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ABSTRACT

True Price: Scene Reconstruction Beyond Structure-from-Motion and Multi-View Stereo

(Under the direction of Jan-Michael Frahm)

Image-based 3D reconstruction has become a robust technology for recovering accurate and

realistic models of real-world objects and scenes. A common pipeline for 3D reconstruction is to

first apply Structure-from-Motion (SfM), which recovers relative poses for the input images and

sparse geometry for the scene, and then apply Multi-view Stereo (MVS), which estimates a dense

depthmap for each image. While this two-stage process is quite effective in many 3D modeling

scenarios, there are limits to what can be reconstructed. This dissertation focuses on three particular

scenarios where the SfM+MVS pipeline fails and introduces new approaches to accomplish each

reconstruction task.

First, I introduce a novel method to recover dense surface reconstructions of endoscopic video.

In this setting, SfM can generally provide sparse surface structure, but the lack of surface texture as

well as complex, changing illumination often causes MVS to fail. To overcome these difficulties, I

introduce a method that utilizes SfM both to guide surface reflectance estimation and to regularize

shading-based depth reconstruction. I also introduce models of reflectance and illumination that

improve the final result.

Second, I introduce an approach for augmenting 3D reconstructions from large-scale Internet

photo-collections by recovering the 3D position of transient objects — specifically, people — in

the input imagery. Since no two images can be assumed to capture the same person in the same

location, the typical triangulation constraints enjoyed by SfM and MVS cannot be directly applied. I

introduce an alternative method to approximately triangulate people who stood in similar locations,

aided by a height distribution prior and visibility constraints provided by SfM. The scale of the

scene, gravity direction, and per-person ground-surface normals are also recovered.
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Finally, I introduce the concept of using crowd-sourced imagery to create living 3D reconstruc-

tions — visualizations of real places that include dynamic representations of transient objects. A key

difficulty here is that SfM+MVS pipelines often poorly reconstruct ground surfaces given Internet

images. To address this, I introduce a volumetric reconstruction approach that leverages scene scale

and person placements. Crowd simulation is then employed to add virtual pedestrians to the space

and bring the reconstruction “to life.”
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CHAPTER 1: INTRODUCTION

The observable world is made up of tangible materials with well-defined physical properties and

spatial relationships. For example, we could identify a building as being covered in brick and having

a specific length, width, and height in meters. The action of observing such an object, however,

is an indirect process. For instance, an observer such as the human eye or a pinhole camera does

not “see” a brick building in a three-dimensional sense, but rather collects information about the

intensity and distribution of visible light rays irradiating and then reflecting from the building’s

surface towards the observer. This is the driving problem of 3D reconstruction in computer vision:

Given that an image only provides us with a 2D slice of visible light rays, how can we recover the

underlying 3D surfaces that effected the image?

In a very general sense, the vast body of work in tackling the 3D reconstruction problem for

visible light imagery can be divided into two categories: single-image reconstruction and multi-

image reconstruction. Single-image reconstruction methods seek to recover a “depth map,” or “2.5D

surface representation,” that defines the distance from the observer to the nearest physical surface

for every viewing ray in the coordinate frame of the observer. This is an ill-posed problem without

prior constraints, since an infinite number of underlying surfaces can generate a given image. One

classical approach to this problem is known as Shape-from-Shading (SfS) (Horn, 1970; Zhang et al.,

1999; Prados and Faugeras, 2005). To constrain the solution, SfS assumes the material reflectance

properties of the underlying surface are known, and that the light source for the image is explicitly

known. Since the strength of the reflecting light off the surface is proportional to the angles between

the incoming light, the surface normal, and the direction to the observer, these conditions force the

recovered surface to agree with the observed light intensities (shading) in the captured image. Apart

from SfS, deep learning approaches have recently been introduced to predict surfaces from single
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images; these approaches attempt to learn shape constraints automatically from 2D appearance by

training on a large number of images, given ground-truth depth maps or corresponding stereo image

views (Eigen et al., 2014; Garg et al., 2016; Godard et al., 2017; Zhou et al., 2017; Li and Snavely,

2018).

Multi-image reconstruction methods seek to recover the underlying surfaces of an environment

using images taken from multiple vantage points within the space. Approaches in this vein typically

consist of a “sparse, then dense” pipeline, although many variations exist for different reconstruction

scenarios. The most general “sparse” reconstruction approach is known as Structure-from-Motion

(SfM) (Pollefeys et al., 2004; Snavely et al., 2006, 2008; Frahm et al., 2010; Agarwal et al., 2011;

Crandall et al., 2011; Wu, 2013; Wilson and Snavely, 2014; Heinly et al., 2015; Schönberger and

Frahm, 2016).1 Given a set of images, SfM aims to jointly recover camera intrinsics, relative

image poses, and the 3D position for corresponding points in the individual images. The method

is “sparse” because, rather than obtaining a surface with fixed fiducial sampling in the 3D world

or 2D pixel space, points on the 3D structure are determined only for locations in the images with

highly distinguishable 2D appearance. SfM is typically used as a preprocessing step for “dense”

multi-image reconstruction techniques such as multi-view stereo (MVS) (Furukawa and Ponce,

2010; Furukawa et al., 2010, 2015; Schönberger et al., 2016). Like SfS, MVS recovers a depth

map for each individual image. However, instead of using strong assumptions on illumination

and surface conditions, MVS utilizes the fact that an image point will have similar appearance

in nearby viewpoints if it is lifted into 3D and then reprojected into the other view. The correct

underlying surface for an image, therefore, is determined by maximizing appearance similarity

after reprojection. After multiple depth maps are obtained via MVS, a final model of the scene

can be recovered by fusing and meshing these individual surfaces within the global space of

the reconstruction (Curless and Levoy, 1996; Labatut et al., 2009; Jancosek and Pajdla, 2011;

Schönberger et al., 2016).

1Further discussion and earlier references are also provided by Hartley and Zisserman (2003, Chapter 18).
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All three methods – SfS, SfM, and MVS – and their variants have limitations that impair or

prohibit reconstruction in certain scenarios. For example, the equations governing SfS may be

difficult to model for sufficiently complex surfaces and lighting conditions, and in any case, the

underlying material reflectance properties must be well defined. SfM and MVS, on the other

hand, strictly assume that the underlying 3D surfaces are stationary in all images; they are unable

to handle dynamic objects. Although non-rigid SfM (NRSfM) with monocular (Bregler et al.,

2000; Xiao et al., 2004; Akhter et al., 2009; Garg et al., 2013; Russell et al., 2014) and multi-view

(Zheng et al., 2015; Ji et al., 2016; Innmann et al., 2019) formulations2 have proven successful

in certain reconstruction scenarios, rigid and non-rigid methods alike are strongly limited by the

distinguishability of the underlying surface appearance and by the conditions in which the images

were taken. For instance, homogeneous regions in images lack distinguishing texture and thus are

difficult to reliably identify between images, which reduces reconstructability. Even for potentially

well-textured surfaces, appearance can change due to the time of day or weather, and surfaces

like the ground may only be captured from unfavorable angles in the majority of images; these

imaging conditions frequently occur in Internet photo-collections (Kuhn et al., 2017). For dynamic

object reconstruction, temporal sampling also comes into play, as existing approaches like NRSfM

require the temporal order of images to be known and well-sampled. This works for reconstructing

objects in video sequences, but for objects that are only imaged once, such as pedestrians in a

temporally sparse photo-collection, it is necessary to develop methods that do not assume temporal

contiguity. Finally, due to the properties of perspective projection, all reconstruction approaches are

only accurate up to scale without additional prior knowledge on the expected size of imaged objects.

In this dissertation, I address 3D reconstruction scenarios with imaging conditions that are

unfavorable due to an inability to leverage temporal consistency and/or due to insufficient surface

texture for discriminative dense multi-view correspondence identification. Tackling these challeng-

ing reconstruction problems requires significant and novel adaptions to the traditional approaches

listed above. Details of the individual research thrusts that support this thesis are provided below.

2I generally will only address unsynchronized multi-view scenarios in this dissertation, since approaches that assume

synchronization usually employ a significantly expanded set of constraints for reconstruction.
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1.1 Thesis Statement

In 3D reconstruction scenarios where the typical conditions of structure-from-motion and multi-

view stereo are violated for specific objects or surfaces, more complete 3D representations can be

obtained through additional processing that combines multi-view reasoning and scenario-specific

constraints.

1.2 Outline of Contributions

The body of work in this dissertation covers multiple scenarios in 3D computer vision that

traditional robust modeling techniques cannot handle:

3D Reconstruction of Endoscopic Video: I introduce a new approach for reconstructing dynamic,

poorly textured surfaces inside the human body. To overcome the difficulties in this 3D

modeling scenario, my method employs a combination of sparse 3D modeling, shading

constraints, and integrated regression of surface reflectance parameters. This work, detailed

in Chapter 3, has been partly described in several publications (Zhao et al., 2015, 2016; Wang

et al., 2017). Chapter 3 also contains expanded research regarding the approach, detailing

new aspects of the formulation and optimization that lead to improved accuracy.

3D Reconstruction of Transient Objects: I propose a novel approach for augmenting 3D recon-

structions by recovering the 3D position of people in individual images in large-scale Internet

photo-collections. Structure-from-Motion (SfM) and Multi-View Stereo (MVS) approaches

cannot be directly used in this scenario, since no two unique images capture the same person

in the exact same place. To overcome the difficulties in 3D modeling, my method reasons

about possible 3D person placements according to how many people in different images

would be placed “nearby” for a given scene scale. This work is described in Price et al. (2018)

and detailed in Chapter 4.
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Living 3D Reconstructions: Having obtained context of where people exist within a 3D environ-

ment by recovering the 3D position of people in individual images, I propose an extended

reconstruction approach that aims to bring the virtual environment “to life.” The idea here

is to add virtual pedestrians to the scene and animate them to walk around the environment.

From a 3D reconstruction perspective, a key difficulty lies in how to define the walkable

surfaces in the 3D environment, given that ground surfaces are largely unable to be captured

using SfM or MVS. To recover the ground, I propose a volumetric approach that reconstructs

all surfaces in the scene, with sparse person placements from the above approach (Price et al.,

2018) guiding the ground surface reconstruction, and with additional modeling constraints

on the scene. Color-based segmentation is used to delineate walkable ground regions in the

scene, and crowd simulation is then applied to move virtual agents between different 3D

locations of people detected in the individual images. Details of this approach are provided in

Chapter 5.

5



CHAPTER 2: BACKGROUND AND RELATED WORK

The three following chapters of this dissertation generally fall into two major categories:

performing 3D reconstruction on endoscopic video data using shading and structure, and modeling

humans in 3D environments reconstructed from Internet photo-collections. In the following sections,

I provide a broad general background of endoscopic reconstruction and outline approaches related

to 3D reconstruction and human modeling in large-scale datasets.

2.1 Shape-from-Shading and Shading-based Surface Reconstruction

First introduced in the 1970 thesis of Horn (1970), Shape-from-Shading (SfS) is a monocu-

lar method of depth estimation that, given a single image viewing a scene, recreates the three-

dimensional shape of the scene under given assumptions about the lighting conditions and surface

reflectance properties (Zhang et al., 1999; Prados and Faugeras, 2006; Durou et al., 2008). A

number of different formulations have been proposed to solve the SfS problem, including energy

minimization, recovery of depth from estimated gradient, local shape estimation, and modeling as a

partial differential equation (PDE) (Zhang et al., 1999; Durou et al., 2008). The PDE formulation

of SfS has received the most attention, starting with Prados and Faugeras (Prados and Faugeras,

2005), who introduced a novel, provably convergent approach for solving the problem as a PDE.

Fast marching (Prados and Soatto, 2005; Tankus et al., 2005) and fast sweeping (Ahmed and Farag,

2006) methods have also been successfully applied to solve the SfS PDE problem. A major criticism

of SfS has been it requires too-strong constraints on surface and lighting conditions (Durou et al.,

2008). I present a complete formulation of SfS for endoscopy in Chapter 3 and address modeling

considerations therein.
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While older methods exist for SfS under general illumination and reflectance, for example the

work of Zheng and Chellappa (1991) and Tsai and Shah (1994), these methods have long been

known to perform poorly even given synthetic data, partially due to simplified assumptions of

reflectance, lighting, and camera projection (Zhang et al., 1999). Traditional PDE formulations

of SfS assume a Lambertian reflectance model for the scene (Visentini-Scarzanella et al., 2012),

which may be a poor assumption for real-world data (Zhang et al., 1999; Ahmed and Farag, 2006).

Some work has investigated non-Lambertian models for the SfS PDE formulation. Ahmed and

Farag (2006) introduce a SfS method for the Oren-Nayar reflectance model, which describes

reflectance for rough diffuse surfaces; the authors later demonstrated an approach for the Ward

reflectance model (Ahmed and Farag, 2007). Vogel et al. (2009) present a method for SfS on

Phong-type surfaces, which is itself an extension of the Lambertian model with added ambient and

specular terms. Quéau et al. (2017) formulated a SfS PDE for scenes exhibiting known natural

illumination and albedo. For endoscopic applications, I propose a reflectance model that subsumes

the Lambertian and Phong models and, in general, is suitable for surfaces with arbitrary reflectance

properties. To avoid a need to know the reflectance model a priori, I also introduce an approach for

using Structure-from-Motion (SfM) to bootstrap reflectance model estimation and guide the SfS

solution.

A number of methods have been proposed for jointly predicting a combination of surface

reflectance, illumination, and/or shape for a single image. Barron and Malik (2014) formulated

this problem as an “intrinsic image” technique, where shading is determined as a function of shape

and illumination. Their method learns separate priors on reflectance, depth, and illumination and

computes a maximum-likelihood solution with the constraint that an image rendered under the

given parameters should appear as similar as possible to the observed image. Oxholm and Nishino

(2015) proposed an approach that assumes a complete environment map is available for the space

surrounding the object. By leveraging a directional-statistics BRDF model, their method is able to

compute shape and reflectance for single- and multi-image capture scenarios. Johnson and Adelson

(2011), in contrast, assume a known reflectance map but unknown natural illumination; Huang and
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Smith (2011) utilize silhouette constraints to avoid the requirement of an explicit reflectance map.

Both of these methods utilize the fact that diffuse surfaces act as low-order filters of the environment

illumination, and thus the illumination can be approximated using low-order spherical harmonics.

Deep learning methods have much promise in robustly modeling the complex shading behaviors

found in real-world applications of the inverse graphics problem. In particular, Li et al. (2018)

recently introduced a convolutional neural network approach for jointly estimating albedo, specular

roughness, surface normal, and depth for an object captured in a single flash-illuminated image.

The approach also estimates environment illumination for the image and introduces an internal

network architecture to recover images formed from multiple bounces of light off of the surface; an

analytical rendering layer is used to produce the direct illumination image based on the regressed

surface parameters. The network applies a multi-stage refinement of estimated parameters to achieve

state-of-the-art recovery of shape and reflectance parameters from a single image.

Outside of endoscopic applications, many works on combining motion-based reconstruction

with shading information have utilized shading to augment an existing shape template or model

priors (Salzmann and Fua, 2010). Wu et al. (2011) proposed to first build coarse-scale dynamic

models from multi-view video and then leverage shading to estimate fine-scale, temporally varying

geometry. Fine-scale shading correction has also been used to refine dense surfaces obtained using

a depth sensor (Han et al., 2013; Zollhöfer et al., 2015). Among multi-view methods that leverage

shading directly in the shape estimation, Gallardo et al. (2016) introduced a template-based method

for reconstructing low-texture deforming surfaces leveraging Lambertian shading constraints. More

recently, the same authors introduced a template-free non-rigid SfM method (Gallardo et al., 2017)

that considers Lambertian shading. Finally, the theoretical constraints on shape estimation with

unknown reflectance under camera motion have been outlined in a number of works by Chandraker

(2014a,b, 2015).
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2.2 3D Reconstruction of Endoscopic Imagery

In Chapter 3 of this thesis, I motivate endoscopic surface reconstruction for 3D review during

treatment planning. That is, given an endoscopic video, use an offline reconstruction process to

build a textured surface model of the target area that a physician can for enhanced visualization,

video review, or procedure post-analysis. In addition to treatment planning, the literature is rife with

methods that target goals for augmented reality and real-time 3D applications during surgery. I

address the general themes and research areas in this section.

To provide some historical context, methods for achieving 3D reconstruction of endoscopic

imagery have existed for at least three decades, dating back at least to the early work of Badiqué

et al. (1988) that investigated correlation-based matching and 3D visualization for stereoscopic

endoscopy. The work of Oda et al. (1994, 1995a) was perhaps the first to outline a full approach

for 3D reconstruction from monocular endoscopic video. Similar to the standard pipeline of

today’s reconstruction methods, this method introduced a SfM-type sparse reconstruction approach

with inter-frame feature tracking and proposed a method for patch-based multi-view depthmap

estimation, with later extensions to estimate the scale of the reconstruction based on light intensity

(Oda et al., 1995b). Perhaps the earliest applications of SfS for endoscopy were introduced by

Deguchi (1996), Okatani and Deguchi (1997), and Yeung et al. (1999), who used a method for

estimating equal-depth contours to recover shape from a single endoscopic image assuming a known

— but material-agnostic — 1D Bidirectional Reflectance Distribution Function (BRDF). The first

two works actually utilize multi-view information as part of the method, initializing the estimation

using a sparse, multi-frame surface estimation algorithm (Deguchi et al., 1994). The third work is

the first that I know of to empirically measure a BRDF for use in endoscopic SfS.

In the following subsections, I outline various approaches for endoscopic 3D reconstruction that

have been proposed since these initial works. Controlled capture settings that allow for per-frame

depth estimation have perhaps enjoyed the longest success in endoscopic surface reconstruction

(Mountney et al., 2010; Lin et al., 2016). SfM and Simultaneous Localization and Mapping (SLAM)

approaches, both sparse and dense, rigid and motion-compensating, have also been investigated.
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Still other methods — e.g., Shape-from-Template algorithms — have combined these approaches

with pre-operative CT scans that serve as a shape prior for reconstruction or as a target space for

reconstruction alignment. Finally, a number of alternative capture strategies such as range imaging

and depth-from-focus have been proposed.

2.2.1 Monocular SfM, MVS, and SLAM Techniques

The vast majority of endoscopic procedures are carried out using monocular (single-view)

endoscopes, and thus many methods have established monocular approaches to 3D reconstruction

that seamlessly integrate with existing treatment planning and surgical workflows (Maier-Hein

et al., 2013). Burschka et al. (2005) proposed a SLAM approach for sinus surgery that obtained a

sparse surface reconstruction entirely from monocular endoscopic video. Reconstruction scale was

obtained via rigid alignment to a CT scan. Other sparse SLAM approaches for monocular endoscopy

include the work of Grasa et al. (2011, 2013), which leveraged extended Kalman filters to improve

reconstruction accuracy for handheld endoscopic video capture; the work of Marcinczak and Grigat

(2014), which adopted a photometric, volumetric approach (Newcombe et al., 2011) that accounts

for surface specularities in its photometric cost; and the work of Chen et al. (2018), which applied

intraoperative meshing to the reconstructed point cloud with a goal of real-time 3D visualization.

Marmol et al. (2018) introduced a keypoint-based SLAM approach for anthroscopy in minimally

invasive surgery scenarios; this approach was later extended to perform dense PatchMatch-based

MVS (Bleyer et al., 2011) on SLAM keyframes to form a dense global reconstruction (Marmol

et al., 2019). Mahmoud et al. (2019) also recently introduced a monocular SLAM system with

dense multi-view depth estimation for selected keyframes.

Among non-SLAM methods, Koppel et al. (2007) introduced an approach combining SfM and

MVS estimation with specific applications for colonoscopy. Hu et al. (2012) explored SfM-based

video reconstruction for stereo and monocular endoscopes alike, with careful consideration for

missing and outlier data. Collins et al. (2014) performed SfM reconstruction for a small number of

endoscopic images of the uterus with manual partial labeling of the organ of interest. A preoperative
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scan was then aligned to this sparse result to compute a 2D/3D registration. Several approaches have

proposed to obtain a reconstruction solely from SfM and then perform single-frame or global surface

reconstruction from the resulting point cloud Thormahlen et al. (2002); Sun et al. (2013); Lurie et al.

(2017). However, these methods are strongly dependent on the completeness and accuracy of the

SfM result. Considering newer technologies for external 6-DoF tracking of the endoscopic device,

Garbey et al. (2018) assessed sparse surface reconstruction for laparoscopic scenarios where the

absolute camera pose is known.

2.2.2 Shading-based Approaches and Reflectance Estimation Methods

As mentioned above, single-image shape-from-shading approaches have long been applied to

endoscopic imagery. For example, Tankus et al. (2005) demonstrated some of the first SfS results

on medical images following the introduction of the perspective PDE formulation for SfS. Visentini-

Scarzanella et al. (2012) applied Lambertian SfS on endoscopic images with a non-co-located light

source and proposed an approach for scale recovery by triangulating surface specularities. Wu et al.

(2010) introduced a multi-view surface reconstruction approach leveraging Lambertian shading

and known camera motion in the context of bone reconstruction. Their approach first performs

single-view SfS on individual images, aligns these individual surfaces, and progressively introduces

multi-view surface consistency constraints to refine and fix the estimated SfS depthmaps. I further

discuss multi-view extensions of shading-based surface estimation in a later subsection.

Several works have investigated surface reflectance estimation and illumination modeling for

enhanced surface visualization. An early method by Kitoh et al. (1997) investigated color correction

in endoscopic video while explicitly accounting for interreflections of the light off of the surface,

an assumption that is often ignored in shading-based approaches. Perhaps most pertinent to my

work is the method of Chung et al. (2004, 2006), which uses a 2D/3D rigid registration algorithm

(Deligianni et al., 2004) to align a CT scan with bronchoscopic video. Given the aligned CT surface,

they estimate a cubic 1D BRDF and a cubic light attenuation function (decrease in brightness based

on depth) for the video. This illumination and reflectance model then used to more realistically
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render the CT surface from novel views. Nunes et al. (2017) similarly estimate the BRDF of a liver

using a video-aligned CT scan after manual non-rigid 2D/3D alignment.

Finally, one quite different single-frame depth estimation method that is worth mentioning is the

approach of Hong et al. (2009, 2014), which is specifically tailored for the 3D reconstruction of

colonoscopic images. This approach explicitly models the “tube with folds” anatomy the colon and

uses reasoning about light intensity to compute slant directions. However, the approach does not

generalize to other anatomical structures.

2.2.3 Stereo Endoscopy and Other Semi-Controlled Capture Scenarios

Many methods have focused on reconstruction using binocular stereo endoscopes, which

recover per-frame depth using photometric matching between a synchronized pair of cameras; this

synchronized matching leads to a much more controlled reconstruction problem Mountney et al.

(2010). Stereo approaches have frequently been combined with SfM- or SLAM-type approaches for

complete surface reconstruction, and 3D stereoscopic endoscopy has recently shown potential for

improving treatment outcomes versus traditional monocular endoscopy (Albrecht et al., 2016; Egi

et al., 2016; Best, 2019; Bickerton et al., 2019). Considering multi-view reconstruction approaches,

one early SfM-type approach from Kitoh et al. (1998) proposed to use a stereo endoscope for

accurate scale estimation. Later efforts include the work of Lau et al. (2004) that proposed a method

using stereo endoscope observations to monitor cardiac deformations caused by heatbeats and

respiration. Mountney et al. (2006) introduced the first (sparse) stereoendoscopic SLAM approach

for minimally invasive surgery; further work introduced coarse surface stitching from the sparse

reconstruction (Mountney and Yang, 2009) and an altered SLAM approach to compensate for the

periodic motion caused by respiration (Mountney and Yang, 2010). A number of other stereo SLAM

approaches have been introduced since this initial work, targeting areas such as robust tracking in

rigid Chang et al. (2014) and deforming (Lin et al., 2013) environments.

Surface reconstruction via stereo depthmap fusion has also been explored. For example, Reichard

et al. (2015) used stereo endoscopy with organ segmentation and depthmap fusion to achieve
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complete surface reconstruction, which can be used in a stereoscopic SLAM system (Reichard et al.,

2016). Motivated towards real-time AR surgery applications, Chen et al. (2017) also proposed

a stereo SLAM approach with depthmap fusion. Recently, Song et al. (2018) introduced a real-

time stereo SLAM approach that is able to handle deforming surfaces and demonstrated aligned

depthmaps for a number of endoscopic video sequences. Apart for multi-view reconstruction

approaches, a number of works have explored improving, post-processing, and evaluating stereo

depthmap estimation algorithms for endoscope-specific applications, particularly with a goal of

overcoming the inherent difficulties of stereo reconstruction for low-texture surfaces (Röhl et al.,

2011; Stoyanov et al., 2010; Chang et al., 2013; Parchami and Mariottini, 2014; Totz et al., 2014;

Wang et al., 2018; Zampokas et al., 2018).

