
ALGORITHM DEVELOPMENT AND VLSI IMPLEMENTATION OF ENERGY

EFFICIENT DECODERS OF POLAR CODES

A Dissertation

by

JINGWEI XU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Seong G. Choi
Committee Members, Eun Kim

Peng Li
Narayanan Krishna

Head of Department, Miroslav M. Begovic

May 2016

Major Subject: Computer Engineering

Copyright 2016 Jingwei Xu

ABSTRACT

With its low error-floor performance, polar codes attract significant attention as

the potential standard error correction code (ECC) for future communication and

data storage. However, the VLSI implementation complexity of polar codes de-

coders is largely influenced by its nature of in-series decoding. This dissertation is

dedicated to presenting optimal decoder architectures for polar codes. This disser-

tation addresses several structural properties of polar codes and key properties of

decoding algorithms that are not dealt with in the prior researches. The underlying

concept of the proposed architectures is a paradigm that simplifies and schedules the

computations such that hardware is simplified, latency is minimized and bandwidth

is maximized.

In pursuit of the above, throughput centric successive cancellation (TCSC) and

overlapping path list successive cancellation (OPLSC) VLSI architectures and ex-

press journey BP (XJBP) decoders for the polar codes are presented.

An arbitrary polar code can be decomposed by a set of shorter polar codes with

special characteristics, those shorter polar codes are referred to as constituent polar

codes. By exploiting the homogeneousness between decoding processes of differ-

ent constituent polar codes, TCSC reduces the decoding latency of the SC decoder

by 60% for codes with length n = 1024. The error correction performance of SC

decoding is inferior to that of list successive cancellation decoding. The LSC de-

coding algorithm delivers the most reliable decoding results; however, it consumes

most hardware resources and decoding cycles. Instead of using multiple instances

of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC

architecture. The computations of each path in the LSC are arranged to occupy

ii

the decoder hardware stages serially in a streamlined fashion. This yields a signif-

icant reduction of hardware complexity. The OPLSC decoder has achieved about

1.4 times hardware efficiency improvement compared with traditional LSC decoders.

The hardware efficient VLSI architectures for TCSC and OPLSC polar codes de-

coders are also introduced.

Decoders based on SC or LSC algorithms suffer from high latency and limited

throughput due to their serial decoding natures. An alternative approach to decode

the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph

is set up to guide the beliefs propagated and refined, which is usually referred to as

factor graph. BP decoding algorithm allows decoding in parallel to achieve much

higher throughput. XJBP decoder facilitates belief propagation by utilizing the spe-

cific constituent codes that exist in the conventional factor graph, which results in

an express journey (XJ) decoder. Compared with the conventional BP decoding

algorithm for polar codes, the proposed decoder reduces the computational com-

plexity by about 40.6%. This enables an energy-efficient hardware implementation.

To further explore the hardware consumption of the proposed XJBP decoder, the

computations scheduling is modeled and analyzed in this dissertation. With discus-

sions on different hardware scenarios, the optimal scheduling plans are developed. A

novel memory-distributed micro-architecture of the XJBP decoder is proposed and

analyzed to solve the potential memory access problems of the proposed scheduling

strategy. The register-transfer level (RTL) models of the XJBP decoder are set up

for comparisons with other state-of-the-art BP decoders. The results show that the

power efficiency of BP decoders is improved by about 3 times.

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor, Dr. Gwan Choi, for his finan-

cial support and encouragement for my research. He supported me in all the difficult

situations where I needed help. I would like to thank Dr. Krishna Narayanan, Dr.

Peng Li and Dr. Eun Kim for their time in serving in my committee. I appreciate

Dr. Narayanan’s introduction and suggestions on polar codes, which made me focus

exclusively on polar codes decoders though initially I set out to work on conglom-

eration of different topics. Dr. Peng Li has been very helpful and he gave me a lot

of guidance not only on academic study but also on my career path. In addition, he

did provide me with many opportunities to review peers’ works, which broadened

my horizons and inspired me to think problems in different aspects. I would also like

to thank Dr. Eun Kim. Through her excellent and impressive teaching skills, I was

enlightened on the ideas and concepts of modern computer architectures which are

of the great significance to the fundamental of my research works.

Several other students and people at Texas A&M helped me in my research work.

Thanks to Ehsan Rohani for his guidance on standard communication protocols to

develop practical hardware architectures. Thanks to Mehnaz Rahman on her working

on the Matlab simulation for my architecture on the compressive sensing receiver for

MIMO-OFDM cognitive radio. Special thanks to Tiben Che, in particular, for his

working on the verification of some of the HDL modules for my architecture on belief

propagation decoder. In addition, Tiben spent several weeks with me in working on

the paper writing. Thanks to Honghuang Lin, Jimmy Jin, for their helping and

guiding me to set up efficient simulation programs by their expertise and carefulness

on programming. I would like to thank Mr. Qian Wang for his guidance on the

iv

exploration of hardware architectures.

My lovely wife, Lei, has supported me in much more ways than meets the eye.

She did a difficult task of pursuing her Ph.D. degree at Texas A&M University, while

taking care of different things at home. Last but not least, I would like to thank my

parents for their constant support and encouragement through every major decision

in my life.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES . xiii

1. INTRODUCTION . 1

1.1 Motivation . 1
1.2 Problem Overview . 3
1.3 Main Contributions . 5
1.4 Other Works . 7
1.5 Outline of this Dissertation . 7

2. POLAR CODES AND DECODING . 9

2.1 Polar Encoder . 9
2.2 Channel Polarization . 10
2.3 Successive Cancellation Decoding . 12
2.4 List Successive Cancellation Decoding 14
2.5 Belief Propagation Decoding . 15

3. CONSTITUENT CODE PROPERTIES OF POLAR CODES 19

3.1 All-frozen N 0 Codes and All-information N 1 Codes 19
3.2 Single Parity Check N SPC Codes . 20
3.3 Repetition NREP Codes . 21

4. VLSI ARCHITECTURE FOR POLAR CODES DECODERS 23

4.1 Belief Propagation . 23
4.1.1 Array Architecture . 24
4.1.2 Line Architecture . 25

4.2 Successive Cancellation . 26

vi

4.3 List Successive Cancellation . 28

5. THROUGHPUT CENTRIC SUCCESSIVE CANCELLATION DECODER 30

5.1 Fast SC Decoder . 31
5.2 VLSI Architecture . 33
5.3 Dataflow, Latency and Flexibility Analysis 34
5.4 Unified Computational Unit . 36
5.5 Hardware Performance . 38

5.5.1 Fixed Point Analysis . 38
5.5.2 Hardware Comparison with Other State-of-the-art SC Decoders 39

6. OVERLAPPING-PATH LIST SUCCESSIVE CANCELLATION DECODER 44

6.1 VLSI Architecture . 44
6.2 Path-Overlapping Scheme . 45

6.2.1 Latency Reduction via Multi-Decision List SC Decoding . . . 49
6.2.2 Latency Reduction via Path-LLR-Compute-Ahead Scheme . . 50
6.2.3 Latency Reduction via Adaptive LSC Decoding 51

6.3 Performance and Analysis . 51
6.4 Summary . 53

7. EXPRESS JOURNEY BELIEF PROPAGATION DECODER 54

7.1 Algorithm Simplification . 54
7.1.1 All-frozen N 0 Codes . 54
7.1.2 All-information N 1 Codes . 55
7.1.3 Repetition NREP Codes . 56
7.1.4 Single Parity Check N SPC Codes 58

7.2 Early Termination . 60
7.3 VLSI Architecture and Resource Assignments 61
7.4 XJBP Scheduling . 63

7.4.1 Round-trip Scheduling . 63
7.4.2 Dependency . 67
7.4.3 Scheduling Without Priority 70
7.4.4 Scheduling With Priority . 71

7.5 Memory Access . 78
7.6 Results and Discussion . 84

7.6.1 Complexity Estimation and Analysis 84
7.6.2 Fixed-point Analysis . 88
7.6.3 Synthesis Results and Discussion 89

8. OTHER WORKS . 96

vii

8.1 Asynchronous Design for Precision-Scaleable LDPC Decoder 96
8.1.1 Proposed System . 98
8.1.2 Implementation of the Proposed System 101
8.1.3 Simulations and Analysis . 105

8.2 Reconstruction of Compressive Sensing 108
8.2.1 Compressive Sensing Model 109
8.2.2 Reconstruction Algorithm . 110
8.2.3 Modification on IHT . 111
8.2.4 Implementation of Proposed Algorithm 114
8.2.5 Simulations and Analysis . 117

8.3 Compressive Sensing on MIMO-OFDM Cognitive Radio 119
8.3.1 Proposed System . 119
8.3.2 Sparse Signal Model . 122
8.3.3 Reconstruction . 126
8.3.4 Setup and Simulation . 128

8.4 Summary . 132

9. SUMMARY . 134

9.1 Contributions . 134
9.2 Future Work . 135

REFERENCES . 137

viii

LIST OF FIGURES

FIGURE Page

1.1 Block diagram of communication systems 2

2.1 Channel polarization example of 2 B-DMC channels 11

2.2 Recursive construction of n channel polarization 13

2.3 Successive cancellation path on decoding tree 14

2.4 List successive cancellation decoding paths on decoding tree 15

2.5 Conventional BP factor graph of N = 8 polar codes 16

2.6 Processing element of conventional BP algorithm 17

3.1 An example of NREP codes and N SPC codes. 20

4.1 The architecture for an array based BP decoder for a n = 8, rate = 0.5
polar code . 24

4.2 The scheduling for an array based BP decoder for a n = 8, rate = 0.5
polar code . 25

4.3 The folding scheduling technique for a line based BP decoder for a
n = 8, rate = 0.5 polar code . 26

4.4 The architecture for a line based BP decoder for a n = 8, rate = 0.5
polar code . 27

5.1 Tree presentation of SC decoding processes for a (8, 4) polar code. . . 30

5.2 (a) An example of N 0 and N 1 codes in a (8, 4) polar code tree, and
(b) an example of NREP and N SPC in a (8, 4) polar code tree. 33

