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ABSTRACT

Qiuyu Xiao: Efficient Data Protection by Noising, Masking, and Metering
(Under the direction of Michael K. Reiter)

Protecting data secrecy is an important design goal of computing systems. Conventional tech-

niques like access control mechanisms and cryptography are widely deployed, and yet security

breaches and data leakages still occur. There are several challenges. First, sensitivity of the sys-

tem data is not always easy to decide. Second, trustworthiness is not a constant property of the

system components and users. Third, a system’s functional requirements can be at odds with its

data protection requirements. In this dissertation, we show that efficient data protection can be

achieved by noising, masking, or metering sensitive data. Specifically, three practical problems

are addressed in the dissertation—storage side-channel attacks in Linux, server anonymity vio-

lations in web sessions, and data theft by malicious insiders. To mitigate storage side-channel

attacks, we introduce a differentially private system, dpprocfs, which injects noise into side-

channel vectors and also reestablishes invariants on the noised outputs. Our evaluations show that

dpprocfs mitigates known storage side channels while preserving the utility of the proc filesys-

tem for monitoring and diagnosis. To enforce server anonymity, we introduce a cloud service,

PoPSiCl, which masks server identifiers, including DNS names and IP addresses, with person-

alized pseudonyms. PoPSiCl can defend against both passive and active network attackers with

minimal impact to web-browsing performance. To prevent data theft from insiders, we introduce

a system, Snowman, which restricts the user to access data only remotely and accurately meters

the sensitive data output to the user by conducting taint analysis in a replica of the application

execution without slowing the interactive user session.
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CHAPTER 1: INTRODUCTION

Protecting data secrecy is an important design goal of computing systems. A common ap-

proach is data isolation. In the classic multi-level security model [16], system data and system

components are categorized into various security levels. This model ensures that system compo-

nents can only read data in the same or lower security levels, so that information can only flow

from a lower level to a higher level but not vice versa. Modern computing systems adopt similar

concepts to protect data secrecy. In Linux, the memory data of the system kernel cannot be ac-

cessed by user-space processes. Similarly in Xen, the memory data of the hypervisor cannot be

accessed by virtual machine kernels and user-space processes.

Simple data isolation rules often cannot meet the data protection requirements of complicated

systems, especially in the multi-user environment. Many security mechanisms were proposed

to control the propagation of secret data. Access control mechanisms [135, 136, 151, 81, 138]

ensure that secret data can only be accessed by the users who have the required permissions.

Information-flow control mechanisms [134, 95, 52, 76, 24, 110] prevent secret data propagat-

ing to public data during the computation of the program. Many other security mechanisms

restrict the propagation of the secret data by hiding the contents of secret data. Cryptography

protocols [17, 131, 130, 168] encrypt secret data to ciphertext that can be only decrypted with

the private key. Anonymization schemes [148, 55, 69, 28, 78] scrub personal identifiers before

releasing the data to prevent re-identification.

Despite these efforts, data leakage incidents still frequently occur in computing systems [12,

49, 61]. There are several challenges. First, sensitivity of the system data is not always easy to

decide. We need to know what data to protect before deploying security mechanisms to protect

it. It is very obvious that some data is sensitive, e.g., private keys. However, some seemingly

1



non-sensitive data is statistically correlated with sensitive data. This is a fundamental problem in

side-channel attacks where an attacker can conduct statistical analysis on non-sensitive data (e.g.,

cache timing information) to recover sensitive data (e.g., private key). Second, trustworthiness

is not a constant property of system components and users. The system kernel is trusted but an

attacker can control the kernel by exploiting vulnerabilities. Employees are trusted to access con-

fidential files but they might turn rogue and steal the confidential data. Third, system’s functional

requirements can be at odds with its data protection requirements. Sometimes sensitive data is

chosen to be exposed to untrusted system components in favor of meeting the system’s functional

requirements. For example, IP addresses in the network packets of a user are exposed to the Inter-

net service provider (ISP) because routers rely on the IP information to make routing decisions.

However, the ISP can also build a web browsing profile of the user based on the IP information,

which violates the user’s privacy.

In this dissertation, we propose novel data protection mechanisms to address unique chal-

lenges in three practical problems—storage side-channel attacks in Linux, server anonymity

violations in web sessions, and data theft by malicious insiders. Based on sensitivity of the sys-

tem data, trustworthiness of the system components, and functional requirements of the system,

we choose to either noise, mask, or meter sensitive data with the goal of protecting data secrecy

while maintaining normal system functionality.

1.1 Noising

A noising mechanism obfuscates sensitive data by adding random noise or modifying the

data value before releasing the sensitive data to untrusted parties. The goal of the noising mech-

anism is maintaining the utility of sensitive data while reducing the risk of security and privacy

violation.

In previous work, noising mechanisms have been applied to solve various problems. Privacy-

preserving data mining techniques (e.g., [7, 6, 152, 156]) aim to develop accurate data mining

models without access to precise information in individual data records. They use randomizing al-
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gorithms to obfuscate individual data values and simultaneously preserve underlying distribution

properties at a macroscopic level. Privacy-control methods for statistical databases (e.g., [5, 56,

23, 62]) allow untrusted parties to query aggregate statistics of subsets of entities in the database

while protecting privacy of any individual entity represented in the database by adding noise

to the query results. Privacy-enhancing recommendation systems (e.g., [140, 141, 99]) obfus-

cate user data before releasing the data to recommendation servers with the goal of preserving

recommendation quality. k-anonymity and the derivative theorems [148, 92, 98] define rules to

obfuscate sensitive attributes of individuals before publishing data records so that an individual

cannot be easily identified from the published records. Adding noise is also used in defending

against side-channel attacks by reducing the precision of side-channel vectors [170, 154].

In our work, we propose a novel noising mechanism to defend against storage side-channel

attacks. A storage side channel occurs when an attacker accesses data objects influenced by an-

other victim computation and infers information about the victim that it is not permitted to learn

directly. In Linux, side-channel attackers exploit the runtime metadata, such as memory and

CPU usage of processes, from the proc filesystem (procfs) to recover secrets. In Chapter 2,

we introduce a differentially private system, dpprocfs, which adds noise to side-channel vec-

tors to provably mitigate storage side-channel attacks and simultaneously preserve the utility of

procfs for monitoring and diagnosis.

1.2 Masking

A masking mechanism transforms sensitive data to a form that hides its original contents

from the untrusted parties in the masking phase. The original data can be recovered from the

transformed data by the trusted parties in the unmasking phase. Masking mechanisms are very

useful in scenarios where sensitive data has to be stored in or transmitted by untrusted parties.

Masking mechanisms are mostly enabled by cryptographic algorithms, where the trusted

parties use cryptographic keys to encrypt and decrypt sensitive data. Secure communication

across an untrusted network is supported by cryptographic protocols (e.g., [130, 168]) which first
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authenticate communication endpoints and then mask and unmask sensitive data by encryption

and decryption. Secure cloud storage systems (e.g., [18, 166]) only store encrypted data in the

cloud storage and explore novel solutions to implement useful services on top of the encrypted

data, such as deduplication and auditing. Secure processor extensions (e.g., [101, 150]) encrypt

memory data of the trusted programs which cannot be undetectably altered by even the most

privileged system components, like operating system kernel or hypervisor.

Anonymous communication tools (e.g., [55, 69, 28, 78]) focus on protecting the identity of

the communication endpoints by masking and unmasking common identifiers, including DNS

names and IP addresses, besides protecting the communication contents by using encryption.

Server anonymity, which ensures that the server’s identity is hidden from network attackers and

eavesdroppers, is one of the anonymous properties guaranteed by these tools. In Chapter 3, we

introduce a cloud service, PoPSiCl, which enforces server anonymity for tenant servers running

in the cloud by masking server identifiers with personalized pseudonyms. Unlike most existing

anonymous tools, PoPSiCl requires no changes to client-side software and works with all major

web browsers. Our evaluations show that PoPSiCl only introduces modest overhead to server

access latency and throughput, and is capable of scaling to large numbers of users.

1.3 Metering

A metering mechanism monitors the amount of sensitive data leaked to the untrusted par-

ties and takes extra steps to protect data secrecy if the data access pattern deviates from normal

behaviors (e.g., the amount of leakage exceeds a certain limit).

Quantitative information flow analysis (e.g., [42, 43, 44, 96, 172]) quantifies the amount of

sensitive data leakage of a program by leveraging program analysis and formal modeling. With

the quantification of sensitive data leakage, flexible data protection policies can be enforced (e.g.,

allowing “small leakage” but preventing “large leakage”). In differential privacy [62], there is

a privacy budget which defines the maximum private information a user is allowed to get when

using the system. Every time a user makes a query, the system counts the amount of private data
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leakage and deducts the amount of leakage from the privacy budget. When the privacy budget

is used up, the user is not allowed to make future queries. This privacy budget based protection

is basically a metering mechanism, and is deployed in practical systems to protect privacy for

making SQL-like queries [103], doing MapReduce computations [132], using location-based

services [9, 25], and getting personalized recommendations [140, 102].

In our work, a novel metering mechanism is proposed to defend against data theft by insid-

ers, which involves misuse of permissions that the insider presumably must be given to perform

his/her duties in the organization. In Chapter 4, we introduce a system, Snowman, which restricts

the user to access data only remotely and accurately meters the sensitive data output to the user

through the graphical user interfaces. Under the protection of Snowman, malicious insiders ex-

filtrating large volumes of sensitive data in a short time span can be distinguished from normal

users. Also, Snowman conducts metering without slowing the interactive user session, by concur-

rently tracking leakage in a replica of the application execution.
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CHAPTER 2: DPPROCFS: NOISING SIDE-CHANNEL VECTORS TO MITIGATE
STORAGE SIDE CHANNELS1

Side-channel attacks aim at disclosing data in computer systems by exfiltrating sensitive

information through interfaces that are not designed for this purpose. In recent years, the scope of

side-channel attacks has been extended beyond their traditional use to attack cryptographic keys,

and techniques utilized in side-channel analysis have also increased in variety and sophistication.

In this chapter, we examine one particular type of side-channel attack vector, which we call

storage side channels. Storage side channels occur when an adversary accesses data objects as-

sociated with a victim computation and makes inferences about the victim based on the contents

of the data objects themselves or their metadata. As we use the term here, storage side channels

form a subclass of storage covert channels [114] that gleans information from an unwitting vic-

tim, versus receiving information inconspicuously from an accomplice. Storage side (and covert)

channels differ from legitimate communication channels since the data value or the metadata

exploited by the side channel is not considered sensitive by itself; yet, it still leaks information

that may be exploited to infer victim secrets.

A generic approach to mitigate storage side (and covert) channels is to reduce the accuracy of

the data or its metadata being reported by adding random noise to disturb side-channel observa-

tions [114]. A challenge in this approach is to develop principled mechanisms to perturb the side

channels with provable security guarantees, and to do so while preserving the utility of the data

and metadata in the system.

In this chapter, we present a novel approach to doing so by leveraging privacy concepts in

storage side-channel defense. By limiting data reporting to conform to differential privacy and

generalizations thereof, we show how to introduce noise into the data reporting so as to bound

1This chapter is excerpted from previously published work [161]
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information leakage mathematically. The difficulties in doing so, however, stem from the chal-

lenges in (i) modeling these storage channels as statistical databases, where differential privacy

was previously applied; (ii) designing privacy mechanisms to add noise so that side channels are

provably mitigated; and (iii) designing these mechanisms so as to minimize the loss of utility of

the released data. We will discuss methods to address these challenges in the remaining sections.

In theory, these methods can be applied to mitigating a variety of storage side channels. However,

in this chaper we illustrate the idea by focusing only on storage channels based on procfs, a

file-system interface for reporting resource usage information on Linux and Android systems.

Toward this end, we propose a modified procfs, dubbed dpprocfs, that provides guaran-

tees about the inferences possible from values reported through the procfs interfaces. In doing

so, dpprocfs defends against a variety of storage side channels recently exploited in procfs

on both Linux and Android (see Section 2.1.1 for a summary of these attacks). Our work builds

on the works of Dwork et al. [63, 64] and Chan et al. [33], which consider differential privacy un-

der continuous observations, but we are forced to extend from this starting point in multiple ways.

First, differential privacy itself is not a good match for side-channel mitigation in the procfs

context; rather, we turn to a recent generalization called d-privacy [35] that is parameterized by a

distance metric d. By defining a suitable distance metric d and expressing side-channel mitigation

goals in terms of the distance between two series of procfs observations, we prove that the

differentially private mechanism of Chan et al. [33] generalizes to mitigate storage side channels.

Second, however, the naive application of this mechanism to noise procfs outputs would risk

correctness of applications that depend on invariants that procfs outputs satisfy in practice. To

retain the utility of procfs, dpprocfs therefore extracts and reestablishes invariants on the

noised outputs so as to assist applications that depend on them.

We implemented dpprocfs for Linux as a suite that consists of an extension of the Linux

kernel, a userspace daemon process, and a software tool that is used for generating invariants

on the values of kernel data structures offline. The kernel extension alters the functionality of

procfs to enforce d-privacy on the exported data values while preserving the standard procfs
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interfaces. The userspace daemon interacts with the kernel extension to reestablish the invariants

procfs satisfies. We will elaborate on our implementation choices in later sections.

We evaluate our prototype for both its security and utility. For security, we demonstrate con-

figurations that effectively mitigate existing procfs side-channel attacks from the literature.

We specifically demonstrate preventing two attacks, one that uses procfs data to measure

keystroke behavior as a means to recover a typed input, and another that monitors the resource

usage of a browser process to determine the website it is accessing [82]. We evaluate the utility of

dpprocfs by measuring the relative error of protected fields and the similarity of the resource-

use rankings of processes by the popular top utility to those rankings without noise.

In summary, our contributions are as follows:

• We bring advances in privacy for statistical databases to bear on storage side-channel defense.

Specifically, we show that an existing mechanism due to Chan et al. [33] for enforcing dif-

ferential privacy under continuous binary data release extends to implement d-privacy for a

distance metric d∗ that can quantify storage side channels in procfs. We define this distance

metric d∗, argue its utility for capturing storage side channels, and prove that the Chan et al.

mechanism implements d∗-privacy.

• We identify a challenge in inserting noise into procfs outputs, namely the violation of in-

variants that procfs clients (and procfs code itself) might depend. Drawing from previous

research in invariant identification, we develop a tool for extracting invariants and impos-

ing them upon noised values prior to returning procfs outputs. In doing so, we ensure that

procfs outputs are consistent, even while being noised to interfere with side channels.

• We develop a working implementation of dpprocfs, our variant of procfs that imple-

ments storage side-channel defense, and evaluate both the protection it offers against pre-

viously published attacks and the utility it offers for monitoring and diagnosis. Our results

illustrate that side-channel defense can be accomplished while still maintaining the utility of

procfs for its intended purposes.
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The remainder of this chapter is organized as follows. Section 2.1 provides an overview of

storage side channel attacks via procfs, the background of differential privacy, and the theoret-

ical basis of d-privacy. Section 2.2 presents our design of dpprocfs, which is followed by de-

tails of its implementation in Section 2.3. We evaluate both the security and utility of dpprocfs

in Section 2.4 and discuss remaining challenges in Section 2.5. We summarize this chapter in

Section 2.6.

2.1 Background

2.1.1 Side Channel Attacks via PROCFS

procfs is a pseudo file system implemented in Linux, Android, and a few other UNIX-like

operating systems to facilitate userspace applications’ accesses to kernel-space information. Two

types of information are typically shared through procfs: per-process information and system-

wide information. Per-process information reveals configuration and state information about a

process, including path of the executable, environment variables, size of virtual and physical

memory, CPU and network usage, and so on. While some of the information should only be

consumed by the process itself, other information, especially statistics about resource usage, is

required for performance monitoring and diagnosis. For instance, in Linux, top, ps, iostat,

netstat, pidstat, and others rely on procfs to function. In Android, procfs is used for

apps to monitor the resource usage, e.g., transferred network data, of other apps.

This useful facility has been exploited to conduct side-channel attacks by several prior works.

Particularly of interest in our work are the attacks exploiting publicly available per-process in-

formation to infer secrets of the targeted process; see Table 2.1 for examples. The techniques

underlying these attacks are similar. Jana et al. [82] introduced an attack that, by reading from a

file in procfs, /proc/<pid>/statm, and learning the data resident size (drs) of a Chrome

browser, enables a malicious co-located application to infer the website it is visiting. The feature

used to differentiate multiple websites being browsed is the snapshot of the application’s memory

9
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Reference Description procfs files used Kernel fields

Jana et al. [82] Memory footprint
and context switches
of a browser process
leak website it visits

/proc/<pid>/statm

/proc/<pid>/status

/proc/<pid>/schedstat

mm struct.total vm

mm struct.shared vm

task struct.nvcsw

task struct.nivcsw

Zhou et
al. [171]

Sizes of network
packets to/from An-
droid app leaks its
activity

/proc/uid stat/<uid>/tcp rcv

/proc/uid stat/<uid>/tcp snd

uid stat.tcp rcv

uid stat.tcp snd

Chen et
al. [40]

Android foreground
activity identified
using shared memory,
CPU utilization time
and network activity

/proc/<pid>/statm

/proc/<pid>/stat

/proc/uid stat/<uid>/tcp rcv

/proc/uid stat/<uid>/tcp snd

mm struct.shared vm

mm struct.rss stat

.count[MM FILEPAGES]

mm struct.rss stat

.count[MM ANONPAGES]

uid stat.tcp rcv

uid stat.tcp snd

task struct.utime

Lin et al. [94] Use of software key-
board detected using
CPU utilization time

/proc/<pid>/stat task struct.utime

Table 2.1: Selected attacks leveraging storage side channels in the procfs file system

footprint. Zhou et al. [171] explored ways in Android to infer a victim app’s activity by monitor-

ing its network communications. Specifically, by sampling the files /proc/uid_stat/<ui

d>/tcp_rcv and /proc/uid_stat/<uid>/tcp_snd, an adversary is able to learn the

packet sizes sent and received by the victim app with high accuracy. Chen et al. [40] extracted

the victim app’s CPU utilization time, memory usage, and network usage from various procfs

files to classify the application’s behaviors. Lin et al. [94] also used utime to recognize a user’s

operation of the software keyboard on Android.

2.1.2 Differential Privacy

Privacy concerns arise when a database client learns information about individuals repre-

sented in the database through one or multiple queries to the database [5]. Differential privacy

puts constraints on publishing aggregate information from a statistical database which limits the

disclosure of private information of an individual in the database [62]. Prior to our work, differen-

tial privacy has been implemented in practical systems, e.g., to support privacy for data accessed
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through SQL-like queries [103] or MapReduce computations [132]. The security scenarios we

consider, however, differ from the statistical database privacy model in two dimensions: First,

storage side channels revolve around information leakage due to an attacker continuously mon-

itoring the same data as it changes over time. Statistical databases are typically static, however.

Second, database indistinguishability is not well defined under our security model, and hence we

need to adapt the definition of differential privacy for our intended purposes.

We build our work upon two lines of research in the literature. The first line is concerned with

differential privacy with continuous data release [63, 64, 33]. In these works, the continuous data

release takes the form of a sequence of binary values, and only sequences that differ in a single

binary value are rendered indistinguishable to the attacker. In the model we consider, in contrast,

the continuous data release can be characterized as a sequence of integers, and even sequences

that differ in multiple values might need to be rendered indistinguishable. The second line of

research generalizes the definition of differential privacy for statistical databases. In particular,

Chatzikokolakis et al. [35] broadened the definition of differential privacy by parameterizing the

definition with a distance metric d, and requiring that the degree of indistinguishability of two

databases be a function of their distance. (The original definition of differential privacy can be

viewed as a special case for Hamming distance [35].) We build from this approach, defining a

metric d that applies to storage side channels and implementing this defense in a working system.

2.1.3 d-Privacy

In our work we leverage a generalization of differential privacy due to Chatzikokolakis et

al. [35] called d-privacy, which we summarize here briefly. (Our summary is not of the most

general form of d-privacy, however.) A metric d on a set X is a function d : X 2 → [0,∞)

satisfying d(x, x) = 0, d(x, x′) = d(x′, x), and d(x, x′′) ≤ d(x, x′) + d(x′, x′′) for all x, x′, x′′ ∈

X . A randomized algorithm A : X → Z satisfies (d, ε)-privacy if

P (A(x) ∈ Z) ≤ exp(ε× d(x, x′))× P (A(x′) ∈ Z)
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for all Z ⊆ Z .

We leverage the following composition property of d-privacy:

Proposition 1. If A : X → Z is (d, ε)-private and A′ : X → Z ′ is (d, ε′)-private, then A′′ : X 2 →

Z ×Z ′ defined by A′′(x, x′) = (A(x), A′(x′)) satisfies

P (A′′(x, x′) ∈ Z × Z ′) ≤ exp(ε× d(x, x′′) + ε′ × d(x′, x′′′))

× P (A′′(x′′, x′′′) ∈ Z × Z ′)

for any Z ⊆ Z , any Z ′ ⊆ Z ′, and any x, x′, x′′, x′′′ ∈ X .

Proof of Prop. 1.

P (A′′(x, x′) ∈ Z × Z ′)

= P (A(x) ∈ Z)× P (A′(x′) ∈ Z ′)

≤ exp(ε× d(x, x′′))× P (A(x′′) ∈ Z)

× exp(ε′ × d(x′, x′′′))× P (A′(x′′′) ∈ Z ′)

= exp(ε× d(x, x′′) + ε′ × d(x′, x′′′))

× P (A′′(x′′, x′′′) ∈ Z × Z ′)

Let Z and R denote the integers and reals, respectively. In the case X = Zn, a metric that will

be of interest for our purposes is L1 distance, defined by

dL1(x, x
′) =

n∑
i=1

|x[i]− x′[i] |

where x = 〈x[1] , . . . , x[n]〉.
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Proposition 2. Let A : Zn → Rn be the algorithm that returns A(x) = 〈x[1] + r1, . . . , x[n] + rn〉,

where each ri
$← Lap

(
1
ε

)
. Then, for any x, x′ ∈ Zn and Z ⊆ Rn,

P (A(x) ∈ Z) ≤ exp(ε× dL1(x, x′))× P (A(x′) ∈ Z)

Proof of Prop. 2. First note that for any i and any z ∈ Z ,

P (x[i] + ri = z)

P (x′[i] + ri = z)
=

exp(−ε× |x[i]− z|)
exp(−ε× |x′[i]− z|)

= exp(−ε× (|x[i]− z| − |x′[i]− z|))

= exp(ε× (|x′[i]− z| − |x[i]− z|))

≤ exp(ε× (|x[i]− x′[i] |))

The result then follows from Prop. 1.

