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ABSTRACT 
 

J. Astor Ankney: Novel quantitative proteomic approaches to reveal new driving mechanisms 
and biomarkers of tumorigenesis 

(Under the direction of Xian Chen) 
 

Understanding the biological processes and pathways important to healthy and disease 

states requires the probing of systems at the protein level. While genetic alterations may predict 

the likelihood of disease, it is the phenotypic changes which characterize disease onset. The 

growth of mass spectrometry-based proteomics over the past two decades has been essential 

for our ability to perform systems-level interrogations of both healthy and disease states. Here, 

we have employed quantitative proteomic techniques to investigate breast cancer and glioma 

biology.  

Chapter 1 provides background on breast cancer heterogeneity and the challenges in 

classifying breast tumors in a clinically relevant manner. It additionally presents an overview of 

mass-spectrometry based proteomics and methods of proteomic quantitation. 

Chapter 2 presents a novel workflow for the identification of new liquid biopsy 

biomarkers for breast cancer prognosis. We developed a multi-omic approach linking oncogenic 

secreted proteins to patient-specific transcriptomic data and clinical outcomes. Kaplan-Meier 

analysis of genes having a secretion correlated expression pattern was used to identify new 

liquid biopsy biomarkers for predicting individualized prognosis. 

Chapter 3 explores the role of spliceosome protein SNRPD1 in breast cancer. SNRPD1 

is often overexpressed in breast cancer and plays a seemingly important, but understudied, role 

in tumor aggressiveness. We have performed the first systems-level study of SNRPD1 function 

in breast cancer cells and identify previously unreported signaling pathways and biological 

functions impacted by SNRPD1. 
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Chapter 4 introduces a novel approach to the study of secreted proteins termed outside-

in proteomics. We first perform an unbiased screen of the secretome to identify phenotypic-

relevant markers and use those results to guide our investigation of the intracellular proteome. 

We applied this approach to analyze the role of EZH2 in the aggressive phenotype of triple 

negative breast cancer. 

Chapter 5 presents a quantitative proteomic comparison of IDH1 mutant and wild type 

glioma cells. We performed a proteomic screen of IDH1 mutant versus wild type gliomas, and 

we report several new pathways and processes which may contribute to IDH1 mutant glioma 

pathogenesis or progression. 

Overall, this work demonstrates both novel and traditional mass spectrometric proteomic 

techniques for the investigation of human disease.  

  



v 
 

 

For my wife, who didn’t sign up for this but never let me quit. 
 

  



vi 
 

 

ACKNOWLEDGEMENTS 

 I cannot imagine getting this far without tremendous help from a large number of people. 

A few sentences are not enough to fully express my sincere gratitude to everyone who has 

contributed to my success, but in this space a few sentences are all I have. I would first like to 

thank my thesis advisor and mentor Xian Chen. I could not have asked for a better advisor. You 

have given me the support, freedom, and criticism I needed to grow as a scientist. I would also 

like to thank my committee members, Greg Wang, Leslie Parise, Gaorav Gupta, and Brian 

Strahl. You asked tough questions, provided honest feedback, and gave me confidence in my 

project and in myself. I thank my labmates for helping me work through issues of technique and 

theory. In particular, I appreciate the patience of Amey when helping me troubleshoot an 

experiment or teaching a new technique, and John, who wrote many of the analytical tools I 

have used, in explaining how to use his scripts and writing new ones at my request. Last, but in 

no way least, I must thank Ling Xie. If you were ever flustered by my constant questions, you 

never showed it. You have been an invaluable part of my training as a mentor and as a friend. 

 It is also important for me to thank the people who helped me get started in science. I 

thank Larry Eimers for giving me a free career aptitude test that set me on this path. Dr. Isabelle 

Lemasson gave me my first undergraduate research position and stoked my passion for 

research. Yu Yang invited me to join his lab and gave me confidence in my abilities. Geoff 

Mueller gave me a 10 week internship which challenged me and sparked my independent 

thought. I thank each of you for guiding me down this path. 

 Finally, having support at home has probably been the most important factor in my 

success. My children have chastised me for staying late in lab, given me hugs after a bad day, 

and been a constant reminder of why I started this in the first place. My parents and in-laws 



vii 
 

have provided much-needed moral support (not to mention babysitting!), but my mom has been 

especially supportive and I will never be able to thank her appropriately. Each of the people 

named above has been instrumental to my adventure in science, but none has been as 

important as my wife. Christina, you have supported me unconditionally and there is no way to 

overstate how vital that has been to me. We have done this together. Now we see what’s next 

together. 

  



viii 
 

 

PREFACE 

Portions of the work described in this dissertation were previously published: 

Chapter 1 contains excerpts from J. Astor Ankney, Adil Muneer, and Xian Chen. Relative 

and Absolute Quantitation in Mass Spectrometry–Based Proteomics. Annual Review of 

Analytical Chemistry. 2018; 11:49-77. doi: 10.1146/annurev-anchem-061516-045357 reprinted 

with permission 

Chapter 2 is reproduced in full from J. Astor Ankney, Ling Xie, John Wrobel, Li Wang, 

and Xian Chen. Novel secretome-to-transcriptome integrated or secreto-transcriptomic 

approach to reveal liquid biopsy biomarkers for predicting individualized prognosis of breast 

cancer patients. BMC Medical Genomics. 2019; 12:78. doi: 10.1186/s12920-019-0530-7 under 

the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) 

 

 

 

  



ix 
 

 

TABLE OF CONTENTS 

CHAPTER 1: BACKGROUND ................................................................................................... 1 

Breast cancer epidemiology and etiology ............................................................................ 1 

Breast cancer heterogeneity and classification .................................................................... 2 

A new generation of phenotypic markers is needed ............................................................ 5 

The cancer cell secretome as a source of novel biomarkers ............................................... 6 

Challenges in blood-based proteomics and alternative approaches .................................... 7 

Label Free Quantitative Proteomics .................................................................................... 8 

Ion counting-based label-free quantitation .................................................................... 9 

Intensity-based label-free quantitation .........................................................................11 

Limitations of single-omics approaches ..............................................................................12 

CHAPTER 2: NOVEL SECRETOME-TO-TRANSCRIPTOME INTEGRATED OR SECRETO-

TRANSCRIPTOMIC APPROACH TO REVEAL LIQUID BIOPSY BIOMARKERS FOR 

PREDICTING INDIVIDUALIZED PROGNOSIS OF BREAST CANCER PATIENTS..................14 

INTRODUCTION ...............................................................................................................14 

METHODS .........................................................................................................................16 

RESULTS ..........................................................................................................................19 

The secreto-transcriptomic workflow for discovering candidate biomarkers for non-

invasive, individualized prognosis. ..............................................................................19 



x 
 

LFQ secretome screening identified particular protein clusters showing BC-subtypic 

secretion. ....................................................................................................................20 

The genes that encode increasingly secreted proteins showed secretion-correlated 

mRNA over-expression patterns in BC patients in a PAM50-subtypic manner. ...........23 

Patient-specific mRNA co-overexpression patterns of select secretome-encoding 

genes mark the high-risk subpopulations of PAM50-subtypic patients with poor 

prognosis. ...................................................................................................................25 

Secreto-transcriptomic analysis identified patient-specific co-overexpression patterns of 

select secreted proteins as prognostic markers to predict personalized response to 

therapy. .......................................................................................................................29 

DISCUSSION .....................................................................................................................30 

CONCLUSIONS .................................................................................................................33 

CHAPTER 3: A novel “outside-in” proteomic approach reveals signaling pathways promoting the 

EZH2-dependent aggressive phenotype of triple negative breast cancer ..................................53 

INTRODUCTION ...............................................................................................................53 

METHODS .........................................................................................................................55 

RESULTS ..........................................................................................................................57 

EZH2 inhibition suppresses the extracellular aggressive phenotype of TNBC .............57 

Intracellular pathways and processes mirror the secretome ........................................59 

DISCUSSION .....................................................................................................................61 

CONCLUSIONS .................................................................................................................63 

CHAPTER 4: QUANTITATIVE PROTEOMIC ANALYSIS OF SPLICEOSOME PROTEIN 

SNRPD1 REVEALS COMPLEX ROLE IN BREAST CANCER CELLS .....................................73 

INTRODUCTION ...............................................................................................................73 



xi 
 

METHODS .........................................................................................................................74 

RESULTS ..........................................................................................................................77 

SNRPD1 knockdown causes significant widespread changes to diverse cell processes 

and signaling pathways ...............................................................................................77 

The secretome reflects consistent pathway activation to intracellular proteome but 

contradictory biological functions .................................................................................79 

DISCUSSION .....................................................................................................................81 

CONCLUSIONS .................................................................................................................83 

CHAPTER 5: PROTEOMIC DISSECTION OF SYSTEMS-LEVEL EFFECTS OF IDH1 

MUTATION IN DIFFUSE GLIOMA ............................................................................................95 

INTRODUCTION ...............................................................................................................95 

METHODS .........................................................................................................................97 

RESULTS ..........................................................................................................................99 

DISCUSSION ................................................................................................................... 101 

CONCLUSIONS ............................................................................................................... 104 

 

 

 

  



xii 
 

LIST OF FIGURES 

Figure 2.1 - Schematic of secreto-transcriptomic approach for identifying putative liquid biopsy 
prognostic markers.. ......................................................................................................34 

 
Figure 2.2 - Heatmap of protein secretion by multiple sub-types ............................................. ..35  
 
Figure 2.3 - Heatmap of basal-specific and luminal-specific protein secretion. ..........................36 
 
Figure 2.4 - Western blot validation of LFQ data. ......................................................................37 
 
Figure 2.5 - IPA analysis of subtype-specific secreted proteins .................................................38 
 
Figure 2.6 - Protein-protein interaction analysis of basal-specific and luminal-specific secreted 

proteins. ........................................................................................................................39 
 
Figure 2.7 - Heatmap of mRNA expression of SeCEP genes in the TCGA patient cohort .........40 
 
Figure 2.8 - Box plots showing altered mRNA expression for BLBC and luminal secreted 

proteins among TCGA patients......................................................................................41 
 
Figure 2.9 - Kaplan-Meier survival plots of clinical outcomes and mRNA co-overexpression of 

basal SeCEP genes ......................................................................................................42 
 
Figure 2.10 - Kaplan-Meier survival plots of clinical outcomes and mRNA co-overexpression of 

luminal SeCEP genes ....................................................................................................44 
 
Figure 2.11 - Kaplan-Meier survival plots of clinical outcomes and mRNA co-overexpression of 

luminal A SeCEP genes ................................................................................................46 
 
Figure 2.12 - Kaplan-Meier survival plots of clinical outcomes and mRNA co-overexpression of 

luminal B SeCEP genes ................................................................................................47 
 
Figure 2.13 - Kaplan-Meier survival plots of clinical outcomes and mRNA co-overexpression of 

indicated HER2+ SeCEP genes ....................................................................................48 
 
Figure 2.14 - The interactive subnetworks of basal SeCEP genes.. ..........................................50 
 
Figure 2.15 - The interactive subnetworks of luminal SeCEP genes .........................................51 
 
Figure 2.16 - Kaplan-Meier survival plots of clinical outcomes and mRNA co-overexpression of 

indicated SeCEP genes based on GSE25066 patient data............................................52 
 
Figure 3.1 - Heatmap of altered secretome after treatment with UNC1999 ...............................64 
 
Figure 3.2 - STRING analysis of decreased EZH2-dependent protein secretion .......................65 
 
Figure 3.3 - STRING analysis of increased EZH2-dependent protein secretion ........................66 
 
Figure 3.4 - IPA analysis of EZH2-dependent signaling and biological functions .......................67 



xiii 
 

 
Figure 3.5 - Heatmap of altered intracellular proteome after treatment with UNC1999 ..............68 
 
Figure 3.6 - STRING analysis of increased intracellular proteins after treatment with UNC1999.

 ......................................................................................................................................69 
 
Figure 3.7 - STRING analysis of decreased intracellular proteins after treatment with UNC1999

 ......................................................................................................................................70 
 
Figure 3.8 - IPA analysis of EZH2-dependent signaling ............................................................71 
 
Figure 3.9 - IPA analysis of EZH2-dependent biological functions.............................................72 
 
Figure 4.1 - Various forms of alternative splicing .......................................................................84 
 
Figure 4.2 - Heatmap of proteome changes due to SNRPD1 knockdown. ................................85 
 
Figure 4.3 - Volcano plot of proteome changes due to SNRPD1 knockdown ............................86 
 
Figure 4.4 - STRING analysis of downregulated intracellular proteins in SNRPD1 knockdown 

cells ...............................................................................................................................87 
 
Figure 4.5 - STRING analysis of upregulated intracellular proteins in SNRPD1 knockdown cells

 ......................................................................................................................................88 
 
Figure 4.6 - IPA analysis of changes in intracellular proteins due to SNRPD1 knockdown ........89 
 
Figure 4.7 - Heatmap of secretome changes due to SNRPD1 knockdown ................................90 
 
Figure 4.8 - Volcano plot of secretome changes due to SNRPD1 knockdown. ..........................91 
 
Figure 4.9 - STRING analysis of higher secreted proteins in SNRPD1 knockdown cells. ..........92 
 
Figure 4.10 - STRING analysis of higher secreted proteins in SNRPD1 knockdown cells. ........93 
 
Figure 4.11 - IPA analysis of changes in secreted proteins in SNRPD1 knockdown cells .........94 
 
Figure 5.1 - Heatmap of IDH1 mutant and wild type glioma intracellular protein abundance ... 105 
 
Figure 5.2 – Volcano plot of proteins identified in IDH1 mutant and wild type glioma cells ...... 106 
 
Figure 5.3 – GOBP and STRING analysis of upregulated proteins in IDH1 mutant glioma cells

 .................................................................................................................................... 107 
 
Figure 5.4 – GOBP and STRING analysis of downregulated proteins in IDH1 mutant glioma 

cells ............................................................................................................................. 109 
 
Figure 5.5 – IPA pathway activation analysis in IDH1 mutant glioma cells .............................. 111 
  



xiv 
 

LIST OF ABBREVIATIONS 

 

α-KG  α-ketoglutarate 

APEX  Absolute protein expression 

BC  Breast cancer 

BLBC  Basal-like breast cancer 

dNSAF  Distributed normalized spectral abundance factor 

DRFS  Distant relapse free survival 

emPAI  Exponential protein abundance index 

EMT  Epithelial-mesenchymal transition 

ER  Estrogen receptor 

FDR  False discovery rate 

GBM  Glioblastoma multiforme 

GOBP  Gene Ontology biological process 

GOCC  Gene Ontology cellular component 

H3K27Me3 Histone H3 lysine 27 tri-methylation 

HER2  Human epidermal receptor 2 

IPA  Ingenuity Pathway Analysis 

KD  Knockdown 

KM  Kaplan-Meier  

LC-MS/MS Liquid chromatography-tandem mass spectrometry  

LFQ  Label- free quantitative 

METABRIC Molecular Taxonomy of Breast Cancer International Consortium 

MS  Mass spectrometry 

nanoLC Nanoflow liquid chromatography 

NSAF  Normalized spectral abundance factor 



xv 
 

PAF  Protein abundance factor 

PAI  Protein abundance index 

PPI  Protein-protein interaction 

PR  Progesterone receptor 

PRC2  Polycomb repressive complex 2 

R-2HG  R-2-hydroxyglutarate 

SC  Spectral counting 

SeCEP Secretion-correlated mRNA expression pattern 

snRNP  Small nuclear ribonucleoprotein 

snRNA  Small nuclear RNA 

SpC  Spectral counts 

STRING Search Tool for the Retrieval of Interacting Genes/Proteins 

TCGA  The Cancer Genome Atlas 

TET  Ten eleven translocation 

TNBC  Triple negative breast cancer 

XIC  Extracted ion chromatogram 

 

 



1 
 

 

CHAPTER 1: BACKGROUND 

 

Breast cancer epidemiology and etiology 

Breast cancer (BC) is the most frequently diagnosed cancer among women in the United 

States and worldwide, and BC is the second leading cause of cancer death among women in 

the US.[1] However, despite decreased incidence in lesser developed countries, higher mortality 

rates in these areas make BC the leading cause of cancer death among women worldwide.[1] It 

is estimated that approximately 12%, or 1 in 8, women in the United States will be diagnosed in 

her lifetime.[2] Women of age 50 or older comprise approximately 80% of breast cancer 

diagnoses and almost 90% of BC deaths.[2] Although survival rates are higher in BC relative to 

many other cancer types, [3] this disease remains a significant public health concern. 

The incidence rate of BC in the US has increased by an average of 0.4% per year since 

2004, [2, 3] however the mortality rate has continued to decline due in part to earlier detection 

by increased rates of screening mammography and the development of more effective and 

targeted therapies.[4, 5] Notwithstanding improvement in survival rates, significant racial 

disparities in BC incidence and mortality have been observed, and black women have higher 

BC mortality rates versus white women despite having lower incidence rates.[2, 6] These 

disparities are partially due to later disease stage at the time of diagnosis, but black women also 

have worse survival than white women with the same disease stage.[7] Further, black women 

are more likely to be diagnosed with more aggressive forms of cancer versus other races.[2] 

 BC susceptibility is influenced by both genetic and non-genetic factors.[8, 9] Women with 

a close family member diagnosed with BC have an estimated two-fold increased risk of also 

developing BC.[10, 11] This risk increases depending on the number of close family members 
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diagnosed with BC and their age at first detection.[11] High susceptibility genes BRCA1 and 

BRCA2 account for less than 25% of this increased risk [12] and are rare in the population.[13] 

Other known genetic factors conferring intermediate risk, including ATM, PALB2, and CHEK2, 

comprise 2 to 5% of the increased familial risk.[9] Overall only 37% of excess familial risk is 

explained by known genetic mutations, with the remaining risk due to undiscovered genetic 

variants or other factors.[14] Environmental factors also play an important role in BC etiology. 

