pLVF (k − 1, g1(y2)) + (1− pL)U
L
F (k, g2(y1)). (B.100)

The inequality (B.99) follows from UL
F (k−1, g1(y1)) ≤ UL

F (k−1, g1(y2)) since UL
F (k−1, y) in decreasing

in y by induction and g1(y1) > g1(y2). The inequality (B.100) is because UL
F (k − 1, g1(y2)) ≤ VF (k −

1, g1(y2)) by Lemma 30.

Thus, we have

−c+ pLVF (k − 1, g1(y2)) + (1− pL)U
L
F (k, g2(y1)) ≥ d7. (B.101)

Since f(k, y2) < 0, we have

− c+ (y2pH + (1− y2)pL)VF (k − 1, g1(y2)) + (y2(1− pH) + (1− y2)(1− pL))VF (k, g2(y2)) < 0

⇒− c+ (y2pH + (1− y2)pL)VF (k − 1, g1(y2)) < 0 (B.102)

⇒− c+ pLVF (k − 1, g1(y2)) < 0. (B.103)

Combining (B.101) and (B.103), we have

UL
F (k, g2(y1)) ≥

d7
1− pL

. (B.104)

In addition, f(k, g2(y2)) ≤ f(k, y2) = 0 since f(k, y) is increasing in y by Lemma 25 and g2(y2) ≤ y2.

Thus, UL
F (k, g2(y2)) = 0 and we have

UL
F (k, g2(y1))− UL

F (k, g2(y2)) ≥
d7

1− pL
. (B.105)
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Thus, in both cases,

UL
F (k, g2(y1))− UL

F (k, g2(y2)) ≥
d7

1− pL
. (B.106)

Replace y1 with g2(y1) and y2 with g2(y2), then y1, y2 ∈ [0, 1], y1 > y2 and UL
F (k, y2)− UL

F (k, y1) ≥

d7
1−pL

.

Define

h7
.
=

⌈
ln(d7/(R + ck/pL))

ln(1− pL)

⌉
+ 1. (B.107)

Repeat the above procedure h7 times, we have y1, y2 ∈ [0, 1], y1 > y2 and UL
F (k, y1) − UL

F (k, y2) ≥

d7
(1−pL)h7

> R+ ck/pL.

Then UL
F (k, y1) ≥ UL

F (k, y2) +
d7

(1−pL)h
≥ −c k

pL + d7
(1−pL)h7

> R. The reason that UL
F (k, y) ≥ −c k

pL

is E(τ) ≤ k
pL

, where τ is the stopping time of the forward-looking customer. It contradicts with the fact

that UL
F (k, y1) ≤ R.

Thus, UL
F (k, y1) ≤ UL

F (k, y2) for any y1 > y2. UL
F (k, y) is decreasing in y.

By induction, UL
F (n, y) is decreasing in y for any n. �

When y > ȳ1(n), all types of customers join, and the expected total benefit of naive customer is

UL
N (n, y) = R− c n

pL
.

Since the forward-looking customer also joins, it implies that f(n, y) ≥ 0 and thus f(n, 1) ≥ f(n, y) ≥

0 by Lemma 25. Also, f(k, 1) > 0 for k = 0, 1, 2, . . . , n− 1 due to the monotonicity of f(n, y) in n by the

proof of Proposition 13-(b). Recall the optimality equation for UL
F (n, y) from (3.22), for k ∈ {1, 2, . . . , n},

we have

UL
F (k, 1) = −c+ pLU

L
F (k − 1, 1) + (1− pL)U

L
F (k, 1). (B.108)

Then UL
F (k, 1) = − c

pL
+ UL

F (k − 1, 1) when k = 1, 2, . . . , n − 1. Since UL
F (0, 1) = R, it follows that

UL
F (n, 1) = R− c

n

pL
= UL

N (n, y). (B.109)

Thus, UL
N (n, y) ≤ UL

F (n, y) since UL
F (n, 1) ≤ UL

F (n, y) by Lemma 28.
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The gain from learning UL
F (n, y)− UL

F (n, 1) is decreasing with y by Lemma 28.

Next, we compare the forward-looking policy and the myopic policy.