2.2 Design of a d-Private Procfs

In an effort to suppress information leakages in procfs such as those described in Section 2.1.1,

we devise a new procfs-like file system, called dpprocfs, that leverages differential pri-

vacy principles. In this section, we describe how we apply these principles in the design of

dpprocfs.

2.2.1 Threat Model

This work considers side-channel attacks exploiting statistics values exported by procfs

from co-located applications running within the same OS. In particular, we consider the default

settings of procfs, which do not restrict accesses to a process’ private directories in procfs

by other processes from different users. Such settings are very typical in traditional desktop

environments or shared server hosting environments running all kinds of Linux distributions, and

mobile devices running Android. We assume the OS kernel and the root user of the system are
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not compromised. Accordingly, security attacks due to software vulnerabilities are beyond the

scope of consideration.

2.2.2 Design Overview

When a procfs file is open and read, the data read are created on-the-fly by the Linux ker-

nel. To create the file data, the kernel draws information from several data structures. Exam-

ples include the task struct structure that describes a process or task in the system, and the

mm struct structure that describes the virtual memory of a process.

One option to interfere with adversary inferences about victim processes using values ob-

tained from procfs would be to add noise to those values directly, just before outputting them.

Unfortunately, there are numerous outputs from procfs with complex relationships among

them, and so we determined that adding noise to the underlying kernel data-structure field val-

ues used to calculate procfs outputs would be a more manageable design choice. In particular,

there are fewer such fields, and while there remain relationships among them (more on that be-

low), they are reduced in number and complexity.

So, in the design of dpprocfs, we treat updates to the relevant per-process kernel data

structures as constituting a “database” x that represents the evolution of the process since its

inception. That is, consider a conceptual database x to which a record is added each time one

or more of a process’ kernel data-structure fields changes. The columns of x correspond to the

numeric fields of the per-process kernel data structures consulted by procfs. So, for example,

the mm struct.total vm field, which indicates the total number of virtual memory pages of

a process, is represented by a column in x. As the process executes, a new record is appended to

x anytime the value in one of these fields changes. Each time a procfs file is read, the values

returned are assembled from what is, in effect, the most recently added row of the database x. We

stress, however, that this database is conceptual only, and does not actually exist in dpprocfs.

We design an algorithm to implement d-privacy per column of x (i.e., per data-structure

field), relying on Prop. 1 to bound the information leaked from multiple columns simultaneously.
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Since each column of the database x corresponds to a specific field in a kernel data structure, our

mechanism is applied each time a field in a protected data structure is read by procfs code. For

the remainder of this chapter, we adjust our notation so that the database x represents a single

column corresponding to that data-structure field. We refer to x[i] as the value of the last element

of that column (i.e., the field in the kernel data structure corresponding to the column) when the

i-th access occurs (i.e., i = 1 is the first access to the data-structure field).

Even to limit leakage from a single column, it is necessary to decide on a distance metric

d for which to implement d-privacy. While we might not know exactly how the adversary uses

the procfs outputs to infer information about a victim process, we can glean guidance from

known attacks. For example, Zhou et al. [171] discuss how they used procfs output based

on the uid stat.tcp snd field to infer when a victim sent a tweet (a la Twitter) as follows:

“a tweet is considered to be sent when the increment sequence is either (420—150, 314, 580–

720) or (420—150, 894–1034).” [171, Section 3.2] That is, their attack works by reading from

procfs four times in a short interval to obtain values x[1], x[2], x[3], x[4] where x denotes the

uid stat.tcp snd field, and deciding that a tweet was sent if either x[2]− x[1] ∈ {150, 420},

x[3]−x[2] = 314, and x[4]−x[3] ∈ {580, . . . , 720} or x[2]−x[1] ∈ {150, 420} and x[3]−x[2] ∈

{894, . . . , 1034}. So, to interfere with this attack, it is necessary to render these readings from the

“database” x indistinguishable from readings from an alternative “database” x′ that reflects a run

in which no tweet was sent. This insight led us to choose the following metric d∗ for enforcing

privacy:

d∗(x, x′) =
∑
i≥1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

Proposition 3. d∗ is a metric.
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Proof of Prop. 3. For any x, x′ ∈ Zn, the properties d∗(x, x) = 0 and d∗(x, x′) = d∗(x′, x) are

evident. The triangle property results as follows, for x, x′, x′′ ∈ Zn:

d∗(x, x′′) =
n∑
i=1

|(x[i]− x[i− 1])− (x′′[i]− x′′[i− 1])|

=
n∑
i=1

∣∣∣∣∣∣∣
(x[i]− x[i− 1])− (x′[i]− x′[i− 1])

+(x′[i]− x′[i− 1])− (x′′[i]− x′′[i− 1])

∣∣∣∣∣∣∣
≤

n∑
i=1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

+
n∑
i=1

|(x′[i]− x′[i− 1])− (x′′[i]− x′′[i− 1])|

= d∗(x, x′) + d∗(x′, x′′)

The distance d∗ captures the distinguishability of consecutive pairs of observations of a data-

structure field via procfs, and so by defining d∗ in this way (and choosing ε appropriately),

we ensure that a (d∗, ε)-private mechanism can hide the differences between x and x′ that, e.g.,

enabled Zhou et al. to identify a tweet being sent in their attack.

Moreover, adopting d∗ is plausibly of use in defending against a much broader range of at-

tacks, since d∗-privacy implies dL1-privacy:

Proposition 4. If A is (d∗, ε)-private, then A is (dL1, 2ε)-private.

Proof of Prop. 4. First note that

d∗(x, x′) =
n∑
i=1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

≤
n∑
i=1

|x[i]− x′[i] |+
n∑
i=1

|x[i− 1]− x′[i− 1] |

≤ 2× dL1(x, x′)
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Therefore, if A : X → Z is (d∗, ε)-private, then we have that for any x, x′ ∈ X and any Z ⊆ Z ,

P (A(x) ∈ Z)
P (A(x′) ∈ Z)

≤ exp(ε× d∗(x, x′))

≤ exp(ε× 2dL1(x, x
′))

= exp(2ε× dL1(x, x′))

Since any p-point metric space can be embedded in L1 distance with O(log p) distortion [4],

making it difficult to distinguish x and x′ with low d∗ (and hence L1) distance should make it

more difficult to distinguish them via other distance metrics, too.

One challenge of using d-privacy to protect information from kernel data structures used in

responding to procfs reads is that the information obtained through procfs might become

inconsistent. That is, our mechanism might break data-structure invariants on which the procfs

code or the clients of procfs rely. dpprocfs therefore reestablishes these invariants on the

d-private values prior to providing them to procfs code. So, for example, since enforcing d-

privacy adds noise to the mm struct.total vm and mm struct.shared vm values, the

resulting values might fail to satisfy the invariant mm struct.total vm ≥ mm struct

.shared vm. dpprocfs thus adjusts mm struct.total vm and mm struct.shared vm

to reestablish this invariant before permitting them to be used by the procfs code. In Section 2.2.4,

we describe how we generate the invariants for these kernel data structures and how we reestab-

lish those invariants on d-private values. Note that these invariants are public information: they

can be extracted statically or dynamically via the same methods we obtain them, and post-processing

d-private values to reestablish these invariants does not impinge on their d-privacy (cf., [74]).

2.2.3 d∗-Private Mechanism Design

In this section we describe the mechanism we use to implement d∗-privacy for the conceptual

single-column database x described above. This mechanism is due to Chan et al. [33], though
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they considered only the case where x[i+ 1]− x[i] ∈ {0, 1} and, moreover, differential privacy (so

that x[i+ 1]−x[i] 6= x′[i+ 1]−x′[i] for only one i), rather than d∗-privacy as we do here. As such,

our primary contribution is in proving that this mechanism generalizes to implement d∗-privacy

and does so for vectors over the natural numbers.

Let N denote the natural numbers and D(i) ∈ N denote the largest power of two that divides

i; i.e., D(i) = 2j if and only if 2j|i and 2j+16 | i. Note that i = D(i) if and only if i is a power of

two. The mechanism A computes a value x̃[i] that is used in place of x[i] in the procfs code

using the recurrence

x̃[i] = x̃[G(i)] + (x[i]− x[G(i)]) + ri (2.1)

where x[0] = x̃[0] = 0, Lap (b) denotes the Laplace distribution with scale b and location µ = 0,

and

G(i) =


0 if i = 1

i/2 if i = D(i) ≥ 2

i−D(i) if i > D(i)

(2.2)

ri ∼


Lap

(
1
ε

)
if i = D(i)

Lap
(
blog2 ic

ε

)
otherwise

(2.3)
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So, for example, the first eight queries to x result in the following return values, where ri
$←

Lap (b) denotes sampling randomly according to the distribution Lap (b).

x̃[1]← x[1] + r1 where r1
$← Lap

(
1
ε

)
x̃[2]← x̃[1] + (x[2]− x[1]) + r2 where r2

$← Lap
(
1
ε

)
x̃[3]← x̃[2] + (x[3]− x[2]) + r3 where r3

$← Lap
(
1
ε

)
x̃[4]← x̃[2] + (x[4]− x[2]) + r4 where r4

$← Lap
(
1
ε

)
x̃[5]← x̃[4] + (x[5]− x[4]) + r5 where r5

$← Lap
(
2
ε

)
x̃[6]← x̃[4] + (x[6]− x[4]) + r6 where r6

$← Lap
(
2
ε

)
x̃[7]← x̃[6] + (x[7]− x[6]) + r7 where r7

$← Lap
(
2
ε

)
x̃[8]← x̃[4] + (x[8]− x[4]) + r8 where r8

$← Lap
(
1
ε

)
Chan et al. characterize the amount of noise introduced by the mechanism described above,

which grows only logarithmically in i, specifically:

Proposition 5 ([33]). With probability at least 1−δ, |x̃[i]−x[i] | = O
(
(log 1

δ
)× (blog ic)3/2 × ε−1

)
.

Our main contribution as it relates to this mechanism design lies in showing the following

result:

Proposition 6. The algorithm in Eqns. 2.1–2.3 is (d∗, 2ε)-private.

Proof of Prop. 6. For any i such that i = D(i) ≥ 2 and any zi,

P
(
(x[i]− x

[
i
2

]
) + ri = zi

)
P
(
(x′[i]− x′

[
i
2

]
) + ri = zi

)
≤ exp

(
ε×

∣∣∣∣(x[i]− x[ i2
])
−
(
x′[i]− x′

[
i

2

])∣∣∣∣)
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by Prop. 2, and so

∏
i:i=D(i)≥2

P
(
(x[i]− x

[
i
2

]
) + ri = zi

)
P
(
(x′[i]− x′

[
i
2

]
) + ri = zi

)
≤ exp

ε×∑
i:i=D(i)≥2

∣∣∣∣(x[i]− x[ i2
])
−
(
x′[i]− x′

[
i

2

])∣∣∣∣


≤ exp

(
ε×

∑
i≥2

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

)
(2.4)

Similarly, for any i > D(i) and any zi,

P ((x[i]− x[i−D(i)]) + ri = zi)

P ((x′[i]− x′[i−D(i)]) + ri = zi)

≤ exp
( ε
k
× |(x[i]− x[i−D(i)])− (x′[i]− x′[i−D(i)])|

)

where k = blog2 ic. For any fixed j and k,

∏
i ∈ (2k, 2k+1)

: D(i) = 2j

P ((x[i]− x[i−D(i)]) + ri = zi)

P ((x′[i]− x′[i−D(i)]) + ri = zi)

≤ exp


ε

k
×

∑
i ∈ (2k, 2k+1)

: D(i) = 2j

∣∣∣∣∣∣∣
(x[i]− x[i−D(i)])

− (x′[i]− x′[i−D(i)])

∣∣∣∣∣∣∣


≤ exp

 ε

k
×

∑
i∈(2k,2k+1)

∣∣∣∣∣∣∣
(x[i]− x[i− 1])

− (x′[i]− x′[i− 1])

∣∣∣∣∣∣∣
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And so,

∏
i:i>D(i)

P ((x[i]− x[i−D(i)]) + ri = zi)

P ((x′[i]− x′[i−D(i)]) + ri = zi)

=
∏
k>0

∏
j∈[0,k)

∏
i ∈ (2k, 2k+1)

: D(i) = 2j

P ((x[i]− x[i−D(i)]) + ri = zi)

P ((x′[i]− x′[i−D(i)]) + ri = zi)

≤
∏
k>0

∏
j∈[0,k)

exp

 ε

k
×
∑

i∈(2k,2k+1)

∣∣∣∣∣∣∣
(x[i]− x[i− 1])

− (x′[i]− x′[i− 1])

∣∣∣∣∣∣∣


=
∏
k>0

exp

ε× ∑
i∈(2k,2k+1)

∣∣∣∣∣∣∣
(x[i]− x[i− 1])

− (x′[i]− x′[i− 1])

∣∣∣∣∣∣∣


≤ exp

(
ε×

∑
i≥2

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

)
(2.5)

Finally, note that

P ((x[1]− x[0]) + ri = zi)

P ((x′[1]− x′[0]) + ri = zi)

≤ exp (ε× |(x[1]− x[0])− (x′[1]− x′[0])|) (2.6)

by Prop. 2. So, for any x, x′ ∈ X n and any 〈z1, . . . , zn〉,

P (A(x) = 〈z1, . . . , zn〉)
P (A(x′) = 〈z1, . . . , zn〉)

=
n∏
i=1

P
(
(x[i]− x[G(i)]) + ri = zi − zG(i)

)
P
(
(x′[i]− x′[G(i)]) + ri = zi − zG(i)

)
≤ exp

(
2ε×

∑
i≥1

|(x[i]− x[i− 1])− (x′[i]− x′[i− 1])|

)

where the last step follows by multiplying Eqn. 2.6, Eqn. 2.4, and Eqn. 2.5.
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2.2.4 Consistency Enforcement

The values provided to procfs code, once rendered d∗-private by the mechanism described

in Section 2.2.3, are processed as usual by the procfs code to produce the values served as the

contents of the queried procfs files. By adding noise to these values, however, it is possible

that we cause them to violate invariants on which the procfs code or the reader of the procfs

files depends. As such, prior to providing the d∗-private values to the procfs code, we process

these values to re-establish invariants on which this code might depend.

Specifically, the invariants we reestablish are of two types, namely one-field or multiple-field.

A one-field invariant holds between the values of the same data-structure field when queried at

two different times. For example, the fact that the task struct.utime field is monotonically

nondecreasing is a one-field invariant. In contrast, a multiple-field invariant holds among the

values of two or more data-structure fields accessed at the same time, e.g., mm struct

.hiwater rss < mm struct.shared vm. There could also be invariants that hold among

the values of two or more data-structure fields accessed at different times, though we do not

consider such invariants here.

Techniques for invariant identification range from static (e.g., [173]) to dynamic (e.g., [67])

and combinations thereof (e.g., [51]). While dpprocfs is agnostic to the method of invariant

generation, the type we explored for our prototype is dynamic. Intuitively, in this approach we

execute the system under a variety of workloads, taking snapshots of the relevant kernel data

structures after they are updated. We then post-process these snapshots to identify properties

that held consistently in all executions. Obviously we cannot detect all such properties (there

are infinitely many that could be inferred from finitely many traces), nor is identifying all of

them strictly necessary. (We return to this issue in Section 2.5.) In Section 2.3.2, we detail the

invariants that dpprocfs enforces in our current implementation, though we stress that these

invariants can be generated through a combination of techniques—including manually.

Enforcing these invariants involves processing the data-structure field values output by the

d∗-private mechanism described in Section 2.2.3 to satisfy these invariants. More specifically,
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any attempt to read from a procfs file will cause an access to certain data-structure fields. The

values in these fields and in any other fields related to them by multi-field invariants (even transi-

tively) are each subjected to the d∗-private mechanism of Section 2.2.3, producing a noised value

x̃[i] to replace the actual value x[i] in this, the i-th, access to this field. These outputs are then

altered to satisfy relevant single-field and multiple-field invariants, resulting in a final output x̂[i]

for further processing by the kernel routine that produces the contents of the accessed procfs

file.

In Section 2.3.3, we explore two ways of manipulating these outputs to satisfy invariants. In

the first, to which we refer as computing a heuristic solution to the invariants, dpprocfs lever-

ages a hand-implemented algorithm to deterministically modify the outputs to conform. This

method is very efficient, but might alter the outputs more than other ways of satisfying the invari-

ants might. In the second approach, to which we refer as computing the nearest solution to the

invariants, we generate an integer programming problem with the invariants as constraints and an

objective of minimizing the total magnitude of the changes to the d∗-private outputs to conform

to the invariants. We then feed this integer program to a commercial solver (in our current imple-

mentation, CPLEX2) to compute an optimal solution. We stress that both the heuristic and nearest

solutions are computed using invariants that an adversary can compute himself (i.e., are public),

and so this post-processing does not erode the d∗-privacy of these outputs.

2.3 Implementation

We implemented dpprocfs as a suite of software tools in Ubuntu Linux LTS 14.04 with

kernel version 3.13.11. dpprocfs consists of three components: a kernel extension, which we

call privfs, that enhances the procfs with d∗-private mechanisms (as discussed in Section 2.2.3)

without altering its existing program interfaces; a software tool, invgen, that automatically

searches for invariants in kernel data structures for maintaining procfs value consistency (as

2http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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discussed in Section 2.2.4); and a userspace daemon, privfsd, that interacts with the kernel

extension and facilitates consistency enforcement in real time.

2.3.1 d∗-Private Mechanism Implementation

When a file in procfs is read by a userspace process, a kernel function is invoked to serve

the request, and the return values are sent to the process as if it is reading a file. The values re-

ported by procfs are computed from fields in certain kernel data structures. To generate d∗-

private outputs, a kernel extension privfs computes noised versions of those protected fields

for use by the kernel function computing the procfs output.

Specifically, privfs introduces a kernel data structure of type privfs struct per ker-

nel data-structure field x that is protected (rendered d∗-private) by dpprocfs. This structure

includes two arrays of floating-point values. After access i to the data-structure field x to which

the privfs struct structure is associated, position log2D(i) in these arrays are updated to

hold x[i]− x[G(i)] and ri, respectively. Together with x
[
2blog2 ic

]
and x̃

[
2blog2 ic

]
, which the struc-

ture also stores, these arrays permit the efficient computation of x̃[i+ 1]. Also to speed up this

computation, the privfs struct structure maintains a buffer of 32B to store precomputed

random values ri+1, ri+2, . . . following the specified Laplace distributions. Buffer refilling is

implemented as a tasklet, a type of software IRQ in Linux kernels.

The arrays in privfs struct in our present implementation are of fixed length, specifi-

cally 32 floating-point values, which limits the number of queries to the protected data-structure

field to 232 − 1. These arrays might instead be made arbitrarily extensible so as to allow an un-

limited number of queries. That said, as the query count i grows, the accuracy of the returned

x̃[i] value decays. As such, alternative designs might limit (or rate-limit) the number of queries

to any protected data-structure field by each userspace process or its associated user. Another

implementation choice might be to maintain separate arrays for each user of the system, so that

queries from one user would not decrease the utility of queries from other users.
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privfs does not return x̃[i] directly for use in computing the procfs output. Instead, it

sends this value to privfsd for enforcing invariants across all noised values. privfsd will

be discussed in Section 2.3.3, after we discuss how data-structure invariants are identified in

Section 2.3.2.

2.3.2 Invariant Generation

Kernel data-structure invariants are generated by a component called invgen. invgen

generates two types of invariants, namely one-field and multiple-field invariants as discussed in

Section 2.2.4. One-field invariants are relationships between a field’s current and previous values.

Multiple-field invariants are relationships between different variables when accessed at the same

time.

As discussed in Section 2.2.4, our system generates invariants from traces of data-structure

values captured during execution. Specifically, invgen does so by collecting execution traces of

all numerical data-structure fields that are relevant to procfs outputs. To do so, we patch an OS

kernel by adding one more file in the procfs to directly export all numeric kernel data-structure

fields of interest. invgen then repeatedly reads the extended procfs file, sampling the values

of these fields frequently and writing them into trace files. For this work, traces were collected

by monitoring the data-structure fields during the execution of a variety of software programs,

including Google Chrome and a set of benchmark applications from Phoronix Test Suite3. By

executing each benchmark application three times, we collected 22.6MB of trace files.

We then used Daikon [67] to extract invariants from these trace files. To use Daikon, we first

configured it with invariant templates, or filters, that the tool uses to search for invariants. For

one-field invariants, Daikon was configured with filters to locate fields that do not change, that

are monotonically nonincreasing, or that are monotonically nondecreasing. For multiple-field

invariants, we implemented a filter that Daikon uses to search for linear invariants among a set X

of fields, i.e., a property of the form
∑

x∈X cx × x[i] ≥ 0 that holds for all i, for some constant

3http://www.phoronix-test-suite.com
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cx ∈ {−1, 0, 1}. We ran Daikon with this filter for two sets X , one for memory-related fields and

one for scheduler-related fields. After using Daikon to extract likely invariants in this way, we

manually inspected the outputs and discarded those that were either implied by others or that we

believed to be spurious. For example, if we get invariants a > b, b > c, and a > c, then a > c

can be omitted, because it is implied by the previous two invariants. Other similar implication

relationships among invariants can be processed in the same way.

The invariants produced in this way are shown in Table 2.2. (We also include invariants that

all fields are integral, but we do not show those, for brevity.) The right half of the table shows

the invariants expressed using the labels for kernel data-structure fields indicated in the left half

of the table. The fields marked “Protected” in the left half of the table are those that dpprocfs

renders d∗-private in our present implementation. Those fields marked with a “z” were selected

based on their use in existing attacks (see Section 2.1.1), and those marked with a “checkmark”

were selected for protection because they are included in invariants with such fields. One field,

namely uptime, is not protected in our present implementation despite being included in invari-

ants, simply because the information it carries (the time since the machine was booted) seems

unlikely to carry information useful to a side-channel attack. That said, it could also be protected

with minimal additional cost.

The upper right corner of the right half of Table 2.2 lists one-field invariants, e.g., that

task struct.utime[i] (the i-th access to task struct.utime) is at least as large as

task struct.utime[i− 1]. That is, task struct.utime[i] is nondecreasing. The other

invariants hold for all simultaneous accesses to the indicated fields.