These include alcohol consumption, body mass index, and reproductive factors including ages 

at menarche, first birth, and menopause.[8, 14] 

 

Breast cancer heterogeneity and classification 

 Breast cancer is not a single disease, but is a heterogeneous group of diseases with 

distinct clinical features and biological characteristics.[15-17] BC tumors vary widely in 

morphological structure, genetic mutation, biological behavior and metastatic potential.[18, 19] 

Even within an individual patient a tumor may exhibit heterogeneity in different regions of the 

tumor (spatial intratumor heterogeneity) or properties of the tumor may change over time 

(temporal intratumor heterogeneity).[20] For decades pathologists have recognized the need to 

classify tumors to guide therapeutic decisions and aid in prognosis.[21, 22]  

Tumor classification may be defined by clinical, histological, or molecular features. An 

early classification based on clinical features was tumor stage, and this classification is still 

standard in pathology reports. Previously, tumor stage was defined solely by primary tumor size, 

involvement of regional lymph nodes, and distant metastasis.[23] Based on these features the 

patient was assigned a stage from 0 (non-invasive) to IV (metastatic).[23] In 2018, the American 

Joint Committee on Cancer updated the staging guidelines to also include molecular and 

histological features of the tumor.[24] 

The histological tumor grade is based on the morphologic and proliferative 

characteristics of the tumor based on tubule formation, nuclear pleomorphism, and mitotic 
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index.[22] However, when initially introduced this system was susceptible to problems with 

reproducibility and interobserver variation in grading.[25, 26] Revisions to this grading system 

[21] increased objectivity and made grading semiquantitative, substantially improving 

reproducibility.[25, 26] Due to the prognostic value, this grading system is an important 

component of histopathological reports.[26, 27]  

Histological tumor type is another longstanding method of classification still in use 

despite having limited prognostic value.[28] Based on cytological and architectural features, a 

tumor may be assigned to one of at least 17 subtypes.[20, 25] In this system, approximately 

70% of all breast tumors are invasive ductal carcinomas not otherwise specified, which is a 

diagnosis of exclusion since these tumors cannot be classified as any special type.[15, 29] 

Another 5-15% are invasive lobular carcinomas which have lower risk of mortality.[25, 30] 

Although tumors of special histological type differ prognostically, this classification method has 

limited clinical utility because the vast majority of tumors are of no special type.[20] 

While classification of BC tumors based on clinical and histological features provides a 

primarily prognostic benefit, molecular features can aid in therapeutic decision-making. The 

potential role of hormone signaling in breast cancer was first recognized in the late 19th 

century.[31]  By the 1960’s experiments using radiolabeled estrogens had established that 

these hormones accumulate and promote growth in specific tissues [32, 33] supporting the 

hypothesis that an estrogen receptor (ER) may exist in these tissues.[34] Subsequent 

experiments confirmed the existence of the estrogen receptor.[35, 36]  Within a decade 

additional experiments established the link between ER expression and response to endocrine 

therapy, [37] and assays to quantify ER expression were being developed.[38] In addition to the 

therapeutic role, ER expression was also identified as an independent marker of better 

prognosis.[39] 

Despite these encouraging advances, about 40% of ER+ tumors did not respond to 

endocrine therapy.[40] To explain this discrepancy, Horwitz and colleagues hypothesized that 
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some ER+ tumors may have a defect in the estrogen signaling pathway which prevents 

estrogen action in the cell.[41] Reasoning that the presence of an estrogen signaling product 

may indicate an intact signaling pathway, and therefore endocrine therapy responsiveness, the 

progesterone receptor (PR) was proposed as a suitable marker.[41] However, the use of PR as 

a predictor of response to endocrine therapy has been questionable due to differences in results 

between studies.[42, 43] Further, limited response is observed in some ER+/PR- tumors so that 

the clinician and patient must weigh the risks and benefits of undertaking endocrine therapy on 

an individual basis.[44] Endocrine therapy for the uncommon ER-/PR+ phenotype remains 

controversial.[45] Although PR status has questionable utility as a therapeutic predictor, PR+ 

patients typically have more favorable outcomes than PR- patients, making PR an important 

prognostic marker in BC.[45] 

  The existence of human epithelial growth factor receptor 2 (HER2) and its amplification 

in BC was first described by a series of reports in the mid-1980’s [46-49] and its importance to 

relapse and survival were reported only two years later.[50] The prognostic significance of 

HER2 is well supported by subsequent studies.[51-53] HER2 is overexpressed by 15-20% of 

BC tumors, [54, 55] and these tumors are typically more aggressive with poorer differentiation 

and higher lymph node involvement than HER2- tumors.[56, 57] Further, although about half of 

HER2+ tumors are also ER+, these tumors are more likely to develop resistance to endocrine 

therapy, likely due to crosstalk between signaling pathways.[58] Encouragingly, since the 

introduction of HER2-targeted therapies including trastuzumab, [57] overall and relapse-free 

survival rates for HER2+ BC have improved significantly.[54] 

Together, ER, PR, and HER2 are the most common molecular markers used to predict 

prognosis and response to therapy. Importantly, approximately 15% of BC tumors do not 

express any of these markers (ER-/PR-/HER2-) and comprise a critical additional class of BC 

called triple negative breast cancer (TNBC).[59, 60] TNBC is the most aggressive form of BC, 

with higher rates of metastasis and worse prognosis than other groups.[61, 62] Further, TNBC 
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cannot be treated with therapies that target HER2 or estrogen signaling, making systemic 

chemotherapy and radiation the most common treatment options.[61, 62] The development of 

improved therapies for TNBC is currently an area of intense research.[61] 

Among broadly used classification systems, the most recently developed relies on DNA 

microarray analysis of tumor gene expression. In a seminal work, Perou et. al. identified four BC 

subtypes based on the expression of a 496-gene set.[63] Further refinement led to the 

establishment of a 50-gene set (PAM50) which identified five primary “intrinsic molecular 

subtypes”: luminal A, luminal B, basal-like (BLBC), HER2-enriched, and normal-like.[64] 

Importantly, molecular subtypes exhibit important differences in prognosis [65] and response to 

therapy.[64, 66] Approximately half of tumors are classified as luminal A making this the most 

prevalent PAM50 subtype.[67, 68] About 20% of tumors are luminal B, 15-20% are BLBC, 10-

15% are HER2-enriched, and >5% are normal-like.[67, 68] PAM50 subtypes roughly match 

molecular marker status as luminal A tumors are typically ER+/ER2-, luminal B are usually 

ER+/HER2+, the HER2-enriched group is most often ER-/HER2+, and the majority of basal-like 

tumors are triple-negative.[63] Although these groups are sometimes inappropriately equated [2, 

69] the PAM50 subtype classification is distinct from receptor status.[70] Despite the dramatic 

advances that gene expression profiling has provided in prognostic prediction and overall 

understanding of tumor biology and heterogeneity, the lack of correlation between PAM50 

subtype and tumor phenotype make this classification system unsuitable for therapeutic 

decision-making.[70] 

 

A new generation of phenotypic markers is needed 

 The preceding classification systems vary in utility for prognosis and guidance of 

therapeutic decisions. The value of tumor stage assessment has been diminished with the 

introduction of more precise indicators of prognosis and response to therapy, however tumor 

stage remains a vital consideration in parts of the world where assessment of other markers is 
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unavailable.[24] Likewise, histological tumor type can be prognostically valuable in special-type 

tumors, however about 70% of tumors are of no special type and are therefore not benefitted by 

this system.[20] On the other hand, tumor receptor status has proven highly clinically valuable 

but cannot predict which tumors will be unresponsive to endocrine or HER2-directed therapies 

or will develop therapeutic resistance.[19, 71] Finally, the transcriptomic data used in gene 

expression profiling is unable to resolve the phenotypic changes which govern BC 

characteristics.[70] To prevent undertreatment of aggressive BC and avoid overtreatment of 

patients who will gain little benefit, there is a pressing need for a new generation of phenotypic 

BC markers which can better predict personalized prognosis and response to therapy.  

 

The cancer cell secretome as a source of novel biomarkers   

 The most basic definition of a biomarker as set forth by the NIH Biomarkers Definitions 

Working Group is “A characteristic that is objectively measured and evaluated as an indicator of 

normal biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention.”[72] However, the ideal biomarker should be obtainable in a non-

invasive manner and be easily and inexpensively assayed.[73-76] Because bodily fluids 

including blood can be obtained non-invasively, they are excellent biomarker reservoirs.[77, 78]  

Many biological molecules and processes have been proposed as potential cancer 

biomarkers, e.g. microRNA, circulating tumor DNA, and DNA methylation patterns.[79-81] 

Alterations in any of these proposed markers usually results in an increase or decrease in the 

expression of various protein products.[82] Tumor cells secrete and shed characteristic proteins 

at a higher rate than healthy cells, and many of these proteins enter circulation to play 

extracellular regulatory roles.[83, 84] Secreted proteins make up approximately 10% of the 

human proteome and play an important role in normal physiological processes including cell 

signaling, immune defense, and blood coagulation.[77, 85] However, due to their regulation of 

cell-to-cell and cell-to-extracellular matrix interactions, secreted proteins are critical participants 



7 
 

in angiogenesis, invasion, and metastasis when deregulated in cancer.[77, 85] Secreted 

proteins have also been increasingly recognized for their role in the mechanisms of drug 

response.[86]  Proteins secreted or shed by cancer cells, collectively referred to as the “cancer 

secretome”, could therefore be phenotypic biomarkers. More importantly, in clinical practice 

these tumor-characteristically secreted proteins may be detectable in blood or other bodily fluids 

in a non-invasive manner.[83, 84] 

  

Challenges in blood-based proteomics and alternative approaches 

Immunoassays are in wide clinical use for the detection and quantification of individual 

plasma proteins but are limited by isoform specificity and low multiplex capability.[87] Mass 

spectrometry (MS) –based proteomics is a commonly used technology which can overcome 

these limitations.[85, 87] However, a major challenge in biomarker discovery using blood-based 

proteomics is the complex diversity of blood. Thousands of proteins with varying isoforms and 

glycosylation patterns, have a dynamic range of abundance spanning 10 or more orders of 

magnitude.[85, 88] Albumin alone comprises over half of the protein mass in blood, and only a 

dozen proteins account for 95% of total blood protein mass.[88, 89] These highly abundant 

proteins may suppress the detection or quantification of lower abundance proteins which are 

potential biomarkers.[85] Several methods have been developed to address this obstacle by 

depletion of high abundance proteins from the plasma sample before MS analysis, including 

Cibacron blue dye to remove albumin, protein A and G resins to remove immunoglobulins, and 

various commercial products incorporating multiple antibodies to deplete panels of 7-50 highly 

abundant proteins.[90-93] Despite improving low abundance protein identification, these 

methods are inefficient and unreliable due to the depletion of unintended targets.[92, 94]  

To avoid direct blood analysis, secretome studies have been performed on tumor 

interstitial fluid, [95] proximal body fluids such as nipple aspirate fluid, [96-98] and conditioned 

media from cell lines.[99, 100] Results using proximal body fluids have been mixed, partially due 
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to the need for collection protocol standardization.[77] Proximal fluid controls may also be 

insufficient due to discrepancies in fluid output from disease and healthy tissue.[101] Likewise, 

the use of tumor interstitial fluid is complicated by difficulty in sample availability, and proteomic 

results are directly influenced by the collection method.[102] On the other hand, cell lines are 

benefitted by the reduced complexity of conditioned media versus biological fluids and 

controlled experimental conditions which limits experimental variability.[77] Sampling of cell line 

conditioned media has therefore become a common approach to proteomic secretome 

analysis.[99, 103-106] 

 

Label Free Quantitative Proteomics 

Accurate measurement of molecular changes in disease associated processes and 

pathways is critical to better understand pathogenesis and to discover new biomarkers for 

diagnosis, prognosis, and treatment. While genetic alterations predict the likelihood of disease, it 

is the phenotypic changes which define disease onset. Emerging techniques of mass MS-based 

proteomics over the past two decades have enabled the genome-wide analysis of the phenotype-

correlated protein changes in comparing healthy versus disease states. As proteomic technology 

has advanced, including improvements in computing resources, algorithm design, and nanoflow 

liquid chromatography, the field has shifted focus to accurate and reliable quantitation rather than 

mere protein identification. Because mass spectrometry is not inherently quantitative, myriad 

strategies have been developed to assist MS for protein quantitation. These strategies can often 

be distinguished not only by the method of quantitation, i.e., labelling versus label-free, but also 

by the quantitative goal, i.e., relative versus absolute quantitation and the scope of the 

experiment, i.e., targeted versus shotgun strategies. Stable isotope labeling strategies can 

generally be divided into two groups: postharvest tagging strategies (e.g., ICAT, iTRAQ, TMT) 

introduce labels at protein or peptide level after cells have been lysed, while metabolic labelling 

strategies (e.g., uniform N15 labeling, AACT/SILAC) involve endogenous incorporation of isotopic 



9 
 

labels in metabolically active cells. Even within these broadly general groupings, numerous 

options exist with each offering advantages and disadvantages. For example, labeling techniques 

can tag peptides chemically, metabolically, or enzymatically, while label-free quantitation (LFQ) 

techniques can be ion counting- or intensity-based. Multiple approaches are further available even 

within these narrower groupings.  

Increasingly, LFQ approaches are being employed to replace or complement labeling 

methods due to the ease of experimental set-up and relative low cost. Two major methods have 

emerged for label free quantitation. The first, known as spectral counting (SC), provides relative 

quantitation by comparing the number of MS/MS spectra produced by the same protein across 

multiple liquid chromatography-tandem MS (LC-MS/MS) runs. The second is based on the 

precursor ion intensity as determined by the extracted ion chromatogram (XIC), which is the plot 

of intensity versus retention time of a particular m/z value. Both LFQ methods offer several 

benefits over labeling methods. (i) LFQ approaches typically identify larger number of proteins 

with a wider dynamic range of detection compared to labeling methods.[107] (ii) Both LFQ 

approaches are less expensive because no special media or expensive reagents are required to 

perform an experiment.[107] (iii) LFQ workflows are simpler and faster because there is no need 

to determine labeling efficiency.[108] (iv) LFQ approaches offer the ability to compare a large 

number of experiments, whereas labeling methods are limited in multiplexing capabilities. 

 

Ion counting-based label-free quantitation 

One of the earliest attempts to quantify proteins without labeling was based on peptide 

counting.[109, 110] The protein abundance index (PAI) provided only a rough estimate of 

quantitation by dividing the number of peptides identified for a protein by the total number of 

theoretical peptides the protein could produce.[109, 110] Later, one of the two groups who 

simultaneously developed the method refined it to emPAI, the exponential form of PAI minus 

one.[111] Although emPAI shows better correlation to known protein amounts, it is still less 
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accurate than other available methods.[112] However, unlike most other LFQ methods emPAI 

can be used to estimate total protein abundance.[111] 

In the spectral counting method, the number of MS/MS spectra identified for a given 

protein across multiple LC-MS/MS runs provides relative quantification.[113] The relationship 

between spectral counts and protein abundance was first explored based on the observation that 

more abundant proteins will produce a larger number of proteolytic peptides.[113] These peptides 

are more likely to be sampled, yielding a higher number of spectra.[113] Indeed, protein 

abundance is strongly correlated (r2=0.9997) to spectral count but only weakly correlated to 

peptide count or sequence coverage.[113] However, the common use of dynamic exclusion to 

aid in the identification of low abundance peptides has a suppressive effect on quantitation by 

spectral counting. [107] Dynamic exclusion parameters which maximize identification of low 

abundance peptides while minimizing undersampling of highly abundant peptides have been 

reported, but this remains a consideration when designing an experiment.[114]  

Another concern with spectral counting is based on the observation that the number of 

peptides generated by proteolytic cleavage is dependent on the length of the protein. Hence, 

quantitation of proteins less than 20 kDa tends to be less accurate than for larger proteins.[115, 

116] Several methods attempt to resolve this discrepancy by normalizing spectral count data 

based on protein length, molecular mass, or machine learning classification. Most commonly, 

Normalized Spectral Abundance Factor (NSAF) is employed. NSAF is calculated by dividing the 

number of spectral counts (SpC) belonging to a given protein by the length of the protein (L), then 

dividing that value by the sum of (SpC/L) values for all proteins in the experiment.[116] 

Normalization by NSAF offers the added benefit of improving the minimum fold change detectable 

by SC.[116] While NSAF normalizes SC data based on protein length, Protein Abundance Factor 

(PAF) focuses on protein mass by normalizing the total number of non-redundant spectra to the 

molecular mass of the intact protein.[117] A third method of handling this discrepancy is the 
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Absolute Protein Expression (APEX) algorithm which is a machine learning classification system 

that corrects spectral counts for the likelihood that a spectrum might be detected.[115]  

SC shows some limitation in the ability to quantify small abundance changes. Typically, 

larger numbers of spectra must be identified in order to calculate smaller abundance 

changes.[107] The minimum detectable fold change and the number of spectra required can be 

improved by increasing the scoring requirements for spectrum identification.[118] However, these 

improvements come at the expense of dynamic range and the accurate quantification of lowly 

abundant proteins.[118] A final limitation of SC is the handling of peptides that can be assigned 

to more than one protein. Typically these spectra would be assigned to all possible matching 

proteins.[119] This has an obvious negative impact on the accuracy of the quantitation for those 

proteins, since any peptide can only have been generated by a single protein.[119] To address 

this issue the distributed Normalized Spectral Abundance Factor (dNSAF) was developed, which 

divides shared spectra proportionally between the possible contributing proteins based on the 

distribution of the other identified unique peptides.[119] 

 

Intensity-based label-free quantitation 

The other major method used for label free quantitation is based on the precursor signal 

intensity from the extracted ion chromatogram. As spectral counts are strongly correlated with 

peptide abundance, so too is precursor signal intensity.[120] Conceptually, quantitation is an area 

under the curve or peak height calculation for each peptide as it elutes from the LC column at an 

expected retention time. Because LC retention time is an important aspect of the quantitation, a 

robust and consistent LC program is necessary to allow for more accurate quantitation and fewer 

incorrect peptide assignments. Retention time alignment is also a crucial data processing 

step.[121] Intensity normalization based on total ion count is another necessary step to account 

for bias in signal intensity.[122]  
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One concern with XIC-based quantitation is that XIC mapping is based on the full MS 

spectrum while peptide identification is based on MS2 spectra. However, MS is typically operated 

in a data dependent manner such that MS1 and MS2 spectra are obtained in the same run with 

MS2 acquisition being based on MS1 results. Because identification and quantitation are 

competing for scan time, a balance must be achieved between these goals. Excess time 

dedicated to peptide identification will negatively impact quantitation. Conversely, too much focus 

on quantitation will reduce the number of MS2 scans leading to a lower number of peptides 

identified. Another concern with XIC-based quantitation versus SC is that peak identification, 

noise reduction, retention time alignment, and peak intensity calculations including normalization 

require significantly more computational power than the simpler spectral counting process. 

Several algorithms requiring varying levels of computational strength have been published. 