When p = pL, recall the definition of T1 and T2 from (B.92) and (B.93), we have:

UL
F (n, y)− UL

M (n, y) =E[UL
F (nT2 , yT2)|T2 < T1]P (T2 < T1)

≤E[UL
F (nT2 , 0)|T2 < T1]P (T2 < T1) (B.110)

≤0 (B.111)

The inequality (B.110) follows from the fact that UL
F (n, y) is decreasing in y for any n given p = pL

by Lemma 28. The inequality (B.111) is because UL
F (nT2 , 0) ≤ 0 given the fact that the myopic learner

abandons the queue. The reason is as following. Recall the optimality equation for forward-looking policy

given p = pL from (3.22). If f(nT2 , 0) < 0, then UL
F (nT2 , 0) = 0. If f(nT2 , 0) ≥ 0, then f(k, 0) ≥ 0 for

any k ≤ nT2 by the proof of Proposition 13-(b). Thus, UL
F (k, 0) = −c+pLU

L
F (k−1, 0)+(1−pL)U

L
F (k, 0)

for k ≤ nT2 , which implies that UL
F (nT2 , 0) = R − c

nT2
pL

. Since the myopic learner abandons the service

at (nT2 , yT2), then R − c
(
yT2

nT2
pH

+ (1− yT2)
nT2
pL

)
< 0 by (3.12). Thus, UL

F (nT2 , 0) = R − c
nT2
pL

≤

R− c
(
yT2

nT2
pH

+ (1− yT2)
nT2
pL

)
< 0.

Thus, UL
F (n, y)−UL

M (n, y) ≤ 0 given p = pL. The forward-looking policy results in smaller expected

total benefit than the myopic policy given p = pL.

Based on the above analysis, the myopic policy results in maximum expected total benefit. �

Proof of Part (c): We first prove a lemma, which will be used in the remainder of the proof.

Lemma 29. When βN (n) ∈ (0, 1), βF (n) < βN (n).

Proof of Lemma 29: Recall the optimality equation for forward-looking customers from (3.9),

VF (n, y) = max

{
0,− c+ (ypH + (1− y)pL)VF

(
n− 1,

pHy

pHy + pL(1− y)

)
+

(y(1− pH) + (1− y)(1− pL))VF

(
n,

(1− pH)y

(1− pH)y + (1− pL)(1− y)

)}
. (B.112)

Recall the expected total benefit for naive customers from (3.15),

VN (n, y) = max

{
0, R −

(
n

pH
y +

n

pL
(1− y)

)
c

}
.
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Recall s(n, y) from (B.54), s(n, y) = R−
(

n
pH

y + n
pL

(1− y)
)
c. By elementary calculations,

s(n, y) =− c+ (ypH + (1− y)pL)s

(
n− 1,

pHy

pHy + pL(1− y)

)

+ (y(1 − pH) + (1− y)(1− pL))s

(
n,

(1− pH)y

(1− pH)y + (1− pL)(1− y)

)
.

Thus,

f(n, βN (n))

= −c+ (βN (n)pH + (1− βN (n))pL)VF

(
n− 1,

pHβN (n)

pHβN (n) + pL(1− βN (n))

)

+ (βN (n)(1− pH) + (1− βN (n))(1 − pL))VF

(
n,

(1− pH)βN (n)

(1− pH)βN (n) + (1− pL)(1 − βN (n))

)

> −c+ (βN (n)pH + (1− βN (n))pL)s

(
n− 1,

pHβN (n)

pHβN (n) + pL(1− βN (n))

)

+ (βN (n)(1− pH) + (1− βN (n))(1 − pL))s

(
n,

(1− pH)βN (n)

(1− pH)βN (n) + (1− pL)(1 − βN (n))

)
(B.113)

= 0.

The inequality (B.113) is because when βN (n) ∈ (0, 1), (1−pH)βN (n)
(1−pH)βN (n)+(1−pL)(1−βN (n)) < βN (n) and it

implies that

s

(
n,

(1− pH)βN (n)

(1 − pH)βN (n) + (1− pL)(1− βN (n))

)
< s(n, βN (n)) = 0

≤ VF

(
n,

(1− pH)βN (n)

(1− pH)βN (n) + (1− pL)(1− βN (n))

)
, (B.114)

and by the definition of VF (n, y) from (3.8),

VF

(
n− 1,

pHβN (n)

pHβN (n) + pL(1− βN (n))

)
≥ VN

(
n− 1,

pHβN (n)

pHβN (n) + pL(1− βN (n))

)

≥ s

(
n− 1,

pHβN (n)

pHβN (n) + pL(1− βN (n))

)
.