5.3 Overview architecture of TCSC decoder for a (8, 4) polar code. 41

5.4 The design details of PU in TCSC decoder. 42

5.5 The design details of PU0 in TCSC decoder. 42

ix

5.6 Effect of quantization on the BER/FER performance of a (1024, 512)
polar code. 43

5.7 The trend of latency reductions on code rates. 43

6.1 The overall architecture of overlapping-path list successive cancella-
tion decoder. 45

6.2 Decoding schedule of the path-overlapping scheme for 2 lists (a) and
4 lists (b). 46

6.3 The total latency overhead versus the polar codes rates. 49

6.4 Decoding schedule of OPLSC. 50

6.5 The improvement of energy efficiency of OPLSC. 52

7.1 An example of N 0 codes in shadow and N 1 codes in gray. 55

7.2 An example of NREP codes in shadow and N SPC codes in gray. . . . 56

7.3 The simplified factor graph for the example of NREP and N SPC codes. 57

7.4 An overview of XJBP decoder. 61

7.5 (a) Structure of array of processing elements. (b) Array of adders to
decoder repetition codes. (c) Array of comparators to decoder SPC
codes. 63

7.6 The computation scheduling and dependency for round trip BP of a
n = 8, r = 0.5 polar code. 64

7.7 The computation scheduling and dependency for round trip XJBP of
a n = 8, r = 0.5 polar code. 65

7.8 The comparison between roundtrip scheduling and conventional schedul-
ing in terms of efficiency (number of iterations) (a) and performance
(Frame error rate) (b). 66

7.9 The dependency for belief propagation of a n = 128, r = 0.5 polar code. 68

7.10 The dependency for an iteration of BP decoding of a n = 128, r = 0.5
polar code. 69

7.11 An example of ASAP scheduling for XJBP decoding of a n = 128, r =
0.5 polar code. 71

x

7.12 An example of preemptive scheduling with priority for XJBP decoding
of a n = 128, r = 0.5 polar code. 73

7.13 An example of non preemptive scheduling with priority for XJBP de-
coding of a n = 128, r = 0.5 polar code. 76

7.14 An example of memory accesses for XJBP decoding of a n = 128, r =
0.5 polar code. 78

7.15 The comparison between shared memory micro-architecture (a) and
distributed memory micro-architecture (b). 79

7.16 Implementation of a conventional processing element of XJBP decoder. 80

7.17 The implementation details of REP processor(a) and SPC processor
(b). 82

7.18 The implementation details of non-preemptive REP processor(a) and
SPC processor(b). 83

7.19 Average numbers of computations consumed to decode each codeword
of by the proposed BP decoding algorithm for (1024, 512) polar code
with rate = 0.5. 87

7.20 Quantized error correction performance of XJBP. 88

8.1 The overview system flow proposed LDPC decoder. 99

8.2 Generic LDPC decoding data flow graph. 100

8.3 Asynchronous circuits data path model. 101

8.4 Asynchronous precision-salable VNU design. 102

8.5 Asynchronous precision-salable CNU design 103

8.6 Proposed asynchronous comparator 104

8.7 Units delays for different bits of precision 106

8.8 Voltage scaling to align processing latency 107

8.9 Normalized power reduction compared with fixed precision LDPC de-
coder . 108

xi

8.10 Comparison between modified IHT with t0 = 0.82 and original IHT
at 25% Nyquist sampling rate . 113

8.11 Parallel architecture for compressive sensing reconstruction 114

8.12 Successful recovery rate with different threshold function coefficient t0
at 20 iterations . 116

8.13 SRNR with different threshold function coefficient t0 117

8.14 Structures of conventional (a) and proposed (b) MIMO-OFDM trans-
mission system. 120

8.15 Successful reconstruction rate at 15 dB SNR 129

8.16 Detection performance of the proposed system at 4× 4 MIMO 130

8.17 Detection performance of different MIMO scales at 15 dB SNR 131

8.18 The performances comparisons with conventional MIMO detection . . 132

xii

LIST OF TABLES

TABLE Page

5.1 Truth table of PTU . 36

5.2 Hardware comparison of different (n, k) SC decoder with q-bit quan-
tization for inner LLRs using tree architecture 38

5.3 Synthesis result for (1024, 870) and (1024, 512) polar codes 39

7.1 Number of all constituent codes with different sizes in a (1024, 512)
polar code with rate of 0.5 . 59

7.2 This is a comparison of number of iterations in different BP decoders 65

7.3 Decoding delays of XJBP with different code sizes 75

7.4 Number of computations of XJ-BP algorithm with all polar codes at
rate = 0.5 . 86

7.5 Computations of XJ-BP algorithm in each iteration at different code
rates . 86

7.6 This is a logic consumption table for XJBP 89

7.7 This is a memory consumption table for XJBP 90

7.8 This is a total hardware consumption table for XJBP 91

7.9 This is a hardware comparison table between XJBP and other state-
of-the-art BP decoders . 93

7.10 Hardware consumption comparisons among SC and BP decoders . . . 95

8.1 SRNR with different numbers of iterations 117

8.2 CS reconstruction design power consumption 118

xiii

1. INTRODUCTION

This introduction describes the demands of advanced error correction coding tech-

niques for evolving communications and storage systems. With the introduction of

the advantages of polar codes over other existing error correction codes, the main

contributions of this dissertation is presented. Through the similar hardware develop-

ment methodology, other contributions made for problems within same mathematical

problem scope for advanced communication and storage system are also listed in this

dissertation. The outlines of this dissertation is given in the end of this chapter to

guide readers follow this dissertation.

1.1 Motivation

The communications markets are continuously facilitated by the diverse and in-

creasing demands of acquiring data and sharing information. With the enormous

amount of data swapped, the communication technology is undergoing tremendous

rapid escalation from hundred kilobits per second 3G to gigabit per second 5G of

mobile telecommunication, from multi-megabits per second to multi-gigabits per

second of Ethernet communication, from multi-megabyte portable MP3 player to

multi-gigabyte mobile smart phone. The progress and evolution on communication

are primarily driven by the discoveries on information theory and advances on the

integrated circuits.

Figure 1.1 shows a simplified block diagram of a digital communication system

[1]. First, the source data of information such as voice, video is sampled and encoded

through the source encoder, so as to be compressed to remove any unnecessary redun-

dancy in the data. Then channel encoder codes the redundancy removed sequences

so that it can recover the correct information after passing through the channel. The

1

Source
Encoder

Channel
Encoder

Channel

Information
Source

Source
DecoderDestination Channel

Decoder

Figure 1.1: Block diagram of communication systems

coded bit sequences of data are transmitted through the channel to receiver. The

mediums of channels could be varied as copper (wired communication), air (wireless

communication), water (underwater communication), flash memory and so on.

There are two important topics in the communication. They are the source coding

and channel coding for efficient compression as and the reliable transmission of the

data respectively.

The information is firstly fed through the source encoder or data compression

to remove unnecessary redundant data or compact and encapsulate data in smaller

sizes. If the data consists of bank records or personal details we cannot afford to lose

any information. In such cases, the compression is achieved by exploiting patterns in

the data. Before transmission over noisy mediums, the compressed data are coded

again by channel encoder, which is the second central topic of information theory.

To make communication reliable in the presence of noise, the common procedure

is to add redundancy to the data before transmission. The intended receiver only

has access to a noisy version of the data. However, if the redundancy is added in a

clever way, then it is possible to reconstruct the original data at the receiver. Adding

2

redundancy for reliable transmission is also referred as error correcting coding (ECC).

Coding is a central part of any communication systems; e.g., consider wired phones,

mobile phones, or the Internet. Coding is also used for storage on CDs and flash

memories to prevent data loss due to scratches or errors during the reading process.

Since the Shannon’s work on 1948 [2], research on ECC has developed for several

decades. Error correcting codes such as convolutional [3], Turbo [4] and LDPC [5]

are typical error correcting codes widely used in protocols. Among them, Turbo [6]

and LDPC [7,8] are proven to be very close to Shannon limit.

Although great success has been achieved by existing near-capacity error cor-

rection codes, promoted by the continuously growing demand for reliable big data

storage and high-speed communication, the exploration on better correction codes

does never stop. In 2008, Polar codes [9] are found as error correcting codes which

provable achieve the capacity of symmetric binary-input discrete memoryless chan-

nels (B-DMCs).

1.2 Problem Overview

Polar codes proposed by Arikan [9] are not only first provably capacity achieving

codes for any B-DMCs, but also have low encoding and decoding complexity. With

its low error-floor performance [10] and high regularity in coding structure, polar

codes attract a significant attention from the coding theory community [11–28] and

have the potential to become a standard ECC for the future communication and

data storage systems.

However, the VLSI implementation complexity of polar codes decoder is largely

influenced by its nature of in-series decoding. There are three widely-considered ap-

proaches to decode polar codes. These are successive cancellation (SC), its variant

successive cancellation list (SCL) decoders and belief propagation (BP) algorithms.

3

The SC algorithm receives more attentions because of its low computational com-

plexity O(nlogn), where n is the code length. But, decoders based on SC algorithm

suffer from the high latency and limited throughput due to their serial decoding

natures. Recently several efforts have been taken into reducing the SC decoding

latency [29, 30]. Sarkis et al. utilized the constituent codes that exist in the polar

codes to significantly reduce the SC decoding latency by avoiding tree traversals [30].

Although the latency of SC algorithm is substantially improved, the time complexity

of it is still O(n). Thus with longer polar codes, SC algorithm is still limited in terms

of the throughput. However, polar codes with longer length are more attractive, be-

cause the performance of polar codes is superior to other codes at long codeword

lengths.

Although polar codes have inherent capacity-achieving property, with small and

medium code lengths, the error correction performances of polar codes are inferior

to Turbo codes and LDPC. [14] proposes SCL decoder, which is also inherent se-

rial decoding method similar as SC decoder. SCL improves the error correction

performance of polar codes, it requires more hardware resource to upgrade the per-

formance as well still suffers from the long latency which is intolerable for real-time

transmission.