(Reviewed in Ref. [123]) 

Numerous comparisons between SC and XIC-based quantitation have been performed 

(Reviewed in Ref. [124]).  XIC-based methods are consistently more sensitive and more accurate 

than SC when using high resolution mass spectrometers because these machines are able to 

discriminate between co-eluting peptides of similar mass while allowing the accurate mapping of 

XIC to peptide.[125] XIC-based quantitation also offers the advantage of accurately discerning 

fold-changes as low as 1.1 versus the SC limit of approximately 1.4. [112, 116] Some reports 

have also noted that SC tends to overestimate low abundance peptides.[126, 127]  

 

Limitations of single-omics approaches 

While proteomics is commonly used for the identification of potential biomarkers, at the 

current level of sensitivity, mass spectrometry can detect only very limited regions of each 

individual protein, limiting information about patient-specific alterations in secreted proteins.[128, 

129] Further, due to the sampling limitations of blood-based proteomics, there is no database 

which contains patient-specific proteomic data and associated clinical data. There are many 
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databases which include transcriptomic and clinical data, however the correlation bbetween 

transcriptome and phenotype can be very low, which is problematic because phenotype matters 

most. Therefore, due to either the low phenotypic accuracy of genomics/transcriptomics or the 

low phenotypic coverage of proteomics, approaches that employ only single-omics methods will 

necessarily fail to identify biomarkers of patient-specific alterations which distinguish patient 

subpopulations having different clinical outcomes or prognoses.  
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CHAPTER 2: NOVEL SECRETOME-TO-TRANSCRIPTOME INTEGRATED OR SECRETO-

TRANSCRIPTOMIC APPROACH TO REVEAL LIQUID BIOPSY BIOMARKERS FOR 

PREDICTING INDIVIDUALIZED PROGNOSIS OF BREAST CANCER PATIENTS 

 

INTRODUCTION 

Breast cancer (BC) is the most prevalent type of cancer among women in the United States, 

with over 200,000 new diagnoses of invasive BC per year.[130] However, significant 

heterogeneity among BC tumors contributes to highly variable clinical pathology and patient 

outcomes, ultimately confounding efforts toward precision diagnosis and prognosis.[131] A 50-

gene expression pattern has been used to classify five molecular subtypes or PAM50-subtypes, 

including basal-like/triple-negative (BLBC/TNBC), luminal-A and –B, Her2+, and normal-like 

BC.[64] Within these molecular subtypes, the luminal subtype accounts for approximately half of 

all tumors, [132] and BLBC/TNBC is the most aggressive form of the disease with the overall 

worst survival rate.[65] However, these gene-expression signatures are inadequate to resolve 

interpatient heterogeneity and patient subpopulations with different clinical outcomes cannot be 

stratified within each BC or PAM50 subtype.[133] These limitations arise because disease onset 

is directly governed by phenotype-specific proteomic changes [134, 135] which cannot be 

measured using genomic/transcriptomic tools or data alone.  Because prognoses of BC patients 

cannot be easily discerned, there is an urgent need for individualized/personalized biomarkers 

that predict patient-specific survival rates and therapeutic response so that standard 

chemotherapy may be replaced by more effective and precise treatment. Because tumor cells 

secrete and shed characteristic proteins at a higher rate than healthy cells, and many of these 

proteins enter circulation to play extracellular regulatory roles, [83, 84] proteins secreted or shed 
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by cancer cells (the “cancer secretome”), could be phenotypic biomarkers. More importantly, in 

clinical practice these tumor-characteristically secreted proteins may be detectable in blood or 

other bodily fluids in a non-invasive manner.[84]  

Secreted proteins, which constitute approximately 10% of the human proteome, play an 

important role in normal physiological processes including cell signaling, immune defense, and 

blood coagulation.[77] Further, when deregulated, secreted proteins are critical participants in 

pathological processes such as cancer angiogenesis, invasion, and metastasis.[77] Also, 

secreted factors have been increasingly recognized for their role in the mechanisms of drug 

response.[86] The studies of BC secretomes using nanoliter liquid chromatograph tandem mass 

spectrometry (nanoLC-MS/MS) to sample conditioned medium from cell lines, tumor/tissue 

interstitial fluid, or tumor proximal body fluids have been reported.[83, 99, 136-138] However, 

few proteins identified in these BC secretomes have established correlation with patient-specific 

clinical outcomes.  

Technically, at the current level of sensitivity, mass spectrometry can detect only very limited 

regions of each individual protein, further limiting information about patient-specific alterations in 

these secreted proteins.[128, 129] Therefore, due to either the low phenotypic accuracy of 

genomics/transcriptomics or the low phenotypic coverage of proteomics, approaches that 

employ only single-omics methods will necessarily fail to identify biomarkers of patient-specific 

alterations which distinguish patient subpopulations having different clinical outcomes or 

prognoses. To overcome these single-omics limitations for identifying new biomarkers to predict 

individualized prognosis in non-invasive, blood-based tests, we developed a new multi-omics 

method, termed secreto-transcriptomics, to identify the BC-subtypic secreted proteins that are 

encoded by genes bearing patient-specific mRNA expression patterns of prognostic 

significance. 

Strategically in advance, our secreto-transcriptomic approach bypasses both the inability 

of conventional MS to connect genotype to phenotype and the inability of MS to fully identify 
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patient-specific proteomic alterations, integrating oncogenic (tumorigenic) multi-omics data for 

efficient de novo discovery of personalized/individualized prognostic markers. In the clinic, these 

markers may be used to stratify patients, within single PAM50 subtypes, into different prognostic 

groups, and predict treatment benefit and/or outcome with patient-specific or individualized 

sensitivity and specificity before any therapeutic decision for newly diagnosed breast cancer.  

 

METHODS 

Chemicals and reagents.  Cell culture media and fetal bovine serum (FBS) were obtained from 

Gibco. All other components of cell culture media and protease inhibitor cocktails were 

purchased from Sigma (St, Louis, MO). Trypsin was purchased from Promega.  All chemicals 

were HPLC-grade unless specifically indicated. All cell lines including MCF10A, MCF7, MDA-

MB-231, T47D, and HCC1806 were purchased from ATCC (Manassas,VA). 

Secreted protein extraction from cell lines.  MCF10A cells were cultured in DMEM/F12 

supplemented with 5% horse serum, 20 ng/mL epidermal growth factor, 50 ng/mL cholera toxin, 

500 ng/mL hydrocortisone, and 2 µg/mL insulin. MCF7 and MDA-231 cells were cultured in 

DMEM containing 10% fetal bovine serum. T47D and HCC1806 cells were maintained in RPMI 

supplemented with 10% fetal bovine serum. When cells reached approximately 70% 

confluence, the growth media was removed, cells were washed twice with PBS, and serum-free 

media without phenol red was added to the plate. After 24 hours the conditioned media were 

collected and centrifuged at 500 x g for 5 minutes to remove cellular debris, then the 

supernatant was syringe-filtered with 0.2 μm 13 mm diameter PTFE filters (VWR International) 

and transferred to fresh tubes. Samples were stored at -80 °C until further processed. After 

thawing, proteins were concentrated by trichloroacetic acid/sodium deoxycholate precipitation. 

Briefly, 1/10 of the sample volume of 0.15% sodium deoxycholate was added to each sample, 

then tubes were incubated on ice for 15 minutes. Next, 1/10 of the original sample volume of 

cold 72% TCA was added and the tubes were incubated on ice for 15 minutes. Samples were 
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centrifuged for 10 minutes at max speed, 4° C. The pellets were washed in cold acetone and air 

dried until no residual odor was detected. Next, the pellets were resuspended in 50 μl buffer (8 

M Urea, 50 mM Tris-HCl pH 8.0, 150 mM NaCl), reduced with dithiothreitol (5 mM final) for 30 

minutes at room temperature, and alkylated with iodoacetamide (15 mM final) for 45 minutes in 

the dark at room temperature. Alkylation was quenched with dithiothreitol (10 mM final). 

Samples were diluted 4-fold with 25mM Tris-HCl pH 8.0, 1mM CaCl2 and digested with 500 ng 

trypsin overnight at room temperature. Peptides were desalted on a StageTip containing a 

4 × 1 mm C18 extraction disk (3M) and dried.[139]  

LC-MS/MS analysis.  Desalted peptides were dissolved in 20 μl 0.1% formic acid (Thermo-

Fisher), of which 2 μl was injected and analyzed by an Easy nanoLC 1000 coupled to a Q-

Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA) Peptides were 

loaded on to a 15 cm C18 RP column (15 cm × 75 μm ID, C18, 2 μm, Acclaim Pepmap RSLC, 

Thermo-Fisher) and eluted with a gradient of 2-30% buffer B at a constant flow rate of 300 

nl/min for 70 min followed by 30% to 80% B in 5 min and 80% B for 10 min. The Q-Exactive was 

operated in the positive-ion mode but using a data-dependent top 20 method. Survey scans 

were acquired at a resolution of 70,000 at m/z 200. Up to the top 20 most abundant isotope 

patterns with charge ≥ 2 from the survey scan were selected with an isolation window of 2.0 m/z 

and fragmented by HCD with normalized collision energies of 27. The maximum ion injection 

time for the survey scan and the MS/MS scans was 250 ms and 120 ms, respectively and the 

ion target values were set to 1e6 and 2e5, respectively. Selected sequenced ions were 

dynamically excluded for 20 seconds. 

Mass spec data and LFQ analysis.  Mass spectral processing and peptide identification were 

performed on the Andromeda search engine in MaxQuant software (Version 1.5.3.17) against a 

human UniProt database. All searches were conducted with a defined modification of 

cysteine carbamidomethylation, with methionine oxidation and protein amino-terminal 

acetylation as dynamic modifications. Peptides were confidently identified using a target-decoy 
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approach with a peptide false discovery rate (FDR) of 1% and a protein FDR of 5%. A minimum 

peptide length of 7 amino acids was required, maximally two missed cleavages were allowed, 

initial mass deviation for precursor ion was up to 8 ppm and the maximum allowed mass 

deviation for fragment ions was 0.5 Da. LFQ-based LC-MS/MS experiments were conducted in 

multiple replicates (three biological replicates each with two technical replicates). For LFQ 

analysis, a match between runs option was enabled and time window at 0.7 minutes. Data 

processing and statistical analysis were performed on Perseus (Version 1.5.1.6)[140]. 

Analysis of functional category and networks of subtype-specific secreted proteins.  The 

biological processes and molecular functions of the G9a-interacting proteins were categorized 

by Ingenuity Pathway Analysis (IPA) [141] and STRING [142] similar to previously described. 

[143]  

TCGA and METABRIC data sets.  All TCGA and METABRIC data used in our study were 

retrieved from cBioPortal [144, 145] using the ‘cgdsr’ R package (version 1.2.6)[146]. For our 

analysis of TCGA data, we used complete samples (case list id = 

brca_tcga_pub2015_3way_complete / brca_tcga_pub2015_freeze) with mutation, copy-number, 

and mRNA expression data provided (N = 816) from the TCGA cancer study 

brca_tcga_pub2015 (Breast Invasive Carcinoma)[147]. The mRNA expression data sets for G9a 

interactor genes were obtained from TCGA Genetic Profile: 

brca_tcga_pub2015_rna_seq_v2_mrna_median_Zscores, containing mRNA expression Z-

scores compared with diploid tumors (diploid for each gene). The copy-number data sets for 

G9a interactor genes were obtained from TCGA Gene Profiles: brca_tcga_pub2015_gistic for 

putative copy-number from GISTIC 2.0 for each gene. Clinical data were obtained from TCGA 

case list id: brca_tcga_pub2015_3way_complete / brca_tcga_pub2015_freeze, which included 

information on patient survival, estrogen receptor (ER) status, progesterone receptor (PR) 

status, and HER2 enrichment (HER2) status. Additional TCGA clinical information, including the 

PAM50 subtype assigned to each patient, was obtained from “Table S1” in the TCGA 
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publication.[147] For the METABRIC [148, 149] data we used: case list id = 

brca_metabric_cnaseq (samples with mRNA, GISTIC, mutational data), gene profile = 

brca_metabric_mrna_U133_Zscores (for mRNA expression), and gene profile = 

brca_metabric_cna (for GISTIC data). We used 1866 of the 2051 samples in the METABRIC 

case list for which there was survival data. 

Heatmap construction.  The heatmaps of mRNA expression levels SeCEP genes from the 

TCGA BRCA datasets were constructed using the ‘ComplexHeatmap’ R package (version 

1.12.0)[150]. Hierarchical clustering was performed using the euclidean distance method and 

the Ward clustering method (option ward.D2 in R’s hclust function). 

Statistical Analyses.  Kaplan-Meier curve plotting and statistical analysis for differences of 

overall survival (OS) based on mRNA expression of SeCEP genes among TCGA BRCA 

samples, and distant relapse free survival (DRFS) for the GSE25066 samples, were performed 

using the ‘survival’ R package (2.41.3).[151] Kaplan-Meier estimator and log-rank tests were 

performed using the survival functions Surv, survfit, and survdiff. Cox proportional hazard 

survival analysis was performed using the survival function coxph. Mann-Whitney-Wilcoxon Test 

was performed using the wilcox.test function in R. In the iCEP analysis, we included all genes in 

the TCGA (n = 18,097) or METABRIC (n = 16,555) data sets in order to obtain an adjusted p-

value for multiple comparisons for the SeCEP genes. The adjusted p-values were calculated by 

submitting all the p-values from the individual Mann-Whitney-Wilcoxon Tests determined for 

each gene to the p.adjust function in R using the ‘fdr’ method. 

 

RESULTS 

The secreto-transcriptomic workflow for discovering candidate biomarkers for non-

invasive, individualized prognosis.  

As shown in Figure 2.1, LFQ proteomics was first used to determine the compositional 

differences in the secretomes isolated from different BC subtypes versus non-malignant cells. 
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The proteins showing BC or PAM50 subtype-specific or subtypic secretion were identified by 

LFQ-based Perseus analysis.[152]  Taking advantage of the databases of two large patient 

cohorts, TCGA [147] and METABRIC (Molecular Taxonomy of BC International Consortium) 

[148], which contain clinic-pathologically correlated gene-expression or transcriptomic data, we 

retrospectively established the proteo-transcriptomic links between BC subtypically secreted 

proteins and the patient-specific mRNA-expression alterations of the genes that encode these 

proteins.  As a result, this proteo-transcriptomic approach identified the secretome-encoding 

genes that showed a secretion-correlated mRNA expression pattern (SeCEP), wherein the 

patient-specific mRNA expression of these genes was positively correlated with increased 

secretions of the proteins encoded by these genes in similar BC subtypes. This expression-to-

secretion correlation not only indicated those genes that are fully translated into extracellularly 

functional, oncogenically active proteins, but also identified new phenotypic markers that 

describe the similar PAM50-classified BC subtype. Further, Kaplan-Meier (KM) survival 

analyses were used to distinguish, from >18,000 genes, patient-specific mRNA expression 

patterns of select SeCEP genes of prognostic value, indirectly identifying those proteins 

showing BC subtypic secretion as candidate markers for non-invasive prognostic prediction. 

 

LFQ secretome screening identified particular protein clusters showing BC-subtypic 

secretion.    

We used a similar LFQ proteomic approach [153, 154] to comparatively profile the 

extracellular proteins secreted from different cell lines, respectively representing the 

BLBC/TNBC subtypes (MDA-231 and HCC1806), luminal subtypes (MCF-7 and T47D), and 

non-malignant mammary control (MCF10A). (Figure 2.2a) A total of 2,345 proteins were 

identified in these five cell lines. Using existing databases of secreted proteins we then 

examined the purity of our secretome isolation. The analysis of Gene Ontology Cellular 

Component (GOCC) indicated that 685 or 29% of the totally identified proteins were previously 
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known for their locations in the extracellular space or plasma membrane.  Also, 503 proteins 

were previously known as secreted or highly likely secreted proteins in the MetazsecKB 

database that is generated by multiple bioinformatics tools including SignalP4, TMHMM, and 

TargetP.[155] By comparing our identifications to a number of experimentally identified 

secretomes 832 proteins were found in common in the secretome from the LPS-stimulated 

macrophages [154] and 1042 proteins were also identified in a breast cancer secretome.[156] 

These results in combination validated the high quality of our secretome preparation and 

analysis.  

To identify the proteins showing BC-subtypic secretion we used the Profile Plot function 

of the Perseus software platform [152] to determine the relative abundances of individual 

secreted proteins across different cell lines, which correlate with the LFQ ratios of identified 

proteins. Profile Plot performs pattern matching but does not perform statistical testing on the 

identified proteins, therefore the statistical significance of protein abundance changes between 

BC subtypes was validated by one-way ANOVA. As a result we identified clusters that contain 

the proteins showing increased or decreased secretion only in either BLBC- or luminal-subtypic 

cell lines, respectively. (Figure 2.2 b-e) 

For example, we identified 55 proteins as having BLBC-specific secretion in both BLBC 

cell lines, including 35 proteins with increased secretion and 20 proteins with decreased 

secretion compared to the luminal and non-malignant control cell lines. Meanwhile, there were 

86 additional proteins showing either increased or decreased secretion in one of the BLBC cell 

lines. (Figure 2.3a) In view of BC-related function of these BLBC-specifically secreted proteins, 

several factors involved in tumor progression and metastasis showed increased secretion, 

including CD44, [157] HSPA5, [158] and HSP90B1.[159] Meanwhile, some proteins such as E-

cadherin (CDH1) and DDB1 that were known to be down-regulated in BLBC [160, 161] showed 

BLBC-specific reduction in secretion.  
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Similarly, we identified a total of 274 proteins that showed luminal-specific secretion 

changes in one or both of the luminal cell lines (Figure 2.3b), including decreased secretion of 

several members of the cathepsin family of globular proteases such as CTSB, CTSL, and CTSZ 

that were known to promote breast cancer progression and metastasis, [162] and the increased 

secretion of metastasis suppressor PEBP1 (a.k.a. RKIP) that showed luminal-specific 

intracellular expression.[163]  

Immunoblotting of some of BC-subtypic secreted proteins showed consistent results with 

LFQ secretome screening (Figure 2.4). 

Using bioinformatics tools including Ingenuity Pathway Analysis (IPA) [141] and the 

Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database [142] we then 

studied the biological processes and pathways in which these BC-subtypic secreted proteins 

are involved. In the IPA annotation, greater than 95% of all identified BC-subtypic secreted 

proteins, i.e., 136 of 141 BLBC-specific and 269 of 274 luminal-specific secreted proteins were 

respectively cancer-related.  

Figure 2.5a shows the biological processes that are over-presented by the BLBC- and 

luminal-specific proteins. Although major biological processes are comparable between 

subtypes, more detailed analysis of these broad categories highlighted the differences between 

subtype characteristics. BLBC-specific proteins were involved in increased cell movement or 

migration, invasiveness of breast cancer cells, and cell survival, while luminal-specific proteins 

were associated with decreases in cell movement and vascularization, indicating the 

aggressiveness differences between these two BC subtypes (Figure 2.5b).   

IPA analysis of BLBC-specific secreted proteins (Figure 2.5c) indicated the activation of 

a few known BC-driving signaling pathways, including PI3K-Akt signaling, [164] protein kinase A 

signaling, [165] signaling by Rho family GTPases, [166] the 14-3-3-mediated signaling 

associated with BC oncogenesis, [167] and the actin cytoskeleton signaling involved in the 

epithelial-mesenchymal transition (EMT).[168] Meanwhile, the altered secretion of other BLBC-
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specific proteins indicated that the activity of the HIPPO signaling was suppressed in BLBC 

cells, which could lead to a more invasive tumor phenotype.[169] On the other hand, the 

luminal-specific secreted proteins revealed activation of HIPPO and mTOR signaling along with 

the suppression of eIF2 signaling, G2/M DNA damage checkpoint regulation, and ILK signaling 

(Figure 2.5c). 

To further determine the functional networks involving BC subtypic secreted proteins we 

performed protein-protein interaction (PPI) analysis using STRING, which revealed statistically 

significant enrichment of PPIs among the proteins secreted in both BLBC-specific (p<1e-16) 

and luminal-specific (p<1e-16) manners (Figure 2.6). The Gene Ontology Biological Process 

enrichment of the proteins with BLBC-specific increased secretion identified multiple 

subnetworks associated with protein folding, regulation of cell communication, regulation of 

apoptosis, cell development, regulation of cell motility, blood coagulation, and proteolysis. 

Analysis of the proteins with decreased secretion in BLBC cells also revealed particular 

subnetworks/pathways with suppressed activities, including DNA damage response, regulation 

of actin depolymerization, and regulation of cell-cell adhesion. In contrast, the proteins showing 

luminal-specific increases of secretion over-represented the subnetworks associated with 

regulation of growth, and cell differentiation while the proteins with decreased secretion in 

luminal cells were involved in positive regulation of apoptotic process, angiogenesis, 

extracellular matrix disassembly, and cell motility. These results showed that the proteins 

secreted or secretomes are characteristic of distinct BC subtypes. 

