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ABSTRACT

Zheqi Zhang: Prioritization and Distribution of Casualties in Disaster Response
Management

(Under the direction of Nilay Tanık Argon and Serhan Ziya)

This dissertation focused on two different problems that typically arise in the aftermath

of disasters. In the first part of the dissertation, we study the problem of how casualties

should be prioritized and distributed to different medical facilities in the aftermath of mass

casualty incidents (MCIs) with the objective of maximizing the expected total number of

survivors. Assuming that casualties have been triaged into two classes differentiated by their

severity levels and medical needs, the decision-maker needs to prioritize and distribute ca-

sualties using a limited number of ambulances to multiple medical facilities with different

capacities. By explicitly taking into consideration the capacity and service time at each

medical facility, we formulate this sequential decision-making problem as a Markov deci-

sion process (MDP). Based on this MDP formulation, we propose heuristic policies that

prescribe decisions on prioritization and distribution of casualties. We then employ discrete-

event simulations to demonstrate the benefits of using the proposed heuristics against some

benchmark policies under several realistic mass casualty incident scenarios such as terrorist

attacks, major traffic accidents, and earthquakes.

In the second part of the dissertation, we study the resource allocation problem in urban

search and rescue operations that follow natural disasters. Specifically, we consider a scenario

in which some individuals are trapped at various locations within a geographical area and

there is a limited time window during which these individuals can be rescued. We model

the problem as an MDP. Then, we characterize the optimal policy under the assumption
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that individuals belong to only one of two locations. We propose heuristics for the general

version of the problem. Finally, the proposed heuristics are examined with a simulation.
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CHAPTER 1

INTRODUCTION

The well-known scarcity principle does not only apply in economics. It can also be

observed in the aftermath of disasters where the emergency rescue and medical resources

and personnel are limited compared with the massive rescue and medical requests. Unlike

the situation in economics, the allocation of scarce resources in disaster response management

is fatal, thus should not be determined by the invisible hand of market. In this dissertation,

we consider certain decisions that are given by emergency responders and coordinators on the

allocation of various scarce service resources in catastrophic incidents. Specifically, we study

two emergency response situations and related decisions: (i) prioritization and distribution

of casualties to medical facilities in the aftermath of mass casualty incidents (MCIs) such as

terrorist shootings and earthquakes, and (ii) prioritization of people who need to be rescued

from their homes in the aftermath of a flood.

MCIs are events in which emergency medical service resources, such as personnel and

equipment, are overwhelmed by the quantity and severity of casualties [36]. In the aftermath

of MCIs, a surge of casualties demanding immediate medical treatment overwhelms the

emergency medical system. It is impossible to provide timely treatment to all casualties

involved. Hence, the objective of emergency responses to such events is generally stated as

“doing the best for the most people” [54]. In this dissertation, we focus on the casualty

prioritization and distribution problem in response to MCIs. Finding the optimal solution

to the problem is not a trivial task. It requires a comprehensive consideration of casualties’

acuity and their medical needs, the distance to and congestion at medical facilities, and the

capacity and capability of medical facilities. Our goal is to develop dynamic decision rules
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that prescribe priorities among casualty classes for transportation from the scene and the

routing of ambulances carrying casualties to medical facilities.

We used a Markov Decision Process (MDP) formulation to model the casualty prioritiza-

tion and distribution problem with two distinct casualty classes. When a mass casualty event

occurs, a surge of casualties appears at possibly multiple incident locations and overwhelms

available transportation and medical resources. Typically, a limited number of ambulances

are available for transporting casualties from incident locations to multiple medical facilities.

The service capacity of each medical facility is constrained by its number of equipment and

medical personnel. Solving the MDP problem for instances of realistic size is not possible.

Therefore, we propose easy-to-implement index type heuristic policies that can be applied to

all kinds of mass casualty events. More details on the casualty prioritization and distribution

problem in response to an MCI are presented in Chapter 2.

In Chapter 3, we examine the urban search and rescue operations that follow floodings

such as the one that happened in Texas in 2017 following Hurricane Harvey. The urban search

and rescue operations are critical in saving people’s lives. However, managing operations is

difficult due to hazardous weather conditions, large numbers of rescue requests, and limited

resources. To the best of our knowledge, no standard guideline exists for coordinating the

urban search and rescue operations at least in the U.S. and rescue operation decisions are

made in an “ad hoc” fashion based on previous experience.

We developed an MDP model for the urban search and rescue operations assuming there

are two classes of requests with different service rates, rewards, holding costs, and class-wise

deadlines. We fully characterized the optimal policy. Then, we designed heuristics to find

near-optimal solutions for the general model that assumes more than two classes of requests

and multiple servers. More details on this problem of allocating urban search and rescue

resources in flooding disasters are presented in Chapter 3.
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CHAPTER 2

DISTRIBUTION AND PRIORITIZATION OF PATIENTS IN THE AFTER-
MATH OF MASS CASUALTY INCIDENTS

2.1 Introduction

Mass casualty incidents (MCIs) are events in which emergency medical service resources,

such as personnel and equipment, are overwhelmed by the quantity and severity of casualties

[36]. Mass casualty incidents can be categorized into two: natural disasters (such as flooding,

earthquakes, and hurricanes) and man-made incidents (such as traffic accidents, nuclear

plant meltdowns, and acts of terrorism). In recent years, mass casualty incidents have

occurred more frequently and affected more people. Particularly, terrorist attacks, such as

mass shootings, vehicle ramming attacks, and release of chemical or biological weapons are

overgrowing threats according to the Global Terrorism Database [40]. Figure 2.1 illustrates

the trend of total number of fatalities from the terrorist attacks in recent decades.

It is common belief that more lives could be saved after such mass casualty events

if the affected communities have a scalable and well prepared emergency response system

established. According to the World Health Organization (WHO) [54], even though the

insufficiency in preparing for such emergency events is well recognized around the world, the

problem has not been addressed yet in a comprehensive and systematic way.

In the aftermath of mass casualty incidents, a surge of casualties demands urgent medical

services which overwhelms the emergency medical system and makes it impossible to provide

timely treatment to all casualties involved. Therefore, the objective of emergency response to

such events is generally stated as “doing the best for the most people” [54]. Response to such

events typically requires close collaboration between multiple organizations and agencies.

3



Figure 2.1: Total number of fatalities per year from terrorist attacks [40]

Furthermore, emergency medical resources have to be assigned and adjusted dynamically

in real time as the status of the incident changes. In this article, we focus on the casualty

distribution problem in response to a mass casualty incident. The problem consists of two

critical decisions – the prioritization and transportation of casualties to medical facilities.

Due to casualties’ urgent needs for medical services and the chaotic scene of a mass casualty

incident, those decisions have to be made quickly with incomplete and imprecise information.

The typical flow of events during response to mass casualty incidents consists of three

phases: triage, transportation, and treatment. The triage and transportation together are

often named the pre-hospital phase and the treatment is also called the hospital phase.

Triage refers to the classification of casualties based on the severity of their injuries. Simple

Triage and Rapid Transport (START) [70] and its variations are the most widely used mass

casualty triage methods in the U.S. according to [53]. First responders arriving at the scene

of a mass casualty incident first evaluate casualties using START based on the ability of
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casualties’ walking, respiration, perfusion, and mental status at safe locations. After triage,

the decision makers need to determine the distribution of casualties to medical facilities.

For “static” triage methods, such as START, priorities for transportation and treatment are

determined by casualties’ triage classes. Such static prioritization rules are simple enough

to be implemented quickly by emergency personnel but their main drawback is that they

only consider the severity of casualties while overlooking the number of casualties and the

availability of resources. As pointed out in [32, 49, 63] when medical resources are scarce

compared with the number of casualties, more lives can be saved by incorporating state-

dependent triage rules. The casualty distribution decision is perhaps even more difficult.

Sending an excessive number of casualties to the closest medical facility leads to excessive

congestion which causes a delay in medical care and imperils the survival of critical casualties

[58]. On the other hand, if a casualty were transported to a remote medical facility, the

treatment will also be deferred due to longer traveling time, which also undermines other

casualties since the number of ambulances is limited compared with the number of casualties

in a mass casualty event. A dynamic policy taking into consideration both the number of

casualties and the availability of resource factors could potentially outperform simple priority

and distribution policies [49].

Our goal is to develop dynamic decision rules that prescribe priorities among casualty

classes for transportation from the scene and the routing of ambulances carrying casualties

to medical facilities. We start with a stylized mathematical model of the casualty prioriti-

zation and distribution problem involving two casualty classes. When a mass casualty event

takes place, a surge of casualties appears at possibly multiple incident locations which over-

whelm the available transportation and medical resources. A limited number of ambulances

are available for transporting casualties from incident locations to multiple medical facili-

ties. Furthermore, at each medical facility, service capacity is constrained by the number of

equipment and medical personnel. Therefore, casualties have to first wait for ambulances

at event locations and again wait for medical attention at medical facilities. Our stochastic
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model considers this underlying tandem structure of congestion and captures the randomness

in transportation and treatment times at medical facilities. Unfortunately, this stochastic

model even with its many assumptions is too complex to study analytically. However, it

is still useful as it paves the way for several easy-to-implement heuristics that provide joint

prioritization and distribution decisions. The proposed heuristics are of index type and most

of the indices can be calculated from one line of mathematical formulas using a calculator.

What is more, our heuristics are widely applicable to various types of mass casualty events

involving multiple casualty classes, multiple incident locations, and multiple medical facili-

ties. More importantly, we examined the proposed heuristics in a comprehensive simulation

study that would give insights into various types of MCIs. In particular we created four

types of hypothetical scenarios based on four different kinds of real MCIs: single-location

terrorist attacks, multiple-location terrorist attacks, single-location major traffic accidents,

and earthquakes. Each type of scenario has unique characteristics such as injury types,

scales of events, and geography that all affect the performance of heuristics. Indeed, we find

in our simulation study, there is not a heuristic outperforms all other heuristics in all sce-

narios. Certain events may require more sophisticated heuristics whereas in others, simpler

heuristics may provide satisfactory performance.

The remaining of this chapter is organized as follows. We review both medical and

operations research literature relevant to this work in Section 2.2. The casualty prioritization

and distribution problem is formulated as a MDP in Section 2.3. Based on the insights

derived from our MDP model, several heuristic policies are constructed in Section 2.4 when

the status of all medical facilities are perfectly known. We extend our heuristics to the

situation where the information on the status of medical facilities is incomplete in Section

2.5. We provide the results of our simulations study to test the proposed heuristics in

hypothetical but realistic scenarios in Section 2.6. We conclude the chapter by a discussion

of the main insights gained from this study in Section 2.7. Additional supporting material

is provided in the Appendix.
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2.2 Literature Review

We start by reviewing existing mass-casualty triage methods in the medical literature.

A committee study identified and compared 9 existing triage systems including 2 pediatric

systems in [34, 41]. Most of the MCI triage systems are similar in terms of their use of

physiological criteria to classify casualties into 4 or 5 classes. Most broadly accepted triage

methods are not evidence-based and no quantitative research had been conducted to evaluate

the usability, reliability, and the ability to apply those triage system in MCIs according to

[34]. In the review on triage methods sponsored by the Center for Disease Control and

Prevention (CDC), the review committee that consists of medical experts concluded there is

no evidence to support that one triage system outperforms the others [41]. The reasons are

that data collected during the mass casualty incidents are anecdotal [41] and data from daily

emergency department activities may not reflect the situation during mass casualty incidents

[24]. A national guideline was also proposed in [41] to unify the mass casualty triage process

across the U.S. More recently, Bazyar et al. [9] conducted a review of twenty different adult

triage systems used in practice that were proposed between 1990 and 2018 across the world.

The authors have not declared any triage system as the best and recommended that different

countries should have their own triage systems.

Simple Triage and Rapid Transport (START) [70] and its variants are the most widely

used mass-casualty triage methods in the U.S. It has been implemented during the 1994

Northridge earthquake in California, U.S.A. and the 9/11 attacks to the New York World

Trade Center in 2001. START uses the ability to obey commands, respiratory rate, and

radial pulse to classify casualties into four triage classes: The casualties in expectant class

(black tag) are unlikely to survive given the severity of injuries and available level of medical

care. Immediate casualties (red tag) require urgent medical intervention to survive. Delayed

casualties (yellow tag) may have life-threatening injuries but their conditions are not expected

to deteriorate rapidly. Minor casualties (green tag) have non life-threatening injuries and
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they may be able to access medical care on their own, thus often referred to as “walking

wounded.” Once the casualties are triaged, the priority for transportation and treatment

are given in the following order: immediate class first, followed by the delayed class, and

finally the minor and the expectant casualties. Within each category, casualties in the worst

condition have the priority. SAVE [11] was proposed to compliment START as a secondary

triage method. It considers the limitation of on-site medical resources to prioritize casualties

within each START class further.

SALT (Sort, Access, Life-saving interventions, Treatment and/or transportation) triage

is proposed in [41] as a national triage guideline “using aspects of all identified systems

that were supported by the best available evidence and expert opinion.” SALT starts with

a global sorting of casualties into three groups for individual assessment. Based on motor

function, casualties who are able to walk have the least priority, those who cannot move or

with obvious life threats are given the highest priority, and remaining casualties who are

able to respond with purposeful movement are assigned medium priority. The individual

assessment begins with damage control stabilization. Then, casualties are further prioritized

into five categories: immediate, delayed, minimal, expectant, and dead based on physiological

criterion similar to START.

Sacco Triage Method (STM) developed by Sacco and his colleagues in [52, 63, 64] is

a triage method that takes into consideration the severity of causalities together with the

availability of resources simultaneously in real time. First responders evaluate each casualty

and assign an RPM (Respiration, Pulse and Motor response) score describing the severity of

each casualty initially. Deterioration for each RPM score is estimated by the Delphi method

and logistic regression is used to compute the survival probability as a function of time

for each RPM score assuming minimal medical intervention. A mixed integer program is

solved in real time to determine the prioritization for transportation and treatment with the

objective of maximizing the expected number of survivors.
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Static methods such as START and SALT can be performed quickly by medical per-

sonnel without extensive training. The drawbacks for such triage systems are also clear:

they only consider the severity of casualties while ignoring the scale of the event and the

availability of resources at medical facilities. The disadvantages for state-dependent meth-

ods such as STM are pointed out in [18, 34]: detailed data on the triage results and the

availability of resources are difficult to collect within a short period of time in the aftermath

of mass casualty incidents. Also, software and hardware are necessary for solving a complex

mathematical programming problem. As suggested by Brandeau et al. [13] quantitative

methods are important tools for planning effective health sector responses to disasters while

an appropriate balance between simplicity and complexity is critical. We believe an ideal

triage method should have the property of simplicity to implement such as START and

SALT but should also take into consideration the characteristic of casualties together with

the limitation of resources as in STM.

In the operations research literature, the prioritization and distribution of casualties in

the aftermath of mass casualty incidents have drawn much attention recently. Most of the

prior work studies these problems separately: some consider the distribution problem only

assuming all casualties are identical and others focus on finding the best prioritization while

considering a single medical facility or ignoring the capacity at medical facilities. Only a

few looked at the prioritization and distribution problems simultaneously like we do in this

chapter.

A large number of studies focus solely on the casualty distribution problem (also re-

ferred to as the ambulance allocation problem). Gong and Batta [27] studied the ambulance

allocation and re-allocation problem in the aftermath of mass casualty incidents. Their

model assumed casualties in clusters are discovered and picked up by ambulances. Ambu-

lances are re-allocated at deterministic time epochs with the objective of minimizing the

makespan. Jotshi et al. [37] used data fusion and simulation methods to investigate the

dispatch and routing of ambulances post-disaster. Their model fuse the information of ca-
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sualties, roads, ambulances, and hospitals to estimate and maximize the life expectancy of

casualties. The Severity Adjusted Victim Evacuation method (also known as ‘SAVE’ which

is different from the ‘SAVE’ triage method in [11]) proposed by Dean and Nair [19] is a

mixed-integer programming formulation for finding the optimal patient distribution after

a mass casualty incident. The objective is to maximize the expected number of survivors

with the constraints on available ambulances and the capacity at medical facilities. Mills

et. al. [49] in their most recent chapter studied the casualty distribution problem in the

aftermath of mass casualty incidents with a comprehensive model. The model considered

general survival probabilities of casualties at distinct locations, limited transportation re-

sources, dynamic capacity at medical facilities, as well as uncertainties in transportation and

treatment times. Two heuristics were proposed using a myopic approach and one-step policy

improvement approach. The simulation studies demonstrate the robustness and advantage

of both heuristics against benchmark policies with limited number of ambulances.

There is also a vast literature dedicated to solving the casualty prioritization problem in

the aftermath of MCIs. Argon et al. [4] and Jacobson et al. [32] modeled the casualty prior-

itization problem in the aftermath of mass casualty incidents as a scheduling problem for a

clearing system. The objective is to maximize the expected number of survivors where each

casualty is assumed to have a random deadline. Stochastic comparisons were used to identify

conditions under which state-independent polices are optimal and optimal policies were par-

tially characterized when they depend on the system state by means of an MDP formulation.