Another approach to decode the polar codes is belief propagation-based (BP)

algorithm, which allows decoding in parallel to achieve much higher throughput in

dedicated hardware implementation. Due to its higher computational demand, com-

pared with SC algorithms, BP does not receive much attentions. The first attempt

at implementing BP on field programmable gate array (FPGA) is presented by Pa-

muk in [31], where the message passing functions are approximated by the min-sum

(MS) algorithm for efficient hardware design. However, the performance of BP de-

coding is degraded because of the approximations. Thus, Yuan et al. explored scaled

4

min-sum (SMS) approximation for message passing functions in [32] to remedy the

performance penalty. However, compared with MS algorithm, SMS incurs one ex-

tra scaling operations in each message passing. Yuan et al. further improved the

efficiency of SMS BP decoders using early termination in [33]. On the other hand,

by removing unnecessary computations for frozen bits in polar codes, Zhang et al.

reduce the complexity for sum-product (SP) BP decoding in [34] by around 25%

without decoding performance degradation.

1.3 Main Contributions

Motivated by the challenges mentioned above on polar codes decoders, a set of

methodologies are developed as the guidance to design a hardware-efficient polar

codes decoders for next-generation communication and storage systems. Optimiza-

tion on both algorithm and hardware levels are explored as the core methodology for

achieving the objective. In particular, the main contributions of this work are listed

in the following:

1. The simplifications on polar codes decoding algorithm which takes the advan-

tage of the existences of the constitute codes of polar codes.

2. The static scheduling computation paradigm by which the proposed advanced

belief propagation algorithm is used to reduce the computations, memory and

interconnect.

3. The hardware architecture is explored from bottom up to implement the sim-

plifications of polar code decoding algorithms and computation paradigms.. . .

This dissertation summarizes works on two types of hardware-efficiency polar

codes decoders based on SC, LSC decoding algorithm, that substantially reduce the

5

computational complexity over same type of state-of-the-art decoders. The disser-

tation will emphasize the work on algorithm development on the XJBP and the

micro-architecture exploration and implementation for the XJBP decoder.

From the view of algorithm, two novel approaches are devised to achieve the

improvements of XJBP decoding process. First approach is to utilize specific con-

stituent codes in the factor graph to reduce the decoding complexity. In this ap-

proach, the rules of the belief propagation in each iteration are simplified using the

characteristics of the constituent codes. Secondly, unlike conventional BP decoders

scheduling mentioned in [31], our approach uses an alternative scheduling method

stemming from ideas discussed by Park et al. at [35] and Guo et al. at [11]. In [35],

unidirectional scheduling method is employed to reduce memory allocation. In [11],

similar ideas are proposed to adapt decoding polar codes concatenated with parity

check codes. We describe and compare the two different scheduling methods in this

work to show that the alternative scheduling method that we adopt is significantly

better than the conventionally used one in terms of decoding efficiency.

We show that along with the novel scheduling method, the XJ-BP MS algorithm

yields the same decoding performance of the scaled-min-sum algorithm [32] with

92.8% reduced amount of computations. Compared with the traditional min-sum

based BP decoding [31], the proposed method does not only reduce the computations

by 90.4% but significantly improves the decoding performance.

As the effort to implement the XJBP decoder, a micro-architecture is presented

as the platform to accomplish belief propagation efficiently. Based on the architec-

ture, three different types of scheduling methods are presented in this dissertation to

assign computation tasks economically. Scheduling strategy is developed based on

different assumptions and scenarios of practical hardware environment. Correspond-

ing hardware modules for different scheduling algorithms are described in RTL model

6

to estimate the hardware consumption. By simulations and analysis on scheduling

algorithms and hardware results, the efficiency of different scheduling methods for

XJBP decoder is summarized and compared with other state-of-the-art BP decoders.

It is shown that with proper scheduling strategy, the proposed XJBP decoder could

improve the energy efficiency of BP decoder by 3X.

1.4 Other Works

Besides works on polar code decoders, other works on low density parity check

(LDPC) codes and compressive sensing for advanced communication and storage

systems, which inherently have the problem of similar mathematical model and de-

veloped in a similar methodology, are also presented in this dissertation.

Before the invention of polar codes, LDPC codes are widely used because of

its near-capacity error correction performance. Besides development of polar codes

decoders, effort is made on improving energy efficiency of LDPC decoders. For this

front, techniques of asynchronous circuits are employed to implement LDPC decoder.

Similar as error correction codes decoding, compressive sensing is another consis-

tent problem in the field of signal processing. Specifically, its reconstruction problem

is inherently connected with error correction decoding problem. Both problems are

seeking for solutions by given a projection over a matrix. Besides the effort on the

hardware setup on error correction decoder, a signal reconstructor is also developed

for compressed sensing reconstruction problem. Also a novel framework on applica-

tion of compressed sensing on MIMO-OFDM cognitive radio is proposed. Both the

works on compressed sensing are presented in this dissertation.

1.5 Outline of this Dissertation

The rest of this dissertation is organized as follows: Chapter 2 first introduces

the background of polar codes including its construction, principles and typical de-

7

coding algorithms. After introducing the constituent codes in Chapter 3 which is a

phenomenon existing in a polar code coding structure, Chapter 4 presents existing

typical polar codes decoder VLSI structures as reference works to compare with our

proposed decoders. Chapter 5, 6 and 7 illustrate our works on the developments on

three typical polar codes decoders respectively. After the summary of works devel-

oped on other relevant topics in Chapter 8, Chapter 9 summarizes my works on polar

codes decoders.

8

2. POLAR CODES AND DECODING

In this chapter, the backgrounds of polar codes are introduced by discussing their

construction and underlying concept to achieve the capacity of the B-DMC. Besides

the overview of polar codes in [9], the three mainly used decoders are also introduced

and discussed.

2.1 Polar Encoder

Polar codes are constructed by taking advantage of the polarization effect to

achieve the capacity of symmetric channel. Encoded recursively using the special

procedure as discovered in [9], the polar codes polarize the post-decoding reliability

of the information bits. An (n, k) polar code is constructed by assigning k information

bits and (n− k) ’0’s at more reliable positions and unreliable positions, respectively.

Those fixed ’0’ bits are usually referred as frozen bits. The n-bit message bits in-

cluding frozen bits and information bits are denoted as u in this paper. The n-bit

transmitted codeword x is the product of u and the generator matrix G

G = F⊕m,F =




1 0

1 1


 (2.1)

where F⊕m is the m-th Kronecker power of and m = log2 n.

We define the mutual information first before introducing more details of polar

codes.

Definition 2.1.1. The mutual information of a B-DMC with input alphabet X =

9

0, 1 is defined as:

I(W) , 1

2

∑

y∈Y

∑

x∈X
W (y|x) log

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

(2.2)

In the definition, W (y|x) denotes the probability of receiving y ∈ Y , given that

x ∈ X sent from the transmitter.

Note that the capacity of a symmetric B-DMC equals the mutual information

between the input and output of the channel with uniform distribution on the inputs.

I(W) is a measure of rate in a channel, a.k.a. reliable communication is possible over

a symmetric B-DMC at any rates up to I(W).

Definition 2.1.2. The Bhattacharyya parameter of a channel is defined as

Z(W) ,
∑

y∈Y

√
W (y|0)W (y|1) (2.3)

The Bhattaharyya parameter is a measure of the reliability of a channel since

Z(W) is an upper bound on the probability of maximum-likelihood (ML) decision

error for uncoded tranmission over channel W .

In the original paper, the encoding complexity is exponential in the block length.

To improve the efficency of the encoders of polar codes, construction methods [13,

18, 36] with linear complexity are proposed. In this thesis, we only focus on the

efficiency improvement of polar codes decoders. In the following, the polarization

phenomenon is introduced to discuss how the polar codes protect information bits.

2.2 Channel Polarization

Channel polarization is an operation that iteratively produces n channels from

n independent copies of a B-DMC channel such that n channels are polarized in

10

terms of their mutual information is either close to 0 (completely noisy channels) or

close to 1 (perfectly noiseless channels). As aforementioned, the mutual information

represents the reliability of the channel. Thus, the polarization process creates some

perfectly noiseless channels out of the identical independent B-DMC channels. The

number of noiseless channels is equal the rate the B-DMC channel. Figure 2.1 shows

an example case for 2 B-DMC channel polarization. As the figure shows, two separate

channels are combined to create a new vector channel of size 2.

W

W

u1

u2

x1

x2

y1

y2

Figure 2.1: Channel polarization example of 2 B-DMC channels

I(u1; y1, y2) is the mutual information of the channel between u1 and y1 y2.

Let W− denote the channel between them as W− : 0, 1 → Y2. Furthermore,

I(u2; y1, y2, u1) is the mutual information of the enhanced channel between u2 and

the output given that u1 is known. Let W+ denote this enhanced channel. The

transition probabilities of these two channel can be written as

W−(y1, y2|u1) =
1

2

∑

u2∈0,1

W (y1|u1 ⊕ u2)W (y2|u2) (2.4)

W+(y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2) (2.5)

11

The above two equations mean that the combined channel is split into two chan-

nels W+ and W−. And two created channels are satisified the following properties[9].

I(W+) + I(W−) = 2I(W) (2.6)

Z(W−) ≤ 2Z(W)− Z(W)2 (2.7)

Z(W+) = Z(W)2 (2.8)

Through the properties, we can see that I(W+) and I(W−) are polarized to the

extremes 0 and 1.

In a similar way, the polarization could be further extended to more channels.

For n created channels from recursively applying operations 2.42.5, the reliability of

n channels are polarized to the extremes.

In transmitting a binary message block of k bits, the k most reliable polarized

channels W (i) are used to transmit k information bits. The indexes of the channels

are denoted as i ∈ I. The remaining channels are used to send a fixed binary sequence

called frozen bits, which are usually are zeros. In set of indexed where frozen bits

are transmitted are indicated as F.