 

The genes that encode increasingly secreted proteins showed secretion-correlated mRNA 

over-expression patterns in BC patients in a PAM50-subtypic manner.  

To determine the clinicopathological relevance of the proteins showing BC subtypic 

secretion, in the databases of TCGA [147] and METABRIC [148] we retrospectively examined 

patient mRNA expression patterns for the genes that encode the proteins showing either BLBC- 
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or luminal-specific secretion. These databases contain large cohorts of > 2600 BC patients that 

were classified by PAM50 as the BLBC/TNBC, luminal-A and luminal-B, Her2+, and normal-like 

BC subtypes, [170] and the information about mRNA expression, mutations, copy-number 

variations, and associated clinical/pathological data (stages/grades and relapse status).  

First, to determine the mRNA expression differences between BLBC and luminal A/B TCGA 

patients we performed a Mann-Whitney-Wilcoxon Test on the z-scored expression values 

(downloaded from the cBioPortal for Cancer Genomics [144, 145]) of the two PAM50-subtypic 

populations. This test was performed on all secreted protein-encoding genes in each subtype-

specific dataset, and p-values were adjusted by the Benjamini Hochberg procedure for multiple 

testing. Using this multi-testing scheme, a secreted protein-encoding gene was classified as 

BLBC if the expression level between the two PAM50-subtypic populations was significantly 

different (adjusted p-value < 0.05) and the median mRNA expression was greater among BLBC 

patients. Likewise, a gene was classified as luminal if its median mRNA expression level was 

higher for luminal patients and the gene showed a statistically significant difference between 

luminal and BLBC patients (adjusted p-value < 0.05).  

On a systems view, a heat map of unsupervised hierarchical clustering showed patient 

mRNA expression patterns for those genes that encode the proteins demonstrating PAM50-

subtypic secretion in TCGA patients (Figure 2.7). In a statistically significant manner, we 

identified a secretome-to-patient transcriptome or secreto-transcriptomic link for some genes 

that encode PAM50-subtypic secreted proteins, i.e., we found a secretion-correlated mRNA 

overexpression pattern or SeCEP wherein the PAM50-subtypic secretion of some proteins 

showed cis-mRNA expression of their encoding genes in patients with the corresponding 

PAM50-subtypes (Figure 2.8). For example, mRNA overexpression of 57 genes that encode 

BLBC-specific secreted proteins clustered BLBC patients while 60 genes that encode luminal-

specific proteins with increased secretion showed mRNA overexpression in luminal patients. 

These results indicated that these secretome genes are fully translated into the oncogenically 
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active secretome in a BC-subtypic manner.  

Further, we observed interpatient heterogeneity in the mRNA expression pattern of 

secretome genes within each PAM50 subtype, i.e., not all SeCEP genes were simultaneously 

overexpressed at the mRNA level in each individual BLBC or luminal patient. Bearing in mind 

that mRNA expression patterns of PAM50 genes are insufficient to stratify the patient subsets 

with different clinical outcomes or prognoses, we reasoned that, within a single PAM50-

classified subtype, these patient mRNA expression variations of select SeCEP genes can mark 

the patient subpopulations with distinct prognoses.  

 

Patient-specific mRNA co-overexpression patterns of select secretome-encoding genes 

mark the high-risk subpopulations of PAM50-subtypic patients with poor prognosis.  

To identify BC-subtypic secreted proteins of prognostic significance, we performed 

Kaplan-Meier (KM) analysis on PAM50-subtypic patients in the two independent datasets TCGA 

and METABRIC [148, 149] for any combination of up to five SeCEP genes having mRNA 

overexpression (z-score > median z-score) for all genes in the combination. The statistical 

significance of each gene combination was determined by a multi-parameter threshold including 

log-rank p value < 0.05 and lower 95 confidence interval for the hazard ratio > 1 in both the 

TCGA and METABRIC datasets.  

For example, we identified approximately 8% or more subpopulations of BLBC patients 

who showed mRNA co-overexpression of four BLBC-specific SeCEP genes, YWHAZ, GDA, 

MFAP2, and PRKCSH in correlation with poor survival (Figure 2.9 a,b). YWHAZ, which encodes 

the 14-3-3ζ protein, was characterized as a promoter of cell survival which, when 

overexpressed, is associated with poor prognosis and disease-free survival.[171, 172] Another 

SeCEP gene combination indicating the co-overexpression-correlated poor prognosis was 

ADM, PSMB6, SERPINH1, and SFN (Figure 2.9 c,d). ADM was known to promote 

angiogenesis, cell survival, and metastasis, [173, 174] and was associated with poor prognosis 
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in ovarian cancer patients.[175] Interestingly, although SFN (14-3-3σ or stratifin) was 

considered as a tumor suppressor, overexpression in BLBC was reported.[176] Recently, 

overexpression of SFN was found to be associated with tumor invasion and migration.[177] 

Another BLBC subpopulation showed co-overexpression of GAL, MMP12, MSLN, and a 

multifunctional oncoprotein SET.[178] (Figure 2.9 e,f).  

Similarly, this secreto-transcriptomic approach enabled identifications of the distinct 

subpopulations of luminal patients with poor prognosis. Further, as an example of how the co-

overexpression of multiple SeCEP genes improves the specificity and sensitivity in predicting 

personalized prognosis, as shown in Figure 2.10 a,b, overexpression of CLEC3A alone 

indicated modest differences in the overall survival rate of two major luminal patient 

subpopulations. However, the luminal patient subsets showing co-overexpression of CLEC3A 

with CTTN, IGFBP5, NRCAM were statistic-significantly correlated with worse prognosis and 

can be readily discriminated from other luminal patients (Figure 2.10 c,d). Among these SeCEP 

genes, CLEC3A is a C-type lectin that promotes tumor adhesion in breast cancer [179] and was 

recently found to enhance plasminogen activation by tissue-type plasminogen activator.[180] 

CTTN encodes cortactin, an actin cytoskeleton regulator that promotes metastasis in breast 

cancer.[181] Meanwhile, co-overexpression of CLEC3A with ALDOA, EEA1, and FKBP4 was 

also associated with substantially worse prognosis than CLEC3A alone. (Figure 2.10 e,f) 

Importantly, the use of co-overexpressed SeCEP genes can further resolve individual 

luminal subtypes among luminal patients to identify the high-risk subpopulations of luminal-A or 

luminal-B patients. For example, the luminal-A subpopulations overexpressing CAPZA2, 

FKBP4, KRT18, and OLFML3 exhibited poor prognosis with decreased overall survival, but this 

combination did not distinguish any subpopulation of luminal-B patients or combined luminal A/B 

groups (Figure 2.11 a,b). Also, co-overexpression of FASN, IGFBP5, ISOC1, and PIP was 

likewise specific to the luminal-A group (Figure 2.11 c,d). Interestingly, although each of these 

genes has been reported to play a role in breast cancer development, progression, or 
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metastasis, [182-185] over-expression of these genes individually did not provide subtype-

specific prognostic value. Overall, we found 52 gene combinations with co-overexpression that 

showed poor survival among luminal-A patients but not in other BC subtypes. 

Several gene co-overexpression patterns specifically correlated with luminal-B patient 

prognosis were also identified. In the co-overexpression pattern involving HSP90B1, EEF1A2, 

EIF4B, and KRT18, (Figure 2.12 a,b) HSPB1 was known to play a role in epithelial-

mesenchymal transition and tumors overexpressing HSPB1 demonstrated enhanced drug 

resistance.[186] Similarly, luminal-B patients overexpressing a combination of AGR2, CYFIP2, 

KRT18, and RAB1B exhibited worst overall survival while luminal-A patients and the combined 

luminal A/B group showed no significant differences in survival (Figure 2.12 c,d). In total we 

identified 39 gene combinations that, when overexpressed, indicated poor overall survival 

specifically among luminal-B patients. Our combined results demonstrated that patient-specific 

co-overexpression of SeCEP genes can resolve the interpatient heterogeneity within different 

PAM50-subtypes, confirming that these gene expression alteration patterns are prognostically 

meaningful in distinguishing the subsets of BLBC or luminal patients with distinct clinical 

outcomes with multi-testing of large patient cohorts. 

Notably, unsupervised hierarchical clustering mRNA expression of luminal and basal 

SeCEP genes using the TCGA patient cohort revealed that HER2-overexpressing or -enriched 

patients did not cluster together but were interspersed among primarily luminal A/B patients. 

(Figure 2.7) This result implied that various clinical outcomes of HER2-enriched patients could 

be represented by select luminal SeCEP genes. We therefore searched for altered mRNA 

expression patterns of luminal SeCEP genes in correlation with destinct clinical outcomes of 

HER2+ patients. Generally, patients with the HER2-enriched subtype show overall poor survival 

similar to BLBC patients.[70] In KM analysis, we identified unique gene combinations associated 

with poor survival among HER2-enriched patient subpopulations which were not prognostically 

significant among luminal patients. For example, HER2-enriched patients showing co-
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overexpression of CAPZA2, CBX1, G6PD, and NQO1 had worse survival (Figure 2.13 a,b). 

NQO1 was highly expressed in BC patients with high HER2 expression and was linked to 

increased metastasis.[187] High expression of CYFIP1, DDR1 and GYG1 was also associated 

with worse survival (Figure 2.13 c,d), and DDR1 was linked to BC invasion and drug 

resistance.[188, 189] Another HER2-enriched subpopulation with poor survival showed co-

overexpressed G6PD, CYFIP1, PSMC2, and KYNU (Figure 2.13 e,f), the latter of which has 

been implicated in increased metastasis and tumor aggressiveness.[190] In sum, these results 

indicate that altered mRNA expression patterns of select luminal SeCEP genes can be used to 

distinguish the distinct subpopulations of HER2-enriched patients with poor prognosis. 

More importantly, the majority of the genes encoding BLBC- or luminal-specific 

secretome in networks showed statistically significant, secretion-correlated cis-mRNA 

expression in some BC patients. Further, by identifying their co-overexpressed patterns in BC-

subtypic patients, we revealed the pathological or prognostic significance of these secreted 

proteins in multiple interactive sub-networks (Figure 2.14a). Strikingly, the majority of the BLBC-

specific proteins involved in the interactive subnetworks associated with unfolded protein 

response, cell migration, and negative regulation of cell death. Specifically, the glycoprotein 

THBS1 promoted BC invasion and metastasis and was associated with disease recurrence in 

BC patients.[191, 192] Similarly, higher serum levels of metallopeptidase inhibitor TIMP-1 were 

associated with increased likelihood of BC metastasis.[193] Further, the disulfide isomerase 

PDIA6 promoted tumor immune evasion [194] and enhanced cell proliferation by activating 

Wnt/β-catenin signaling.[195] Three of four genes in the combination of CORO1C, MSN, 

ICOSLG, and HIST1H1B are in this subnetwork, and KM analysis reveals a significant decrease 

in the overall survival rate of BLBC patients overexpressing these genes. (Figure 2.14 b,c) 

Luminal-specific subnetworks were also identified, (Figure 2.15a) however there was no 

biological process enrichment observed. These oncogenically active interacting proteins 

included BAG3 which reduced BC cell adhesion and increased motility.[196] This network also 



29 
 

included RHOC, a small GTPase that regulates cytoskeletal architecture [197] and is associated 

with increased rates of metastasis.[198] SNCG, a neuronal protein overexpressed in BC was 

also associated with higher likelihood of metastasis.[199] TCGA and METABRIC patients 

exhibiting a four gene co-overexpression pattern involving SNCG, CLEC3A, DNPEP, and 

KRT18, three of which are members of the interacting subnetworks, had lower overall survival 

rates (Figure 2.15 b,c). Together, these results indicate the coordinated, extracellular oncogenic 

activity of the networked proteins. 

 

Secreto-transcriptomic analysis identified patient-specific co-overexpression patterns of 

select secreted proteins as prognostic markers to predict personalized response to 

therapy.  

Nether the TCGA nor the METABRIC study was designed to answer specific clinical 

questions. To assess the clinical significance of altered mRNA expression of multiple SeCEP 

genes in predicting the response to specific therapeutic interventions, we next looked for distinct 

combinations of SeCEP genes showing statistically significant changes in distant relapse free 

survival (DRFS) among patients receiving neoadjuvant taxane-anthracycline therapy in the 

clinical trial GSE25066.[200] Following similar procedures to those described above for TCGA 

and METABRIC, we performed KM analysis on the BLBC-SeCEP genes in combinations of up 

to five genes having mRNA overexpression (z-score > median z-score) for all genes in the 

combination.  

Among BLBC patients, we found 12 combinations with >10% of both GSE25066 and 

TCGA patients overexpressing each gene in the combination and having a significant difference 

in DRFS. Examples are shown in Figure 2.16 a,b. One such combination was ANXA2, CALR, 

MFAP2, and SERPINH1. ANXA2 has been reported as an independent predictor of poor 

prognosis in breast cancer patients receiving neoadjuvant therapy, [201] however 

overexpression of ANXA2 alone did not have a statistically significant impact on DRFS among 
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GSE25066 patients. Likewise, co-overexpression of ADM, MAGEA4, and PRKCSH was also 

associated with a statistically significant change in DRFS. Similar analysis of luminal-SeCEP 

gene combinations yielded five combinations with at least 10% of patients in both the 

GSE25066 and TCGA datasets overexpressing all genes in the combination and p value < 0.05. 

One combination was BLVRB, EIF4B, and ISOC1 (Figure 2.16c). Importantly, BLVRB is 

associated with the development of chemotherapeutic resistance, though overexpression of 

BLVRB alone did not predict worse patient outcomes.[202] 

Overall, these analyses identified the subpopulations within each PAM50 subtype with 

resistance to neoadjuvant anthracycline-taxane therapy along with the correlation to their poorer 

overall survival. Thus, we demonstrate the potential clinical uses of the analysis to aid the 

clinician in determining the appropriate therapeutic intervention to be employed. 

 

DISCUSSION 

The development of a novel secreto-transcriptomic approach underlies our innovation in the 

identification of liquid biopsy biomarkers capable of discriminating between patient 

subpopulations having variable outcomes. Recognizing that single-omics approaches are 

insufficient for making these distinctions, due to the negligible data on the oncogenic phenotype 

provided by genomics/transcriptomics and the inadequate phenotypic coverage of patient-

specific proteomics offers, our secreto-transcriptomic workflow is a multi-omic integrated 

method which offers a robust and efficient scheme to distinguish patient subpopulations within 

each BC subtype. First, by using a LFQ-based nanoLC-MS/MS approach for secretome 

profiling, [153, 154] we comparatively analyzed the compositional differences in the extracellular 

proteins secreted from a series of BC cell lines representing various BC- or PAM50-subtypes. 

We then determined the clinicopathological relevance of the proteins showing subtype-specific 

or subtypic secretion by a retrospective proteo-transcriptomic analysis [203] of the BC patient 

datasets (> 2600 patients) from The Cancer Genome Atlas (TCGA) [147] and METABRIC 
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(Molecular Taxonomy of BC International Consortium). [148] We found a PAM50-subtypic 

Secretion-Correlated mRNA Expression Pattern (SeCEP) wherein the PAM50-subtypic 

secretion of some proteins showed statistically significant cis-mRNA expression of the genes 

that encode them in patients with the corresponding PAM50-subtypes. This expression-to-

secretion correlation highlighted those genes that are fully translated into the oncogenically 

active secretome in a PAM50-subtypic manner. Further, we observed that patient-to-patient 

mRNA expression variations of individual secretome genes describe the interpatient 

heterogeneity within each single PAM50 subtype. In this regard, patient-specific co-

overexpression of distinct SeCEP genes were found in correlation with specific prognoses within 

distinct subsets of BLBC or luminal-A and luminal-B patients. Currently, available blood-based 

tests for cancer prognosis or diagnosis are often based on a single gene or protein marker, 

therefore lacking the specificity and sensitivity in determining individualized clinical 

outcomes.[204] Our identification of multi-gene or multi-protein panels as systems signatures 

can precisely describe the predominant tumor phenotype with significantly improved phenotype 

accuracy. Because our workflow starts with the identification of tumor-phenotypic alterations 

and work back to the genotypic data with the coverage of patient-specific alterations, we are 

able to bypass the need for extensive modeling [205] or analysis of a large number of patients 

[206] by pinpointing a few prognostically significant marker genes.  

Our dissection of the BC-subtypic secretomes highlights the differences between subtype-

characteristic extracellular functions reflecting the divergent underlying pathologies of each 

subtype. We found that although both luminal and basal secreted proteins fall into the same 

broad categories (e.g. cell motility), the functional roles of these proteins are significantly 

different between subtypes. For example, cellular movement was a highly overrepresented 

category in the secretomes of both subtypes, but the basal-specific proteins were promotive of 

cell motility while the luminal-specific proteins were inhibitive, which is in line with the more 
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aggressive nature of BLBC subtype in general. Similarly, pathway activation analysis found the 

same pathways enriched in both subtypes, but with opposite activation states. 

We identified multiple over-secreted proteins exhibiting a BC-subtypic SeCEP consistently in 

both TCGA and METABRIC databases with > 2600 BC patients which constitute the subtype-

specific fully translated oncogenic-active secretome. Additionally, the co-overexpression of 

multiple SeCEP genes in unique combinations was prognostic of differential survival rates of 

subpopulations within each PAM50-subtype. Further, these co-overexpressed gene 

combinations were distinct for each subtype, i.e. combinations showing decreased overall 

survival in one subtype did not exhibit altered survival rates in other subtypes. 

There are some important considerations to note in this study. First, due to the significant 

breast tumor heterogeneity our work cannot, and is not intended to, identify all of the secreted 

proteins relevant to the characteristics of a given tumor. We used breast cell lines as a model 

system to identify potential markers and reinforce these identifications with a broad set of patient 

data. In order to efficiently connect patient outcomes to potential markers, we must select 

practical criteria. The high expression/high secretion correlation provides a reasonable and 

straightforward link between the secretome and the transcriptome. Alternate 

expression/secretion patterns are observed, however these are harder to quantify and correlate. 

Importantly, it is not necessary to identify every gene combination of relevance in order to 

identify specific patient subpopulations with poorer outcomes. The present study also has some 

limitations which preclude the ability to identify all such subgroups, including the number of 

basal and luminal cell lines examined and the exclusion of the HER2-enriched subtype from the 

secretome analysis. Despite these limitations our work names several noteworthy gene 

combinations which define specific patient subpopulations, but more importantly provides a 

template for the further identification of combinations defining other subgroups.   

Because multiple SeCEP genes showing prognostic-significant mRNA co-overexpression in 

a marker panel were identified as over-secreted proteins in a single BC subtype, these gene-
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coded proteins are putative liquid biopsy markers to distinguish high-risk populations within 

PAM50-subtypic classification. Importantly, we also demonstrated the clinical utility of this 

method in identifying patient subpopulations with the worst outcomes in response to specific 

therapeutic interventions.  