Our chosen method of invariant generation is admittedly limited, in that like any method of

invariant generation based on an incomplete set of recorded traces, it allows for false positives

and false negatives. False positives—i.e., found “invariants” that are not actually invariants—

will presumably not cause difficulties for the procfs code or applications when dpprocfs

enforces them, since even if not invariant, the identified behavior is evidently common. False neg-

atives (i.e., missed invariants) might cause such problems, however, and so it would be prudent to
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Data-structure field Protected Label

mm struct.total vm z totalVM
mm struct.shared vm z sharedVM
mm struct.stack vm X stackVM
mm struct.exec vm X execVM
mm struct.rss stat
.count[MM FILEPAGES] z filePages
mm struct.rss stat
.count[MM ANONPAGES] z anonPages
mm struct.rss stat
.count[MM SWAPENTS] X swapEnts
mm struct.hiwater rss X hiwaterRSS
mm struct.hiwater vm X hiwaterVM

task struct.utime z utime
task struct.stime X stime
task struct.gtime X gtime
task struct.signal->cstime X cstime
task struct.signal->cutime X cutime
task struct.real start time X starttime
task struct.nvcsw z nvcsw
task struct.nivcsw z nivcsw
get monotonic boottime() uptime

Invariants

totalVM ≥ 0 swapEnts ≥ 0 cstime ≥ 0 utime[i] ≥ utime[i− 1]
sharedVM ≥ 0 hiwaterRSS ≥ 0 cutime ≥ 0 stime[i] ≥ stime[i− 1]
stackVM ≥ 0 hiwaterVM ≥ 0 nvcsw ≥ 0 gtime[i] ≥ gtime[i− 1]
execVM ≥ 0 utime ≥ 0 nivcsw ≥ 0 cstime[i] ≥ cstime[i− 1]
filePages ≥ 0 stime ≥ 0 cutime[i] ≥ cutime[i− 1]
anonPages ≥ 0 gtime ≥ 0 nvcsw[i] ≥ nvcsw[i− 1]

nivcsw[i] ≥ nivcsw[i− 1]
hiwaterRSS < sharedVM starttime[i] = starttime[i− 1]
hiwaterVM ≥ filePages
execVM ≥ filePages + swapEnts
sharedVM + filePages ≥ anonPages + swapEnts
sharedVM + execVM ≥ filePages + anonPages + swapEnts
sharedVM ≥ execVM + filePages + swapEnts
totalVM ≥ execVM + stackVM + filePages + anonPages + swapEnts
totalVM ≥ sharedVM + stackVM + swapEnts
totalVM + filePages ≥ sharedVM + anonPages + swapEnts
totalVM + execVM ≥ sharedVM + stackVM + filePages

+ anonPages + swapEnts
uptime ≥ starttime + utime + stime + gtime + cutime + cstime

Table 2.2: Selected kernel data-structure fields (Linux kernel 3.13) and generated invariants
(Section 2.3.2) that reference them. “Protected” fields are rendered d∗-private as described in
Section 2.3.1, either because they have been utilized in published side-channel attacks (z) or
because they are involved in invariants that include such fields (X).

augment our dynamic approach with static analysis (e.g., [51, 173]) and additional manual inspec-

tion. That said, we have not identified applications (or kernel routines that respond to procfs

reads) that appear to depend on behaviors other than those identified in Table 2.2.

2.3.3 Reestablishing Invariants

Upon producing x̃[i] for each protected field x needed by a kernel routine to respond to a

procfs query,4 privfs needs to reestablish the invariants among those field values before

submitting them to the kernel routine. For our prototype, we implemented this step in a userspace

daemon process, which we call privfsd, that receives requests from the privfs via Netlink

sockets. This implementation choice allows us to sidestep the need to port more complex opera-

tions (e.g., floating-point operations, constraint-solving algorithms) to run in the kernel.

4We are abusing notation here slightly, in that the access index i might be different per field x.
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privfs produces inputs for privfsd by first identifying the set X of protected fields to

be accessed by the kernel routine serving the procfs query (i.e., from those fields marked

“protected” in Table 2.2). privfs forms the set of relevant invariants from Table 2.2, namely

I(X ) =
⋃
x∈X I(x) where I(x) for any x is defined using the following inductive definition:

(i) I(x) is initialized to include any constraint in Table 2.2 that includes field x; and (ii) if any

protected field x′ from Table 2.2 is named in an invariant already in I(x), then I(x′) is added

to I(x). privfs instantiates each protected field x named in I(X ) with a variable x̂[i] and, if

uptime ∈ I(X ), instantiates uptime with its current value. privfs then produces the relevant

value x̃[i] for each field x ∈ X and sends I(X ) and the noised values {x̃[i]}x∈X to privfsd.

privfsd operates in one of two modes, computing either a nearest compliant assignment

to each x̂[i] or a heuristic assignment to each x̂[i]. The nearest assignment is calculated by tak-

ing the instantiated invariants I(X ) as constraints in an integer programming (IP) problem, with

variables {x̂[i]}x∈X and objective being to minimize the cumulative relative error, i.e., to min-

imize
∑

x∈X |x̃[i] − x̂[i] |/|x̃[i] |. Our current implementation invokes CPLEX to solve this IP

problem. In contrast, the heuristic approach simply calculates any values for {x̂[i]}x∈X that sat-

isfy I(X ) using manually coded heuristics to adjust the {x̃[i]}x∈X values. Basically, the heuristic

approach simply increases or decreases each x̂[i] to satisfy the equality or inequality relation in

the invariant. In Section 2.4, we will evaluate both modes of operation. Regardless of its mode

of operation, privfsd returns the computed values {x̂[i]}x∈X to privfs to pass along to the

kernel routine for preparing the procfs output to the waiting client.

2.4 Evaluation

In this section we evaluate the efficacy of dpprocfs design. While our design is provably

d∗-private (and hence dL1-private by Prop. 4), we perform an empirical security evaluation of

our design in Section 2.4.1 to better illustrate settings of ε that suffice to interfere with known

attacks. With greater clarity as to reasonable settings of ε, we then evaluate the utility of procfs

for these ε values in Section 2.4.2.
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2.4.1 Security Evaluation

In this section, we evaluate the capability of dpprocfs to defend against side-channel at-

tacks discussed in Section 2.1.1. Specifically, we measure the extent to which the procfs fea-

tures used by the attacker in selected attacks are still effective attack features in dpprocfs.

Rather than trying to replicate each attack from previous work exactly, we adopt a more general

framework for evaluation in which the attacker’s task is detecting one of m classes of activities.

We perform this measurement of the attacker’s likely success by building a multiclass clas-

sifier for classifying procfs features (which are attack-dependent) into one of m classes. We

use the scikit-learn5 support-vector-machine (SVM) implementation to build the multiclass

classifier. We then report the accuracy of the classifier in a testing phase, namely the fraction of

test instances that it classifies correctly.

2.4.1.1 Defending Against Keystroke Timing Attacks

A user’s interactions with the hardware keyboard can trigger context switches from the user-

space application to the operating system kernel to handle keystrokes. The voluntary context

switch counter (nvcsw in Table 2.2) can be exploited to identify a user’s keystroke actions and

hence the timing characteristics of those keystrokes. These timing characteristics can then leak

information about what those keystrokes were (e.g., [146]). To approximate the defense that

dpprocfs offers against this attack, we consider an adversary that consecutively reads the

nvcsw field from procfs six times, and then the adversary classifies this vector of readings to

determine when the keystroke occurred. (We only inject one keystroke during these six readings.)

As such, we model the attacker as a multi-class classifier, which classifies the vector of six read-

ings (i.e., a vector in N6) into m = 5 classes; classifying a vector as class i indicates that the

keystroke occurred between reads i and i+ 1.

To perform these experiments, we used a tool called xdotool to simulate the keystroke ac-

tions at a specified time. During each experiment run, we started a bash terminal and injected

5http://scikit-learn.org/dev/index.html
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one keystroke, at a time distributed normally with mean 2.5s and standard deviation 0.83s (i.e.,

0.0s is three standard deviations from the mean). Beginning with the launch of the bash process,

the attacker process read the /proc/<pid>/status file of the bash process every second6

to obtain the voluntary context switch counter nvcsw, yielding six readings (a vector in N6). In-

variant enforcement (Section 2.3.3) provided the nearest solution to the needed invariants. To

allow for a powerful attacker, we provided to it the underlying normal distribution imposed on the

keystroke timing. The attacker used this distribution to estimate the true (unnoised) nvcsw value

corresponding to each vector element (adapting [111, Eqn. 10]), yielding an estimated true vector

per collected vector. We repeated this experiment 440 times to get 440 estimated true vectors.

When training and testing the SVM classifier, we used 75% of the vectors from each class for

training and 25% for testing.

The accuracy of the resulting classifier on the testing examples is shown in Figure 2.1a. The

horizontal axis shows various values of ε; the vertical axis shows classifier accuracy. Because of

the form of the distribution imposed on keystroke timings, the most likely class occurred roughly

44% of the time, and so this baseline (shown by the horizontal dashed line) is the accuracy that

the adversary could achieve simply by blindly guessing based on that distribution. As shown in

the graph, setting ε ∈ [1, 3] suffices to reduce the classifier to this baseline accuracy. By compari-

son, the classifier was perfect (an accuracy of 1.0) when no noise was added.

2.4.1.2 Mitigating Website Inference

The memory footprint of a browser can leak the website it visits (as discussed in Section 2.1.1).

In this experiment, we instrumented the Google Chrome browser with a script to visit a target

website, chosen uniformly from the Alexa top-10 websites. While this occurred, an attacker pro-

cess repeatedly sampled the data resident size field drs, calculated as totalVM− sharedVM (using

6This interval is much longer than in the demonstrated attack of Jana et al. [82], but we lengthened this interval to
minimize ambiguity regarding the class i ∈ {1 . . . 5} to which each vector should be assigned for training. By
increasing this interval, we believe we produced classification results that are conservative (i.e., advantageous for
the attacker).
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Figure 2.1: Multi-class classifier accuracy under different ε settings; dashed horizontal lines show
accuracies of blind guesses based only on knowledge of the likelihood of each class

the labels defined in Table 2.2), by reading the /proc/<pid>/statm of the browser process

every 500µs. To support this rate of sampling, dpprocfs employed the heuristic method of

invariant reestablishment (Section 2.3.3), which returned results in roughly 50µs (in comparison

to 8ms for the nearest solution). The sampling period lasted for 3s, during which the attack pro-

cess recorded all the drs field values read. As in Section 2.4.1.1, the attacker estimated the true

(unnoised) drs value corresponding to the j-th read value in each 3s interval, using an empirical

distribution observed for these j-th values gathered by accessing each of these 10 websites an

equal number of times. The attacker then constructed a histogram of these estimated drs values

binned into seven equal-width bins, and the vector of bin counts (in N7) was used as a feature

vector for classification. Each of the Alexa top-10 websites were visited 100 times; when used

to train and test the SVM classifier (with m = 10 classes), 70% were used for training and 30%

were used for testing.

The resulting accuracy of the classifier is shown in Figure 2.1b. The most important distinc-

tion from the graph in Figure 2.1a is that the values of ε needed to interfere with the website

inference attack are much smaller, meaning that the noise added was greater. This is primarily a

function of the size differences between drs readings from the m classes, which were generally

much greater than the differences between the readings of the voluntary context switch counter

31



nvcsw with and without a keystroke. In terms of d∗, the distances between the classes in the web-

site inference attack were much greater than the distances between classes in the keystroke attack.

This is noteworthy because it implies that the settings of ε needed for privacy will differ per-field

and per-application and, to some extent, will need to be informed by known attacks. Still, how-

ever, several values tested for ε decayed classification accuracy to a significant extent; with no

noise added, the classifier reached 0.915 accuracy.

2.4.2 Utility Evaluation

We evaluate the utility of dpprocfs in two ways. First, we measure the relative error of

selected procfs outputs that are calculated using fields protected by dpprocfs, under the

two methods discussed in Section 2.3.3 for enforcing invariants, namely producing a heuristic

solution and a nearest solution to the invariants. Second, we report the impact of dpprocfs to

the ranking of processes according to certain features by top, a common utility for monitoring

and diagnosis. Here we focus on dpprocfs outputs such as memory and CPU usage, as these

are generally useful systems diagnostics.

2.4.2.1 Relative Error

We begin our utility evaluation by measuring the relative error of the drs field, the same field

exploited by website inference attackers (see Section 2.4.1.2). To calculate the relative error of

this field under dpprocfs, we preserved access to an unprotected version of procfs alongside

the protected version. Then, we extended our setup described in Section 2.4.1.2 to simultaneously

query both the protected and unprotected versions of the drs field while the browser process

was running. During the evaluation, the browser was instrumented to repeatedly visit https:

//www.youtube.com, and the drs field was queried every 50ms for a total of 500 queries. We

repeated this experiment 200 times.
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Figure 2.2: Comparison between nearest
and heuristic invariant reestablishment for
drs field; ε = 0.005

Figure 2.2 shows the distribution of relative

error for both the nearest and heuristic solutions

for invariant reestablishment, computed on the

same noised values x̃ produced by privfs, for

a parameter setting (ε = 0.005) that provided

good security for the side-channel attack tested in

Section 2.4.1 (see Figure 2.1b). Each query range

on the horizontal axis has two box-and-whiskers

plots, one for nearest and one for heuristic. The

three horizontal lines forming each box indicate

the first, second (median), and third quartiles, and the whiskers extend to cover all points within

1.5× the interquartile range. Outliers are indicated using plus (“+”) symbols. A different box-

and-whiskers plot is shown per 100-query block across the 200 runs (i.e., each boxplot represents

20,000 points) because the noise increases as the number of queries grows. The differences be-

tween the nearest and heuristic distributions are nearly imperceptible, and this trend holds for

other parameter and procfs fields we have explored, as well. That said, the heuristic solution

relies on hand-tuned algorithms and by default provides no guarantees, and so in cases where

the speed of computing the nearest solution is acceptable—the nearest solution took an average

of 8ms to return, whereas our heuristic approach completed in an average of 50µs—it might be

preferable.

Figure 2.3 and Figure 2.4 represent the relative error in readings of the drs field and of the

utime field from the /proc/<pid>/stat file, respectively, for various values of ε. The val-

ues of ε in Figure 2.3 were chosen to overlap those used in the security evaluation depicted

in Figure 2.1b. The ε values tested in Figure 2.4 were chosen based on our simulation of the

software-keyboard side-channel attack of Lin et al. [94], which we conducted on a Nexus 4 smart-

phone running Android 5.1 with kernel 3.4.0; based on this simulation, we estimated that ranging

ε over 1/2 ≤ ε ≤ 5 would result in curve similar to or better (with lower accuracy) than that
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Figure 2.3: Relative error for drs field under nearest invariant reestablishment
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Figure 2.4: Relative error for utime field under nearest invariant reestablishment

in Figure 2.1a.7 In the tests in Figure 2.4, the utime field was queried every 50ms while a video

game was running. These graphs suggest that the relative error is typically modest, e.g., with a

third quartile of < 15% in Figure 2.3 and < 30% in Figure 2.4, though outliers can be large.

2.4.2.2 Rank Accuracy of top

The utility top is used by Linux administrators for performance monitoring and diagnosis.

By reading procfs, top displays system information like memory and CPU usage of running

processes. The processes are ranked by top according to a chosen field. In this section, we evalu-

7Lin et al. reported querying the utime field of the software keyboard process every 100ms to detect its increase.
With very rapid typing, the utime field in our tests increased less than 3 (jiffies) per 100ms interval, on average.
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(b) ε = 0.01
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(c) ε = 0.02
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(d) ε = 0.04

Figure 2.5: Average rank accuracy based on RES field

ate the utility of dpprocfs by measuring the rank accuracy of top when run using dpprocfs

in place of the original procfs.

To measure the rank accuracy, we ran two top processes on one computer. These two top

processes were started at the same time and updated information with the same frequency (every

two seconds in our tests). The only difference was that one top process read from dpprocfs

(with heuristic invariant reestablishment), and the other read from procfs in its original form.

To control the test workload in each experiment, we ran a set of ten processes doing floating-

point computations continually during each test. The number of memory pages allocated by each

process to store its array of floats was scaled linearly across the ten processes: the first process

allocated an 80MB array, the next process allocated a 95MB array, and so on up to the tenth

process, which allocated a 215MB array. Similarly, the processes were configured with linearly

scaled nice values ranging from −19 (highest priority) through −1 (lowest).
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Figure 2.6: Average rank accuracy based on %CPU field

Let R(k) and R′(k) be the set of top k processes displayed by the two top programs. The

top-k accuracy is defined as 1
k
|R(k) ∩ R′(k)|. Figure 2.5 shows the average rank accuracy for

various values of k when processes were ranked by the RES field. The RES field is read from

/proc/<pid>/statm, calculated as filePages+anonPages, and represents the physical memory

usage of the process. Figure 2.6 shows the average rank accuracy when processes were ranked by

the %CPU field, calculated as (utime[i]− utime[i− 1])/(uptime[i]− uptime[i− 1]).

Several observations from Figure 2.5 and Figure 2.6 are worth noting. First, top retains

much of its ability to rank processes by these measures; e.g., even for the lowest values of ε

tested (Figure 2.5a and Figure 2.6a), the top-5 ranks remained roughly 80% correct on average

through the tests. Second, whereas the top-10 rank is generally more accurate than the top-1 rank

in Figure 2.5, the reverse is true in Figure 2.6. This occurs because while the memory usage of

the ten test processes was scaled linearly, our linear scaling of nice values caused the actual
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%CPU to drop off super-linearly. So, for example, the average difference in %CPU values for the

processes with nice values −19 and −18 was much larger than the average %CPU difference

between processes with nice values −3 and −1.

2.5 Discussion

Security limitations. Since we do not noise every kernel data-structure field that is used to

serve procfs queries, there remains the possibility that such fields might reveal information

about the true values of noised fields. This could occur either because the unprotected fields are

related to those noised fields by invariants that our techniques did not find (see Section 2.3.2) or

because those relationships are only statistical (but not invariant). It will therefore be necessary to

extend the scope of our protections to other fields as new procfs storage side-channel attacks

are discovered or, in the limit, that all kernel data-structures used to generate procfs contents

be protected. As additional fields are brought under the protections of dpprocfs, the invariants

that are reestablished on those values will need to be expanded appropriately.

Similarly, the value of ε used to protect a field might need to be updated as new attacks involv-

ing that field are discovered. As shown in Section 2.4.1, the value of ε may need to differ from

one field to another. The magnitude of ε needed for a field will be correlated with the variation

of that field and the number of queries over which protection needs to be provided, since as the

number of queries grow, presumably so might d∗ (between the actual field values and another

from which it should remain indistinguishable).

Utility limitations. As the number of procfs queries grows, the amount of noise added to

the kernel data-structure fields used to generate the procfs outputs grows (see Section 2.2.3

and Section 2.3.1). Although the amount of noise only grows logarithmically as the number of

queries grows, the malicious user can still make a lot of queries to decay the utility of procfs

outputs. To slow this decay, it may be necessary to rate-limit the queries that involve each field or

to limit the number of such queries from any one user.
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It is possible to provide a separate protection domain for each user. Under this design, a sep-

arate privfs struct is maintained per querying user for each procfs field (as suggested

in Section 2.3.1). Each user can have her own view of the noised procfs, and the decay of

her procfs outputs won’t affect other users’ usage of those outputs. However, colluding users

might be able to weaken the protection of dpprocfs.

It may eventually be necessary to “reset” the d∗-private mechanism associated with a field,

particularly for a field associated with a long-running process. If the “reset” window is long

enough to cover the duration of the sensitive event, this sensitive event can still be protected by

our d∗-private mechanism. Typical durations of sensitive events range from milliseconds to sec-

onds. For example, the duration of a keyboard typing event is less than a second and the duration

of a browser page-loading event is several seconds. The system administrator can choose a proper

“reset” window size according to the type of attacks faced by the system. The “reset” action can

also be triggered by restarting the process itself, since restarting a process also refreshes its asso-

ciated kernel data structures. (This is also beneficial for performance and reliability [47].)

Alternative solutions to procfs side channels. An alternative to adding noise in procfs

outputs is to isolate mutually distrusting processes into different namespaces so that they cannot

read each others’ private procfs files. For example, Linux containers8 isolate multiple appli-

cations from each other using PID namespaces in the kernel. While useful in hosting services

such as modern PaaS clouds, Linux containers are less suitable in personal computing environ-

ments (e.g., Android devices and desktop computers) since sharing between different software

applications are necessary in these single-user settings. Without a shared procfs, applications

that need accesses to these system statistics—e.g., most traffic- and system-monitoring apps on

Google Play, as well as the sysstat utilities9—will no longer work.

Another approach to defend against procfs side channels is to detect suspicious behaviors

based on the frequency of procfs queries. Attackers usually make procfs queries in a high

8https://linuxcontainers.org/
9http://sebastien.godard.pagesperso-orange.fr/
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frequency. Otherwise, they might miss the opportunity of capturing sensitive events. For example,

Memento [82] reads the data resident size of the browser process from procfs in a loop to

detect changes of that data field. This reading frequency is easily more than one thousand times

per second. In contrast, the top command updates once every three seconds in the default setting.

It is possible to set a threshold of procfs reading rate to differentiate malicious behaviors from

normal ones. Some previous work [169] implements such detection method to defend against

side channel attacks. Our d∗-private mechanism can be augmented with this frequency-based

detection method. The ε value can be reduced as the procfs reading rate increases so that it is

harder for the attackers to get useful information.

Extensions to other storage side channels. We believe our proposed method can be extended

to other storage side channels such as those associated with mobile sensors (e.g., [30, 100, 165,

31, 11, 104, 142]). However, it is unclear how adding noise, e.g., to smartphone gyroscopes, will

affect the usability of the apps that rely on their readings.

2.6 Summary

In this chapter we have reported on the design, implementation, and evaluation of dpprocfs,

a modification to the procfs pseudo file system that suppresses storage side channels. The in-

novations that are central to our design include: (i) framing the side-channel problem as one of

achieving d-privacy for continual data release, and defining an appropriate distance d∗ for in-

stantiating d-privacy for this scenario; (ii) generalizing a differentially private mechanism for

the continuous release of binary values to the d∗-privacy goal we set forth; (iii) recognition of

the systems difficulties that can arise when adding noise to procfs outputs, and an invariant

reestablishment framework to address those difficulties; and (iv) a working implementation of

dpprocfs, coupled with an evaluation that shows it can simultaneously defend against known

storage side-channel attacks while retaining the utility of procfs for monitoring and diagnosis.
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CHAPTER 3: POPSICL: MASKING SERVER IDENTIFIERS TO ENFORCE SERVER
ANONYMITY1

Monitoring of online activities is a fact of life for many users, be it by, e.g., an employer to

detect activity that is inconsistent with corporate policy or a government to monitor sites accessed

by its citizens. While encryption is a first line of defense against monitoring, many identifiers

(including the DNS names and IP addresses) still reveal the identity of the servers accessed by

users. Numerous techniques have thus been developed to support server-anonymous access, i.e.,

access to a server in a way that hides the server identity from a monitor. The socalled “hidden

service”, supported by Tor [55], is an example of a technology that enables server-anonymous

access.