Active techniques are a promising alternative for obtaining per-frame depth information in

endoscopy without a need for well-textured surfaces, although such approaches require substantial

changes to the endoscopic hardware Maier-Hein et al. (2014). For example, Penne et al. (2009)

introduced the first time-of-flight endoscope, which is able to reconstruct the depth for a given

endoscopic frame based on detected phase shifts in projected infrared light. Haase et al. (2013)

also proposed a time-of-flight endoscope prototype. Parot et al. (2013) introduced a modified

endoscope design that enables photometric stereo endoscopy by switching between different

illumination configurations. This multi-illumination approach provides controlled constraints for

surface reconstruction under assumptions of Lambertian reflectance. Edgcumbe et al. (2015)

introduced a structured light approach wherein a small checkboard light projector is inserted into

the body; the underlying surface can then be recovered using a stereo endoscope or by tracking the

pose of the projector relative to the camera. Several other methods using projected light have been

proposed for improved tracking, surface reconstruction, and registration to CT (Jin et al., 2007; Qiu

and Ren, 2018). Visentini-Scarzanella et al. (2015) proposed an endoscopic system that leverages

both structured light projection and photometric stereo. This approach recovers semi-dense surfaces,

in part by leveraging a Blinn-Phong reflectance model for the photometric stereo estimation. See
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Lin et al. (2016) and Bernhardt et al. (2017) for further discussion on active and stereo endoscopic

reconstruction methods.

2.2.4 Combined Sparse or Dense Reconstruction with Shading Estimation

A number of works have explored the combination of shading models with multi-view recon-

struction methods. Kaufman and Wang (2008) proposed to use SfM to obtain camera motion

and Lambertian SfS to obtain per-frame depth; however, the authors reported that the success of

depthmap fusion in their method was hindered by inaccuracies in the SfS estimates. Tokgozoglu

et al. (2012) used multi-view stereo to derive a low-frequency model of the upper airway, then

applied Lambertian SfS on albedo-normalized images to endow the existing surface with higher-

resolution shape. Turan et al. (2017) achieved non-rigid SLAM by using SfS to estimate per-frame

depth combined with inter-frame point tracking and depthmap-to-fused-model surface registration.

These authors later introduced a camera tracking method that performs per-frame depth estimation

using Lambertian SfS and then feeds the resulting RGB-D image into a recurrent neural network to

regress 6-DoF camera motion (Turan et al., 2018). Several other works have explored shading-based

alignment of pre-operative 3D scans to endoscopic imagery. I discuss these approaches in the

following subsection.

2.2.5 Template-based Reconstruction and Alignment of Pre-operative 3D Scans

For monocular reconstruction of deforming environments, several efforts have been made to

extend the Shape-from-Template problem (Bartoli et al., 2015) to utilize shading information. Malti,

Bartoli, and Collins proposed a two-stage approach for surgery of the uterus: Pre-surgery, an initial

3D template is recovered under rigid scene assumptions, and reflectance parameters are estimated

for the surface (Malti et al., 2011, 2012; Malti and Bartoli, 2014). In surgery, the deforming surface

is recovered via conformal deformations of the template surface, and subsequent shading refinement

is performed using the estimated reflectance model. Earlier rigid reconstruction methods in this

vein include the work of Shoji et al. (2001), who aligned a pre-operative CT scan to video in a
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two-stage process of texture-based alignment followed by shading-based refinement; the CT texture

is obtained from the previous video frame (assuming an initial alignment), and shading is refined

by rendering the CT surface and minimizing the overall squared intensity difference. Later work

expanded this approach to include image-based tracking with alignment to the CT scan (Mori et al.,

2002). Helferty and Higgins (2002) used a preoperative CT scan as a geometry proxy for camera

tracking in bronchoscopy under rigid surface assumptions. Assuming an initial alignment of the CT

to the video is available, this method estimates the relative camera motion between frames via an

optical flow (i.e., intensity matching) formulation that utilizes the 2D motion constraints induced by

project of the CT surface. The method was later extended to use an alignment procedure assuming

Lambertian shading (Helferty et al., 2007) and was used to perform image-based texturing of the

CT mesh (Rai and Higgins, 2006).

Rigid registration was also used by Vagvolgyi et al. (2008) to align single-frame stereo endoscope

depth estimates to a CT mesh. Mirota et al. (2009) proposed to use a trimmed iterative closest point

approach to rigidly align a preoperative CT scan to a 3D point cloud created using an SfM-type

type approach for endoscopic video (Wang et al., 2008). Bernhardt et al. (2015) performed rigid

3-DoF camera-to-CT-surface alignment assuming local Lambertian shading and albedo in the image;

this approach is in contrast to other shading-based alignment approaches that assume reflectance

properties hold globally across the image. Billings and Taylor (2015) introduced an iterative

alignment procedure to rigidly align two oriented point clouds. Sinha et al. (2018) extended this

work to deformably register a surface representation of the nasal cavity and sinuses to a meshed SfM

point cloud recovered from endoscopic video; unlike the methods mentioned above, this approach

uses a shape space learned from extracted CT surfaces and does not require a patient-specific CT

scan.

Among other methods that employ non-rigid modeling, Deligianni et al. (2004, 2006) introduced

a method that constructs an active shape model from multiple CT scans of a patient and then applies

a deformable registration of this model to 2D endoscopy. For the CT-to-video registration a linear

SfS is first applied to obtain a surface normal map for the image, to which the shape model is
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subsequently adjusted to match. Others have proposed methods for deformable registration of a CT

preoperative scan to sparse stereo-based reconstructions (Haouchine et al., 2014), partial surfaces

Song et al. (2016), and time-of-flight endoscopic imagery (dos Santos et al., 2014).

2.2.6 Monocular Depth Estimation via Convolutional Neural Networks

The recent explosion of convolutional neural networks for image processing has encouraged

interesting alternatives to classical approaches for 3D reconstruction, including for endoscopies.

Reiter et al. (2016) proposed an interesting approach to train a patienti-specific neural network that

regresses per-pixel depth and normal information solely as a function of position in the image and

pixel color. This technique bypasses explicit surface reflectance and illumination modeling, which

avoids the common pitfalls of pure shading-based modeling. However, the approach requires careful

3D alignment of the endoscopic video frames to a preoperative CT scan for each specific patient in

order to train against a ground-truth surface, and it is unclear how well the method would generalize

between patients or to environments where direct CT registration is impossible. Mahmood et al.

(Mahmood and Durr, 2018; Mahmood et al., 2018) perform direct monocular depth estimation using

a convolutional neural network with refinement via a conditional random field. A similar approach

was taken by Visentini-Scarzanella et al. (2017), who learn to regress depth from virtual CT images

and, to apply this network to real imagery, train a separate network to re-render real images to look

like virtual CT images. Training this second network again requires 2D/3D registration of a CT

surface to its corresponding real endoscopic video sequence.

Looking forward, network-based depth estimation approaches for endoscopy will likely benefit

by incorporating temporal constraints across video sequences. The recent method of Wang et al.

(2019) is one such approach that could be utilized in this vein. This approach leverages recurrent

network layers to predict both frame-to-frame camera motion and per-pixel depth. The neural

network essentially “remembers” the image properties from the previous frame and uses these to

infer inter-frame parallax, which is a much stronger depth cue than single-frame image appearance,

alone. Interestingly, however, the network’s recurrent design allows it to also perform single-frame
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depth estimation. Having such a fallback is quite useful when processing endoscopic video. This

is because an endoscopic video may only contain short snippets of “good” imagery due to, for

example, constant patient motion. Since some parts of the anatomy may therefore only be glimpsed

very briefly, it may be necessary to drop temporal constraints for these frames in order to reconstruct

them.

2.3 Modeling Transient Objects in Crowd-sourced Imagery

There has been a strong interest in automatically obtaining 3D reconstructions from crowd-

sourced images. The seminal work of Snavely et al. (Snavely et al., 2006, 2008) demonstrated the

feasibility of reconstruction from Internet photos, and later systems robustified the reconstruction

methods and tackled increasingly larger scenes and photo-collections. Today, state-of-the-art

systems are able to provide highly detailed 3D models of thousands of sites around the world

from one-hundred million user-uploaded images (Heinly et al., 2015; Schönberger et al., 2016).

However, the resulting models are only reconstructed up to an unknown scale factor and only

represent the static parts of the scenes. Transient objects such as humans are inherently missing in

such reconstructions.

A number of works have leveraged human detections for single-view camera calibration, partic-

ularly for surveillance cameras, and for crowd modeling in synchronized multi-view systems. Lv

et al. (Lv et al., 2002, 2006) and others (Krahnstoever and Mendonca, 2005; Junejo and Foroosh,

2006; Kusakunniran et al., 2009; Micusik and Pajdla, 2010) extract head and foot positions for one

or more walking humans in each frame of a video taken by a single stationary camera. Under the

assumption that people stand upright and that the walking area is flat, these methods recover the

vertical vanishing point and a horizon line for the scene, which can be further used to obtain camera

intrinsics and the ground plane relative to the camera. If the height of one or more of the detected

people is known, the absolute height of the camera above the ground can also be recovered. Notably,

Liu et al. (Liu et al., 2011) used known human height distributions to automatically determine

focal length and camera height. Other works (Hödlmoser et al., 2011; Trocoli and Oliveira, 2016)
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explored increasing robustness by additionally incorporating vanishing points from the static scene.

For general crowd modeling in multi-view synchronized systems (Wang, 2013), a large number

of methods (e.g. (Ge and Collins, 2010; Fleuret et al., 2008; Otsuka and Mukawa, 2004; Focken

and Stiefelhagen, 2002; Black et al., 2002)) exist to triangulate and track people in the camera

space, potentially without explicit correspondences (Liu et al., 2013) or a knowledge of the system

calibration (Guan et al., 2016). All of these works, however, either assume that the temporal

domain is densely sampled or only perform a calibration task for a single camera. Multi-view

reconstructions from internet photo-collections, in contrast, consist of potentially tens of thousands

of unique, temporally disjoint images.

Among other methods for reconstructing moving humans, trajectory triangulation for dynamic

objects has been well-researched for images with dense temporal sampling (Avidan and Shashua,

2000; Park et al., 2010; Zheng et al., 2015; Ji et al., 2014), but the topic has rarely been applied to

unordered photo collections (Zheng et al., 2014) and has not been applied in cases where hundreds

or thousands of object class instances are observed. Garg et al. (Garg et al., 2011) explored

detecting a single, manually specified individual among sets of Internet imagery, working under

the assumption that the individual is positioned in approximately the same location across many

images. Martin-Brualla et al. (Martin-Brualla et al., 2014) pieced together separate crowd-sourced

3D reconstructions by, in part, recovering the paths of photographers moving between them; this

method does not recover the behavior of non-photographers, however. Zheng et al. (Zheng et al.,

2014) tackled the lack of temporal overlap by leveraging single-instance detections to localize object

class trajectories. Their insight was that most object classes have structured motion paths in the

scene, and recovering this path structure is complementary to recovering the object trajectories. The

problem is formulated as a generalized minimum spanning tree (GMST), followed by a continuous

optimization to refine the trajectory. However, the approach does not generalize to unstructured or

weakly structured object class motions, as is often encountered in open scenes such as plazas or

tourist sites. Additionally, the method carries high computational cost due to solving the NP-hard

problem of computing the GMST (Myung et al., 1995).
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Finally, Bulbul and Dahyot (Bulbul and Dahyot, 2016) introduced a method for obtaining

representations of transient objects in map representations such as OpenStreetMap (OSM). In

contrast to large-scale 3D reconstructions from unordered Internet photo-collections, OSM provides

both a to-scale, geo-localized environment model and a coarse ground surface representation. The

authors used social media photos with geo-localization metadata to place human avatars into the map.

To obtain the camera position of a social media image, they registered the image to nearby Google

StreetView (GSV) images based on its known geo-location. People in the images were placed onto

the map’s ground surface at a distance from the camera estimated by the size of their face in the

image. For visualization, realistic poses and configurations for virtual people were introduced, and

the authors also simulated crowd flow for the agents to move from different photograph locations

within the OSM environment. While this approach places humans into 3D environments, the method

relies on a large amount of data (scene scale, OSM models, GPS data, social media timestamps, and

GSV imagery) that is typically unavailable for general large-scale 3D reconstructions.

2.4 Crowd Simulation in Virtual Representations of Real Environments

Integrating virtual agents into real imagery has a rich history in computer graphics, with

computer-generated special effects (Thalmann and Thalmann, 1997) and interactive systems (Maes

et al., 1995) dating back to the 1990s. A number of works have extended these ideas by combining

object tracking/modeling with simulation, with a goal of creating augmented video wherein virtual

agents interact with real objects in a convincing manner (Baiget et al., 2009; Fernández et al., 2011;

Doğan et al., 2018). Even more works have employed computer vision to automatically learn crowd

motion behavior (Lerner et al., 2007; Musse et al., 2007; Courty and Corpetti, 2007; Alahi et al.,

2016; Gupta et al., 2018). To my knowledge, however, the only work that has attempted crowd

simulation using large-scale photo-collections is the aforementioned approach of Bulbul and Dahyot

(Bulbul and Dahyot, 2016), who render people detected in social media photos as virtual agents

moving within OpenStreetMap models. Integrating crowd simulation directly into large-scale 3D

reconstructions has, as yet, not been demonstrated.
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In addition, crowd simulation – and overall completeness of the virtual environment – requires

well-defined ground surfaces in the scene. Several works have joined reconstructions from ground-

level imagery with reconstructions from aerial imagery to derive a more complete scene model

(Frueh and Zakhor, 2003; Shan et al., 2013). For ground-level imagery, an effective approach has

been to leverage semantic constraints in volumetric reconstruction (among several works, see for

example Häne et al., 2013, 2016; Cherabier et al., 2018). Given a voxelization of the scene, these

approaches aggregate distance fields from a set of depthmaps considering semantic labels for each

image. A separate distance field is aggregated for each semantic class. This multi-label volume is

then refined using learned priors on class transitions; for example, a ground-labeled voxel is likely

to be surrounded by other ground voxels but unlikely to exist above an empty voxel. Through a

variational formulation, per-voxel label probabilities are optimized to respect these shape priors

while accounting for the surfaces observed by the input imagery and depthmaps. Final per-class

surfaces are extracted using the most probable voxel labels. I do not rely on training data or semantic

labeling for my method, although the option is an intriguing direction for future work.
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CHAPTER 3: 3D RECONSTRUCTION OF ENDOSCOPIC VIDEO

Endoscopy is a common medical procedure wherein a camera with a light attached is inserted

into the body, allowing physicians to gain a direct view of the internal surfaces of a patient without

resorting to strongly invasive methods. Endoscopic medical vision applications constitute a steadily

growing field of 3D computer vision research with much potential to improve patient outcomes

without significant alterations to existing physician workflows. For example, a doctor performing

laparoscopic surgery uses video to as a navigational aid during the procedure. By performing online

3D reconstruction on this video as it is captured, medical vision technologies can augment the

surgeon’s spatial reasoning during the procedure.

Offline 3D reconstruction is also a potentially invaluable tool for treatment planning and review.

To provide a driving scenario, consider nasopharyngoscopy, i.e., endoscopic video of the upper

throat. Cancerous tumors in the throat are often superficial, perhaps less than 2mm in thickness.

However, treatment planning workflows typically rely on computed tomography (CT) scans that

usually have a resolution of 3mm. To localize a tumor in the CT scan, a treating physician will

perform a nasopharyngoscopy on their patient to obtain a visual confirmation of the tumor’s

location. They will then manually label the tumor on the throat surface in the CT, often from

memory and without clear geometric cues, the latter of which is due to the low CT resolution.

If, instead, a textured 3D surface representation – an endoscopogram – was reconstructed from

the nasopharyngoscopic video, the physician would be able to use the color data to more easily

and, importantly, more accurately label the tumor; the labeling could then be transferred to the

CT surface via deformable registration of the two surfaces. The endoscopogram also serves as a

convenient mechanism for endoscopy review, as it condenses minutes of video into a single unified

surface. This is especially important for procedures like colonoscopy, where the overall procedure
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can exceed 40 minutes in length, which prohibits review to determine whether growths were missed

or potentially unobserved.

Constructing an endoscopogram, however, is a challenging task for several reasons, especially

in the case of nasopharyngoscopy. For one, the inside surfaces of the throat are stationary for

only very short time windows due to the patient breathing and swallowing. This makes traditional

SfM techniques difficult to leverage, since the relative camera motion is quite slight relative to

surface; from experience, sparse point triangulation is generally possible but quite prone to noise.

Compounding this, the throat surfaces are quite homogeneous in appearance, which limits the

amount of feature points that can be reliably matched between video frames; this is unfavorable for

NRSfM approaches, which typically rely on ad hoc point clusterings to build a dynamic motion

model. The homogeneous textures and poor triangulation angles also make MVS depth estimates

quite noisy, resulting in degraded surface estimates (Fig. 3.1).

Given these difficulties for multi-image reconstruction methods, single-image methods like SfS

seem to be a reliable alternative, since they are agnostic to texture homogeneity, camera motion,

and surface dynamics. Unfortunately, the near-surface lighting conditions in nasopharyngoscopy

make it impossible to derive a global model of illumination/material reflectance that can be applied

for all video frames. A successful SfS approach must be able to refine illumination properties on a

frame-by-frame basis.

To bootstrap endoscopogram construction, I introduce a new SfM-guided SfS method to recover

a dense surface representation for individual frames of an endoscopic video. The insight here is that

the sparse geometry obtained from SfM, while being far from perfect, provides a sufficient geometric

prior to guide a refinement of the material reflectance model and an overall SfS procedure. The

proposed method, shape-from-motion-and-shading (SfMS), alternates between three stages: First,

the current SfS depth map (starting from some initialization) is warped to a set of 3D SfM points

for the given image. Next, this warped surface is used to update a surface illumination/reflectance

model. Finally, this reflectance model is used within a regularized SfS framework to obtain a new

depth map for the image. The regularized SfS approach is a new derivation that strikes a balance
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Figure 3.1: Surface estimates using multi-view stereo reconstruction tend to be noisy and/or

incomplete for endoscopic data. Top row: Fused point cloud obtained via MVS (Schönberger et al.,

2016) and an untextured surface reconstructed from this point cloud using a method based on the

Delaunay tetrahedralization approach of Labatut et al. (2009). Second row: Textured and untextured

views of the surface obtained using Poisson surface reconstruction (Kazhdan and Hoppe, 2013) on

the MVS point cloud. Bottom two rows: Same results for a different patient.
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Figure 3.2: An endoscopogram is constructed via non-rigid registration of multiple SfMS recon-

structions of individual video frames.

between the previous SfS surface and the shading constraints that arise under the newly estimated

illumination/reflectance model. I also propose a new, generalized reflectance model that better

accounts for the illumination conditions present in endoscopy, compared to the Lambertian model

typically adopted for SfS. Moreover, I propose a simple approach for modeling light interreflections

within the endoscopic space that are not accounted for in traditional SfS approaches, and I show

that this can substantially improve the accuracy of the depth estimated by SfMS.

Fig. 3.2 outlines the overall process of constructing the final endoscopogram. Once depthmaps

have been computed using SfMS for a set of endoscopic video frames, a final endoscopogram can

be formed via non-rigid registration of the individual surfaces. This more complete surface can

then itself be non-rigidly aligned to the CT surface for visualization within the original treatment

planning space. Details of these fusion and registration procedures are described in Zhao et al.

(2015), Zhao et al. (2016), and Zhao (2017).

3.1 Background

3.1.1 Reflectance Models

The amount of light reflecting off a surface can be modeled by a wavelength-dependent Bidirec-

tional Reflectance Distribution Function (BRDF) that describes the ratio of the radiance of light

reaching the observer Iλr to the irradiance of the light hitting the surface Eλr (Cook and Torrance,

1982). The behavior of the BRDF is specific to the material of the surface. Generally, a BRDF is
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given as a function of four variables: the angles (θi, φi) between the incident light beam and the

normal, and the reflected light angles (θr, φr) with the normal; that is,

BRDFλ(θi, φi, θr, φr) =
Iλr
Eλi

, (3.1)

where λ represents light wavelength. In the following, the wavelength dependence of the BRDF is

implicitly assumed.

The irradiance for an incoming beam of light is itself a function of θi and the distance r to the

light source:

Ei = Ii
A

r2
cos θi, (3.2)

where Ii is the light source intensity and A relates to the projected area of the light source.

For the case of endoscopy, two simplifying assumptions about the BRDF can be made that

help the overall modeling of the problem. The first assumption is that the BRDF exhibits surface

isotropy, which constrains it to only depend on the relative azimuth, ∆φ = |φi − φr|, rather than the

angles, themselves (Koenderink et al., 1996). While this sacrifices some generality, it provides a

good approximation for surfaces with low anisotropy. Second, it is assumed that the light source

is approximately located at the camera center relative to the scene, which is a reasonable model

for many endoscopic devices. In this case, the incident and reflected light angles are the same, i.e.

(θi, φi) = (θr, φr). Under these assumptions, the observed radiance simplifies to

Ir(r, θi) = Ii
A

r2
cos(θi)BRDF(θi). (3.3)

3.1.2 Surface Model for Shape-from-Shading

Let (x, y) ∈ Ω represent image coordinates after normalization by the intrinsic camera parame-

ters (accounting for lens distortion, centering around the principal point, and dividing by the focal

length). For a given camera pose, the surface function f : Ω → R
3 maps points in the image plane
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to 3D locations on a surface viewed by the camera. Under perspective projection,

f(x, y) = z(x, y)
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, (3.4)

where z(x, y) > 0 is a mapping from the image plane to depth along the camera’s viewing axis.

The distance r from the surface to the camera center is

r(x, y) = ‖f(x, y)‖ = z(x, y)
√

x2 + y2 + 1, (3.5)

and the normal to the surface is defined by the cross product between the x and y derivatives of f :

n(x, y) = fx × fy = z
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. (3.6)

The lighting conditions of the endoscope allow us to assume that the scene is illuminated by

a single light source located at the optical center of the camera. In this case, the light direction

vector for a point in the image is the unit vector l̂(x, y) = 1√
x2+y2+1

(x, y, 1). The cosine of the

angle θi(x, y) between the normal and light direction vectors is then equal to their dot product:

cos θi = n̂ · l̂ = z
√

(x2 + y2 + 1)
(

z2x + z2y + (xzx + yzy + z)2
)

, (3.7)

where “carat” represents normalization to unit length and the dependence of all variables on (x, y)

is implied.
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Prados and Faugeras (2005) note that Eq. (3.7) can be simplified using the change of variables

v(x, y) = ln z(x, y):

n̂ · l̂ = 1
√

(x2 + y2 + 1)
(

v2x + v2y + (xvx + yvy + 1)2
)

. (3.8)

This transformation allows us to separate terms involving v from those involving its derivatives in

our shading model, which is important for PDE formulations of the SfS model.

3.1.3 Structure-from-Motion

As mentioned previously, Structure-from-Motion (SfM) (Hartley and Zisserman, 2003; Pollefeys

et al., 2004; Schönberger and Frahm, 2016) is the simultaneous estimation of camera motion and 3D

scene structure from multiple images taken at different viewpoints. Typical SfM methods produce a

sparse scene representation by first detecting and matching local features in a series of input images,

which are the individual frames of the endoscope video in our application. Then, starting from an

initial two-view reconstruction, these methods incrementally estimate both camera poses and scene

structure. The scene structure is parameterized by a set of 3D points projecting to corresponding 2D

image features.

In the case of endoscopy, the motivation for using SfM is that it provides a (sparse) prior

on depth, which supplies adequate constraints for surface geometry and reflectance estimation.

Because SfM uses rich feature descriptors to identify image correspondences, compared to the

weaker photo-consistency metrics of multi-view approaches, experience shows that SfM produces

substantially more reliable, albeit sparse and typically noisy, geometry for endoscopic datasets.

Fig. 3.3 shows an example SfM reconstruction of endoscopic data using several segments from the

overall video.

One limitation to the generality of the method is that sparse non-rigid reconstruction in medical

settings is an unsolved problem (Stoyanov, 2012; Münzer et al., 2018). However, the proposed

approach can handle any sparse data as input, and thus the method could easily be integrated with
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Figure 3.3: Structure-from-Motion results for endoscopic video. Individual 3D surface points

(colored dots) and camera poses (blue) are jointly recovered.

non-rigid SfM in future work. In the experiments on live endoscopy, rigid SfM is employed on

small intervals of temporally neighboring frames with minimal surface deformation. When slight

scene motion does occur in these images, SfM has proven to be fairly robust against distortion of

the resulting sparse geometry. While this justifies the use of the approach for scenes with small

deformation, the method could benefit from the development of robust sparse methods non-rigid

modeling that work in difficult endoscopic scenarios, if they were able to provide more accurate

sparse point triangulations.

3.2 Method

The ultimate goal of the proposed method is to produce a dense, geometrically accurate surface

for a given image in a video sequence. My approach achieves this using a new Shape-from-Shading

formulation that utilizes the sparse 3D point data obtained via Structure-from-Motion. In this section,
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Figure 3.4: Diagram of the proposed iterative approach for dense surface reconstruction of a single

video frame.