 

CONCLUSIONS 

In summary, our novel secreto-transcriptomic method efficiently and precisely delineated 

high-risk subpopulations within each PAM50-subtype by linking oncogenically secreted proteins 

to patient-specific transcriptomic alterations that correlate with distinct clinical outcomes. This 

multi-omics approach leverages the discrimination of a few tumorigenic/oncogenic alterations in 

broad transcriptomic profiles of > 18,000 genes, which provide an advantage over any single 

omics approaches. These multi-gene prognostic markers offer individualized specificity and 

sensitivity which may guide the clinician to optimize the treatment plan for distinct patient 

subsets in blood test.  
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Figure 2.1 - Schematic of secreto-transcriptomic approach for identifying putative liquid biopsy 
prognostic markers. Label-free quantitative (LFQ) proteomics is used to resolve the 
compositional differences in cell line secretomes. Then, TCGA/METABRIC patient data are 
analyzed to determine the PAM50-subtypic transcription of genes encoding the proteins 
exhibiting either BLBC- or luminal-specific secretion. Kaplan-Meyer (KM) analysis is performed 
on combinations of genes showing a secretion-correlated mRNA expression pattern of 
increased transcription positively correlating to increased secretion to identify putative liquid 
biopsy markers for subpopulations within each subtype having reduced overall survival. 
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Figure 2.2 - A) A heatmap of unsupervised hierarchical clustering analysis of z-score normalized 
protein secretion by one non-malignant control (MCF10A), two basal breast cancer (MDA-231 
and HCC1806), and two luminal breast cancer (MCF7 and T47D) cell lines highlights intra-
subtype heterogeneity. Each cell line is represented by 3 biological replicates and 2 technical 
replicates. Red indicates higher secretion, green indicates lower secretion, and white indicates 
mean secretion. Profile plots of 4 representative clusters are shown which demonstrate proteins 
B) higher in BLBC, C) lower in luminal BC, D) lower in BLBC, and E) higher in luminal BC. Each 
line represents one protein and the color indicates the density of proteins with similar expression 
levels. 
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Figure 2.3 - A heatmap of unsupervised hierarchical clustering analysis of the z-scored basal-
specific (A) and luminal-specific (B) proteins (rows) secreted by five cell lines (columns). Each 
cell line is represented by 3 biological replicates and 2 technical replicates. Red indicates higher 
secretion, green indicates lower secretion, and white indicates mean secretion. 
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Figure 2.4 - Western blot validation of LFQ data. 
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Figure 2.5 - A) Over-represented biological processes in the basal-like and luminal BC 
subtypes. Bars representing the negative log p-values of BLBC process enrichment are 
displayed in orange and luminal values are in blue. B) Biological functions activated (positive z-
score) or suppressed (negative z-score) in the BLBC (orange) and luminal (blue) PAM50 
subtypes. C) Pathway activation analysis of PAM50 subtypes. Orange bars represent BLBC 
values and blue bars represent luminal values. Positive z-scores indicate pathway activation; 
negative z-scores indicate pathway suppression. 

A 
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Figure 2.6 - Protein-protein interaction analysis of A) basal-specific and B) luminal-specific 
secreted proteins. 
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Figure 2.7 - Heatmap of the unsupervised hierarchical clustering of mRNA expression of SeCEP genes 
(rows) in the TCGA patient cohort (columns). The PAM50 subtype of each patient is indicated by the row 
above the heatmap. Proteomic (left) and transcriptomic (right) subtype-specificity are indicated by the 
columns to the right of the heatmap. Within the heatmap red represents higher expression, blue 
represents lower expression, and white represents mean expression. 
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Figure 2.8 - Box plots showing the statistically significant altered mRNA expression (x-axis) for 
BLBC and luminal secreted proteins among TCGA patients. The distribution of mRNA 
expression for BLBC patients is shown in red on the left, and for luminal A/B patients in blue on 
the right. The z-scored mRNA expression is displayed on the x-axis. Values > 1 are considered 
to be significantly up-regulated, values < -1 to be significantly downregulated, and values 
between -1 and 1 are considered “not altered”. The median value is displayed as a black bar 
inside the box. A Mann-Whitney-Wilcoxon Test to ascertain the expression differences between 
the two PAM50-subtypic populations was performed. The p-value is displayed above the x-axis 
with p-values < 0.05 colored red if expression is higher for BLBC and blue if expression is 
higher for luminal samples.  
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Figure 2.9 - Correlation between Kaplan-Meier survival plots of the clinical outcomes and mRNA 
co-overexpression of indicated basal SeCEP genes based on TCGA (left column) and 
METABRIC (right column) patient data. "N" refers to "Number of patients," and "NE" refers to 
"Number of Events (Overall Survival status = DECEASED)". Each plot shows the log-rank p-
value and Hazard Ratio (HR) with 95% Confidence Interval (CI) between the two groups. The 
red line designates the patient subpopulation showing statistically significant overexpression of 
the indicated basal-specific genes (“altered”). The blue line designates the group of patients not 
showing statistically significant overexpression of the indicated basal-specific genes (“not 
altered”).  
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Figure 2.10 - Correlation between Kaplan-Meier survival plots of the clinical outcomes and 
mRNA co-overexpression of indicated luminal SeCEP genes based on TCGA (left column) and 
METABRIC (right column) patient data. "N" refers to "Number of patients," and "NE" refers to 
"Number of Events (Overall Survival status = DECEASED)". Each plot shows the log-rank p-
value and Hazard Ratio (HR) with 95% Confidence Interval (CI) between the two groups. The 
red line designates the patient subpopulation showing statistically significant overexpression of 
the indicated luminal-specific genes (“altered”). The blue line designates the group of patients 
not showing statistically significant overexpression of the indicated luminal-specific genes (“not 
altered”). Overexpression of CLEC3A provides less prognostic value than overexpression of 
CLEC3A in combination with other secreted factors.  
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Figure 2.11 - Correlation between Kaplan-Meier survival plots of the clinical outcomes and 
mRNA co-overexpression of indicated luminal SeCEP genes based on TCGA (left column) and 
METABRIC (right column) patient data. "N" refers to "Number of patients," and "NE" refers to 
"Number of Events (Overall Survival status = DECEASED)". Each plot shows the log-rank p-
value and Hazard Ratio (HR) with 95% Confidence Interval (CI) between the two groups. The 
red line designates the patient subpopulation showing statistically significant overexpression of 
the indicated luminal-specific genes (“altered”). The blue line designates the group of patients 
not showing statistically significant overexpression of the indicated luminal-specific genes (“not 
altered”). Co-overexpression of distinct sets of genes correlate with statistically significant 
changes in overall survival in Luminal A patients but not Luminal B or other BC subtypes. 
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Figure 2.12 - Correlation between Kaplan-Meier survival plots of the clinical outcomes and 
mRNA co-overexpression of indicated luminal SeCEP genes based on TCGA (left column) and 
METABRIC (right column) patient data. "N" refers to "Number of patients," and "NE" refers to 
"Number of Events (Overall Survival status = DECEASED)". Each plot shows the log-rank p-
value and Hazard Ratio (HR) with 95% Confidence Interval (CI) between the two groups. The 
red line designates the patient subpopulation showing statistically significant overexpression of 
the indicated luminal-specific genes (“altered”). The blue line designates the group of patients 
not showing statistically significant overexpression of the indicated luminal-specific genes (“not 
altered”). Co-overexpression of distinct sets of genes correlate with statistically significant 
changes in overall survival in Luminal B patients but not Luminal A or other BC subtypes. 
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Figure 2.13 - Correlation between Kaplan-Meier survival plots of the clinical outcomes and 
mRNA co-overexpression of indicated luminal SeCEP genes based on HER2+ patient data. "N" 
refers to "Number of patients," and "NE" refers to "Number of Events (Overall Survival status = 
DECEASED)". Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95% 
Confidence Interval (CI) between the two groups. The red line designates the patient 
subpopulation showing statistically significant overexpression of the indicated luminal-specific 
genes (“altered”). The blue line designates the group of patients not showing statistically 
significant overexpression of the indicated luminal-specific genes (“not altered”).  
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Figure 2.14 - A) The interactive subnetworks of basal SeCEP genes. B,C) Correlation between 
Kaplan-Meier survival plots of the clinical outcomes and mRNA co-overexpression of indicated 
luminal SeCEP genes based on TCGA (B) and METABRIC (C) patient data. "N" refers to 
"Number of patients," and "NE" refers to "Number of Events (Overall Survival status = 
DECEASED)". Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95% 
Confidence Interval (CI) between the two groups. The red line designates the patient 
subpopulation showing statistically significant overexpression of the indicated basal-specific 
genes (“altered”). The blue line designates the group of patients not showing statistically 
significant overexpression of the indicated basal-specific genes (“not altered”). Three of the four 
overexpressed genes are members of basal-specific interactive subnetworks. 
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Figure 2.15 – A) The interactive subnetworks of luminal SeCEP genes. B,C) Correlation 
between Kaplan-Meier survival plots of the clinical outcomes and mRNA co-overexpression of 
indicated luminal SeCEP genes based on TCGA (B) and METABRIC (C) patient data. "N" refers 
to "Number of patients," and "NE" refers to "Number of Events (Overall Survival status = 
DECEASED)". Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95% 
Confidence Interval (CI) between the two groups. The red line designates the patient 
subpopulation showing statistically significant overexpression of the indicated luminal-specific 
genes (“altered”). The blue line designates the group of patients not showing statistically 
significant overexpression of the indicated luminal-specific genes (“not altered”). Three of the 
four overexpressed genes are members of luminal-specific interactive subnetworks. 
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Figure 2.16 - Correlation between Kaplan-Meier survival plots of the clinical outcomes and 
mRNA co-overexpression of indicated SeCEP genes based on GSE25066 patient data. "N" 
refers to "Number of patients," and "NE" refers to "Number of Events (Overall Survival status = 
DECEASED)". Each plot shows the log-rank p-value and Hazard Ratio (HR) with 95% 
Confidence Interval (CI) between the two groups. The red line designates the patient 
subpopulation showing statistically significant overexpression of the indicated subtype-specific 
genes (“altered”). The blue line designates the group of patients not showing statistically 
significant overexpression of the indicated subtype-specific genes (“not altered”).  
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CHAPTER 3: A novel “outside-in” proteomic approach reveals signaling pathways 

promoting the EZH2-dependent aggressive phenotype of triple negative breast cancer 

 

INTRODUCTION 

Breast cancer (BC) is the second most common type of cancer among women in the 

United States, with over 200,000 new diagnoses of invasive breast cancer per year.[130] Many 

BC-associated genes have been identified by global genomic sequencing of metastatic and 

primary lesions,[147, 207, 208] and six BC PAM50-subtypes have been classified by a 50-gene 

transcriptome model.[64] However, these genetic and transcriptomic signatures are insufficient 

to distinguish, within single PAM50-subtypes, BC patient subpopulations having highly variable 

clinical outcomes/phenotypes. This limitation implies that evolution of malignant and metastatic 

breast pre-neoplasia is mostly due to post-genomic and post-transcriptional alterations. Among 

all BC subtypes, triple-negative breast cancer (TNBC) is the most difficult to treat and is 

generally associated with faster tumor growth rates and poorer prognosis.[83, 209] Additionally, 

TNBC is more likely to acquire drug-resistance than other types of breast cancer, further 

hindering treatment efforts.[210, 211] Conventional prognostic parameters, such as tumor size 

and grade, are often inaccurate to specify a TNBC pathological stage, and there is a lack of 

TNBC-specific biomarkers. For these reasons, some TNBC patients are diagnosed only after 

reaching advanced pathologic stages, with approximately 30% of patients undergoing distant 

relapse and some acquiring therapeutic resistance. Others are unnecessarily over-treated with 

toxic chemotherapies. Due to high TNBC mortality, there is an urgent need to develop highly 

sensitive and specific markers to predict prognosis and drug-responsiveness of TNBC patients 

and to identify new-generation targets for precision therapy. Protein biomarkers represent a 
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potentially paradigm-shifting advance in the detection and clinical evaluation of breast cancer. 

Tumor cells are a potentially rich source of biomarkers because they secrete and shed proteins 

at a higher rate than normal cells, and many of these proteins enter circulation.[83, 84]  

One epigenetic driver that has been linked to both the aggressive and drug-resistant 

phenotypes of TNBC is the chromatin modifier EZH2.[212-214] As the only catalytic subunit of 

Polycomb Repressive Complex 2 (PRC2), EZH2 acts as a master transcriptional regulator 

through the catalysis of tri-methylation of lysine 27 on histone H3 (H3K27me3) within the 

chromatin associated with transcriptionally silenced genes.[215] In particular, genes related to 

tumor suppression, cell apoptosis, and DNA repair are silenced.[216] Because of the clear 

relationship between EZH2 and disease characteristics, several phase I and II trials targeting 

EZH2 and the PRC2 complex are underway.[217] Although aberrant overexpression of EZH2 in 

breast tissue correlates with more aggressive breast cancer, higher rates of metastasis, and 

ultimately poorer clinical outcome, [218, 219] there is lack of mechanistic details with respect to 

exactly how aberrantly expressed EZH2 drives tumorigenesis or therapeutic resistance. 

Identification of the biological processes and pathways associated with EZH2 dysregulation will 

reveal the underlying mechanisms and mechanistically derive new phenotypic, non-invasive 

biomarkers for precision prognosis and therapeutic response for precision medicine. 

In correlation with distinctive pathological stage/grade, tumor cells secrete specific 

extracellular proteins (‘outer proteome’) that originate from the aberrantly regulated intracellular 

proteome and associated pathways (‘inside proteome’). We hypothesized that TNBC cells 

secrete characteristic proteins that promote the aggressive and metastatic nature of TNBC, and 

these characteristic proteins are derived from EZH2-dependent aberrant intracellular signaling 

pathways. To test this hypothesis we treated MDA-231 breast cancer cells with the EZH2 

inhibitor UNC1999 and used our label-free quantitative proteomic (LFQ) method to compare the 

protein secretomes between treated and untreated cells. We further dissected those EZH2-

dependent biological processes and pathways that contribute to breast cancer tumorigenesis 
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and aggressiveness using a novel “outside-in” LFQ proteomic approach. Our novel workflow 

first identifies potential biomarkers of EZH2-active tumors in the extracellular phenotype and 

identifies factors which may contribute to metastasis and proliferation in TNBC. It then explores 

the intracellular mechanisms involved in the production and secretion of those factors. We 

discovered that signaling intracellular signaling pathway activation was strongly reflected in the 

secretome and found that tools designed for intracellular analysis can also be effective for 

secretome screening. 

 

METHODS 

Chemicals and reagents.  Cell culture media and fetal bovine serum were obtained from 

Gibco. All other components of cell culture media and protease inhibitor cocktails were 

purchased from Sigma (St, Louis, MO). Trypsin was purchased from Promega. All chemicals 

were HPLC-grade unless specifically indicated. MDA-231 cells were purchased from ATCC 

(Manassas,VA). 

Cell culture and secreted protein collection.  MDA-231 cells were cultured in DMEM 

containing 10% fetal bovine serum. For intracellular analysis, cells were treated with 0.5 µM 

UNC1999 for 72 hours and lysed with 5x cell pellet volume of RIPA buffer (50 mM Tris pH 8.0, 

150mM NaCl, 1% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1 

µM EDTA, 1 µM phenylmethylsulfonyl fluoride). The lysates were sonicated 5 x 1 s at 30%. 

After 10 minutes of centrifugation at maximum speed, the supernatants were transferred to a 

fresh tube and the pellets were discarded. Cold acetone (4x volume) was added to the lysates, 

mixed, and stored overnight at -80°. After centrifugation at maximum speed for 10 minutes, the 

pellets were resuspended in 50 μl buffer (8 M Urea, 50 mM Tris-HCl pH 8.0, 150 mM NaCl), 

reduced with dithiothreitol (5 mM final) for 30 minutes at room temperature, and alkylated with 

iodoacetamide (15 mM final) for 45 minutes in the dark at room temperature. Alkylation was 

quenched with dithiothreitol (10 mM final). Samples were diluted 4-fold with 25mM Tris-HCl pH 
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8.0, 1mM CaCl2 and digested with 1:200 (wt/wt) trypsin overnight at room temperature. Peptides 

were desalted on a StageTip containing a 4 × 1 mm C18 extraction disk (3M) and dried.[139]   

For secretome analysis, cells were treated with 0.5 or 1 µM UNC1999 for 48 hours, then 

growth media was removed and cells were washed twice with PBS. Serum-free media without 

phenol red containing 0.5 or 1 µM was then added to the plate. After 24 hours the conditioned 

media were collected and centrifuged at 500 x g for 5 minutes to remove cellular debris, then 

the supernatant was syringe-filtered with 0.2 μm 13 mm diameter polytetrafluoroethylene filters 

(VWR International) and transferred to fresh tubes. Samples were stored at -80 °C until further 

processed. After thawing, proteins were concentrated by trichloroacetic acid/sodium 

deoxycholate precipitation. Briefly, 1/10 of the sample volume of 0.15% sodium deoxycholate 

was added to each sample, then tubes were incubated on ice for 15 minutes. Next, 1/10 of the 

original sample volume of cold 72% trichloroacetic acid was added and the tubes were 

incubated on ice for 15 minutes. Samples were centrifuged for 10 minutes at max speed, 4° C. 

The pellets were washed in cold acetone and air dried until no residual odor was detected. Next, 

the pellets were resuspended in 50 μl buffer (8 M Urea, 50 mM Tris-HCl pH 8.0, 150 mM NaCl), 

and reduction, alkylation, and trypsinization were performed as with intracellular samples. 

LC-MS/MS analysis.  LC-MS/MS analysis was performed as previously described.[203] Briefly, 

desalted peptides were dissolved to a concentration of 1 μg/μl 0.1% formic acid (Thermo-

Fisher) for intracellular analysis or in 20 μl 0.1% formic acid for secretome analysis. An injection 

of 2 μl was analyzed by an Easy nanoLC 1000 with a 15 cm C18 reverse phase column (15 cm 

× 75 μm ID, C18, 2 μm, Acclaim Pepmap RSLC, Thermo-Fisher) coupled to a Q-Exactive HF 

Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA). Peptides were eluted at 

a constant flow rate of 300 nl/min with a gradient of 5-30% buffer B (acetonitrile and 0.1% formic 

acid) for 75 min, 30%-45% buffer B for 15 min, 45%-100% buffer B for 1 min, and 100% B for 9 

min for intracellular analysis or 5-30% buffer B (acetonitrile and 0.1% formic acid) for 17 min, 

30%-40% buffer B for 3 min, 40%-100% buffer B for 1 min, and 100% B for 9 min for secretome 
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analysis. The Q-Exactive was operated in the positive-ion mode but using a data-dependent top 

20 method. Survey scans were acquired at a resolution of 70,000 at m/z 200. Up to the top 20 

most abundant isotope patterns with charge ≥ 2 from the survey scan were selected with an 

isolation window of 2.0 m/z and fragmented by HCD with normalized collision energies of 27. 

The maximum ion injection time for the survey scan and the MS/MS scans was 250 ms and 120 

ms, respectively and the ion target values were set to 1e6 and 2e5, respectively. Selected 

sequenced ions were dynamically excluded for 20 seconds. 