2.3 Successive Cancellation Decoding

One way to decode polar codes is to apply successive cancellation to estimate

ûi using the channel output y1, y2, ..., yn, denoted as yn1 , and previously estimated

u1, u2, ..., ui−1, denoted as ui−1
1 [9]. The determination on ûi could be represented as:

ûi =





0 i ∈ F

H(yn1 , û
i−1
1) i ∈ I

(2.9)

12

Wn/2

u1

u2

x1

x2

y1

y2

Wn/2…
un/2-1 xn/2-1

…

un/2 xn/2

un-1 xn-1

un xn

un/2+1

un/2+2

… …

xn/2+1

xn/2+2

yn/2-1

yn-1

yn

…
…

yn/2

yn/2+1

yn/2+2

Wn

Figure 2.2: Recursive construction of n channel polarization

where

H(yn1 , û
i−1
1) =





1 if
W (yn1 ,û

i−1
1 |1)

W (yn1 ,û
i−1
1 |0)

≥ 1

0 otherwise

(2.10)

This approach is naturally represented by a binary tree whose each node corre-

sponds to a decision for each transmitted information bit. For a polar code with

code length n, the code tree is a perfect binary tree with depth n + 1. The depth

for a node v is the length of the path from the root. The root has depth of 0. Each

level represents the estimation of one information bit transmitted. At each node,

the path is selected based on the probability of W (yn1 , û
i−1
1 |ûi). Figure 2.3 shows the

13

decoding tree for a example of n = 4 polar code. As the figure shows, the first bit is

decoded only depending the channel outputs yn1 , while the following bits depend on

not only the channel outputs but also the previous decoded bits.

1

1

1

1 1 1 1 1 1 1 1

1 1 1

0

0 01

0 0 0 0

0 0 0 0 0 0 0 0

u4
^

u2
^

u3^

u1
^

Selected Path

Figure 2.3: Successive cancellation path on decoding tree

2.4 List Successive Cancellation Decoding

The SC decoding algorithm of polar codes could be regarded as a greedy algorithm

to estimate the transmitted binary sequences. Between the two path candidates in

each level, the selection of path is based on the larger probability of W (y, ui−1
1 |ûi).

However, if any one of the previous decoded bits are not selected, the most a-posterior

probability (MAP) will be dismissed. The optimal path as the MAP estimation is

defined as:

ûni = argmax(W (yni |ûni)) (2.11)

In this case, if multiple paths are reserved in every layer, the decoding reliability will

be enhanced considerably. This fashion of SC decoding with multiple survival paths

are referred as LSC, which stands for list successive cancellation decoding [14].

14

1

1

1

1 1 1 1 1 1 1 1

1 1 1

0

0 01

0 0 0 0

0 0 0 0 0 0 0 0

u4
^

u2
^

u3^

u1
^

Figure 2.4: List successive cancellation decoding paths on decoding tree

Figure 2.4 shows the two decoding paths reserved by list successive cancellation

decoders while decoding through the decoding tree. The size of list in the figure is

two. However, the size of the list is variable depending on the reliability requirements

of the LSC decoder.

2.5 Belief Propagation Decoding

An alternative way to decode polar codes is based on factor graph representation

of the equation 2.1 as described by Arikan [37]. Belief propagation decoding is a

message passing algorithm that, through the factor graph, refines the estimations of

the codeword x or message u in iterations.

The factor graph of a polar code could be represented by the structure of its

encoder. An example of factor graph of a polar code withN = 8 is given in Figure 2.5.

As the figure shows, there are n stages in the factor graph, n = log2(N). The bits on

the most left column correspond to the message. In the figure, the black nodes and

white nodes in the left column are denoted as the frozen bits and the information

bits respectively. With recursive encoding by the 2-bit polarization unit through the

factor graph, the nodes on the most right column correspond to the codeword. There

15

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Figure 2.5: Conventional BP factor graph of N = 8 polar codes

are two messages passing through each node. The message propagated from right

to left through node (i, j) is designated by Li,j. The other message passed from the

other direction is referred as Ri,j. Those messages are presented in the log-likelihood

ratios (LLRs). Conventionally, those LLRs are updated through a series of check

node processing elements (PE) as shown in Figure 2.6. The computations to update

LLRs through iterations are written as follows:

Li,j = G(Li,j+1, Li+2j−1,j+1 +Ri+2j−1,j)

Li+2j−1,j = G(Ri,j, Li,j+1) + Li+2j−1,j+1

(2.12)

Ri,j+1 = G(Ri,j, Li+2j−1,j+1 +Ri+2j−1,j)

Ri+2j−1,j+1 = G(Ri,j, Li,j+1) +Ri+2j−1,j

(2.13)

where G(x, y) = ln ((1 + xy)/(x+ y)) is the propagation function to update mes-

16

(i, j)

(i+2(j-1), j) (i+2j, j+1)

(i, j+1)Li,j

Ri,j

Li,j+1

Ri,j+1

Li+2 ,j
(j-1)

Ri+2 ,j
(j-1)

Li+2 ,j+1
(j-1)

Ri+2 ,j+1
(j-1)

Figure 2.6: Processing element of conventional BP algorithm

sages[38]. In practice, the function G in Eq. (2.12) and (2.13) needs to be simplified

by min-sum approximating G(x, y) ≈ sign(x)sign(y)min(|x|, |y|) or scaled min-sum

approximating G(x, y) ≈ α · sign(x)sign(y)min(|x|, |y|), where α is the parameter

scaling the G function.

The messages Li,m+1 on the most right column are assigned by LLRs from the

channel outputs. The messages Ri,1 on the first left column are the pre-decoding

LLRs of û. Decoding starts by assigning∞ and 0 to the frozen bits and information

bits correspondingly. Those nodes on the most left column are also referred as

leaf nodes in this paper. The BP decoding is performed by operating processing

elements from left to right over and over to refine either Li,1 or Ri,m+1 to estimate

the transmitted message û or transmitted codeword x̂ by:

LLRû
i = Li,1 (2.14)

LLRx̂
i = Ri,m+1 + Li,m+1 (2.15)

where LLRû
i and LLRx̂

i are the log-likelihood ratios of the message u and the trans-

17

mitted codeword x, respectively. They are defined as:

LLRû
i = ln P (y|ui=0)

P (y|ui=1)
, LLRx̂

i = ln P (y|xi=0)
P (y|xi=1)

(2.16)

where P (y|x) represents the probability that y is received as x is given in the trans-

mitter.

18

3. CONSTITUENT CODE PROPERTIES OF POLAR CODES

As mentioned in Chapter 2, the polar codes are encoded recursively through

multiple coding stages. Thus, any polar code could be regarded as constituted by

two shorter polar codes. For example, in the Figure. 2.5, the polar code of bits

{(i, 4)|i = 1, 2, ..., 8} comprises the polar code of bits {(i, 3)|i = 1, 2, 3, 4} and the

polar code of {(i, 3)|i = 5, 6, 7, 8} with one more stage polarization. And the polar

code of bits {(i, 3)|i = 1, 2, 3, 4} and the polar code of {(i, 3)|i = 5, 6, 7, 8} further

consist of shorter polar codes.

Those shorter polar codes which exist in the composition of a polar code are

referred as the constituent codes. Some specific constituent codes are discovered

in [30] to reduce the latency of SC decoding of polar codes. In this chapter, the

constituent codes is briefly introduced. The exploitation of constituent codes is

discussed in details in following for simplifying SC BP decoding algorithms.

Here, I present four types of specific constituent codes: all-frozen codes, all-

information codes, single parity check codes and repetition codes. They are denoted

as N 0,N 1,N SPC and NREP respectively. Noticeably, all the constituent codes are

presented as the distribution of frozen and information bits. Although some through-

put improvement could be achieved via constituent codes, which do not alter the

location and properties of polar codes.

3.1 All-frozen N 0 Codes and All-information N 1 Codes

For any polar codes with rate of 0, the polar codes only contain frozen bits.

It means that the polar codes are not necessary to be decoded, since there is no

information bits in the polar codes. This type of polar codes are denoted as N 0

codes in this dissertation. Similarly, if a polar code consists of only information bits

19

without frozen bits, it is referred as all-information polar codes, denoted as N 1 codes.

3.2 Single Parity Check N SPC Codes

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Figure 3.1: An example of NREP codes and N SPC codes.

For those polar codes whose rate is (n − 1)/n and frozen bit is always the first

input bit, u0. Figure 3.1 shows an example of a (8, 4) polar code, where black nodes

in the figure represent the frozen bits. Through the figure, one can observe that the

polar constituent code of {(5, 3), (6, 3), (7, 3), (8, 3)} is a single parity check codes.

We denote the single parity check codes as N SPC codes in the context. For an N SPC

code, it satisfies that
n∑

i=1

xi (mod 2) = 0 (3.1)

20

where xi is the codewords of N SPC codes, i.e.

xn1 = Gun1 (3.2)

For a hard decision decoder, the decoded bits for N SPC codes could be represented

as:

x̂i =





ŷi⊕parity ifi = j

ŷi otherwise

(3.3)

where ŷi is the hard decision of received bits xi transmitted through the channel and

the parity is defined as:

parity =
n∑

i=1

ŷi (mod 2) = 0 (3.4)

For SC decoder, the specialized SPC decoders expedite the decoding process by

utilizing the property of above. Large N SPC codes are widespread in the relatively

long polar codes. As observed by [30], higher-rate polar codes result in more N SPC

constituent codes in the structure. Also longer N SPC codes are existing with the

larger size of polar codes. It makes the constituent codes more attractive and prac-

tical, since polar codes can only achieve capacity with considerable long size. [15]

shows that the throughput of successive cancellation decoders can be improved by

11− 14% by using constituent codes in decoding process.

3.3 Repetition NREP Codes

For those polar codes with rate of 1/n and the only information bit un transmitted

through the most reliable transformed channel, the codeword could be regarded as

21

a set of copies of the information bit un as:

xi = un, for 1 ≤ i ≤ n (3.5)

The type of those polar codes are referred as repetition codes with symbol NREP .

The hard decision for such type of polar codes is done by a majority voter of the

channel outputs. The only information bit is decoded as the 1 or 0 based on the

majority of detected bits of 1s and 0s.

22

4. VLSI ARCHITECTURE FOR POLAR CODES DECODERS

Besides the appealing theoretic benefits of polar codes, more and more effort have

been put on the exploration of the hardware implementation of polar codes decoders.

In this section, we will review all existing work on hardware architecture for polar

codes decoding.

4.1 Belief Propagation

One approach to decode the polar codes is belief propagation-based (BP) al-

gorithm, which allows decoding in parallel to achieve much higher throughput in

dedicated hardware implementation. Due to its higher computational demand, com-

pared with SC algorithms, BP does not receive much attentions. To date, only a few

works [10, 11, 31, 33, 35, 37] were reported on the theoretical analysis and hardware

implementation.