I detail the main contributions of the current work that enable this enhanced depth estimation: First,

I introduce a regularized formulation of SfS that allows for trade-off between predicted image

intensity and similarity to an existing estimated surface. This formulation is integrated into a

Lax-Friedrichs (LF) (Kao et al., 2004; Ahmed and Farag, 2006) partial differential equation (PDE)

solver. To improve the accuracy of the solution, I suggest a way to account for errors along

occlusion boundaries in the image using intensity-weighted finite differences, and I also outline

how parameters for the LF solver can be computed for general 1D reflectance models. Second, I

propose a novel reflectance model for use in SfS that can more finely capture real-world illumination

conditions. Finally, I develop an iterative update scheme (see Fig. 3.4) that (1) warps an estimated

surface to the SfM point cloud, (2) estimates a reflectance model using this warped surface and the

given image, and (3) produces a new estimated surface using the regularized SfS method.
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3.2.1 Initial PDE

Eq. (3.3) above models observed intensity Ir(r(x, y), θi(x, y)) for a generic, isotropic BRDF

with the assumption that the light source is colocated with the camera. In practice, the values of

Ir are obtained directly from the input (grayscale) image G, i.e., Ir(r(x, y), θi(x, y)) = G(x, y).

Joining Eq. (3.3) with Eqs. (3.5) and (3.8) and multiplying by r2, we have

(x2 + y2 + 1)Ge2v − IiA cos(θi)BRDF(θi) = 0 (3.9)

(note e2v = z2). The dependence of G, v, and θi on (x, y) is implied. The ultimate goal of the

following formulation is to solve for log-depth v (and from this, to derive the depth z) at each point

in the image.

To simplify the notation, denote L(x, y) = (x2 + y2 + 1)G(x, y). Also, at each point (x, y), let

η(vx, vy) = IiA cos(θi)BRDF(θi). (Recall that θi can itself be expressed as a function of vx and vy,

according to Eq. (3.8).) Using these substitutions and adopting appropriate boundary conditions to

handle the image domain, we can write Eq. (3.9) as a static PDE of v and its derivatives:















Le2v − η(vx, vy) = 0, (x, y) ∈ Ω

v(x, y) = ψ(x, y), (x, y) ∈ ∂Ω,

(3.10)

where the dependence of η and L on x and y is implied. ψ(x, y) defines boundary conditions for

the PDE.

3.2.2 Regularization

The PDE introduced above is dependent on the accuracy of the BRDF modeling the scene. To

prevent inaccuracies arising from errors in the BRDF fit, I propose to use the 3D points obtained

from SfM as an additional set of constraints for the estimated log-depths, v. Naı̈vely, the attempt

could be made to directly add these known depths as point constraints – i.e. for a given 2D
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feature point (xk, yk) with estimated depth zk, we would require v(xk, yk) = ln zk. However, such

constraints are ineffective in the PDE formulation, as they have no effect on the solution outside

of that 2D location (Horovitz and Kiryati, 2004). The 3D point cloud acquired via SfM can also

potentially yield noisy or outlier depth measurements, especially for scenes where the camera

motion is small, which results in larger depth uncertainty for 3D triangulation. Moreover, even

minor surface deformations can further degrade triangulation accuracy in live endoscopy. Thus, it is

inadvisable to fix the depths estimated by SfM to exact values.

Instead, assume there exists a current estimate fest(x, y) of the surface viewed by the camera. In

the iterative scheme introduced below, fest(x, y) is a warped surface that passes near the 3D SfM

points. A simple regularization is added to the SfS PDE (Eq. (3.10)) that constrains the solution

to be similar to the estimated surface in high-confidence regions (i.e. regions where the warped

surface agrees with the SfM feature points). This is captured in the following energy function:

E(v) = E0(v) +

∫

Ω

λ

2
(ev − zest)

2 dx. (3.11)

The term E0(v) denotes an energy functional effecting the original SfS PDE, i.e., ∂E0

∂v
= Le2v −

η(vx, vy). The function zest(x, y) is the (fixed) depth of the existing surface at a given image

coordinate, and the parameter λ(x, y) ≥ 0 controls the influence of the regularization term. An

approach for calculating λ(x, y) is defined below, when the final iterative algorithm is introduced.

The squared loss term is a design choice, of course; in principle, robust choices such as the absolute

difference could be adopted, to help alleviate gross errors in the current estimated surface.

The minimum of E(v) is a new PDE:

∂E

∂v
= Le2v − η(vx, vy) + λ (ev − zest) e

v !
= 0. (3.12)
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The associated PDE with boundary conditions can be written as















(L+ λ)e2v − λzeste
v − η(vx, vy) = 0 (x, y) ∈ Ω

v(x, y) = ψ(x, y). (x, y) ∈ ∂Ω.

(3.13)

3.2.3 Solving the PDE

Ahmed and Farag (2006) introduced a fast-sweeping method for SfS with the Oren-Nayar

reflectance model (Oren and Nayar, 1994), itself based on a method by Kao et al. (2004), that can

be used to solve PDEs like the regularized equation introduced above. I adopt this solving scheme

here and outline how it can be extended to any general 1D reflectance model. Their approach

uses the Lax-Friedrichs (LF) Hamiltonian, which provides an artificial viscosity approximation

for solving static Hamiltonian-Jacobi equations, i.e., functions of the form H(x,∇v(x)) = R(x).

The LF Hamiltonian is advantageous in that it is able to handle non-convex, complex Hamiltonian

equations. While time-independent PDEs like Eq. (3.13) are not Hamiltonian equations due to the

reliance of the variable v, Ahmed and Farag (2006) demonstrated that the LF Hamiltonian can be

effectively applied to these types of equations.

3.2.3.1 Discretization

Before explaining the LF solving scheme, it is necessary to first introduce some numerics that

underlie the approximation of the PDE. Let the image space be uniformly discretized into columns

xi and rows yj with grid spacing ∆x and ∆y. Let vi,j be the log-depth at position (xi, yj). Denoting

p = ∂v
∂x

and q = ∂v
∂y

, the forward- and backward-difference approximations of p can be represented

as

p+i,j =
1

∆x
(vi+1,j − vi,j) and p−i,j =

1

∆x
(vi,j − vi−1,j), (3.14)
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respectively, and similarly for q. Let

p̄i,j =
p+i,j + p−i,j

2
and q̄ =

q+i,j + q−i,j
2

(3.15)

be the average of the finite differences, and let

v̄xi,j =
vi+1,j + vi−1,j

2
and v̄yi,j =

vi,j+1 + vi,j−1

2
(3.16)

be the average value of the grid elements adjacent to vi,j .

3.2.3.2 Applying the Lax-Friedrichs Hamiltonian

Consider a general static Hamiltonian equation H(x, y, p = vx, q = vy) = 0. To obtain

a solution of v that approximately satisfies this equation, the 2D Lax-Friedrichs Hamiltonian

introduces artificial viscosity terms

σx
i,j ≥ max

p∈[A,B],q

∣

∣

∣

∣

∂H

∂p
(xi, yj, p, q)

∣

∣

∣

∣

and σy
i,j ≥ max

q∈[C,D],p

∣

∣

∣

∣

∂H

∂q
(xi, yj, p, q)

∣

∣

∣

∣

(3.17)

that ensure stability of the solution scheme (Kao et al., 2004; Shu, 2007). In a global LF scheme,

[A,B] and [C,D] cover the entire valid range of p and q, respectively, whereas in a local LF scheme,

[A,B] = [min(p+i,j, p
−
i,j),max(p+i,j, p

−
i,j)] and [C,D] = [min(q+i,j, q

−
i,j),max(q+i,j, q

−
i,j)]. See below

for further discussion on these parameters. Implicitly assuming the dependence on (xi, yj), the

function H is approximated by the LF Hamiltonian:

H̃LF (vi,j, vi+1,j, vi−1,j, vi,j+1, vi,j−1) = H (p̄i,j, q̄i,j)+
σx
i,j

∆x

(

vi,j − v̄xi,j
)

+
σy
i,j

∆y

(

vi,j − v̄yi,j
)

, (3.18)

where the “bar” terms are from Eqs. (3.15) and (3.16), above.1

1This is a slightly unconventional way of expressing the LF Hamiltonian, which is typically written with artificial

viscosity terms −σ
x

2
(p+ − p

−) and −σ
y

2
(q+ − q

−). I use this form to simplify the use of the image-weighted finite

differences I introduce below.
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As mentioned before, Ahmed and Farag (2006) demonstrated that this augmentation can be

applied to more general equations like the original PDE in Eq. (3.13). The PDE becomes

(L+ λ)e2vi,j − λzeste
vi,j − η (p̄i,j, q̄i,j) +

(

σx
i,j

∆x
+
σy
i,j

∆y

)

vi,j −
σx
i,j

∆x
v̄xi,j −

σy
i,j

∆y
v̄yi,j = 0, (3.19)

plus appropriate boundary conditions that are detailed below. In a similar vein to Ahmed and Farag

(2006), we can solve for the new value of vi,j using Newton’s root-finding method, i.e., expressing

the left side of the above equation in a generic form of

g(v) = ae2v − bev + cv − d, g′(v) = 2ae2v − bev + c, (3.20)

the value of v is updated using the following equation until the solution g(v) = 0 is satisfied:

v := v − g(v)

g′(v)
. (3.21)

3.2.3.3 Fast Sweeping Scheme and Boundary Conditions

Kao et al. (2004) and Ahmed and Farag (2006) both outline the general algorithm for fast

sweeping using the LF Hamiltonian, so I detail it on a high level, here. For initialization, the

log-depth values vi,j are set to a large positive constant. The algorithm then proceeds to iteratively

update these values to progressively closer depths, applying Eq. (3.21) to determine the new value

for one vi,j at a time. Stable updates are maintained using diagonal “sweeps” that alternative

between bottom left to top right, bottom right to top left, top left to bottom right, and top right to

bottom left. For example, in the top-left-to-bottom-right sweep, the value of a general vi,j will be

updated using values of vi−1,j and vi,j−1 that have already been updated in the current sweep and

values of vi+1,j and vi,j+1 that have yet to be updated. Updates are applied until the total change in

v over the entire image is smaller than some small positive constant.

34



To avoid computational catastrophe on the borders of the image, where the 4-neighborhood

structure needed for H̃LF is unavailable, Kao et al. (2004) propose boundary conditions to be

applied on the edge of the image after every sweep. On the left border (and similarly for other three

borders), their approach computes a new value of v0,j under two possible conditions: p+1,j = p−1,j

and p+1,j = −p−1,j . If the maximum of these new values is smaller than the current value of v0,j , v0,j

is updated to this smaller value.

In practice, I have found that taking the maximum of the two values can often lead the solution to

exhibit strongly incorrect geometry near the boundary, at least for endoscopic applications (Fig. 3.5).

This is due to the ground-truth surface (which is essentially a tube) near the image boundary often

being very oblique w.r.t the camera’s viewing direction. Instead, taking the minimum of the two

values seems to offer generally better results — with an additional constraint that the surface slope

at the boundary is not too large. The boundary condition is thus applied on the left border using

v0,j := min(max(min(2v1,j − v2,j, v2,j), v1,j −∆max
v )v0,j), (3.22)

where ∆max
v is the change in v corresponding to a maximum allowed incident angle (e.g., θi = 89.5◦)

at the image border. Similar boundary conditions are used for the other three image borders.

Without the threshold on the maximum slope, sporadic artifacts can sometimes arise near the image

boundaries due to specularities or dark regions (Fig. 3.5, third image). This value is somewhat

sensitive – if the threshold is even 85◦, I have found that the overall accuracy of the method can

suffer.

3.2.4 Computing σx
i,j and σy

i,j for Arbitrary BRDFs

As mentioned previously, σx
i,j and σy

i,j (Eq. (3.17)) can be chosen using either as global param-

eters or local parameters. The local LF scheme is generally preferred, since it exhibits smaller

dissipation in the final LF solution due to the adaptive range in which the maximum is taken (Osher

and Shu, 1991; Shu, 2007). In practice, however, values for σx
i,j and σy

i,j may be difficult to compute
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Figure 3.5: Compared to the ground-truth surface (left), the boundary conditions suggested by

Kao et al. (2004) can lead to strong artifacts on the edges of the image for endoscopic applications

(second from left). A minor change to these conditions can correct for this, although problematic

artifacts can still occur (second from right), which can be alleviated by limiting the maximum

surface slope along the image boundary (right).

at equality for both types of schemes, since the magnitude of the derivative must be evaluated over

a range of p and q, and at each pixel location. An alternative to finding this exact threshold is to

instead find a reasonable upper bound that is relatively simple to compute. One way to approach

this for SfS is to separate the 1D BRDF and surface representation — that is, treat the PDE as a

function of cos(θi) (cf. Eqs. (3.9) and (3.10)), and treat cos(θi) as a function of x, y, p, and q (cf.

Eq. (3.8)).

To make this more clear, I next outline the computation for σx
i,j . The value σy

i,j has a similar

formulation. In the following, I use θ = θi for the incident light angle to avoid confusion with (i, j)

subscripts.

First, note that for the regularized SfS PDE H (Eq. 3.13), ∂H
∂p

= ∂η
∂p

, where again p = vx.

In Section 3.2.1, η(p, q) was formulated as a 2D function (ignoring the dependence on x and

y) to clarify the PDE formulation; however, we can equivalently express it as a 1D function,

η̃(cos(θ)) = η(p, q), with θ itself being a 2D function of p and q. Thus, considering Eq. (3.17), we
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have at pixel location (xi, yj) that

max
p∈[A,B],q

∣

∣

∣

∣

∂H

∂p
(xi, yj, vi,j, p, q)

∣

∣

∣

∣

= max
p∈[A,B],q

∣

∣

∣

∣

∂η

∂ cos(θ)

∂ cos(θ)

∂p
(xi, yj, p, q)

∣

∣

∣

∣

≤ max
p∈[A,B],q

∣

∣

∣

∣

∂η

∂ cos(θ)
(xi, yj, p, q)

∣

∣

∣

∣

max
p∈[A,B],q

∣

∣

∣

∣

∂ cos(θ)

∂p
(xi, yj, p, q)

∣

∣

∣

∣

≤ max
cos(θ)∈(0,Tx

i,j ]

∣

∣

∣

∣

∂η̃

∂ cos(θ)
(cos(θ))

∣

∣

∣

∣

max
p,q

∣

∣

∣

∣

∂ cos(θ)

∂p
(xi, yj, p, q)

∣

∣

∣

∣

,

(3.23)

where T x
i,j is the largest possible value of cos(θ) given p+i,j and p−i,j , for any value of q. The lower

bound of zero arises because an arbitrarily large value of q can be chosen; the upper bound of T x
i,j

arises because the maximum value of cos(θ) decreases monotonically with p. For the right term, I

have found that a global range for |∂ cos(θ)
∂p

| is more tractable to work with, so I have adopted it, here.

It turns out that both T x
i,j and the second maximum are computable in closed form (see Appendix

A). The first maximum may or may not be easy to compute – for example, if the underlying

BRDF model is assumed to be Lambertian, it is a constant, whereas other models may require a

search of the entire range. For purposes of a general and efficient implementation, I use numeric

differentiation to approximate

∣

∣

∣

∂η
∂ cos(θ)

∣

∣

∣
for values of cos(θ) from 0 to 1, and I maintain a lookup

table of the cumulative maximum for any value of T x
i,j .

3.2.5 Image-weighted Finite Differences

The artificial viscosity introduced by the Lax-Friedrichs Hamiltonian can be quite dissipative

(Osher and Fedkiw, 2003), meaning solution schemes involving the Hamiltonian will poorly

approximate functions along discontinuities. For a surface function f(x, y) (Eq. (3.4)), such

discontinuities occur along self-occlusion boundaries of the surface in the image. To address this

issue, I propose a simple image-intensity-based weighting scheme for p̄i,j , q̄i,j , v̄
x
i,j , and v̄yi,j that

gives higher emphasis on neighboring pixels with similar observed intensities. This approach is

inspired by similar approaches in stereo-based methods (Yoon and Kweon, 2006; Gu et al., 2008).
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More explicitly, consider the observed radiance Ii,j for a pixel (xi, yj) normalized to the range

[0, 1]. Define wx±
i,j = exp

(

−
(

Ii,j−Ii±1,j

σI

)2
)

, and similarly wy±
i,j . The parameter σI defines the

spread of the weighting, with smaller values placing a higher penalty on intensity differences

(σI = 0.1 for the experiments later in this chapter). The values p̄i,j and q̄i,j introduced above are

now redefined as p̄i,j =
1

wx+
i,j +wx−

i,j

(

wx+
i,j p

+
i,j + wx−

i,j p
−
i,j

)

and q̄i,j =
1

wy+
i,j +wy−

i,j

(

wy+
i,j q

+
i,j + wy−

i,j q
−
i,j

)

. A

similar weighting is applied for v̄xi,j and v̄yi,j .

3.2.6 Reflectance Model

The choice of reflectance model is key to achieving realistic SfS reconstructions. In the case of

nasopharyngoscopy, the underlying surface consists of throat tissue covered by a thin layer of saliva.

While throat tissue is generally Lambertian, meaning that reflected light intensity is a direct function

of cos θi (and thus the BRDF is a constant related to the surface albedo), the extra salivary coating

induces superficial reflections that significantly alter the overall reflectivity. Since these non-diffuse

effects are signficantly different from those modeled by existing non-Lambertian SfS approaches

(Ahmed and Farag, 2006; Vogel et al., 2009), I propose to instead model the saliva/tissue reflectance

using a general basis for 1D BRDFs.

3.2.6.1 BRDF Basis

The proposed reflectance model is based on the set of BRDF basis functions introduced by

Koenderink et al. (1996). These functions form a complete, orthonormal basis on the half-sphere

derived via a mapping from the Zernike polynomials, which are defined on the unit disk. As-

suming Helmholtz’s reciprocity2 and surface isotropy, the basis consists of a set of functions

Sl
nm(θi, θr,∆φir), where ∆φir = |φi − φr|, 0 ≤ l ≤ m ≤ n ≤ N , and the quantites (n − l) and

2In this context, Helmholtz’s reciprocity is the principle that a 4D BRDF remains constant if the light and camera are

interchanged. Of course, this is trivially true for the 1D case.
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(m− l) are even. N represents the order of the BRDF. The basis functions have the form

Sl
nm(θi, θr,∆φir) =

(

Θl
n(θi)Θ

l
m(θr) + Θl

m(θi)Θ
l
n(θr)

)

cos l∆φir. (3.24)

Here, Θb
a(θ) is proportional to the radial function Rb

a

(√
2 sin

(

θ
2

))

, which itself takes the form of

a terminating hypergeometric series. Θb
a(θ) can thus be expressed as a polynomial of sin( θ

2
) with

powers ranging from b to a:

Θb
a(θ) =

a
∑

k=b

ck sin
k

(

θ

2

)

, (3.25)

where the coefficients ck are proportional to coefficients of the terminating hypergeometric series.

(The exact value of ck is not important for this exposition, as it will later be combined with

parameters for the BRDF.) The final BRDF is a sum of the individual basis functions:

BRDF(θi, θr,∆φir) =
∑

nml

cnmlS
l
nm(θi, θr,∆φir), (3.26)

where the coefficients cnml are parameters that dictate the specific BRDF.

3.2.6.2 Proposed Reflectance Model

The BRDF basis of Koenderink et al. (1996) can be adapted to produce a multi-lobe reflectance

model for camera-centric SfS. First, taking the light source to be at the camera center, we have

θi = θr and ∆φir = 0. Combining with Eqs. (3.24) and (3.25), this gives

Sl
nm(θi) = 2Θl

n(θi)Θ
l
m(θi)

= 2

(

n
∑

k=l

ck sin
k

(

θ

2

)

)(

m
∑

k=l

ck sin
k

(

θ

2

)

)

= 2

(

c2l sin
2l

(

θ

2

)

+ 2clcl+1 sin
2l+1

(

θ

2

)

+ · · ·
)

=
nm
∑

k=2l

c′k sin
k

(

θi
2

)

,

(3.27)
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where c′k is a specific coefficient for each value of k. Since sin2(θ) = 1
2
(1 − cos(2θ)), Eq. (3.27)

can be rewritten as

Sl
nm(θi) =

nm
∑

k=2l
k even

c′k

(

1− cos θi
2

)k/2

+ sin

(

θi
2

) nm
∑

k=2l+1
k odd

c′k

(

1− cos θi
2

)(k − 1)/2

. (3.28)

Note that each element in both sums can be expanded in to a polynomial of cos θi. Abstracting the

coefficients and combining all summed values, each basis function can be expressed simply by

Sl
nm(θi) =

⌊nm/2⌋
∑

k=0

(

ak + bk sin

(

θi
2

))

cosk θi, (3.29)

where ak and bk are, again, specific coefficients for each value of k.

Using the above equation in Eq. (3.26), the camera-centric BRDF can thus be expressed as

BRDF(θi) =
K−1
∑

k=0

(

αk + βk sin

(

θi
2

))

cosk θi, (3.30)

where coefficients αk and βk are parameters that specify the BRDF, and K is a chosen order for the

BRDF.

Fig. 3.6 shows example basis functions for this “powers-of-cosine” reflectance model. The

results presented in the evaluations section below demonstrate that using only a small number of

low-order terms can substantially increase the performance of SfS on real data. Moreover, this

BRDF is relatively cheap to use in SfS applications, as powers of cos θi can easily be computed

from Eq. (3.8), and the sin(θi/2) term only needs to be calculated once.

3.2.6.3 Relation to Other Reflectance Models

The reflectance model introduced above has some similarities with one-dimensional versions of

previously proposed reflectance models, although it cannot directly model some physical phenom-

ena.
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Figure 3.6: The 16 basis functions used in the proposed reflectance model with K = 8.

Lambertian and Phong: The proposed reflectance model can trivially capture the Lambertian

and Phong reflectance models. The 1D Phong reflectance model (Phong, 1975) is defined as

BRDFP (θi) = a0 + an cos
n(θi), (3.31)

for some coefficient n. (This assumes the ambient lighting term is zero in Phong’s model, and that

n is an integer.) The Lambertian model simply has a single nonzero term, a0, that relates to the

surface albedo.

Oren-Nayar: The 1D Oren-Nayar BRDF (Oren and Nayar, 1994) is defined as

BRDFON(θi; σ) = A(σ) + B(σ) sin(θi) tan(θi), (3.32)

where A and B are specific coefficients given model parameter σ. This BRDF is not directly

compatible with the proposed reflectance model, although it is compatible if a cos−1(θi) term is

added:

BRDFON(θi; σ) = A(σ) + B(σ) sin(θi) tan(θi)

= A(σ) + B(σ) sin2(θi) cos
−1(θi)

= A(σ) + B(σ)
(

1− cos2(θi)
)

cos−1(θi)

= a−1 cos
−1(θi) + a0 + a1 cos(θi),

(3.33)
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with a−1 = −a1. The cos−1(θi) term provides a “rough surface” approximation that negates the

incident angle falloff for irradiance (Eq. 3.2) in smooth surfaces. In other words, the 1D Oren-Nayar

model assumes a certain percentage of light is always reflected back towards the viewer, regardless

of the incident angle.

Cook-Torrance: The 1D Cook-Torrance model (Cook and Torrance, 1982) consists of Lamber-

tian and specular terms:

BRDFCT (θi; a0, F,m) = a0 +
F min (2 cos2(θi), 1)

m2 cos6(θi)
exp

(

1− cos−2(θi)

m2

)

, (3.34)

where F is the Fresnel term that relates the strength of light reflectance off the surface, and m is

a scale parameter for the Beckmann distribution function. In the case of a 1D BRDF, Cook and

Torrance note that F can be approximated as a constant for surfaces that are not extremely specular.

The specular part of the Cook-Torrance model is not directly compatible with the reflectance model

I have proposed above.

3.2.7 Iterative Update Scheme

Next, I introduce an iterative updating scheme for enhancing SfS with sparse 3D scene geometry.

In principle, this method is not tied to the sparse reconstruction method used (e.g. rigid SfM or

non-rigid SfM) – it only requires 3D points associated with 2D observations in the given image. For

the experiments presented below, I use a rigid SfM implementation (Schönberger and Frahm, 2016)

and, for the experiments on live endoscopies, operate on small groups of temporally neighboring

frames without large surface deformation.

The proposed algorithm takes as input an observed image and the 3D SfM points associated with

that image. It outputs a dense surface using depth-correcting warpings, the proposed reflectance

model, and the proposed PDE framework. The method has a “flavor” of expectation-maximization

algorithms in the sense that it iterates between optimizing a set of parameters (the reflectance model)

based on the existing surface and computing expected depths using these parameters.
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3.2.7.1 Warping

Denote the estimated surface at iteration n of the iterative scheme as fn. For initialization,

an estimated surface f0 is defined having r(x, y) = 1, where r is defined in Eq. (3.5). First, an

image-space warp of fn is performed using the 3D SfM points with known distance r̂k(xk, yk)

as control points. For each SfM point, the ratio ρk = r̂k/rk is estimated, where rk is the point’s

(bilinearly interpolated) distance on fn. To minimize the effect of outlier points from SfM, I adopt a

nearest-neighbor approach to define the warping function: For each pixel (x, y) in the image, the

N closest SfM points in the image plane are taken. In my experiments, I use N = 10. Then, the

warp function at that pixel is defined as ρ(x, y) =
∑

wkρk/
∑

wk, where the sum is over the set of

neighboring SfM points. The per-point weight is set as wk = exp(−dk), where di is the distance

in the image plane between (x, y) and the SfM point (xk, yk). The new surface is calculated as

fwarp
n (x, y) = ρ(x, y)fn(x, y).