Mass spec data and LFQ analysis.  Mass spectral processing and peptide identification were 

performed on the Andromeda search engine in MaxQuant software (Version 1.5.3.17) against a 

human UniProt database. Cysteine carbamidomethylation was set as a defined modification, 

and methionine oxidation and protein amino-terminal acetylation were set as dynamic 

modifications. Peptide inference was made with a false discovery rate (FDR) of 1% and 

peptides were assigned to proteins with FDR of 5%. At least 7 amino acids were required with 

no more than two missed cleavages. The precursor ion mass tolerance was 8 ppm and the 

fragment ion mass tolerance was 0.5 Da. Experiments were conducted in multiple replicates 

(three biological replicates each with two technical replicates) using a match between runs 

option enabled and time window at 0.7 minutes. Data processing and statistical analysis were 

performed on Perseus (Version 1.5.1.6).[140] 

Analysis of functional category and networks of subtype-specific secreted proteins.  The 

biological processes and molecular functions of secretome proteins were categorized by 

Ingenuity Pathway Analysis (IPA) [141] and STRING [142] similar to previously described.[143]  

 

RESULTS 

EZH2 inhibition suppresses the extracellular aggressive phenotype of TNBC 

To probe the EZH2-mediated secretome, we used a label-free quantitative (LFQ) 

proteomic approach to analyze MDA-231 breast cancer cells treated with 0.5 or 1 µM of the 
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EZH2 inhibitor UNC1999 versus treatment with DMSO. The effective inhibition of EZH2 was 

confirmed by the dose-dependent reduction of the H3K27me3 marker as determined by western 

blot (Figure 3.1a). Three biological replicates were analyzed by MS with three technical 

replicates each. We identified a total of 1,877 proteins, with a range of 1,334 proteins identified 

in the untreated control group to 1,793 proteins in the cells treated with 1 µM UNC1999.  

Unsupervised hierarchical clustering revealed two clusters which showed clear trends for 

the dose dependent response to EZH2 inhibition. (Figure 3.1b) Cluster 1 consisted of 147 

proteins which showed decreased abundance after treatment with UNC1999. (Figure 3.1c) 

Interestingly, analysis by STRING found that proteins involved in glycosylation were 

overrepresented in this cluster, and aberrant glycosylation of cell surface proteins promotes 

invasion and metastasis.[220] (Figure 3.2) This cluster also contained a group of lysosomal 

proteins, and the lysosome typically increases in volume and protein content during oncogenic 

transformation.[221] Increased secretion of lysosomal proteins leading to ECM degradation has 

also been reported in several types of cancer including BC.[221, 222] Proteins involved in 

adhesion, angiogenesis, and regulation of growth provide also characterized this cluster. 

Cluster 2 contained 183 proteins which increased in a dose dependent fashion upon 

treatment with UNC1999. (Figure 3.1d) Interestingly, there were a significant number of proteins 

involved in functions such as translation and RNA splicing. (Figure 3.3) Tumors produce 

eukaryotic initiation factor (EIF) and eukaryotic elongation factor (EEF) proteins at a higher rate 

than normal cells, and the activity of some of these proteins has been linked to cancer 

development and progression.[223] This cluster was also enriched in proteins which regulate 

actin cytoskeleton reorganization and proteasomal proteins. The epithelial to mesenchymal 

transition causes dysregulation of actin cytoskeleton organization, leading to increased cell 

motility and invasion.[168] Further, TNBC exhibits proteasome “addiction,” and proteasomal 

inhibitors kill cancer cells at a higher rate than normal cells.[224]  
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To identify activated or suppressed signaling pathways which may promote TNBC-

characteristic extracellular functions we examined canonical signaling pathways using Ingenuity 

Pathway Analysis (IPA). (Figure 3.4a) EZH2 inhibition with UNC1999 resulting in increases in 

HIPPO and RhoGDI signaling, which are tumor suppressive, [225, 226] and inhibition of matrix 

metalloproteinases (MMPs). MMPs are extracellular matrix (ECM) remodelers that can cleave 

almost all components of the ECM, thereby promoting tumor cell invasion and metastasis.[227] 

EZH2 inhibition led to suppression of adherens junction remodeling, ephrin receptor signaling, 

and actin cytoskeleton signaling. All of these pathways promote cancer progression, invasion, 

and/or metastasis in breast cancer.[168, 228, 229] Overall, changes to signaling pathways due 

to EZH2 inhibition highlight the role of EZH2 in promoting an aggressive tumor phenotype. 

Likewise, IPA analysis of biological functions indicated increased cell attachment and apoptosis 

in UNC1999 treated cells, whereas cell proliferation and cell movement were among the 

decreased functions. (Figure 3.4b) 

Finally, we compared proteins which were identified as TNBC-characteristic (see chapter 

2) to those proteins which were significantly altered by EZH2 inhibition. Of the 141 basal-

specific proteins we identified, nine showed statistically significant differential secretion after 

treatment with UNC1999. All members of this group are known to be secreted, but only PCBP1 

has previously been reported to be EZH2-mediated.[230] No pathways or biological processes 

are overrepresented within this group, however these proteins represent a preliminary set of 

TNBC-characteristic, EZH2-mediated secreted proteins which may be indictors of aggressive 

metastatic disease.  

 

Intracellular pathways and processes mirror the secretome 

To investigate the intracellular mechanisms associated with the extracellular role of 

EZH2, we compared proteomic alterations in MDA-231 cells treated with UNC1999 versus 

control. The effective inhibition of EZH2 was verified by western blot using a probe against 
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H3K27Me3. (Figure 3.5a) One biological replicate was analyzed for each condition, with two 

technical replicates performed per sample. We identified 6,030 proteins and a heatmap of 

protein quantitation is shown in Figure 3.5b. Proteins identified in only one technical replicate 

were removed from the dataset, leaving 4893 proteins for analysis. Treatment with UNC1999 

substantially altered the intracellular proteomic landscape, with over 10% of proteins (539 of 

4893) having statistically significant changes in abundance.  

To examine the role of these significantly altered proteins, we used STRING to analyze 

their Gene Ontology Biological Process enrichment. (Figure 3.6) Many of the most enriched 

processes involved the mitochondria, including mitochondrial gene expression, electron 

transport chain assembly, oxidative phosphorylation, and mitochondrion organization. EZH2 

inhibition induces apoptosis through the mitochondria dependent cell death pathway in glioma 

and head and neck squamous cell carcinoma, [231, 232] but there have not been similar reports 

in breast cancer. We also found a high number of transport proteins in the UNC1999 treated 

cells which is consistent with the higher number of proteins we identified in the secretome of 

treated cells. 

Among significantly downregulated proteins we found decreases in proteins associated 

with cell cycle progression and nucleotide biosynthesis, consistent with UNC1999 treatment 

evoking a less aggressive cancer phenotype. (Figure 3.7) We also found a decrease in proteins 

involved in translation. With the increased abundance of these proteins in the secretome, this 

may indicate a need for the cell to expel extraneous proteins that were essential to the 

malignancy but expendable upon EZH2 inhibition. Interestingly, we observed a decrease in the 

chromatin organization process. This is likely due to inhibition of EZH1, which represses 

transcription through chromatin compaction and is also a target of UNC1999, rather than EZH2 

which represses transcription by depositing the H3K27Me3 mark.[233] 

To determine the intracellular signaling pathways which may exert an extracellular 

response promoting an aggressive phenotype, we analyzed signaling pathway activation with 
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IPA. (Figure 3.8a) We observed suppression of glycolysis and activation of the TCA cycle and 

oxidative phosphorylation consistent with a shift toward a normal balance of energy production 

and away from the phenotype known as the Warburg effect. The Warburg metabolic phenotype 

is characterized by increased glucose metabolism uncoupled from the TCA cycle and oxidative 

phosphorylation, resulting in most glycolysis-derived pyruvate undergoing lactic acid 

fermentation.[234] Increases to HIPPO signaling and RhoGDI signaling were also observed, 

reflecting our findings in the secretome pathway analysis.[169, 226] Further, we discovered 

decreased actin cytoskeleton skeleton signaling and remodeling of adherens junctions which 

were similarly downregulated in the secretome analysis. Indeed, we found strikingly similar 

pathway activation and suppression when comparing the secretome and intracellular analyses. 

(Figure 3.8b) Recognizing that many of these pathways were previously identified as altered in 

the basal-specific secretome (Chapter 2), we found the majority of pathways showed the same 

activation/suppression status when comparing UNC1999 treated versus untreated MDA-231 

cells to MCF10A non-malignant cells versus MDA-231. This was also true, with somewhat less 

consistency, in the IPA analysis of biological processes. (Figure 3.9a) EZH2 inhibition cause 

increased cell death and DNA damage response, while cell invasion, survival, and 

transformation were decreased. (Figure 3.9b)  

 

DISCUSSION 

 Our novel “outside-in” method is innovative in its approach to performing secretome 

analysis. We first perform an unbiased, discovery-driven screen of the secretome to identify 

those biological processes and signaling pathways which drive the extracellular phenotype. We 

then analyze the intracellular proteome to discover the mechanisms within the cell that are 

exerting an extracellular influence. Using EZH2 inhibitor UNC1999 as a probe for EZH2 activity, 

this strategy allowed us to: 1) identify specific secreted proteins that are characteristic of EZH2-

driven TNBC and contribute to the aggressive phenotype; 2) determine those EZH2-related 
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intracellular pathways which lead to the TNBC-characteristic secretome; and 3) ascertain how 

the EZH2 inhibitor intervenes in these pathways. 

 Our secretome analysis found that EZH2 has a dramatic influence on the abundance 

and type of proteins secreted. Nearly 20% of the proteins identified showed a statistically 

significant change in abundance when EZH2 was inhibited. This caused a shift away from an 

aggressive-promotive phenotype, where proteins promoting sell survival, ECM degradation, and 

tumor invasion were prevalent, toward an aggressive-suppressive phenotype, where cell 

attachment to substrate and apoptosis prevailed. This shift was reflected in the activation and 

suppression of specific BC-associated signaling pathways. The proteins identified as having 

EZH2-mediated secretion have the potential to be liquid biopsy biomarkers of aggressive BC, 

and work is ongoing in our lab to explore this possibility. 

 The intracellular analysis bore strikingly similar results to the secretome. A lesser 

percentage (~10%) of intracellular proteins showed abundance alterations with EZH2 inhibition 

versus extracellular, indicating the potent influence EZH2 has in the extracellular space. Despite 

this discrepancy, the intracellular results were highly reflective of the shift away from an 

aggressive phenotype observed in the secretome analysis. This included the same signaling 

pathways and biological processes typically being altered in the same way. However, 

intracellular analysis identified a shift in metabolism after UNC1999 treatment which suggests a 

role for EZH2 in aberrant energy metabolism, which has been reported in glioblastoma [235] 

and pancreatic cancer [236] but not breast cancer. Additional work is being performed to 

determine whether the intracellular EZH2-dependent proteins may be potential prognostic 

markers. 

 Importantly, our outside-in approach found significant overlap between signaling 

pathway activation status and biological process enrichment in the intracellular and extracellular 

space. This is significant because many bioinformatics tools, including IPA, are based on 

evidence from intracellular studies. Although IPA is commonly used for secretome analysis, 
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[237-240] to our knowledge this is the first study suggesting that this use of IPA is valid. Our 

results provide support to previous studies in which an intracellular/extracellular correlation was 

assumed but not tested. 

 

CONCLUSIONS 

 In sum, we developed a novel approach to the identification of putative biomarkers and 

the cellular pathways promoting their production and secretion. We identified a set of EZH2-

mediated secreted proteins which characterize the aggressive nature of EZH2-active tumors. 

We then looked inside the cell and found highly similar signaling pathway activation driving the 

aggressive phenotype.     
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Figure 3.1 – A) Western blot showing a dose-dependent decrease in H3K27Me3 indicating 
effective inhibition of EZH2 B) A heatmap of unsupervised hierarchical clustering analysis of z-
score normalized protein secretion MDA231 cells treated for 72 hours with 0.5 or 1 μM 
UNC1999 or DMSO. Each condition is represented by 3 biological replicates and 3 technical 
replicates. Red indicates higher secretion, green indicates lower secretion, and white indicates 
mean secretion. Profile plots of UNC1999 dose-dependent C) lower secretion or D) higher 
secretion. Each line represents one protein and the color indicates the density of proteins with 
similar expression levels. 
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Figure 3.2 – STRING analysis of proteins with dose-dependent decreased secretion after 
treatment with UNC1999. Select biological processes are highlighted. 
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Figure 3.3 – STRING analysis of proteins with dose-dependent increased secretion after 
treatment with UNC1999. Select biological processes are highlighted. 
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Figure 3.4 - A) Pathway activation analysis of EZH2-dependent signaling. Positive z-scores 
indicate pathway activation; negative z-scores indicate pathway suppression. B) Biological 
functions activated (positive z-score) or suppressed (negative z-score) after treatment with 
UNC1999.   
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Figure 3.5 - A) Western blot showing decrease in H3K27Me3 indicating effective inhibition of 
EZH2. B) A heatmap of unsupervised hierarchical clustering analysis of z-score normalized 
protein secretion MDA231 cells treated for 72 hours with 0.5 μM UNC1999 or DMSO. Each 
condition is represented by 1 biological replicates and 2 technical replicates. Red indicates 
higher secretion, green indicates lower secretion, and white indicates mean secretion. 
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Figure 3.6 – STRING analysis of proteins with increased intracellular abundance after treatment 
with UNC1999. Select biological processes are highlighted. 
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Figure 3.7 – STRING analysis of proteins with decreased intracellular abundance after 
treatment with UNC1999. Select biological processes are highlighted. 
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Figure 3.8 - A) Pathway activation analysis of EZH2-dependent signaling. Positive z-scores 
indicate pathway activation; negative z-scores indicate pathway suppression. B) Comparison of 
pathway activation based intracellular changes with EZH2 inhibition (left column), secretome 
changes with EZH2 inhibition (center column), and basal-specific secreted proteins (right 
column). Red indicates pathway activation and green indicates pathway suppression. Pathways 
indicated by * are enriched but activation status is uncertain. 
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Figure 3.9 - A) Biological function analysis of EZH2-dependent functions. Positive z-scores 
indicate the function increased after treatment with UNC1999; negative z-scores indicate the 
function decreased after treatment. B) Comparison of biological function analysis based 
intracellular changes with EZH2 inhibition (left column), secretome changes with EZH2 inhibition 
(center column), and basal-specific secreted proteins (right column). Red indicates function 
increase after UNC1999 treatment and green indicates function decrease. 
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CHAPTER 4: QUANTITATIVE PROTEOMIC ANALYSIS OF SPLICEOSOME PROTEIN 

SNRPD1 REVEALS COMPLEX ROLE IN BREAST CANCER CELLS 

 

INTRODUCTION 

Most human genes span multiple exons which must be spliced together to form a mature 

mRNA product. Approximately 90-95% of multi-exon genes undergo alternative splicing, [241, 

242] a highly regulated process in which multiple isoforms can be produced by the same gene 

thereby providing functional diversity to the proteome.[243] Alternative splicing may take the 

form of differential initiation or termination site usage, intron retention, or exon skipping. (Figure 

4.1) However, deregulation of alternative splicing due to e.g. mutations in splicing factors, 

expression changes in splicing regulators, and mutation of splicing regulator sequences has 

been observed in many types of cancer, and aberrant splicing patterns are a hallmark of human 

tumors.[244] 

Most splicing is performed by the spliceosome, a multi-megadalton complex having five 

uridine-rich small nuclear ribonucleoproteins (snRNPs) as the primary components.[245, 246] 

These snRNPs (U1, U2, U4, U5, and U6) are each composed of a small nuclear RNA (snRNA), 

seven Sm or SNRP proteins which form a ring structure around the snRNA, and a variable 

number of complex-specific proteins.[246] Several hundred proteins serve as regulatory factors 

through interaction with the core machinery.[247] Importantly, SNRP protein overexpression or 

methylation-induced alterations to SNRP protein activity can cause alternative splicing 

deregulation.[248-250] 

SNRPD1 (also known as SmD1) is one of several SNRP proteins overexpressed in 

breast cancer.[248] Previous work in our lab demonstrated that SNRPD1 overexpression is 
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BLBC-specific and is often due to copy number gain.[203] Knockdown of SNRPD1 by siRNA 

[248] or CRISPR/Cas9 [203] reduced proliferation, survival, and invasion in breast cancer cell 

lines. Further, SNRPD1 is a major promoter of pluripotency acquisition and maintenance in 

human stem cells.[251] Independent of the role in alternative splicing, SNRPD1 is essential for 

microRNA biogenesis in Drosophila.[252] 

Despite playing roles in several biological processes and being linked to multiple cancer 

types, little is known about the effect of SNRPD1 expression at a systems level. Therefore, we 

set out to characterize the intra- and extracellular effects of SNRPD1 depletion. We performed a 

comparative quantitative proteomic analysis of MDA-231 cells with CRISPR/Cas9 mediated 

SNRPD1 knockdown (KD) versus empty vector control. We found that SNRPD1 knockdown 

caused intracellular proteomic changes which are suggestive of a less aggressive phenotype. 

Our analysis also revealed that signaling pathway activation after SNRPD1 KD was inconsistent 

with changes observed in biological process enrichment. Finally, we show that SNRPD1 KD 

caused a significant increase to protein secretion leading to contradictions between the 

intracellular and extracellular proteomes. 

 

METHODS 

Chemicals and reagents.  Cell culture media and fetal bovine serum were obtained from 

Gibco. All other components of cell culture media and protease inhibitor cocktails were 

purchased from Sigma (St, Louis, MO). Trypsin was purchased from Promega. All chemicals 

were HPLC-grade unless specifically indicated. MDA-231 cells were purchased from ATCC 

(Manassas,VA). 

CRISPR/Cas9 knockout.  Oligonucleotides for the SNRPD1 sgRNA (Forward-

CACCGCCGTACCTGTGATTGTTCCA; Reverse-AAACTGGAACAATCACAGGTACGGC) were 

annealed and cloned in BsmBI-digested lentiCRISPRv2 (Sanjana et al., 2014). The empty 

vector was used as a negative control. jetPRIME was used to transfect a total of 10 μg of 
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plasmids, including target plasmid, pMD2.G, and psPAX2 with a ratio of 10:5:9 into 293T cells. 

At 48 hours after transfection the media containing the virus were collected. MDA-MB-231 cells 

at 60-80% confluency were incubated with the virus containing media for 24-48 hours, and then 

subjected to 1.0 μg/mL puromycin selection. After 4-7 days puromycin selection, the stably 

transfected cells were collected for further analysis. 