The growth of large hosting infrastructures such as compute clouds and content distribution

networks (CDNs) has opened new opportunities for deploying server-anonymous systems (see

Section 3.1 for a discussion). Because these hosting platforms serve content from many tenant

servers, intermingling controversial server content or anonymizing proxies among them (i.e., as

other tenants) can make it more difficult or expensive for a monitor to disambiguate which tenant

server a client is accessing. The vast resources and connectivity available via these infrastructures

can also expand the capacity of server-anonymous systems. However, prior attempts (of which

we are aware) to leverage these infrastructures to support server anonymity have been designed

for an oblivious cloud operator that (at best) provides no specific support for server anonymity

(e.g., [28, 69]). Changes are thus typically hoisted onto the client users of these systems, who

often lack the permissions, trust, or know-how to do so.

In this chapter, we instead propose a design for server-anonymous communication to tenant

servers of a cloud that leverages support and cooperation of the cloud provider and, in doing so,

1This chapter is excerpted from previously published work [162]
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avoids requiring any changes to client software. Our central innovation to enable this capabil-

ity is a PoPSiCl (pronounced “popsicle”), a Personalized Pseudonym for a Server in the Cloud.

Specifically, a PoPSiCl is a domain name with the following properties: First, it is personalized:

A PoPSiCl can be used to access the tenant server only by the client for which the cloud gener-

ated it. Second, it is a pseudonym: A PoPSiCl is a persistent identifier that the client to whom it

is issued can use to access the server over time (e.g., by bookmarking it). Moreover, the cloud

protects the identity of the tenant server accessed using this PoPSiCl from an attacker who can

both observe the client’s communication with the cloud and probe the cloud as another client or

tenant server itself. Though the cloud is trusted in our design, note that today the cloud is already

typically trusted with knowing which users frequent a tenant server. Even if the user connects to

a tenant server using an anonymizing service such as Tor, the cloud can access any identifying

information the user provides to the tenant server, either intentionally (e.g., an email address) or

not (e.g., HTTP cookies or browser fingerprints [116, 118, 32]2). In such cases, our trust in the

cloud does not substantially increase the trusted computing base for user privacy.

A design goal for PoPSiCls is that they can be implemented by the cloud operator in a way

that is unobtrusive to their tenants or their tenants’ clients. Specifically, we demonstrate an imple-

mentation of PoPSiCls to support private TLS accesses to web servers in the cloud that has the

following features:

• Our implementation requires no changes to client-side software and works with all major

web browsers. This stands in contrast to most work on anonymous access to servers (see

Section 3.1) that requires the installation of proxies on client computers or the installation

of a custom browser (e.g., Tor). Requiring no changes to the client is important for users

who lack either the permissions needed to modify their client platforms (as an employee

using a company-owned computer might) or the willingness to do so (e.g., since even

security software is often riddled with vulnerabilities [129, 46, 139]).

2The Tor Browser tries to mitigate browser fingerprinting by restricting browser features, but this requires reacting to
new attacks as they are discovered [118, 32] and has an inevitable impact on usability.
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• The only changes in user experience for supporting use of PoPSiCls is the use of client-

side TLS certificates to support TLS connections, and a visit to a cloud-operated PoPSiCl

store to obtain a PoPSiCl and the client-side certificate for a tenant server prior to her first

(server-anonymous) access to that server.

• A tenant server requires some changes to its OS and, if the server is a web server, minimal

other changes that can be hidden within high-level web programming frameworks like

Ruby on Rails. So, these changes can be packaged either in a platform-as-a-service (PaaS)

cloud offering or a virtual machine (VM) image for deployment to an infrastructure-as-a-

service (IaaS) cloud, without imposing on web-content developers.

Supporting PoPSiCls does impose more substantially on cloud infrastructure, notably through

the establishment of the PoPSiCl store; in dynamic generation of switching rules to configure

software-defined networking (SDN) switches in the cloud infrastructure; and, as mentioned

above, in tenant server operating systems. We detail the changes needed to OpenStack and Linux

to implement the needed functionality. Our implementation therefore most directly reflects how

an IaaS cloud operator could deploy and support PoPSiCls, with OS modifications provided

through PoPSiCl-enabled virtual-machine images. We envision that a cloud operator might be

motivated to support PoPSiCls as one component of a larger “security as a service” offering,

charging tenant servers for PoPSiCl use, perhaps per PoPSiCl or even per PoPSiCl-based connec-

tion.

We have used CloudLab (https://www.cloudlab.us/) to characterize the performance

impact of PoPSiCl usage, versus regular (non-server-anonymous) web browsing over TLS. Our

results show that our design introduces modest overhead to server access latency and throughput,

and is capable of scaling to large numbers of users, should PoPSiCl use catch on. We also show

that the access latency of our implementation is considerably better than proxy-based systems

such as Tor, which also enhance privacy for server access, as discussed above. (We caution the

reader, however, that the threat model and protections offered by PoPSiCls are different than
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those for which systems like Tor were designed, as we will discuss in Section 3.1 and especially

Section 3.7.)

The rest of this chapter is structured as follows. We provide background in Section 3.1, and

outline the principles behind our design in Section 3.2. Section 3.3 contains our high-level sys-

tem design, and Section 3.4 describes our current implementation. We evaluate that implementa-

tion in Section 3.5. In Section 3.6, we extend our design to address some forms of traffic analysis.

We discuss the limitations of our design in Section 3.7. Finally, we summarize this chapter in

Section 3.8.

3.1 Background

The goal of our design of PoPSiCls is to provide server anonymity (elsewhere called recipient

anonymity [126] or recipient untraceability [36]) against network attackers. That is, a network

attacker can observe that a client is initiating communication with a server in the cloud, but the

attacker is unable to determine the specific server with which the client is communicating. In this

context, a PoPSiCl is an implicit address [126] for a tenant server; moreover, it is visible in that

its reuse to reconnect to the server is evident—both to the cloud, which can use the PoPSiCl to

route the client to the physical machine currently hosting the tenant server, and to the attacker.

The servers that appear to the adversary to be the possible targets of the client (i.e., the server’s

anonymity set [36]) is the set of all tenant servers in the same cloud datacenter as the target.

The most widely used methods to achieve server anonymity today are based on proxying

(e.g., Tor [55], Psiphon (https://psiphon.ca/), and early versions of the Anonymizer [27])

or VPNs (such as the current Anonymizer, https://www.anonymizer.com/). Unlike these

systems, PoPSiCls are not supported in our design through proxying or VPN tunneling. In par-

ticular, communication to a PoPSiCl is encrypted by the client and decrypted only by the tenant

server in the cloud (vs. at a proxy or tunnel endpoint), leaving few opportunities for accidental

leakage. Moreover, as we will show, proxies can become performance bottlenecks, and so our

design scales better to heavy usage.
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Variations on the goal of server anonymity have been studied in several forms, often under

the rubric of censorship resistance. Like our design, several in this space leverage infrastructure

providers explicitly (clouds, CDNs, or ISPs) to hide the server with which a client is trying to

interact.

• In domain fronting [69], a client connects to a CDN edge server or reflector web applica-

tion run in the cloud via a front domain other than the hidden domain of actual interest. The

edge server or reflector then inspects the plaintext payload (e.g., the HTTP Host header)

to discover the hidden domain and retrieves it for the client. A PoPSiCl can be viewed as

a front domain, though the mapping to its hidden domain is maintained by the cloud op-

erator and managed without inspecting the client’s payload or, more to the point, without

decrypting it, which is better for client/tenant security.

• CacheBrowser [78] enables a website’s content to be retrieved from any CDN edge server

without a DNS resolution, leveraging the assumption that it is untenable for censors to

block IP addresses of CDN edge servers due to the collateral damage it would cause. How-

ever, this system still exposes the true server domain in the SNI field (see Section 3.2.1)

and so is not truly server-anonymous. Recent improvements [174] rectify this concern, but

do so in a way that is incompatible with some CDNs. In either case, these solutions work

only for cacheable content.

• CloudTransport [28] repurposes cloud storage to implement interactive communication to a

server in a way that will evade common censorship techniques.

• Telex [160] enables friendly on-path ISPs to recognize “tagged” traffic addressed to uncen-

sored websites and divert it to the censored websites for which it is really intended. Tag-

ging is implemented in the SSL handshake protocols, by embedding a tag into the random

value field in the ClientHello message.

• LAP [80], Dovetail [137], HORNET [37], and PHI [38] are network-layer protocols that

aim to provide low-latency and high-throughput anonymous communication. In these pro-
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tocols, the source and destination addresses are encrypted so that the intermediate routing

node only knows its adjacent nodes in the path (similar to Tor).

• There have been several proposals to host Tor relays in clouds [85, 109]. Moreover, sys-

tems like Tor have tended to be vulnerable to censors because users are connected to a

small set of entry points that can be blocked. So, prior works have proposed to reduce the

disclosure of IP addresses of Tor entry points through Tor bridges (a variation of keyspace

hopping [68]; see https://www.torproject.org/docs/bridges) and, through the

deployment of the Tor Cloud project (https://cloud.torproject.org/), to run Tor

bridges inside clouds.

As they relate to our work, all of the above approaches require modifying client-side software.

In contrast, our design requires no client-side software changes at all (albeit while requiring

changes to infrastructure, as many of the above designs also require). That said, we stress that in

contrast to some of the works above, our goal here is not censorship resistance, per se, but rather

server anonymity, as the assumption of a trustworthy and cooperative cloud is somewhat at odds

with the former. We discuss this issue further in Section 3.7.

3.2 Design Principles

In this section we detail the security (Section 3.2.1) and usability (Section 3.2.2) goals of our

system.

3.2.1 Security

Threat model. We begin our discussion of the security principles of our design by recalling our

threat model. A cloud hosts tenant servers, to which clients can connect (e.g., using TLS). As

is the case today, the cloud operator is trusted by both tenant servers and their clients. We are

concerned with enabling a client to connect to a tenant server without divulging to an attacker

the tenant server to which it is connecting. The client machine is trusted, as is the tenant server
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to which it connects. Other clients and other tenant servers are not trusted in the context of this

client-server interaction; i.e., the identity of the server to which the client connects should remain

hidden despite the efforts of other clients and other tenant servers. We also allow the attacker

to capture and manipulate all traffic outside the cloud premises, including traffic to or from the

client, but traffic within the cloud is invisible to the attacker (except if the attacker controls the

source or destination of the traffic).

Figure 3.1: In our threat model, the server iden-
tity can leak via the client’s DNS query, the SNI
field of the client-to-server TLS connection, the
server IP address, or the server public key

Our threat model gives the attacker many

opportunities to observe the identity of the ten-

ant server to which a client connects in today’s

clouds (see Figure 3.1). First, the DNS reso-

lution of the server domain name can reveal

that domain name to the attacker. Second, the

IP address to which the client connects will

be visible to the attacker; the attacker can then

connect to this IP address itself to see what

the server provides, or simply use this IP ad-

dress to determine the server’s identity from a

preassembled database (like a reverse DNS lookup). The connection process itself can offer addi-

tional opportunities for the attacker to identify the server; in particular, a TLS connection exposes

the server domain name in the Server Name Identification (SNI) field that the client sends, and in

the certificate that the server provides to the client. The certificate also exposes the server’s public

key, which can be matched against the public keys in certificates obtained by other clients.

We leave several types of attack outside our scope, relying on orthogonal defenses to address

them. For example, we assume the security of TLS and that the attacker can impersonate neither

any cloud-provided service or tenant server that it does not control (by virtue of not having the

needed server private key), nor any client that it does not control (by virtue of not having the

client private key).
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Also outside our scope are connection-level features that can divulge indications of the server

involved in the connection, such as have been used in TCP fingerprinting (e.g., [70]), TLS finger-

printing (e.g., [108]), or website fingerprinting (e.g., [65, 158, 122]). Such features include the

number of servers to which the client connects, the timing connections to relative to one another,

connection volume patterns, the direction of the connections, etc. That said, we have made initial

progress toward a framework for traffic-analysis defense, as we will discuss in Section 3.6.

Security principles. To achieve server anonymity in the threat model described above, several

steps are necessary. The first is to replace the server’s domain name with a different domain

name—the PoPSiCl—everywhere it is visible to the attacker. So, it will be necessary to cause

the PoPSiCl to be used in the client’s DNS lookup, the TLS SNI field, and the certificate that the

tenant server sends to the client. In our system, the PoPSiCl takes the form str.popsicls.com

where popsicls.com is the domain name of the cloud and str is a string that represents the

PoPSiCl prefix. So, for example, 1f5qz7nfhj1uworr7laduh9fen.popsicls.com might

be a PoPSiCl. Of course, the PoPSiCl prefix str must be generated for this client in a way that

prevents the attacker from correlating it with PoPSiCls generated for other clients to access the

same tenant server.

R1:The PoPSiCl for a client to access a tenant server is independent of the PoPSiCl generated

for other clients, and the PoPSiCl is used in place of the tenant server’s domain name every-

where that domain name appears in client communication.
The PoPSiCl is intended to be a long-lived identifier that the client can use to access the

server. To that end, the client uses the PoPSiCl just like any other domain name—by performing

a DNS lookup on it to obtain an IP address to which to address network packets. To prevent the

attacker from using this IP address to identify the server, however, the DNS resolution must pro-

duce a pseudo-address, which is a different IP address that the one the server actually uses. More

specifically, a pseudo-address is a publicly routable IP address that is part of the IP address block

allocated to the cloud, so that a packet addressed to the pseudo-address will eventually reach a
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switch in the cloud datacenter. However, the pseudo-address should be otherwise unrelated to the

actual IP address of the tenant server.

R2:The pseudo-address to which a client addresses packets for the tenant server (and from

which return packets arrive to this client) is independent from the actual network endpoint

(i.e., IP address) of the tenant server in the cloud.
A pseudo-address can be used in our system to establish a TLS connection to the tenant

server associated with the PoPSiCl. TLS connection establishment introduces other potential

identifiers that might be used to deanonymize the tenant server, particularly the public-key certifi-

cate for the server. As such, the tenant server should use a different public key per client.

R3:In a TLS connection setup with a client that is accessing the server using a PoPSiCl, the

tenant-server public key used was generated independently of the server public keys used in

its TLS connections with other clients (regardless of whether those clients use PoPSiCls to

access the server).
There remains the risk that the attacker who observes the pseudo-address could simply con-

nect to that pseudo-address itself and identify the server based on the content returned. To prevent

this possibility, the client for which the PoPSiCl was created should be the only one that can

complete a secure connection using it.

R4:A tenant server completes a TLS connection setup with a client using a PoPSiCl only if that

PoPSiCl was registered for use by that client, with this tenant server.

3.2.2 Usability

Here, usability refers to the operational impact of PoPSiCls on all actors in the cloud ecosystem—

the cloud operator, cloud tenants, and the tenant’s clients. The approach we take in our design

of a system to support PoPSiCls is to place a larger usability burden of deploying PoPSiCls on

those groups of actors with greater technical capabilities. Major cloud operators arguably offer

the highest concentration of technical capability, as their datacenter functioning is integral to all

tenants’ availability and security. As such, they will bear the greatest burden in supporting our
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design. Tenants who deploy servers to the cloud typically require at least a knowledge of how

to populate a server with content, and so we will limit our design to small modifications to that

process (at least in the case of web servers). Finally, we presume the tenants’ clients might be

driven by wholly nontechnical users (e.g., via web browsers) who might not have the permissions

needed to install software on their computers (e.g., as a user of a corporate-controlled computer

might not) or a willingness to do so (e.g., due to the vulnerabilities that such software can intro-

duce [129, 46, 139]). So, we place a priority on minimizing client-side changes.

Treating these groups in reverse order, then, our first requirement is that changes to clients be

very limited.

R5:PoPSiCls are usable with no changes to client-side software, including no browser exten-

sions or add-ons, in the case of web clients. While PoPSiCls are visible to clients and may

require some adaptation of client user procedures (in the case of typical web browsing, for

example), these adaptations are already supported by the dominant software clients in the

market.
The primary operational adaptations required by our design for a web user, for example,

are the following. First, our design involves the use of client authentication via a client-side

certificate in TLS. While not without its issues [123], support for client authentication is already

in all major browsers and is in use by large communities (e.g., in Estonia, due to its national PKI

initiative [123], and by MIT faculty, staff, and students to access some web services3). Second, a

user must take an additional, online step to obtain (“register”) a PoPSiCl for future accesses to a

website. We will describe PoPSiCl registration in Section 3.3.1.

For tenant servers, who might range from large, well-staffed organizations to small online

vendors, we allow changes to the software they use but require that those changes can be made

largely “invisible” to them, if they so choose.

R6:Changes to tenant servers can be hidden so that they do not impose on server content cre-

ation. For example, changes involving the tenant-server operating system (OS) or content-

3http://ist.mit.edu/certificates/guide
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programming frameworks can be packaged within a virtual-machine image that respects

existing application programming interfaces (APIs). As such, a tenant-server creator should

be able to “port” his content to this VM image with minimal effort.
Our design intrudes on tenant servers primarily by requiring specific OS-level changes, dis-

cussed in Section 3.3.2. These can be packaged within a VM for deployment to Infrastructure-

as-a-Service (IaaS) clouds. Alternatively, in a Platform-as-a-Service (PaaS) cloud, the OS is

managed by the cloud operator, and so these changes would be invisible to the tenant server.

In addition, some defenses specific to HTTP servers described in Section 3.3.3 and an optional

extension described in Appendix 3.6 induce very minor additional changes to modern web pro-

gramming frameworks (such as Ruby on Rails).

We allow for our design to impact cloud operators more directly. Again, though, cloud opera-

tors are the most technically savvy and so presumably the most capable of accommodating such

changes.

3.3 Design

In this section we describe the design of a system to enable a cloud operator to implement

PoPSiCls for its tenants and their clients. In order to use a PoPSiCl to access a tenant server, a

client must first register the PoPSiCl, a process described in Section 3.3.1. The mechanisms sup-

porting the use of a PoPSiCl to connect to a tenant server are described in Section 3.3.2. Adapta-

tions specific to supporting HTTP clients using PoPSiCls are described in Section 3.3.3. Finally,

how our design achieves the requirements laid out in Section 3.2 is the topic of Section 3.3.4.

3.3.1 Registering a PoPSiCl

The registration of a PoPSiCl is a user-initiated process, involving connecting to a particular

cloud-operated service, the PoPSiCl store, using a web browser. The connection should employ

TLS, though need not require a password login or any other form of client authentication. Rather,

TLS is employed here simply to protect the privacy of the user. Upon accessing the PoPSiCl

50



(a) Registration, described in Section 3.3.1 (b) Access, described in Section 3.3.2

Figure 3.2: Steps for registering a PoPSiCl (Figure 3.2a) and then using it (Figure 3.2b)

store, the user is presented with a web form to indicate the domain name, say tenantA.com,

for which she wishes to register a PoPSiCl. Since we are trusting the cloud operator, we assume

that if tenantA.com is not, in fact, hosted by the cloud, then it will decline the registration.

If tenantA.com is one of its tenants, then the PoPSiCl store takes the following actions

(see Figure 3.2a).

(i) The PoPSiCl store first creates a new PoPSiCl for tenantA.com, of the form str.po

psicls.com, where str denotes a string of characters allowed in domain names. It then

creates and exports a DNS record for str.popsicls.com that maps this PoPSiCl to

one or more publicly routable IP addresses in the address ranges allocated to popsic

ls.com, to which we refer as pseudo-addresses. As we will see in Section 3.3.2, these

pseudo-addresses are addresses of SDN controllers in the same datacenter (region) as

tenantA.com. The PoPSiCl store also informs these SDN controllers that this PoPSiCl

corresponds to tenantA.com.

(ii) The PoPSiCl store creates a new public/private keypair for use by tenantA.com and

binds the public key to str.popsicls.com in a TLS server certificate signed by the PoP-

SiCl store. The PoPSiCl store delivers this private key and server certificate to the tenant

server. It also delivers to the tenant server a root certificate for authenticating client cer-
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tificates in TLS connection attempts to str.popsicls.com. For our purposes, it suffices

for the newly generated server certificate to be used as this root certificate, as well. (Al-

ternatively, a different root certificate generated for this specific purpose could be used.)

This step assumes a tenant server capable of receiving this information. As described in

Section 3.4, the Nginx web server already supports this capability, for example.

(iii) The PoPSiCl store generates a public/private keypair for the client to use to authenticate

itself when connecting to str.popsicls.com; creates a certificate for this public key that

can be verified using the root certificate of Step (ii); and returns the private key, public-key

certificate, and PoPSiCl to the user. The user then saves this information and takes whatever

steps are necessary to permit its TLS client to make use of this key when connecting to

str.popsicls.com. For example, if the client is a web browser, then the client might

bookmark the PoPSiCl and import this key pair and certificate into the browser. This step is

already supported by major browsers.

Prior to connecting to str.popsicls.com, the client must also be configured with the PoP-

SiCl store as a certificate authority (CA) for TLS server certificates. In this way, the client will

accept the tenant server’s certificate (see Step (ii)) during TLS connection setup.

A user’s first (or any) connection to the PoPSiCl store could be used to obtain a PoPSiCl

for the PoPSiCl store, so that subsequent accesses to the PoPSiCl store can be hidden from an

attacker.

3.3.2 Connection Establishment

Via the steps described in Section 3.3.1, the client is in possession of a PoPSiCl for the server

to which it wants to connect. To connect to this server, the client performs a DNS lookup on

the PoPSiCl, as it would any other server domain name (steps 1–2 in Figure 3.2b). Because the

PoPSiCl is of the form str.popsicls.com where popsicls.com is the cloud domain name,

the cloud ultimately provides the IP address returned to this DNS query. The IP address provided

by the cloud is not the actual IP address of the machine hosting the tenant server (this would
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violate R2), but rather must be independent of it. One option would be to return the IP address

of a (reverse) proxy in the cloud that relays client requests to the tenant server associated with

the PoPSiCl (and responses back to the client); this design has similar security properties to ours,

but as we will see in Section 3.5.2, this proxy will become a bottleneck. Rather, in our design,

the DNS query is resolved to a publicly routable IP address of an SDN controller in the same

datacenter (region) as the tenant server corresponding to str.popsicls.com; we refer to this IP

address as a pseudo-address for the tenant server.

Let the pseudo-address be denoted by pseudo-IP, and let client-IP and client-port denote the

source IP address and source port of the first packet that the client sends to pseudo-IP (a TCP

SYN), when it arrives at the cloud switch (step 3 in Figure 3.2b). client-IP and client-port need

not be the actual IP address and port of the client; rather, these could instead be the address and

port of a network-address translator (NAT) or proxy between the client and the cloud. Unless it

has a higher-priority rule (see below) that matches specifically this source IP address (client-IP),

source port (client-port), destination address (pseudo-IP), and destination port (denoted server-

port), the switch forwards the packet using the default routing rule for this destination (pseudo-

IP). Since in our design, the pseudo-IP is set to an IP address of the SDN switch controller in the

cloud datacenter, this TCP SYN packet is forwarded to the controller (step 4 in Figure 3.2b). In

this case, the controller responds with a TCP SYN-ACK and completes the TCP connection with

the client (step 5 in Figure 3.2b).