3.2.7.2 Reflectance Model Estimation

From this warped surface, optimization is performed to update the reflectance model parameters

Θ for the specified BRDF (where the parameters depend on what BRDF that is chosen, such as

{αk, βk} for the model proposed above or a constant albedo for the Lambertian model). This

optimization is done by minimizing the error over all SfM points (cf. Eq. (3.10)):

E(Θ) =
∑

Ik,r̂k,θk

Φ
(

η(θk;Θ)− Ikr̂
2
k

)

+Ψ(Θ) , (3.35)

where Ik, r̂k, and θk are the observed luminance, original distance, and current estimated incident

angle for the kth input SfM point. An example result is shown in Fig. (3.7). Because the warped

surface may not exactly pass through the SfM points, each θk is obtained from the surface point in

fwarp
n that is closest to the original SfM point, rather than directly from fwarp

n (xk, yk). The term Φ is

a robust function to help avoid outliers in the fit, and Ψ is a regularization function for the estimated
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model parameters. For Φ, I use a Huber function (Huber, 1981) that is applied per point with a

threshold of τ r̂2k, with τ = 0.1 in my experiments.

The Ψ term is necessary to improve the conditioning of the proposed BRDF model — without

this, the surfaces estimated by the method can vary widely with just a small change in the input. I

use a Tikhonov regularization: Ψ(Θ) =
α2µ(r̂2

k
)

2K
||Θ||22, with α = 0.01 and where µ(·) represents the

mean. The algorithm is somewhat sensitive to the order of magnitude of α: it cannot be too large or

too small. I do not use any regularization when fitting a Lambertian model.

Instead of fitting to the SfM points only, another option is to perform the fit over the entire

warped surface. However, this is often highly sensitive to geometric inaccuracies in the warped

surface, and I have found that the approach gives generally inferior results (Fig. 3.7).

3.2.7.3 SfS with Estimated BRDF

Following reflectance model estimation, PDE framework introduced above (Eq. (3.13)) is then

applied using the warped surface fwarp
n for values of zest and using the current estimated reflectance

model.

Concerning values of λ(x, y) in the regularized PDE (Eq. (3.13)), λ > L will give greater weight

to fwarp
n , while λ < L will favor a purely SfS solution. The weighting is decided based on agreement

between the SfM points and fwarp
n . Let ∆rk be the distance between a 3D SfM point with distance r̂k

and its corresponding point on fwarp
n . The agreement between the warped surface and the SfM point

is defined as λk = max
(

log10
r̂k

2∆rk
, 0
)

. This equally weights SfM and SfS (i.e. λk = 1) when

∆rk is 5% of r̂k and L = 1. The log term serves to increase λk by 1 for every order-of-magnitude

decrease in ∆rk/r̂k. Just as for ρ(x, y) above, the same nearest-neighbor weighting scheme is used

to define λ(x, y) based on the λk values at the SfM control points.

3.2.7.4 Iteration

Once SfS has been performed, a newly estimated surface fn+1 is obtained. The algorithm then

re-warps the surface, re-estimates the reflectance model, and re-runs regularized SfS. This iterative
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Figure 3.7: Example fitting results for the K = 5 model, using the ground-truth surface (left),

warped surface (middle), and sparse SfM points (right) on a synthetic image. The top row shows

the initial surfaces and points use for the fitting; these target values are scattered in the graphs in the

bottom row, with each value colored by its observed intensity for visualization. The red curves in

the bottom row plot the reflectance function η(θi;Θ) whose parameters Θ have been robustly fit to

the plotted points. The middle row shows a re-rendering of the ground-truth surface using these fit

functions. Fitting to the SfM points alone is more reliable than fitting to the entire warped surface,

which may contain errors in depth as well as in cos θi. In this example, the near-specular effects of

the material are better captured by the fit using the SfM points.
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process is repeated for a maximum number of iterations or until convergence. In my implementation,

convergence is reached when the average change in z(x, y) over the entire image is less than 1%.

For the majority of images, this is usually reached within 3-6 iterations. Within each iteration, I use

a tighter threshold for convergence for SfS, stopping when the maximum change in z(x, y) is less

than 0.1%.

3.2.8 Accounting for Interreflections in Real Endoscopic Scenarios

Up to now, we have considered a single-interaction lighting model, where each light ray is

assumed to intersect with the viewed surface exactly once. In real-world applications, however,

photons colliding with a surface will be scattered in all directions (which is modeled by the BRDF),

and thus many photons emitted from the light source will reflect off the surface at multiple points

before they collide with the camera sensor. In other words, the actual observed radiance is the

sum of the radiance from the illuminant alone plus the strength of interreflections (Forsyth and

Zisserman, 1991):

Ir = Ei BRDF(θi) +

∫ π/2

0

∫ 2π

0

Ẽi(θ, φ)BRDF(θ, φ, θr, φr)dθdφ (3.36)

(cf. Eq. (3.3)). Here, Ẽi(θ, φ) represents the amount of interreflected light irradiating a point from a

given incident angle w.r.t the surface normal, and the integral is taken over the entire unit hemisphere.

From an extremely pessimistic perspective, these interreflections would completely invalidate the

simple model used for SfS: the light that enters the camera sensor is, in reality, more than just the

light that bounced off of the surface directly towards the camera. On the other hand, since some

amount of light is absorbed with each interreflection (Nayar et al., 1991), the contribution to overall

radiance is mainly derived from the first few collisions. So, there is an upper bound to the error

incurred by ignoring interreflections.

Intuitively, the result from the proposed SfMS approach should improve given some additional

model of the interreflection function. Here, I propose a relatively simple approach for this approxi-
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mation that assumes spatial contiguity of the interreflection strength. The idea is that the amount of

additional interreflected light entering the camera is, in general, likely to be similar for two nearby

points on the imaged surface. Interreflection can therefore be modeled to some approximation in

the image domain, taking into account that nearby pixels represent nearby points on the surface

except at occlusion boundaries. If we ignore occlusion boundaries and assume that the amount

of interreflection varies only slowly over the image, one option for modeling interreflection is to

use a low-order polynomial in x and y. The interreflection integral in Eq. (3.36) is changed to an

approximating form of

Ir = Ei BRDF(θi) +
N
∑

i=0

N
∑

j=0

cijx
iyj, (3.37)

where each cij is a coefficient of the order-N polynomial. These extra coefficients are included as

parameters during reflectance model estimation. Integrating the coefficients into the SfS formulation

is also straightforward. Denoting the sum in Eq. (3.37) as If , the initial PDE (Eq. (3.9)) becomes

(x2 + y2 + 1)(Ir − If )e
2v − IiA cos(θi)BRDF(θi) = 0. (3.38)

The rest of the approach needs no adaption.

In practice, I have found that N = 2 (9 total coefficients) gives adequate gains for the overall

estimation, with diminishing returns for larger values of N . One caveat to this approach is that

the low-order polynomial is dependent on the 2D placement of the SfM feature points — if the

feature points are not distributed across the image, unrealistic values of If can frequently arise. I

account for this simply by clipping values of If to the range [0, 0.1]. The reasoning here is that

interreflection is always additive and should only contribute a small amount to the overall luminance

(in the range [0, 1]). The chosen value of 0.1 is a heuristic.

This low-order approximation is admittedly quite simple, and I expect that much more elegant

approaches are likely possible. For example, 2D splines could be used to better account for sharp

changes in If , although the reliability of this more specialized fitting depends even more strongly on

the 2D placement of the SfM feature points, compared with a low-order approximation. Simplicity
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of the proposed method notwithstanding, I demonstrate that even using this crude approximation

can significantly increase the overall accuracy of the approach.

3.3 Evaluation

In this section, I provide quantitative and qualitative evaluations of the proposed BRDF model

and the overall SfMS framework.

3.3.1 Comparison of BRDF Fits

Fig. 3.8 provides a qualitative comparison of how well different 1D BRDF models are able to

approximate real-world material reflectances for eight different materials taken from the MERL

database (Matusik et al., 2003). In this experiment, I render each material according to its theoretical

observed radiance at unit depth (i.e., Ir(θi) = ρ cos(θi)BRDF(θi), cf. Eq. (3.3)) with a normalization

ρ set such that the highest intensity for any value of Ir(θi) is rendered with an intensity of 1 (pure

white). The top row of each image shows the observed color of each material as a function of θi, and

the second row shows the same function as a grayscale (luminance) image. Each subsequent row

in each image shows a least-squares fit of a different reflectance model to the luminance function.

I have taken the example to an extreme and shown fits for the proposed reflectance model up to

K = 10000. While this is in no way practical for implementation, it helps demonstrate the full

behavior of the reflectance basis versus the other models.

Table 3.1 shows an exhaustive list of radiance-fitting errors over the 100 materials in the MERL

database, for each of the analyzed BRDFs. As each ground-truth reflectance function is scaled

such that its largest value equals 1, the error values are not comparable between different materials;

however, the results for each material are directly comparable among the different models. It is

apparent that the Lambertian and Oren-Nayar BRDFs are often poor approximations for all but the

most diffuse/rough surfaces. The Phong and Cook-Torrance models often perform much better, with

the Phong model typically achieving slightly better approximations. Naturally, the proposed model

always improves for larger values of K, and for many diffuse materials, only a small number of
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aventurnine beige-fabric dark-specular-fabric fruitwood-241
Color 1D BRDF

Grayscale 1D BRDF

Lambertian

Oren-Nayar

Phong

Cook-Torrance

K = 1

K = 2

K = 3

K = 4

K = 5

K = 10

K = 20

K = 50

K = 100

K = 500

K = 1000

K = 10000

cos(θi) 1−−−−−−−−−−−−−−−−−−→0 1−−−−−−−−−−−−−−−−−−→0 1−−−−−−−−−−−−−−−−−−→0 1−−−−−−−−−−−−−−−−−−→0

ipswich-pine-221 red-fabric two-layer-silver yellow-plastic
Color 1D BRDF

Grayscale 1D BRDF

Lambertian

Oren-Nayar

Phong

Cook-Torrance

K = 1

K = 2

K = 3

K = 4

K = 5

K = 10

K = 20

K = 50

K = 100

K = 500

K = 1000

K = 10000

cos(θi) 1−−−−−−−−−−−−−−−−−−→0 1−−−−−−−−−−−−−−−−−−→0 1−−−−−−−−−−−−−−−−−−→0 1−−−−−−−−−−−−−−−−−−→0

Figure 3.8: Estimated 1D radiance functions for different materials from the MERL database

(Matusik et al., 2003). The top row of each image shows the color radiance, cos(θi)BRDFλ(θi),
and the second row shows the luminance equivalent. Subsequent rows show least-square fits to the

luminance function for different BRDF models.
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coefficients (K ≤ 5) are necessary to outperform the other reflectance models. Specular materials

typically require many more coefficients, with the proposed model only outperforming the fitting

of Phong’s model when K = 10000, if at all. Since Phong’s model can be thought of as a sparse

version of the proposed model, it follows that employing sparsity constraints in the proposed

model would help the overall performance across all materials without needing a huge number of

coefficients. In other words, one can use a small number of coefficients in the proposed model (say,

K = 5 or K = 10) and additionally fit a specular term, an cos
n(θi), where both an and n are free

parameters.

However, while the addition of high-order specular terms is reasonable for fitting to known

BRDFs and general graphics applications, there are some difficulties in applying these terms in

computer vision applications like the SfMS approach I propose. The main issue is that specular

regions are prone to oversaturation. Digital camera sensors operate by, to first approximation,

counting the number of photons that collide with a pixel over a given period of exposure. Especially

for cameras that do not have high-dynamic-range sensors (which is typically the case for endoscopic

devices), the problem is that there exists an upper limit to the amount of photon charge that can be

accumulated for a given pixel — past a certain point, the total number of photons has no effect on the

resulting pixel value. For specular surfaces, such oversaturation frequently occurs at specularities,

i.e., points where cos(θi) is close to 1. The effect can also occur when the camera/light is very

close to the surface. This is problematic for fitting a BRDF model to observed luminance values,

since the nuances of actual luminance are completely destroyed for such image regions. Effectively,

specularities in the image can be interpreted as missing data, thus there is not a strong advantage to

using high-order specular terms when fitting a BRDF model in the proposed SfMS approach. The

best approach would be to detect specularities in the image, excise them, and fill in the region using

an image imputation method. I do not adopt this approach in my experiments here, however.
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alum- alumina alumin- aventu- beige black black blk-ox black black blue blue bl-metal bl-metal blue brass cherry chrome chrome colonial

bronze oxide ium rnine fabric fabric obsid steel phenol plastic acrylic fabric paint paint2 rubber 235 steel maple

Lambertian 4.3356 2.2722 1.7267 1.5143 0.4961 0.2801 1.7332 6.0288 3.6218 5.6718 1.8640 0.1122 9.8568 1.7460 0.8565 1.9310 7.4195 1.5882 1.5518 4.7559

Oren-Nayar 3.9684 2.2165 1.6847 1.4848 0.2925 0.1171 1.6904 3.9293 3.4579 3.8878 1.8233 0.1054 7.8182 1.7074 0.5391 1.8871 6.1279 1.5564 1.5236 3.9509

Phong 0.3294 0.1057 0.1585 0.1677 0.0473 0.2801 0.2139 0.0657 0.1639 0.0354 0.1422 0.0686 0.0370 0.1420 0.0123 0.1397 0.0613 0.1764 0.1793 0.0266

Cook-Torr. 0.3295 0.2196 0.2378 0.3855 0.0231 0.2787 0.2796 0.0772 0.1644 0.0418 0.2983 0.1021 0.0395 0.3179 0.0143 0.2220 0.0631 0.2297 0.2238 0.0278

K=1 2.8097 2.0082 1.5400 1.3709 0.0545 0.2527 1.5252 0.8045 2.8495 0.8549 1.6663 0.0780 3.0317 1.5691 0.1223 1.7322 2.7016 1.4560 1.4508 1.8830

K=2 1.2928 1.8321 1.4752 1.2485 0.0072 0.0140 1.3472 0.0197 1.8163 0.0338 1.4960 0.0345 0.1505 1.4984 0.0058 1.6587 0.1722 1.4195 1.4243 0.0812

K=3 1.0321 1.7370 1.4353 1.1900 0.0029 0.0073 1.2635 0.0119 1.5986 0.0058 1.4158 0.0034 0.0788 1.4603 0.0029 1.6155 0.0383 1.3916 1.4044 0.0198

K=4 0.9254 1.6770 1.4059 1.1598 0.0010 0.0039 1.2203 0.0071 1.4684 0.0018 1.3743 0.0017 0.0675 1.4308 0.0029 1.5830 0.0329 1.3705 1.3885 0.0170

K=5 0.8302 1.6343 1.3810 1.1342 0.0006 0.0023 1.1836 0.0026 1.3692 0.0004 1.3389 0.0017 0.0640 1.4049 0.0022 1.5551 0.0298 1.3534 1.3754 0.0126

K=10 0.6079 1.4834 1.2956 1.0496 0.0004 0.0016 1.0640 0.0003 1.0513 0.0001 1.2229 0.0017 0.0403 1.3181 0.0016 1.4590 0.0236 1.2944 1.3307 0.0047

K=20 0.4336 1.3184 1.2060 0.9566 0.0003 0.0008 0.9343 0.0002 0.7596 0.0001 1.0953 0.0015 0.0124 1.2259 0.0009 1.3567 0.0161 1.2293 1.2805 0.0006

K=50 0.2493 1.0771 1.0822 0.8213 0.0001 0.0005 0.7514 0.0002 0.4407 0.0001 0.9107 0.0011 0.0010 1.0954 0.0003 1.2116 0.0141 1.1357 1.2053 0.0002

K=100 0.1488 0.8849 0.9874 0.7120 0.0001 0.0005 0.6107 0.0002 0.2666 0.0000 0.7628 0.0010 0.0008 0.9941 0.0002 1.0982 0.0119 1.0586 1.1400 0.0002

K=500 0.0480 0.4692 0.7680 0.4638 0.0001 0.0004 0.3351 0.0001 0.0752 0.0000 0.4376 0.0009 0.0007 0.7603 0.0001 0.8322 0.0010 0.8532 0.9503 0.0002

K=1000 0.0319 0.3317 0.6735 0.3724 0.0000 0.0004 0.2566 0.0001 0.0430 0.0000 0.3255 0.0009 0.0004 0.6613 0.0001 0.7171 0.0010 0.7524 0.8499 0.0001

K=10000 0.0200 0.0889 0.3773 0.1675 0.0000 0.0003 0.1287 0.0000 0.0083 0.0000 0.1035 0.0009 0.0002 0.3500 0.0001 0.3576 0.0007 0.4156 0.4767 0.0001

color-chg color-chg color-chg dark-bl dark-rd dk-spec delrin fruit- gld-met gld-met gld-met gold gray greased green green green gr-met gr-met green

paint1 paint2 paint3 paint paint fabric wood-241 paint paint2 paint3 paint plastic steel acrylic fabric latex paint paint2 plastic

Lambertian 6.3303 6.9925 5.6976 4.1957 0.6435 3.6804 2.3324 7.1388 9.6879 1.3774 2.0022 8.5734 3.8949 2.6471 3.2351 0.3456 0.7041 9.7216 2.0321 1.2934

Oren-Nayar 5.8161 6.2955 5.2583 2.7733 0.2850 2.4175 1.5573 6.3747 7.4268 1.3400 1.9470 6.6182 3.6717 2.5542 3.1433 0.3006 0.4861 7.5226 1.9789 1.2714

Phong 0.0384 0.1050 0.1463 0.0313 0.0069 0.0291 0.1361 0.0315 0.0405 0.2116 0.1646 0.0491 0.1656 0.1579 0.0599 0.0648 0.0779 0.0369 0.1344 0.2175

Cook-Torr. 0.0385 0.1054 0.1464 0.0374 0.0104 0.0357 0.1368 0.0317 0.0442 0.3579 0.2022 0.0528 1.6812 0.1580 0.2917 0.1587 0.0831 0.0398 0.1924 0.3987

K=1 4.0595 4.0338 3.7506 0.6251 0.0218 0.5679 0.5539 3.9872 2.4935 1.2086 1.7528 2.3079 2.8930 2.2077 2.7918 0.1268 0.1218 2.6822 1.7787 1.1865

K=2 1.4482 1.0926 1.4786 0.0184 0.0047 0.0214 0.0653 1.0239 0.0674 1.1108 1.6570 0.0820 1.5680 1.9628 2.2820 0.0172 0.0319 0.1330 1.6318 1.1105

K=3 0.9621 0.6627 1.0425 0.0013 0.0027 0.0070 0.0216 0.4708 0.0444 1.0635 1.6046 0.0344 1.2510 1.8545 2.1399 0.0045 0.0024 0.0784 1.5640 1.0693

K=4 0.7608 0.5080 0.8596 0.0009 0.0011 0.0062 0.0144 0.2815 0.0418 1.0326 1.5646 0.0312 1.0840 1.7587 2.0386 0.0044 0.0023 0.0714 1.5063 1.0449

K=5 0.6028 0.3812 0.7091 0.0007 0.0008 0.0031 0.0139 0.1810 0.0378 1.0119 1.5300 0.0281 0.9681 1.6877 1.9588 0.0030 0.0021 0.0652 1.4647 1.0271

K=10 0.2794 0.1481 0.3834 0.0005 0.0004 0.0015 0.0136 0.0664 0.0158 0.9442 1.4143 0.0142 0.6668 1.4710 1.7146 0.0017 0.0016 0.0341 1.3335 0.9637

K=20 0.1031 0.0469 0.1774 0.0002 0.0003 0.0015 0.0122 0.0413 0.0027 0.8758 1.2940 0.0038 0.4236 1.2376 1.4525 0.0011 0.0006 0.0071 1.1893 0.8941

K=50 0.0309 0.0110 0.0555 0.0001 0.0002 0.0011 0.0113 0.0284 0.0007 0.7813 1.1291 0.0004 0.2087 0.9271 1.0866 0.0010 0.0003 0.0010 0.9876 0.7912

K=100 0.0205 0.0063 0.0202 0.0001 0.0002 0.0004 0.0103 0.0119 0.0005 0.7049 1.0054 0.0002 0.1139 0.7091 0.8111 0.0010 0.0002 0.0005 0.8346 0.7074

K=500 0.0078 0.0041 0.0030 0.0001 0.0001 0.0003 0.0047 0.0016 0.0003 0.5124 0.7332 0.0001 0.0266 0.3355 0.2842 0.0009 0.0002 0.0001 0.5165 0.5124

K=1000 0.0068 0.0036 0.0020 0.0001 0.0001 0.0002 0.0044 0.0015 0.0002 0.4318 0.6237 0.0001 0.0159 0.2403 0.1464 0.0008 0.0001 0.0001 0.4068 0.4367

K=10000 0.0038 0.0027 0.0013 0.0001 0.0001 0.0001 0.0024 0.0013 0.0001 0.2258 0.3084 0.0000 0.0024 0.0970 0.0108 0.0008 0.0001 0.0001 0.1634 0.2532

hematite ipswich lt-brown lt-red maroon natural neoprene nickel nylon orange pearl pickled pink pink pink pink pink polyeth- polyur. pure

pine-221 fabric paint plastic 209 rubber paint paint oak-260 fabric fabric2 felt jasper plastic ylene foam rubber

Lambertian 1.5571 7.3643 0.4773 1.0076 1.7878 6.6377 2.5573 6.6636 3.3822 0.5160 7.4396 5.2238 0.3882 0.7531 0.8006 2.4468 0.3172 0.5246 0.7008 0.5492

Oren-Nayar 1.5264 6.2714 0.0606 0.4178 1.7503 5.6969 1.8623 5.9643 2.9231 0.1789 5.2903 4.6127 0.1550 0.3809 0.3407 2.3669 0.1745 0.3008 0.0218 0.2080

Phong 0.1376 0.0477 0.4773 0.0483 0.1234 0.0327 0.0827 0.1094 0.0842 0.0145 0.0176 0.0170 0.0162 0.0281 0.1451 0.1779 0.0191 0.0144 0.7008 0.0167

Cook-Torr. 0.3194 0.0489 0.4773 0.0617 0.2415 0.0337 0.0841 0.1098 0.0845 0.0257 0.0224 0.0170 0.2871 0.0178 0.0093 0.2686 0.0897 0.0162 0.7008 0.0271

K=1 1.4102 3.0949 0.2931 0.0264 1.6059 2.9346 0.7319 3.7246 1.7951 0.0048 1.3666 2.6651 0.0373 0.0769 0.0503 2.0704 0.0267 0.0508 0.1548 0.0156

K=2 1.3287 0.3097 0.0188 0.0035 1.4574 0.2674 0.0730 1.2309 0.4083 0.0036 0.0497 0.3354 0.0041 0.0088 0.0056 1.6408 0.0055 0.0108 0.0304 0.0111

K=3 1.2927 0.0399 0.0024 0.0017 1.3830 0.0339 0.0134 0.8806 0.1850 0.0006 0.0412 0.0915 0.0024 0.0066 0.0038 1.5330 0.0007 0.0081 0.0055 0.0076

K=4 1.2599 0.0284 0.0021 0.0016 1.3446 0.0257 0.0088 0.6529 0.1085 0.0005 0.0232 0.0662 0.0023 0.0032 0.0037 1.4535 0.0005 0.0071 0.0026 0.0061

K=5 1.2347 0.0220 0.0014 0.0012 1.3128 0.0210 0.0078 0.5199 0.0686 0.0004 0.0145 0.0590 0.0022 0.0020 0.0029 1.3938 0.0005 0.0070 0.0025 0.0051

K=10 1.1567 0.0158 0.0007 0.0008 1.2055 0.0138 0.0063 0.2223 0.0254 0.0002 0.0025 0.0418 0.0012 0.0006 0.0009 1.2120 0.0004 0.0058 0.0023 0.0045

K=20 1.0690 0.0078 0.0003 0.0002 1.0876 0.0048 0.0039 0.0776 0.0188 0.0001 0.0009 0.0126 0.0005 0.0006 0.0007 1.0255 0.0003 0.0029 0.0021 0.0017

K=50 0.9430 0.0029 0.0002 0.0002 0.9158 0.0005 0.0005 0.0199 0.0165 0.0001 0.0002 0.0020 0.0001 0.0005 0.0001 0.7801 0.0003 0.0007 0.0006 0.0007

K=100 0.8435 0.0024 0.0002 0.0001 0.7769 0.0002 0.0003 0.0118 0.0147 0.0001 0.0002 0.0012 0.0001 0.0004 0.0001 0.6063 0.0002 0.0005 0.0003 0.0004

K=500 0.6195 0.0019 0.0002 0.0001 0.4636 0.0001 0.0001 0.0114 0.0137 0.0001 0.0001 0.0004 0.0000 0.0004 0.0001 0.2926 0.0002 0.0001 0.0002 0.0002