Cell culture and secreted protein collection.  MDA-231 cells were cultured in DMEM 

containing 10% fetal bovine serum. For intracellular analysis, cells were harvested at ~80% 

confluence and lysed with 5x cell pellet volume of RIPA buffer (50 mM Tris pH 8.0, 150mM 

NaCl, 1% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1 µM 

EDTA, 1 µM phenylmethylsulfonyl fluoride). The lysates were sonicated 5 x 1 s at 30%. After 10 

minutes of centrifugation at maximum speed, the supernatants were transferred to a fresh tube 

and the pellets were discarded. Cold acetone (4x volume) was added to the lysates, mixed, and 

stored overnight at -80°. After centrifugation at maximum speed for 10 minutes, the pellets were 

resuspended in 50 μl buffer (8 M Urea, 50 mM Tris-HCl pH 8.0, 150 mM NaCl), reduced with 

dithiothreitol (5 mM final) for 30 minutes at room temperature, and alkylated with iodoacetamide 

(15 mM final) for 45 minutes in the dark at room temperature. Alkylation was quenched with 

dithiothreitol (10 mM final). Samples were diluted 4-fold with 25mM Tris-HCl pH 8.0, 1mM CaCl2 

and digested with 1:200 (wt/wt) trypsin overnight at room temperature. Peptides were desalted 

on a StageTip containing a 4 × 1 mm C18 extraction disk (3M) and dried.[139]   

For secretome analysis, growth media was removed when cells reached approximately 

70% confluence, cells were washed twice with PBS, and serum-free media without phenol red 

was added to the plate. After 24 hours the conditioned media were collected and centrifuged at 

500 x g for 5 minutes to remove cellular debris, then the supernatant was syringe-filtered with 

0.2 μm 13 mm diameter polytetrafluoroethylene filters (VWR International) and transferred to 

fresh tubes. Samples were stored at -80 °C until further processed. After thawing, proteins were 

concentrated by trichloroacetic acid/sodium deoxycholate precipitation. Briefly, 1/10 of the 
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sample volume of 0.15% sodium deoxycholate was added to each sample, then tubes were 

incubated on ice for 15 minutes. Next, 1/10 of the original sample volume of cold 72% 

trichloroacetic acid was added and the tubes were incubated on ice for 15 minutes. Samples 

were centrifuged for 10 minutes at max speed, 4° C. The pellets were washed in cold acetone 

and air dried until no residual odor was detected. Next, the pellets were resuspended in 50 μl 

buffer (8 M Urea, 50 mM Tris-HCl pH 8.0, 150 mM NaCl), and reduction, alkylation, and 

trypsinization were performed as with intracellular samples. 

LC-MS/MS analysis.  LC-MS/MS analysis was performed as previously described.[203] Briefly, 

desalted peptides were dissolved to a concentration of 1 μg/μl 0.1% formic acid (Thermo-

Fisher) for intracellular analysis or in 20 μl 0.1% formic acid for secretome analysis. An injection 

of 2 μl was analyzed by an Easy nanoLC 1200 with a 15 cm C18 reverse phase column (15 cm 

× 75 μm ID, C18, 2 μm, Acclaim Pepmap RSLC, Thermo-Fisher) coupled to a Q-Exactive HF-X 

Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA). Peptides were eluted at 

a constant flow rate of 300 nl/min with a gradient of 5-30% buffer B (acetonitrile and 0.1% formic 

acid) for 75 min, 30%-45% buffer B for 15 min, 45%-100% buffer B for 1 min, and 100% B for 9 

min for intracellular analysis or 5-30% buffer B (acetonitrile and 0.1% formic acid) for 17 min, 

30%-40% buffer B for 3 min, 40%-100% buffer B for 1 min, and 100% B for 9 min for secretome 

analysis. Experiments were performed using a data-dependent top 20 method in positive-ion 

mode. Full MS was performed at a resolution of 60,000 and m/z=200. Up to the top 20 most 

intense ions with charge ≥ 2 from full MS were selected with an isolation window of 1.4 m/z and 

higher energy collisional dissociation was used to fragment peptides at a normalized collision 

energy of 27 eV. The maximum ion injection time for full MS was 100 ms with ion target value of 

3e6, and maximum ion injection time for MS/MS was 100 ms with ion target value of 1e5. 

Selected sequenced ions were dynamically excluded for 30 seconds. 

Mass spec data and LFQ analysis.  Mass spectral processing and peptide identification were 

performed on the Andromeda search engine in MaxQuant software (Version 1.5.3.17) against a 
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human UniProt database. Cysteine carbamidomethylation was set as a defined modification, 

and methionine oxidation and protein amino-terminal acetylation were set as dynamic 

modifications. Peptide inference was made with a false discovery rate (FDR) of 1% and 

peptides were assigned to proteins with FDR of 5%. At least 7 amino acids were required with 

no more than two missed cleavages. The precursor ion mass tolerance was 8 ppm and the 

fragment ion mass tolerance was 0.5 Da. Experiments were conducted in multiple replicates 

(three biological replicates each with two technical replicates) using a match between runs 

option enabled and time window at 0.7 minutes. Data processing and statistical analysis were 

performed on Perseus (Version 1.5.1.6).[140] 

Analysis of functional category and networks of subtype-specific secreted proteins.  The 

biological processes and molecular functions of secretome proteins were categorized by 

Ingenuity Pathway Analysis (IPA) [141] and STRING [142] similar to previously described.[143]  

 

RESULTS 

SNRPD1 knockdown causes significant widespread changes to diverse cell processes and 

signaling pathways 

To examine the role of SNRPD1 from a systems view, label free quantitative (LFQ) mass 

spectrometry was performed to analyze the differential expression of CRISPR/Cas9 mediated 

knockdown of SNRPD1 vs empty vector. A total of 4520 proteins were identified in at least one 

of three biological replicates with two technical replicates performed for each. Of these, 1156 

proteins were found in 2 or fewer replicates and were not further analyzed. Figure 4.2 shows a 

heat map of the LFQ results. Strikingly, statistical analysis by t test found that 2365 of the 

remaining 3364 proteins (70.3%) showed statistically significant change in expression (fold-

change > 1.5; p < 0.05) in SNRPD1 KD cells. Reduction in SNRPD1 expression down was 

confirmed by MS results (1.6-fold decrease; p = 3 x 10-6) and western blot (Figure 4.3 a, b). 
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To determine the biological processes altered by SNRPD1 knockdown, we used 

STRING to analyze the 2365 proteins with significant changes in expression. Among proteins 

with decreased expression after SNRPD1 knockdown we found a statistically significant 

reduction in the expression of proteins involved in ribosome biogenesis, RNA catabolic process, 

and mRNA splicing via spliceosome. (Figure 4.4) Strikingly, 89% of large and small ribosomal 

subunit proteins we identified showed decreased expression in the KD cells. (Figure 4.3a) Cell 

cycle proteins were also overrepresented among proteins with decreased expression after 

SNRPD1 knockdown. In contrast, expression of proteins which promote differentiation, including 

tumor suppressor BIN1 [253] increased in SNRPD1 knockout cells. (Figure 4.5) Surprisingly, 

proteins involved in oxidation-reduction processes, such as PRDX2, PRDX5, and BLVRA which 

are protective against oxidative stress [254, 255] and may promote cell survival also showed 

upregulated expression. Finally, knockdown of SNRPD1 caused increased expression of 

transport proteins involved in protein secretion. These results indicate the contrasting roles of 

SNRPD1 in suppressing some features, such as elevated secretion and cell survival, which are 

characteristic of cancer, while promoting other cancer-characteristic features like increased 

protein expression and cell cycle progression. 

We next analyzed signaling pathway activation and suppression using Ingenuity 

Pathway Analysis (IPA). (Figure 4.6a) Surprisingly, despite STRING analysis indications of a 

generally less aggressive phenotype of SNRPD1 KD cells, IPA analysis found activation of 

several signaling pathways associated with cancer progression. For example, integrin signaling, 

which promotes epithelial-mesenchymal transition and tumor invasion, [256] was highly active 

after SNRPD1 knockdown. Likewise, we observed an increase in RhoA signaling which has 

been implicated in cell survival, proliferation, and metastasis.[257] Actin cytoskeleton signaling 

was also activated in SNRPD1 KD cells, and this pathway is critical to tumor cell motility and 

invasion.[258] 
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Despite the surprising activation of these signaling pathways, IPA analysis of biological 

functions affected by SNRPD1 knockdown are consistent with STRING results. (Figure 4.6b) 

Biological functions found to be increased included cell death of cancer cells and autophagy of 

cells. SNRPD1 knockdown by siRNA has previously been reported to promote autophagy.[248] 

Surprisingly, although EIF2 signaling was suppressed we also observed increased translation. 

On the other hand, we found decreases in RNA processing and cell cycle progression in 

addition to cell survival and cell viability. The biological functions of the proteins we have 

identified do not reflect the apparent activation of signaling pathways which promote cell growth 

and proliferation. 

 

The secretome reflects consistent pathway activation to intracellular proteome but 

contradictory biological functions  

Given the increased secretion we observed in the analysis of intracellular proteins, we 

next set out to determine the role of SNRPD1-dependent protein secretion. We compared the 

secreted proteomic profile of MDA-231 cells with CRISPR-Cas9 medicated knockdown of 

SNRPD1 versus empty vector. A total of 1215 proteins were identified between the two cell 

lines, and a heatmap indicating protein quantitation is shown in Figure 4.7. Based on 

comparison to the Vesiclepedia database 978 (80%) of the identified proteins were previously 

known to be secreted by breast cancer cell lines, and 1147 (94%) were known to be secreted by 

at least one of the cell lines or tissue types in the database. These results indicated the 

excellent quality of our secretome identifications. After removing proteins identified in <2/3 of 

replicates or identified by only one unique peptide, 702 proteins remained for further analysis.  

To identify proteins differentially secreted in a statistically significant manner, we 

performed a t test analysis on the two groups. (Figure 4.8) We found that 378 of 702 (54%) 

proteins were differentially secreted after SNRPD1 knockdown. Of these, 237 were secreted in 

greater abundance by SNRPD1 KD cells. Interestingly, analysis of the biological functions of 



80 
 

these proteins by STRING indicated enrichment of RNA catabolic process, ribosome 

biogenesis, and mRNA splicing via spliceosome. (Figure 4.9) These results strongly differ from 

our analysis of the intracellular proteome which found the same processes reduced with 

SNRPD1 knockdown. We likewise observed increased extracellular abundance of cell cycle 

proteins in contrast to intracellular reduction of those proteins in SNRPD1 KD cells. On the other 

hand, increased secretion after SNRPD1 KD was consistent between the intracellular and 

extracellular results. 

  STRING analysis of the 141 proteins secreted in lower abundance by SNRPD1 KD cells 

indicated a less aggressive phenotype after knockdown. For example, we found that SNRPD1 

knockdown resulted in secretion of fewer proteins related to cell migration, locomotion, and 

wound healing. (Figure 4.10) Further, we identified angiogenesis and vasculature development 

as suppressed processes in the SNRPD1 KD secretome. Overrepresentation of growth and cell 

adhesion proteins among lower secreted proteins also suggests that SNRPD1 knockdown 

contributed to reduced aggressive characteristics in the cells. 

To determine signaling pathway activation we next applied Ingenuity Pathway Analysis 

to the secretome data. In general, pathway activation indicated by secreted proteins was 

consistent with intracellular results. (Figure 4.11a) For example, both secretome and 

intracellular results indicated increases in RhoA signaling, integrin signaling, and regulation of 

actin based motility. However, there were also notable discrepancies between the secretome 

and intracellular pathway activation. For example, the secretome of SNRPD1 KD cells indicated 

high activation of EIF2 signaling while intracellular proteins indicated strong suppression of the 

pathway. This result reflects the decrease of intracellular proteins and increase of extracellular 

proteins related to ribosome biogenesis and RNA processing. On the other hand, despite 

intracellular activation of IL-8 signaling which promotes angiogenesis and tumor growth, 

secretome results indicated modest suppression of the pathway.  
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Analysis of the biological functions of the secreted proteins further accentuated the 

differences between the intracellular and extracellular proteomes. (Figure 4.11b) Proteins 

promoting cell survival and proliferation were higher in the secretome of SNRPD1 KD versus 

control with a concordant decrease in proteins involved in cell death. Interestingly, a decrease in 

proteins related to tumor invasion, angiogenesis, and metastasis was also observed.  

 

DISCUSSION 

 To probe the systems-level effects of spliceosome protein SNRDP1 dysregulation we 

employed a label free proteomic approach for both intra- and extracellular analysis. Using 

various bioinformatics tools, we compared proteomic alterations occurring in MDA-231 breast 

cancer cells with CRISPR/Cas9-mediated SNRPD1 knockdown vs an empty vector control. 

Although SNRPD1 is often overexpressed in aggressive breast cancer and contributes to tumor 

invasion progression and invasion, [203, 248] to our knowledge this is the first study to examine 

the role of SNRPD1 on a broad scale. 

 Knockdown of SNRPD1 caused extensive alterations of signaling pathways and 

biological functions in MDA-231 cells, with over 70% of proteins quantified having a statistically 

significant change in expression. These pervasive protein abundance alterations resulted in   

disruption or promotion of wide-ranging processes including cell signaling, protein secretion, 

oxidative stress response, metabolism, and the cell cycle. The greatest changes occurred in 

proteins which interact most closely with SNRPD1, specifically other SNRP proteins, auxiliary 

spliceosome proteins, and ribosomal proteins. EIF2 signaling, which drives mRNA translation 

initiation, was consequently suppressed.  

The overall effect of SNRPD1 knockdown was unclear. Although proteins involved in 

differentiation increased and cell cycle decreased suggested a less aggressive phenotype in 

SNRPD1 KD cells, signaling pathway analysis indicated activation of several pathways 

associated with cancer proliferation, invasion, and metastasis. In previous studies, SNRPD1 
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knockdown caused decreases to proliferation and invasive potential of MDA-231 cells. These 

results suggest that the cellular phenotype is changing in spite of pathway activation, likely due 

to the lack of available translational machinery. Additional work finding a buildup of untranslated 

transcripts would support this proposal. 

 Secretome analysis was likewise enigmatic. Although pathway activation was nearly 

identical to intracellular results, the biological functions associated with the proteins identified 

were nearly opposite. Three observations lead us to hypothesize that the SNRPD1 KD cells are 

ejecting excess cellular content into the extracellular space: 1) secretion was increased in the 

knockdown cell lines; 2) many intracellular proteins including ribosomal proteins were increased 

in the KD secretome; and 3) the secretome starkly contrasts the intracellular proteome. The 

presence of intracellular proteins in the extracellular space is likely not due to cell death. 

Although SNRPD1 depletion using siRNA caused cell death, [248] our knockdown resulted in a 

more modest 1.6-fold decrease in SNRPD1 abundance. We observed a healthy appearance 

and continued growth of the SNRPD1 KD cells, albeit at a slower rate than the control cell lines. 

(data not shown) Further, IPA indicated only modest apoptosis signaling in any experiment. The 

clearly distinguished results between intracellular and secretome biological functions also 

suggests mass protein expulsion from the cell, wherein certain functions are underrepresented 

intracellularly because those proteins were secreted, causing extracellular overrepresentation, 

and not replenished. 

 There are some important limitations to this study. First, the role of SNRPD1 is likely due 

to aberrant alternative splicing. However, due to proteomic coverage limitations of mass 

spectrometry, alternative isoforms may not be properly identified or quantitated. Importantly, 

trypsin preferentially cleaves peptides at exon-exon junctions, so junction-spanning peptides are 

rare. A multi-omic approach integrating transcriptomic experiments could significantly expand 

these findings. Additionally, our work has focused only on SNRPD1 knockdown. 
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Overexpression of SNRPD1 in a less aggressive breast cancer cell line, such as MCF7 or 

T47D, should be performed to support our results. 

 

CONCLUSIONS 

 In summary, our systems-level analysis of SNRPD1 function by comparative quantitative 

proteomic analysis revealed complex and far-ranging alterations to both the intracellular and 

extracellular proteomes. The biological function changes associated with SNRPD1 knockdown 

suggest SNRPD1 may be a therapeutic target for reducing breast cancer aggressiveness 

despite signaling pathway activation typically associated with growth and proliferation.  
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Figure 4.1 - Various forms of alternative splicing are shown.  A pre-mRNA is shown on the left 
and possible mature mRNA variants are shown on the right. Reprinted from Wang and Lee 
under the Creative Commons Attribution License. (https://creativecommons.org/licenses/by/4.0/) 
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Figure 4.2 - A heatmap of unsupervised hierarchical clustering analysis of z-scored intracellular 
protein abundance. Each row indicates a protein and each column indicates a replicate 
measurement. Two technical replicates were performed for each of three biological replicate of 
SNRPD1 KD or empty vector control (CTRL) MDA-231 breast cancer cells. Red indicates higher 
abundance, green indicates lower abundance, and white indicates mean abundance. 
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Figure 4.3 – A) Volcano plot of intracellular proteins identified in SNRPD1 KD and empty vector 
control (CTRL) MDA-231 breast cancer cells. Positive values indicate higher expression in 
SNRPD1 KD cells and negative values indicate higher expression in CTRL cells. Ribosomal 
proteins with statistically significant altered exression and fold change >1.5 are indicated in red. 
SNRPD1 is indicated by a black star. B) Western blot of SNRPD1 knockdown. 
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Figure 4.4 – STRING interaction network of downregulated intracellular proteins in SNRPD1 KD 
cells. Select biological processes have been highlighted. 
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Figure 4.5 – STRING interaction network of upregulated intracellular proteins in SNRPD1 KD 
cells. Select biological processes have been highlighted. 
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Figure 4.6 – IPA analysis of changes in intracellular proteins in SNRPD1 KD cells. A) IPA 
biological function analysis. Positive z-scores indicate biological function increase in SNRPD1 
KD cells; negative z-scores indicate biological function decrease in SNRPD1 KD cells. B) IPA 
pathway activation analysis. Positive z-scores indicate pathway activation; negative z-scores 
indicate pathway suppression. 
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Figure 4.7 - A heatmap of unsupervised hierarchical clustering analysis of z-scored extracellular 
protein abundance. Each row indicates a protein and each column indicates a replicate 
measurement. Two technical replicates were performed for each of three biological replicate of 
SNRPD1 KD or empty vector control (CTRL) MDA-231 breast cancer cells. Red indicates higher 
secretion, green indicates lower secretion, and white indicates mean secretion. 
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Figure 4.8 – Volcano plot of secreted proteins identified in SNRPD1 KD and empty vector 
control (CTRL) MDA-231 breast cancer cells. Positive values indicate higher secretion by 
SNRPD1 KD cells and negative values indicate higher secretion by CTRL cells. Ribosomal 
proteins with statistically significant altered expression and fold change >1.5 are indicated in 
red.  
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Figure 4.9 – STRING interaction network of higher secreted proteins in SNRPD1 KD cells. 
Select biological processes have been highlighted. 
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Figure 4.10 – STRING interaction network of higher secreted proteins in SNRPD1 KD cells. 
Select biological processes have been highlighted. 