It follows that βF (n) < βN (n) by the definition of βF (n) and βN (n) from (B.52) and (B.55). This

completes the proof of Lemma 29. �
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By Lemma (29), βF (n) < βN (n) when βN ∈ (0, 1). Recall the definition of ȳ1 from (3.26), ȳ1(n) =

βN (n) = βM (n). Let ȳ2(n) = βF (n), then the forward-looking customer joins while the customer using

naive policy or myopic policy does not join when ȳ2(n) ≤ y < ȳ1(n). It implies that UH
N (n, y) = 0,

UH
M (n, y) = 0 and UH

F (n, y) ≥ VF (n, y) ≥ 0 by Lemma 26. The customer will gain from learning, and the

forward-looking policy results in maximum expected total benefit. The gain UH
F (n, y) is increasing with y

by Lemma 27. �

Proof of Part (d): First we prove a lemma, which will be used later.

Lemma 30. When p = pL, UL
F (n, y) ≤ VF (n, y).

Proof of Lemma 30: We will use induction to show the claim.

When n = 0, VF (n, y) = UL
F (n, y) = R. UL

F (n, y) ≤ VF (n, y) holds. Suppose UL
F (n, y) ≤ VF (n, y)

holds for n = 0, 1, . . . , k − 1. When n = k, suppose there exists y such that UL
F (n, y) > VF (n, y).

Define

d9
.
= UL

F (k, y)− VF (n, y). (B.115)

If f(k, y) < 0, then UL
F (k, y) = 0 and VF (n, y) = 0 by (3.9) and (3.22). This can not be true.

Thus, f(k, y) ≥ 0. By the optimality equations from (3.9) and (3.22),

VF (k, y) =− c+ (ypH + (1− y)pL)VF (k − 1, g1(y)) + (y(1− pH) + (1− y)(1 − pL))VF (k, g2(y))

≥− c+ pLVF (k − 1, g1(y)) + (1− pL)VF (k, g2(y)) (B.116)

≥− c+ pLU
L
F (k − 1, g1(y)) + (1− pL)VF (k, g2(y)) (B.117)

UL
F (k, y) =− c+ pLU

L
F (k − 1, g1(y)) + (1− pL)U

L
F (k, g2(y)). (B.118)

The inequality (B.116) follows by VF (k − 1, g1(y)) ≥ VF (k, g1(y)) ≥ VF (k, g2(y)) since g1(y) ≥

g2(y) by Proposition 10-(a)(b). The inequality (B.117) is because UL
F (k− 1, g1(y)) ≤ VF (k − 1, g1(y)) by

induction hypothesis.

Combining (B.115, (B.117) and (B.118), we have

UL
F (k, g2(y))− VF (k, g2(y)) ≥

d9
1− pL

. (B.119)
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Replace y with g2(y), then y ∈ [0, 1] and

UL
F (k, y)− VF (k, y) ≥

d9
1− pL

. (B.120)

Define

h9
.
=

⌈
ln(d9/R)

ln(1− pL)

⌉
+ 1. (B.121)

Keep repeating this procedure h9 times, we will find y such that y ∈ [0, 1] and

UL
F (k, y)− VF (k, y) ≥

d9
(1− pL)h9

> R, (B.122)

which implies UL
F (k, y) > R. It contradicts with the fact that UL

F (k, y) ≤ R.

Thus, UL
F (k, y) ≤ VF (k, y) for any y.

By induction, UL
F (n, y) ≤ VF (n, y) for any n and y. �

When ȳ2(n) ≤ y < ȳ1(n), the forward-looking customer joins while the naive customer and the myopic

learner do not join. It implies that f(n, y) ≥ 0 and R− c
(
y n
pL

+ (1− y) n
pL

)
< 0.

Next, we prove that UL
F (n, 0) = VF (n, 0) = 0.

By Lemma 24,

VF (n, 0) = max

{
0, R− c

n

pL

}
. (B.123)

Suppose VF (n, 0) > 0, then VF (n, 0) ≤ R−c(y n
pH

+(1−y) n
pL

< 0, which contradicts with that VF (n, 0) >

0. Thus, VF (n, 0) = 0 and UL
F (n, 0) ≤ VF (n, 0) = 0 by Lemma 30. Then UL

F (n, y) ≤ UL
F (n, 0) = 0 since

UL
F (n, y) is decreasing in y by Lemma 28. Thus, the naive policy and myopic policy result in maximum

expected total benefit, and the value of learning is non-positive. The loss from learning is −UL
F (n, y) is

increasing in y by Lemma 28. �
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