After completing the TCP connection, the client then launches the TLS handshake. At this

point, the controller learns str.popsicls.com from the ClientHello SNI field, with which

it can look up the tenant server to which this PoPSiCl corresponds, say with IP address tenant-

IP. The controller then takes the following steps (without responding with a ServerHello

message), in order:

(i) The controller installs two new rules in the switch (step 6 in Figure 3.2b). One matches

packets with source address client-IP, source port client-port, destination address pseudo-

IP, and destination port server-port; this rule simply drops any such packet silently. The
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second matches packets with source address tenant-IP, source port server-port, destination

address client-IP, and destination port client-port; changes the source address to pseudo-IP;

and forwards the packet toward client-IP.4 These rules have higher priority than any other

rules that apply to the same packets.

(ii) The controller then transfers the TCP connection state to the tenant server OS (step 7 in

Figure 3.2b), including the buffer containing the ClientHello, and so the tenant server

picks up the TCP session where the controller left off (by responding with a ServerHello).

Our implementation of TCP connection transfer uses the technique in the tcpcp tool [8].

(iii) The controller then replaces the drop rule installed in Step (i) above (i.e., matching packets

with source address client-IP, source port client-port, destination address pseudo-IP, and

destination port server-port) to instead change the destination address of any matching

packet to tenant-IP and then to forward the packet toward tenant-IP (step 8 in Figure 3.2b).

The TLS connection establishment that the tenant server continues with the client requires the

client to present a client certificate that can be verified by the server certificate for this PoPSiCl

(step 9 in Figure 3.2b). The tenant server received the server certificate for this PoPSiCl, and the

client received this matching client certificate, in the PoPSiCl registration process (Section 3.3.1).

If this client certificate is not sent, then the TLS connection fails; otherwise, the TLS connection

can be established and communication proceeds as normal (step 10 in Figure 3.2b).

The above ordering of steps is chosen purposely. The drop rule is installed in Step (i) to drop

any inbound messages from the client during the TCP state transfer, which could confuse the

transfer process. The other rule in Step (i) is installed to ensure that the ServerHello and the

following messages sent by the tenant server in Step (ii), when the TCP state transfer completes,

are forwarded to the client with the pseudo-IP as their source addresses. The controller replaces

the drop rule from Step (i) as described in Step (iii) to permit the connection between the client

and tenant server to continue. Of course, it is possible that the controller does not finish Step (iii)

4The installation of this second rule assumes that return packets traverse this same switch. If they do not, then this
second rule would need to be inserted into another switch that they will traverse.
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before the client sends another message, in which case the drop rule from Step (i) will drop it. We

leverage TCP’s retransmission capabilities to overcome any such drops that occur.

A possible denial-of-service attack against our architecture is to overwhelm the SDN con-

troller(s), which will handle all TCP connections established using PoPSiCls until they are

handed off to their tenant servers. For this reason, the controllers must be defended using state-

of-the-art denial-of-service defenses. That said, note that our design allows for multiple SDN

controllers and switches, and load-balancing among them. We could allocate a pool of servers

hosting SDN controllers and increase the number of serving controllers as the load increases.

3.3.3 HTTP-specific Mechanisms

PoPSiCls can be used to support any type of server accessed using TLS. Overwhelmingly,

however, the most common example today is HTTP, and so in this section we address several

issues specific to their use to support access to HTTP servers.

Same-origin policy and cookies. Our architecture for supporting PoPSiCls permits the browser

to accurately track origins, i.e., to support its same origin policy [133], since the browser is pro-

vided a unique domain name (the PoPSiCl) per tenant domain. This same property also enables

the browser to send cookies to (only) the right domains—avoiding a pitfall of some previous

anonymous communication systems (e.g., early versions of the Anonymizer [27]). To prohibit

tenants from setting cookies for the cloud domain (e.g., popsicls.com), the cloud operator

should add popsicls.com to the public suffix list5, just as is, e.g., amazonaws.com today.

Object hyperlinking. When a tenant web server accessed using a PoPSiCl serves hyperlinks to

its own objects, their URLs should leverage the PoPSiCl as their domain name. Otherwise, the

browser would retrieve these objects using a URL with a different domain name, causing them

to be viewed by the browser as coming from a different origin. This could cause the web page to

malfunction, or it could result in disclosure of the true domain name to an attacker. Fortunately,

this is achieved easily by hyperlinking to relative URLs, or by authoring web content with the

5https://publicsuffix.org/
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domain name inserted by a macro that is resolved to the PoPSiCl with which the current client is

accessing the server.

Hyperlinking between servers requires additional attention, since one server should not learn

the PoPSiCl that a client uses to access another server. First, to ensure that a client browser

does not disclose the PoPSiCl that it uses for accessing a tenant server, say tenantA.com,

to another server to which tenantA.com refers the client (i.e., in the HTTP Referer field),

tenantA.com should set the referrer policy of its referring page to no-referrer or

same-origin.6 Second, to allow referrals to a tenant server, say tenantB.com, without

disclosing the server’s identity to our attacker, the cloud operator popsicls.com can support

hyperlinking to it using a URL such as https://linker.popsicls.com?tenantB.com/

..., where linker.popsicls.com is a cloud-operated server. Upon receiving the TLS con-

nection from the client, linker.popsicls.com can look up the PoPSiCl that this client uses

to access tenantB.com (authenticating the client using its client certificate) and then redi-

rect the client browser to that PoPSiCl. (For reasons discussed below, however, linker.pop

sicls.com will have to apply additional policy before doing so.) If no such PoPSiCl exists,

then linker.popsicls.com can simply redirect the client to tenantB.com. To support

hyperlinking in this fashion, the PoPSiCl store should provide a client-side certificate and ac-

companying private key for the client to use to connect to linker.popsicls.com, during the

client’s first PoPSiCl registration (for a web server) at the PoPSiCl store.

Cross-origin attacks in browsers. A tenant server accessed using a PoPSiCl does not complete

a TLS connection setup with a client other than the one that registered that PoPSiCl. An attacker

who obtains a PoPSiCl in use by a client, say 1f5...fen.popsicls.com, is thus unable to con-

nect to it directly in an effort to retrieve content from it (and thereby deanonymize it). Through

cross-origin side channels, however, the attacker could potentially infer the true server identity

behind a PoPSiCl. For example, the attacker could set up a web server (not necessarily in the

6See https://www.w3.org/TR/referrer-policy/. As of this writing, the latest versions of Edge and Safari
support an older draft of the referrer-policy specification, for which the referring policy should be set to never.
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cloud) and, if it could convince the client browser to visit its server, could serve back to the client

a hyperlink, say https://1f5...fen.popsicls.com/path, that uses the PoPSiCl as its do-

main name. An attacker script could then test if the browser successfully retrieved the object at

this URL,7 thereby inferring whether path is a valid path at the tenant server. Since this might be

a distinctive pathname, the attacker could deanonymize the server this way.

To prevent such cross-origin attacks, the tenant server refuses requests for URLs containing

the PoPSiCl 1f5...fen.popsicls.com except from its own pages or via redirections from li

nker.popsicls.com. The tenant server enforces this property by requiring any URL utilizing

1f5...fen.popsicls.com to be appended with a capability, specific to this PoPSiCl, that only

itself and linker.popsicls.com can obtain. This capability is implemented as a random,

unguessable string that must be encoded as a query string in any URL using 1f5...fen.popsic

ls.com, so that it is always transmitted under TLS protection. It is created by the PoPSiCl store

when 1f5...fen.popsicls.com is first registered and is returned in the URL that the user is

invited to bookmark. Both the tenant server and linker.popsicls.com are then permitted

to retrieve the capability (from a cloud-operated database) when needed, for the purposes of

producing URLs containing that PoPSiCl.

There remains a cross-origin attack that a web server with which the client is interacting

can mount, to infer the PoPSiCl the client uses to contact a tenant server, say tenantA.com,

provided that the adversary controlling the web server can simultaneously monitor the traf-

fic from the client to the cloud. If the web server directs the client to retrieve https://li

nker.popsicls.com?tenantA.com/... and then monitors traffic for an interaction with

linker.popsicls.com and then a connection using a PoPSiCl in close temporal proximity,

then the attacker can infer that the client uses this PoPSiCl for tenantA.com. Fortunately,

the intervening interaction with the trusted linker.popsicls.com provides an opportu-

nity to mitigate this attack. For example, a reasonable policy might be for linker.popsicl

s.com to redirect the request to https://linker.popsicls.com?tenantA.com/...

7There are many ways to perform this test, e.g., by hyperlinking to an image and then testing the height of the image,
which would typically differ depending on whether the image retrieval succeeded or failed.
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to one that uses the client’s PoPSiCl for tenantA.com only if the referrer site is trusted by

tenantA.com and the client is also accessing the referrer site using a PoPSiCl. (Otherwise,

linker.popsicls.com redirects the client to tenantA.com, sans PoPSiCl.) The referrer

site can indicate compliance with this last condition to linker.popsicls.com by, say, ap-

pending the client’s capability for the referring site to the referral https://linker.popsi

cls.com?tenantA.com/..., which linker.popsicls.com can check by looking up the

capability and corresponding referrer in a database.

3.3.4 Design Principles, Revisited

In this section we revisit the principles outlined in Section 3.2 to describe how our design

achieves them.

Security. Requirement R1 is met by having the PoPSiCl store generate each PoPSiCl (specif-

ically, the str part of str.popsicls.com) pseudorandomly. The tenant server to which this

PoPSiCl corresponds is protected during the registration process by TLS (Section 3.3.1) and

thereafter is accessible only to the cloud’s SDN controller(s) (Section 3.3.2) in order to route con-

nection traffic appropriately (and the tenant server itself, of course). The PoPSiCl is used by the

client as any other domain name would be, and so it appears everywhere that the domain name

would in the normal course of client communication—notably in DNS queries, the TLS SNI field,

and the server TLS certificate.

Requirement R2 is met by having the cloud’s DNS server resolve the PoPSiCl to an IP ad-

dress of an SDN controller in the datacenter hosting the corresponding tenant server. This reveals

the datacenter (region) in which the tenant resides, but nothing else.

Requirement R3 is met in a manner similar to that for R1, i.e., by the PoPSiCl store gener-

ating a new public key (and public-key certificate) for the tenant server per client who registers

a PoPSiCl for that server. This certificate is then provided to the tenant server for use in TLS

connection setups when accessed using the corresponding PoPSiCl.
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Finally, requirement R4 is met because the tenant server will accept a TLS connection to a

PoPSiCl only from the client that registered it. Additionally, in the case of HTTP traffic, cross-

origin attacks to indirectly query a PoPSiCl are prevented through refusing requests for URLs

containing the PoPSiCl unless those URLs are appended with the PoPSiCl-specific capability that

only the tenant server or linker.popsicls.com can obtain (Section 3.3.3).

Usability. Registration to obtain a PoPSiCl for a server is the only per-server procedure that a

user must perform. In this step, the user visits a cloud-run website via HTTPS and enters the web

server domain of interest. In return, it receives a PoPSiCl and a file containing a client public-

key certificate and corresponding private key for use in TLS connections using this PoPSiCl.

How the user employs this data is client-specific, but for a modern web browser, it might involve

creating a bookmark using the PoPSiCl and importing the client certificate and private key into

the browser. As such, we believe that our design meets requirement R5. It should also be noted

that to register a PoPSiCl for a server, a user needs to learn that the server is hosted in the cloud.

This point is discussed further in Section 3.7.

Changes to tenant servers are as follows. A tenant server OS must be modified to support

the receipt of TCP connection states from the SDN controllers in the cloud (Section 3.3.2), and

a tenant server also needs to be modified to refuse any connection using a PoPSiCl except from

the client who registered it. A tenant web server must also check any URL using a PoPSiCl

for the corresponding capability, as discussed in Section 3.3.3, to prevent cross-origin request

forgeries that might deanonymize the PoPSiCl. Finally, the hyperlinks in the server’s content

must be changed to use relative URLs (for content at the same site) or the cloud-operated linker

service (for content at another site), and the tenant server must set its referrer policy appropriately

(Section 3.3.3). As discussed below, these changes can be introduced within VMs (or by a PaaS

cloud operator) in such a way that content programming APIs need not be altered. We thus argue

that requirement R6 is also met.
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3.4 Implementation

We realized our design in an OpenStack8-based IaaS cloud on top of the CloudLab9 testbed.

Each cloud computing node supports one or more tenant virtual machines (VMs) using the KVM

hypervisor10. All tenant VMs are connected to the cloud network via Open vSwitch [125]. Open

vSwitch is a software switch that runs in each hypervisor and bridges the virtual network inter-

faces of VMs on multiple computing nodes to a single layer-two network. Besides normal layer-

two switching, Open vSwitch can be integrated with SDN controllers to support dynamic rule

deployment and packet rewriting. Although our system is built upon OpenStack, KVM and Open

vSwitch, we believe that our design could also integrate easily with other cloud implementations,

such as Amazon EC2.

Below we detail our implementation of the three major components in our design: the PoP-

SiCl store, the SDN controller, and tenant web servers. In addition, a video demonstration of the

user experience for our prototype can be found at http://www.cs.unc.edu/˜qiuyu/popsi

cl/.

3.4.1 PoPSiCl Store

PoPSiCl store is implemented on one of the web servers that are controlled by the cloud op-

erator. Its frontend is a regular HTTPS web server offering a web interface for browsers, which

accepts registration requests from any client browser. The backend of PoPSiCl store is imple-

mented as a native component (400 lines of C++ code) that interacts with the frontend using a

FastCGI protocol. Upon receiving a registration request, the frontend passes the request to the

backend to complete the registration process.

Generating PoPSiCl and pseudo-address. The PoPSiCl store backend generates a PoPSiCl for

the client. The newly created PoPSiCl is prefixed by a pseudorandom string str that meets the

8https://www.openstack.org/
9https://www.cloudlab.us/
10http://www.linux-kvm.org/
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domain-name format requirements [107], and so the PoPSiCl takes the form str.popsicls.c

om where popsicls.com is the domain name of the cloud. The PoPSiCl store also chooses a

pseudo-address for the PoPSiCl uniformly at random from a block of addresses for cloud SDN

controller(s). Uniqueness is not required for the pseudo-address; different PoPSiCls may be

associated with the same pseudo-address.

Generating certificates. The PoPSiCl store generates an X.509 server certificate SvrCert

for the tenant server for which the client is registering a PoPSiCl, and an X.509 client certificate

ClntCert for the client. In SvrCert, the issuer is the cloud operator, popsicls.com; the

subject name is the generated PoPSiCl; and the public key comes from a key pair (2048-bit RSA)

that is newly generated by the PoPSiCl store using OpenSSL11. SvrCert is signed by the cloud

operator’s private key, and so a chain of trust can be established when the cloud’s certificate is

trusted. (To do so, the cloud operator must first obtain a CA certificate that authorizes its private

key to sign new certificates.) The issuer of ClntCert is the PoPSiCl and the subject name is a

unique string that is derived from the PoPSiCl. The PoPSiCl store generates another RSA key

pair for the ClntCert and signs the ClntCert using the private key that was created for the

tenant server, so that trust in the SvrCert can be extended to ClntCert. The PoPSiCl store

bundles each certificate and its corresponding private key into a single PKCS#12 format file.

Distributing registration data. The PoPSiCl store distributes registration data to parties as fol-

lows: It sends the PoPSiCl and the pseudo-address to the cloud DNS server (which stores them

as a DNS record); the PoPSiCl and the domain name of the tenant server to the SDN controller;

SvrCert and the corresponding private key to the tenant server; and the PoPSiCl (or to sup-

port HTTP access, a URL containing the PoPSiCl and a capability for it, embedded as a query

string; see Section 3.3.3), ClntCert, and its corresponding private key to the client through the

frontend interface.

11https://www.openssl.org/
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3.4.2 Cloud SDN Controller

In our implementation, all Open vSwitch instances are managed by the same SDN controller,

a vSwitch controller we implemented in about 600 lines of C code. The SDN controller uses

ovs-ofctl12, a Linux command-line tool, to install and remove rules in each Open vSwitch.

As discussed in Section 3.3.2, every new TCP connection request using a PoPSiCl will be

directed to the SDN controller, which completes the TCP handshake and then, after receiving

a ClientHello message, hands off the TCP connection to the tenant server. To seamlessly

transfer the TCP state from the SDN controller to the tenant server, our system uses a custom

kernel extension (i.e., a kernel driver) to the Linux kernel (v4.2.0) to create a new user-kernel

interface on both the SDN controller and each tenant VM. Userspace programs can exploit this

interface (through ioctl system calls) to query or make changes to the internal TCP states.

To facilitate TCP state migration, we also developed a userspace library that enables the SDN

controller to obtain a copy of the TCP state information (sequence number, acknowledgment

number, etc.) for a specific Linux socket descriptor. The state information is then sent through a

long-lived TCP connection to the tenant server, which uses our helper library to create a new TCP

socket with the specified TCP state and then resume the TCP session.

3.4.3 Tenant HTTP Server

Key to our tenant web-server implementation is the support of virtual hosts—or “server

blocks” in Nginx, on which we base our implementation. A virtual host is a website implemented

by a single web server; importantly, one web server can implement multiple virtual hosts. In our

implementation, each virtual host corresponds to a PoPSiCl and thus a client of the website.

Upon PoPSiCl registration, the tenant web server receives the registration data for the client

(i.e., the PoPSiCl, the server certificate, and the corresponding private key) from the PoPSiCl

store. The configuration file of the Nginx web server is updated automatically to reflect these

registration data: a server block is added to the configuration file, with its server name direc-

12http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
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tive set to be the PoPSiCl and the server certificate and server certificate key

directives set as the file-system paths of the server certificate and private key, respectively. The

server client certificate is set to be the path of the server certificate, as well, so that

the virtual server to be created accepts only connections from clients who possess a certificate

signed by the server’s private key (see Section 3.4.1). Nginx supports server reconfiguration on-

the-fly, and so a new virtual server for the PoPSiCl is created with the updated configuration file

without any server down time.

We also adapted the Ruby on Rails web-content development framework (v2.2.2) to defend

the cross-origin attack (see Section 3.3.3). Several macros, including stylesheet_link_

tag, javascript_include_tag, and link to, were modified to append the capability

query string to same-origin URLs constructed via these macros. For each incoming HTTP re-

quest, the Ruby on Rails framework first checks for the capability query string. If the validation

fails, a 404 error is returned.

3.5 Evaluation

In this section, we evaluate the impact of our design on performance of server interactions.

More specifically, the goals of our evaluation are to demonstrate the impact of PoPSiCls on

server-access latencies and throughputs, as well as the scalability of our design.

Our PoPSiCl-enabled OpenStack cloud was deployed in the CloudLab Wisconsin data cen-

ter. For most experiments, we configured our cloud with three physical nodes: one for running

OpenStack services (including DNS); one for running the PoPSiCl store and SDN controller; and

another for running a tenant web server in a virtual machine. All nodes ran an Open vSwitch,

though all rule installations described in Section 3.3.2 occurred on the controller machine. Each

physical node was equipped with two Intel E5-2630 v3 8-core 2.40GHz CPUs, 128GiB of mem-

ory, and a Dual-port Intel X520-DA2 10Gb NIC. The web client was running on a desktop lo-

cated in the UNC-Chapel Hill network. One experiment that compares our design with a proxy-

based design has different settings, as will be discussed later.
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3.5.1 Performance

In this section, we discuss the performance of our PoPSiCl implementation. We primarily

compare to the performance of HTTPS alone (with no PoPSiCl and no client authentication) and,

in one experiment, the performance of Tor. We caution the reader that our comparison with Tor

is only somewhat fair: While Tor also provides server anonymity (a socalled “hidden service”),

it does so against stronger adversaries than our design does; e.g., our design reveals the cloud

datacenter within which a tenant server resides (Tor would hide this information) and additionally

provides client-server unlinkability [126], to an extent. Still, we compare to Tor because it is the

most widely used anonymous communication system today.

Web object download latency. In our first experiment, we measured the latency of download-

ing web objects. We chose Firefox as the web client for evaluating HTTPS and PoPSiCls, and the

latest Tor browser (v5.5.5) for evaluating Tor. To fairly measure the extra overhead introduced by

PoPSiCls, we restarted the web browser for each test, and so every web access was made through

a new TCP and TLS connection, including the overheads of TLS client certificate authentication

and TCP session hand-off from the SDN controller to the tenant server. We also restarted the

browser between accesses when testing HTTPS. For the Tor browser, we measured the access

latency after the Tor circuit had been built. We repeated the experiment 50 times per web-object

size, which varied from 1KiB to 5MiB.

Average access latencies per object size are shown in Figure 3.3a. As is clear from Figure 3.3a,

access using PoPSiCls is minimally more expensive than using HTTPS with no client authenti-

cation, and is roughly 2.5–4× more efficient than accessing content using Tor. Moreover, the

standard deviation of download latency for Tor is very considerable, indicating that for some Tor

downloads, latencies were even worse than 4× more expensive.

The latency of web-object retrieval using PoPSiCls is robust as the request rate grows. For

example, the average latency for retrieving a 10KiB object increases to 404ms when it is re-

quested at a rate of 200 requests per second from distinct clients (not shown), an increase of

less than 20% over the corresponding latency in Figure 3.3a. Latency is also relatively unaf-
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(a) Latency (b) Throughput

Figure 3.3: Performance of PoPSiCl access

fected by cross-site hyperlinking (see Section 3.3.3), especially for larger objects: accessing

linker.popsicls.com involves another HTTPS connection but none of the mechanism in

Section 3.3.2, and is unaffected by the retrieved objects’ size. So, for example, the latency of

retrieving a 1MiB object via linker.popsicls.com (not shown) is less than 11% larger than

when retrieving it using a PoPSiCl directly.

Web access throughput. In this experiment, we measured the throughput of the web server.

We used httperf13, a popular web server benchmark tool, to measure the throughput. httperf can

be used to dictate the rate of TCP requests and the number of HTTP requests per TCP connec-

tion, and it then will report the corresponding HTTP response rate. In our experiment, we mea-

sured and compared the server throughput when the server provides web access through HTTPS,

HTTPS with client authentication, or a PoPSiCl. We scaled the request rate from 50 requests/s

to 600 requests/s, with one HTTP request/response pair per TCP connection. The size of the re-

quested web object was 1KiB. For each request rate and each condition, we took 10 samples of

the response rate and calculated their mean.