[4, 32] demonstrated the benefits of state dependent policies for prioritization decisions by

numerical studies. A fluid approximation to the stochastic problem was employed by Mills

et al. [48, 50] to study prioritization of casualties. Casualties were modeled as a fluid that

flow continuously from a single casualty location to a single medical facility. Criticalities of

casualties are captured by non-increasing survival functions rather than abandonments as in

earlier studies [4, 32]. Mills et al. [48] proved that the priority of transportation will switch

at most twice under the optimal policy when two distinct quasi-concave functions repre-
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sent survival probabilities for the immediate and delayed classes in START. An algorithm

(ReSTART) was proposed to identify these switching times. Mills [47] further extended the

results to multiple classes of casualties and multiple medical facilities. A heuristic policy

that integrates the myopic and look-ahead policies was proposed to determine the priori-

ties. Numerical studies showed that the performance of proposed heuristics are close to the

optimal solution obtained from solving a mixed integer program as in SAVE [19] and STM

models [63, 64].

Mizumoto et al. [51] showed that the combined casualty distribution and prioritization

problem (they call it transportation scheduling problem) is NP-hard. They applied top k

breath first search (DkBFS) to achieve a near-optimal solution. The authors introduced

E-triage or E-tag, which can sense the vital signs of patients to estimate their survival prob-

abilities in real time. Casualties with different time-varying probabilities of survival and

multiple medical facilities with fixed capacity are considered. The objectives are to maxi-

mize the number of casualties whose probability of survival is greater than a threshold as

well as to maximize the average survival probabilities. Jin et al. [35] proposed an emer-

gency logistic model for casualty delivery and medical resource allocation in a mass casualty

event. Triaged casualties from multiple locations have different probabilities of survival in

each class. Each casualty has the choice of receiving care at the on-site clinic to prolong

patients’ survival before visiting a general hospital for treatment or visit the general hospital

directly. Resources are limited at both on-site clinic and general hospital. Mixed integer

programming is used to maximize the number of casualties with the probability of survival

above a threshold. Sung and Lee [69] also formulated the ambulance routing problem using

as a mixed-integer program. Branch-and-price scheme was applied to find close-to-optimal

solutions. The main drawback with either solving a mathematical program as in [35, 69]

or searching on a graph model as in [51] is the lack of practicality. These approaches are

suitable for making plans prior to the events. Waiting for a computer program to find a

solution and then deploying it in the chaotic environment of mass casualty incidents are still
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deemed unrealistic. In addition, these deterministic methods overlook the stochastic nature

of the mass casualty incidents. In a recent paper by Shin and Lee [65], simulation-based

Approximate Dynamic Programming (ADP) is used to obtain a near-optimal solution of an

MDP formulation for the joint prioritization and distribution problem. They also developed

a heuristic policy for a single location multiple hospital scenario. The proposed heuristic is

tested in a case study with a limited number of casualties.

Patient distribution problem is also well studied in the context of daily emergency med-

ical services (EMS) and military medical operations. ADP is adopted by Maxwell et al. [45]

and Rettke et al. [59] to obtain near optimal solution for the respective MDP models. Rettke

et al. [59] focus on the dispatching of military medical evacuation assets, whereas Maxwell et

al. [45] are motivated by the ambulance reallocation problem for daily emergencies. Recent

reviews on EMS systems could be found in [5, 10, 60].

2.3 Problem Formulation

2.3 Model Assumptions

We model the joint casualty prioritization and distribution problem using a Markov

decision process (MDP). We prune away some elements in order to focus on the essence of

the problem and have a tractable model. The simplicity of the MDP model allows us to gain

insights into the problem and develop heuristic policies. Neglected features are placed back

into the problem in the simulation stage to test the performance of the proposed heuristic

policies in more realistic settings in Section 2.6.

In our MDP model, mass casualty events take place at L distinct locations. Let L be

the set of all such locations. At each casualty location, we assume casualties have already

been triaged according to START classification [70]. We only consider casualties in the

immediate and delayed classes in our model since their survivals are most sensitive to timely

medical intervention. While minor casualties are less urgent for medical services, expectant

casualties are unlikely to survive given the level of available care and severity. Furthermore,
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Frykberg [23] pointed out that the survival of critical casualties (immediate and delayed) is

the best measure of the success for emergency medical response in mass casualty incidents.

Let C = {i, d} denote the set of casualty classes where i denotes the immediate class and d

denotes the delayed class.

Multiple medical facilities, such as trauma centers and hospitals, are available to serve

casualties. Let H denote the set of H medical facilities. Each medical facility may have

a different service capability and capacity. Assume medical facility h ∈ H has b
(c)
h < ∞

servers dedicated to class c ∈ C casualties. The contingency plan for mass casualty incidents

varies from hospital to hospital – arriving casualties could be served at ED, ICU or other

departments of the medical facility [21]. In this context, the total number of servers will

refer to the maximum number of casualties a medical facility will be able to handle at a

time. b
(c)
h = 0 indicates that medical facility h is not capable of providing care to class c

casualties. If a casualty were directed to a medical facility not capable of serving him/her,

he/she would have to be transferred to another medical facility. Such a route would be less

preferable than transporting the casualty directly to a medical facility with the ability to

treat him/her. Therefore, we assume a casualty will only be transported to medical facilities

capable of providing care to that casualty in our model.

Upon arriving at medical facility h, a casualty of class c receives treatment immediately

from one of b
(c)
h servers if there is an idle server. If all servers are busy serving other class

c casualties, he/she will join a first-come-first-serve queue. We assume independent and

identical exponential service times with rate µ
(c)
h <∞ for each server serving a class c casualty

at medical facility h. At service completion, the survival probability of a class c casualty

is r
(c)
h at medical facility h. The survival probability depends on both the class of casualty

and medical facility, which may reflect the severity of casualty and the capability of the

medical facility, respectively. Since we assume dedicated servers for immediate and delayed

casualties with independent service performance at all medical facilities, we hypothetically
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separate each medical facility into two independent facilities with the same location in our

model, but one treating immediate casualties and the other treating delayed casualties.

Limited transportation resources, such as ambulances, are available for transporting

casualties between casualty locations and medical facilities. Let A <∞ be the total number

of ambulances. We assume an ambulance carries at most one casualty at a time. The

travel time from casualty location l ∈ L to medical facility h ∈ H follows an exponential

distribution with rate λlh <∞ for any ambulance. For modeling tractability, we ignore the

travel time for empty ambulances returning to casualty locations from a medical facility as

in Mills et al. [49].

In order to capture different deterioration rates for different classes of casualties, we

assume exponential discounting with a discount rate of αi > 0 for the immediate class and

αd > 0 for the delayed class. The performance measure is the expected total discounted

survival probability, which can be interpreted as the expected number of survivors. We

aim to find an optimal policy that determines the priority for transportation as well as the

destination facility for each casualty.

In our sequential decision making problem, decisions are made every time the state of

the system changes. When an ambulance arrives at a casualty location, we need to make the

prioritization and distribution decisions simultaneously. More specifically, we need to select

a casualty from either the immediate class or the delayed class and determine a medical

facility as the destination for transportation. There is no decision to make when a casualty

completes his/her service at a medical facility but a reward representing the expected survival

probability for the casualty is collected.

Our model generalizes the model in Mills et al. [49] to two classes of casualties. The

presence of a second casualty class induces the casualty prioritization problem, which is

neglected in [49] since all casualties are assumed to be identical. The single class problem

studied in [49] is already too complicated to obtain the optimal solution. The extra dimension

of the problem makes it even more complex to solve analytically. Instead, we focus on
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developing heuristic policies based on insights gained from the MDP formulation. We then

test all heuristic policies in more realistic settings which mimic various types of actual mass

casualty incidents including terrorist attacks, major traffic accidents, and natural disasters.

Proposed heuristic policies are compared with benchmark policies in multiple simulation

studies to identify their advantages and disadvantages.

2.3 MDP Formulation

We first define the state of the system, let S(c)(t) =
(
W(c)(t),X(c)(t)

)
be the state of class

c ∈ C casualties in the system at time t > 0, where W(c)(t) =
(
w

(c)
1 (t), w

(c)
2 (t), . . . , w

(c)
L (t)

)
,

w
(c)
l (t) is the number of class c casualties at location l ∈ L at time t, and X(c)(t) =(
x

(c)
1 (t), x

(c)
2 (t), . . . , x

(c)
H (t)

)
, x

(c)
h (t) is the number of class c casualties at medical facility

h ∈ H at time t. Then, the system state at time t ≥ 0 can be express as S(t) =(
S(i)(t),S(d)(t)

)
∈ S, where S denotes the state space.

Let a = {a(c)
lh : c ∈ C, l ∈ L, h ∈ H} denote the decision matrix at a decision epoch,

where a
(c)
lh is the number of ambulances carrying class c casualties from location l to facility

h. At any given state S (we will drop the time index t for notational simplicity whenever

not needed), a admissible action satisfies the following constraints:

∑
h∈H

a
(c)
lh ≤ w

(c)
l ,∀l ∈ L, c ∈ C, (2.1)

∑
l∈L

∑
h∈H

∑
c∈C

a
(c)
lh ≤ A. (2.2)

Constraint (2.1) is the casualty availability constraint at each location for each casualty class

and constraint (2.2) is the ambulance availability constraint. Let AS denote the set of all

admissible actions at state S that satisfy (2.1) and (2.2).
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Let f (c)(t|S, a,S′) denote the discounted reward generated when action a taken at state

S takes the system to state S′ after t units of time. It can be expressed as

f (c)(t|S, a,S′) =


r

(i)
h e
−αit if S′ =

((
W(i),X(i) − eh

)
,S(d)

)
and c = i,

r
(d)
h e−αdt if S′ =

(
S(i),

(
W(d),X(d) − eh

))
and c = d,

0 otherwise,

(2.3)

where ek is a vector of zeros with only its kth component being one and its length is clear

from the context. Define P (S′|S, a) to be the probability that the system will end up in

state S′ at the beginning of the next decision epoch if decision a ∈ AS is implemented at

state S. Define also β(S, a) =
∑

l∈L
∑

h∈H
∑

c∈C a
(c)
lh λlh +

∑
h∈H

∑
c∈C((b

(c)
h ∧ x

(c)
h )µ

(c)
h ) where

a ∧ b = min(a, b). Then, under the assumption of exponential service and travel times, we

have

P (S′|S, a) =



a
(i)
lh λlh/β(S, a) if S′ =

((
W(i) − el,X

(i) + eh

)
,S(d)

)
,

∀l ∈ L, h ∈ H,

a
(d)
lh λlh/β(S, a) if S′ =

(
S(i),

(
W(d) − el,X

(d) + eh

))
,

∀l ∈ L, h ∈ H,

(b
(i)
h ∧ x

(i)
h )µ

(i)
h /β(S, a) if S′ =

((
W(i),X(i) − eh

)
,S(d)

)
,∀h ∈ H,

(b
(d)
h ∧ x

(d)
h )µ

(d)
h /β(S, a) if S′ =

(
S(i),

(
W(d),X(d) − eh

))
, ∀h ∈ H,

0 otherwise.

(2.4)

The first two cases in (2.4) correspond to ambulance arrivals and the next two cases cor-

respond to service completions at medical facilities. We next apply uniformation as in [43]

with a uniformization constant

β = A
∑
l∈L

∑
h∈H

λlh +
∑
h∈H

∑
c∈C

b
(c)
h µ

(c)
h . (2.5)
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The new transition probabilities under uniformization are given by,

P̃ (S′|S, a) =


(1− β(S, a))/β if S′ = S,

P (S′|S, a)β(S, a)/β if S′ 6= S.

(2.6)

By Theorem 11.5.2 in Puterman [57], there exists an optimal deterministic stationary

policy to this MDP because S is discrete, action space is finite, rewards are bounded, and

β is finite. Breaking ties in favour of prioritizing the immediate class and transporting to

the closest medical facility, let π∗ be the unique optimal deterministic stationary policy that

takes action a∗S at state S. Let V (c)(S) denote the total expected number of class c survivors

starting from state S ∈ S under π∗. And V (S) = V (i)(S) + V (d)(S) denote the maximum

expected number of survivors starting from state S. Then, the optimality equations can be

written as follows for all S ∈ S and a ∈ AS,

V (S) = max
a∈AS

{
V (i)(S, a) + V (d)(S, a)

}
, (2.7)

where V (c)(S, a) =
∑
S′∈S

P̃ (S′|S, a)

∫ ∞
0

[
f

(c)
h (t|S, a,S′) + e−αctV (c)(S′)

]
βe−βtdt,

and V (c)(S′) = V (c)(S′, a∗S′) for c ∈ C.

(2.8)

The integrals in (2.7) can be rewritten as,

∫ ∞
0

f (c)(t|S, a,S′)βe−βtdt =



r
(i)
h β/(αi + β) if S′ =

((
W(i),X(i) − eh

)
,S(d)

)
and c = i,

r
(d)
h β/(αd + β) if S′ =

(
S(i),

(
W(d),X(d) − eh

))
and c = d,

0 otherwise,

(2.9)

∫ ∞
0

e−αctV (c)(S′)βe−βtdt = V (c)(S′)β/(αc + β), for c ∈ C. (2.10)
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Plugging (2.4), (2.6), (2.9), and (2.10) into (2.7), we obtain

V (i)(S, a) =
βV (i)(S)

αi + β
+
∑
h∈H

(
b

(i)
h ∧ x

(i)
h

)
µ

(i)
h

(
r

(i)
h + V (i)(S

(i)
0,−h,S

(d))− V (i)(S)

αi + β

)

+
∑
h∈H

(
b

(d)
h ∧ x

(d)
h

)
µ

(d)
h

(
V (i)(S(i),S

(d)
0,−h)− V (i)(S)

αi + β

)

+
∑
l∈L

∑
h∈H

a
(i)
lh λlh

(
V (i)(S

(i)
−l,h,S

(d))− V (i)(S)

αi + β

)

+
∑
l∈L

∑
h∈H

a
(d)
lh λlh

(
V (i)(S(i),S

(d)
−l,h)− V (i)(S)

αi + β

)
,

(2.11)

V (d)(S, a) =
βV (d)(S)

αd + β
+
∑
h∈H

(
b

(i)
h ∧ x

(i)
h

)
µ

(i)
h

(
V (d)(S

(i)
0,−h,S

(d))− V (d)(S)

αd + β

)

+
∑
h∈H

(
b

(d)
h ∧ x

(d)
h

)
µ

(d)
h

(
r

(d)
h + V (d)(S(i),S

(d)
0,−h)− V (d)(S)

αd + β

)

+
∑
l∈L

∑
h∈H

a
(i)
lh λlh

(
V (d)(S

(i)
−l,h,S

(d))− V (d)(S)

αd + β

)

+
∑
l∈L

∑
h∈H

a
(d)
lh λlh

(
V (d)(S(i),S

(d)
−l,h)− V (d)(S)

αd + β

)
,

(2.12)

where S
(c)
−l,h =

(
W(c) − el,X

(c) + eh

)
and S

(c)
0,−h =

(
W(c),X(c) − eh

)
for c ∈ C, l ∈ L, and

h ∈ H. In (2.11) and (2.12), V (c)(S′) − V (c)(S) terms can be interpreted collectively as the

marginal “benefit” by making the corresponding decision.

Remark 2.3.1. The MDP formulation given above can be easily extended to k > 2 classes

of casualties. The formulation then will have k equations similar to (2.11) and (2.12) corre-

sponding to k classes and there will be k terms within the maximization given in (2.7).
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2.3 Greedy Algorithm for Optimal Policy

If we somehow know the values V (c)(S, a) for all S ∈ S and a ∈ AS, then, to find

the optimal policy, we need to solve a integer program with the objective function (2.7),

constraints (2.1) and (2.2), and decision variable a. More specifically, for state S ∈ S, l ∈ L,

and h ∈ H, let

m
(i)
lh (S) = λlh

(
V (i)(S

(i)
−l,h,S

(d))− V (i)(S)

αi + β
+
V (d)(S

(i)
−l,h,S

(d))− V (d)(S)

αd + β

)

m
(d)
lh (S) = λlh

(
V (i)(S(i),S

(d)
−l,h − V (i)(S))

αi + β
+
V (d)(S(i),S

(d)
−l,h − V (d)(S))

αd + β

)
.

(2.13)

The constrained integer program for each S ∈ S can be expressed as:

max
∑
l∈L

∑
h∈H

∑
c∈C

a
(c)
lh m

(c)
lh (S) + C

s.t. (2.1) and (2.2),

(2.14)

where C is a constant corresponding to the sum of first two lines in (2.11) and (2.12), which

do not contain decision variable a. We will drop the state parameter S in m
(c)
lh (S) when there

is no risk of confusion in the rest of the chapter.
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Algorithm 1 Finding optimal policy for given values of V (c)(·)
1: for all l ∈ L, h ∈ H, c ∈ C do
2: a

(c)
lh ← 0

3: end for
4: list← {(l, h, c) : l ∈ L, h ∈ H, c ∈ C}
5: Sort-Descending(list, m

(c)
ih (S)) {Sort list in the descending order according to m

(c)
ih (S)}

6: for k = 1 to list.Length do
7: (l, h, c)← list[k]

8: while
∑

h∈H a
(c)
(lh) < w

(c)
l do

9: if
∑

l∈L
∑

h∈H
∑

c∈C a
(c)
lh < A then

10: a
(c)
lh ← a

(c)
lh + 1

11: else
12: BREAK
13: end if
14: end while
15: end for

Proposition 1. Algorithm 1 returns an optimal solution to (2.14) when V (c)(S)’s are known

for all S ∈ S and c ∈ C.