BP algorithms achieve much higher throughput by utilizing the parallelism in

the decoding process. However, compared with SC algorithm that only needs single-

direction message passing, the BP algorithm requires propagate LLRs through the

factor graph back and forth, which directly results in double consumption on memory.

BP algorithms demand multiple round iterations to refine the estimation to achieve

the decoding.

The first attempt at implementing BP on field programmable gate array (FPGA)

is presented by Pamuk in [31], where the message passing functions are approximated

by the min-sum (MS) algorithm for efficient hardware design. However, the perfor-

mance of BP decoding is degraded because of the approximations. Thus, Yuan et al.

explored scaled min-sum (SMS) approximation for message passing functions in [32]

to remedy the performance penalty. However, compared with MS algorithm, SMS

23

incurs one extra scaling operations in each message passing. Yuan et al. further

improved the efficiency of SMS BP decoders using early termination in [33]. On the

other hand, by removing unnecessary computations for frozen bits in polar codes,

Zhang et al. reduce the complexity for sum-product (SP) BP decoding in [34] by

around 25% without decoding performance degradation.

There are two common architectures for the BP decoding algorithm. They are

array-based architecture and line-based architecture. The basic principles of these

two architectures are discussed in following.

4.1.1 Array Architecture

(i, j)

(i+2(j-1), j) (i+2j, j+1)

(i, j+1)Li,j

Ri,j

Li,j+1

Ri,j+1

Li+2 ,j
(j-1)

Ri+2 ,j
(j-1)

Li+2 ,j+1
(j-1)

Ri+2 ,j+1
(j-1)

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Memory

Figure 4.1: The architecture for an array based BP decoder for a n = 8, rate = 0.5
polar code

First hardware structure to accomplish computations in BP decoding algorithm

24

is to directly implement the factor graph in the hardware. Computations in each

node are implemented in a single processing element, as shown in Figure 4.1. The

LLR from channels are input from right. Belief are updated through the PE networks

layer by layer.

Clock
Cycles

1

Stage1
Ri,1

Li,1

2 3 4 5

Ri,1

Li,1

6 7 8

Ri,1

Li,1

9

Stage2
Ri,2

Li,2

 Ri,2

Li,2

Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

Ri,3

Li,3

Clock
Cycles

1

Stage1
Ri,1

Li,1

2 3 4 5

Ri,1

Li,1

Ri,1

Li,1

6 7 8 9

Stage2
Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

 Ri,2

Li,2

Ri,3

Li,3

Ri,2

Li,2

Clock
Cycles

1

Stage1 Li,1

2 3 4 5 6

Stage2 Li,2

Stage3 Li,3

Ri,2

Ri,3

Ri,1

7

Li,1

8 9 10 11 12

Li,2

Li,3

Ri,2

Ri,3

Ri,1

Clock
Cycles 1

Stage1 Li,1

2 3 4

Stage2 Li,2

Stage3

Ri,2

Ri,1

5

Li,1

6 7 8

Li,2 Ri,2

Ri,1

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

Clock
Cycles 1

Stage1 C1

2

C2

3 4

Stage2

Stage3

C3 C4

R1

5

Li,1

6 7 8

Li,2 Ri,2

Ri,1

Attempt to access more
data than bandwidth

Attempt to access data
with different address

Figure 4.2: The scheduling for an array based BP decoder for a n = 8, rate = 0.5
polar code

However, the efficiency of this architecture is highly restricted by the data de-

pendencies. As aforementioned, the belief information has to be updated stage by

stage. As Figure 4.2 shows, hardware resources have to left in idle until the previous

stage computations finished.

Yuan et al. improved the efficiency of this structure by introducing the folding

scheduling technique [33], where the next iterations are designed to be triggered as

soon as possible, as shown in Figure 4.3.

4.1.2 Line Architecture

An alternative structure to implement the computations is the line-based archi-

tecture. In this architecture, only one stage of processing elements are implemented

in hardware.

25

Clock
Cycles

1

Stage1
Ri,1

Li,1

2 3 4 5

Ri,1

Li,1

6 7 8

Ri,1

Li,1

9

Stage2
Ri,2

Li,2

 Ri,2

Li,2

Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

Ri,3

Li,3

Clock
Cycles

1

Stage1
Ri,1

Li,1

2 3 4 5

Ri,1

Li,1

Ri,1

Li,1

6 7 8 9

Stage2
Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

 Ri,2

Li,2

Ri,3

Li,3

Ri,2

Li,2

Clock
Cycles

1

Stage1 Li,1

2 3 4 5 6

Stage2 Li,2

Stage3 Li,3

Ri,2

Ri,3

Ri,1

7

Li,1

8 9 10 11 12

Li,2

Li,3

Ri,2

Ri,3

Ri,1

Clock
Cycles 1

Stage1 Li,1

2 3 4

Stage2 Li,2

Stage3

Ri,2

Ri,1

5

Li,1

6 7 8

Li,2 Ri,2

Ri,1

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

Clock
Cycles 1

Stage1 C1

2

C2

3 4

Stage2

Stage3

C3 C4

R1

5

Li,1

6 7 8

Li,2 Ri,2

Ri,1

Attempt to access more
data than bandwidth

Attempt to access data
with different address

Figure 4.3: The folding scheduling technique for a line based BP decoder for a
n = 8, rate = 0.5 polar code

Figure 4.4 shows the structure of the line architecture of the BP decoder, where

processing elements of only one stage is synthesized. By doing this, the computations

efficiency is highly improved. The hardware are always kept busy during the decoding

process. However, additional hardware resources such as the interleaver, additional

memory are consumed to arrange the intermediate temporary data.

4.2 Successive Cancellation

Different with BP decoders, SC decoder is attractive for its low computational

complexity of O(NlogN), where N is the length of the code. Thus, many relevant

hardware designs are proposed [39–41].

However, algorithmically, SC decoder suffers from high latency. Typically, for

conventional SC decoder, its latency (2N2) increases linearly with respect to the code

length. This is a significant challenge since polar codes work well only at very long

code lengths. A lot of works have been done to reduce the latency of SC decoder from

both hardware and algorithm aspects. In [42], a pre-computation method is used to

reduce decoding latency from 2N2 to N1. In [29], three approaches, the dedicated

2-bit decoder for the last stage of SC decoding, overlapped-scheduling and lookahead

techniques are applied, which eventually results in a 3N/41 latency. In [15, 30], by

26

(i, j)

(i+2(j-1), j) (i+2j, j+1)

(i, j+1)Li,j

Ri,j

Li,j+1

Ri,j+1

Li+2 ,j
(j-1)

Ri+2 ,j
(j-1)

Li+2 ,j+1
(j-1)

Ri+2 ,j+1
(j-1)

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Memory

P
E

P
E

P
E

P
E

In
tLvr

Figure 4.4: The architecture for a line based BP decoder for a n = 8, rate = 0.5
polar code

observing the tree architecture of SC decoding, certain patterns of constituent codes

are found. These constituent codes can feed back the hard decision information

immediately without traversal, which can significantly reduce the latency of decoding

some polar codes with a given architecture. This approach is refer to as fastSSC

decoder. Moreover, a processors-array based structure for FPGA implementation is

also proposed in [30].

As introduced in [40], tree architecture or line architecture for SC decoder is

the most common. Line architecture has a higher hardware utilization but needs

increased complexity in control module and memory access. Figure (TODO: make

figures show tree and line architecture) shows Processing unit (PU) performs the f

and g functions in Eq. (1) and Eq. (2), respectively, and its arithmetic part is used

to decode N SPC and N REP as well.

27

[43] presents an architecture to unify the computations required for both conven-

tional SC and special constituent codes.

4.3 List Successive Cancellation

Decoding performances of both SC and BP are inferior to that of low density

parity check (LDPC) codes. In order to make polar codes more competitive, the list

SC (LSC) decoding algorithm is presented in [14]. By exploiting a larger range in

the codeword tree, LSC significantly improves the decoding performance.

Attracted by the potentials of LSC, a number of relevant hardware designs have

been explored. In [44], hardware LSC architectures of list sizes two and four are

proposed with pointer memory technique, which can avoid the high complexity of

likelihood copying. In [45], a hardware efficient architecture of LSC concatenated

with cyclic redundancy check (CRC) is presented. In [46], a hardware architecture

of sub-optimal version of LSC decoding is introduced. In [47], a LSC with multi-

bit decision is discussed, which significantly reduces the decoding latency, and the

corresponding hardware architecture is presented. All of aforementioned designs are

using l duplicates of SC decoder for LSC decoder with list size l. Consequently,

compared with SC decoder, the complexity of LSC increases from nlogn to ln log n,

where n and l are the length of codeword and list size, respectively. However, such

complexity increasing makes all current existing LSC architectures are impractical

for decoders with large list size.

For the LSC algorithm, every information bit can derive two candidate paths,

which are used to represent the decision of bit as 0 or 1. Each path has its own path

metric which is corresponding to its survival probability. When performing the LSC

decoding, l paths are expanded to 2l paths for each estimated information bits. Then

the metrics of 2l paths are calculated to decide the l survivals. All the corresponding

28

inner log likelihood ratios (LLRs) and partial sum of the reserved paths need to be

kept along with l paths as well. Finally, the l paths are fed back to SC decoders and

do all the steps again and again until the last information bit is decoded. Although

all the LSC designs mentioned above have differences at some details, the main archi-

tecture are similar. Typically, for a LSC decoder, it has l copies of SC decoders and

one metrics computation units (MCU), one sorting module and three memory banks

with respect to path metrics, current survival paths and LLRs and partial sums.

The SC decoder consists of multiple processing units (PUs) with a tree architecture

which consumes most of hardware resources. Such duplicates of SC decoder yield

a significant hardware redundancy of LSC decoder design. An efficient scheduling

method is proposed in [48] to overlap decoding processes for two consequent paths,

which results in a dramatic reduction of the hardware complexity without any de-

coding performance loss. Also multiple-bits decisions technique is applied to reduce

the latency associated with the pipeline scheme. Simulation results show that with

proposed design approach the hardware efficiency is increased significantly over other

state-of-the-art LSC decoders.