As can be seen from Figure 3.3b, before the web server reached its sustainable throughput,

its response rate kept pace with the request rate. After the web server reached its limit, the re-

13http://www.labs.hpe.com/research/linux/httperf/
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sponse rate dropped as the request rate increased further. The maximum throughputs of HTTPS,

HTTPS with client authentication, and PoPSiCl were 490.5, 450.9, and 325.8 responses/s, respec-

tively. Compared with HTTPS, PoPSiCl induced a 33.5% throughput decrease. The throughput

bottleneck in these tests was the switch rule installation procedure (see Section 3.3.2), which

increasingly encountered failures when the request rate grew.

3.5.2 Scalability

Our design poses several potential scalability pitfalls. In this section we evaluate these ele-

ments of our design.

SDN rule installation and TCP handoff. As discussed in Section 3.3.2, our design results in

the installation of two rules per PoPSiCl-based TCP connection through a switch (or one rule

into each of two switches), followed by the transfer of TCP state from the SDN controller to

the tenant server and then the adjustment of one of the rules previously installed for this connec-

tion. These steps slow the connection setup to a tenant server, and so in our first experiment we

evaluated the impact of these overheads, as the number of concurrent connection setups grows.

We used cURL (https://curl.haxx.se/) as the web client for both HTTPS and PoPSiCl

access. In each test, we launched concurrent cURL processes; each process opened a connection

(HTTPS in one type of test, or using a PoPSiCl in the other type), retrieved a web object from

the tenant server, and then terminated its connection. We measured the completion time of all

connections, and plotted this completion time as a function of the number of processes (and

connections) launched. The size of the web object in this experiment was 10KiB.

Figure 3.4a shows the result of these experiments, where each point is the average of the re-

sults from ten runs. As can be seen there, the completion time for the PoPSiCl-based connections

was at most 1.4× the completion time for the same number of concurrent HTTPS connections.

Our SDN controller and tenant web server implementations already perform the steps for each

connection concurrently, though otherwise the implementations are relatively unoptimized.
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(a) Concurrent connections (b) Per-connection volume

Figure 3.4: Scalability of PoPSiCl access along several dimensions

The need for TCP handoff. The motivation for SDN rule installation and TCP handoff steps

detailed in Section 3.3.2 and evaluated above becomes evident when comparing our design to a

proxy-based alternative. In this alternative, each PoPSiCl is resolved to a pseudo-IP that is the

address of a proxy that completes the TCP connection with the client and then learns which ten-

ant server the client wants to contact from the ClientHello SNI field (like our SDN controller

does). The proxy then opens another TCP connection with the tenant server and relays traffic

between the client and server, without handing off that connection to the server.

We built this proxy alternative and evaluated its throughput. The proxy was implemented

in C with the UNIX socket API as a multithreaded application. When a new TCP connection is

initiated by the client, the proxy spawns a new thread, accepts this connection, and establishes

a TCP connection with the tenant server to relay packets. To ensure that the clients and servers

were not bottlenecks, we set up three httperf clients connecting to three tenant web servers, each

on its own physical node. As can be seen in Figure 3.4b, the proxy alternative outperformed ours

when the retrieved web object was small. But as the web-object size increased, the maximum

throughput of the proxy decayed dramatically. In contrast, the maximum throughput of PoPSiCl

stayed the same as the web-object size increased. The throughput of PoPSiCl is more stable

because each packet only makes the SDN switch rewrite the IP address field. However, each
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packet makes the proxy copy packet content from one socket to another socket and each TCP

connection costs extra resources to maintain TCP states. Aurelius et al. [10] found that 70% of

Flash video flows from various services transferred at least 1MiB data. If such streaming services

were deployed in the cloud, a proxy could be easily saturated.

SDN switch rules. By default, one million rules can be installed simultaneously in a vSwitch,

which would thus accommodate up to a half million concurrent client TCP connections in sup-

port of PoPSiCl-based server accesses. This introduces two scalability concerns.

First, since some clients (notably browsers) tend to open multiple connections per server

access, a vSwitch’s default rule capacity might accommodate far fewer than a half million con-

current clients using PoPSiCls. Statistics from a commercial multi-tenant data center shows that

50% of the hypervisors had mean flow counts of 107 or less [125]. Our use cases certainly re-

quire more rules. However, this concern can be addressed by increasing the rule capacity of a

vSwitch and also load-balancing rule installation across the potentially multiple vSwitches that

a client’s connections traverse. Indeed, additional vSwitches could be added in the cloud—even

elastically—to boost rule capacity, if needed.

Second, deploying several hundred thousand rules to a vSwitch could slow the process by

which the vSwitch matches incoming packets to rules, and so we conducted experiments to eval-

uate this performance degradation. Figure 3.5a shows the average latency (over 200 trials) suf-

fered by a client using a PoPSiCl to open a connection and retrieve an object of either 10KiB

or 100KiB from a tenant web server, when the switch starts with the number of rules indicated

on the horizontal axis. The performance clearly shows two “levels” of latency per object size.

The latency jumps to another level after the number of rules exceeds 200000. The reason is that

Open vSwitch uses a kernel cache to store the switching rules and the cache size is 200000 [125].

Nevertheless, the performance impact with nearly 1000000 rules is less than 2×. It is conceivable

that engineering a switch specifically to accommodate the usage that our design imposes might

further reduce this degradation.
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(a) Open vSwitch rules (b) Virtual hosts

Figure 3.5: Scalability of PoPSiCl access along several dimensions

Virtual hosts. As discussed in Section 3.4.3, our implementation deploys a virtual host to a

tenant web server per client that registers a PoPSiCl for it. This virtual host is associated with

the PoPSiCl and the server certificate that the web server should use in TLS connections using

that PoPSiCl (and that doubles as the certificate for verifying the client certificate). Admittedly

this is perhaps an abuse of the virtual-host mechanism, which presumably was not designed to

accommodate a virtual host per web-server client—a popular web server could have millions of

virtual hosts.

To get a sense for the scalability limitations that the existing Nginx virtual-host design would

impose, Figure 3.5b shows the degradation in responsiveness of the tenant web server as a func-

tion of the number of virtual hosts installed. These tests were conducted by first creating the

number of virtual hosts on the horizontal axis and then connecting to the server using a PoPSiCl

that matches one of these virtual hosts, to retrieve an object of either 10KiB or 100KiB.

Figure 3.5b shows the performance impact of the number of virtual hosts set up before the

connection. Each point is an average over 200 trials. The number of virtual hosts had no impact

on the response latency for the numbers we tested. However, the memory consumption of the

server with 60000 virtual hosts approached 2GiB. As in the case of vSwitch rules above, we

anticipate that this scalability limitation could be addressed with a virtual-host design that antic-

69



ipates our proposed usage, e.g., relieving this memory pressure by writing the data for inactive

virtual hosts to stable storage.

DNS entries. Each PoPSiCl registration results in the creation of a new DNS record for the PoP-

SiCl, mapping the PoPSiCl to the addresses of SDN controllers in the datacenter where the tenant

resides. The number of DNS records could thus grow large, if the use of PoPSiCls became popu-

lar. We have not evaluated the potential performance impact of this growth on DNS resolutions,

however, since backing the DNS server with a simple database for these records would support

ample storage and fast access. Going further, the str portion of a PoPSiCl str.popsicls.com

could be computed to be the encryption (using a chosen-ciphertext-secure scheme) of the IP ad-

dress(es) to which it should be mapped, using a key that the DNS server holds. The DNS server

would then not need to store the mapping, but upon receiving a request to resolve str.popsic

ls.com could instead decrypt str and return the result.

3.6 Traffic Analysis

As discussed in Section 3.2.1, PoPSiCls hide the identity of the servers contacted by clients

from being directly disclosed to an attacker between the clients and the cloud. However, they

do not hide connection characteristics from the attacker. The connection characteristics include

packet size, packet timing, the number of packets per connection, connection volume, the number

of connections, connection duration, etc. What can be inferred from these features has long been

studied and debated, particularly in the context of traffic directed through anonymizing proxies

(e.g., [93, 65, 158, 69, 122, 86]) and, similarly, traffic logs in which payloads have been removed

(e.g., [48]).

Our design so far has left this issue to tenant servers to address, should they choose to. How-

ever, in this section we summarize an approach that we have developed for HTTP servers that can

be used to implement some proposed defenses to address attacks leveraging packet size to iden-

tify servers. We leave defenses for attacks leveraging other features to future work. In keeping

with R6, this defense can be deployed with very modest adaptations to web content. Also, the
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proposed approach relies on client-side Javascript and does not require the client user to install

new software (in keeping with R5). We stress that our goal here is not to innovate in terms of

new per-connection defenses, but instead to provide a framework in which such defenses can be

implemented.

3.6.1 Design

The key enabler for these defenses without requiring modifications to the client platform is

Javascript blobs14, which provide a way for client-side Javascript to construct file-like objects and

pass them to APIs that expect URLs. This functionality permits a tenant server to serve Javascript

to the client browser that customizes how objects are retrieved from the server, and then post-

processes the retrieved contents and provides them to the browser (as blobs) for rendering. So,

for example, the client-side Javascript could replace the retrieval of one web object with that of

many smaller objects and then reassemble the original object before providing it to the browser.

We have prototyped this approach in a simple adaptation to the Ruby on Rails web-content

development framework. This adaptation prepends a Javascript script to every HTML file; the

script takes control of retrieving the objects that otherwise would have been hyperlinked di-

rectly in that page. This script patches the XMLHTTPRequest class to remove padding and

reassemble the original object from smaller pieces of that object. When the send method of a

XMLHTTPRequest instance is called, instead of sending a single HTTP request to the server, it

sends several HTTP requests. The URL of each request contains the original URL and also an

extra query string that informs the server of the number of pieces into which to split the object at

that URL and the index of the piece to return in response. After receiving the first such request,

the modified Ruby on Rails framework splits the web object into the requested number of pieces;

the piece at the index indicated in each request is then returned as the request’s response, after ap-

pending padding and prepending the length of that padding to the piece (to allow for padding re-

moval). After the XMLHTTPRequest instance gets all the pieces of the original object, it reads

14http://developer.mozilla.org/en-US/docs/Web/API/Blob
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a length field at the beginning of each piece, strips the piece of any content (i.e., padding) that

extends past that length indicator, reassembles the original object, creates a blob containing the

resulting object, and submits it to the browser for rendering. Rewriting the XMLHTTPRequest

class ensures that even objects retrieved by other Javascript scripts in the page will be split and

reassembled in this way.

While providing a foothold for addressing traffic analysis based on the features of individual

object retrievals, this design does not interfere with hints that might be available to the attacker

based on his viewing multiple connections in aggregate, such as the number of servers that are

accessed simultaneously. Developing a similar foothold for obfuscating these features is a topic

of ongoing work.

3.6.2 Evaluation

To evaluate the performance impact of this form of traffic-analysis defense, we modified an

open-source blog site15, which is written in Ruby on Rails, to adopt it. In terms of modifications

to the application-specific web content itself, we needed to modify only one line of embedded

Ruby code in two templates; the rest of the implementation is embedded in the Ruby on Rails

framework, hidden from the web-content developer. In our implementation, the Javascript code

chooses uniformly from among retrieving a web object in one, two, or three pieces, and each

piece is padded to make its size a multiple of 512 bytes. The root page of this website hyperlinks

to thirteen web objects of total size 474.3KiB. We evaluated our traffic analysis defense approach,

in terms of latency and throughput, by visiting this root page repeatedly, being sure to clear the

browser cache between retrievals.

Latency. We chose the Firefox browser for evaluating the latency of root-page retrievals via

HTTPS, PoPSiCls, and PoPSiCls with traffic-analysis defense (TAD) implemented as above, and

the Tor browser (v5.5.5). The latency was measured as the time of downloading and rendering

the whole web page. The experiment was repeated 20 times for each setting. As can be seen from

15https://github.com/natew/obtvse
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(a) Latency (b) Throughput

Figure 3.6: Performance of PoPSiCl with traffic-analysis defense (TAD), for retrieving a web
page hyperlinking to thirteen objects of total size 474.3KiB

Figure 3.6a, the latency of accessing the page using PoPSiCls with traffic-analysis defense is only

1.35× that of HTTPS, while the latency of Tor is 6.3× that of HTTPS.

Throughput. To measure throughput of root-page retrievals, we chose a headless browser,

PhantomJS16, as the web client. Though lacking a graphical user interface, PhantomJS still

parses HTML documents, runs Javascript code, and downloads hyperlinked web objects in a

web page. (The httperf tool, used in the throughput experiments of Section 3.5, does not parse

returned HTML.) We wrote a script to spawn PhantomJS processes in the background, and each

PhantomJS instance was scripted to visit the root page once and then terminate. By adjusting

the spawning rate, we adjusted the web-page request rate, and the response rate was measured

as the number of root-page retrievals completed per second. To ensure that the client was not the

bottleneck in these experiments, we ran the client in a physical node with 32 cores and 128GiB

memory. As can be seen in Figure 3.6b, the throughput of root-page retrievals using PoPSiCls

was approximately the same with or without traffic-analysis defense, and only slightly lower than

the throughput using HTTPS alone.

16http://phantomjs.org
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3.7 Discussion

Scope of defense. Our design provides PoPSiCls only for servers hosted in a cloud that supports

their use. While major cloud operators host substantial numbers of web servers (e.g., [75]), for

example, obviously numerous web servers do not fall into this category, as well. Related to this

limitation is that a user must know or be directed to the cloud that hosts a server in order to regis-

ter a PoPSiCl for it. This information could be disseminated by the cloud, provided that the cloud

is trusted to not claim to host a web server that it does not (as a major cloud operator might be);

by a link to the appropriate PoPSiCl store from the web server itself, so that a user could leverage

one access to the server to be able to access it using a PoPSiCl subsequently; or by myriad other

means (e.g., social media).

Censorship. We assume a trustworthy cloud operator that is motivated to help tenants pro-

tect the privacy of their customers from an attacker who might try to observe their customers

connecting to them. This assumption is arguably stronger than most (though not all, c.f., [160])

threat models considered in works addressing censorship resistance. Indeed, in the context of

censorship by governments, clouds are often used by activists to circumvent censors, but this is

typically done without the cloud operator’s consent [58]. Major clouds have admittedly shown

little cooperation for resisting censorship by governments (e.g., [71]), preferring instead to ac-

commodate censorship for business reasons. Moreover, the PoPSiCl store is vulnerable to being

blocked. As such, our design seems unlikely to be deployed specifically to resist government cen-

sorship, but it still offers an opportunity for a cloud to actively contribute to privacy for customers

of tenant servers to which censors permit access (even while disallowing access to servers that

censors forbid).

Going further, it is conceivable that our design offers an attractive balance between social

responsibility and client privacy by assuming a trusted cloud that retains the ability to censor

servers. For example, evidence suggests that a majority of Tor “hidden services” are criminally
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oriented and the most frequently requested sites host child abuse imagery [121]. Such abusive

sites could be shut down by the operator once it is informed of the abusive content.

Traffic analysis. As discussed previously, our basic design (Section 3.3) leaves traffic analysis

to the tenant server to address, should it choose to. While we have made initial steps to support

per-connection traffic-analysis defense (Section 3.6), that defense does not immediately address

traffic analysis based on aggregates of connections, e.g., the number of servers to which connec-

tions are made or the relative timings of these connections. Defending against this type of attack

remains a very active area of research independent of our proposal (e.g., [65, 158, 122, 66]).

OS compatibility. Our current implementation of TCP hand-off (Section 3.4) requires that both

the controller and the tenant server run on the same Linux OS kernel version. We also disabled

the TCP timestamp and selective acknowledgment (SACK) options to facilitate TCP state migra-

tion. In future work, we aim to support TCP hand-off across different TCP stack implementations

so that PoPSiCls will be suitable for more heterogeneous deployments.

Compatibility with Universal 2nd Factor (U2F) protocol. Universal 2nd Factor (U2F) proto-

col [89] aims to improve web security and usability by specifying a standard for using a second-

factor device in web authentication. U2F protocol is supported by major browsers, including

Chrome, and popular websites. In U2F, a second-factor device, usually a USB-based security

key, generates a public-private key pair for each website in the registration phase. The key pair is

associated with the domain name of the registered website and stored in the second-factor device.

The public key is associated with the user account and stored in the web server. In the authentica-

tion phase, only if the user can generate a valid signature with the expected private key, will she

be successfully authenticated by the web server. Also, the second-factor device ensures that the

signature can be only used for the associated website to prevent phishing attack. PoPSiCl is used

as a normal domain name during the whole web session so it is compatible with the U2F protocol.

In order to use U2F, the user needs to register her second-factor device with the PoPSiCl-enabled

website every time she registers a new PoPSiCl.

75



3.8 Summary

In this chapter we presented PoPSiCls, which are personalized pseudonyms for servers that

a client can use like regular, long-lived server domain names to open TLS connections to those

servers. We described a design and implementation for PoPSiCls that leverages trust in a cloud

to implement PoPSiCls for tenant servers that it hosts. PoPSiCls have several desirable security

and usability properties in our threat model. First, TLS connections established using a PoPSiCl

exhibit identifiers (domain names, IP addresses, and server public keys) to the attacker that he

cannot correlate against those exhibited in connections involving other clients or other tenant

servers. Second, the burdens placed on various parties in our implementation of PoPSiCls cor-

respond to their levels of technical capabilities: cloud operators bear the most (which, based on

our experience, is still minor); changes to tenant web servers can be hidden from web-content

developers by packaging these changes within VMs (in an IaaS scenario) or the cloud platform

(in a PaaS scenario); and tenants’ clients need only suffer minor changes to the user experience

and no changes to client software (in the case of web browsers). The last is important since client

users often lack the permissions or willingness to modify their platforms (e.g., due to the vulner-

abilities that those modifications can introduce [129, 46, 139]). We also illustrated extensions of

our design to permit the implementation of defenses against traffic analysis with no client-side

changes.
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CHAPTER 4: SNOWMAN: METERING GRAPHICAL DATA LEAKAGE TO DETECT
SENSITIVE DATA EXFILTRATION

Data theft by insiders is a threat that is especially difficult to prevent, as it involves misuse

of permissions that the insider presumably must be given to perform his/her duties in the organi-

zation. It is thus not surprising that such data thefts are so common; e.g., in healthcare, insider

threat is the most common cause of data leakage, accounting for 58% of incidents [145]. And,

of course, insiders were behind some of the highest profile data breaches of U.S. government

data, with the Manning [157] and Snowden [149] cases being two exemplars. All U.S. executive

agencies and military departments are now required “to monitor user activity on all classified net-

works in order to detect activity indicative of insider threat behavior” [119, §H.1], and a National

Insider Threat Task Force has been established “to develop a Government-wide insider threat

program for deterring, detecting, and mitigating insider threats” [2].

An approach to address data theft by insiders is to make sensitive data available to users only

by secure remote access. In this approach, programs execute on sensitive data only on computers

trusted by the organization, while users are permitted to interact with those programs/data only

remotely, perhaps from a less-trusted (even user-owned) computer or a “thin” client having no

persistent storage of its own. While this approach has been practiced for decades in various forms

(e.g., [167]), a current product embodying this approach is Citrix Virtual Apps and Desktops [1],

formerly marketed as XenApp and XenDesktop. The deployment of XenDesktop by Osaka

Gas [3] provides an illustrative example of the data security benefits that this approach can offer.

Despite the data-protection benefits of remote-only access, this approach is fundamentally

limited by the possibility that the user screenshots sensitive content or even photographs it using

another device. Distribution of such images can be discouraged through the introduction of wa-

termarks (e.g., by varying screen luminescence [72]). However, the ability to attribute the data
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leak to an individual after the data is already leaked might be ineffective in deterring the leak.

Moreover, since these watermarks must not interfere with the user experience, text data can be

recovered, sans watermarks, by applying optical character recognition to the images [39]. For

small text data files (e.g., a Word file that fits on one or two screens), it seems that there is little

hope for defending further against such insiders.

The premise of this work, however, is that for large amounts of sensitive text—e.g., large

documents, databases, or codebases—an effort to quickly display significant amounts of that

data to a computer screen to record it (e.g., using another device) is likely to induce patterns of

accessing that data that departs from the norm for interacting with it for legitimate purposes.

Combined with remote-only access, this observation might be leveraged to detect data theft

as it is occurring. In this chapter, we propose a system, called Snowman, to accomplish this

goal. Roughly speaking, Snowman monitors the transmission of sensitive data by a program to

a remote client via a graphical user interface, and raises an alert when the rate of transmission

exceeds what is typical for interacting with that data.

A central challenge in this approach is how to measure the amount of sensitive data transmit-

ted to a remote client. While the total volume of GUI data transmitted to the remote client is an

upper bound, such a bound is very coarse. For example, numerous ways of interacting with a

program—e.g., scrolling a document a few lines, up and down repeatedly—would result in an

ever growing estimate of leakage, even though only the same few lines of data are being rendered

to the user’s screen. Snowman therefore employs taint analysis (e.g., [115]) to track which sen-

sitive bytes taint each byte output to the remote user. By tracking the cumulative set of sensitive

bytes that taint the output to the remote user, Snowman can improve the accuracy of this upper

bound considerably, and even determine which sensitive bytes might have been leaked.

Unfortunately, multi-label (i.e., per sensitive byte) taint analysis on unmodified binaries is

very expensive, incurring a typical overhead of 7× or more [88]. To ensure that this overhead

does not interfere with the user experience, Snowman thus performs taint analysis only on a

replica of the program that replays the program’s execution alongside the program instance that
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interacts with the user. This replica lags behind the user-facing instance due to the overhead of

taint analysis, but as we will show, it needs not lag by much for typical user behavior. Herein lies

a core technical challenge that we solve in Snowman, namely how to efficiently conduct taint

analysis on a replica while forcing the replica to execute identically to the original, user-facing

execution.

Replication systems (e.g., [120, 20]) need to record asynchronous signals and scheduling

events, and to replay them to the replica at the exact same execution points as in the original

execution. Those systems rely on CPU hardware performance counters to measure the number

of instructions executed by the program to locate the right execution points at which to replay

them. However, conventional taint analysis tools [88, 26] use binary rewriting techniques to

insert analysis routines into the original code blocks, which would break the measurement of the

replica’s execution and so cause the replica to diverge from the original. Snowman employs a

novel architecture that conducts taint analysis in the kernel without disturbing the performance

counter measurements. To reduce the overhead of taint analysis, Snowman employs various

optimizations, such as excluding application basic blocks from in-kernel analysis where it can be

inferred that they have no tainted operands, caching instruction decoding results, copy-on-write

taint propagation, and garbage collection of taint tags corresponding to already-leaked data.