The action space, the feasible solutions, and the non-negative objective function of Prob-

lem (2.14) form a finite weighted matroid. Therefore, by [55] the optimal solution could be

obtained using a greedy algorithm, such as Algorithm 1 which generalized Algorithm 1 in

[49] to two classes. The proof of Proposition 1 is omitted.

Each triplet (l, h, c) in Algorithm 1 presents a potential dispatch of a class c casualty

from location l to hospital h. According to Algorithm 1, ambulances will be dispatched

in descending order of m
(c)
lh , where m

(c)
lh ’s can be interpreted as the marginal reward of

transporting a class c casualty from location l to medical facility h. Since finding exact

values of m
(c)
lh ’s can be computationally difficult even for reasonable problem sizes, we develop

heuristic policies based on the greedy structure of (2.14) with different approximations for

m
(c)
lh ’s in Section 2.4.
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2.4 Heuristics under Perfect Information on the State of Medical Facilities

In the aftermath of a mass casualty incident, figuring out the exact quantity and severity

of all casualties at multiple casualty locations can be difficult. The situation at the scene

may vary with time and the rescue progress. On the other hand, the status of the medical

facilities is more likely to be accessible based on emergency drills, data on daily operations,

emergency management plan, and information technology. Consequently, the state of the

problem may be partially observable. In this section, we make use of the greedy structure

from Proposition 1 to develop heuristic policies that only require information from medical

facilities. We further modified the heuristic policies to accommodate uncertainty on the

status of medical facilities in Section 2.5.

2.4 Myopic Heuristic (MYH)

The myopic policy takes into consideration a single casualty. It maximizes the expected

survival probability for a casualty if he/she arrives at a medical facility at the next decision

epoch. An ambulance that carries a class c casualty from location l towards facility h will

reach the medical facility with probability λlh/β in the next decision epoch of the uniformized

MDP defined in Section 2.3.2. If the state is S =
(

(W(i),X(i)), (W(d),X(d))
)

and the next

event is the arrival of this casualty at facility h, then he/she this casualty will become the

(x
(c)
h + 1)th casualty at that facility. If x

(c)
h + 1 > b

(c)
h , this casualty will join the first-come-

first-serve queue waiting for an available server and the time until service will be the sum

of x
(c)
h + 1 − b

(c)
h i.i.d.exponential random variables with rate µ̃

(c)
h = b

(c)
h µ

(c)
h . Otherwise,

the casualty will start treatment right away. If the casualty fails to reach the facility, the

expected survival probability in the next decision epoch will be 0. Then, we can approximate

m
(c)
lh (S) in Algorithm 1 by

m
(c)
G (l, h) = λlh

(
r

(c)
h

αc + β

)(
µ

(c)
h

αc + µ
(c)
h

)(
µ̃

(c)
h

αc + µ̃
(c)
h

)[x(c)h +1−b(c)h
]+
, (2.15)
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where [x]+ equals to x if x ≥ 0 and 0 otherwise.

Remark 2.4.1. This is a generalization of the Myopic policy in [49] to multiple classes of

casualties.

Remark 2.4.2. m
(c)
G (l, h) values depend on the number of casualties at each medical facility

while are independent of the numbers of casualties at casualty locations.

2.4 Policy Improvement Heuristic (PIH)

We generalize the policy improvement heuristic in [49] to the case with two casualty

classes. We assume an infinite number of casualties in both immediate and delayed classes at

all casualty locations and that all servers dedicated to the same class of casualties are pooled

at each facility. Since we hypothetically divided each facility into two artificial facilities

each serving only one class of casualties in our model, each artificial facility now can be

approximated by a single server. To adopt the policy improvement method, we start with a

simple static policy under which value functions i.e., the expected number of survivors, are

easy to compute, and then apply one step of the policy improvement algorithm to get a state-

dependent policy. We use Bernoulli splitting as the initial static policy: an empty ambulance

will carry a class c casualty from location l to facility h with probability θ
(c)
lh independent

of anything else at the beginning of each decision epoch. The constraints are: θ
(c)
lh > 0 if

and only if facility h is capable of treating class c casualties, θ
(c)
lh ≥ 0, ∀c ∈ C, l ∈ L, h ∈ H,

and
∑

c∈C
∑

l∈L
∑

h∈H θ
(c)
lh ≤ 1. Both the initial splitting probabilities θ

(c)
lh ’s and service at

facilities are independent of each other, therefore the Bernoulli splitting policy only depends

on the number of casualties at each facility. We can then model each facility as a single

server queue with arrival rate λ̃
(c)
h = A

∑
l∈L θ

(c)
lh λlh and service rate µ̃

(c)
h = b

(c)
h µ

(c)
h . Let

X = (X(i),X(d)) represent the numbers of casualties at all medical facilities. Let V
(c)
∞ (X)

denote the expected total discounted survival probability for class c casualties under the

Bernoulli splitting policy starting at initial state X. By uniformizing the single server queue
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at each medical facility and incorporating the discount factor αc, we can derive the following,

V (c)
∞ (X(i) + eh,X

(d))− V (c)
∞ (X(i),X(d)) =


∆(i)(x

(i)
h ) if c = i,

0 if c = d,

V (c)
∞ (X(i),X(d) + eh)− V (c)

∞ (X(i),X(d)) =


0 if c = i,

∆(d)(x
(d)
h ) if c = d,

where ∆(c)(x
(c)
h ) =

(
µ̃

(c)
h r

(c)
h

λ̃
(c)
h

)(
µ̃

(c)
h − λ̃

(c)
h + αc − η(c)

h

µ̃
(c)
h − λ̃

(c)
h − αc − η

(c)
h

)(
µ̃

(c)
h + λ̃

(c)
h + αc − η(c)

h

2λ̃
(c)
h

)x
(c)
h

,

and η
(c)
h =

√
(µ̃

(c)
h + λ̃

(c)
h + αc)2 − 4λ̃

(c)
h µ̃

(c)
h .

(2.16)

We omit the derivation of (2.16) due to its similarity with the proof of Proposition 4 in Mills

et al. [49]. Then, we approximate m
(c)
lh (S) in (2.13) by

m
(c)
P (l, h) =

λlh∆
(c)(x

(c)
h )

αc + β
. (2.17)

We discuss the selection of the Bernoulli splitting probabilities θ
(c)
lh , l ∈ L, h ∈ H, c ∈ C based

on a fluid approximation in appledix B.

2.4 Ample Ambulances Heuristic (AAH)

Both myopic and policy improvement heuristics depend only on the number of casualties

at medical facilities while ignoring the size of casualties at casualty locations. We develop a

third heuristic taking into consideration the number of casualties at locations. To simplify

the problem, we assume that there is ample transportation resource so that all casualties

can be transported simultaneously and there is a single casualty location. Hence, we can

drop the index associated with location.

The travel time from casualty location to facility h is exponentially distributed with

rate λh. Now let a
(c)
h denote the number of class c casualties transported to facility h. The
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number of dedicated servers for class c casualties at facility h is b
(c)
h and service time follows

an exponential distribution with rate µ
(c)
h as before. Suppose there are x

(c)
h casualties at

medical facility h at the decision epoch, then only [b
(c)
h − x

(c)
h ]+ of the servers are available

initially. Suppose there are w(i) casualties triaged as immediate and w(d) casualties triaged

as delayed at time 0. If a
(c)
h ≤ [b

(c)
h −x

(c)
h ]+, all casualties sent to facility h will start treatment

immediately upon arrival. Otherwise, there are more casualties sent to facility h than the

number of servers available initially. Some of the casualties will have to join a queue. The

one-period casualty allocation problem can be then formulated as

max
∑
c∈C

∑
h∈H

[(
a

(c)
h ∧ [b

(c)
h − x

(c)
h ]+

)
r

(c)
h

∫ ∞
0

e−αctdF
(0)
ch (t)

+ r
(c)
h

[
a
(c)
h −[b

(c)
h −x

(c)
h ]+

]+∑
k=1

∫ ∞
0

e−αctdF
(k)
ch (t)

]

s.t.
∑
h∈H

a
(c)
h = w(c),∀c ∈ C,

(2.18)

where r
(c)
h e−αct represents the survival probability of a class c casualty who completes his/her

treatment at facility h at time t, F
(0)
ch (t) is the cumulative distribution function of the time

that it takes starting from departure from the casualty location until service completion at

facility h for a class c casualty if he/she starts treatment immediately upon arrival, and

F
(k)
ch (t) is the cumulative distribution of the time from departing the casualty location until

service completion at facility h for the kth casualty in the queue not including those in

service. Under exponential service and travel times, we have

∫ ∞
0

e−αctdF
(0)
ch (t) =

(
λh

λh + αc

)(
µ

(c)
h

µ
(c)
h + αc

)
. (2.19)

We approximate the time until service completion for the kth casualty in the queue at a

medical facility by the sum of his/her travel time, the service time for all casualties in front

of him/her and his/her own service time. The actual time until service completion will
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be smaller since when he/she is traveling, casualties arrived earlier will already start their

service. In this case, F
(k)
ch (t) is the convolution of travel time distribution, first k service

completion time distribution and her individual service time distribution which then leads

to the following

∫ ∞
0

e−αctdF
(k)
ch (t) =

(
λh

λh + αc

)(
µ

(c)
h

µ
(c)
h + αc

)(
µ̃

(c)
h

µ̃
(c)
h + αc

)k

, (2.20)

where µ̃
(c)
h = b

(c)
h µ

(c)
h is the aggregate service rate for all b

(c)
h class c servers at facility h.

Now we can evaluate and simplify (2.18) as

max
∑
c∈C

∑
h∈H

r
(c)
h

(
λh

λh + αc

)(
µ

(c)
h

µ
(c)
h + αc

)

(
a

(c)
h ∧ [b

(c)
h − x

(c)
h ]+

)
+

(
µ̃

(c)
h

αc

)1−

(
µ̃

(c)
h

µ̃
(c)
h + αc

)[a(c)h −[b
(c)
h −x

(c)
h ]+

]+


s.t.
∑
h∈H

a
(c)
h = w(c), ∀c ∈ C.

(2.21)

It is straight forward to modify the proof for Proposition 1 to prove that the optimal solution

to (2.21) can be obtained by a greedy approach which assign casualties one by one to the

facility with the largest mO(h), where

mO(h) =

(
r

(c)
h λh

λh + αc

)(
µ

(c)
h

µ
(c)
h + αc

)(
µ̃

(c)
h

µ̃
(c)
h + αc

)[ā(c)h −[b
(c)
h −x

(c)
h ]++1

]+
, (2.22)

and ā
(c)
h denotes the number of class c casualties sent to facility h up until the casualty we

are considering. We can apply this formulation when there are multiple casualty locations

by letting ā
(c)
h equals to the total number of casualties sent to facility h beforehand.

The reason we only considered one casualty location when developing this heuristic is

that the assignment of casualties between multiple locations and multiple medical facilities
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under the ample ambulances assumption is a variation of the constrained weighted maxi-

mum bipartite problem which does not have an analytical solution and is complex to solve

numerically. Furthermore, there is no guarantee that the modified numerical solution that

works in the stochastic setting will perform well. Therefore, we focus on AAH developed

based on a single casualty location assumption.

Notice the formulation in (2.22) is similar to the formulation for MYH in (2.15). There

are two main differences: the myopic heuristic takes the travel rate as the probability of a

casualty’s arrival at a medical facility by the end of a decision epoch (the transportation

rate λlh is a multiplier in (2.15)), while the transportation time is discounted in one-time

allocation heuristic (corresponding to the λlh/(λlh + αc) term in (2.22)). More importantly,

the myopic heuristic considers a single casualty at each location and the real-time states at

medical facilities while ignoring the casualties in transition. On the other hand, the one-

time allocation heuristic considers the number of casualties sent to medical facilities as an

approximation of the casualties in transition and in hospital. This difference will lead to two

different formulations when we consider the uncertainty in the states of medical facilities in

Session 2.5.

2.4 Shortest Completion Time Heuristic (SCH)

Shortest Completion Time Heuristic (SCH) was introduced in [49] under the name base-

line dynamic policy, which always assigns casualties to the facility with the smallest expected

time until service completion while ignoring all other casualties that have not yet arrived at

medical facilities. Mathematically, let

mS(l, h) = λ−1
lh +

(
µ̃

(c)
h

)−1 [
xh + 1− b(c)

h

]+

+
(
µ

(c)
h

)−1

. (2.23)

A class c casualty will be transported to facility h(c) = argmin{k:b
(c)
k >0}{m

(c)
S (l, k)} from

location l. Shortest completion time heuristic does not consider the different deterioration
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rates between the immediate and delayed casualty classes, thus does not prioritize casualties

automatically. We assume priority is always given to the immediate class. At any casualty

location, casualties in the delayed class will not be transported unless there is no immediate

class left on scene. This assumption is consistent with the most commonly used triage

method START [70].

2.4 Delta-Nearest Facility Heuristic (dNFH)

There is no standard for casualty distribution in practice to the best of our knowledge.

However, in various past events, it is noted that some form of nearest hospital policy was

used. Hence, we will compare the performance of heuristics policies proposed with a simple

baseline policy called Delta-Nearest Facility Heuristic (dNFH) (2.4.5). dNFH is a static

policy which transports casualties from a casualty location to medical facilities nearby. More

precisely, for each casualty location l ∈ L, we first identify the closest medical facility h∗,

where the distance from l to h∗ is d(l, h∗). Then, we identify the set Hl that consists of all

medical facilities such that the distance to casualty location l is within d(l, h∗) + δ, where δ

is a constant. Medical facilities in the set Hl are reasonably close to the casualty location.

Finally, the next casualty will be transported to one of the medical facilities in the set

Hl with probability proportional to the service capacity. Specifically, with a probability of

Ph =
b
(c)
h∑

k∈Hl
b
(c)
k

a class c casualty in location l will be transported to medical facility h. We

again assume priority is always given to the immediate class as for SCH described in Section

2.4.4.

2.4 Shin and Lee’s Heuristic (SLH)

We also compare our heuristics with the heuristic proposed by Shin and Lee [65]. In

their model, there is only one casualty location, and immediate and delayed casualties share

a single server at each medical facility with priority always assigned to immediate casualties.

Medical facilities are classified into two tiers. A casualty treated at tier 1 (lower) facilities
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will have 20% less survival probability if treated at a tier 2 (high) facility. Service times

are identically distributed for immediate and delayed casualties in their model. In order

to implement their heuristic in our simulation frame work, we modified their heuristic as

follows: firstly, at the casualty location (the heuristic does not work in multiple casualty

locations setting), we find the target facilities h∗c that have the smallest expected time until

service completion for each class. Mathematically, h∗c = argminh∈H{λ−1
h +

(
µ

(c)
h

)−1

+ (x
(c)
h +

Trans
(c)
h )µ̃

(c)
h }, where λh is the travel rate, x

(c)
h is the number of class c casualties in the

medical facility, Trans
(c)
h is the number of class c casualties in transition (for a fair compassion

with other heuristics, we ignore the information of casualties in transition for all heuristics

i.e., Trans
(c)
h = 0,∀c ∈ C, h ∈ H. Furthermore, for the same reason as mentioned in AAH

in Section 2.4.3, extending the use of transition information to multiple casualty locations

cases is not a trivial task), and µ̃
(c)
h = b

(c)
h µ

(c)
h is the aggregate service rate for all b

(c)
h class

c servers at facility h. In the original heuristic, the authors used time until service. We

changed it to time until service completion to be consistent with other heuristics. Notice,

the optimal medical facility for each class is obtained in the same manner as in Shortest

Completion Time Heuristic(SCH) (2.4.4).

After the target facilities are identified for each class, if only one class of casualties is

left at the casualty location, then a casualty from that class will be selected. Otherwise,

delayed casualties will be prioritized for transportation if x
(i)
(h∗i )

(
λh∗dµ̃

(c)
h∗d

)
≥ x

(d)
(h∗d)

(
λh∗i µ̃

(c)
h∗i

)
or x

(i)
(h∗i )(αi + αd) ≥ µ̃

(c)
h∗i

, immediate casualties will be prioritized otherwise. The selected

casualty from class c will be transported to medical facility h∗c .

2.5 Modified Heuristics under Incomplete Information on the State of Medical

Facilities

All heuristic policies proposed (except for dNFH) in Section 2.4 rely on the state informa-

tion of medical facilities. Such information may not available in real time due to the chaotic

environment of a mass casualty incident and potentially damaged communication system.
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In this section, we modify the heuristic policies discussed in Section 2.4 to accommodate for

the uncertainty of state information of medical facilities. We assume, in the worst case, the

medical facilities only announce their capacities for immediate and delayed classes at the

very beginning of the mass casualty event and will never update this information again. We

also assume the decision maker has the knowledge of the service rate at each facility from

previous experiences. We do not consider the heuristic proposed by Shin and Lee [65] here

since the scenario deviate significantly from their modeling assumption (perfect information

on the states at facility and in transportation) and decision structure (prioritization and

routing decision are make sequentially).