K=1000 0.5329 0.0017 0.0001 0.0001 0.3493 0.0001 0.0001 0.0088 0.0106 0.0001 0.0001 0.0004 0.0000 0.0004 0.0001 0.2042 0.0002 0.0001 0.0001 0.0002

K=10000 0.2980 0.0006 0.0001 0.0001 0.1058 0.0001 0.0000 0.0024 0.0035 0.0001 0.0000 0.0003 0.0000 0.0004 0.0001 0.0379 0.0001 0.0001 0.0001 0.0002

purple pvc red red red-met red red red-spec silicon slv-met slv-met silver special specular specular specular specular specular specular specular

paint fabric fabric2 paint phenol plastic plastic nitrade paint paint2 paint walnut black blue green maroon orange red violet

Lambertian 6.0898 4.5051 1.3338 0.1043 1.7548 2.8059 1.8920 1.8261 1.8162 10.2161 10.3375 8.3975 7.3708 1.6408 1.2014 1.8181 1.6933 1.4749 1.6617 1.7573

Oren-Nayar 5.4140 4.2076 0.8747 0.0494 1.7178 2.6831 1.2601 1.7835 1.7730 7.9810 8.1688 6.3861 5.3533 1.6114 1.1847 1.7805 1.6615 1.4489 1.6294 1.7244

Phong 0.0733 0.1477 0.0903 0.1043 0.1270 0.2219 0.0154 0.1791 0.1855 0.0157 0.0062 0.0622 0.1105 0.1191 0.2004 0.1323 0.1197 0.1497 0.1274 0.1035

Cook-Torr. 0.0736 0.1478 0.0951 0.1027 0.2337 0.2233 0.0179 0.2833 0.2056 0.0177 0.0075 0.0670 0.1192 0.3614 0.4641 0.2959 0.3251 0.4122 0.3256 0.4463

K=1 3.4636 3.1622 0.2225 0.0957 1.5842 2.2340 0.3415 1.6202 1.6077 2.8528 3.0501 2.0796 1.4460 1.4974 1.1203 1.6351 1.5390 1.3496 1.5055 1.5970

K=2 0.9940 1.4535 0.0249 0.0230 1.5142 1.4639 0.0141 1.4412 1.4746 0.0969 0.1366 0.0496 0.0462 1.3991 1.0736 1.5025 1.4384 1.2636 1.3971 1.4867

K=3 0.5383 1.0584 0.0099 0.0031 1.4775 1.2967 0.0056 1.3587 1.4063 0.0684 0.0984 0.0229 0.0341 1.3459 1.0525 1.4307 1.3858 1.2169 1.3382 1.4270

K=4 0.2996 0.8127 0.0071 0.0026 1.4485 1.2062 0.0023 1.3159 1.3573 0.0623 0.0921 0.0214 0.0301 1.3121 1.0334 1.3896 1.3485 1.1878 1.3023 1.3894

K=5 0.2133 0.7107 0.0068 0.0024 1.4231 1.1313 0.0014 1.2791 1.3232 0.0572 0.0861 0.0192 0.0247 1.2880 1.0189 1.3591 1.3224 1.1669 1.2764 1.3625

K=10 0.0532 0.4081 0.0061 0.0010 1.3382 0.9002 0.0005 1.1601 1.2072 0.0271 0.0467 0.0100 0.0105 1.2024 0.9733 1.2504 1.2322 1.0925 1.1841 1.2669

K=20 0.0112 0.2082 0.0058 0.0010 1.2474 0.6869 0.0003 1.0298 1.0803 0.0046 0.0108 0.0040 0.0046 1.1074 0.9209 1.1316 1.1314 1.0101 1.0826 1.1610

K=50 0.0046 0.0814 0.0050 0.0008 1.1181 0.4510 0.0003 0.8431 0.8983 0.0002 0.0015 0.0006 0.0009 0.9654 0.8429 0.9572 0.9814 0.8868 0.9324 1.0031

K=100 0.0022 0.0438 0.0039 0.0004 1.0170 0.3169 0.0002 0.6954 0.7570 0.0002 0.0011 0.0003 0.0003 0.8482 0.7786 0.8166 0.8588 0.7851 0.8102 0.8734

K=500 0.0011 0.0292 0.0025 0.0003 0.7819 0.1396 0.0001 0.3814 0.4594 0.0001 0.0008 0.0001 0.0001 0.5708 0.6240 0.5021 0.5741 0.5425 0.5299 0.5702

K=1000 0.0009 0.0245 0.0021 0.0003 0.6820 0.0967 0.0001 0.2797 0.3579 0.0000 0.0007 0.0001 0.0001 0.4620 0.5608 0.3886 0.4653 0.4473 0.4241 0.4535

K=10000 0.0001 0.0116 0.0015 0.0003 0.3641 0.0264 0.0001 0.1112 0.1593 0.0000 0.0003 0.0000 0.0000 0.1952 0.3799 0.1388 0.2018 0.2257 0.1726 0.1740

specular specular ss440 steel teflon tungsten two-lyr two-lyr violet violet white white white white white white yl-matte yellow yellow yellow

white yellow carbide gold silver acrylic rubber acrylic diffuse fabric fabric2 marble paint plastic paint phenol plastic

Lambertian 1.7395 1.4675 1.4620 1.7764 1.3420 2.1494 1.7474 1.5880 1.6292 2.3903 1.6414 1.5929 0.6292 0.3998 3.0918 1.5818 4.2433 0.8719 1.5264 0.5439

Oren-Nayar 1.7028 1.4383 1.4367 1.7471 0.5586 2.0987 1.6760 1.5273 1.5916 1.7935 1.5957 0.7729 0.3517 0.3991 2.9638 0.9824 3.7986 0.3699 1.4847 0.2936

Phong 0.1759 0.1946 0.1724 0.0774 0.0912 0.1135 0.2019 0.2171 0.1526 0.0655 0.1708 0.1467 0.0847 0.1850 0.1511 0.1558 0.1951 0.0112 0.2285 0.0221

Cook-Torr. 0.2585 0.3551 0.2645 0.2623 0.1101 0.1259 0.3705 0.4000 0.3960 0.0666 1.2167 0.1542 0.2123 0.2280 0.1713 0.1396 0.1953 0.0179 0.3487 0.0258

K=1 1.5639 1.3276 1.3762 1.6858 0.0454 1.9324 1.4384 1.3223 1.4506 0.7592 1.4445 0.1353 0.0752 0.2759 2.5067 0.4254 2.5767 0.0234 1.3351 0.0454

K=2 1.4545 1.2334 1.3528 1.6588 0.0102 1.8689 1.2261 1.1545 1.3181 0.0783 1.2371 0.0170 0.0468 0.0439 1.8565 0.0803 0.9528 0.0041 1.1676 0.0075

K=3 1.3991 1.1825 1.3359 1.6405 0.0035 1.8222 1.1451 1.0784 1.2505 0.0070 1.1823 0.0023 0.0118 0.0047 1.6988 0.0238 0.6158 0.0041 1.0996 0.0072

K=4 1.3569 1.1502 1.3224 1.6259 0.0030 1.7875 1.1076 1.0422 1.2153 0.0057 1.1415 0.0017 0.0085 0.0040 1.5820 0.0140 0.4102 0.0042 1.0631 0.0069

K=5 1.3273 1.1272 1.3111 1.6136 0.0026 1.7591 1.0769 1.0149 1.1878 0.0046 1.1104 0.0014 0.0058 0.0037 1.4956 0.0124 0.3427 0.0035 1.0316 0.0047

K=10 1.2274 1.0460 1.2725 1.5712 0.0011 1.6606 0.9884 0.9293 1.0937 0.0031 1.0145 0.0013 0.0039 0.0023 1.2359 0.0111 0.1648 0.0011 0.9350 0.0010

K=20 1.1152 0.9569 1.2288 1.5226 0.0002 1.5527 0.9028 0.8477 0.9938 0.0008 0.9120 0.0006 0.0016 0.0012 0.9795 0.0103 0.0787 0.0007 0.8319 0.0007

K=50 0.9491 0.8257 1.1625 1.4472 0.0001 1.3986 0.7866 0.7392 0.8511 0.0003 0.7675 0.0002 0.0009 0.0003 0.6613 0.0076 0.0364 0.0005 0.6908 0.0006

K=100 0.8145 0.7200 1.1041 1.3798 0.0001 1.2735 0.6887 0.6513 0.7367 0.0003 0.6549 0.0002 0.0008 0.0002 0.4536 0.0063 0.0243 0.0003 0.5849 0.0004

K=500 0.5094 0.4814 0.9318 1.1768 0.0001 0.9501 0.4460 0.4358 0.4743 0.0001 0.4082 0.0002 0.0005 0.0001 0.1466 0.0043 0.0136 0.0002 0.3734 0.0003

K=1000 0.3997 0.3939 0.8401 1.0667 0.0001 0.7949 0.3469 0.3509 0.3749 0.0001 0.3186 0.0002 0.0004 0.0001 0.0820 0.0031 0.0108 0.0002 0.3059 0.0003

K=10000 0.1825 0.1951 0.4968 0.6277 0.0001 0.3023 0.1203 0.1494 0.1418 0.0001 0.1135 0.0002 0.0002 0.0001 0.0158 0.0008 0.0075 0.0002 0.1497 0.0003

Table 3.1: Radiance fitting accuracy for MERL materials. For each material, the yellow cell marks

the smallest K for which the proposed model achieved a smaller error than the Phong model.
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3.3.2 Ground-truth Geometric Evaluation

I validate the proposed SfMS approach against on a rigid ground truth (GT) dataset. The GT

model consists of a 3D printing of the pharynx of the throat from a patient CT scan (cavity width

∼2cm). This model was then re-scanned with CT to produce a highly accurate GT mesh. An

endoscopic video of this model was captured at 60 Hz with a resolution of 720× 240 pixels, the

frames of which were corrected for radial distortion prior to Structure-from-Motion. Following

SfM, the iterative closest surface algorithm (Rusinkiewicz and Levoy, 2001) was used to align the

SfM point cloud to the GT model.

For Shape-from-Shading, the observed image radiance was modeled using the L* channel of the

L*a*b* color space normalized to [0, 1]. For all analysis, the SfM point cloud was first filtered to

only contain points seen by 5 or more cameras and having at least one triangulation angle (the angle

between the rays of a 3D point to each of two observing cameras) of 10 degrees or greater. For each

image, the algorithm only considers 3D points with corresponding 2D features in the image.

The proposed method was applied to 100 endoscopic video frames from the GT video on both

simulated and actual images. For simulation, renderings of the GT surface were generated from the

camera poses and parameters obtained from SfM on the real video. In each simulated image, the

virtual surface was illuminated by a point light source co-located with the camera, and different

surface material properties were recreated using 8 GT BRDFs from the MERL database (Matusik

et al., 2003). Algorithm parameters and SfM points were the same for all trials – only the rendered

images differed. Since the synthetic images were rendered without modeling surface interreflections,

interreflection coefficients were only estimated for the real endoscopy sequence.

The proposed iterative framework is evaluated for the Lambertian BRDF and for the proposed

reflectance model (Eq. 3.30) with K from 1 to 5. Table 3.2 provides statistics (mean and std. dev.

across the 100 images) on the percentage of pixels in each image within a given threshold (0.5, 1,

1.5, and 2mm) of the GT surface. For the simulated data, the algorithm estimates depth to within

2mm of the GT for the majority of the pixels; there is a fall-off in accuracy under tighter thresholds

that qualitatively correlates to the specularity of the rendered material. The proposed reflectance
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Figure 3.9: Visual comparison of surfaces generated by the proposed approach for an image from a

ground-truth dataset. Top/bottom rows: Visualization of the surface without/with texture from the

original image. Columns from left to right: (1) using a Lambertian BRDF, (2) using the proposed

BRDF (K = 2) without image-weighted derivatives, (3) using the proposed BRDF (K = 2)

with image-weighted derivatives, and (4) the ground-truth surface. Note the oversmoothing along

occlusion boundaries in column (2) versus column (3) and the flattened curve of the epiglottis in

column (1).

model achieves comparable performance to the Lambertian model for more diffuse BRDFs (e.g.

“beige-fabric” and “red-fabric”) and better performance for surfaces with more non-Lambertian

properties (e.g. “fruitwood-241” and “two-layer-silver”). On the real endoscopy of the GT model

(see the last entry in Table 3.2), the proposed reflectance model recovers approximately 6-10% more

pixels, on average, within the given thresholds compared to the Lambertian BRDF. Fig. 3.9 provides

a visual comparison between using the Lambertian and proposed BRDFs on the GT sequences.

An evaluation of the proposed use of image-weighted derivatives is also performed, as well as

an assessment regarding how the number of available SfM points affects reconstruction accuracy in

the method. Regarding the latter, frames in the GT video sequence observe between 300 and 600

SfM points. I randomly select a subset of SfM points in each frame (25, 50, 100, and 150 points)

and evaluate how the algorithm performs with a smaller number of 3D points. Table 3.3 summarizes

the resulting performance, which increases incrementally with the number of SfM points. While

the use of image-weighted derivatives only increases accuracy by up to 1%, the approach greatly

reduces smoothing of the solution along occlusion boundaries (see Fig. 3.9).
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Table 3.4 shows results of the method on the real endoscopic video sequence without the

proposed approach to modeling surface interreflections. Compared to the results in Table 3.2,

ignoring interreflections drastically reduces the accuracy of the method on real data.

3.3.3 Results on Patient Data

I have also applied the method to live endoscopic datasets using manually selected intervals (typ-

ically 4-6s) with minimal surface deformation. The parameters used for SfMS in these experiments

are the same as those used for the experiments on the phantom dataset. Example output for different

patients is shown in Figs. 3.10, 3.11, and 3.12, using the proposed reflectance model with K = 2.

3.4 Discussion

In this chapter, I introduced a method combining Structure-from-Motion and Shape-from-

Shading to reconstruct a surface for a single endoscopy image. SfM was used as a sparse prior

for the underlying surface of the scene, under the principle that certain points in the scene can

be triangulated with an approximate certainty, but that poor texturing, difficult illumination and

reflectance behaviors, limited camera motion, and surface deformation (admittedly assumed to

be minimal in my implementation) prevents a traditional SfM+MVS approach from achieving an

accurate surface reconstruction. The SfM point cloud was used to guide and regularize the SfS

solution, an approach that to my knowledge has not been explored previously. The SfM result is

also used to bootstrap and refine the estimation of BRDF and coarse illumination parameters for

the image, which are crucial for SfS, and I introduced a new 1D BRDF basis to improve on the

Lambertian shading models that have been traditionally employed.
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Ref. Mean (Std. Dev.) Proportion of Pixels within X mm of GT
Sample Rendered Image

Model 0.5mm 1mm 1.5mm 2mm

aventurine

Lamb. 0.266 (0.072) 0.438 (0.086) 0.550 (0.096) 0.632 (0.100)

K = 1 0.294 (0.064) 0.463 (0.091) 0.577 (0.104) 0.655 (0.109)

K = 2 0.293 (0.073) 0.479 (0.096) 0.599 (0.108) 0.671 (0.114)

K = 3 0.289 (0.074) 0.474 (0.094) 0.596 (0.108) 0.671 (0.113)

K = 4 0.292 (0.075) 0.480 (0.094) 0.602 (0.109) 0.674 (0.113)

K = 5 0.293 (0.075) 0.483 (0.095) 0.602 (0.111) 0.673 (0.115)

beige-fabric

Lamb. 0.325 (0.095) 0.482 (0.126) 0.588 (0.140) 0.668 (0.137)

K = 1 0.325 (0.106) 0.492 (0.136) 0.604 (0.146) 0.682 (0.140)

K = 2 0.266 (0.071) 0.451 (0.095) 0.573 (0.105) 0.655 (0.105)

K = 3 0.273 (0.076) 0.449 (0.100) 0.563 (0.111) 0.644 (0.112)

K = 4 0.275 (0.076) 0.445 (0.102) 0.555 (0.114) 0.636 (0.117)

K = 5 0.268 (0.075) 0.439 (0.099) 0.550 (0.112) 0.634 (0.117)

dark-specular-fabric

Lamb. 0.296 (0.089) 0.490 (0.114) 0.625 (0.112) 0.715 (0.099)

K = 1 0.297 (0.091) 0.495 (0.108) 0.631 (0.101) 0.719 (0.088)

K = 2 0.249 (0.086) 0.430 (0.106) 0.564 (0.108) 0.662 (0.102)

K = 3 0.238 (0.089) 0.409 (0.114) 0.542 (0.123) 0.640 (0.120)

K = 4 0.231 (0.092) 0.397 (0.121) 0.526 (0.132) 0.623 (0.133)

K = 5 0.228 (0.095) 0.392 (0.124) 0.519 (0.136) 0.614 (0.136)

fruitwood-241

Lamb. 0.381 (0.116) 0.561 (0.129) 0.673 (0.116) 0.745 (0.101)

K = 1 0.407 (0.114) 0.588 (0.122) 0.690 (0.110) 0.757 (0.095)

K = 2 0.386 (0.103) 0.579 (0.113) 0.694 (0.099) 0.768 (0.077)

K = 3 0.380 (0.104) 0.576 (0.111) 0.692 (0.097) 0.768 (0.076)

K = 4 0.381 (0.105) 0.576 (0.112) 0.693 (0.097) 0.768 (0.077)

K = 5 0.380 (0.103) 0.577 (0.112) 0.693 (0.098) 0.767 (0.081)

ipswich-pine-221

Lamb. 0.367 (0.099) 0.535 (0.120) 0.654 (0.121) 0.732 (0.111)

K = 1 0.424 (0.115) 0.598 (0.127) 0.692 (0.118) 0.751 (0.104)

K = 2 0.419 (0.100) 0.601 (0.103) 0.700 (0.096) 0.764 (0.084)

K = 3 0.418 (0.101) 0.604 (0.105) 0.703 (0.099) 0.766 (0.084)

K = 4 0.419 (0.102) 0.605 (0.108) 0.704 (0.100) 0.766 (0.085)

K = 5 0.418 (0.102) 0.604 (0.110) 0.703 (0.102) 0.764 (0.087)

red-fabric

Lamb. 0.345 (0.109) 0.532 (0.131) 0.649 (0.129) 0.719 (0.121)

K = 1 0.345 (0.107) 0.520 (0.126) 0.636 (0.123) 0.708 (0.115)

K = 2 0.319 (0.093) 0.496 (0.110) 0.610 (0.110) 0.686 (0.104)

K = 3 0.326 (0.097) 0.496 (0.114) 0.608 (0.114) 0.687 (0.108)

K = 4 0.328 (0.096) 0.497 (0.114) 0.609 (0.117) 0.687 (0.112)

K = 5 0.329 (0.094) 0.499 (0.113) 0.612 (0.118) 0.688 (0.115)

two-layer-silver

Lamb. 0.283 (0.061) 0.454 (0.077) 0.565 (0.079) 0.644 (0.078)

K = 1 0.287 (0.065) 0.455 (0.079) 0.565 (0.079) 0.644 (0.077)

K = 2 0.279 (0.084) 0.461 (0.102) 0.578 (0.098) 0.659 (0.087)

K = 3 0.283 (0.087) 0.461 (0.107) 0.574 (0.102) 0.656 (0.089)

K = 4 0.286 (0.087) 0.464 (0.106) 0.575 (0.102) 0.656 (0.091)

K = 5 0.297 (0.085) 0.468 (0.104) 0.577 (0.101) 0.657 (0.091)

yellow-plastic

Lamb. 0.337 (0.096) 0.494 (0.128) 0.596 (0.138) 0.669 (0.132)

K = 1 0.341 (0.103) 0.510 (0.137) 0.615 (0.143) 0.684 (0.134)

K = 2 0.275 (0.073) 0.465 (0.101) 0.586 (0.113) 0.664 (0.114)

K = 3 0.279 (0.075) 0.461 (0.102) 0.580 (0.114) 0.659 (0.116)

K = 4 0.277 (0.076) 0.456 (0.105) 0.574 (0.120) 0.653 (0.122)

K = 5 0.271 (0.073) 0.451 (0.101) 0.568 (0.116) 0.649 (0.120)

real endoscopic video

Lamb. 0.106 (0.029) 0.222 (0.044) 0.334 (0.049) 0.433 (0.051)

K = 1 0.167 (0.046) 0.321 (0.072) 0.445 (0.084) 0.544 (0.085)

K = 2 0.172 (0.053) 0.328 (0.082) 0.451 (0.092) 0.545 (0.090)

K = 3 0.162 (0.050) 0.312 (0.082) 0.430 (0.092) 0.525 (0.091)

K = 4 0.161 (0.047) 0.311 (0.075) 0.426 (0.084) 0.520 (0.084)

K = 5 0.164 (0.052) 0.312 (0.081) 0.426 (0.090) 0.520 (0.090)

Table 3.2: Accuracy of the proposed SfM+SfS approach for different reflectance models on

simulated and real data across 100 images. Example renderings are show in the right column.
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Figure 3.10: Example results for three images from a live endoscopic video. Left: Original image.

Right: Surface estimated from the image using the proposed algorithm.
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Figure 3.11: Example results for three images from a live endoscopic video. Left: Original image.

Right: Surface estimated from the image using the proposed algorithm.
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Figure 3.12: Example results for three images from a live endoscopic video. Left: Original image.

Right: Surface estimated from the image using the proposed algorithm.
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Mean (Std. Dev.) Proportion of Pixels within X mm of GT

Limitation 0.5mm 1mm 1.5mm 2mm

25 pts. 0.082 (0.042) 0.163 (0.074) 0.240 (0.101) 0.310 (0.121)

50 pts. 0.106 (0.050) 0.209 (0.087) 0.304 (0.109) 0.388 (0.122)

100 pts. 0.140 (0.051) 0.268 (0.088) 0.374 (0.109) 0.460 (0.119)

150 pts. 0.152 (0.049) 0.291 (0.082) 0.406 (0.100) 0.498 (0.105)

no deriv. 0.172 (0.048) 0.323 (0.075) 0.442 (0.084) 0.535 (0.086)

none 0.172 (0.053) 0.328 (0.082) 0.451 (0.092) 0.545 (0.090)

Table 3.3: Ablation analysis of the proposed method on ground-truth endoscopic data with K = 2.

Ref. Mean (Std. Dev.) Proportion of Pixels within X mm of GT

Model 0.5mm 1mm 1.5mm 2mm

Lamb. 0.057 (0.012) 0.114 (0.022) 0.169 (0.033) 0.220 (0.041)

K = 1 0.063 (0.015) 0.125 (0.026) 0.187 (0.037) 0.247 (0.047)

K = 2 0.057 (0.010) 0.113 (0.017) 0.166 (0.031) 0.218 (0.046)

K = 3 0.059 (0.011) 0.118 (0.024) 0.177 (0.040) 0.237 (0.057)

K = 4 0.060 (0.013) 0.122 (0.025) 0.190 (0.040) 0.262 (0.061)

K = 5 0.057 (0.011) 0.119 (0.023) 0.185 (0.038) 0.257 (0.058)

Table 3.4: Accuracy of the proposed SfM+SfS approach on real endoscopic video without account-

ing for surface interreflections.
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CHAPTER 4: 3D RECONSTRUCTION OF TRANSIENT OBJECTS

Although structure-from-motion and multi-view stereo pipelines are able to achieve high-quality

3D reconstructions for many types of image collections, they are only able to reconstruct static

structure, i.e., surfaces that are stationary in all input images. In terms of creating a virtual

representation of a place, this leaves a lot to be desired, since the virtual environment is completely

devoid of context for how people exist within the space. If the 3D positions of dynamic objects like

people and cars were able to be automatically represented within the 3D scene, this would open the

door to a variety of interesting applications for both virtual reality and scene understanding. For

example, 3D maps could be augmented with moving objects, VR environments of real places could

include immersive human avatars, and city planners could assess large-scale motion flows for cars

or pedestrians.

However, due to restrictions in spatial and temporal sampling, recovering 3D context for dynamic

objects is a difficult task to accomplish in large-scale environments. This is intuitively true spatially:

Assuming only visual data is available, a large number of cameras is required to observe all parts

of the scene. For example, to accurately reconstruct the motion of an individual walking through

a city, one would need multiple video cameras placed along every street where the person moves.

Moreover, if one is interested in modeling general interactions with the environment – i.e. object

class behavior, such as the typical locations where people stand when sightseeing, rather than object

instance behavior, such as the path of a single individual – then large-scale temporal sampling

is also required. Depending on the rate that objects are observed, imagery spanning hours, days,

or even months may be necessary to robustly capture all possible placements of dynamic objects

within the environment.
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To tackle the problem of modeling object class behavior on a large scale, I propose to develop a

new method for placing people into 3D reconstructions obtained from Internet photo-collections.

Because these vast collections consist of many images taken from multiple positions across a long

period of time, such imagery uniquely meets the spatial and temporal sampling requirements for

large-scale scenes. However, using only still images also comes with a crucial drawback: Since

images in the dataset are typically taken at least several minutes apart, we must generally assume

that no two images in the collection capture the same person in the same place at the same time. As

such, a successful modeling approach can leverage neither the typical triangulation methods used in

rigid SfM nor the temporal correspondences used in non-rigid SfM. Complicating matters further,

the scale of the scene (e.g., in meters) and the ground surfaces are often difficult or impossible to

recover in such imagery, which rules out the direct use of shape or ground-contact priors for 3D

placement.