We have implemented Snowman to work on unmodified x86-64 Linux binaries and off-the-

shelf hardware. We evaluated Snowman on three widely used GUI programs: LibreOffice Writer

(a word processor), LibreOffice Calc (a spreadsheet program), and Gedit (a code editor). Our

evaluation shows that Snowman performs better than the Pin “null tool”, which serves as a base-

line for any Pin-based [97] taint analysis solution, and introduces only moderate overhead on

common user actions. The evaluation also shows that Snowman can easily distinguish normal

user behaviors from ones reflecting data copying in all tested programs, by analyzing the sensi-

tive data leakage patterns.

To summarize, our contributions are as follows:
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• To our knowledge, we provide the first system designed to detect copying of graphical output

to reconstruct sensitive data, e.g., to exfiltrate it later. Rather than focusing on watermarking to

assign responsibility for the theft after the released data is recovered, Snowman instead seeks

to detect the copying while it is occurring.

• We detail the design of Snowman, which performs multi-label taint-tracking only on a replica

of the user-facing execution, to minimize the performance impact to the interactive user ex-

perience. In doing so, Snowman simultaneously achieves exact replication of the user-facing

execution while performing multi-label taint tracking on it, without modification to the pro-

gram binary. Central to its efficiency are a variety of optimizations that render it far more

lightweight than straightforward solutions (e.g., based on Pin [97]).

• We show through evaluations of Snowman on a fully-featured word processor, spreadsheet

program, and code editor, that sufficiently aggressive copying can easily be differentiated

from normal usage examples based on the rate of GUI leakage of sensitive file output. We also

show that Snowman supports copying detection with minimal penalties to the responsiveness

observed by the user, and with modest delays from the time at which the leakage occurs.

The rest of this chapter is organized as follows. We give background in Section 4.1 and de-

scribe the design and implementation of Snowman in Section 4.2. In Section 4.3, we evaluate

Snowman in terms of its performance on various user actions and its capability of differentiating

malicious data-access patterns from normal ones. We discuss remaining challenges and possible

extensions in Section 4.4, and summarize this chapter in Section 4.5.

4.1 Background

Anomaly detection. Here we treat a malicious insider exfiltrating a large volume of sensitive

data from an organization as an anomalous behavior to be detected using anomaly-detection

techniques, of which many have been proposed (see, e.g., [34]). In anomaly-detection systems,

various events of the user and the running programs are logged. The logs might include, e.g., sys-
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tem calls, shell commands, file reads and writes, and others. These logged data are then provided

to the feature-based detection algorithms, which can be based on machine learning [117], data

mining [159], statistics [90], or information theory [91], to identify anomalies.

The main contribution of Snowman is offering a novel system architecture that (i) restricts

user’s interaction with the sensitive files to the GUI interface in a thin client and (ii) accurately

monitors the sensitive bytes leaked to the user. Snowman can generate logs containing the indices

of the leaked bytes and the timestamps of the leakage events, which can be used as features by

the anomaly-detection algorithms. This fine-grained sensitive data leakage pattern gives more

insight into the user’s intent compared with coarser patterns of access to files or file blocks. In

this sense, Snowman provides a new type of feature for anomaly-detection systems to analyze,

though our goal here is not to develop new anomaly detection algorithms ourselves.

Taint analysis. The conventional approach to monitor sensitive information flow is taint analy-

sis (e.g., [115, 45]). Taint analysis systems attach taint tags to the memory and register locations

whenever the program consumes sensitive data. Along with the execution of the program, the

taint tags are propagated from one location to another. Since the taint propagation rules are dic-

tated by the instruction semantics, taint analysis can accurately monitor how the sensitive data is

transformed and transferred, and whether it is leaked through the program’s execution.

Taint analysis can be implemented with dynamic binary instrumentation (e.g., [128, 88, 26,

106, 105, 83]) or virtualization (e.g., [77, 127, 41]). In inlined taint analysis systems [128, 88, 26,

77, 127, 41], the taint analysis logic directly interferes with the analyzed program’s execution

flow and thus introduces substantial overhead. For example, libdft, a state-of-art taint analysis

system, imposes 7.06× slowdown to the Firefox browser even after employing various optimiza-

tion techniques [88]. Some recent systems [106, 105, 83] aim to reduce overhead of the analyzed

program by decoupling taint analysis from the program’s execution. These systems record the

control flow and memory access information with Pin, a dynamic binary instrumentation tool,

and run the taint analysis logic on a separate thread with the recorded information. Snowman also

decouples taint analysis by replicating the program’s execution and conducting taint analysis only

81



on the replica. Since Snowman doesn’t do heavyweight binary instrumentation, it adds less over-

head to the analyzed program compared with the Pin “null tool” (as will be shown in Section 4.3)

and hence all other Pin-based tools.

Some systems choose to implement taint analysis in hardware [50, 147, 155, 87] and usually

have better performance than the software based systems. However, custom hardware is not

widely deployed. Snowman has better applicability since it works on off-the-shelf hardware and

unmodified binaries.

Replicated execution. Replicating the execution of a multithreaded program in multicore sys-

tems is a challenging problem. Many sources of nondeterminism can lead to divergence of the

replicated execution. The first type of nondeterminism is caused by the program’s communi-

cation with the system or other programs via systems calls, e.g., read(), or instructions, e.g.,

RDTSC. Replication systems (e.g., [120, 20]) usually address this type of nondeterminism by

recording the nondeterministic inputs to the original execution and replaying the recorded val-

ues to the replica. The second type of nondeterminism is caused by shared-memory interactions

among threads or processes. To address this type of nondeterminism, the approaches taken by

replication systems include replicating all shared-memory accesses [124, 21]; scheduling one

thread or process at a time and replicating the scheduling decisions [112, 144, 120]; assuming

the program is race-free and replicating the synchronization events by instrumenting the syn-

chronization library [15, 14, 53]; or applying a deterministic scheduling algorithm to remove the

nondeterminism in shared-memory interactions [20, 19, 54].

Replicating the program’s execution can be also achieved by running the program in a virtual

machine and replicating the execution of an entire virtual machine [59, 164, 60, 29]. However,

doing so introduces unnecessary overhead of replicating the execution of the operating system

and other programs. There are also replication systems [113, 79, 163] relying on custom hard-

ware to reduce overhead. We adapted RR [120], an open-source tool from Mozilla, to implement

Snowman’s replication subsystem. We chose RR because it works on unmodified binaries and

off-the-shelf hardware. Additionally, RR doesn’t assume race-freedom of the replicated program
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so that programs with data races (e.g., programs using lock-free data structures[153]) can be

directly replicated by RR.

Replication and dynamic analysis. Several previous works [124, 53, 57, 84] explored the idea

of combining replication and dynamic analysis. Unlike Snowman, which replicates and analyzes

the execution of the program concurrently with the original execution, these systems can repli-

cate the previously recorded execution of the program only after the program exits, to conduct

analysis for debugging, auditing, or attack provenance. In addition, the high overhead caused by

replicating every shared-memory interaction [124] or replicating a virtual machine [57], as well

as assuming race-freedom [53, 84], do not fit our use cases.

4.2 System Design and Implementation

4.2.1 Overview

Figure 4.1: Snowman architecture: (1) commu-
nicate user inputs and graphical outputs (over
the network); (2) record program execution;
(3) replicate program execution; (4) monitor
sensitive data leakage

In Snowman, GUI programs with permis-

sions to access sensitive files run in a remote

server. A user employs her personal computer

to interact with the GUI programs over the

network. The GUI programs take user inputs,

such as mouse clicks and keyboard strokes,

do computations, and deliver graphical out-

puts to the user computer. In our threat model,

the user computer is not trusted and the user

might intend to steal sensitive information.

However, we assume the server computer and

all software running on the server are trusted

and don’t have security vulnerabilities. The only channel where a user can get sensitive infor-

mation is the graphical outputs generated by the remote GUI programs. Our system aims to
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accurately monitor the amount of sensitive file information flowing from the remote server to the

user computer without affecting the normal usage of the GUI programs.

To accomplish this, Snowman replicates the execution of the analyzed program and conducts

taint analysis on the replica, to minimize the impact of that analysis on the performance of the

original execution. Our system works on legacy x86-64 binaries without requiring custom hard-

ware or recompilation. Figure 4.1 shows the overall architecture of our system. The graphical

user interfaces of the program are displayed in the user computer (a thin client). In the remote

server, the replication engine creates and maintains a replica for every thread and process of the

monitored program. The replicas maintain the exact same execution states as the original threads

and processes, including memory values, register values, and control flows. The analysis engine

conducts taint analysis on the replicated processes by attaching and propagating taint tags to

monitor the sensitive information flow. There are many challenges in efficiently performing taint

analysis and, at the same time, faithfully replicating the original program’s execution. We will

give detailed descriptions of our system in the following sections.

4.2.2 Replication Engine

The implementation of the replication engine is based on RR [120], which is designed to

record and replay multi-threaded Linux programs with low overhead, and is useful in debugging

concurrency bugs. Instead of replaying the whole execution after the program exits, we adapt RR

to run a replicated program side-by-side along with the original program execution throughout its

lifetime.

The core problem solved by RR is faithfully replicating the execution of a multi-threaded

program. In principle, if all non-deterministic inputs and events of the original execution are

recorded and replayed to the replica, the replicated execution should be the exact same as the

original one. RR runs in user-space and monitors the target program via the ptrace system

call. RR can observe various events of the monitored program including system calls and signals.

Whenever a monitored process enters or exits a system call, it is suspended and RR is notified.
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For system calls that spawn a new process or thread, like fork() and exev(), RR creates a

corresponding replicated process or thread and copies the original memory and register state to

the replica. For the system calls that consume non-deterministic inputs, such as read() and

gettimeofday(), RR records the inputs to the system call from the original process and

replays them to the replicated process without actually executing the system call. RR also deals

with inputs from non-deterministic instructions, including RDTSC and RDRAND, by emulating or

rewriting those instructions.

Besides non-deterministic inputs to system calls and from non-deterministic instructions, RR

also needs to record and replay the non-deterministic events. The first type of non-deterministic

events is scheduling events. Multiple threads of the same process run concurrently and do compu-

tations on shared data, and so different thread schedules could lead to different outcomes of the

program. Without replaying the scheduling events, the replica’s execution could diverge. Another

type of non-deterministic events is signals. Signals usually interrupt the normal execution flow of

the program. If a signal handler is registered, it will be called to handle the arrived signal. Since

the signal handler could compute on data shared with normal program code, similar to scheduling

events, we have to record and replay the signals to avoid divergence.

RR acts as a scheduler to the monitored program and only schedules one thread at a time.

By using a deterministic performance counter of the Intel CPU, RR tracks the number of retired

conditional branches (RCB) and uses the RCB counts to mark the progress of the program’s

execution. Whenever a non-deterministic event happens in the original program, RR records

the timing, measured by the RCB count, of that event, and replays this event in the exact same

execution point of the replica. RR instructs the CPU to fire an interrupt after a specified number

of conditional branches are retired by the replica to control the timing of the event replay. If it is a

scheduling event, RR preempts the replicated threads to replay the schedule. If it is a signal, RR

emulates the execution of the signal handler without delivering a real signal to the replica.

During the original execution of the program, RR records the aforementioned data. Con-

sumption of the recorded data is sometimes slower than its generation because conducting taint
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analysis on the replicated program could slow down its execution. The replication engine buffers

the recorded data in the file system, so that the original program execution can advance normally

without having to wait for the replica.

4.2.3 Analysis Engine

If the replication engine maintains a replicated program execution that progresses exactly as

the original one, conducting taint analysis on the replica should expose the same sensitive infor-

mation flows as occurred in the original. The analysis engine’s goal is thus to track which sensi-

tive file bytes taint GUI outputs of the replica execution (and so of the original execution, to the

client computer) without causing the replica’s execution to diverge from the original. libdft [88]

and other similar tools (e.g., [45, 26]) use dynamic binary instrumentation to transform the orig-

inal code blocks to semantically equivalent ones intertwined with the taint analysis logic. We

don’t take such an approach to implement the analysis engine since adding additional instruc-

tions in the replica would confuse the RCB counts measured by the replication engine, which

might lead to divergence of the replicated execution due to the non-deterministic events being

inserted in the wrong execution point. As such, the analysis engine in Snowman takes a different

approach, which we summarize in this section.

4.2.3.1 Architecture

Snowman defines each memory or register byte as an individual taint unit, to which it asso-

ciates taint tags dynamically. The instructions executed by the program dictate how the taint tags

should be propagated. For example, if the program executes “mov ebx, eax”, which moves

four bytes of data from the eax register to the ebx register, the analysis engine should move the

taint tags on each byte of the eax register to the corresponding byte of the ebx register. Strictly

speaking, the analysis engine is required to perform this type of analysis on every instruction

executed by the program.
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In Snowman, the analysis engine is implemented as a Linux kernel module, and all taint

analysis operations are done in kernel space, which don’t interfere with the RCB counts of the

user-space replica. For the replica, the analysis engine maintains shadow memory address spaces

and shadow registers that store taint tags for the corresponding memory and register bytes. Dif-

ferent threads of the same process share the same shadow memory address space but have their

own shadow registers. A strawman approach to implement taint analysis is running the replica

in single-step mode. After the execution of each instruction, the CPU traps to kernel mode and

transfers control to the analysis engine. The analysis engine then decodes the binary instruc-

tion and decides how to propagate taint tags based on the instruction’s opcode (e.g., mov) and

operands (either memory or register operands). This approach works but is too slow since each

instruction triggers a CPU context switch from user mode to kernel mode.

One source of optimization is the observation that we need to analyze an instruction only

if its operands have taint tags. Leveraging this observation, the analysis engine checks, at the

beginning of each basic block, whether the register operands of the instructions in the basic block

contain taint tags by inspecting the shadow registers. If any register operand has taint tags, the

analysis engine sets the CPU to single-step mode for this basic block. If not, the analysis engine

sets a breakpoint at the last instruction of the basic block, which lets the analysis engine seize

control and check the next basic block. This design often induces one context switch per basic

block instead of per instruction, which could be a big performance gain if only a small percentage

of instructions touch tainted registers.

Figuring out whether the memory operands of a basic block contain taint tags is a more com-

plicated task. Since some memory operands can be indirectly addressed—e.g., in “mov eax,

[ebx]”, where the address of the memory operand is the value of the ebx register—we may not

know the address of the memory operand at the beginning of the basic block. As such, we cannot

decide whether the basic block should run in single-step mode by only inspecting the shadow

memory. To solve this problem, the analysis engine changes each memory page that contains

tainted memory to kernel-only pages by modifying its page table protection bit. Whenever an
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instruction in the program accesses those protected pages, the CPU generates a page fault and

transfers control to the analysis engine. The analysis engine then changes the accessed page to

user-accessible and sets the CPU to single-step mode. After that, every instruction in that basic

block will be analyzed by the analysis engine.

Figure 4.2: State transitions: (1) consume sensi-
tive data; (2) contain taint tags; (3) finish basic
block; (4) no taint tag; (5) finish basic block; (6)
protection page fault

As shown in Figure 4.2, each replicated

thread is classified as being in one of four

states by the analysis engine. When the replica

process has not consumed any sensitive data

and there are no taint tags in the shadow mem-

ory or shadow registers, all threads of the

replicated process are in Initial state, and the

analysis engine does not set breakpoints at

basic-block boundaries. As soon as the replica process consumes sensitive data, all threads transi-

tion to Undecided. When a thread is in the Undecided state, the analysis engine checks whether

the register operands in the current basic block contain any taint tags. If so, the thread is transi-

tioned to the Single-step state and every instruction in the basic block will be analyzed individ-

ually. After the thread finishes the last instruction of the basic block, it is transitioned back to

the Undecided state. If the register operands are not tainted, the thread transitions to the Block-

step state, and the analysis engine sets a breakpoint at the last instruction of the basic block and

changes all tainted pages to be kernel-only pages. If the thread accesses any tainted page, it is

transitioned to Single-step. If the thread finishes the basic block without accessing any tainted

pages, then it is transitioned to Undecided. This state machine ensures that every possible tainted

data flow will be captured and analyzed by the analysis engine.

4.2.3.2 Taint Analysis

To monitor the amount of sensitive data leaked out of the GUI program replica through its

graphical outputs, the analysis engine assigns a different taint tag to each byte of the sensitive
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data consumed by the replica. Each shadow memory or register byte can be attached with a list of

different taint tags. When the graphical output data is sent out of the system, the analysis engine

inspects what taint tags are contained in the output bytes to track which sensitive bytes have been

leaked out.

During taint analysis, the analysis engine applies different analysis rules on different instruc-

tions based on their semantics. The instructions involving direct taint propagation can be divided

into four categories: movement instructions, arithmetic instructions, logical instructions, and

transformation instructions.

Movement instructions. Movement instructions move data among memory and registers, or

assign immediate values to memory or registers. By this definition, mov, pop, and push are

movement instructions. Bit shift instructions, like shr and shl, are also categorized as move-

ment instructions since they can be considered as moving data within a register or memory loca-

tion. For the movement instructions, the analysis engine first locates the source and destination

operands, and then replaces the taint tags in the destination shadow memory or register, byte by

byte, with the ones from the source. If the source operand doesn’t contain any taint tags or is an

immediate value, then the analysis engine clears the taint tags in the destination.

Arithmetic instructions. Arithmetic instructions do arithmetic operations on the source operands

and save the result to the destination operand. add, sub, mul, div, and inc are common arith-

metic instructions. For unary instructions like inc, we don’t need to change the taint state of

their operand. For binary instructions, the analysis engine first accumulates all the taint tags from

every byte of the source operands, and then assigns this list of taint tags to every byte of the des-

tination operand in the shadow memory or shadow register. There is a special case for sub, or

sbb, instruction. If the source operands of sub are the same, the analysis engine clears the taint

tags in the destination operand. For example in “sub eax, eax”, the taint tags in eax are

removed.

Logical instructions. Logical instructions do bitwise logical operations on memory or register

operands. Different from the arithmetic instructions, in a logical instruction, each byte of the
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destination operand is affected only by the corresponding bytes of the source operands, and so

the analysis engine assigns only the taint tags from those source-operand bytes to the correspond-

ing byte in the destination operand. Special cases here are and and xor. If one of the source

operands in and is the immediate value 0, then the analysis engine clears the taint tags in the

destination operand. If the source operands of xor are the same, the taint tags in the destination

operand are also cleared.

Transformation instructions. Transformation instructions change the data representation of an

operand from one type to another. For example, cvtsi2sd changes the data from an integer rep-

resentation to a scalar double-precision floating-point representation and moves the data from the

memory or a general register to a SIMD (single instruction, multiple data) register. Semantically,

every byte of the source operand affects every byte of the destination operand, so analysis engine

accumulates all the taint tags from every byte of the source operand, and then assigns this list of

taint tags to every byte of the destination operand.

Figure 4.3: Examples of taint propagation

Figure 4.3 gives examples of taint propaga-

tion for different types of instructions.

4.2.3.3 Code Caches

The analysis engine decodes each instruc-

tion to figure out 1) its opcode; 2) the names

of any register operands; 3) the base register,

index register, scale factor, and displacement

of any memory operands; and 4) the value of

any immediate operands. For each basic block,

the analysis engine needs to know which reg-

isters are included in the basic block to decide

whether they are tainted, to make decisions

about state transitions (as described in Section 4.2.3). Decoding instructions is expensive, taking
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around 1000 CPU cycles per instruction. To leverage the space and time locality of code execu-

tion, similar to the CPU instruction cache, we use two in-memory software caches to speed up

taint analysis.

Instruction cache. The instruction cache stores the decoded information—opcode, operands,

etc.—of instructions. Whenever an instruction is executed, the analysis engine checks whether

the instruction is in the cache with an index calculated by the instruction’s virtual memory ad-

dress. If it is not in the cache, the analysis engine decodes the instruction and caches the results.

Otherwise, the cached information is directly used without decoding the instruction.

Block cache. We also use a block cache to store the names of register operands in basic blocks.

At the beginning of each basic block, the analysis engine checks whether the register names are

cached, with an index calculated by the starting address of the basic block. If it is a cache miss,

the analysis engine has to decode each instruction in the basic block to get the register names.

This decoding step can be accelerated by the instruction cache.

4.2.4 Implementation

We implemented the replication engine with 61 lines of C++ code on top of Mozilla RR

v5.2.0. We implemented the analysis engine with 4454 lines of C code as a kernel module in

Linux v4.11.12. We integrated the Zydis1 disassembler into the analysis engine to decode x86-64

instructions. We will discuss some implementation details in this section.

Analyzed instructions and functions. We implemented taint analysis rules for 28 movement

instructions, 14 arithmetic instructions, 12 logical instructions, and 5 transformation instructions.

Those are commonly used instructions including a set of SIMD (single instruction, multiple data)

instructions. We do not propagate taint tags to the eflags register and we ignore implicit data

flows caused by control-flow dependencies. Many previous works (e.g., [115, 88]) also ignore the

implicit data flow to avoid over-tainting.

1https://zydis.re/
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Some library functions are hooked and analyzed by our system. The analysis engine hooks

open(), close(), and read() in the glibc library to add taint tags when the program opens

and reads sensitive files. The analysis engine also hooks XRenderCompositeText() in the

xrender library to inspect whether the rendered text contains taint tags.

Shadow memory and registers. Each memory and register byte (both for general registers

and SIMD registers) has a corresponding “shadow byte” maintained by the analysis engine. The

“shadow byte” is actually a pointer to the head of a singly linked list of taint tags. A taint tag is

a 32-bit integer, and so taint tags can track up to 4GB of sensitive data. We use a linear array to

store the register “shadow bytes” for each thread. The data structure for the memory “shadow

bytes” is a combination of a hash table and a linear array. Specifically, “shadow bytes” of a mem-

ory page are stored in a 4096-entry array. The location of this page array is saved in a hash table

using the page address as the hash key. This hybrid design strikes a good balance between using a

pure hash table and a pure linear array, where the former might trigger too many hash collisions

while the latter consumes too much memory.

Taint tag allocation is a time-consuming operation and costs kernel memory. We implemented

a copy-on-write taint propagation scheme to avoid unnecessary tag allocation. For the move-

ment instructions, we only copy the pointer of the taint list from the source “shadow byte” to the

destination “shadow byte” and increase the reference count of that pointer by one. For the arith-

metic and logical instructions, where the source taint tags will be merged into the destination taint

tags, we make a new copy of the taint list from the destination “shadow byte” if that list is also

referenced elsewhere and then merge the source taint tags.