29

5. THROUGHPUT CENTRIC SUCCESSIVE CANCELLATION DECODER

Polar codes can be decoded by recursively applying successive cancellation to

estimate ui using the channel output yN−1
0 and the previously estimated bits ui−1

0 .

This approach is naturally represented by a binary tree whose each node corresponds

to a constituent code. The number of bits in one constituent node in stage m(m =

0, 1, 2...) is equal to 2m.

TC: Throughput Centric Successive Cancellation
Decoder Hardware Implementation for Polar Codes

Tiben Che, Jingwei Xu and Gwan Choi
Department of Electrical and Computer Engineering

Texas A&M University, College Station, Texas 77840
Email: {ctb47321, xujw07, gchoi}@tamu.edu

Abstract—This paper presents a hardware architecture of
fast simplified successive cancellation (fast-SSC) algorithm for
polar codes, which significantly reduces the decoding latency and
dramatically increases the throughput. Algorithmically, fast-SSC
algorithm suffers from the fact that its decoder scheduling and
the consequent architecture depends on the code rate; this is
a challenge for rate-compatible system. However, by exploiting
the homogeneousness between the decoding processes of fast
constituent polar codes and regular polar codes, the presented
design is compatible with any rate. The scheduling plan and the
intendedly designed processing core are also described. Results
show that, compared with the state-of-art decoder, our design
can achieve at least 60% latency reduction for the codes with
length N = 1024. By using Nangate FreePDK 45nm process,
proposed design can reach throughput up to 5.81 Gbps and
2.01 Gbps for (1024, 870) and (1024, 512) polar code, respectively.

I. INTRODUCTION

Recently, polar codes [1] have received significant attention
due to its capability to achieve the capacity of binary-input
memoryless symmetric channels with low-complexity encod-
ing and decoding schemes. Successive cancellation (SC) [1],
list successive cancellation (List-SC) [2] and belief propagation
(BP) [3] are the three most common proposed decoding
schemes. Among these, SC decoder is the most promising for
practical hardware implementation since its low O(NlogN)
complexity, where N is the length of the code. Thus, many
relevant hardware designs are proposed [4] [5] [6].

However, algorithmically, SC decoder suffers from high
latency. Typically, for conventional SC decoder, its latency
(2N − 2) increases linearly with respect to the code length.
This is a significant challenge since polar codes work well
only at very long code lengths. A lot of works have been
done to reduce the latency of SC decoder from both hardware
and algorithm aspects. In [7], a pre-computation method is
used to reduce decoding latency from 2N − 2 to N − 1.
In [8], three approaches, the dedicated 2-bit decoder for the
last stage of SC decoding, overlapped-scheduling and look-
ahead techniques are applied, which eventually results in a
3N/4−1 latency. In [9] and [10], by observing the tree archi-
tecture of SC decoding, certain patterns of constituent codes
are found. These constituent codes can feed back the hard
decision information immediately without traversal, which can
significantly reduce the latency of decoding some polar codes
with a given architecture. This approach is refer to as fast-
SSC decoder. Moreover, a processors-array based structure for
FPGA implementation is also proposed in [10].

In this paper, a novel low latency hardware architecture of
polar code decoding using fast-SSC algorithm is presented.
Although fast-SSC algorithm naturally lacks flexibility for
multiple rates, the proposed design overcomes this disadvan-
tage by utilizing the similarity between the decoding processes
of fast constituent polar codes and regular polar codes. Corre-
sponding scheduling plan is presented in this paper. We also
provide the design details of the processing unit (PU) which
is compatible with both regular polar code and constituent
polar code. The comparisons with other commonly discussed
SC decoders are given. For example, Compared with the

 u1

 u3

 u2

 u5

 u4

 u7

 u6

 u8

 y1

 y3

 y2

 y5

 y4

 y7

 y6

 y8

(a)

Stage

0

V

Stage

1
Stage

2

Stage

3

α

α

β

β

l

l

r

r

αv

βv

(b)

Fig. 1. (a) Encoder of (8, 4) polar code, (b) Tree presentation of (8, 4) SC
decoder

2b-SC-Precomputation decoder, the fastest ASIC design of
SC decoder to best of our knowledge, the proposed design
can achieve at least 60% latency reduction for polar code
with length N = 1024. The analysis of latency reduction
with respect to code rates is also presented. It shows pro-
posed architecture can yield a significant latency reduction
especially at high code rate (code rate > 0.8). This is very
promising for modern communication or data storage systems
where high rate codes are desired. Synthesis results using
Nangate FreePDK 45nm process shows the proposed
design can reach throughput of up to 5.81 Gbps and 2.01 Gbps
for (1024, 870) and (1024, 512) polar codes, respectively.

This paper is organized as follows. The relative background
are reviewed in section II. Then, the hardware implementation
of proposed system is described in section III. After that,
the synthesis results and relevant comparisons are discussed in
section IV. Finally, the conclusion is in section V.

II. BACKGROUND

A. Polar Code and Tree analysis of SC Decoding

As described in [1], a polar code is constructed by exploit-
ing channel polarization. Mathematically, polar codes are linear
block codes of length N = 2n. The transmitted codeword
x , (x1, x2, · · · , xN) is computed by x = uG where
G = F⊗m, and F⊗m is the m-th Kronecker power of
F =

[
1 0
1 1

]
. Each row of G is corresponding to an equivalent

polarizing channel. For an (N, k) polar code, k bits that carry
source information in u are transmitted using the most reliable
k channels. These are refer to information bits. While the rest
N − k bits, called frozen bits, are set to zeros and are placed
at the least reliable channels. Determining the location of the
information and frozen bits depends on the channel model and
the channel quality is investigated in [11]. Fig. 1a shows an
example of (8, 4) polar code encoder, where the black and
white nodes stand for the information bits and frozen bits,
respectively.

Polar codes can be decoded by recursively applying suc-
cessive cancellation to estimate ûi using the channel output

Figure 5.1: Tree presentation of SC decoding processes for a (8, 4) polar code.

Figure 5.1 shows an example of (8, 4) polar code. α stands for the soft reliability

value, typically is log-likelihood ratio (LLR), and β stands for the hard decision. αl

and αr are the message passing from parent node to left and right child, and can be

30

computed by the following equations:

αl[i] = sign(αv[i])sign(αv[i+Nm/2]) ·min(|αv[i]|, |αv[i+Nm/2]|) (5.1)

αr[i] = (−1)βl[i−N
m/2] · αv[i−Nm/2] + αv[i] (5.2)

At stage 0, βv of a frozen node is always zero, and for information bit its value is

calculated by threshold detection of the soft reliability according to

βv =





0 if αv ≥ 0

1 otherwise

(5.3)

At intermediate stages, βv can be recursively calculated by

βv[i] =





βl[i]⊕ βr[i] if i ≤ Nm/2

βr[i−Nm/2] otherwise

(5.4)

5.1 Fast SC Decoder

The main idea of fast-SSC algorithm is illustrated in [15, 30, 42]. By identifying

certain pattern of constituent polar codes, the hard decision βv of each constituent

node can be determined immediately, without traversing the entire subtree. Such

arrangement significantly reduces the decoding latency. For a length N constituent

code in non-systematic polar codes, ûN is calculated by

ûN = βvN ·GN (5.5)

31

where GN is the generator matrix for length N polar code. There are N 0, N 1, N SPC

and mathcalNREP codes which can be utilized to expedite the estimation of β. N 0

and N 1 codes are referred to those constituent codes which only contain frozen bits

or information bits, respectively. For N 0 codes, we can set βv to 0 immediately.

For N 1 node, βv can be directly determined via threshold detection Equation 5.3.

N SPC and NREP are two kinds constituent codes containing both frozen bits and

information bits. In a length N N SPC codes, only the first bit is frozen. It renders

the constituent codes as a rate (N1)/N single parity check (SPC) code. This code

can be decoded by performing parity check with the least reliable bit which has the

minimum absolute value of LLR. First, get the hard decision HDv of βv via threshold

detection. Then, calculated the parity by

parity =
Nm∑

i=1

⊕HDv[i] (5.6)

and, find the index of the least reliable bit

j = argmin
i
|αv[i]| (5.7)

Eventually, βv is decided by

βv[i] =





HDv[i]⊕ parity when i = j

HDv[i] otherwise

(5.8)

In a length N NREP codes, only the last bit is information bit. In this case, all

the βv[i] should be the same and are duplicates of the information contained in the

only one information bit. Thus, the decoding algorithm starts by summing all input

32

LLRs and βv is calculated as

βv[i] =





0 when
∑
αv[i] ≥ 0

1 otherwise

(5.9)

Figure 5.2 gives the examples of tree presentations of these four kinds constituent

yN−1
0 and the previously estimated bits ûi−1

0 . This approach
is naturally represented by a binary tree whose each node
corresponds to a constituent code. The number of bits in one
constituent node in stage m(m = 0, 1, 2...) Nm is equal to
2m. Fig. 1b shows an example of (8, 4) polar code. α stands
for the soft reliability value, typically is log-likelihood ratio
(LLR), and β stands for the hard decision. αl and αr are the
message passing from parent node to left and right child, and
can be computed according to Eq. (1) and Eq. (2), respectively.

αl[i] = f(αv[i], αv[i + Nm/2])

= sign(αv[i])sign(αv[i + Nm/2])

· min(|αv[i]|, |αv[i + Nm/2]|)
(1)

αr[i] = g(βl[i − Nm/2], αv[i], αv[i − Nm/2])

= (−1)βl[i−Nm/2] · αv[i − Nm/2] + αv[i]
(2)

At stage 0, βv of a frozen node is always zero, and for
information bit its value is calculated by threshold detection
of the soft reliability according to

βv = h(αv) =
{

0, if αv > 0
1, otherwise (3)

At intermediate stages, βv can be recursively calculated by

βv[i] =

{
βl[i] ⊕ βr[i] if i ≤ Nm/2
βr[i − Nm/2] otherwise (4)

B. Fast-SSC Algorithm

The main idea of fast-SSC algorithm is illustrated in [7], [9]
and [10]. By identifying certain pattern of constituent polar
codes, the hard decision βv of each constituent node can be
determined immediately, without traversing the entire subtree,
once the constituent polar code is activated. Such arrangement
significantly reduces the decoding latency. For a length N con-
stituent code in non-systematic polar codes, ûN is calculated
by ûN = βvN · GN , where GN is the generator matrix for
length N polar code. We adopt four types of constituent polar
codes in our design. These are N 0, N 1, N SPC and N REP ,
which are called fast constituent polar codes.