Considering this difficult scenario, I develop a method that takes an initial SfM model recon-

structed from Internet images, plus 2D person detections in the individual images (Wei et al., 2016;

Cao et al., 2017), and jointly outputs: 3D positions for the detected people, a gravity direction for

the reconstruction, an estimated scale for the scene based on a height distribution prior, and a ground

surface interpolated from the sparse set of 3D positions where the individuals are determined to

stand. A key insight for this work is that, while exact triangulation is not possible for an individual,

sufficiently large image sets are likely observe two people standing spatially nearby, albeit in

different images and at different times. Leveraging this, I propose a new approximate triangulation

approach that scores a scene scale hypotheses based on the number of nearby individuals found,

with rough assumptions about body size, and considering visibility constraints effected by static

structure. I further demonstrate how an initial scene scale estimate and individual height estimates

can be refined using a height distribution prior, a local ground-plane prior, and visibility constraints.

Finally, I demonstrate the potential for using these 3D person placements to recover a ground surface

for the scene. To evaluate the accuracy of the approach, I quantitatively compare estimated scene

scales to manually determined scales for objects in the scene with known dimensions.
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Figure 4.1: The pipeline of the proposed reconstruction system.

4.1 Approach

In this section, I present an approach for placing people, estimating scale, and recovering ground

surface in a 3D scene. An overview of the pipeline is shown in Fig. 4.1. Starting from an initial set

of photos of a scene, Structure-from-Motion (SfM) is first used to obtain camera parameters and

sparse structure. Next, 2D torso points are detected for people in the images (Wei et al., 2016; Cao

et al., 2017); these detections are used to estimate the distances and rotations of individuals relative

to each camera, as well as a global scene gravity vector (Section 4.1.1). A range of possible scene

scales are then tested and ranked using approximate semantic triangulation (Section 4.1.2). After

this initial scale estimation, the scale and the 3D placement of the people are jointly refined using

known human height statistics and encouraging a locally planar ground surface (Section 4.1.3). In

the last stage, the ground surface is recovered using Poisson surface reconstruction (Kazhdan and

Hoppe, 2013) (Section 4.1.4). For visualization, human avatars are placed into the 3D space with

clothing colors sampled from the input images; the ground is also textured using image data and

semantic pixel labelings (Yu and Koltun, 2016) (Section 4.1.5).

4.1.1 Person Detection and Gravity Estimation

The input to the algorithm consists of a set of photos of a scene, plus a sparse representation

of the scene obtained from these images via SfM (Schönberger and Frahm, 2016). The first step

is to detect people in the images and obtain an initial estimate of each person’s absolute position –

that is, the real-world coordinates (in meters) of the person in the reference frame of the camera

when the image was taken. These initial positions will subsequently be used for a coarse scene
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scale estimation. The general approach taken here is to detect torso points in each image and, for

each detection, fit a planar torso model to the detected points. The detected torsos are assumed

to be aligned with the (initially unknown) gravity vector for the scene, which is a generally valid

assumption given that most people stand upright (Lv et al., 2002; Krahnstoever and Mendonca,

2005; Micusik and Pajdla, 2010). A joint optimization is thus performed over three variable classes:

1) the global gravity vector, 2) the absolute position of each person’s neck point, and 3) the 1-DoF

heading (rotation around the gravity vector) of the person. This optimization is done by minimizing

the reprojection error of the posed torso models back into their original images.

Torso Detection: For detection, the method employs Convolutional Pose Machines (CPM) (Wei

et al., 2016; Cao et al., 2017), a state-of-the-art joint detector specifically designed for real-time,

multi-person pose estimation. Image-space joints on the torso are defined by taking the CPM

detections for the neck, shoulders, and hips. In implementation, only joint detections having at

least 30% confidence are considered, and individuals are excluded if they do not have confident

detections in the neck and at least one of the hips.

Torso Model Fitting: As a coarse initialization that will later be refined, a fixed-size planar

torso model is fit to each detection. This model is centered at the neck point with a width of 30cm

and a height of 52cm (Fig. 4.2). By convention, gravity points in the positive y direction, so the

model is defined in the xy plane.

The torso model is transformed to match the detected 2D joints for person i. Because we have

obtained an initial SfM reconstruction of the scene, we know the pose [Ri | ti] and the intrinsics of

the observing camera. The camera location in the reconstruction space does not matter at this stage,

but it is necessary to know the orientation of the camera relative to the gravity direction of the scene.

The model-to-camera transformation is applied in four steps. First, the model is rotated around

the y axis by angle θi; denote the associated rotation as R(θi). Second, the model is aligned to the

scene gravity vector g ∈ R
3, with ||g|| = 1, by calculating the rotation of the model gravity vector

[0 1 0]T into g. This rotation can be formulated as the unit quaternion qg = (v̂2, v̂3, 0,−v̂1), where

v̂ = v
||v||

with v = g + [0 1 0]T ; more generally, denote this model-to-world gravity alignment as
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R(g). When combined, these first two rotations represent the direction the person is facing in

the gravity-aligned reconstruction space. Third, this result is placed in the coordinate frame of

the observing camera by applying the extrinsic rotation matrix Ri. Finally, the model is translated

relative to the camera based on the 3D position of the neck point Ni = zi[xi yi 1]
T , where (xi, yi)

is the 2D coordinate of the neck point in normalized camera coordinates, and zi is the depth (in

meters) of the person relative to the camera. Note, it is not required for (xi, yi) to exactly lie at the

neck point detected by CPM.

For 3D joint Jm in the original torso model, we thus obtain a rotated, gravity-aligned, camera-

aligned 3D joint:

Ji,m = RiR(g)R(θi)Jm +Ni. (4.1)

Optimization: The algorithm jointly optimizes g and all individuals’ poses Θ = {(θi, xi, yi, zi)}

by minimizing the reprojection errors of the torso model into the original images:

min
g,Θ

∑

i

φ

(

∑

m

ρ2i,m||πi(Ji,m)− ji,m||2
)

, (4.2)

where ji,m is the 2D pixel location of detected joint m, πi(·) is the projection function for camera i

that converts 3D points relative to the camera into 2D pixel projections according to the camera

intrinsics estimated in SfM, and ρi,m is the joint detection confidence obtained from CPM. φ(·) is a

robust function that mitigates the effect of strong outlier detections; for implementation, the Huber

loss function is employed with a threshold of 4 pixels (Huber, 1981).

The gravity vector is initialized to the geometric median of the individual camera down vectors.

In order to obtain good initialization for depth, we perform a preliminary optimization of depths

{zi} and gravity only, followed by a further optimization of all parameters. The depth and gravity

optimization works as follows: Neck locations {(xi, yi)} are fixed to the initially detected 2D

locations, and depths are initialized to 1 meter. The rotation parameters {θi} are ignored; instead, a

set of discrete rotations {θ̄k} is sampled at intervals of 10◦. For each detection, the optimal rotation

is taken as the angle in this set that minimizes the reprojection error. A modified version of Eq. (4.2)
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Figure 4.2: To accurately localize 2D ground points for detected people, a planar torso model in 3D

(left) is first fit to detected 2D neck, shoulder, and hip joints (middle-left). Right: Coordinate axes

for the planar model.

is thus optimized:

min
g,{zi}

∑

i

φ

(

min
θ̄k

∑

m

ρ2i,m||πi(Ji,m(θ̄k))− ji,m||2
)

, (4.3)

where Ji,m(θ̄k) = RiR(g)R(θ̄k)Jm +Ni.

After this first optimization, {θi} values are initialized based on the value of θ̄k that minimizes

the reprojection error for each person. The full set of parameters (g,Θ) is then optimized using

Eq. (4.2). Finally, the 3D reconstruction is re-oriented such that the estimated gravity vector is

aligned with the positive y axis.

4.1.2 Voting-based Scale Estimation

At this point, we have obtained an initial absolute depth estimate for each person relative to the

camera that observes them. Next, the method estimates an initial placement of the detections into

the reconstruction space, while at the same time obtaining an initial absolute scale estimate for the

scene. If the scene scale s (e.g. the length of 1 meter in the reconstruction space) were known, the
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3D neck point of person i in the reconstruction space could be calculated as

Pi(s) = sRT
i Ni + Ci, (4.4)

where Ni ∈ R
3 is the estimated 3D position of the neck point relative to the observing camera,

Ri ∈ R
3×3 is the scene-to-camera rotation matrix, and Ci ∈ R

3 is the 3D position of the camera in

the reconstruction space.

In principle, s could be determined from a known absolute distance between two points in the

reconstruction space, e.g., the width of a building or the distance between two cameras. Alternatively,

if the cameras were synchronized, an individual could be triangulated from detections in multiple

views, and the scale could be chosen as that which best matches this 3D point. Lacking known

distances, I propose to instead leverage approximate semantic triangulation. The idea here is that,

given enough input images, and especially in well-traveled areas, there is a high probability that at

least two individuals in different images will be observed in nearby locations, and at similar heights

above the ground. The method samples a range of scale hypotheses for the 3D reconstruction and

scores each based on the observed person correspondences.

Pairwise Approximate Triangulation: More explicitly, consider the 3D neck placements Pi(s)

and Pj(s) (Eq. (4.4)) for two individuals at some scene scale s. Recall that, by convention, the

y axis defines the vertical span of the scene, and the xz plane defines the horizontal space. Two

individuals are identified as standing “nearby” if they are within some fixed absolute distance

τxz in the horizontal space. In addition, say that the individuals are standing at similar heights

if their neck points are within some fixed absolute distance τy in the vertical space. Taking

∆Pij(s) = Pi(s)− Pj(s), let Mij(s) denote the binary indicator function that determines whether

persons i and j are approximately triangulated at scale s:

Mij(s) =
(

||∆P xz
ij (s)|| < sτxz

)

∧
(

|∆P y
ij(s)| < sτy

)

, (4.5)
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where ||∆P xz
ij (s)|| and |∆P y

ij(s)| denotes the horizontal and vertical distances between the neck

points, respectively.

The value Mij(s) is computed for all pairs of detected people in separate images. An individual

is successfully triangulated at scale s if any pairwise approximate triangulation was successful, and

if they satisfy a visibility constraint (Vi(s), explained below):

Mi(s) = Vi(s) ∧
(

∨

j

(Ii 6= Ij) ∧ Vj(s) ∧Mij(s)

)

, (4.6)

where Ii denotes the image in which person i was detected.

Visibility Constraint: An important constraint in the scale estimation is that the line segment

from Ci to Pi(s) should not intersect with structures such as walls. This constraint may be violated

if s is too large, which pushes Pi(s) further from the observing camera. Accordingly, Vi(s) is an

indicator function denoting whether the detection of person i is possible at scale s given the free

space of the static parts of the scene. In practice, Vi(s) is computed by voxelizing the SfM 3D point

cloud with a fixed voxel size of one meter (s units in the reconstruction space). Ray-tracing is then

performed from Ci along ray RT
i Ni to compute the first point of intersection with a filled voxel.

Denote the distance from Ci to this voxel as vi(s). Vi(s) is then defined as

Vi(s) = s||Ni|| < vi(s). (4.7)

Scale Scoring: A hypothesized scale s is scored by taking a weighted aggregate of all Mi(s):

S(s) =
∑

i

wiMi(s). (4.8)

Setting wi = 1 is equivalent to counting the successfully triangulated individuals at scale s. I

have experimentally found slightly better performance by weighting individuals by the number of

detections in their associated image, i.e., wi = 1/NIi , where NIi is the total number of detections
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Figure 4.3: Scale scoring curve for a model of the Pantheon. The peak is chosen as the initial scale

estimate.

in image Ii. This weighting mitigates the ambiguity of person placement in crowded areas, where

incorrect scales can still yield valid triangulations due to the overall person density.

Finally, an initial voting-based estimate of the scene scale is obtained by sampling a range of

possible scales and selecting the scale hypothesis with the highest score S(s). For purposes of

implementation, this range is generated by assuming that the vertical span of the SfM point cloud is

between 1 and 1000 meters. The method starts at the smallest possible scale and test all scales in the

range, stepping at 2% increments in s. Also at this stage, the approach only considers individuals

having all five torso joints detected with at least 30% confidence. I use absolute horizontal and

vertical thresholds of τxz = 1.5m and τy = 0.1m; an example scoring curve using these parameters

is shown in Fig. 4.3. In practice, I have found that the voting approach is not too sensitive to the

value of these parameters – the “nearby” and “similar height” heuristics should merely reflect how a

pedestrian might characterize these terms for someone passing them on the street. Besides, the main

point of this stage is to obtain an approximate initial scene scale, and I show in my experiments that

the method can tolerate an initial scale error of at least 15%.

4.1.3 Scale Refinement, Height Estimation, and Ground Surface Estimation

Having obtained an initial scale estimate s, the algorithm next jointly refines this scale, estimates

a height hi in meters for each detected individual, and estimates a ground surface unit normal

ni ∈ S2 for the ground point at which each individual stands. As part of this optimization, a
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torso height ti = βihi is also estimated for each person, where βi is the individual’s torso-to-

height proportion. In the following, I first formulate how to obtain a person’s 3D position in the

reconstruction space given s, hi, and βi. I then introduce the three terms of the joint optimization

function and finally address the overall formulation.

Position as a Function of Height and Proportion: While Eq. (4.4) is convenient for an initial

neck point placement, it relies on a fixed torso size. This can be generalized by allowing the torso

height ti to vary as a fraction βi of the person’s height hi. The end result is that an increase or

decrease in torso size accordingly affects the distance of the neck point Ni in Eq. (4.4) to the camera.

Let ri = Ni/||Ni|| denote the ray from the origin through the neck point of the fitted torso

model in the reference frame of the camera. Moreover, let hi be the ray for the hip midpoint of

the model. For every 3D point falling on ri, there is an associated point on hi that falls directly

below it along the gravity direction (y axis). Again assuming that the torso aligns with the gravity

vector, we can find such a neck/hip point pair for any torso height ti. By similar triangles, we can

determine a new neck point Ni(ti) = ̺itiri for any torso height, where ̺i is the the ratio between

neck-point-to-camera distance and torso height.

In practice, an understanding of human proportions can be explicitly encoded in this formulation

by expressing torso height as a percentage of total height, i.e., ti = βihi. Eq. (4.4) can thus be

updated to express a person’s 3D neck point in the reconstruction space (at scale s) as a function of

height and proportion:

Pi(s, hi, βi) = sRT
i Ni(ti) + Ci = ̺iβihiR

T
i ri + Ci, (4.9)

Photographers can also be included in the optimization in Eq. (4.14). However, since the torsos

for photographers are not directly observed, they must be treated slightly differently. Specifically,

assume that the camera center is hc/8 meters above the neck point for photographer c. Accordingly,

rc = [0 1 0], and fixed values ̺c = 1 and βc = 1/8 can be adopted.
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Ground Point Position: The ground point Gi(s, hi) lies vertically below the neck point

Pi(s, hi, βi). With the neck height being a fraction η of the total height of the person, the ground

point in reconstruction space is given as

Gi(s, hi, βi) = Pi(s, hi, βi) + [0 sηhi 0]
T . (4.10)

I propose to use a fixed value of η = 5/6, reasoning that the top of the sternum (that is, the assumed

neck point) is slightly less than two head lengths from the top of a person, and that human head

length is approximately one-eighth of total height (Bogin and Varela-Silva, 2010).

Optimization Overview: As previously mentioned, the scene scale s is optimized along with

the set {(hi, βi,ni)} of per-person heights, proportions, and ground normals. The objective function

for this optimization has three terms: 1) a prior on height, 2) a local ground planarity term for pairs

of nearby people, and 3) a visibility constraint.

Height Distribution Prior: I propose to leverage the known distribution of human heights

as a prior on the estimated height hi for each person. Here, I employ a Gaussian mixture model

(GMM) for this distribution; in principle, any GMM or otherwise appropriate probability distribution

could be used. The GMM probability function is given as the sum of probabilities for K separate

Gaussians:

p(hi) =
K
∑

k=1

αk

σk
√
2π

exp

(

−(hi − µk)
2

2σ2
k

)

, (4.11)

I use a general two-component GMM for male and female adult heights, respectively: {(αk, µk, σk)} =

[(0.504, 1.768, 0.068), (0.496, 1.646, 0.060)], which was aggregated from several sources (Garcia

and Quintana-Domeque, 2007; Subramanian et al., 2011; The World Bank Group, 2017). In

principle, more detailed models could be used, such as a model that captures factors of age or

ethnicity.

Local Planarity Prior: The second objective term encourages the ground surface between

nearby people to be relatively smooth (but not necessarily horizontal). This is enforced by endowing

each individual with a ground normal ni that defines a planar ground patch around the point at
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which they stand. Nearby ground points that are far from this flat surface receive a penalty. For two

individuals i and j, the point-to-plane distance in meters between Gj(s, hj, βj) and the patch for

person i is given as

dij =
1

s

∣

∣

∣(Gj(s, hj, βj)−Gi(s, hi, βi))
T
ni

∣

∣

∣
. (4.12)

This distance is penalized with a squared loss during optimization.

Visibility Constraint: The optimization again seeks to penalize scales and heights that push

neck points into or beyond static parts of the scene. To do this, the static scene voxelization is

computed at the initial scale s0 and then used to compute vi(s0). (Note that this is the distance in

reconstruction units to the nearest static surface for the detection ray; it is expressed as a function

of scale only to clarify that the voxelization occurs at a fixed scale.) Dropping the dependence on

initial scale, these maximum distances {vi} are fixed during the optimization. The visibility penalty

term is close to zero for neck-to-camera distances much less than vi and close to one for values

much greater:

νi(s, hi, βi) =
1

π tan−1(2)
tan−1

(

2

τo

(

||Ni(ti)|| −
vi
s

)

)

, (4.13)

where ||Ni(ti)|| = ̺iβihi is the neck-to-camera distance in meters, and τo is a value in meters such

that an “overshooting” of 3τo meters results in a penalty of approximately 0.95. In my experiments,

I use τo = 0.2m.

Optimization: Eqs. (4.11-4.13) are combined into a single objective function to be minimized:

E(s, {(hi, βi,ni)}) = − 1

D

D
∑

i=1

log pi(hi) +
1

4|N |λ2
∑

(i,j)∈N

(

d2ij + d2ji
)

+
1

D

D
∑

i=1

νi(s, hi, βi),

(4.14)

where D is the total number of detected people, N is a set of person neighbors to which the local

planarity prior is applied bidirectionally, and λ is a weight for the planarity penalty. The first term

is derived by taking the negative log-likelihood of the height probability. In my experiments, I

set λ = 0.02, which roughly reflects an expected ground plane noise of 2cm. The neighborhood

structure N is defined based on the initial person placements at s0. The “nearby” constraint can
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loosened in this stage, since we have at least a rough estimate of the scale of the scene. Specifically,

nearby initial placements are identified as those having neck points within 3m of each other in

the horizontal space and 0.242m in the vertical space. Under the adopted height distribution, this

vertical limit is the 95% threshold for the height difference between randomly chosen height pairs –

i.e., when considering all pairs of people in a population, only 5% are expected to have a difference

in height greater than this value.

The values for {βi} are constrained to the range [0.25, 0.45], which reasonably captures the

range of human torso proportions (Bogin and Varela-Silva, 2010), and these values are initialized

to 0.3 for optimization. Individual heights are randomly initialized by sampling from the height

distribution model. Normals are parameterized by spherical coordinates and are initialized with

small random perturbations. At this stage, person detections having at least four detected joints are

also included for optimization.

4.1.4 Ground Surface Reconstruction

Using the optimized 3D ground points and ground point normals, a ground surface is recovered

using the Poisson surface reconstruction (PSR) implementation of Kazhdan and Hoppe (Kazhdan

and Hoppe, 2013). PSR produces a high-quality mesh with adaptive resolution from an input set

of oriented points, which in this case is defined by { (Gi(s, hi, βi),ni) }. Prior to running PSR, the

input point cloud is filtered by removing individuals who are more than 40m from their observing

camera or who fail the visibility constraint at the optimized scale s. Small, far-off groups of

photographers are also removed.

4.1.5 Visualization

To demonstrate the potential of this method for scene completion, the recovered ground surface

is textured, and a subset of all detected people are placed into the reconstruction space. The person

visualization consists of a low-poly model for each detection, with the shirt and pants colored by

sampling the original image. Each person model is scaled to match the estimated height for the
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detection. To portray a realistic spatial distribution of pedestrians, a random subset of individuals

is selected for visualization. This is achieved by treating the selection as a set cover problem and

taking a greedy approach. Specifically, for each photographer c, denote Oc as the set of people

observed in the image taken by that cameraperson, and Vc ⊇ Oc as the set of all individuals

(including photographers) placed within the viewing frustum of the photographer’s camera, up to

some maximum depth. The algorithm selects a random photographer and marks all individuals in

Vc as “visited.” At the same time, all individuals in Oc who were not previously marked as visited

are placed into the reconstruction; if any such person exists, the photographer is also placed into

the scene. Photographers are randomly and iteratively selected in this fashion until all people are

marked as visited.

The ground surface obtained from PSR has accurate geometry but lacks color. To texture this

surface, each vertex on the ground surface mesh is projected into each individual image registered

in the 3D reconstruction and, if the projection lies within the image boundaries, the color value is

sampled at the pixel in which it falls. The sampled colors are aggregated over all images, and the

median color is computed for each vertex. To avoid sampling non-ground pixels (caused by, e.g.,

occluding scene geometry or pedestrians), the texturing process utilizes dense pixel-wise semantic

labeling. For each image, the convolutional neural network of (Yu and Koltun, 2016), trained on

the Cityscapes dataset (Cordts et al., 2016), is applied to obtain a most-probable class labeling for

each pixel. When aggregating color values, sampled pixels are ignored if they are not identified as

ground, sidewalk, or terrain.

4.2 Evaluation

The proposed method has been applied to several several scenes from large-scale image photo-

collections (Li et al., 2010; Cao and Snavely, 2012; Wilson and Snavely, 2014; Heinly et al., 2015),

as well as the well-known Cornell Arts Quad dataset (Crandall et al., 2011). Evaluation in the

context of unordered Internet photo-collections is challenging for the tasks of placing people and

estimating ground surfaces due to the lack of available ground truth. However, the estimate of the
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Figure 4.4: Overhead views (left) and sample renderings with ground and person avatars (middle)

for the proposed method. Examples of real photos are shown on the right. The green dots in the

overhead views show person placements, with cameras as red dots and detected people as green

dots. Black dots show static structure. From top: Dubrovnik, Croatia; the Pantheon; San Marco

Plaza, Venice; and the area around the Colosseum and Roman Forum in Rome.
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scene scale, which is integral to the overall pipeline, can be evaluated quantitatively. To perform this

assessment, the ground-truth scene scale was manually obtained for a number of reconstructions

by taking the known sizes of structures in each scene and comparing them to their size in the

reconstruction space. The scale evaluation results are shown in Table 4.1. It can be seen that

the proposed scale estimation via a height distribution prior reliably determines the scene scale.

Effectively, the method uses object semantics to overcome the inherent scale ambiguity of SfM

reconstructions.

The gravity vector for each scene, which is estimated during the initial torso fitting stage,

can also be quantitatively compared to other approaches. When compared to the implementation

of Schönberger and Frahm (2016) that performs automatic gravity vector estimation from scene

vanishing points, the torso-based approach has an average difference of 1.078◦ over the datasets

of Wilson and Snavely (2014). This indicates that the gravity vector estimation of the proposed

approach has very similar performance to other methods. One (slightly contrived) situation where the

torso method might be preferred is when the dominant scene lines strongly deviate from Manhattan

world assumptions, which would cause vanishing-point estimation methods to fail entirely. Of

course, the input imagery would need to contain a sufficient number of people without too many

instances where the torso was not relatively upright.

For qualitative analysis, sample overhead and ground-level visualizations are shown in Fig. 4.4

on four large-scale datasets: Dubrovnik, the Pantheon, San Marco Plaza, and the Campitelli in

Rome. Fig. 4.5 shows additional overhead visualizations for several other scenes, along with a

comparative aerial image from Google Earth. For the overhead visualizations, green dots show

the placement of detected individuals, red dots show locations for photographers, and black dots

show static scene structure. In general, the placements for detected people into the scene reflect

the actual structures where people walk, particularly along sidewalks. Places where people do not

walk (e.g., the fountains in Trafalgar Square) contain low densities of (likely mis-detected) people.

The accurate scale estimates presented in the paper and above provide additional evidence as to

the correctness of these placements. There were failure cases on other scenes, such as the Statue

75



of Liberty (not shown), that were primarily caused by a large number of false person detections

on human-like statues. These false detections are also visible in the water of the Trevi Fountain,

below; however, the scene conditions in that case did not appear to negatively influence the result.