2.5 Myopic and Policy Improvement Heuristics under Incomplete Information

on State

The number of casualties at each facility is the only information we need to use my-

opic and policy improvement heuristics as in (2.15) and (2.17). Let Λ
(c)
h denote the

decision maker’s estimation of the number of class c casualties at facility h. We let

Λ
(c)
h =

(
x

(c)
h + y

(c)
h −Ψ

(c)
h (t)

)+

, where t is the time since the last update of information

on state, x
(c)
h denotes the number of class c casualties at facility h at the time of the last

information update, yh denotes the number of class c casualties sent to facility h up until

this decision epoch since the last information update, and Ψ(t) is a Poisson random variable

with mean b
(c)
h µ

(c)
h t representing the number of possible departures from facility h assuming

no server is idle during a period of length t. Note that Λ
(c)
h under estimates the number of

class c casualties at facility h because Poisson departure is assumed to occur at maximum

rate. The assumption is reasonable as during a mass casualty event, medical facilities will

be overwhelmed soon after casualties arrive.

We can use m̂
(c)
G (l, h) in place of m

(c)
G (l, h) in (2.15) for MYH heuristic under incomplete

state information.
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m̂
(c)
G (l, h) = λl,h

(
r

(c)
h

αc + β

)(
µ

(c)
h

αc + µ
(c)
h

)
E

( µ̃
(c)
h

αc + µ̃
(c)
h

)[Λ
(c)
h +1−b(c)h ]+

 , (2.24)

and

E

( µ̃
(c)
h

αc + µ̃
(c)
h

)(Λ
(c)
h +1−b(c)h )+



=



1−
F
(
x
(c)
h +y

(c)
h −b

(c)
h ;µ̃

(c)
h t
)
−eαct

(
µ̃
(c)
h

µ̃
(c)
h

+αc

)(x(c)h +y
(c)
h

+1−b(c)
h )

F
(
x
(c)
h +y

(c)
h −b

(c)
h ;(µ̃

(c)
h +αc)t

)
F
(
x
(c)
h +y

(c)
h ;µ̃

(c)
h t
)

if x
(c)
h + y

(c)
h ≥ b

(c)
h

1

if x
(c)
h + y

(c)
h < b

(c)
h ,

where F (·, ξ) denotes the cumulative distribution function of a Poisson random variable with

mean ξ ≥ 0.

Similarly, m̂
(c)
P (l, h) will replace m

(c)
P (l, h) in (2.17) for PIH heuristic:

m̂
(c)
P (l, h) = λi,j

(
µ̃

(c)
h r

(c)
h

λ̃
(c)
h

)(
µ̃

(c)
h − λ̃

(c)
h + αc − η(c)

h

µ̃
(c)
h − λ̃

(c)
h − αc − η

(c)
h

)

×E

( µ̃(c)
h + λ̃

(c)
h + αc − η(c)

h

2λ̃
(c)
h

)Λ
(c)
h

 , (2.25)

where

E

( µ̃(c)
h − λ̃

(c)
h + αc − η(c)

h

2λ̃
(c)
h

)Λ
(c)
h



=e
−µ̃(c)t

(
µ̃
(c)
h
−λ̃(c)

h
+αc−η

(c)
h

µ̃
(c)
h

+λ̃
(c)
h

+αc−η
(c)
h

)(
µ̃

(c)
h − λ̃

(c)
h + αc − η(c)

h

2λ̃
(c)
h

)x
(c)
h +y

(c)
h

F
(
x

(c)
h + y

(c)
h ;

2λ̃
(c)
h µ̃

(c)
h t

µ̃
(c)
h +λ̃

(c)
h +αc−η(c)h

)
F (x

(c)
h + y

(c)
h ; µ̃

(c)
h t)

 .
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2.5 One-Time Allocation Heuristic under Incomplete Information on State

The one-time allocation heuristic is independent of the states of facilities except for their

initial capacity which is assumed to be given. Thus AAH can easily adapt to this situation.

We just need to interpret b̄
(c)
h as the capacity announced by facility h and ā

(c)
h as the number

of casualties sent to facility h right before the current one under consideration in (2.22).

2.5 Shortest Completion Time Heuristic under Incomplete Information on

State

The shortest completion time heuristic needs to be modified as MYH and PIH. We will

use the following formula to replace (2.23)

m̂S(l, h) = λ−1
lk +

(
µ

(c)
k

)−1

+
(
µ̃

(c)
k

)−1

E

[(
Λk + 1− b(c)

k

)+
]

(2.26)

and,

E

[(
Λ

(c)
k + 1− b(c)

k

)+
]

=


(
x
(c)
h

+y
(c)
h

+1−b(c)
h

b
(c)
h
µ
(c)
h

)
F
(
x
(c)
h +y

(c)
h −b

(c)
h ;µ̃

(c)
h t
)
−1

[x
(c)
h

+y
(c)
h
≥b(c)
h

+1]
tF
(
x
(c)
h +y

(c)
h −b

(c)
h −1;µ̃

(c)
h t
)

F
(
x
(c)
h +y

(c)
h ;µ̃

(c)
h t
) if x

(c)
h + y

(c)
h ≥ b

(c)
h ,

0 if x
(c)
h + y

(c)
h < b

(c)
h .

2.6 Simulation Study

Due to the high dimensionality of the state space of our MDP model, solving (2.11)

and (2.12) even numerically to obtain the optimal solution requires an unrealistic amount

of computational time and memory. Furthermore, the assumptions we made in order to

have an analytically tractable MDP model may not reflect the reality. Such assumptions

as preemptive ambulance dispatches, instantaneous return time from medical facilities to

casually locations, exponential service time at medical facilities, and exponential ambulance
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travel times will be relaxed in our simulation. More realistic survival probability functions

are used in the simulations as well instead of exponentially decaying survival probabilities.

In this section, we compare all heuristics discussed in Section 2.4, namely MYH, PIH, AAH,

SCH, SLH, and dNFH in the simulations as close to real mass casualty events as possible.

Based on the characteristics of the events, such as major injury type, the composition of

severities of casualties, casualty distribution, and the geographical scope, we categorize the

mass casualty incidents into four types: single-location terrorist attack, multiple-location

terrorist attack, major traffic accident, and earthquakes. More details of those events will

be introduced in the remainder of this section.

2.6 Simulation Parameters

Casualty and medical facility locations are generated uniformly on a two-dimensional

plane. A total number of xl casualties at location l is generated randomly from a uniform

distribution. The range of the number of casualties is event specific. We assume p percent

of total casualties are triaged into the immediate class while the rest are in the delayed

class. The percentage p is also generated uniformly between 0.1 to 0.4 (an estimate from

Emergency Medical Doctor Lane M. Smith and J. Winslow). Therefore, the number of

immediate casualties is x
(i)
l = pxl and the number of delayed casualties is x

(d)
l = (1 − p)xl

for all l ∈ L.

We focused on two specific types of traumatic injuries – penetrating and blunt in mass

casualty incidents. Penetrating injuries are commonly seen at terrorist shooting events and

blunt injuries occur frequently during traffic accidents and natural disasters such as earth-

quakes. To the best of our knowledge, the only work that provide survival probability esti-

mates for penetrating and blunt injuries are [63, 64]. In these paper, the initial conditions of

casualties are evaluated using the RPM score which ranges from 1 to 13 with 13 being the

most severe. Then Delphi method is used to estimate the deterioration of casualties with

different initial conditions. The survival probabilities are obtained, in 30 minutes intervals

32



within the range of 6 hours for 13 possible initial RPM scores, using logistic regression. For

both the penetrating and blunt injuries, we compute the survival probabilities of the delayed

class using the mean of the survival probabilities with initial RPM scores between 1 and 4

and the survival probabilities of the immediate class using the mean of the survival proba-

bilities with initial RPM scores between 5 and 9. We then fit the survival probabilities using

a three-parameter shifted log-logistic function as follows

f(t) =
β0

1 +
(

t
β1

)β2 . (2.27)

We also used exponential functions of the form f(t) = β0e
−β1t to get continuous survival

probability functions used in our simulation.

The shifted log-logistic function provides a good fit on the immediate and the delayed

class for both penetrating and blunt injuries in terms of mean square error (MSE). We will

use the fitted log-logistic functions to generate survival probabilities in the simulation. The

exponential function provides a good fit for immediate class but not such a good fit for

the delayed class. Nevertheless, since our heuristics assumed exponential decay for health

deterioration, we use these exponents as the discount factors in all heuristics. The fitted

parameters are provided in Table 2.1.

Shifted log-logistic Exponential
Injury Triage β0 β1 β2 MSE β0 β1 MSE

Pen.
Immediate 0.3510 35.838 1.9886 9.93e-05 0.3563 -0.0207 8.03e-05

Delayed 0.9124 213.5976 2.3445 6.15e-04 1.0219 -0.0038 4.40e-03

Blt.
Immediate 0.6049 67.1604 1.5485 2.41e-04 0.6053 -0.0096 2.61e-04

Delayed 0.9527 328.1880 2.3155 6.85e-05 1.0400 -0.0021 2.80e-03

Table 2.1: Parameter Estimation for Survival Probabilities

Since the Delphi estimates assume the deterioration of survival probabilities under min-

imum medical intervention, it is not reasonable to assume that the survival probability of a

casualty under treatment at a medical facility also deteriorates at the same rate. Therefore,
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in the simulations, the survival probabilities are collected at the beginning of service instead

of service completion.

The transportation resource is assumed to be ambulances that are all identical and travel

at an average speed of 40 mph. The number of available ambulances is event dependent. In

the simulation, we explicitly take into account the travel time from facilities back to casualty

location. The travel time from two locations are assumed to be lognormal distributed (

according to Ingolfsson et al. [31]) with mean travel time equals the distance divided by the

average speed. l1-norm (commonly known as the Manhattan distance) is used to compute

the distance between any location-facility pair.

We considered two type of medical facilities – level 1 trauma centers and level 3 trauma

centers that differ mainly in terms of capacity. Level 1 trauma centers are expected to be

able to handle more casualties than level 3 trauma centers. The capacities of immediate class

casualties at level 3 trauma centers are very limited. In our simulation, a medical facility

will be a level 1 trauma center with probability 0.58 according to McLay and Mayorga [46].

The number of servers for immediate casualties is uniformly distributed between 5 to 8 and

the number of servers for delayed casualties is uniformly distributed from 12 to 20. With

probability 0.42, a medical facility will be a community hospital with 2 to 3 servers for

immediate casualties and 6 to 10 servers for delayed casualties also uniformly distributed.

We assume the service time distribution is identical for a given injury type and triage class

at level 1 trauma center and community hospital. The service time for both penetrating and

blunt injuries will follow an exponential distribution with mean service time of 90 minutes for

the immediate class and mean service time of 180 minutes for the delayed class. The reason

the mean service time for immediate class is shorter than the mean service time for the

delayed class is that we considered only the life-saving procedures for immediate casualties.

The surgical procedures for immediate casualties tend to be damage control surgery and

further treatments which are not emergent will be deferred thus not included as service

34



time. Other parameters are based on the discussions with Emergency Medical Doctors Lane

M. Smith and James Winslow of Wake Forest University, NC.

2.6 Implementation of Heuristic Policies in Simulations

Since we relaxed the assumptions that ambulance assignments are preemptive and return

time from medical facilities to casualty locations are instantaneous in the simulations, we

modify our heuristic policies accordingly.

When an ambulance arrives at casualty location l ∈ L and prefect information on the

states of medical facilities are available at all facilities h ∈ H, heuristics for complete informa-

tion on the state of medical facilities derived in Section 2.4 will be used in the corresponding

simulations.

We explicitly consider the return time from facilities to casualty locations in the sim-

ulations. Under the assumption of perfect state information on medical facilities, when

an ambulance arrives at facility h ∈ H, MYH will send the ambulance back to loca-

tion l∗ = argmaxl{λlh maxq∈H,c∈Cm
(c)
G (l, q)}; PIH will assign the ambulance to location

l∗ = argmaxl{λlh maxq∈H,c∈Cm
(c)
P (l, q)}; AAH will dispatch the ambulance to location

l∗ = argmaxl{λlh maxq∈H,c∈Cm
(c)
O (l, q)}; SCH will send the ambulance will go to location

l∗ = argmaxl{λlh/maxq∈H,c∈Cm
(c)
S (l, q)}; and the ambulance following dNFH will return to

the closest casualty location where casualties are still waiting. SLH is designed for single

casualty location, hence the return decision is irrelevant. When the information on the state

of medical facilities is incomplete, m̂ indices defined in Section2.5 will be used in place of m

indices for all heuristics.

We also need to update the estimated arrival rate λ̃
(c)
h in the policy improvement heuristic

to consider the travel time back to casualty locations. The new approximated arrival rate

to facility h becomes

λ̃
(c)
h = A

∑
l∈L

[
θ

(c)
lh

∑
c′∈C

∑
q∈H

∑
l′∈L

θ
(c′)
l′q (λ−1

lh + λ−1
lq )−1

]
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Comparing this with the λ̃
(c)
h in Section 2.4.2, we used the average round trip travel time for

all possible ‘facility-casualty-facility h′ route to estimate the arrival rate to medical facility

h.

2.6 Simulation Scenarios and Results

We designed four types of MCIs in our simulation study from observing all kind of

MCIs in reality – single-location terrorist attacks, multiple-location terrorist attacks, single-

location major traffic accidents, and earthquakes. These four types of MCIs are distinguished

by different characteristics, such as the numbers of casualties, the geographical distribution

of casualties, main injury type, and the number of available medical facilities. Within each

type of MCIs, we randomized the number of casualty locations (for those types involving

multiple casualty locations), the numbers of casualties at those locations, the triage outcome

(the composition of the immediate and delayed casualties), the number of ambulances, the

number of medical facilities and their capacities, and the geographical locations of casualty

locations and medical facilities to generate 300 scenarios. We select the locations for casu-

alty location(s) and medical facilities uniformly without replacement from a two-dimensional

integer lattice. The distance between each location pair is computed using l1-norm (com-

monly known as the Manhattan distance). The generation of other parameters is MCI

type-dependent thus described in the respective subsections.

We repeated the simulations under the assumption of both perfect and incomplete infor-

mation on the state of medical facilities using the generated scenarios. For each individual

scenario, we replicated the simulation 100 times. In each replication, the total numbers of sur-

vivors are recorded for all heuristic policies with a synchronized stream of random numbers.

We compared all other heuristics against the dNFH heuristic and reported the percentage

improvement as the results. We provided statistics including the minimum (”Min”), first

quantile (”Q1”), median (”Med”), third quartile (”Q3”), maximum (”Max”), mean, 95%

confidence interval (”Lower” and ”Upper”) of the percentage improvement. In addition,
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Figure 2.2: Casualty distribution in 2017 Las Vegas shooting

”#sig” denotes the number of scenarios where each heuristic is better than dNFH policy at

a statistical significance level of 5%. When the state of medical facilities is known perfectly,

we compared SLH heuristic and all other heuristics introduced in Section 2.4 against the

dNFH heuristic. When the state of medical facilities is incomplete, we compared all other

heuristics introduced in Section 2.5 against the dNFH heuristic. All simulations were coded

and executed using Matlab.

2.6.3.1 Single-location Terrorist Attacks

Most terrorist attacks happen at a single location. Recent examples include the 2016

Orlando nightclub shooting in Florida, U.S., the 2017 London Bridge attack in England,
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and the 2019 Christchurch mosque shooting in New Zealand, the 2017 Las Vegas shooting in

Nevada, U.S. (refer to Figure 2.3). During these terrorist attacks, almost all injured casual-

ties concentrated at a small neighborhood. A majority of the casualties suffered penetrating

injuries. We categorize these events with a single incident location and predominantly pen-

etrating injuries as single-location terrorist attacks.

In our simulation experiments, the number of casualties varied from dozens to hundreds.

The percentage of immediate casualties is uniformly distributed between 10% and 40%. We

assumed the casualty location and medical facilities are within a region of 10 by 10 miles2.

We varied the numbers of ambulances from 10 to 50 and the number of medical facilities

from 2 to 4 in the simulations.

The results when the information on the state of medical facilities is available to the

decision-maker are presented in Tables 2.2, 2.3, 2.4 and 2.5. The results when the information

on the state of medical facilities is incomplete to the decision-maker are presented in Tables

2.6, 2.7 and 2.8. The first three columns provide the range of the number of casualties, the

number of ambulances, and the number of medical facilities. When the number of casualties

is small, existing medical resources are sufficient. According to the simulation results for

both perfect information and incomplete information on the state of medical facilities (refer

to the first row of Tables 2.2 and 2.6), SCH and SLH perform slightly better than dNFH,

while, MYH, PIH, and AAH perform worse than dNFH.