N 0 and N 1 are refer to those constituent codes which only
contain frozen bits or information bits, respectively. For N 0

codes, we can set βv to 0 immediately. For N 1 node, βv can
be directly determined via threshold detection Eq. (3). N SPC

and N REP are two kinds constituent codes containing both
frozen bits and information bits. In a length N N SPC codes,
only the first bit is frozen. It renders the constituent codes as a
rate (N −1)/N single parity check (SPC) code. This code can
be decoded by performing parity check with the least reliable
bit which has the minimum absolute value of LLR. First, get
the hard decision HDv of βv via threshold detection. Then,
calculated the parity by

parity =

Nm∑

i=1

⊕HDv[i]. (5)

and, find the index of the least reliable bit via

j = arg min
i

|αv[i]|. (6)

Eventually, βv is decided by

βv[i] =

{
HDv[i] ⊕ parity, when i = j
HDv[i], otherwise (7)

In a length N N SPC codes, only the last bit is information bit.
In this case, all the βv[i] should be the same and are reflections

Ɲ
0

Ɲ
1

(a)

Ɲ
SPC

Ɲ
REP

(b)

Fig. 2. (a) An example of N 0 and N 1 in a 8-bit polar code tree, and (b)
An example of NSPC and NREP in a 8-bit polar code tree

of the information contained in the only one information bit.
Thus, the decoding algorithm starts by summing all input LLRs
and βv is calculated as

βv[i] =

{
0, when

∑
αv[i] > 0;

1, otherwise (8)

Fig. 2 gives the examples of tree presentations of these four
kinds constituent polar codes.

III. HARDWARE IMPLEMENTATION

In this section, a novel hardware implementation of fast-
SSC decoder is presented. For a polar code with a given length,
different code rate yields different distribution of constituent
polar codes. A thoughtfully-composed architecture should have
the capability and flexibility to deal with different rates. Thus,
by exploiting the homogeneousness between the decoding
processes of fast constituent polar codes and regular polar
codes, our design supports a variety of rates. The scheduling
scheme based on the proposed architecture is also discussed.
Additionally, we develop an approach for sharing and reusing
computational elements to achieve higher hardware efficiency.

A. System Overview

As introduced in [5], tree architecture or line architecture
for SC decoder is the most common. Line architecture has
a higher hardware utilization but needs increased complexity
in control module and memory access. Thus, we adopt tree
architecture in our design. Fig. 3 shows an overview of
proposed system when code length = 16. Processing unit
(PU) performs the f and g functions in Eq. (1) and Eq. (2),
respectively, and its arithmetic part is used to decode N SPC

and N REP as well. Pre-computation technique is also used,
which allows the f and g functions update in the same
clock cycle. The PU used in stage 0 has a slight difference
with ordinary PU. We denote it with PU0 in the figure.
According to Eq. (6), the minimum LLR value needs to be
found. The comparator tree is used to perform this since it
inherently exists in the tree architecture of PUs. A judicious
scheduling permits obtaining the minimum value at stage 0
and recording the choice of smaller input for each PU at
each stage. After that, a backward operation implemented by
a series of parity transmit unit (PTU) can help to locate
the minimum one among the length N N SPC constituent
polar codes. Design details are illustrated in section III-C.
The estimation of current bit in SC decoding is bases on the
information of previous decoded bits (β). This information is
also called partial sum. Thus, a partial sum generator (PSG)
which can co-operate with decoding pipeline is also needed.
We adopt the PSG introduced in [12] in our design, and it is
compatible with our system. Thus, the design of PSG is not
discussed in this paper.

B. Dataflow, latency and flexibility analysis

In terms of tree presentation, SC decoder conventionally
process one node in each clock cycle. Traversal of a subtree
contained N leaf nodes needs 2N − 2 clock cycles. By using

(a)

yN−1
0 and the previously estimated bits ûi−1

0 . This approach
is naturally represented by a binary tree whose each node
corresponds to a constituent code. The number of bits in one
constituent node in stage m(m = 0, 1, 2...) Nm is equal to
2m. Fig. 1b shows an example of (8, 4) polar code. α stands
for the soft reliability value, typically is log-likelihood ratio
(LLR), and β stands for the hard decision. αl and αr are the
message passing from parent node to left and right child, and
can be computed according to Eq. (1) and Eq. (2), respectively.

αl[i] = f(αv[i], αv[i + Nm/2])

= sign(αv[i])sign(αv[i + Nm/2])

· min(|αv[i]|, |αv[i + Nm/2]|)
(1)

αr[i] = g(βl[i − Nm/2], αv[i], αv[i − Nm/2])

= (−1)βl[i−Nm/2] · αv[i − Nm/2] + αv[i]
(2)

At stage 0, βv of a frozen node is always zero, and for
information bit its value is calculated by threshold detection
of the soft reliability according to

βv = h(αv) =
{

0, if αv > 0
1, otherwise (3)

At intermediate stages, βv can be recursively calculated by

βv[i] =

{
βl[i] ⊕ βr[i] if i ≤ Nm/2
βr[i − Nm/2] otherwise (4)

B. Fast-SSC Algorithm

The main idea of fast-SSC algorithm is illustrated in [7], [9]
and [10]. By identifying certain pattern of constituent polar
codes, the hard decision βv of each constituent node can be
determined immediately, without traversing the entire subtree,
once the constituent polar code is activated. Such arrangement
significantly reduces the decoding latency. For a length N con-
stituent code in non-systematic polar codes, ûN is calculated
by ûN = βvN · GN , where GN is the generator matrix for
length N polar code. We adopt four types of constituent polar
codes in our design. These are N 0, N 1, N SPC and N REP ,
which are called fast constituent polar codes.

N 0 and N 1 are refer to those constituent codes which only
contain frozen bits or information bits, respectively. For N 0

codes, we can set βv to 0 immediately. For N 1 node, βv can
be directly determined via threshold detection Eq. (3). N SPC

and N REP are two kinds constituent codes containing both
frozen bits and information bits. In a length N N SPC codes,
only the first bit is frozen. It renders the constituent codes as a
rate (N −1)/N single parity check (SPC) code. This code can
be decoded by performing parity check with the least reliable
bit which has the minimum absolute value of LLR. First, get
the hard decision HDv of βv via threshold detection. Then,
calculated the parity by

parity =

Nm∑

i=1

⊕HDv[i]. (5)

and, find the index of the least reliable bit via

j = arg min
i

|αv[i]|. (6)

Eventually, βv is decided by

βv[i] =

{
HDv[i] ⊕ parity, when i = j
HDv[i], otherwise (7)

In a length N N SPC codes, only the last bit is information bit.
In this case, all the βv[i] should be the same and are reflections

Ɲ
0

Ɲ
1

(a)

Ɲ
SPC

Ɲ
REP

(b)

Fig. 2. (a) An example of N 0 and N 1 in a 8-bit polar code tree, and (b)
An example of NSPC and NREP in a 8-bit polar code tree

of the information contained in the only one information bit.
Thus, the decoding algorithm starts by summing all input LLRs
and βv is calculated as

βv[i] =

{
0, when

∑
αv[i] > 0;

1, otherwise (8)

Fig. 2 gives the examples of tree presentations of these four
kinds constituent polar codes.

III. HARDWARE IMPLEMENTATION

In this section, a novel hardware implementation of fast-
SSC decoder is presented. For a polar code with a given length,
different code rate yields different distribution of constituent
polar codes. A thoughtfully-composed architecture should have
the capability and flexibility to deal with different rates. Thus,
by exploiting the homogeneousness between the decoding
processes of fast constituent polar codes and regular polar
codes, our design supports a variety of rates. The scheduling
scheme based on the proposed architecture is also discussed.
Additionally, we develop an approach for sharing and reusing
computational elements to achieve higher hardware efficiency.

A. System Overview

As introduced in [5], tree architecture or line architecture
for SC decoder is the most common. Line architecture has
a higher hardware utilization but needs increased complexity
in control module and memory access. Thus, we adopt tree
architecture in our design. Fig. 3 shows an overview of
proposed system when code length = 16. Processing unit
(PU) performs the f and g functions in Eq. (1) and Eq. (2),
respectively, and its arithmetic part is used to decode N SPC

and N REP as well. Pre-computation technique is also used,
which allows the f and g functions update in the same
clock cycle. The PU used in stage 0 has a slight difference
with ordinary PU. We denote it with PU0 in the figure.
According to Eq. (6), the minimum LLR value needs to be
found. The comparator tree is used to perform this since it
inherently exists in the tree architecture of PUs. A judicious
scheduling permits obtaining the minimum value at stage 0
and recording the choice of smaller input for each PU at
each stage. After that, a backward operation implemented by
a series of parity transmit unit (PTU) can help to locate
the minimum one among the length N N SPC constituent
polar codes. Design details are illustrated in section III-C.
The estimation of current bit in SC decoding is bases on the
information of previous decoded bits (β). This information is
also called partial sum. Thus, a partial sum generator (PSG)
which can co-operate with decoding pipeline is also needed.
We adopt the PSG introduced in [12] in our design, and it is
compatible with our system. Thus, the design of PSG is not
discussed in this paper.

B. Dataflow, latency and flexibility analysis

In terms of tree presentation, SC decoder conventionally
process one node in each clock cycle. Traversal of a subtree
contained N leaf nodes needs 2N − 2 clock cycles. By using

(b)

Figure 5.2: (a) An example of N 0 and N 1 codes in a (8, 4) polar code tree, and (b)
an example of NREP and N SPC in a (8, 4) polar code tree.

polar codes. These four types of constituent polar codes are adopted in the SC

decoder to expedite the processing, therefore which is referred as fast SC decoder.