I have also empirically found that the method’s accuracy is generally higher in scenes having 1)

a larger number of person detections and 2) more complete static reconstructions obtained via

Structure-from-Motion. The former condition provides greater support for approximate semantic

triangulation, while the latter is important for enforcing visibility constraints, which are helpful in

avoiding under-estimation of the length of one unit in the reconstruction space.

Scene Error np nc

Alamo +0.3% 1940 699

Brandenburg Gate -7.2% 5115 1131

British Museum +0.3% 2925 507

Buckingham Palace -5.9% 4972 1257

Campitelli +1.9% 15836 16834

Cornell Quad -4.0% 550 4773

Dubrovnik -0.15% 5066 2714

Hōzōmon Temple, Tokyo -1.5% 1768 230

Lincoln Memorial +6.5% 875 183

New York City Library -1.4% 466 480

Palace of Westminster -8.8% 331 496

Pantheon +4.3% 8656 3310

Piccadilly Square -6.1% 7908 2453

Pike Place Market, Seattle +8.5% 1081 312

Sacré Cœur, Paris -0.3% 1705 782

San Marco -0.3% 15712 4916

Taj Mahal -1.1% 395 805

Tōdai-ji Temple, Nara -2.1% 2419 733

Tower Bridge, London -2.6% 213 125

Tower of London -4.7% 551 381

Trafalgar Square +3.2% 13306 4328

Trevi Fountain -3.3% 4934 2343

Union Square Park, NYC -4.5% 2833 1023

Table 4.1: Quantitative results on the proposed method for scale and placement. “% Error” gives

the amount that the method over/under-estimated the distance of one unit in the reconstruction. np

and nc show the number of placed detected people and photographers, respectively, recovered by

the method.
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Figure 4.5: Overhead visualizations of person placements (left) versus aerial views from Google

Earth (right). From top to bottom: Buckingham Palace, the Palace of Westminster, the Sacré Cœur

in Paris, Trafalgar Square, and Trevi Fountain.
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4.3 Ablative Analysis

This section provides additional analysis on the various parts of the reconstruction pipeline.

Recall that the algorithm has two general stages: scale voting and scale refinement. The scale voting

stage serves to initialize the subsequent refinement. The following subsections demonstrate that

both stages are necessary to produce a satisfactory result, and it is also demonstrated how different

parameter selections affect the end result in both stages.

4.3.1 Visibility Constraint During Voting

First, I analyze the effect of removing the visibility constraint (Eq. (4.7)) during the scale voting

procedure. The visibility constraint is necessary at this stage, but using the constraint alone is not

sufficient to obtain the scene scale. Fig. 4.6 shows the effect of turning off the constraint for the

Campitelli model. Because the (model-space) neighborhood radius in Eq. (4.5) generally grows

faster with respect to scale than pairwise person distances, using the neighborhood term alone will

result in artificially high overlap at larger scales. The visibility constraint is thus important to rule

out impossible person placements.
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Scale (Reconstruction Units Per Meter)
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Figure 4.6: Result of the scale voting scheme with (blue) and without (orange) the visibility

constraint. The ground-truth scale is near 0.01 reconstruction units per meter.

Fig. 4.7 demonstrates that the visibility constraint alone is not sufficient for determining the

scene scale. For each detection in the Campitelli model, I compute the ratio of the estimated neck

distance s||Ni|| to the visibility threshold vi(s) (cf. Eq. (4.7)) for the ground-truth scene scale, and

for ±10% and ±20% of this scale. These ratios are sorted across all individuals and plotted. At the

correct scale, individuals adjacent to static structures will have a ratio of ∼1. With perfect detections,
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this principle could conceivably be used to estimate the correct scale. If all neck distances and

detections were correct, and assuming at least one person stands exactly next to, e.g., a wall, we

could conceivably select the (approximately) correct scale based on this principle. It is clear from

the figure, however, that false detections and mis-estimations of the neck distance (having ratios

much greater than 1) make this threshold ambiguous. The proposed voting-based approximate

triangulation approach is thus necessary to robustly obtain an initial scene scale.
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Figure 4.7: Ratio of the estimated neck distance s||Ni|| to the visibility threshold vi(s) for the

ground-truth scale (GT), and for larger/smaller scales. Values are sorted and clipped to [0.5, 1.5].

4.3.2 Effect of Scale Refinement Terms

There are three optimization terms in the scale refinement stage of the proposed algorithm

(Eq. (4.14)): a height prior, a local planarity penalty, and a visibility constraint. The algorithm

requires the local planarity term – without it, the optimal solution is to set the scale to an infinitesimal

positive value (maximizing Eq. (4.13)) and each hi to the most probable height according to the

prior distribution. Table 4.2 shows the estimated scales with the height and visibility terms removed.

The effect of the height prior varies between datasets, but in general better scale estimates are

recovered when the constraint is included. The visibility constraint is intended for scenes with fewer

individuals, to help prevent scale over-estimation caused by fewer well-supported neighborhoods.

4.3.3 Effect of Parameters during Refinement

To investigate the sensitivity of the algorithm to parameter changes, Table 4.2 further shows

results after modifying the four major tunable parameters of the refinement (photographer camera
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height βc, “overshooting” threshold τo, planarity penalty λ, and the xz neighbor threshold) by

±10%. The relative scale differences are generally small, and only minor changes are observed in

the estimated 3D positions of the detected individuals.

4.3.4 Comparing Scale Voting and Scale Refinement

Finally, the 3rd and 4th columns of Table 4.2 show the scale improvement of the refinement stage

versus the initial voting. For many datasets, the refined scale estimate is closer to the ground truth.

Since the local planarity term is the driving factor in the refinement step, this result supports the

notion that the person placement (including the initial 3D triangulation) is an important component

of the approach.

4.4 Discussion

This chapter introduced a new approach for adding transient elements to large-scale static 3D

reconstructions, operating under the difficult scenario of having minimal prior knowledge about

the scene. Specifically, the method leverages recent advances in image-based person detection,

along with population height distribution priors, to jointly place detected people into the scene,

estimate the absolute scale of the reconstruction, recover the gravity vector of the scene, and recover

the underlying ground surface. The method has been tested on a large collection of real-world

datasets, and quantitative and qualitative results demonstrate the significant advances of approach in

modeling hard-to-capture scene elements. One key insight of this work is that knowledge of object

class properties, such as height distribution in humans, can provide adequate constraints on 3D

placement even when exact correspondence is impossible.

80



Scene GT Initial Final No Height No Visib. -10% +10%

Cornell Quad 0.0269 0.0259 0.0280 0.0278 0.0294 0.0282 0.0272

Dubrovnik 0.0200 0.0183 0.0200 0.0199 0.0195 0.0197 0.0198

Pantheon 0.0913 0.0799 0.0873 0.0912 0.0877 0.0877 0.0874

Campitelli 0.0104 0.0097 0.0102 0.0102 0.0103 0.0102 0.0102

San Marco 0.0379 0.0336 0.0380 0.0375 0.0367 0.0383 0.0385

Alamo 0.1350 0.1253 0.1346 0.1323 0.1363 0.1320 0.1351

NYC Library 0.1437 0.1262 0.1418 0.1553 0.1442 0.1429 0.1403

Piccadilly 0.1216 0.1263 0.1290 0.1442 0.1329 0.1289 0.1275

Brandenburg Gate 0.1266 0.1287 0.1365 0.1433 0.1369 0.1356 0.1356

British Museum 0.3913 0.2793 0.3900 0.3434 0.4014 0.3923 0.3877

Buckingham Palace 0.0629 0.0604 0.0668 0.0776 0.0663 0.0662 0.0658

Hōzōmon Temple 0.5651 0.5070 0.5739 0.4642 0.5941 0.5797 0.5689

Lincoln Memorial 0.1161 0.1086 0.1090 0.1217 0.1093 0.1100 0.1080

Palace of Westmin. 0.0259 0.0280 0.0284 0.0298 0.0287 0.0289 0.0296

Pike Place Market 0.1840 0.1314 0.1696 0.1462 0.1754 0.1678 0.1704

Sacré Cœur 0.0507 0.0477 0.0509 0.0512 0.0503 0.0499 0.0502

Taj Mahal 0.0475 0.0420 0.0481 0.0488 0.0497 0.0491 0.0475

Tōdai-ji Temple 0.1340 0.1251 0.1369 0.1563 0.1380 0.1369 0.1354

Tower Bridge 0.2166 0.2391 0.2223 0.2391 0.2238 0.2244 0.2205

Tower of London 0.0484 0.0479 0.0507 0.0497 0.0517 0.0513 0.0498

Trafalgar Square 0.0700 0.0628 0.0678 0.0679 0.0673 0.0700 0.0671

Trevi Fountain 0.3179 0.2538 0.3288 0.3571 0.3278 0.3335 0.3213

Union Square 0.1380 0.1276 0.1430 0.1568 0.1427 0.1422 0.1416

Table 4.2: Ablative analysis on the importance of different parts of the proposed algorithm. GT:

Ground-truth scene scales (reconstruction units per meter). Initial/Final: Estimates from the voting

and refinement stages. No Height/Visib.: Height/visibility terms removed from final optimization.

±10: With all parameters modified by ten percent. Red cells: Results where the estimated length of

one unit in the reconstruction was incorrect by >10%.
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CHAPTER 5: LIVING 3D RECONSTRUCTIONS

In the previous chapter, I introduced a method for recovering the 3D positions of people in

large-scale 3D reconstructions from unordered Internet photo-collections, as well as the scale of the

scene. Given this augmented reconstruction, two questions come to mind: 1) How can we use this

information to improve the overall reconstruction? 2) Can we visualize the reconstructed scene in

ways that make it appear more true to life? In this chapter, I introduce a pipeline that tackles both

questions.

Regarding the first question, a key reconstruction aspect that can be improved is proper modeling

of ground surfaces. The ground surfaces used for visualization in the previous chapter were

reconstructed using a straightforward meshing technique — Poisson surface reconstruction applied

to the oriented point cloud of person ground points — that did not integrate with the static structure

of the scene in any way. To achieve a better scene representation, a more holistic reconstruction

of both the person ground points and MVS depthmaps is desired. This is still a difficult problem,

since ground points will generally only be available for the areas of the scene where people actually

walk. Surface reconstruction approaches that aim to model weakly supported surfaces can recover

the ground to some degree, but they are still limited in the sense that they require some level

of support. For example, Fig. 5.1 shows scene reconstruction results from images of the Castel

Sant’Angelo. The left column shows the result of a surface reconstruction approach that applies

Delaunay tetrahedralization to a point cloud fused from MVS depth maps; the mesh surface is

extracted by labeling the tetrahedra as “inside” or “outside” using graph-cut optimization and

visibility-ray-based cost terms (Labatut et al., 2009; Jancosek and Pajdla, 2011; Schönberger et al.,

2016). In areas with insufficient ground coverage in the 3D point cloud, the optimization has no

signal to drive a correct ground surface recovery, and significant holes can appear in the mesh.

82



Figure 5.1: Left: A scene mesh generated by point cloud fusion from MVS depthmaps and Delaunay

tetrahedralization with visibility optimization (Schönberger et al., 2016). Middle: Mesh for the

same approach, with 3D ground points of detected people added to the point cloud. Right: Scene

mesh generated by the proposed method.

In the middle column of Fig. 5.1, I have added the recovered 3D person ground points to the

MVS-recovered point cloud. This helps the ground recovery for areas where people walk, but

significant holes still exist outside of these regions (see especially the bottom image in the middle

column, where the path from the bridge to the entrance is well covered, but the other ground areas

near the building are not).

Obtaining the scale of the scene and gravity alignment provides an alternative route for recover-

ing ground surfaces. The gravity direction provides constraints on vertical aspects of the scene (the

bottom of the reconstruction should be below ground and the top of the reconstruction above it), and

for regions where the ground is poorly recovered, we can assume that it is mainly flat, especially for

areas where people might walk. Knowing the scale of the scene allows us for fiducial limits to be

applied to the modeling problem. That is, an exact resolution for the reconstructed geometry can

be specified, facilitating the use of volumetric approaches and removing the need for methods like

Delaunay tetrahedralization that do not carry guarantees that the precise surface can necessarily be

83



extracted from the ad hoc topology. When scale and gravity are combined with 3D ground points

for detected people, more complete scene representations can be obtained (Fig. 5.1, right).

Ground surface reconstruction also is a necessary component for the second problem of whether

reconstructions can be visualized more as a place and less as (for want of a better term) a 3D

model of a place. To this end, I introduce the concept of living 3D reconstructions: models of real

places that include dynamic representations of transient objects, all recovered automatically from

crowd-sourced imagery. To demonstrate this in the setting of modeling people, I introduce a way

of bringing 3D reconstructions “to life” via crowd simulation. Given 3D positions of people in

the input imagery and a reconstruction of the scene that includes a complete ground surface, I first

extract “walkable” ground regions of the mesh, including sidewalks and other regions where people

are commonly found. Walking virtual pedestrians are then rendered into the scene and then, using

crowd simulation software (Curtis et al., 2016), are made to navigate between different positions

in the ground mesh where actual people were determined to have stood. The resulting 3D scenes

carry the immersion that comes with observing people moving around in an environment, including

the context of the size of buildings and — importantly — how people dynamically exist within the

space. These living models are a compelling first step towards new visualization approaches in

large-scale virtual tourism.

5.1 Robust Surface Reconstruction

In this section, I outline a volumetric approach for recovering a complete surface mesh for a

scene given a set of depthmaps obtained using MVS and 3D ground points for the people detected

in the input imagery.

5.1.1 Truncated Signed Distance Function Aggregation

As mentioned previously, knowing the scale of the scene allows for reconstruction at a fixed

fiducial level of geometric detail. A natural way to apply this principle is to divide the reconstruction

space into a 3D grid of voxels, with each voxel storing information about the observed surface
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points (for example, the 3D points of MVS depthmaps) that fall within or near its interior. These

aggregated surface measurements can be used to derive a distance field u(x) for the scene, that

is, a value relating the distance to the nearest surface point at each 3D coordinate x. The distance

field can represent absolute distance, or it can be signed, with positive values denoting that a point

is exterior to a surface and negative values denoting interiorness (or vice versa). In either case,

the distance function is an implicit representation, where the zero level set delineates the actual

underlying surface. The voxel representation of u(x) is convenient to optimize and can be used to

extract a mesh for the zero level set of the surface (Lewiner et al., 2003).

When working with 2.5D surface representations like MVS depthmaps, one approach for

aggregating distance-to-surface measurements is to consider distance values along each line of sight

(Canelhas, 2017). Starting from the camera center, each pixel with known depth is marched through

the voxel space along its ray, and the (signed) distance from each voxel center to the observed

point is computed and stored; the distance can either be the direct 3D distance to the observed

point or, if surface normal estimates are available, the distance to the local plane defined by the

point and its normal. This raycasting approach works well near the surface but requires a few

considerations when applied to real depthmaps. For one, measurement noise must be accounted for

when computing distances, so it is better to (robustly) aggregate the observations rather than taking

the minimum computed distance for each voxel as its u(x) value. Second, the 2.5D representation

only provides freespace information for the space between the surface and the camera, meaning

that interior distances behind the surfaces can only be inferred. Third, depending on the spatial

configuration of the source images, there may be rays that do not intersect with a voxel but whose

surface points are closer to the voxel’s center than those that do pass through that voxel. This means

that the exact distance for exterior surface measurements becomes less reliable for voxels further

from the surface.

To address these shortcomings, Curless and Levoy (1996) introduced the truncated signed

distance function (TSDF). Here, the aggregated distance values are clipped to a manually determined

exterior maximum of Dnear > 0 and an interior minimum of Dfar < 0, which are usually set to a
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small multiple of the voxel size. To account for the surface interior being unobserved, computed

distances less than Dnear are ignored. In a perfect scenario, Dnear would be set to half the distance

between the near surface point and the corresponding back surface point along the same ray. In

practice, Dnear should be large enough to accommodate measurement noise yet small enough so as

to not negatively impact depth measurements for back surfaces.

Curless and Levoy (1996) suggest a weighted aggregation approach to account for measurement

noise. Denoting F(x) as the set of TSDF distance measurements {fk} and associated weights {wk}

for a given voxel, the aggregated TSDF value T (x) is computed as

T (x) =
1

W (x)

∑

(fk,wk)∈F(x)

wkfk, W (x) =
∑

(fk,wk)∈F(x)

wk. (5.1)

The weight for each observation should reflect a level of confidence that the depth is correct. For

example, to account for the larger depth uncertainty in oblique surface views, I use a fronto-parallel

bias in my implementation, where the distance for a pixel with ray rk and MVS-estimated surface

normal nk is weighted as wk = rk · nk.

One additional consideration when aggregating MVS depthmaps in a TSDF is that many

spurious depth measurements can occur in general scenes, even when strong filtering is applied to

rule out erroneous depths. This means that applying freespace constraints across the entire ray can

lead to erroneous carving of the geometry. For example, in some situations, images can have noisy,

incorrect geometry estimates for points on the ground that are much farther than the actual distance

to the ground surface. Tracing the TSDF along the entire ray thus leads to votes of Dnear for points

on the ground, which ought to have a distance of zero. The crossing rays from many images lead to

a false strong confidence that the “ground truth” is far away from the scene’s surface, even though

the spurious surface estimates that cast the rays are themselves only weakly supported in the TSDF

by a small number of images. A simple way around this is to only begin TSDF aggregation once

a minimum distance to the surface (e.g., Dnear) is reached. The missing freespace values can be

inferred via optimization.
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5.1.2 Regularizing the Distance Field

The TSDF aggregation procedure can be interpreted as the weighted least-squares solution that

minimizes the energy functional

E(u(x)) =

∫

Ω

1

2

∑

(fk,wk)∈F(x)

wk (u(x)− fk)
2 dx, (5.2)

where the integral is taken over all coordinates x in the 3D volume Ω. In general, the set F(x)

denotes all observed data points associated with a given point in space, for any choice of data

association. In the case where the space is a voxelized TSDF, F(x) consists of all weighted distance

values aggregated in the given voxel. Since the above energy functional can be evaluated point-wise,

it is straightforward to see that T (x) is the optimum at each point x:

∂E

∂u
(u(x))

!
= 0

∑

(fk,wk)∈F(x)

wk (u(x)− fk) = 0

u(x)
∑

(fk,wk)∈F(x)

wk −
∑

(fk,wk)∈F(x)

wkfk = 0

u(x) = T (x).

(5.3)

In practice, the surface extracted from a raw aggregated TSDF can be incomplete and, especially

when derived from depthmap data obtained using MVS, noisy. To obtain a smooth geometry, Zach

et al. (2007) proposed to minimize a total variation (TV) functional:

E(u(x)) =

∫

Ω

|∇u(x)|+ λΦ (u(x),F(x)) dx. (5.4)

The first term is the so-called total variation penalty that encourages a smooth zero-level set by

selecting a distance field that undergoes minimal change. The second term, Φ(u,F), is a (potentially

robust) data term weighted by some value λ. Applying a non-robust squared loss results in the
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well-known Rudin-Osher-Fatemi (ROF) model (Rudin et al., 1992):

ΦROF (u,F) =
1

2

∑

(fk,wk)∈F

wk (u− fk)
2 , (5.5)

which is the same as the integrand in Eq. (5.2). To make the data term robust to outlier observations,

Zach et al. (2007) suggested a TV-L1 approach with

ΦL1 (u,F) =
∑

(fk,wk)∈F

wk |u− fk| . (5.6)

Ummenhofer and Brox (2015) adopted a similar data term but use a small-threshold Huber model

to maintain differentiability near zero.

Let us consider these data term options from the perspective of maximum likelihood estimation,

i.e., minimizing the negative log-likehood of an assumed probability distribution pk(f) for each

distance observation. In the squared (ROF) case, the error from each observation to the true distance

value is assumed to follow a Gaussian distribution with variance σ2 = 1/(λwk). Without a very

effective prior on each wk, this loss is going to be quite senstive to spurious surface measurements

brought about by incorrect estimations in the MVS depthmaps. The L1 model assumes an underlying

Laplace distribution that lends greater probability to outlier observations; a good confidence estimate

in wk can, of course, still help the approach. The result here is that the median observed distance is

preferred, rather than the mean preferred in the ROF case. A Huber loss adopts the Gaussian up

to a certain threshold, and then switches to the higher-probability tails of the Laplace distribution.

Of course, all three of these data terms assume that non-outlier measurements follow some fixed

distribution (Gaussian or Laplace) that may or may not well model the complex surface variations

that can arise in MVS depth estimation for general image collections.

From a practical perspective, the squared loss has the nice property that only the aggregated value

T (x) and weight W (x) need to be stored in order to compute its derivative (Eq. (5.2)). The L1 and

Huber approaches require that all observations F(x) be kept in memory, which can be prohibitive

when processing billions of points from a reconstruction with several thousand MVS depthmaps.
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Histogram binning approaches can potentially avoid this overhead, albeit with quantization error in

the target distances (Zach, 2008). When scaling to very large spaces like those found in large-scale

Internet photo-collections, an accurate, low-memory solution is preferred. So, unless we have a

reason to assume that an L1 noise model would better characterize the non-outlier noise distribution,

it follows that a perhaps more scalable approach is to derive a robust loss that uses the squared data

term.

An approach that I have found effective is simple truncation of the ROF model:

ΦTRUNC (u,F) =















1
2

∑

(fk,wk)∈F
wk (u− fk)

2
if |u− T | < τT ∧W > τW

0 otherwise,

(5.7)

for TSDF error threshold τT and TSDF weight threshold τW . This approach is intended for

reconstructions with relatively large voxels (say, greater than 0.1m3) that aggregate many surface

observations from the individual depthmap pixels. In this case, the TSDF computation for well-

supported surfaces is quite robust — a small number of spurious point measurements passing through

the voxel will not strongly affect the overall weighted average distance. Outliers in the TSDF mainly

come from spurious surface estimates for points that are actually in the air or underground. These

points are usually only supported by a small number of images, and their associated voxels thus

typically have a relatively low aggregated TSDF weight W (x).

Of course, it is also likely the case that valid surfaces exist whose computed W (x) is also small,

so the threshold of τW may be on its own too restrictive. Accordingly, I start with a value of τW

that is relatively high and progressively decrease it each iteration. The threshold τT helps to restrict

spurious points while allowing weakly observed points to become active. The idea here is that the

observed points grow “from the ground up,” or to put it perhaps more accurately, outward from the

existing surface. That is, only strongly supported surfaces are reconstructed in the early iterations;

voxels away from these surfaces begin to adopt strong positive or negative distance values. When

τW reaches a smaller value, spurious points that are, e.g., floating in the air find themselves in a

local distance field of larger positive values. The τT threshold and TV smoothness constraint work
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together to inhibit a surface to form from this sporadic point. For weakly supported valid points, on

the other hand, we have the constraint that no observable static object simply floats in the air or is

buried in the ground — it must touch air and be connected to the ground. Weakly observed surfaces

near to the current estimated surface are therefore more likely to pass the τT check, and thus there is

a better chance that the missing structure evolves. Note that this approach will not always work if

structures are missed, for example if a street sign is reconstructed in MVS but the pole it is attached

to is not.

5.1.3 Optimizing the Distance Field

Zach (2008) proposed an algorithm for solving Eq. (5.4) that follows a framework from Cham-

bolle (2004, 2005). I briefly review this formulation here and introduce an extension for applying a

gravity-based prior in the next subsection. Chambolle (2004) noted that the gradient magnitude can

be simply expressed as the inner product of the gradient with its associated direction vector, i.e.,

|∇u| = max
p:||p||≤1

p · ∇u. (5.8)

Thus, minimizing a TV-Φ energy can be equivalently expressed as a minimization/maximization of

min
u

max
p

E(u,p) = min
u

max
p

∫

Ω

p · ∇u+ λΦ (u,F) dx, (5.9)

for which Chambolle demonstrated a convergent optimization algorithm under the ROF model.

Since the data term is zero for voxels that lack observations, it is necessary to introduce a strictly

convex relaxation using an auxiliary distance field, v (Zach, 2008):

min
u,v

max
p

E(u, v,p) = min
u,v

max
p

∫

Ω

p · ∇u+ 1

2θ
(u− v)2 + λΦ (v,F) dx, (5.10)

where θ is a small positive constant, with smaller values leading to higher faithfulness to the

observed distances. This equation can be optimized using gradient ascent scheme of Chambolle
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(2005), iterating between updates of p, v, and u. Specifically, we have the following three update

equations from iteration n to n+ 1:

∂E

∂p
= ∇u

=⇒ p(n+1) = π||·||≤1

(

p(n) + α∇u(n)
)

(5.11)

∂E

∂v
= −1

θ
(u− v) + λ

∂Φ

∂v
(v,F)

!
= 0

=⇒ v(n+1) = u(n) − λθ
∂Φ

∂v

(

v(n+1),F
)

(5.12)

∂E

∂u
= −∇ · p+ 1

θ
(u− v)

!
= 0

=⇒ u(n+1) = v(n+1) + θ
(

∇ · p(n+1)
)

,

(5.13)

where α ≤ 1/(6θ) is the step size for the gradient ascent scheme, and π||·||≤1 projects any vector

with greater than unit length onto the unit sphere. The exact update for v(n+1) depends on the choice

of Φ, of course — for the (truncated) ROF model, it is straightforward to compute the derivative of

Φ, whereas models such as the TV-L1 may require a more nuanced update calculation (Zach, 2008).