As the number of casualties increases (refer to rows 2 through 4 in Table 2.2 followed by

rows 1 through 3 in Table 2.3, and rows 2 through 4 in Table 2.6 followed by rows 1 through 3

in Table 2.7), on average all dynamic heuristics (PIH, AAH, MYH, SLH, and SCH) perform

better than the static policy dNFH. AAH performs the best for all scenarios except the last

one where there are 100 to 150 casualties, 30 ambulances and 3 medical facilities whose states

are not up to date (refer to row 3 in Table 2.7), where SCH out performs AAH on average by

less than 1%. Among all 12 scenarios, AAH performs the best in terms of the median. As the

number of ambulances increases, while fixing the number of medical facilities (refer to rows
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2 through 4 in Table 2.2 or rows 1 through 3 in Table 2.3 and rows 2 through 4 in Table 2.6

or rows 1 through 3 in Table 2.7), the advantages of dynamic heuristics over dNFS shrink.

This could be because service capacity at medical facilities becomes the main bottleneck

as the number of ambulances increases. Therefore, the routing of ambulances has a lesser

impact. Notice when the numbers of ambulances and medical facilities are relatively small,

SCH performs worse than AAH and PIH (refer to row 2 in Table 2.2, row 1 in Table 2.3, row

2 in Table 2.6 and row 1 in Table 2.7). As the numbers of ambulances and medical facilities

increase, the performance of SCH improves and become comparable with AAH (refer to row

2 in Table 2.2, row 1 in Table 2.3, row 2 in Table 2.6 and row 1 in Table 2.7). It implies,

even though medical resources are overwhelmed compared to the demand for all MCIs, AAH

and PIH are more suitable in situations where the medical resources are extremely limited

while SCH is suitable in situations where more medical resources are available.

When hundreds of casualties are involved (see Tables 2.4, 2.5 and 2.8), the advantages

of dynamic heuristics are obvious. AAH is always the best performer when the state of

medical facilities are incomplete (refer to Table 2.4 and 2.5). When the state is known, AAH

performs the best except when there are 10 ambulances and 4 medical facilities (refer to

row 4 in Table 2.8) where PIH out performs AAH. PIH performs almost as good as AAH in

many other scenarios as can be seen in rows 2, 3, and 6 of Table 2.8.
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2.6.3.2 Multiple-location Terrorist Attacks

In the events like the 2015 Paris terrorist attack in France, the attacks occurred almost

simultaneously. Casualties were distributed at six different locations miles away from each

other. More than ten hospitals were involved [29] (refer to Figure 2.3). Similar events also

include 2015 London bombings in England. Among these events, a majority of critical ca-

sualties have penetrating injuries due to use if bombs and guns during these attacks. We

categorized those events as multiple-location terrorist attacks. We simulated the multiple-

location terrorist attacks with 3 or 4 casualty locations in accordance with past events. At

each casualty location, we assumed the total number of casualties is uniformly distributed

between 30 to 150. Among those casualties, the percentage of immediate casualties is uni-

formly distributed between 10% to 40%. We again assumed all casualty locations and medical

facilities are located within a 10 by 10 miles2 region. We only simulate under the assumption

of imperfect information on the state of medical facilities here. The simulation results are

presented in Table 2.9. The first column of Table 2.9 represents the number of casualty

locations, the number of ambulances, and the number of medical facilities.

All dynamic heuristics perform better than dNFH in terms of median and mean. The

improvement of PIH, AAH, and MYH over dNFH decreases as the number of ambulances

increases while fixing the number of medical facilities (refer to rows 1, 2, and 3 or 4, 5,

and 6 in Table 2.9). AAH performs the best among the proposed heuristics in terms of the

median and the mean, and the performance of PIH is close to AAH in terms of the mean

especially when the number of ambulances is small. The performance of SCH is far behind

other dynamic heuristics when the number of ambulances is small but comparable with other

dynamic heuristics as the number of ambulances gets larger.
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Figure 2.3: Casualty distribution in 2015 Paris attack

2.6.3.3 Single-location Major Traffic Accidents

Major traffic accidents, such as multiple pile-up accidents on the highway and train

derailments, usually happen at a single location, for example the 2015 Philadelphia train

derailment in Pennsylvania, U.S., and the accident happened on Interstate 95 at Stafford

County, Virginia, U.S. in which over a hundred vehicles slammed into each other at high

speeds led to more than one hundred injuries. Major traffic accidents may take place in

between cities, therefore, the medical facilities may be further away than those MCIs that

happen in cities. Most casualties during vehicle accidents suffer from blunt injuries. We

categorized those events as single-location major traffic accidents. In our simulations, we

study major traffic accidents where the casualty location and medical facilities are located

within a larger area (25 by 25 miles2 region) due to the possibility that these events may

happen farther away from metropolitan area unlike terrorist attacks. The number of ca-

sualties is generated uniformly between 100 and 300 with the percentage of the immediate
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casualties uniformly generated between 10% and 40%. We simulated the scenarios under the

assumption of both perfect and imperfect information on the state of medical facilities. The

results when the information on the state of medical facilities is available are presented in

Tables 2.10 and 2.11 and the results when the information on the state of medical facilities

is imperfect are presented in Tables 2.12 and 2.13.

All dynamic heuristics perform better than dNFH as expected. AAH performs the best

in all scenarios in both settings (weather or not the information on the state of medical

facilities is perfect) in terms of the median and the mean.
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2.6.3.4 Earthquake Scenarios

Earthquakes usually affect a large area. In the aftermath of an earthquake, a huge

number of blunt casualties spread over the entire region [30, 44]. In our simulation, we

restricted ourselves to an urban area of size 50 by 50 miles2. We generate a total of 100

to 200 casualty locations uniformly. At each casualty location, the number of casualties is

generated from a uniform distribution between 6 and 15. We assume casualties have already

been triaged into immediate and delayed classes at locations waiting for transportation. The

percentage of immediate casualties is uniformly distributed between 10% and 40%. We only

simulate under the assumption of incomplete information on the state of medical facilities

for the earthquake scenario. The results are presented in Table 2.14.

Among the earthquake scenarios, SCH is doing the best in terms of the median and the

mean. PIH, AAH and MYH perform even worse than dNFH in some scenarios in terms of the

median (refer to rows 1 and 2 in Table 2.14). One possible reason for AAH not performing

well is the number of casualty locations in earthquake scenarios is over a hundred, which

dramatically violates the underlying assumption of a single casualty location for AAH.
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2.7 Conclusion

In the aftermath of a mass casualty event, enormous numbers of casualties requiring

immediate medical attention overwhelm the limited medical resources available. The priori-

tization and distribution of casualties to medical facilities is not only an intriguing operations

research problem but also plays a vital role in practice. In this work, we formulated this

problem as an MDP. Based on the insight derived from the MDP model, we proposed multi-

ple heuristics that provide combined prioritization and distribution decisions. The heuristics

could be useful to the emergency medical responders when making real-time decisions at the

scene of a mass casualty incident or to create response plans.

In an extensive simulation study, we considered hypothetical MCIs abstracted from real

events to examine the performance of proposed heuristics under a variety of conditions. In

particular, we grouped MCIs into four main categories: single-location terrorist attacks,

multiple-location terrorist attacks, single-location major traffic accidents, and earthquakes.

From the simulation results, the dynamic heuristics, which take advantage of the available

or estimated information on the state of medical facilities, such as MYH, PIH, AAH, and

SCH perform reasonable well in comparison with the static heuristic, dNFH (which does

not take into consideration the availability of medical facilities) except when the size of the

event is very small relative to the availability of resources. This implies that the mass casu-

alty events indeed requires different response plans from daily emergency incidents (which

usually involve much fewer casualties than MCIs). In addition, we found that different

heuristics derived based on various assumptions suit different types of MCIs. While AAH

performs strongly at single-location terrorist attack scenarios, multiple-location terrorist at-

tack scenarios, and single-location major traffic accident scenarios, SCH has non-negligible

advantages in earthquake scenarios. Our simulation studies indicate that it is beneficial to

categorize MCIs based on their characteristics such as scale and injury types, and utilize dif-
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ferent heuristics for response. We recommend AAH when the number of casualty locations

is small and SCH when the casualties are spread out in a larger area.

The heuristics proposed in this chapter are fairly easy to implement and could easily

be deployed into an emergency management system to automate decision making. With

the development of the internet of things and wearable medical equipment, more and more

information will become accessible to the decision-maker. With more detailed states of

casualties, ambulances and medical facilities on hand, the dynamic heuristics that take more

information under consideration will have bigger advantages over simple static policies such

as nearest hospital policy.

Although our simulation experiments are much more realistic and comprehensive than

those in prior work, we acknowledge that they are still not up-to-the level we desire mainly

due to lack of available data. Therefore, further investigation of the performance of the

proposed heuristics is necessary. Future research avenues include but not limited to: the

use of more realistic survival probability functions or even real-time vital signals to estimate

survival probabilities empirically, consideration of different transportation methods such as

helicopters that carry multiple casualties at a faster rate than ambulances, and incorporating

errors in triage.
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CHAPTER 3

URBAN SEARCH AND RESCUE RESOURCE ALLOCATION IN FLOODING

3.1 Introduction

The relationship between the climate change and the more frequent extreme events,

such as heatwaves, extreme precipitation, and coastal flooding has already been observed

in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change from

2014 (IPCC) [22]. River flooding, in particular, affects more people globally than any other

natural disaster and causes billions of dollars lost annually [14]. Storms and their direct

implications, including heavy precipitation, floods, and landslides, were one major cause of

damage in 2017 [20]. In May 2017, heavy landslides and floods in Sri Lanka caused more

than 200 deaths. In Nepal, Bangladesh, and India, massive rainfalls and the consequential

floods affected more than 40 million people including 1,200 deaths also in 2017 [25, 66]. In

North America and Europe, the frequency and intensity of precipitation events has increased

in recent years [67].

U.S. is one of the top ten countries with the highest climate risk index score hit that

were by tropical cyclones in 2017 (see Table 3.1). Take Hurricane Harvey, the costliest

tropical cyclone on record, that hit Texas in 2017 as an example. Houston metropolitan

area observed at least 30 inches of precipitation [71] and a maximum of 60.58 inches in

Nederland [62]. This makes Harvey the wettest tropical cyclone on record for both Texas

and the United States [7]. An estimated 25 to 30 percent of Harris County, roughly 444 mi2

of land, and home to 4.5 million people in Houston and its suburbs, was submerged [39].

Approximately 10 percent of Texas was flooded [72]. During Hurricane Harvey, devastating

winds and catastrophic flooding necessitated 21,433 searches and rescue personnel from the
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Table 3.1: Ten countries with the highest CRI score, which were hit by tropical cyclones in 2017
[20].

nation to evacuate 35,046 people, rescue 12,982 people and 2,055 animals [72]. However, 103

people still died in storm-related incidents including 68 due to direct effects of the storm

including flooding [12].

The urban search and rescue operations are of vital importance in saving people’s lives

during extreme weather events like hurricanes. However managing these operations is diffi-

cult due to hazardous weather conditions, large numbers of rescue requests, and often limited

resources. To the best of our knowledge, no standard guideline exists for coordinating the

urban search and rescue operations at least in the U.S. Based on [3, 72], the urban search

and rescue operations decisions are made in an “ad hoc” fashion based on experience from

previous events. The Harris County Fire Marshals Office included the follows in their re-

port [3]: 1. The establishment of triage protocols for determining the priority for rescue

by dispatchers has been identified as “best Practice”. Multiple departments found that

triage protocols helped them in managing limited resources even though there are no uni-

fied standards. 2. A better coordination and management between public safety agencies
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including but not limited to fire agencies, emergency medical services, task forces, and other

enforcement agencies. In addition, Alexander [2] enumerated eighteen principles expert on

emergency planning and identified the optimal allocation of urgent needs with appropriate

resources as one of the important criteria. These point to a need for systematic planning of

urban search and rescue operations.

We considered particularly the urban search and rescue operations that follow flooding

such as the one that happened in Texas following Hurricane Harvey. We aim at creating a

decision support tool that facilitates the dispatch of helicopters for rescuing people. Specif-

ically, a large number of rescue requests occurred across the entire Harris county in a short

period when the flood took place. The number of people and animals need to be rescued dif-

fer from request to request. The flood developed at a different rate depends on the terrain.

Thus the urgent level varies from place to place. The required times to research, rescue,

and transport people requesting rescue also vary from location to location. The emergency

response coordinators need to dispatch helicopters to request in an optimal order such that

most people could be rescued in time. Rescued people will be sent to major shelters capable

of landing helicopters. Our heuristics prescribe the assignment of helicopters to request to

maximize the number of accomplished requests before their deadlines.

The proposed analytical model is a generic scheduling model which could be also of

interest to the scheduling community. Our model has the following key features: 1. We

allow class-dependent deadlines which will eliminate all jobs in the corresponding class once

the deadline is reached. 2. Both class-dependent rewards and holding costs are considered in

our model. 3. We provide a full characteristic of the optimal policy for the two-class model.

4. We proposed easy-to-implement and near-optimal heuristic policies. The heuristics are

examined in realistic simulations based on hurricane Harvey.

The remaining of this chapter is organized as follows. We review operations research

and urban search and rescue literature relevant to this work in Section 3.2. We characterized

the optimal policy for the two-class prioritization problem with one server in Section 3.3.
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Heuristics for the general problem involvingN classes andM servers were proposed in Section

3.4. Numerical studies that compared heuristics to the optimal policy were presented in

Section 3.5. A simulation case study based on the air rescue operation during the aftermath

of Hurricane Harvey was presented in Section 3.6. We conclude the chapter by a discussion

of the main insights gained from this study in Section 3.7.

3.2 Literature Review

The problem of interest in this article – the allocation of insufficient resources or service

capacities to overwhelming requests has long been studied in the literature. This problem

has been referred to by various names, such as prioritization of impatient jobs, resource

allocation, scheduling with due dates. This problem has also been studied using various

models under different modeling assumptions. However, there is not much research on ap-

plying operations research techniques on resource allocation in Urban Search and Rescue

during flooding events. Therefore, we only reviews papers that are tangentially relevant in

the remainder of this section together.

Pinedo [56] considered three single machine stochastic scheduling models where the pro-

cessing times are independent exponentially distributed, the release dates have arbitrary joint

distributions. He showed the optimality of the cµ (cost times service rate) type rule among

all dynamic policies for minimizing the expected weighted sum of job completion times, the

expected weighted sum of job tardiness, and the expected weighted number of late jobs,

when the random due dates satisfying certain conditions on their joint distributions.

Ross [61] considered the scheduling of n jobs with distinct exponential deadlines and

general service times on a single server. Sufficient conditions were provided under which the

list policy is optimal. Cao [15] provided sufficient conditions for a list policy to be optimal for

both preemptive and non-preemptive multiple servers scheduling problem with exponential

service rate and deadlines.
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Glazebrook et al. [26], Li and Glazebrook [42] and James et al. [33] focused on finding

close to optimal solutions. Glazebrook et al. [26] investigated three schedule models with

impatient jobs. The authors proved that the deviation of dcµ (the product of expiration

rate, cost, and service rate) rule from the optimal permutation policy is bounded by O(θ2)

(θ is the common expiration rate) in a single non-preemptive server system with exponential

service time. The abandon probability for each job possesses the memoryless property. The

authors generalized the Gittins index policy for the preemptive server case. Policy improve-

ment policy is adopted to obtain an index policy for the multiple-class queuing model with

independent Poisson arrival, preemptive service with exponential service times, and expo-

nentially distributed deadlines. Li and Glazebrook [42] applied a policy improvement step

on the approximated dcµ heuristic proposed in [26] to obtain a near-optimal heuristic for the

multiple class clearing system with impatient jobs. James et al. [33] further showed that the

dcµ rule proposed in [26] is asymptotically optimal when the expiration rate approaches zero.

An approximate policy improvement method based on using bias functions from simulation

to approximate the value functions in the dynamic programming recursion is proposed and

tested in a five classes system.

Ayesta et al. [8] establish a model considering linear holding costs, job completion

rewards, and abandonment penalties. The optimal solutions were identified for the cases

where one completing with an alternative task or two jobs completing with each other.

Heuristic policy based on Whittle’s relaxation was proposed for multiple jobs cases.

Similar clearing models have been applied to improving medical system. Argon et al.

[4] and Jacobson et al. [32] modeled the casualty prioritization problem in the aftermath

of mass casualty incidents as a scheduling problem for a clearing system. The objective

is to maximize the expected number of survivors. Casualties belong to two types may

have different service times. One casualty reneges every time the deadline of the respective

type is reached. Stochastic comparisons were used to identify conditions under which state-

independent policies are optimal and optimal policies were partially characterized when they
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depend on the system state through an MDP formulation. [32] generalized [4] with type-

dependent reward and developed heuristics which allowed multiple servers. Sun et al. [68]

also used a single server clearing model to study the triage and prioritization problem under

austere conditions. In their model, all patients are of unknown status at the beginning and

the service provider has the option to treat a patient directly without triage or triage a

patient to figure out his/her urgent level. The authors proved the optimal dynamic policy

can be expressed by a switching curve.

Clearing models have also been used widely in designing evacuation plans. Childers et al.

[17] modeled patients in health-care facility evacuation as impatient jobs in a clearing system.

The authors suggest a threshold policy begin with noncritical patients and then switch to

critical patients based on a simulation study. In [16], Childers et al. declared that ”all-or-

nothing” policy, where one prioritized group of patients are emptied before another group

of patients starts the evacuation, is not always optimal through solving a Markov decision

process model numerically. The authors also provided a cµ type threshold for determining

the priority among critical and noncritical patients.