We also implemented a garbage collection scheme to free memory used to track already-

leaked sensitive bytes. In our system, if a sensitive byte is leaked, we increase the leakage count

by one. Future leakages of that same byte don’t leak any more information and we don’t have to

keep tracking it. Therefore, we maintain a list of already leaked taint tags and periodically invoke

garbage collection to remove those tags from the shadow memory and shadow registers.
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Cache settings. As described in Section 4.2.3.3, we implemented a block cache and an instruc-

tion cache. The block cache is a direct-mapped cache that has only one element in each cache

entry. If a new basic block is mapped to the same entry as an old one, the old cache entry will

be replaced. Since a program usually executes a relatively small number of basic blocks, this

direct-mapped cache worked well in practice. Cache collisions are more frequent in the instruc-

tion cache, and so we implemented it as a two-way set associative cache (two elements in one

entry). If a cache collision happens, the least recently used cache block will be replaced. To en-

sure the correctness of the cached data, we don’t cache instructions and basic blocks if they are in

a writable and executable page.

Control transfers. The analysis engine needs to take control from the replica at the right times

to do taint analysis (see Figure 4.2). To make the replica run in single-step mode, we set the

TF bit in eflags register. We use the x86 debug register to set breakpoints at basic block

boundaries. We add hooks in the debug trap handler (do debug()) and the page fault han-

dler (do page fault()) to transfer control to the analysis engine. Since the replication engine

also sets single-step mode for some of its replay operations, we maintain an internal state to indi-

cate to the analysis engine to transfer control to the replication engine instead of directly to the

replica.

4.3 Evaluation

In this section, we focus on evaluating Snowman’s performance by measuring the reaction

time of various GUI programs to user actions. We also evaluate Snowman’s capability of differen-

tiating the data-leakage patterns of malicious insiders from those of normal users.

GUI programs. We selected three typical and widely used GUI programs—a word processor, a

spreadsheet, and a code editor—for our evaluations. The code editor is Gedit2 (v3.18.3), which

is pre-installed in many Linux distributions and has common features like syntax highlighting

2https://wiki.gnome.org/Apps/Gedit
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and word completion. The word processor and spreadsheet program are from LibreOffice3 (v5.4),

which is an open-sourced office suite (comparable to Microsoft office) and has a large user base.

In particular, LibreOffice is a fairly complicated multi-threaded program that has 9 million lines

of code (including C++, Java, and Python components)4. We believe testing Snowman with

LibreOffice would make a comprehensive validation of our design and implementation.

Environment. In the remote-access scenarios, the GUI programs ran in a Linux server that

installed Snowman with the customized v4.11.12 kernel. We interacted with the GUI programs

in a client machine that installed Ubuntu 16.04 with the v4.15.0 kernel. The client took mouse

and keyboard inputs and sent the inputs to the server. The server did computation, generated

graphical outputs, and sent the outputs to the client. The inputs and outputs were exchanged

through the X11 protocol5, which is the basic component of the Linux GUI framework, via TCP

connections. The client machine was equipped with a 2-core 3GHz CPU and 4GiB of memory.

The server machine was equipped with a 4-core 3.5GHz CPU and 8GiB of memory. The client

and server were connected by 1Gbps Ethernet links in a local area network.

4.3.1 Performance for Benign Users

A core indicator of the GUI program’s performance is its reaction time to user actions. To

accurately measure the reaction time, we used Wireshark6 to monitor the X11 packets passed

through the TCP socket in the client machine. The reaction time was calculated as the difference

between the departure time of the first user input packet and the arrival time of the last graphical

output packet triggered by the user action.

We measured the reaction time of various actions performed on LibreOffice Writer (the word

processor), LibreOffice Calc (the spreadsheet), and Gedit (the code editor). Each measurement

was repeated 10 times. The actions we tested are the following.

3https://www.libreoffice.org/
4https://www.openhub.net/p/libreoffice/analyses/latest/languages summary
5https://www.x.org/
6https://www.wireshark.org/
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Start the program. Each program was started by entering a command in the terminal. The

reaction time was measured as the duration between the command key press and the first window

of the program displayed on the screen.

Open a file. We opened a 46KiB text file in Writer, a 25KiB spreadsheet in Calc, and a 88KiB

source code file in Gedit. The reaction time was measured as the duration between the open

button click and the full text rendered on the screen.

Close the program. We exited each program by closing its first window. The reaction time was

measured as the duration between the close button click and all graphical resources released by

the program.

Scroll down. For each program, we clicked the scroll bar once to scroll down the window by

one page. The reaction time was measured as the duration between the scroll bar click and the

new text rendered on the screen.

Search a string. We searched a string in each program. The reaction time was measured as the

duration between the search button click and the string being located on the screen.

Paste text. We pasted a 3984-character sentence in Writer, a 47-by-14 spreadsheet table in

Calc, and a 13-line source code snippet in Gedit. The reaction time was measured as the duration

between the paste button click and the pasted text rendered on the screen.

These actions were tested in five settings. In the first setting, the GUI program ran locally in

the client machine, which is the normal setting without data protection from remote-only access.

To assist reaction-time measurement, the X11 packets were transmitted through local TCP sock-

ets. In the other four settings, the GUI program ran on the server machine, and the user interacted

with the program through the client machine. Among these four settings, the first one ran the pro-

gram natively without instrumentation; the second one ran the program under the protection of

Snowman; the third one ran the program under the “null tool” of Pin [97] (v3.6); and the last one

ran the program under the “taint tool” of Pin (v3.6) with the reading bytes from the opened file

marked as tainted. The Pin “null tool” does the minimal amount of instrumentation to maintain
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Figure 4.4: Reaction time for common user actions when running the programs locally 1) in
the client machine, remotely 2) in the server machine without instrumentation, 3) monitored by
Snowman, 4) by the Pin “null tool”, or 5) by the Pin “taint tool”

supervised execution of the program. The Pin “taint tool” conducts multi-label taint tracking and

employs the same set of taint analysis rules as Snowman. It was implemented by us and was used

to debug and validate the implementation of Snowman’s taint analysis engine.

Figure 4.4 shows the average reaction time of various actions in different settings, where the

error bar represents the standard deviation. Overall, the reaction time of the actions in Snowman

was 0.92× to 2.41× the reaction time of those actions in the remote-only setting without any

instrumentation. Among these actions, opening a file, starting and closing the program have rela-

tively large overhead (1.16× to 2.41×) because Snowman needs to record the non-deterministic

inputs and take extra steps to set up and tear down the environment for recording. However, we

don’t expect this would have significant impact on user experience since these actions are not

frequently triggered by the user in typical workloads. The reaction time of other actions in Snow-

man are comparable to those in the remote-only setting (0.92× to 1.19×).
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Additionally, Snowman performs better than the Pin “null tool” and “taint tool” in all tests.

Compared with the remote-only setting without any instrumentation, the reaction time overhead

is 1.05× to 23.07× in the Pin “null tool” and 4.3× to 133.1× in the Pin “taint tool”. The actions

triggering taint propagation (opening a file, scrolling down, searching a string, and pasting text)

have huge overhead in the Pin “taint tool”. We don’t claim this multi-label taint tracking tool

implemented by us has the best possible implementation. But we expect other similar tools would

have similarly considerable overhead because the taint analysis routines are inlined with the nor-

mal program code by the Pin instrumentation. Besides, considering that the “null tool” doesn’t

implement any instrumentation for taint analysis, which represents a lower bound for taint analy-

sis approaches implemented with Pin, Snowman should perform better than any Pin-based taint

analysis tools.

4.3.2 Data Exfiltration Detection

Snowman aims to detect data exfiltration by monitoring the amount of sensitive data leaked

to the user. Here we describe our evaluation of its efficacy in this regard, using the same appli-

cations as used for the performance evaluation for benign users in Section 4.3.1. That said, we

caution the reader that a holistic evaluation of Snowman as an anomaly detector is not possible

without a broad corpus of normal usage profiles for these programs. Given the variety of tasks

for which these types of applications are used and the varying levels of expertise of the users

who leverage these programs, it is difficult to envision how such a holistic evaluation could be

performed, or even if one anomaly detection algorithm would be suitable for all cases. Indeed,

we envision that individual deployments might leverage custom detectors, based on the types of

activities typically conducted by users, or even by individual users or on individual files.

Given these complexities, here we settle for a more primitive demonstration of the detection

capabilities of Snowman: we simulated a “typical” normal user session and a malicious user

session for each GUI program, and then showed that the leakage profiles of the two sessions

as observed by Snowman could be statistically differentiated with overwhelming ease (and the
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speed with which this differentiation could occur, etc.). We designed the “normal” sessions based

primarily on their representation in publicly available resources (see below), so that readers can

easily assess the nature of activities in each, should they so choose. Moreover, these sessions

were performed without undue delay or extra “thinking time,” so as to simulate a more rapid

leakage of data—and so, presumably, yielding a reasonably conservative evaluation. We discuss

the settings and results of this evaluation in this section.

4.3.2.1 Settings

In our evaluations, the GUI program ran in the remote server and we interacted with the

program in the client machine. Snowman maintained a replica of the program and conducted

taint analysis on the replica to measure leakage.

LibreOffice Writer sessions. In the normal session, we formatted an ebook document by fol-

lowing the instructions from the Kindle ebook formatting guide7. The document we used was the

first three chapters of the Python tutorial8 with all formatting removed. We started the session

by opening the document. Following the guide, we restored the format of the original tutorial

by changing fonts of the section titles, inserting hyperlinks, adding footnotes and page numbers,

and creating a table of contents. In the malicious session, we opened the same document, quickly

scrolled down the document, and physically took pictures of all the pages with our phone.

LibreOffice Calc sessions. In the normal session, we did calculations on a spreadsheet contain-

ing employment and salary information. The spreadsheet was created with an online template9

and filled with synthetic data (100 rows and 36 columns). Throughout the session, we calculated

the number of employees taking more than two days off, the average medical expenses, and the

total basic salary by using the built-in functions from Calc. In the malicious session, we quickly

scanned the whole spreadsheet and took pictures of all the rows and columns.

7https://kdp.amazon.com/en US/help/topic/G200645680 (This guide is based on Microsoft Word but we can find the
same functionalities in LibreOffice Writer.)

8https://docs.python.org/3/tutorial/
9https://exceldatapro.com/download-salary-sheet-template/

98



Gedit sessions. In the normal session, we edited a C file to finish an assignment from the MIT

Operating System Engineering class. We implemented the env init() and env setup vm()

functions by editing the env.c file, as required by exercise 2 of lab 3.10 We also opened the

env.h file to reference the related data structures. To best enable repeatability, we simply fol-

lowed the solution from a github repository.11 In the malicious session, we opened the env.c

and init.c files, and took pictures of all the file contents.

4.3.2.2 Leakage Detection

Snowman records various events of the monitored GUI program as described in Section 4.2.2.

Besides the event data, Snowman also records the timestamp of each event. So, when Snowman

detects a new leakage via its taint-tracking in the replica, it can report the timestamp of that leak-

age event from the original execution.

Figure 4.5 reports the total leakage from the sensitive files over time, as detected by Snow-

man, in the normal and malicious session of each program. The x-axis is the time of the original

user session. The y-axis is the total leakage. As can be seen there, in all three malicious ses-

sions, the sensitive bytes were leaked out within one minute. In the normal sessions, the leakage

occurred at a slower speed. Additionally, the normal sessions of the Calc and Gedit programs

leaked only a part of the file contents.

We applied a statistical analysis to test whether the malicious session and the normal session

can be easily differentiated. The analysis we used is the logrank test [22], which is usually ap-

plied to compare the survival experience of two groups of patients. We treat the new leakage of

a sensitive byte as analogous to the death event of a patient in this analysis. With the collected

data, we can calculate the time intervals between leakages and so the frequencies of data leak-

ages. We subjected the time intervals from the malicious session and the normal session of each

program to the logrank test. The p-value calculated from the Writer, Calc, and Gedit sessions is 0,

10https://pdos.csail.mit.edu/6.828/2018/labs/lab3/
11https://github.com/Babtsov/jos/tree/lab3
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(a) Writer (b) Calc (c) Gedit

Figure 4.5: The amount of leakage in normal and malicious sessions, as a function of time

(a) Writer (b) Calc (c) Gedit

Figure 4.6: The time at which the Snowman replica detected each new leakage, as a function of
the time (in the user-facing execution) that the leakage originally occurred

9.925× 10−262, and 9.157× 10−168, respectively. Thus, we can safely reject the null hypothesis

that the leakage experience of the malicious session and the normal session are the same for all

three programs.

4.3.2.3 Detection Delay

Although the taint analysis conducted by Snowman doesn’t affect the program execution

with which the user interacts, it slows down the execution of the replica and adds delay to the

detection of the leakage event.

Figure 4.6 plots the time at which the replica detected each new leakage, as a function of the

time that the leakage actually occurred. In the normal sessions, the Snowman replica detected the

last leakage event with a lag of 6.9×, 7.8×, and 4.9× for Writer, Calc, and Gedit, respectively,

behind when that leakage event occurred. In the malicious sessions, detection of the last leakage

100



event lagged by 38.2×, 25.1×, and 11.5× for Writer, Calc, and Gedit, respectively. Gedit has the

smallest lag, presumably because it has simpler code logic and takes less CPU cycles to process

user requests. For all three programs, the malicious sessions lag more than normal ones, since the

malicious user sent requests to the program at a higher frequency, leaving the replica fewer idle

cycles to catch up.

We also want to figure out how quickly Snowman can differentiate the malicious session from

the normal one. We adopted the following procedure to answer that question. In the timeline of

the replica’s execution, the leakage events from the malicious session, as detected by Snowman,

were added to one dataset, and the leakage events from the normal session were added to another.

These two datasets were updated at the end of each second of the replica’s execution time. We

started to apply the logrank test (the same as described in Section 4.3.2.2) on the updated datasets

after both datasets had more than 1000 leakage events. We stopped the procedure when the calcu-

lated p-value dropped below 0.05. The time at which we stopped is reported as the earliest time

Snowman could detect the malicious session (using the normal session as a “typical” baseline).

The earliest detection times were 1522s, 574s, and 276s for Writer, Calc, and Gedit, respectively

(shown as the dotted horizontal line in Figure 4.6).

4.4 Discussion

Taint analysis accuracy. Currently, we have implemented taint analysis rules for only a subset

of x86-64 instructions in Snowman. This subset includes every instruction that explicitly propa-

gates taint tags during the execution of the three tested programs (LibreOffice Writer, LibreOffice

Calc, and Gedit). To capture this subset of instructions, we added an assertion in the taint analy-

sis engine, which gives an alert if an executed instruction contains tainted operands but no taint

analysis rule was implemented for that instruction. For other programs, we can take the same

approach to select instructions for taint analysis.

Taint propagations caused by implicit data flows are ignored by Snowman. Implicit data

flows can exist in branch instructions where the branch condition variable decides which value
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will be saved to a given variable. There are also implicit data flows in pointer dereferences. In

some cases, the data value in a memory location is decided by the value of the memory address,

such as table lookups. Ignoring these implicit data flows can cause false negatives in the leakage

detection. However, enabling taint analysis for implicit data flows leads to false positives and

taint explosion [143], and for this reason has been excluded in many prior tools (e.g., [88, 115,

128]).

To reduce false negatives caused by table lookups, we choose to manually identify functions

which might propagate taint tags through table lookups and implement taint analysis rules based

on function semantics. Specifically, we hook and analyze the pango shape full() function

from the libpango library, which translates font indexes to unicode characters through table

lookups. Other functions can be analyzed in the same way as soon as they are identified. We also

plan to explore some existing techniques [73, 13] to address implicit data flows in the future.

Replication delay. The replica has to trap into the kernel to be analyzed by the taint analysis

engine. This trap happens at least once per basic block and can increase to once per instruction

if the basic block contains tainted operands. The frequent context switches between the user

and kernel modes add significant overhead. We chose to implement the taint analysis engine in

the kernel to avoid adding extra instructions into the replica. The benefit of doing so is that the

replication engine can then determine when to inject the asynchronous signals and scheduling

events by using the CPU retired conditional branch counter to measure the progress of the replica.

In theory it should be possible to implement taint analysis in user space by instrumenting the

binary and adjusting the measurements of the replica’s execution accordingly. We plan to explore

this option in the future.

Each CPU cycle in the original execution is amplified in the replicated execution due to taint

analysis overhead. The experiments in Section 4.3.2.3 show that the replica cannot catch up with

the original execution during the simulated session. However, the simulated user sessions don’t

represent real use cases since we omitted some idle time during the simulation. The idle time

is often caused by application waiting for user input when the user spends time on thinking or
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working on other applications. With enough idle time, the replica could catch up with the original

execution because the replica can fully utilize a CPU core. To better understand the implications

of replica delay, real usage patterns of the applications are needed. We plan to investigate this in

future work. It is also possible to run the replica in a machine with higher CPU clock rate than

the one where the original execution runs, so the replica can better keep up with the original

execution. On the other hand, the malicious user might intentionally trigger expensive operations

to increase the delay by which replica processing lags behind the original, in order to “buy time”

for copying data. Some malicious actions might also increase replication time due to excessive

computation. To detect such attacks, we could build a model of normal lag, i.e., a profile based

on the lag during normal user sessions for each program. If the lag during a user session deviates

substantially from that profile, Snowman can raise an alert of potential malicious behavior, or

alternatively slow down the user-facing execution.

Quick leakage estimation. Snowman’s accurate leakage tracking could be augmented with

a much quicker method of estimating the leakage based on examining the GUI traffic between

the user-facing execution and the thin client. Ideally this estimator would quickly approximate

the leakage with good recall and reasonable precision, to be corroborated (or corrected) by the

replica when its analysis is complete. In doing so, Snowman could be made even more responsive

to data exfiltration attempts. However, to tolerate false alarms by the estimator, a response to an

estimator-based alarm might be to only slow down the user-facing execution, for example, until

the taint-tracking replica catches up. We plan to investigate such an estimator in the future.

From differentiation to anomaly detection. We showed in Section 4.3.2 that it was trivial to

statistically distinguish our own sessions of normal activity from ones in which we simply paged

through files and photographed them, based on the leakage patterns determined by Snowman.

While these tests provide strong evidence that detecting theft (as long as it is sufficiently aggres-

sive) on the basis of a leakage profile is possible, the dearth of datasets characterizing the leakage

patterns of either normal or theft-oriented usage of the applications tested there renders it im-

possible to properly evaluate an anomaly detection methodology based on Snowman. Moreover,
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since a data-leakage profile during normal use might be highly dependent on the expertise of

the user and the type of file being accessed, there may not be a one-size-fits-all detector; rather,

leakage models created per user, per file, or at least per organization might be more appropriate.

Of course, there will be limits to what a purely volume-based approach can detect; i.e., a detector

based solely on the amount of data leaked so far will presumably fail to detect data exfiltration

performed very slowly, at a speed similar to normal usage. For such cases, analyzing the exact

order in which bytes are leaked—which Snowman also provides—might be necessary. Besides,

the presence of Snowman could at least slow down the data leakage rate in malicious situations.

Still, we believe that even our primitive studies already provide a strong basis to motivate the

further study of GUI leakage measurement as enabled by Snowman.

CPU usage. Snowman creates a replica for each GUI program. Each replica completely utilizes

a single CPU core for taint analysis. To make Snowman available for multiple users running

multiple GUI programs simultaneously, it is necessary to provision enough processors in the

datacenter beforehand based on the common load of Snowman. It is possible to run the replica

in a different machine from the one where the original program runs, so it is more convenient to

scale the system by dynamically migrating the replica to an idle machine.

4.5 Summary

In this chapter we presented Snowman, which aims to deter data theft by malicious insiders

through strong data isolation and fine-grained data monitoring. In Snowman, a user is restricted

to accessing sensitive data only remotely on a trusted server, via the GUI presented by the ap-

plication to a thin client. In the server, Snowman detects data theft by monitoring the number of

sensitive bytes leaked to the user. Maintaining good performance for normal usage of the mon-

itored program while accurately monitoring for data theft is challenging. Snowman addresses

this problem by replicating the execution of the program alongside its original execution and

conducting multi-label taint analysis on the replicated execution. Our implementation of Snow-

man works on unmodified Linux binaries and off-the-shelf hardware without assuming that the
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replicated application is race-free (unlike some previous replication solutions). Our evaluations

show that Snowman adds only moderate overhead for common user actions and, thanks to several

novel optimizations, is far more efficient than, e.g., Pin-based taint analysis solutions. We also

demonstrated that the data-leakage patterns of sufficiently aggressive malicious insiders can be

leveraged to easily distinguish them from normal ones.
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CHAPTER 5: CONCLUSION

In this dissertation we have presented the design, implementation, and evaluation of dpprocfs,

PoPSiCl, and Snowman. These three systems all aim to efficiently protect data secrecy but face

unique challenges in their own scenarios. There is hardly a one-size-fits-all solution for data

protection. We choose to either noise, mask, or meter sensitive data based on sensitivity of the

system data, trustworthiness of the system components, and functional requirements of the sys-

tem.

dpprocfs applies differential privacy to introduce noise into the data reporting from the

procfs file system so as to bound information leakage mathematically. dpprocfs also reestab-

lishes invariants before releasing the noised outputs to avoid breaking applications that depend on

the invariants. Our evaluations show that dpprocfs can simultaneously defend against known

storage side-channel attacks while retaining the utility of procfs for monitoring and diagnosis.

Our solution provides a configurable framework to suppress new storage side channels as they are

discovered, through adding protection to additional kernel data-structure fields or updating the

ε values associated with each field and application. We further believe that the mechanisms we

have developed within our solution might be applicable to other storage side channels, and we

plan to explore this direction in future work.

In PoPSiCl, a trusted cloud operator cooperates with its tenants’ clients to mask server

identifiers with personalized pseudonyms before transmitting server connections over untrusted

networks. When instantiated for TLS-based access to tenant web servers, PoPSiCl works with

all major browsers and requires no additional client-side software and minimal changes to the

client user experience. Moreover, changes to tenant servers can be hidden in supporting software

(operating systems and web-programming frameworks) without imposing on web-content de-
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velopment. Our security analysis shows that PoPSiCl enforces server anonymity when facing

both passive and active network attackers. Our evaluations show that performance for PoPSiCl

access to tenant servers is competitive with baseline HTTPS and scales well as PoPSiCl use

grows. We thus believe that PoPSiCl provides a promising opportunity for cloud operators to

improve privacy for its tenants’ clients.

Snowman restricts the user to access data only remotely and accurately meters the sensitive

data output to the user through the graphical user interfaces. To conduct this metering without

slowing the interactive user session, leakage is concurrently tracked in a replica of the applica-

tion execution. This, in turn, introduces a key technical challenge that Snowman solves, namely

identically replicating execution of an unmodified Linux binary while also performing efficient

multi-label taint-tracking on it. We show through empirical measurements with a word processor,

a spreadsheet program, and a code editor that Snowman induces little overhead on interactive

user sessions and easily differentiates data-access patterns induced by normal usage and suffi-

ciently aggressive data theft with reasonable responsiveness.
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