 

 

 

Angiogenesis 

Cell migration 

Post-translational protein modification 



94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 – IPA analysis of changes in secreted proteins in SNRPD1 KD cells. A) IPA 
biological function analysis. Positive z-scores indicate biological function increase in secretome 
of SNRPD1 KD cells; negative z-scores indicate biological function decrease in secretome of 
SNRPD1 KD cells. B) IPA pathway activation analysis. Positive z-scores indicate pathway 
activation; negative z-scores indicate pathway suppression. 
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CHAPTER 5: PROTEOMIC DISSECTION OF SYSTEMS-LEVEL EFFECTS OF IDH1 

MUTATION IN DIFFUSE GLIOMA 

 

INTRODUCTION 

 Gliomas are the most common type of primary brain tumor and are typically classified as 

grade I to IV based on histopathological and clinical criteria.[259] Grade I gliomas are typically 

benign, rarely transform to invasive cancer, and are often curable by surgery alone.[260] Grade 

IV gliomas, or glioblastoma multiforme (GBM), are highly aggressive tumors, offering patients 

very poor prognosis and among the lowest survival rates of any cancers.[260] About 20% of 

GBM are secondary tumors arising from the progression of a grade II or III tumor.[261] Among 

grade II and III tumors, approximately 80% have a mutation in the isocitrate dehydrogenase 1 

(IDH1) enzyme which is typically R132H although other variants have been reported.[262] This 

mutation is an early, if not initiating, step in oncogenesis.[263] Despite the role of IDH1 mutation 

in oncogenic transformation, patients with these mutations have longer median overall survival 

rates than patients with the wild type enzyme.[264] 

 The R132H mutation of IDH1 results in a number of contributory downstream pathogenic 

effects. The primary consequence of mutation is the inhibition of IDH1 enzymatic function in 

conversion of isocitrate to α-ketoglutarate (α–KG) resulting in disruption of the TCA cycle, 

increased abundance of isocitrate, and decreased availability of α-KG.[260] In a further upset to 

the metabolic balance, R132H mutation imparts gain-of-function activity to IDH1 whereby the 

enzyme promotes the conversion of α-KG to R-2-hydroxyglutarate (R-2HG).[265] R-2HG is an 

oncometabolite which disrupts normal cellular function through diverse mechanisms, the full 

extent of which are currently poorly understood. Due to structural similarities, R-2HG can act as 
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an inhibitor to α-KG dependent enzymes including less sensitive species due to the potential 

millimolar concentrations of R-2HG in the cytoplasm of IDH1-mutated tumors.[265] One class 

impacted enzymes is α-KG-dependent dioxygenases which have been associated with 

tumorigenesis and cancer progression.[266] Importantly, α-KG dependent dioxygenases include 

the Jumonji family of histone demethylases and the ten eleven translocation (TET) family of 5-

methylcytosine hydroxyases.[267] The inhibition of these enzymes leads to increased histone 

methylation and a CpG island methylator phenotype respectively in IDH1 mutated gliomas.[268] 

This hypermethylation results in suppression of important tumor suppressor genes and 

chromatin structure remodeling.[268] 

In addition to epigenetic effects, aberrant α-KG-dependent dioxygenase activity also 

causes aberrant collagen maturation and response to hypoxia. Proline and lysine residues on 

collagen IV, a major component of the basement membrane, are subject to modification by α-

KG-dependent hydroxylation which is critical for stability of the triple helix structure of mature 

collagen.[269] Disruption of this process by R-2HG leads to a fragile basement membrane, 

increased type IV collagen solubility, and accumulation of misfolded proteins in the endoplasmic 

reticulum.[270] Finally, despite inconsistency in previous reports, most recent studies show 

IDH1 mutation suppresses HIF1-α expression even in hypoxic conditions.[271-274] Notably, 

reports finding IDH1 causes upregulation of HIF1-α often utilized the U87 glioma cell line with 

overexpressed R132H IDH1 [275] or an acute myeloid leukemia mouse model with R132H 

mutation in myeloid progenitor cells.[270, 276] On the other hand, those testing endogenous 

mutant IDH1 in patient-derived glioma cells found HIF1-α suppressed.[271-274] The likely 

mechanism of HIF1-α suppression is via R-2HG activation of EGLN1 which promotes HIF1-α 

affinity for VHL ubiquitin ligase, thereby promoting HIF1-α proteosomal degradation.[274] 

Because of the significant role in glioma biology, R-2HG is an important marker which can be 

monitored non-invasively by MRI to track therapeutic progress.[277, 278] 
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 Despite recent advances in our understanding of IDH1 mutation effects, the full impact of 

the resulting metabolic disruption is not known. To investigate additional biological processes 

and pathways which may be affected by IDH1 mutation, we employed a label-free quantitative 

(LFQ) proteomic approach to comparatively analyze intracellular proteins in patient-derived 

IDH1 mutant vs wild type glioma cells. Our data were validated by corroboration of known 

effects of IDH1 mutations, and we report several new pathways and processes which may 

contribute to IDH1 mutant glioma pathogenesis or progression. 

 

METHODS 

Chemicals and reagents.  Cell culture media and fetal bovine serum were obtained from 

Gibco. All other components of cell culture media and protease inhibitor cocktails were 

purchased from Sigma (St, Louis, MO). Trypsin was purchased from Promega. All chemicals 

were HPLC-grade unless specifically indicated. MDA-231 cells were purchased from ATCC 

(Manassas,VA). 

Cell culture.  Patient-derived glioma cells were cultured in NeuroCult™ NS-A Basal Medium 

(Human) supplemented with NeuroCult™ NS-A Proliferation Kit (Human), 2 μg/ml heparin, 10 

ng/ml human recombinant bFGF, and 20 ng/ml human recombinant EGF. Cells were harvested 

at ~80% confluence and lysed with 5x cell pellet volume of RIPA buffer (50 mM Tris pH 8.0, 

150mM NaCl, 1% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate, 1 

µM EDTA, 1 µM phenylmethylsulfonyl fluoride). The lysates were sonicated 5 x 1 s at 30%. 

After 10 minutes of centrifugation at maximum speed, the supernatants were transferred to a 

fresh tube and the pellets were discarded. Cold acetone (4x volume) was added to the lysates, 

mixed, and stored overnight at -80°. After centrifugation at maximum speed for 10 minutes, the 

pellets were resuspended in 50 μl buffer (8 M Urea, 50 mM Tris-HCl pH 8.0, 150 mM NaCl), 

reduced with dithiothreitol (5 mM final) for 30 minutes at room temperature, and alkylated with 

iodoacetamide (15 mM final) for 45 minutes in the dark at room temperature. Alkylation was 
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quenched with dithiothreitol (10 mM final). Samples were diluted 4-fold with 25mM Tris-HCl pH 

8.0, 1mM CaCl2 and digested with 1:200 (wt:wt) trypsin overnight at room temperature. Peptides 

were desalted on a StageTip containing a 4 × 1 mm C18 extraction disk (3M), separated into 

100 µg aliquots, and dried.[139]  Peptides were resuspended in 22 µl 10 mM ammonium 

formate (pH 10) and fractionated by reverse phase fractionation. The fractions were combined 

in a non-continuous manner as described.[279] Each fraction was desalted and dried as before. 

LC-MS/MS analysis.  LC-MS/MS analysis was performed as previously described.[203] Briefly, 

desalted peptides were dissolved to a concentration of 1 μg/μl 0.1% formic acid (Thermo-

Fisher). An injection of 4 μl was analyzed by an Easy nanoLC 1000 with a 15 cm C18 reverse 

phase column (15 cm × 75 μm ID, C18, 2 μm, Acclaim Pepmap RSLC, Thermo-Fisher) coupled 

to a Q-Exactive Orbitrap mass spectrometer (Thermo Fisher Scientific, San Jose, CA). Peptides 

were eluted at a constant flow rate of 300 nl/min with a gradient of 2-30% buffer B (acetonitrile 

and 0.1% formic acid) for 150 min, 30%-80% buffer B for 15 min, and 80% B for 15 min. 

Experiments were performed using a data-dependent top 20 method in positive-ion mode. Full 

MS was performed at a resolution of 70,000 and m/z=200. Up to the top 20 most intense ions 

with charge ≥ 2 from full MS were selected with an isolation window of 2.0 m/z and higher 

energy collisional dissociation was used to fragment peptides at a normalized collision energy of 

27 eV. The maximum ion injection time for full MS was 250 ms with ion target value of 1e6, and 

maximum ion injection time for MS/MS was 120 ms with ion target value of 2e5. Selected 

sequenced ions were dynamically excluded for 30 seconds. 

Mass spec data and LFQ analysis.  Mass spectral processing and peptide identification were 

performed on the Andromeda search engine in MaxQuant software (Version 1.5.3.17) against a 

human UniProt database. Cysteine carbamidomethylation was set as a defined modification, 

and methionine oxidation and protein amino-terminal acetylation were set as dynamic 

modifications. Peptide inference was made with a false discovery rate (FDR) of 1% and 

peptides were assigned to proteins with FDR of 5%. At least 7 amino acids were required with 
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no more than two missed cleavages. The precursor ion mass tolerance was 8 ppm and the 

fragment ion mass tolerance was 0.5 Da. Experiments were conducted in multiple replicates 

(three biological replicates each with two technical replicates) using a match between runs 

option enabled and time window at 0.7 minutes. Data processing and statistical analysis were 

performed on Perseus (Version 1.5.1.6).[140] 

Analysis of functional category and networks of subtype-specific secreted proteins.  The 

biological processes and molecular functions of secretome proteins were categorized by 

Ingenuity Pathway Analysis (IPA) [141] and STRING [142] similar to previously described. [143]  

 

RESULTS 

 To further understand the role of IDH1 mutation in glioma, we compared the differential 

protein expression of IDH1 mutant and wild type glioma cells using LFQ analysis. One biological 

replicate of each condition was analyzed with two technical replicates each. With the aim of 

maximizing the number of proteins identified in order to gain a more complete view of the 

systems involved, we performed high pH fractionation of each sample and combined the 

fractions in a concatenated fashion such that non-consecutive fractions were combined at equal 

intervals. By performing an orthogonal separation prior to the inline low pH separation employed 

during LC-MS/MS, we identified 10288 proteins in at least one replicate. After removing proteins 

that were identified in only one technical replicate or by only one unique peptide, 8161 proteins 

remained for analysis. A heatmap showing protein quantitation (Figure 5.1) clearly 

demonstrates the significant alterations to protein expression with IDH1 mutation. Statistical 

analysis by t test found that 4985 proteins (61%) were differentially expressed between the 

samples. (Figure 5.2) Of these, 2416 were upregulated and 2569 were downregulated. The 

upregulated proteins included PDGFRA and PGK1 which are known to be increased due to 

IGH1 mutation.[273, 280] Downregulated proteins included CTNNB1 which was previously 

found lower in IDH1 mutant cells.[281] 
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  To identify biological processes dysregulated by IDH1 mutation, we used STRING to 

determine enrichment of Gene Ontology Biological Process (GOBP) terms. Strikingly, over half 

(57%) of proteins with increased expression were involved in metabolism, and 24 of the 25 most 

enriched GOBP terms were related to metabolic processes. (Figure 5.3 a,b) These included 

oxoacid metabolic process, nucleotide metabolic process, and cellular amino acid metabolic 

process, indicating the wide ranging impact of IDH1 mutation on cellular metabolism. 

Surprisingly, considering the less aggressive nature of IDH1 mutant gliomas, we also found that 

proteins participating in neurogenesis, neuron projection development, and regulation of 

neurotransmitters were also increased versus IDH1 wild type cells. Additionally, we observed an 

increased abundance of oxidative phosphorylation proteins which is consistent with reports that 

cells with IDH1 mutation are more reliant on oxidative phosphorylation for energy 

production.[282]  

 On the other hand, analysis of lower abundance proteins in IDH1 mutant cells found little 

enrichment of GOBP terms relating to metabolism. Indeed, many of the enriched terms were 

indicative of the less aggressive character of gliomas with IDH1 mutation versus wild type. 

(Figure 5.4 a,b)  For example, cell morphogenesis and cell motility, which are associated with 

poorer progression-free survival [283] and tumor invasiveness [284] respectively, were both 

enriched in the downregulated group. Proteins involved in response to hypoxia, blood vessel 

development, and angiogenesis were also lower in abundance in IDH1 mutant cells, consistent 

with reports that R-2HG suppresses hypoxic response by inhibiting HIF1-α signaling and 

reduced transcription of the proangiogenic factor VEGF.[273, 285] Finally, we found a lower 

abundance of proteins related cell signaling, particularly in cell surface receptor mediated 

signaling and signal transduction. While IDH1 mutation can cause signaling dysregulation, 

including mTOR signaling, [286] defects in paracrine or autocrine signaling have not been 

reported.  
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 To further investigate IDH1-mediated signaling pathway dysregulation, we used IPA to 

analyze pathway activation and suppression. (Figure 5.5) This analysis confirmed suppression 

of the mTOR signaling pathway as expected based on GOBP enrichment. Additionally, IPA 

analysis further emphasized the role of metabolic dysfunction in IDH1 mutated gliomas. 

Activation of oxidative phosphorylation pathways as suggested by STRING was validated, while 

sirtuin signaling was suppressed and cholesterol biosynthesis was activated through multiple 

pathways. Sirtuins are a family of deacylases and ADP-ribosyltransferases that catalyze myriad 

nicotinamide adenine dinucleotide (NAD+)-dependent reactions with diverse impacts on cellular 

metabolism, including upregulation of glycolysis, glutamine anaplerosis, and TCA cycle 

reversal.[287] We also found that IDH1 mutation led to reduced cell cycle regulation at both the 

G1/S checkpoint and G2/M DNA damage checkpoint, as well as suppression of apoptosis 

signaling. Surprisingly, although mTOR signaling was suppressed, the upstream activator 

PI3K/AKT signaling pathway was activated in conjunction with suppression of PTEN signaling. 

The PI3K/AKT pathway promotes cell growth and proliferation and PTEN is an important 

regulator of the pathway.[288] The disconnect between the upstream PI3K/AKT and 

downstream mTOR pathways suggest a disrupting influence which merits further investigation. 

Interestingly, while most of our results indicate the relative indolence of IDH1 mutant glioma 

cells, we found activation of ephrin receptor signaling which is characteristic of aggressive 

invasion in GBM.[289] Ephrin receptor signaling acts through crosstalk with Akt, [290] however 

the typical aggressive phenotype associated with ephrin receptor signaling activation may be 

eroded by the disruption between the PI3K/AKT and mTOR pathways. 

 

DISCUSSION 

Gliomas harboring IDH1 mutations were first reported in 2008.[261] Despite a decade of 

investigation, the specific mechanisms by which this early event in oncogenesis promotes 

malignant transformation is still unclear. IDH1 mutation leads to alterations in cellular 
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metabolism, redox potential, gene expression via epigenetic effects, DNA damage repair, and 

other potentially important routes.[262, 291] One or more of these factors could influence 

oncogenic transformation, however there may also be other processes involved which are not 

yet known. Further, therapies targeting the initiating step of gliomagenesis by directly inhibiting 

mutant IDH1 activity may be insufficient considering the subsequent cellular alterations driving 

transformation and disease progression. The goal of our comparative proteomic study was 

therefore to identify previously unknown biological processes and pathways which may 

elucidate IDH1 mutant glioma biology and potential therapeutic targets. 

 From a technical view, the identification of over 10000 proteins using a strategy of 

concatenated combination of high pH chromatography fractions is a notable achievement. 

Maximizing the number of proteins identified and quantified is important to illuminating unknown 

systems perturbed by IDH1. Many of our results confirmed previous reports on IDH1 mutated 

glioma, and served as validation of our sample preparation and handling. Importantly, we found 

significant overrepresentation of metabolic proteins and neuronal growth in the upregulated 

proteome. Enrichment of proteins in angiogenic and cell invasion processes in the 

downregulated proteome was likewise found as expected.  

 Beyond the expected effects of IDH1 mutation, we report several new biological 

processes and pathways perturbed in IDH1 mutant cells. First, we observed a decrease in 

proteins related to protein secretion and vesicle mediated transport. Although the secretome of 

GBM has been extensively studied, [292] the secretome of IDH1 mutant gliomas has been 

overlooked. In GBM and many other cancers, cell secretion is upregulated and plays an 

important role in pathogenesis.[292] Reduced secretion by IDH1 gliomas may contribute to 

slower growth relative to their wild type counterparts. This finding additionally suggests that 

inhibition of secretory pathways may provide a novel therapeutic approach in the treatment of 

aggressive GBM.  
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 We also found lower abundance of proteins related to signal transduction and cell 

surface receptor mediated signaling in IDH1 mutant glioma cells than in wild type. This 

observation is probably due to increased activation of these pathways in GBM rather than 

defects due to IDH1 mutation. For example, the receptor EGFR is frequently overexpressed in 

GBM, leading to increased cell growth and proliferation.[293] Numerous therapies have been 

developed to target EGFR, however none have successfully altered disease progression, 

potentially due to crosstalk between pathways.[294] Paracrine and autocrine signaling in GBM 

are active areas of investigation, but targeted comparative analysis of extracellular signaling in 

wild type and IDH1 mutant cells is needed due to the clear differences in activation of these 

pathways between groups. 

Insulin receptor signaling was one signaling pathway we found more activated in IDH1 

mutant glioma than in wild type cells. Insulin receptor signaling has been implicated as a 

contributory factor in a number of cancers including breast, prostate, thyroid, and glioblastoma, 

[295-298] but not in lower grade gliomas. Our results indicate that insulin receptor signaling is 

more active in IDH1 mutated glioma than wild type. Because insulin receptor signaling promotes 

cell growth and proliferation, [299] activation of this pathway could be important to glioma 

progression. It is important to note the possibility that insulin signaling is not truly activated as 

indicated by IPA analysis of our data, but is an artifact of the pervasive metabolic dysfunction in 

IDH1 mutant glioma. If confirmed, however, this pathway is a putative target for therapeutic 

intervention. Finally, we found mild activation of 14-3-3 signaling in the IDH1 mutant cells. 

Because 14-3-3 signaling can be either tumor suppressive or tumor promotive, additional 

research is required to determine the specific role of this pathway and any potential for 

therapeutic exploitation in glioma. 

A major limiting factor of this work is that only one biological replicate from the mutant 

and wild type groups was analyzed. The biological processes and pathways that we identify 

here may be specific to the individual tumors from which the cells were derived rather than 
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being more broadly applicable to gliomas in general. The lack of sufficient biological replicates is 

a likely reason for the unusually large number of proteins showing statistically significant 

abundance change. Analysis of additional replicates will reduce the number of proteins with 

significant abundance alterations and clarify which observations reported here are cell line 

specific. 

 

CONCLUSIONS 

In sum, we have used comparative proteomic profiling to identify new processes and 

pathways which are disrupted in IDH1 mutant glioma cells. The quality of our data was validated 

by the confirmation of several well-known effects of IDH1 mutation. Although these findings 

must be clarified through analysis of additional biological replicates, we have identified several 

new areas for potential future investigation. 
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Figure 5.1 - A heatmap of unsupervised hierarchical clustering analysis of z-scored protein 
abundance. Each row indicates a protein and each column indicates a replicate measurement. 
Two technical replicates were performed for one biological replicate of IDH1 mutant or wild type 
glioma cells. Red indicates higher abundance, green indicates lower abundance, and white 
indicates mean abundance. 
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Figure 5.2 – Volcano plot of proteins identified in IDH1 mutant and wild type glioma cells. 
Positive values indicate higher expression in IDH1 mutant cells and negative values indicate 
higher expression in wild type cells. Proteins with statistically significant altered expression and 
fold change >1.5 are indicated in red. 
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Figure 5.3 – GOBP and STRING analysis of upregulated proteins in IDH1 mutant glioma cells. 
A) Biological processes over-represented in proteins with higher abundance in IDH1 mutant 
glioma cells. B) Interaction network of proteins with higher abundance in IDH1 mutant glioma 
cells. Select biological processes have been highlighted. 
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Figure 5.4 – GOBP and STRING analysis of downregulated proteins in IDH1 mutant glioma 
cells. A) Biological processes over-represented in proteins with lower abundance in IDH1 
mutant glioma cells. B) Interaction network of proteins with lower abundance in IDH1 mutant 
glioma cells. Select biological processes have been highlighted. 
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Figure 5.5 – IPA pathway activation analysis. Positive z-scores indicate pathway activation; 
negative z-scores indicate pathway suppression. 
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