Many other methods have been used to study the allocation of limited allocation with

different domains of applications. Kamali et al. [38] looked at a similar prioritization problem

in the context of mass casualty incidents. An integer program is proposed to find the optimal

service order for patients triaged into multiple classes.

3.3 Two-Class Prioritization Problem

3.3 Model Assumptions and the MDP Formulation

We now consider a model involving two heterogeneous classes of jobs. x jobs in class 1

and y jobs in class 2 are waiting for service at time zero with future arrivals for neither class.

A common deadline for class k ∈ {1, 2} jobs follows an exponential random distribution

with a positive rate of Dk. All jobs, including those in service, who have not completed their

service before their respective deadline will leave the system. A single server serves one job
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at a time non-preemptively. The service time for each individual job follows an exponential

distribution with a positive rate of µk for k ∈ {1, 2}. A reward of rk is generated at the

service completion for each job in class k ∈ {1, 2} after which the job exits the system. The

non-negative holding cost is ck per unit of time for each class k ∈ {1, 2} job in the system.

The goal is to find the optimal schedule for the processing of jobs such that the total expected

reward is maximized. We refer to this problem as the prioritization problem for two classes.

We formulate the problem as a Markov Decision Process. The state (x, y) consists of the

number of jobs in each class. The prioritization decisions are made at service completions.

Let A = {1, 2} denote the set of actions where a ∈ A denotes the action of serving a job in

class a next. Let V (x, y) denote the maximum expected reward starting from state (x, y).

The optimality equation can be written as

V (x, y) = max
a∈A
{V (a;x, y)} , for x ≥ 1, y ≥ 1, where

V (1;x, y) =
µ1 [r1 + V (x− 1, y)] +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ1 +D1 +D2

, for x ≥ 1, y ≥ 0;

V (2;x, y) =
µ2 [r2 + V (x, y − 1)] +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ2 +D1 +D2

, for x ≥ 0, y ≥ 1;

V (x, 0) = V (1;x, 0), for x ≥ 1;V (0, y) = V (2; 0, y), for y ≥ 1; and V (0, 0) = 0.

(3.1)

3.3 Classification of the Optimal Policy

In this section, we show that for a fixed number of jobs in one class, the optimal policy

for the prioritization problem is a threshold policy on the number of jobs in the other class.

We need the following Lemmas to prove the main results.

Lemma 2. When x = 0, y ≥ 1 or x ≥ 1, x = 0, there is a single class of jobs in the system.

We can rewrite the recurrence using a single state variable and one set of parameters as

follows,

V (x) =
µ[r + V (x− 1)]− xc

µ+D
, and V (0) = 0.
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Solving the recurrence explicitly gives us the following result,

V (n) =

[
1−

(
µ

µ+D

)x](µr
D

+
cµ

D2

)
− xcD−1, for x ≥ 1. (3.2)

Lemma 3. Consider a state (x, y) such that x ≥ 1 and y ≥ 1,

(a) If a = 2 is optimal at state (x− 1, y) and the following equality holds

µ1

(
r1 + c1D

−1
1

) [
D2

(
µ1

µ1 +D1

)x
− (D1 +D2)

]
≥µ2

(
r2 + c2D

−1
2

) [
D1

(
µ2

µ2 +D2

)y
− (D1 +D2)

]
,

(3.3)

then a = 2 is the optimal action at state (x, y). We say the action a = 2 is strictly

optimal (strictly better than a = 1) if and only if condition (3.3) holds as strictly

inequality.

(b) If a = 1 is optimal at state (x, y − 1) and the following equality holds

µ1

(
r1 + c1D

−1
1

) [
D2

(
µ1

µ1 +D1

)x
− (D1 +D2)

]
≤µ2

(
r2 + c2D

−1
2

) [
D1

(
µ2

µ2 +D2

)y
− (D1 +D2)

] (3.4)

then a = 1 is the optimal action at state (x, y). We say the action a = 1 is strictly

optimal (strictly better than a = 2) if and only if condition (3.3) holds as a strictly

inequality.

Proof. (a) The expected reward for taking action a = 1 at state (x, y) can be express as,

V (1;x, y) =
µ1 [r1 + V (x− 1, y)] +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ1 +D1 +D2

(3.5)
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By our assumption that a = 2 is optimal at (x− 1, y), we have

V (x− 1, y) = V (2;x− 1, y)

=
µ2 [r2 + V (x− 1, y − 1)] +D1V (0, y) +D2V (x− 1, 0)− c1(x− 1)− c2y

µ2 +D1 +D2

.
(3.6)

Substitute 3.6 into 3.5 we get,

V (1;x, y) =
µ1r1 +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ1 +D1 +D2

+
µ1

µ1 +D1 +D2

·

µ2 [r2 + V (x− 1, y − 1)] +D1V (0, y) +D2V (x− 1, 0)− c1(x− 1)− c2y

µ2 +D1 +D2

.

(3.7)

On the other hand,

V (2;x, y) =
µ2 [r2 + V (x, y − 1)] +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ2 +D1 +D2

, (3.8)

and,

V (x, y − 1) ≥ V (1;x, y − 1)

=
µ1 [r1 + V (x− 1, y − 1)] +D1V (0, y − 1) +D2V (x, 0)− c1x− c2(y − 1)

µ2 +D1 +D2

,
(3.9)

The equality in (3.9) holds when a = 1 is optimal at state (x, y − 1). Substitute (3.9)

into (3.8), we have

V (2;x, y) ≥ V̂ =
µ2r2 +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ2 +D1 +D2

+
µ2

µ2 +D1 +D2

·

µ1 [r1 + V (x− 1, y − 1)] +D1V (0, y − 1) +D2V (x, 0)− c1x− c2(y − 1)

µ1 +D1 +D2

(3.10)

If V̂ ≥ V (1;x, y), then V (2;x, y) ≥ V̂ ≥ V (1;x, y) which provides an sufficient condi-

tion for a = 2 being the optimal action at state (x, y). Further, the condition is an if
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and only if condition if a = 1 is optimal at state (x, y − 1).

V̂ − V (1;x, y)

=
µ2r2 +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ2 +D1 +D2

+
µ2

µ2 +D1 +D2

·

µ1 [r1 + V (x− 1, y − 1)] +D1V (0, y − 1) +D2V (x, 0)− c1x− c2(y − 1)

µ1 +D1 +D2

−µ1r1 +D1V (0, y) +D2V (x, 0)− c1x− c2y

µ1 +D1 +D2

− µ1

µ1 +D1 +D2

·

µ2 [r2 + V (x− 1, y − 1)] +D1V (0, y) +D2V (x− 1, 0)− c1(x− 1)− c2y

µ2 +D1 +D2

=
(D1 +D2)µ2r2 + µ2c2 − µ2D1 [V (0, y)− V (0, y − 1)]

[µ1 +D1 +D2] [µ2 +D1 +D2]

−(D1 +D2)µ1r1 + µ1c1 − µ1D2 [V (x, 0)− V (x− 1, 0)]

[µ1 +D1 +D2] [µ2 +D1 +D2]

=
1

[µ1 +D1 +D2] [µ2 +D1 +D2]
·{

µ1

[
r1 + c1D

−1
1

] [
D2

(
µ1

µ1 +D1

)x
− (D1 +D2)

]

− µ2

[
r2 + c2D

−1
2

] [
D1

(
µ2

µ2 +D2

)y
− (D1 +D2)

]}
,

(3.11)

where the marginal rewards when a single class of casualties exist can be obtained

using Lemma 2, as the follows,

V (x, 0)− V (x− 1, 0) =
(
r1 + c1D

−1
1

)( µ1

µ1 +D1

)x
− c1D

−1
1 , x ≥ 1,

V (0, y)− V (0, y − 1) =
(
r2 + c2D

−1
2

)( µ2

µ2 +D2

)y
− c2D

−1
2 , y ≥ 1,

Since µ1, µ2, D1, and D2 are all positive, the denominator in equation (3.11) is positive.

Therefore, V̂ − V (1;x, y) ≥ 0 if and only if the numerator in equation (3.11) is non-

negative (which is equivalent as the condition in the lemma). V̂ − V (1;x, y) ≥ 0,

implies V (2;x, y) ≥ V (1;x, y) which implies a = 2 is optimal at state (x, y). The
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condition is an if and only if condition if a = 1 is optimal at state (x, y − 1) in which

case V (2;x, y) = V̂ .

(b) We can prove the correctness with an argument similar to the proof of part (a), and

hence, is omitted.

We now use Lemma 3 to show that the optimal policy is an index policy for an arbitrary

state (x, y), where x ≥ 1 and y ≥ 1.

Proposition 4. For any state (x, y) with x ≥ 1 and y ≥ 1, the optimal action a∗(x, y) = 1 if

µ1

(
r1 + c1D

−1
1

) [
(D1 +D2)−D2

(
µ1

µ1 +D1

)x]
≥µ2

(
r2 + c2D

−1
2

) [
(D1 +D2)−D1

(
µ2

µ2 +D2

)y]
;

(3.12)

Otherwise, a∗(x, y) = 2.

Proof. Suppose inequality (3.3) holds at (x, y) for x ≥ 1 and y ≥ 1, since 0 < µ1 < µ1 +D1,

inequality (3.3) holds for all states (x̂, y) for 1 ≤ x̂ ≤ x. By default, a = 2 is optimal for

state (0, y) with y ≥ 1. Then a = 2 is optimal for state (1, y) for y ≥ 1 by Lemma 3. By

induction on x, based on Lemma 3, we can show that a = 2 is optimal at state (x, y).

On the other hand if inequality (3.3) does not hold at (x, y) for x ≥ 1 and y ≥ 1,

inequality (3.4) must holds at (x, y) for x ≥ 1 and y ≥ 1. Since 0 < µ2 < µ2 +D2, inequality

(3.4) holds for all states (x, ŷ) for 1 ≤ ŷ ≤ y. By default, a = 1 is optimal for state (x, 0)

with x ≥ 1. Then by an induction based on Lemma 3, we have a = 1 is optimal at state

(x, y).

Proposition 5. For a fixed x ≥ 0, there exists a threshold y∗ ≥ 0 such that action a = 1 is

optimal at state (x, y) for all 0 ≤ y < y∗, and a = 2 is the optimal action at state (x, y) for
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all y ≥ y∗, where

y∗ =


ln

(
µ1(r1+c1D

−1
1 )D2

(
µ1

µ1+D1

)x
+(D1+D2){µ2(r2+c2D

−1
2 )−µ1(r1+c1D

−1
1 )}

µ2(r2+c2D
−1
2 )D1

)
ln
(

µ2
µ2+D2

)
. (3.13)

Proof. When x = 0, by default, the optimal action is a = 2 at state (0, y) for all y ≥ 1, i.e.,

y∗ = 1. For state (x, 0) with x ≥ 1, a = 1 is the optimal action also by default. Then for

an arbitrary state (x, y) with x ≥ 1 and y ≥ 1, let y∗ be the smallest positive integer such

that the inequality (3.3) holds, by proposition 4, a = 2 is optimal at state (x, y∗). Since

0 ≤ µ2 ≤ µ2 +D2, µ2 > 0, r2 ≥ 0, c2 ≥ 0, and D2 > 0, inequality (3.3) holds for all y ≤ y∗.

Therefore, a = 2 is the optimal action for all states (x, y) with y ≥ y∗.

On the other hand, since by our construction, y∗ is the smallest positive integer such

that the inequality (3.3) holds, the inequality (3.4) holds for all 1 ≤ y < y∗. By proposition

4, a = 1 is optimal at states (x, y) for 1 ≤ y < y∗. And equation (3.13) is a reformulation of

inequality (3.3) in Lemma 3.

3.3 Asymptotic Results for Deadlines

We express the class dependent deadline rate as a multiple of a common rate D as

D1 = d1D and D2 = d2D. We then study the optimality condition given in (3.12) when the

deadline rate D goes to zero (deadline goes to infinity). From Proposition 4, we know a = 1

is optimal if and only if,

µ1

(
r1 + c1d

−1
1 D−1

) [
(d1D + d2D)− d2D

(
µ1

µ1+d1D

)x]
µ2

(
r2 + c2d

−1
2 D−1

) [
(d1D + d2D)− d1D

(
µ2

µ2+d2D

)y] ≥ 1.
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Now consider the fraction as D approaches 0 for c1, c2 > 0:

lim
D→0

µ1

(
r1 + c1d

−1
1 D−1

) [
(d1D + d2D)− d2D

(
µ1

µ1+d1D

)x]
µ2

(
r2 + c2d

−1
2 D−1

) [
(d1D + d2D)− d1D

(
µ2

µ2+d2D

)y]
= lim

D→0

µ1

(
r1D + c1d

−1
1

) [
(d1 + d2)− d2

(
µ1

µ1+d1D

)x]
µ2

(
r2D + c2d

−1
2

) [
(d1 + d2)− d1

(
µ2

µ2+d2D

)y]
=
c1µ1

c2µ2

.

(3.14)

The result in (3.14) implies our dynamic policy agrees asymptotically with cµ rule as the

deadlines go to infinity. The rewards no longer make a difference in this case since for

sufficiently large deadlines, all jobs will eventually be completed.

In many applications, the holding costs are ambiguous and difficult to quantify. The

deadlines to some extend also indicate the urgency. Therefore, we are interested in models

where the holding costs are omitted. If we set c1 = c2 = 0 before letting D approaches 0, we

have

lim
D→0

µ1r1

[
(d1D + d2D)− d2D

(
µ1

µ1+d1D

)x]
µ2r2

[
(d1D + d2D)− d1D

(
µ2

µ2+d2D

)y]
= lim

D→0

µ1r1

[
(d1 + d2)− d2

(
µ1

µ1+d1D

)x]
µ2r2

[
(d1 + d2)− d1

(
µ2

µ2+d2D

)y]
=
µ1r1d1

µ2r2d2

.

(3.15)

In this case, the result is similar to the conclusion in [26] which is also obtained by assuming

a small common deadline rate.

3.4 Heuristics for Multi-Class and Multi-Server Problem

In a more generic model involving N heterogeneous classes of jobs severed by M iden-

tical jobs finding an explicit solution analytically becomes impossible. Due to the curse of

dimensionality, the numerical method only works for small scale problems. Therefore, we
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designed heuristic policies which provide good solutions to the complex general model in this

section based on the solution structure of the analytical solution we derived for two-class

single-server case in Section 3.3.

Let C denotes the set of all classes and x = {x1, x2, . . . , xN} is a vector representing the

number of jobs in each class waiting for service at time zero. There will be no future arrivals

for any class. A common deadline exists for all jobs in a given class k ∈ C which follows an

exponential random distribution with a positive rate of Dk, k ∈ C. All jobs, including those

in service, who have not completed their service before their respective deadline will expire

(leave the system). There is a single machine serves one job at a time non-preemptively. The

service time for each individual job follows an exponential distribution with a positive rate

of µk for k ∈ C. The machine generates a reward of rk at the service completion for each

job in class k for k ∈ C after that the job exits the system. The non-negative holding cost

is ck per unit of time for each class k job in the system for k ∈ C. We aim to schedule the

jobs dynamically for service so as to maximize the total expected reward until the system is

empty.

We formulate the system as a Markov Decision Process. The actions corresponding to

which class will be in service next are made every time the service becomes idle and the

system is not empty. Let A = {1, 2, ... . . . , N} denote the actions space while a ∈ A denotes

the action of serving a job in class a. In state x, an action a ∈ A is feasible if and only if

xa > 0. Let Ax denotes the set of feasible actions in state x. Let V (x) denote the maximum

expected reward starting from state x. The optimality equation can be expressed as,

V (x) = max
a∈Ax

{
µa [ra + V (x− ea)] +

∑
iDiV (x− xiei)−

∑
i cixi

µa +
∑

iDi

}
, and V (0) = 0. (3.16)
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Consider two feasible actions p and q at state x, following a similar calculation as in the

proof for Lemma 3, we have the following condition for action p more preferable than action

q,

µp

{
cp + rp

∑
i

Di −
∑
i 6=p

Di [V (x− xiei)− V (x− xiei − ep)]

}

≥µq

{
cq + rq

∑
i

Di −
∑
i 6=q

Di [V (x− xiei)− V (x− xiei − eq)]

}
.

(3.17)

Notice the computation of the marginal values V (x − xiei) − V (x − xiei − ep),∀i 6= p or

i 6= q are performed at a state space one dimension lower than the original state V (x) as in

each computation at least one class will vanish. Although it is possible to follow the path

as in Section 3.3 to obtain the optimal policy for the general N classes case, due to the

curse of dimensionality, find a closed form result is impossible. Even numerical computation

will quickly become infeasible as the number of classes increases. Therefore, we focus on

constructing easy-to-implement heuristics based on the analytical results we established in

Section 3.3 and equation (3.17). We also incorporate multiple servers when building our

heuristics.

3.4 Dynamic Heuristics

3.4.1.1 Two-Class Approximation Heuristic (TAH)

We approximate the difference of V values in equation (3.17) assuming there are only

two classes. In that case, the difference in V values only involves a single class of jobs.