In the discretized setting, the gradient computations must be dual, e.g., using forward differences

for the computation of ∇u and backward differences for the computation of ∇ · p (Zach, 2008).

5.1.4 Gravity-aligned Surface Prior

One drawback of total variation approaches is that they can unrealistically interpolate surfaces

in weakly supported and unsupported regions. For example, if the images in a photo-collection

frequently capture heavy occlusion near the base of a building, multi-view stereo is likely to fail

to reconstruct any geometry for the lower facade and the ground. Total variation regularization

provides us with a way to recover this missing geometry, but the minimal surface in the TV model

consists of a smooth curve between the well-supported portions of the upper building facade and

farther-away ground. This improves scene completeness, but the underlying geometry can be quite

incorrect.
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To more realistically capture such missing surfaces, one solution I have found works well is to

assume a Manhattan-world-type property for the scene (Coughlan and Yuille, 1999), enforcing that

scene surfaces in unknown regions are either flat or vertical relative to the gravity vector of the scene.1

Assuming that the reconstruction space is gravity-aligned with the y-axis pointing downward, the

surface normal n = (n1, n2, n3)
T

would thus have |n2| = 1 for a flat surface (e.g., the ground) and

n2 = 0 for a vertical surface (e.g., the facade of a building). Since p(x) = (p1(x), p2(x), p3(x))
T

serves as a “decoupled” estimate of the surface normal during optimization, the TV energy equation

can be updated to include a regularization of this vector. Considering the energy only w.r.t p for

simplicity, we now have

max
p

EM(p) = max
p

∫

Ω

p · ∇u− λM
(

1− p22
)

p22dx, (5.14)

where λM is a regularization weight for the Manhattan-world prior. The new term can be interpreted

as “the magnitude of the vertical component of p is either zero or one.” Values of p2 away from this

are penalized.

Computing an update for p, we have

∂EM(p)

∂p
= ∇u−













0

2λMp2 − 4λMp
3
2

0













(5.15)

The values for the horizontal components of ∂EM

∂p
are the same as before, i.e., ∂EM

∂p1
= ∇xu and

∂EM

∂p3
= ∇zu, and we again can use gradient ascent to compute a new value for p1 and p3. However,

the vertical component now follows a cubic equation that can be found analytically by evaluating

∂EM

∂p2

!
= 0, without the need for gradient ascent. Rewriting the equation for p2 from above in standard

cubic form, we have

p32 −
1

2
p2 + q = 0, (5.16)

1Manhattan-world priors may also enforce orthogonality for adjoining vertical surfaces like the walls of a building. I do

not enforce that here, however.
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where q = 1
4λM

∇yu. If the discriminant D = −4
(

−1
2

)3 − 27q2 of Eq. (5.16) is non-negative (or

equivalently, if 3|q|
√
6 ≤ 1), then there exist three real solutions for p2 given by

p̂
(k)
2 = 2

√

1

6
cos

(

1

3

(

cos−1
(

−3q
√
6
)

− 2πk
)

)

, k = 0, 1, 2. (5.17)

(see, for example, Weisstein (2019)). Otherwise, there exists only one real-valued solution:

p̂2 = −2

√

1

6
sgn (q) cosh

(

1

3
cosh−1

(

−3|q|
√
6
)

)

. (5.18)

In the case of three real-valued solutions, the updated value p̂2 can be selected as that clos-

est to
∇yu

|∇u|
, or zero if the current gradient of u is zero. The final updated value is p(n+1) =

(

p
(n)
1 + α∇xu

(n), p̂2, p
(n)
3 + α∇zu

(n)
)T

, which is then reprojected down to S2 if it is longer than

unit length.

5.1.5 Scenario-specific Considerations and Implementation

To speed up processing times for large-scale datasets, I have created GPU implementations of

the TSDF aggregation and optimization algorithms described above. In addition to the gravity-

aligned surface prior, there are two specific implementation approaches that I have found effective

in improving the overall result. The first such approach is to add the constraint that the bottom

layer of voxels in the voxel space is always interior (i.e., underground). After each iteration, this

constraint is applied by simply enforcing that u(x) ≤ −h for voxels along the bottom boundary,

where h is the voxel size. A similar constraint is also applied to the top boundary, so that the

distance function at the top of the volume is never interior. The second approach is to apply a

vertical “sweep” initialization to better propagate intertior and exterior values from the raw TSDF.
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Starting from the top of the TSDF and sweeping down each column, each voxel is updated as

u′(x) =















u(x) if W (x) > τW ∨ u′prev ≥ 0

max
(

u′prev − h,−2h
)

otherwise,

(5.19)

where u′prev is the value for the voxel immediately above. This approach increases the initial

coverage of underground voxels, whose distance values should be negative. In a second pass, the

same approach is applied in an upward sweep, filling in positive distances. This sweeping strategy is

only applied once, before optimization. The effect of these two constraints are shown in the results

section, below.

One final implementation detail concerns the addition of person ground points into the scene,

which are obtained using the approach described in the previous chapter. Adding these ground

points provides an important — and often, the only — cue for delineating where the ground surfaces

lie in the scene. After the initial TSDF aggregation, the 3D point for each person is added to the

TSDF simply by computing the nearest voxel centers above and below it. The TSDF is updated at

these voxels based on the vertical distance to the ground point with a weight of wk = 1. To increase

the spatial effect of the ground point placement, I also apply this update to the 3× 3 neighborhood

in the XZ-plane around each of the two voxels.

5.2 Triangle Color Estimation and Walkable Area Extraction

Once optimization is complete, a final surface mesh is extracted using marching cubes (Lorensen

and Cline, 1987; Lewiner et al., 2003). For visualization and for computing walkable ground regions

of the reconstructed surface, I first compute an average color for each triangle in the mesh. This is

done by rendering the mesh into each image using the camera intrinsics and extrinsics estimated via

SfM. I use OpenGL vertex and fragment shaders to render the triangle indices of the mesh into each

image, which provides the triangle associated with each pixel. The color for each projected triangle

is computed as the average color of all relevant pixels in the image, and the final triangle color for
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the mesh is computed as the average color over all images, with each image weighted by the number

of pixels occupied by the triangle in that image. To avoid aggregating colors for transient objects

such as people, birds, and cars, I exclude projected triangles that overlap with the bounding boxes

of objects detected by an implementation of the Mask R-CNN neural network (He et al., 2017;

Abdulla, 2017). Triangles with missing colors are filled using an iterative diffusion-type approach,

where at each iteration, the new color is determined as the average color of its neighbors.

Having obtained triangle colors for the mesh, the next step is to compute the parts of the mesh

on which pedestrians may actually walk. This information is available, in part, by the 3D ground

points recovered for people detected in the individuals images — wherever a person was determined

to be standing, the nearest mesh triangle can be considered as a ground surface. These triangles

are outlined in white in Fig. 5.2. Depending on reconstructed crowd density, however, this surface

is often incomplete, with many isolated patches of ground surfaces. To improve the coverage of

walkable area, I adopt a simple color-based region-growing approach. Starting from an initial set

of ground-labeled triangles, I iteratively check all ground adjacent triangles. If the color of the

adjacent triangle is similar enough to the average color of its ground-labeled neighbors, that triangle

also receives a ground label. This computation is iteratively applied until no adjacent triangle is

relabeled as ground. To reduce sensitivity to mild color variations, I apply this computation after

two initial color blur operations of the original colored mesh. To compute color similarity, I convert

each red-green-blue vertex color into the L*a*b* color space with per-channel normalization to the

range [0, 1]. A color c is considered similar to its average neighboring color µ if





∏

i∈{L∗, a∗, b∗}

e
−

|ci−µi|

2σi



 < τc. (5.20)

I use σL∗ = 0.4, σa∗ = σb∗ = 0.35, and τc = 0.05. Example triangles added by this region-growing

process are outlined in red in Fig. 5.2.
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Figure 5.2: Initial labeled ground triangles (white) and additional triangles added after the proposed

region-growing approach (red).

5.3 Crowd Simulation and Visualization

Once the “walkable” areas in the scene have been identified, a living 3D reconstruction can

be achieved by adding animated pedestrians who walk over these surfaces. This is accomplished

using Menge (Curtis et al., 2016), an the off-the-shelf tool that implements a variety of crowd

simulation algorithms. The walkable ground surfaces form a navigation mesh, over which the

virtual pedestrians plan paths to specified target destinations. For the visualizations I produce here,

I randomly select starting and target destinations using the set of recovered ground positions for

people detected in the input imagery. Once a virtual pedestrian reaches their target location, a new

target location is randomly selected.

5.4 Results

I have applied the proposed pipeline to a number of large-scale community photo-collections

from the MegaDepth dataset (Li and Snavely, 2018). Snapshots of the living 3D reconstructions

with animated pedestrians are shown in Figs. 5.4-5.11. For these reconstructions, I apply a two-pass

optimization of the distance field, first at a voxel size of 1m (Dnear = 4m and Dfar = −1m) and

then, using this result as initialization, at a resolution of 0.5m (Dnear = 3m and Dfar = −0.8m).
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For voxel size h, I use λ =
(

3
2h

)2
, λM = 10, θ = (0.01h)2, and τT = 2h. The 1m resolution uses

τW = 320, which is decreased by 0.01% each iteration, and TSDF voxels with W (x) < 20 are

filtered out prior to the addition of 3D person ground points to the TSDF. Having been intialized

from the 1m-resolution result, the 0.5m resolution uses τW = 0, and TSDF voxels with W (x) < 10

are filtered out, again prior to the addition of 3D person ground points to the TSDF. The 1m and

0.5m optimizations are run until the maximum percent change in any voxel is less than 0.5% and

1%, respectively.

Fig. 5.3 provides a qualitative ablative analysis for the surface reconstruction results of the Tower

of London at a voxel resolution of 1m, considering the additional pipeline components of sweep

initializtion, the gravity-aligned prior, and the constraint that the bottom voxels of the reconstruction

be interior. Of these, the interior constraint does the most for filling out the ground region of the

scene; without it, the TV term merely enforces minimal surfaces around well-supported voxels. The

sweep initialization generally leads to smoother surfaces when combined with the interior constraint,

although TSDF noise and oversmoothing can still negatively affect the result. The gravity prior

notably improves the overall local flatness and smoothness of the estimated surfaces.

5.5 Discussion

This chapter introduced living 3D reconstructions — 3D reconstructions of real places that

include dynamic representations of transient objects. As part of obtaining this representation, I

introduced new considerations for ground surface modeling and general scene reconstruction that

enhance the overall completeness of the scene versus alternative approaches. This is accomplished,

in part, by leveraging the ground surface points for detected people, the scale of the scene, and the

gravity direction of the scene. Crowd simulation additionally allows for a resembling reconstruction

of the place, briding the gap in realism by adding missing dynamic objects at scale. The resulting

visualization moves beyond the static scene reconstruction of SfM and MVS, providing missing

context for how the scene exists as a whole, complete with its individual buildings and ground

surfaces, as well as representations of people that move about the space.
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No additional settings With sweep initialization

With gravity-aligned prior With the bottom voxels constrained to be interior

With sweep initialization and interior constraint With sweep, interior, and gravity prior

Figure 5.3: Qualitative, ablative comparison of scene reconstruction results for the Tower of London

under the proposed implementation at a voxel resolution of 1m.
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Figure 5.4: Reconstruction of Buckingham Palace.
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Figure 5.5: Reconstruction of the Castel Sant’Angelo in Rome.
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Figure 5.6: Reconstruction of the Notre Dame Cathedral in Paris.
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Figure 5.7: Reconstruction of the Old Town Square in Prague.
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Figure 5.8: Reconstruction of the Piazza San Marco in Venice.
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Figure 5.9: Reconstruction of the Sacré Cœur Basilica in Paris.

104



Figure 5.10: Reconstruction of the Tower of London.
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Figure 5.11: Additional views of the reconstruction of the Tower of London.

106



CHAPTER 6: CONCLUSION AND FUTURE WORK

This dissertation presented a variety of solutions for extending 3D scene reconstruction beyond

the gold-standard capabilities of Structure-from-Motion (SfM) and Multi-view Stereo (MVS),

each tailored to a specific scenario. Chapter 3 addressed the problem of 3D reconstruction from

endoscopic video. In this setting, SfM can generally provide sparse surface structure, but the

lack of surface texture as well as complex, changing illumination conditions often causes MVS

to produce incomplete or erroneous surfaces. To overcome these difficulties in dense surface

reconstruction, I introduced a Shape-from-Motion-and-Shading (SfMS) method that utilizes an

SfM-guided approach to Shape-from-Shading (SfS). In this context, SfM is used both to guide

surface reflectance estimation and to regularize the SfS equation. I also introduced a 1D bidirectional

reflectance distribution function to better model the illumination conditions of the endoscope, and I

proposed a solution to account for light interreflections off the surface, which otherwise violate the

1D BRDF model.

In Chapter 4, I introduced an approach for augmenting 3D reconstructions from large-scale

Internet photo-collections by recovering the 3D position of transient objects — specifically, people

— in the input imagery. Since no two images can be assumed to capture the same person standing in

the same location from two different angles, the typical triangulation constraints enjoyed by SfM

and MVS cannot be directly leveraged to perform this reconstruction. I introduced an alternative

method that leverages approximate semantic triangulation of objects of the same class type (in this

case, pedestrians). The method is aided by constraints on the height distribution of people, as well

as visibility and freespace constraints provided by the static reconstruction of the scene obtained via

SfM. As a part of this reconstruction process, my approach additionally recovers the scale of the

scene, its gravity direction, and an estimate for the ground surface normals for the point at which
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each individual stands. Recovering scene scale is an especially important result in this process, as it

cannot be other automatically obtained using SfM.

Finally, I introduced in Chapter 5 the concept of using crowd-sourced imagery to create living

3D reconstructions — visualizations of real places that include dynamic representations of transient

objects like pedestrians. This idea seeks to enhance 3D reconstructions such that they better resemble

the place captured in the input imagery. As part of my approach for creating this visualization, a

key difficulty to overcome is that ground surfaces are often poorly reconstructed using a typical

SfM+MVS pipeline for Internet images. I leverage the 3D ground points obtained by the method in

Chapter 4, along with the estimated scene scale, and introduced a tailored volumetric reconstruction

approach that convincingly reconstructs ground surfaces in the scene. Crowd simulation (Curtis

et al., 2016) is then employed to add virtual pedestrians to the space, who move between waypoints

along the “walkable” surfaces of the scene.

6.1 Future Directions

There are a number of possible directions for future work on the topics presented in this thesis.

I address a few ideas for extensions in the following subsections.

6.1.1 Extensions to Shading-based Endoscopic Reconstruction

The SfMS approach introduced in Chapter 3 provides a workable solution for joining SfM

and SfS for endoscopic scenarios. However, the approach perhaps does not utilize multi-view

information to its full potential. For one immediate example, the BRDF estimation process could

actually be applied to all images simultaneously, rather than each image independently. This would

provide many more SfM point observations to improve the result and make the reflectance more

consistent on a frame-by-frame basis. A more elegant interreflection function is also highly desirable

— the polynomial approximation I presented here really only demonstrates that such modeling is

necessary. Due to changes in lighting over the course of the video, it is likely not possible to apply a

single interreflection model to all frames simultaneously, but temporal constraints in adjacent video

108



frames could potentially be utilized. An approach that learns to generate interreflections, like the

method of Li et al. (2018), is also compelling, since it could be used to abstract the complex models

of reflectance, lighting, and shape estimation. A key open question with deep-learning-based

approaches, however, is whether they can be truly generalized to the medical domain without

requiring a large amount of high-quality real-world training data, which can be difficult to obtain

and whose modalities may not offer complete supervision for the target application. Synthetic

datasets offer an alternative path forward for large-scale network training; however, it is difficult

to guarantee that synthetic imagery will have sufficient realism and diversity to allow the trained

network to be successfully applied to real-world data.

Setting aside these potential challenges in obtaining training data, there are a number of

intriguing avenues for further learning-based extensions. For instance, while it may be difficult to

train a network to output monocular depth for each frame, it might be possible to learn to regress a

surface normal, and perhaps a confidence in this prediction, at each pixel. This estimation would

much better constrain the BRDF estimation of the method, since it would not rely on an existing

surface to produce the per-point normal estimates.

In another direction, neural networks could potentially be used to replace the Lax-Friedrichs

solution scheme for SfS, which introduces dissipative terms to maintain stability and, in the proposed

implementation, only works by decreasing estimated depth values. Instead, it is theoretically possible

to train a neural network to learn to perform this optimization automatically and to internally store

an understanding of shape priors, analogous to the approach of Cherabier et al. (2018). The network

could be trained either to generate updates for (log-)depth values given a current BRDF-prediction-

versus-intensity error map, or it could alternatively completely optimize the solution given only a

BRDF, an input image, and an initial surface, including depth values for SfM points. The network

might be trained using synthetic renderings of objects; however, it is again unclear whether the

approach would easily generalize to medical imagery if the network requires a color image as input.

Another extension of this method, still using a deep-learning approach, could be to perform

monocular depth prediction guided by sparse SfM points, e.g., taking as input the color image and
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an associated sparse depthmap. The sparse constraints here would provide a signal for depth that

neural networks could effectively use for depth disambiguation. This approach could provide an

effective means for reconstructing weakly textured surfaces, such as uniformly colored walls. The

approach could also be extended to include rendering-based refinement, similar to Li et al. (2018).

Returning to extensions of the method for endoscopy, one obvious target is to employ non-rigid

SfM to improve the length and reliability of the reconstruction. This is a notoriously difficult

task for endoscopic imagery (Münzer et al., 2018), but recent advances in dense non-rigid surface

reconstruction (Innmann et al., 2019) might offer some paths forward if combined with shading

constraints. It may also be possible to integrate multi-view constraints as part of the SfS algorithm,

itself, to better leverage photometric consistency in a manner similar to Wu et al. (2010).

6.1.2 Extensions to 3D Reconstruction of Transient Objects and Living 3D Reconstructions

There are a number of exciting future directions for extending the work presented in Chapters 4

and 5. In particular, I am intrigued by the prospect of improving the immersion of virtual people

into the scene: Instead of simply walking from waypoint to waypoint, can virtual pedestrians be

rendered to interact with their environment in a convincing way? For example, if we detect a bench

in the input imagery and place a model of it into the scene, pedestrians could be animated to go

to the bench, sit, and perform some action, perhaps talking on the phone, eating a meal, or simply

contemplating the world around them. The same sort of idea could be extended to doors (with

animation of them opening and closing). Even more compelling is the idea that scene understanding

is possible given the enhanced context of where people exist within the space. Given that SfM

provides us with the location of registered images, it is already straightforward to answer the

question, “Where is a good place to take a picture?” However, understanding where people exist in

the scene and recognizing their actions potentially allows us to ask advanced questions, for example,

“Where is a good spot to have a picnic?” or “Where is the line to enter the museum?” In the first

scenario, we can detect people in the input imagery who are sitting in a grassy area and use this to

answer the user’s question without external input. In the second scenario, we can detect lines of
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people in the input images and use this in conjunction with maps of the scene to infer the likely

location for the line to start.

Other fun examples emerge if object classes are modeled, in addition to people. For example,

if we reconstruct canines, we could ask the question, “Where in the park am I likely to find the

most dogs?” The scene could also be animated to include animals in a convincing way, for example

having a person playing fetch with their dog in the same park, or birds eating breadcrumbs in front

of a cafe. Other semantic classes that could be modeled include cars and bicyclists.

There are a number of reconstruction challenges that could be addressed in order to obtain more

“true-to-life” scene representations. For example, small and/or thin objects like railings are often

missed by my current implementation. Such objects are often difficult to reconstruct initially, during

MVS. It may be best to separately model these objects and add them as details in the reconstruction,

rather than try and directly model them in the voxelized space. Improving the texturing of the

reconstruction is another open problem. In my implementation, I simply used per-face coloring to

portray a rough visualization of the scene. In practice, texturing methods like that of Waechter et al.

(2014) produce quite nice and highly realistic results for certain scene elements, but significant

artifacts and poorly textured surfaces still frequently occur, especially for ground surfaces. Texturing

from aerial imagery is one solution, except for parts of the scene that are not visible from above.

Synthetic texture generation is another possibility; one interesting approach might be to train a

neural network to generate realistic ground textures for ground-level imagery given a training set

that contains registered aerial views.

Another research direction involves obtaining photorealistic ground-level visualizations. Can I

look at a 3D reconstruction of a far-away place in, say, VR and feel like I am actually there? In

this aspect, the “raw” 3D models obtained via 3D reconstruction often lack sufficient completeness

and detail, and it is difficult to remove artifacts from the reconstruction output completely. Even

as the corner cases of 3D reconstruction continue to be solved, it may be impractical to expect

that a convincing 3D ground-level visualization can be obtained for general scenes and diverse

image collections solely by rendering reconstructed 3D meshes. However, given the recent success
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of deep learning approaches for reconstruction-driven image-based rendering (IBR) in controlled

imagery (for example, Hedman et al. (2018)), it may be possible to apply similar principles to

general Internet-based 3D reconstructions. One key difficulty here is that the input imagery must

be normalized to have a consistent appearance for view blending; however, recent advances in

neural rendering (Meshry et al., 2019) show much promise in realizing such an approach. Dynamic

neural rendering is another very interesting idea in this space: Given that we can now render virtual

pedestrians into the scene, could we add them to an IBR visualization and re-render them to appear

lifelike? The possibilities for the future have only just begun.
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APPENDIX A: DERIVATION OF ARTIFICIAL VISCOSITY VALUES IN SFS PDE

SOLUTION

Eq. (3.23) outlined an approach for computing acceptable values of σx
i,j and σy

i,j in the Lax-

Friedrichs Hamiltonian for use in Shape-from-Shading. The proposed value for σx
i,j (and similarly

for σy
i,j) is

σ̃x
i,j = max

cos(θ)∈(0,Tx
i,j ]

∣
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(A.1)

σ̃y
i,j = max
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, (A.2)

where T x
i,j is the largest possible value of n̂ (xi, yj) · l̂ (xi, yj) = cos(θ) given p+i,j and p−i,j , for any

value of q, and similarly for T y
i,j .

The value of T x
i,j is relatively straightforward to compute. Recall from Eqs. (3.7) and (3.8) that

cos(θ) can be expressed as a function of x = xi, y = yj , p = vx, and q = vy:

cos(θ) =
1

√

(x2 + y2 + 1) (p2 + q2 + (xp+ yq + 1)2)
, (A.3)

and therefore

∂ cos(θ)

∂q
= − q + x(xp+ yq + 1)

√

(x2 + y2 + 1) (p2 + q2 + (xp+ yq + 1)2)3
. (A.4)

Since cos(θ) is maximized w.r.t q when
∂ cos(θ)

∂q
= 0 (note that it is minimized only in the limit,

as |q| approaches infinity), we can set the numerator in the above equation to zero and arrive at

q̂ = −y(xp+1)
y2+1

. Plugging this into the equation for cos(θ), it follows that

T x
i,j = max

p∈{p+i,j ,p
−
i,j}

√

y2 + 1

(x2 + y2 + 1) (p2 (x2 + y2 + 1) + 2xp+ 1)
, (A.5)

and for the y case (where p̂ = −x(yq+1)
x2+1

):

T y
i,j = max

q∈{q+i,j ,q
−
i,j}

√

x2 + 1

(x2 + y2 + 1) (q2 (x2 + y2 + 1) + 2yq + 1)
. (A.6)
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Since the second maximum in both Eq. (A.1) and Eq. (A.2) is taken without bounds on p and q,

the value of this maximum can be computed at any position (x = xi, y = yj). Considering σy
i,j first,

we can find the extrema of
∂ cos(θ)

∂p
by evaluating ∂

∂p
∂ cos(θ)

∂p

!
= 0 and ∂

∂q
∂ cos(θ)

∂p

!
= 0. Setting these to

equality and solving for q, it works out that the value for q that minimizes and/or maximizes
∂ cos(θ)

∂p

is given simply as

q̂ = − y

x2 + y2 + 1
. (A.7)

Evaluating ∂
∂p

∂ cos(θ)
∂p

!
= 0 at this value of q, we find two possible values of p:

p̂ =
−2x5 − 2x3(y2 + 2)− 2x(y2 + 1)±

√

2(x2 + 1)(x2 + y2 + 1)3

2 (x2 + 1) (x2 + y2 + 1)2
. (A.8)

It turns out that, for any value of (x, y), ∂ cos(θ)
∂p

is maximized if the plus is taken and minimized

if the minus is taken. Moreover, |∂ cos(θ)
∂p

| is maximized at (p̂, q̂) regardless of whether the plus or

minus is taken.

The derivation is similar for σy
i,j . Specifically, |∂ cos(θ)

∂q
| is maximized by

p̂ = − x

x2 + y2 + 1
(A.9)

q̂ =
−2y5 − 2y3(x2 + 2)− 2y(x2 + 1)±

√

2(y2 + 1)(x2 + y2 + 1)3

2 (y2 + 1) (x2 + y2 + 1)2
. (A.10)
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