Therefore, we can use (3.2) to approximate the V values explicitly as,

V (x− xiei)− V (x− xiei − ep)

≈V (epxp)− V (ep(xp − 1))

=(rp + cpD
−1
p )

(
µp

µp +Dp

)xp
− cpD−1

p .

(3.18)
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The next available server will be assigned to a job in class a∗ as follows,

a∗(x) = argmax
p∈A

{
µp
(
rp + cpD

−1
p

) [∑
i

Di −
∑
i 6=p

Di

(
µp

µp +Dp

)xp]}
. (3.19)

3.4.1.2 Bi-Class Approximation Heuristics (BAH-mean, BAH-max)

We adopt a similar idea as in TAH by considering one class at a time while treating

all other classes as another class in order to approximate the V values in equation (3.17).

For every class of p, we construct another class q by averaging all other class except p. The

class q will have a reward of r̄q =
∑

i 6=p ri/(N − 1), holding cost of r̄q =
∑

i 6=p ci/(N −

1), service rate of µ̄q =
(∑

i 6=p µ
−1
i /(N − 1)

)−1

(Harmonic mean), and deadline rate of

D̄q =
(∑

i 6=pD
−1
i /(N − 1)

)−1

. Then, we can use the results in the two-class approximation

heuristic to identify the next class to serve when a server becomes available next.

a∗(x) = argmax
p∈A

{
µp
(
rp + cpD

−1
p

) [
(Dp + D̄q)− D̄q

(
µp

µp +Dp

)xp]}
. (3.20)

Note that the deadline for class q appears in the formula.

We can also use the maximum of the deadlines rate instead of the average among all

other classes to create another variation of the heuristic. In that case, for every class of

p, we construct another class q with a a deadline rate of D̄q = maxi 6=pDi. Then, we can

obtain the class to server by replacing the mean deadline rate D̄q in formula (3.20) by the

maximum deadlines rate D̄q. BAH-mean and BAH-max perform similarly in the simulation.

Therefore, we only include the results of BAH-mean in numerical studies and simulations.

3.4 Static Heuristics

3.4.2.1 Dedicate Assignment Heuristic (DAH)

The dedicate assignment heuristic evenly distributes all M identical servers among N

classes. Specifically, an available server will be assigned to serve class i, which maximizes
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xi/Mi and where Mi is the number of servers currently serving class i. Assigned servers will

keep serving designated class until no jobs left. Until then, all servers assigned to that class

will be re-assigned one by one to other classes still need service.

3.4.2.2 dcµ Heuristic (DCM)

Glazebrook et. al. [26] proposed a static policy which prioritize class k∗ =

argmax
a∈{1,2}

{Diciµi}. We modified the cost term ci in the original formula to ri− ciµ−1
i to incor-

porate both the reward and holding cost. Specifically, the available server will be assigned

to class a∗ jobs given by the follows,

a∗(x) = argmax
a∈A

{
Da

(
ra − caµ−1

a

)
µa
}
. (3.21)

3.4.2.3 Infinite Jobs Heuristic (IFH)

For this heuristic, we assume there are infinite number of jobs in each class. We use the

formula in (3.19) to determine the optimal action by setting xp to ∞. More specifically, the

available server will be assigned to class a∗ jobs given by the follows,

a∗∞ = argmax
a∈A

{
µa
(
ra + caD

−1
a

)}
. (3.22)

3.5 Numerical Studies

The results obtained for the two-class prioritization problem in Section 3.3 could be

of theoretical interests. Therefore, we dedicated this numerical study to investigate the

performance of the proposed heuristics in Section 3.4 comparing the optimal policy in an

environment similar to the analytical model. We consider a model with three classes of jobs

served by a single server in the numerical study. Assume both service times and deadline are

exponentially distributed with rate µk > 0 and Dk > 0 for all jobs in class k ∈ {1, 2, 3}. We
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generated the initial numbers of jobs xk, k ∈ {1, 2, 3} independently and uniformly over the

set of integers between 1 and 30. We fixed the holding cost to be zero for all classes. The

expected rewards rk, k ∈ {1, 2, 3} are drawn independently from uniform distributions with

ranges (0, 1). We considered several experiments setting with different deadline rates Dk, k ∈

{1, 2, 3} and service rate µk, k ∈ {1, 2, 3}. For each experiment setting, we generated 10,000

random scenarios. In each scenario, we computed the expected total reward for each heuristic

policies using the optimality equation defined in (3.1) while replacing the action at each state

by the action generated by the respective heuristics. The optimal expected total reward was

computed using backward induction. Due to the curse of dimensionality, the optimal policy

could only be computed when the number of classes in small and the number of jobs in each

class is moderate. Then, we recorded the percentage deviation on the total reward of each

heuristic from the optimal total reward for each scenario. We provided statistics including

the 95% confidence interval (C.I.), minimum “Min”), first quantile (“Q1”), median (“Med”),

third quartile (“Q3”), maximum (“Max”), of the percentage improvement. In addition,

“#best” denotes the number of scenarios where each heuristic performs better than other

heuristics (in case of a draw, all heuristics performs as good as the best one are all counted

toward the best).

For the first set of experiments, we generate the service rates µk, k ∈ {1, 2, 3} uniformly

from (0, 3). On the other hand, we change the range used to generate the deadline rates

Dk, k ∈ {1, 2, 3}. The results are presented in Table 3.2.

In first block of Table 3.2, the deadlines are generated uniformly from (0.05, 1). TAH

performs close to the optimal policy and better than all other heuristics at 5% significant

level. Both DCM and INF are within 1% to the optimal policy. While DCM and INF have the

largest number of best-performing scenarios, the performance of TAH is the most consistent

with a maximum deviation from the optimal policy less than 5%. Other heuristics deviate

from the optimal policy by at least 10% in the worst cases. In block two and three, as the

deadline rates decrease, the performance of DAH, DCM, and TAH improved monotonically.
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Heuristics 95% C.I. Min. Q1 Median Q2 Max #best.

Di ∼ Uniform (0.05, 0.1)
DAH 14.88 ± 0.26 0.00 0.73 8.63 26.44 72.82 1436
INF 0.32 ± 0.02 0.00 0.00 0.00 0.09 11.84 7337

DCM 0.24 ± 0.01 0.00 0.00 0.00 0.05 12.73 7663
TAH 0.14 ± 0.01 0.00 0.00 0.01 0.11 4.19 5964
BCH 2.88 ± 0.05 0.00 0.58 1.77 4.12 22.55 195

Di ∼ Uniform (0.01, 0.05)
DAH 11.43 ± 0.23 0.00 0.68 5.73 17.75 76.68 1446
INF 0.60 ± 0.03 0.00 0.00 0.00 0.28 17.93 6572

DCM 0.09 ± 0.01 0.00 0.00 0.00 0.00 10.01 8394
TAH 0.07 ± 0.00 0.00 0.00 0.00 0.03 3.72 7062
BCH 3.32 ± 0.06 0.00 0.75 2.07 4.67 23.95 149

Di ∼ Uniform (0.005, 0.01)
DAH 6.24 ± 0.16 0.00 0.28 2.42 7.91 65.13 1645
INF 0.07 ± 0.00 0.00 0.00 0.00 0.00 4.97 8124

DCM 0.01 ± 0.00 0.00 0.00 0.00 0.00 5.15 9334
TAH 0.01 ± 0.00 0.00 0.00 0.00 0.00 2.93 8531
BCH 2.87 ± 0.06 0.00 0.52 1.39 3.64 26.90 82

Table 3.2: Percentage deviation from the optimum when deadlines vary.

When deadline rates are between 0.005 and 0.01, both DCM and TAH are on average 0.01

% away from the optimal policy. INF and BCH on the other hand, do exhibit monotone

improvements as the deadlines getting larger.

For the second set of experiments, we generate the deadline rates Dk, k ∈ {1, 2, 3}

uniformly from (0.005, 0.1). On the other hand, we change the range used to generate the

service rates µk, k ∈ {1, 2, 3}. The results are presented in Table 3.3.

In first block of Table 3.3, the service rates are generated uniformly from (0, 1). TAH

on average performs close to the optimal policy and better than all other heuristics at 5%

significant level. DCM on average is also within 1% to the optimal policy and has the largest

number of best-performing scenarios. The performance of TAH is the most consistent with

the smallest maximum deviation from the optimal policy of 7.29% and also a large number

of best-performing scenarios. Other heuristics deviate from the optimal policy by at least

1.5% on average and 17% in the worst cases. In block two and three, we increase the
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Heuristics 95% C.I. Min. Q1 Median Q2 Max #best.

µi ∼ Uniform (0, 1)
DAH 16.37 ± 0.30 0.00 0.87 9.29 27.13 93.07 1245
INF 1.52 ± 0.06 0.00 0.00 0.00 0.92 29.74 5355

DCM 0.61 ± 0.03 0.00 0.00 0.00 0.16 17.03 6739
TAH 0.14 ± 0.01 0.00 0.00 0.00 0.07 7.29 6469
BCH 1.79 ± 0.04 0.00 0.11 0.63 2.28 20.69 666

µi ∼ Uniform (1, 2)
DAH 10.49 ± 0.20 0.00 0.56 5.66 16.76 80.81 1411
INF 2.21 ± 0.06 0.00 0.00 0.20 2.71 24.46 4278

DCM 0.21 ± 0.01 0.00 0.00 0.00 0.03 10.10 7532
TAH 0.07 ± 0.00 0.00 0.00 0.00 0.05 3.82 6807
BCH 1.37 ± 0.03 0.00 0.25 0.76 1.80 14.63 390

µi ∼ Uniform (2, 3)
DAH 8.89 ± 0.17 0.00 0.59 4.87 13.82 64.56 1248
INF 1.86 ± 0.05 0.00 0.00 0.16 2.31 23.39 4365

DCM 0.09 ± 0.01 0.00 0.00 0.00 0.00 4.12 8045
TAH 0.03 ± 0.00 0.00 0.00 0.00 0.02 1.25 7423
BCH 1.12 ± 0.02 0.00 0.25 0.71 1.54 10.71 370

Table 3.3: Percentage deviation from the optimum when service rates vary.

service rates to (1, 2) and (2, 3), the performance of DAH, DCM, TAH, and BCH improved

monotonically. INF, on the other hand, performs closest to optimal when the service rate is

small. This phenomenon makes sense as INF assume an infinite number of jobs thus favors

slower services.

3.6 Simulation Studies

3.6 Simulation Setting

We test the performance of proposed heuristics in a hypothetical flooding scenario. The

scenario is abstract from Hurricane Harvey and the resulting flooding in Harris County

during the period of late August until early September in 2017.

We considered the area in between longitude of 29.35 and 30.35 and latitude of -94.85

and -95.85. It corresponds to a 69 by 69 miles2 region contains the city of Houston and its
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suburbs. We discretized the region with a 24 by 24 grid to obtain the parameters for our

simulations studies from data.

We derive the distribution of rescue requests using the rescue requests data collected

during Hurricane Harvey from Data World [6]. After cleaning the data, we obtained 1862

data points each representing a rescue request with legitimate geographical coordinate which

falls within our pre-specified region. Base on the 1862 pairs of longitude and latitude,

we construct a discrete 2-dimensional empirical probability function. Let pij denotes the

probability of a request from (i, j)’s cell in the 24 by 24 grid. Although this data set includes

all kinds of emergency requests, we used the empirical probability function obtained from it

to generate the distribution of requests to be rescued by air resources in our simulations.

We could not identify where exactly those people rescued by helicopters were transported

to exactly. Instead, we identified the major shelters and assume all rescued people will be

transported to the nearest one. We considered four shelters listed in [1]: Cypress Ranch

High School, M.O.Campbell Education Center, George R. Brown Convention Center, and

Bay Harbour United Methodist Church (Refer to Figure 3.1 for more details). Then, for cell

(i, j) in the grid, we compute the distance from the center of the cell to the nearest shelter

among those four shelters and used it as the mean distance dij for each cell in the simulation.

We only considered helicopter as servers in our simulation and denote the number of

servers by M . According to Texas Department of Public Safety, at least 26 helicopters were

assigned to the state of Texas Emergency Support Function 9 Search and Rescue (ESF 9

SAR) and 1056 people in total were rescued by air resources [72]. We adopted the cruise

speed of a UH-60 Blackhawk in our simulation as the mean speed of all helicopters which is

170 miles per hour according to its Wikipedia page. We assume if a helicopter is assigned

to a request at cell (i, j), it always starts and ends at the nearest shelter to the request

location. The re-allocation of helicopters between the shelters are neglected. We specifically

considered the round trip travel time and time for loading and unloading in our simulation.

Therefore, the mean single trip travel time for a request at cell (i, j) equals ti,j = dij/170+10
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Figure 3.1: Number of people in shelters [1]

minutes. 10 minutes represents the loading time at rescue locations or the unloading time

at shelters. We assume the time required for a single trip during a rescue mission follows a

log-normal distribution with mean ti,j and variance 0.1ti,j.

3.6 Parameters in Heuristics

To adopt the heuristics introduced in Section 3.4, we divide all requests into 9 classes.

We partitioned the region of interest into 9 classes according to geographical locations in our

simulations. More specifically, we divide the squared region using 3 by 3 grid and each small

square corresponds to a class. Each class now contains 64 cells defined in Section 3.6.1. The

parameters for each class will be generated based on its containing cells.

There are M > 0 helicopters in our simulation. We used the pooled round trip service

rate averaged across all cells belong to a given class k as the service rate for that class, i.e.

µk = 0.5M
∑

(i,j)∈K t
−1
ij , where K is the set of all cells belongs to class k ∈ C.
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There is no clear specified deadline in search and rescue mission. We mainly view the

deadline in our model as a measure of different level of urgent across the classes. When

a deadline is reached for a class, even though all jobs in that class leave the system in

our model, we do not mean that all people requesting rescue in that sub-area are dead.

When the deadline is reached, those people have not been rescued will facing higher risks or

more rigorous environment. We utilized the channel status on the Harrison County Flood

Warning System (FWS) [28] to generate the deadlines for each class. Figure 3.2 show the

main information panel of the FWS website. More specifically, we selected a few creeks

within the sub-region of each class. For each creek, we identified the time interval for the

stream elevation between the lastest time it exceeded the height of “Flooding Possible” and

the first time it exceeded the height of “Flooding Likely” after the landfall of Hurricane

Harvey. A short interval length indicates the rapid increasing of stream elevation and the

flood will occur soon. If either the elevation never reached the height of “Flooding Likely”

or the length of the interval is larger than 24 hours, we cap the interval at 24 hours since we

only consider the rescue operation within one day. For example, stream elevation and other

information of Cypress creek at I-45 can be found in Figure 3.3, the “Flooding Possible”

height is 82.50 feet which occurred at 00:19 a.m. on August 27, and the “Flooding Likely”

height is 85.50 feet which occurred at 2:55 a.m. on August 27. Thus, the length of the

interval was 2.6 hours. The average length of all such intervals within each class is used

as the deadline multiplier in the simulation. In the base case of our simulation, a deadline

unit correspondence to an hour. The actual deadline used in the simulations for each class

is deterministic and equals the deadline multiplier times the deadline unit. For example, a

class with deadline multiplier of 5 will have 5 hours before the deadline arrives. When we

vary the length of the deadlines, we change the length of the deadline unit. For example,

when the deadline unit becomes 10 minutes, a class with deadline multiplier of 5 will have

50 minutes before the deadline arrives.
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The total number of requests in each class equals the sum of all requests belongs to the

class. We set the reward to be one for all requests completed before their deadlines and

the costs are set to zero. The reward is collected when the helicopter arrives at the request

location in the simulations.

Figure 3.2: Channel status and flood warming on FWS [28]

3.6 Simulation Results

We test the heuristics proposed in Section 3.4 in various simulations scenarios. Each

simulations scenario has a different set of parameters such as total number of request, number

of helicopters, and deadlines. We replicate each scenario 100 times with random request

distribution and travel time. Common random numbers are used across all heuristics. We

report the mean percentage of rescue requests completed and its confidence interval as the

result. All simulation were coded using Matlab 2017b.

We first vary the total number of requests while fixing the number of helicopters at 25

and deadline unit to an hour. We increase the number of requests from 10 to 1000 with a

step size of 10. The results are presented in Table 3.4 and Figure 3.4.
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Figure 3.3: Information on Cypress creek at I-45 [28]

From Figure 3.4, we recognize that the percentage of completed requests decreases as

the total number of requests increase for all heuristics. When the number of requests is

small (around 200), both DCM and BAH-mean perform the best. As the number of requests

increases, TAH performs the best and DAH and INF converge to TAH when the number of

requests is close to 1000. The percentage of the uniquely best performing heuristic (at 5%

significant level) is highlighted in bold for each scenario in Table 3.4.

Next, we fixed the total number of request to 300 and the deadline unit to an hour and

vary the number of helicopters from 1 to 100. The results are presented in Table 3.5 and

Figure 3.5.

The percentage of completed requests increases as the number of servers increases. From

Figure 3.5, intuitively, TAH perform the best when the number of servers is small (around

20). DCM and BAH-mean become the best performer as the number of servers increases to
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Figure 3.4: Request completion percentages v.s. No. requests

around 40. INF, DCM, TAH, and BAH-mean converge to 100 percent when more than 60

servers are available. In Table 3.5, the percentage of the uniquely best performing heuristic

(at 5% significant level) is highlighted in bold for each scenario. Only TAH is the outperform

all other heuristics at 5% significant level when the number of servers is from 15 to 30. DCM

and BAH-mean perform similarly but better than other heuristics when the number of servers

is between 35 and 50.

Last but not least, we fixed the total number of request to 300 and the number of

helicopters at 25 while varying the deadline unit from 1 minutes to 60 minutes. The results

are presented in Table 3.6 and Figure 3.6. We also look at the case where the number of

servers increases to 35 while keep all other setting the same. The results are presented in

Table 3.7 and Figure 3.7.

An interesting observation from Figures 3.6 and 3.7 is that the percentage of completed

requests for all heuristics except DAH increases as the deadlines increase in the shape of

”step functions”. This might due to that the performance of heuristics will only be affected
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Table 3.4: Request completion percentages v.s. No. requests (Fix No. server at 25 and deadline
unit equals to 60 minutes).

No.Req. Heuristics
(×10) DAH INF Dcµ TAH BCH-Mean

5 98.86±0.26 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00
10 90.15±0.39 99.45±0.11 100.00±0.00 99.99±0.02 100.00±0.00
15 74.56±0.42 89.13±0.48 99.89±0.05 98.57±0.20 99.89±0.05
20 65.38±0.39 82.57±0.57 93.31±0.87 83.78±0.53 93.33±0.88
25 59.86±0.41 70.88±0.42 66.19±0.66 73.22±0.49 67.18±0.71
30 55.33±0.23 60.28±0.43 51.79±0.38 61.30±0.41 53.54±0.41
35 48.54±0.16 51.31±0.53 44.22±0.34 53.65±0.34 46.11±0.38
40 43.19±0.14 44.20±0.43 38.99±0.28 47.41±0.28 40.64±0.31
45 38.98±0.14 39.45±0.35 34.77±0.26 42.09±0.32 36.20±0.32
50 35.81±0.14 35.96±0.25 31.68±0.24 38.41±0.28 33.09±0.29
55 33.15±0.13 33.48±0.21 29.18±0.20 35.64±0.22 30.47±0.23
60 31.02±0.16 31.18±0.22 27.22±0.21 32.95±0.25 28.38±0.26
65 29.49±0.14 29.55±0.22 25.75±0.22 30.74±0.26 26.80±0.29
70 27.61±0.12 27.67±0.18 23.78±0.22 28.67±0.23 24.71±0.28
75 26.20±0.11 26.36±0.16 22.58±0.21 26.97±0.25 23.43±0.27
80 24.99±0.14 25.07±0.21 21.34±0.20 25.63±0.21 21.87±0.23
85 23.99±0.13 23.95±0.17 20.34±0.17 24.25±0.21 20.75±0.21
90 22.95±0.10 22.94±0.15 19.38±0.18 23.16±0.18 19.75±0.20
95 22.13±0.12 21.97±0.17 18.53±0.20 22.18±0.19 18.89±0.23
100 21.42±0.10 21.35±0.15 17.99±0.19 21.27±0.18 18.16±0.20

when the small changes in deadlines cumulated. Also, for some heuristics such as INF and

TAH, the improvement in the percentage of completed requests is not monotonic. This might

due to the deadlines are exponential in the model but deterministic in the simulation. From

Figure 3.6 and Table 3.6, when there are 25 servers, we observed that DAH performs the

best when the deadlines are small. TAH is the first heuristic that outperforms DAH and

all other heuristics at 5% significant level as the deadline unit exceed 55. From Figure 3.7

and Table 3.7, when the number of servers increases to 35 while keeping all other settings

untouched, we observed that DAH again performs the best when the deadlines are small.

TAH is the first heuristic that outperforms DAH and all other heuristics at 5% significant

level as the deadline unit exceed 35 but less than or equals to 45. INF, DCM, DAH, and

BAH-mean perform much better than DAH when the deadline unit is more than 50.
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Figure 3.5: Request completion percentages v.s. No. servers

Overall speaking, TAH performs strongly when the number of jobs is large, the number of

servers is small, and the deadline is moderate. DCM and BAH-mean often perform similarly.

They perform well when the number of jobs is small, the number of servers is larger, and

when deadlines are larger while the number of servers is relatively large. DAH perform

plausible only when the deadlines are small.

3.7 Conclusion

In urban search and rescue operations, especially during catastrophic natural disasters,

the huge number of requests overwhelms the limited resources. This study investigated the

optimal allocation of limited resources to urgent demands. First of all, our generic scheduling

model consists of a single server two classes of jobs with potentially distinct service rates,

holding costs, rewards, and a common deadline for each class. We identified explicitly the

optimal policy for the proposed model. Furthermore, based on the structure of the optimal

policy, we developed multiple heuristics for a more general system with multiple servers and
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Table 3.5: Request completion percentages v.s. No. servers (Fix no. requests at 300 and deadline
unit equals to 60 minutes).

No. Heuristics
Ser. DAH INF Dcµ TAH BCH-Mean

5 15.83±0.20 15.78±0.24 13.57±0.25 15.67±0.25 13.32±0.27
10 24.75±0.21 25.61±0.26 22.02±0.28 26.08±0.30 22.30±0.29
15 35.44±0.20 36.10±0.34 32.08±0.30 38.55±0.33 32.90±0.31
20 45.65±0.17 47.20±0.50 41.43±0.34 50.07±0.38 43.07±0.38
25 54.94±0.25 60.46±0.35 51.71±0.40 61.40±0.45 53.45±0.44
30 60.21±0.34 70.94±0.42 65.55±0.58 72.58±0.48 66.72±0.63
35 64.25±0.31 80.59±0.46 86.08±0.76 81.39±0.37 85.76±0.76
40 67.51±0.31 85.47±0.44 97.39±0.39 87.46±0.38 97.44±0.39
45 71.30±0.28 88.09±0.30 99.61±0.11 94.26±0.31 99.63±0.11
50 75.16±0.23 88.24±0.33 99.91±0.03 98.68±0.11 99.95±0.02
55 78.55±0.26 92.08±0.28 100.00±0.00 99.67±0.05 99.99±0.01
60 82.14±0.26 97.69±0.26 100.00±0.00 99.85±0.04 100.00±0.00
65 85.20±0.26 99.14±0.14 100.00±0.00 99.96±0.02 100.00±0.00
70 88.14±0.22 99.51±0.08 100.00±0.00 100.00±0.00 100.00±0.00
75 91.42±0.19 99.57±0.06 100.00±0.00 100.00±0.00 100.00±0.00
80 93.41±0.22 99.54±0.07 100.00±0.00 100.00±0.00 100.00±0.00
85 94.73±0.20 99.52±0.07 100.00±0.00 100.00±0.00 100.00±0.00
90 96.47±0.17 99.56±0.06 100.00±0.00 100.00±0.00 100.00±0.00
95 97.51±0.13 99.61±0.06 100.00±0.00 100.00±0.00 100.00±0.00
100 97.88±0.12 99.62±0.06 100.00±0.00 100.00±0.00 100.00±0.00

more than two classes of jobs. The proposed heuristics perform close to the optimal in our

numerical study.

Moreover, we designed hypothetical simulations abstracted from the real urban search

and rescue operations during Hurricane Harvey in Houston, TX, U.S. in 2017. Unfortunately,

our simulations were not as realistic as we want due to lack of data. Especially the common

deadlines were generated using the elevation of the creeks and water channels rather than

flood levels and the rewards are set to one rather than the actual number of people rescued

in each operation. We still believe they reflect some aspects of the urban search and rescue

operations carried out during Hurricane Harvey and are capable of providing meaningful

feedback. The proposed heuristics performed well in the simulation as well. From the

simulation results, we believe the proposed heuristics could be utilized by the commanders
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Figure 3.6: Request completion percentages v.s. deadline unit (25 servers)

of the urban search and rescue task forces in coordinating resources or be used in designing

response plans.

Base on the simulations, we recommend applying TAH, a dynamic heuristic takes into

consideration the number of requests, when resources are confined while exercising DCM,

a simple static policy, for relative ample resources setting although further experiments in

more detailed simulation or test events are necessary to support our claim. The simulation

setup could be improved with a better classification of requests based on more details of the

request, more concrete deadlines from weather forecasting or real-time monitoring data.

Our analytical findings could be interested in the scheduling community. Our approach

has the potential to be extended to identify the structure-property for the optimal policy

with more than two classes. Our heuristics could also be applied in many other situations

beyond urban search and rescue, such as healthcare – coordinate emergency medical response

personnel and resources and triage casualties in the aftermath of mass casualty incidents,

service, and production – appointment scheduling with impatient customers and production
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Table 3.6: Request Completion Percentages v.s. Deadlines (Fix No. server at 25 and No. request
at 300).

Minutes Heuristics
Per Unit. DAH INF Dcµ TAH BCH-Mean

10 13.23±0.23 15.08±0.31 8.46±0.44 13.26±0.26 9.19±0.31
15 16.38±0.24 16.25±0.29 9.44±0.32 14.04±0.25 9.44±0.32
20 19.30±0.23 16.12±0.28 11.26±0.27 14.33±0.35 11.26±0.27
25 23.80±0.22 19.23±0.33 16.27±0.30 17.66±0.32 14.98±0.27
30 28.54±0.24 26.60±0.60 24.88±0.42 28.67±0.46 24.15±0.46
35 32.56±0.22 31.36±0.48 26.73±0.44 35.72±0.49 26.60±0.59
40 36.88±0.22 33.76±0.36 28.39±0.56 35.71±0.49 28.37±0.62
45 42.18±0.18 45.75±0.53 38.02±0.51 45.33±0.38 39.20±0.58
50 46.47±0.15 48.54±0.38 44.83±0.58 53.11±0.45 46.28±0.58
55 50.06±0.16 50.52±0.35 47.55±0.68 55.68±0.48 49.09±0.67
60 55.35±0.20 60.31±0.39 51.36±0.43 61.34±0.40 53.11±0.46

planning with perishable materials, military rescue operations – evacuate wounded soldiers

from battlefields, and humanitarian aid – evacuate refugees from war zone and distribute

food and medicines to areas in need.
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Figure 3.7: Request completion percentages v.s. deadline unit (35 servers)

Table 3.7: Request Completion Percentages v.s. Deadlines (Fix No. server at 35 and No. request
at 300).

Minutes Heuristics
Per Unit. DAH INF Dcµ TAH BCH-Mean

10 16.14± 0.26 18.44± 0.30 12.18± 0.36 16.23± 0.26 12.18± 0.36
15 20.74± 0.25 19.77± 0.29 12.92± 0.32 17.56± 0.26 12.99± 0.31
20 25.14± 0.23 19.91± 0.26 15.18± 0.28 24.20± 0.65 15.11± 0.27
25 30.94± 0.25 24.06± 0.32 21.11± 0.28 26.12± 0.57 19.15± 0.26
30 37.60± 0.26 38.05± 0.91 34.76± 0.49 38.54± 0.36 34.10± 0.50
35 43.43± 0.19 43.48± 0.49 40.95± 0.51 49.86± 0.41 40.76± 0.62
40 49.78± 0.23 46.60± 0.47 41.70± 0.70 53.19± 0.52 42.75± 0.77
45 57.25± 0.26 62.30± 0.32 55.31± 0.51 63.67± 0.43 57.17± 0.50
50 59.33± 0.33 71.98± 0.46 66.93± 0.49 70.87± 0.40 67.72± 0.46
55 61.81± 0.33 77.51± 0.62 76.98± 0.71 77.36± 0.34 77.41± 0.67
60 63.77± 0.32 79.41± 0.56 84.57± 0.82 81.11± 0.39 84.30± 0.78
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APPENDIX A: PROOF OF PROPOSITION 1

To show that greedy algorithm provides the optimal solution to problem (2.14), we

only need to proof that the action space, the set of feasible solutions, and the non-negative

objective function form a finite weighted matroid.

Proof of Proposition 1. Let E denote the action space, i.e. the set of all possible values for

all a
(c)
lh ’s and obviously E is a finite set since L,H and C are all finite set. Let I denote the

collection of feasible set of the problem. We need to check the following conditions in order

to proof the pair (E, I) forms a finite matroid.

1. I set is not empty since empty set is a feasible solution.

2. Let A be a feasible solution and A′ ⊂ A, then A′ is also a feasible solution. This also

holds trivially.

3. Let A and B be two feasible solutions and A has more elements than B, then there

exists a ∈ A\B such that B ∪ {a} is also feasible. This also holds true by the

following argument: A has more elements than B implies
∑

l∈L
∑

h∈H
∑

c∈C b
(c)
lh <∑

l∈L
∑

h∈H
∑

c∈C a
(c)
lh ≤ A, for {b(c)

lh : c ∈ C, l ∈ L, h ∈ H} ∈ B, {a(c)
lh : c ∈ C, l ∈ L, h ∈

H} ∈ A. Suppose there exist a b
(c′)
l′h′ < a

(c′)
l′h′ , since

∑
h∈H a

(c′)
l′h ≤ w

(c′)
l′ and

∑
h∈H b

(c′)
l′h ≤

w
(c′)
l′ ,

∑
h∈H,h6=h′ b

(c′)
l′h + a

(c′)
l′h ≤ w

(c′)
l′ . Also,

∑
l∈L
∑

h∈H
∑

c∈C b
(c)
lh − b

(c′)
l′h + a

(c′)
l′h ≤ A.

Therefore, B ∪ {a} e.g., {b(c)
lh : c ∈ C, l ∈ L, h ∈ H}\{b(c′)

l′h } ∪ {c
(c′)
l′h } is also a feasible

solution.

Hence, (E, I) forms a finite matroid. Furthermore, the objective function is non-negative

and together we have a weighted matroid. Then, following the result in [55], the greedy

algorithm gives us an optimal solution to the problem defined in (2.14).
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APPENDIX B: BERNOULLI SPLITTING POLICY FOR POLICY
IMPROVEMENT HEURISTIC

The policy improvement heuristic depends on the Bernoulli splitting policy as the initial

static casualty distribution. Ideally, we would want to find the optimal splitting, i.e., the set

of θ
(c)
lh , which maximizes V

(c)
∞ (X0) for any given initial casualty level X0 at facilities under

some feasibility constraints. However, due to the non-linearity of the objective function such

a constrained optimization problem is hard solve except for trivial cases. Instead, we obtain

the optimal initial Bernoulli splitting from a fluid approximation of the problem based on

the fluid model in [49]. In the fluid approximation, casualties are transported to medical

facilities from casualty locations continuously. The casualties in class c from location l will

be transported to facility h at a rate of Aθ(c)
lh λlh per unit of time from λ−1

lh on and generating

a reward (survival probability) of r
(c)
h per unit of time. Thus, the total discounted rewards

(survival probabilities) of class c casualties from location l to facility h will be

∫ ∞
λ−1
lh

Aθ(c)
lh λlhr

(c)
h e−αctdt =

(
Aθ(c)

lh λlhr
(c)
h

αc

)
e−αc/λlh .

Assuming all facilities are empty initially, the fluid approximation is then given as the follows:

max A
∑
l∈L

∑
h∈H

∑
c∈C

(
θ

(c)
lh λlhr

(c)
h

αc

)
e−αc/λlh

s.t. A
∑
l∈L

θ
(c)
lh λlh ≤ µ̃

(c)
h ,∀h ∈ H, c ∈ C

∑
l∈L

∑
h∈H

∑
c∈C

θ
(c)
lh ≤ 1

θ
(c)
lh ≥ 0,∀l ∈ L, h ∈ H, c ∈ C

(23)

The first constraint is the stability constraint for each queue at a medical facility. The second

and third constraints are the feasibility constraints for the Bernoulli splitting of ambulances.

The constrained maximization problem in (23) can be solved using linear programming. If
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we further simplify the problem by relaxing the first stability constraint, the problem in

(23) can be solved using a greedy approach. We trim the solution obtained from the greedy

approach with the stability constraints to obtain a feasible solution to (23). For details, refer

to Algorithm 2.

Algorithm 2 Greedy Algorithm for Fluid Approximation Initialization of PIH

1: for all l ∈ L, h ∈ H, c ∈ C do
2: θ

(c)
lh ← 0

3: end for
4: list← {(l, h, c), l ∈ L, h ∈ H, c ∈ C}
5: Sort-Descending(list, α−1

c λlhr
(c)
h e−αc/λlh)

6: for k = 1 to list.Length do
7: (l, h, c)← list[k]

8: θ
(c)
ij ← min{1−

∑
l∈L
∑

h∈H
∑

c∈C θ
(c)
lh , µ̃

(c)
h /(Aλlh)−

∑
l∈L θ

(c)
lh }

9: end for

Proposition 6. Algorithm 2 yields a feasible solution to the optimization problem in (23).

The proof is similar to the proof for Algorithm 2 in Mills et al. [49]and hence omitted.

The numerical experiments in [49] demonstrate that the performance of greedy solution to the

problem in (23) is comparable to the optimal solution obtained by solving a linear program.

Therefore, we will use the greedy solution to find the Bernoulli splitting probabilites for the

policy improvement heuristics.
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