5.2 VLSI Architecture

To fully utilize the advantage of constituent codes in the polar codes tree, a novel

hardware implementation of fastSSC decoder is presented in [43]. For a polar code

with a given length, different code rate yields different distribution of constituent

polar codes. A thoughtfully-composed architecture should have the capability and

flexibility to deal with different rates. Thus, by exploiting the homogeneousness

between the decoding processes of fast constituent polar codes and regular polar

33

codes, our design supports a variety of rates. Additionally, an approach is proposed

in this section for sharing and reusing computational elements to achieve higher

hardware efficiency.

As introduced in [39], tree architecture or line architecture for SC decoder is

the most common. Line architecture has a higher hardware utilization but needs

increased complexity in control module and memory access. Tree architecture is

employed in the TCSC decoder for control simplification.

Figure 5.3 shows an overview of proposed system when code length = 16. P

rocessing unit(PU) performs the functions in Equations 5.1 and 5.2, respectively,

and its arithmetic part is used to decode N SPC and NREP as well. Pre-computation

technique is also used, which allows the f and g functions update in the same clock

cycle. The PU used in stage 0 has a slight difference with ordinary PU. We denote

it with PU0 in the figure. According to Equation 5.7, the minimum LLR value

needs to be found. The comparator tree is used to perform this since it inherently

exists in the tree architecture of PUs. A judicious scheduling permits obtaining the

minimum value at stage 0 and recording the choice of smaller input for each PU

at each stage. After that, a backward operation implemented by a series of parity

transmit unit (PTU) can help to locate the minimum one among the length N N SPC

polar codes. Design details are illustrated in following. The estimation of current

bit in SC decoding is based on the information of previous decoded bits (β). This

information is also called partial sum. Thus, a partial sum generator (PSG) which

can co-operate with decoding pipeline is also needed.

5.3 Dataflow, Latency and Flexibility Analysis

In terms of tree presentation, SC decoder conventionally process one node in each

clock cycle. Traversal of a subtree contained N leaf nodes needs 2N2 clock cycles.

34

By using pre-computation as introduced in [42], which calculates the functions 5.1

and 5.2 in the same clock cycle, the latency can be reduced to N1. In TCSC design,

if this subtree is belong to fast constituent polar codes, the latency can be further

reduced.

For N 0 codes, the βv are all set to 0. For N 1, the the βv are determined by hard

decision of input LLRs. Both of the two computations need only one clock cycle after

they are activated. For N SPC codes , according to Equations 5.6, 5.7 and 5.8, only

three operations needed. Finding the minimum LLR can be done by a comparator

tree, which naturally exists in SC decoder with tree architecture since every PU has

a comparator for Equation 5.1. For N LLRs, finding the smallest one takes log(2N)

clock cycles. Meanwhile, we can obtain the parity bit when the minimum LLR is

found, which will be explained in the next subsection. After that, one more clock

cycle is need for signal parity check which is done by a XOR gate. Thus, totally,

decoding a length N N SPC constituent polar codes need log(2N) + 1 clock cycles.

For NREP codes, according to Equation 5.9, an accumulation operation is needed.

Similar to the comparator tree, an adder tree also exists in SC decoder within the

tree architecture since every PU has an adder for Equation 5.2. For a length N

NREP constituent polar code, it needs log(2N) clock cycles to decode.

To briefly sum up, N 0 and N 1 have time complexity O(1) and N SPC and NREP

have time complexity O(log2N). Compared with commonly discussed SC architec-

ture in [5], [7] and [8], which all have linear time complexity O(N), the latency can

be significantly reduced from the TCSC micro-architecture and scheduling with very

large codelength N . The details of micro-architecture and scheduling are given in

the following.

35

5.4 Unified Computational Unit

Figure 5.4 shows design details of PU. A single PU can perform Equations 5.1

and 5.2. Also a PU tree can help to find the minimum values or do accumulation for

multiple inputs. In the figure, S stands for signed magnitude number and C stands

for 2’s complement number. Unlike the PU design in [29], in which data are initially

stored as signed magnitude form, our design use 2’s complement as initial form. We

do this for two reasons.

1. According to synthesis result, the critical path of PU is along with the Equa-

tion 5.2 path. By moving number system convert modules to the Equation 5.1

path, which means using 2’s complement as initial data form, the critical path

is still along with g function path, but delay on critical path is significantly

reduced.

2. Compared with four number system convert modules are used in [29], only

three are used if use 2’s complement number. This is more hardware efficient.

The benefits of this modification can be seen in later.

Table 5.1: Truth table of PTU
PCB SS O1 O2 PCB SS O1 O2
0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1

For each PU, two LLRs are fed simultaneously. Since we use the pre-computation

technique, equations 5.1 and 5.2 are calculated at the same time, and which one needs

to be output is determined by modeselect2. According to Equation 5.2, there are

36

only two types of possible results, sum or difference. Its final result depends on the

corresponding partial sum. So two registers are used here to hold the most recently

computed values until the corresponding partial sum is calculated. When it calculates

the sum for decoding NREP , only additions are needed. The datapath is decided

by Modeselect1 signal. When f function is performed, according to Equations 5.1,

both 2 inputs are divided into two parts: sign bit and unsigned number. Each

part is processed separately first, and results of two parts are combined together

to obtain the updated value. C to S and S to C modules are needed before and

after comparisons, respectively. When it deals with N SPC , the result of comparison

should be recorded using a register as the select signal for PTU. Since the processing

of searching minimum value lasts several clock cycles, there should be a feedback of

the register to hold this value for the later clock cycles. The input source is chosen

by Modeselect3 signal. Since every PU does exclusive-or operation to the sign bit of

two inputs, according to Equations5.8, the sign bit of the final value in stage 0 should

be equal to the parity. Equation5.6 can be performed using an XOR gate. The PU

that contains the minimum LLR receives the parity check bit and the others receive

0’s. The transmission of parity check bit is done by the PTU which is a two-input

two-output module. One input is the parity check bit(PCB) and the other is the

select signal (SS). The parity check bit is transmitted via output 1 (O1) or output

2 (O2) based on the values of SS. Table 5.1 shows the truth table of PTU. We can

obtain the logic expression of O1 and O2 as: O1 = PCB & SS , O2 = PCB & SS.

This can be done by two and gates and one Inverter.

The PU in stage0, as shown in Figure 5.3, has a simpler architecture compared

with PU. Figure 5.5 shows the design details of PU0. Since only one more clock cycle

need for single parity check, there is no feed back to this register. Furthermore, N SPC

cannot exist in stage0. So top part in Figure 5.4, which is relative to single parity

37

Table 5.2: Hardware comparison of different (n, k) SC decoder with q-bit quantiza-
tion for inner LLRs using tree architecture

Hardware Type [42] [39] [29] Proposed Design
of PU n− 1 n− 1 n− 1 n− 1

of PTU 0 0 0 2/n− 1
of 1 bit REG ≈ 3qn ≈ qn ≈ 3qn ≈ (3q + 1)n

HC 1.3 1 1.3 1.31
Latency (clock cycle) n− 1 2n− 2 0.75n− 1 ≈ (0.1 ∼ 0.3)n

Throughput 2 1 2.67 ≈ 6.69 ∼ 22.26
Throughput/HC 1.53 1 1.74 5.1 ∼ 16.99

check can be removed. For Equation 5.2 and NREP , the output of Equations 5.1

can be fed back to it immediately, and the sign bit of the result of adding is the

partial sum for N SPC .

5.5 Hardware Performance

5.5.1 Fixed Point Analysis

Before the discussion on hardware consumption, we quantized the simulation to

figure out how many bits need to be assigned to make sure the reliability of hardware

implementation. Figure 5.6 shows the effect of quantization on the (1024, 512) polar

code. For channel outputs and inner LLRs, we use separate quantization schemes.

The quantization schemes are shown in (C, L, F) format, where C, L and F are

the number of bits used for presenting channel output, inner LLRs and fraction

parts of both channel output and LLRs, respectively. As the result of the trade-off

between hardware efficiency and decoding performance, (4, 5, 0) quantization scheme

is chosen for TCSC design.

38

5.5.2 Hardware Comparison with Other State-of-the-art SC Decoders

Table. 5.2 shows the hardware comparisons between proposed design and other

state-of-the-art designs. All the candidates are (n, k) SC decoder with tree archi-

tectures, and they all use q-bit quantization for inner LLRs. All the throughputs

and hardware complexity (HC) are normalized to the SC decoder in [39], and the

hardware complexity is estimated based on the synthesis results. The latency for pro-

posed design is a range with respect to the code rates change from 0.05 to 0.95. From

this table, we can see that our TCSC design achieves the highest throughput per unit

of hardware complexity. The exact latency depends on the code rate. Figure. 5.7

shows the latency reduction of the proposed design along with code rates from 0.05

to 0.95. The reduction is relative to the 2b-SC-Precomputation decoder which so

far is known to be the fastest. The figure shows at least 60% latency reduction can

be achieved by our proposed design. This is very promising for many applications

where high rate channel codes are needed, such as for data storage system.

Table 5.3: Synthesis result for (1024, 870) and (1024, 512) polar codes
Silicon Area (µm2) 275899

Max Frequency (GHz) 1.04
Latency (1024,870) (clock cycle) 156
Throughtput(1024,870) (Gbps) 5.81

Latency (1024,512) (clock cycle) 266
Throughtput(1024,512) (Gbps) 2.01

Additionally, we implemented the proposed design with V erilog for the polar

code with length=1024 and synthesized it using Nangate FreePDK 45nm process

with Synopsys Design Complier. We calculated the throughput for (1024, 870)

39

and (1024, 512) polar codes. Table 5.3 shows the synthesis result for (1024, 870)

and (1024, 512) polar codes. Notice that the maximum frequency is higher than

that reported in [29] which use the same process as our design. TCSC design in

theory should have a lower maximum frequency since it has one more Mux delay for

regular and fast constituent polar codes. However, thanks to the introduction of fast

constituent codes in the decoding process, the number of cycles dedicated for each

decoding is reduced so as that the hardware performance is improved.

40

PU

PU

PU

PU

PU

PU

PU

PU

R

R

R

R

R

R

R

R

PU

PU

PU

PU

R

R

R

R

PUR

PUR

PU0

u2i-1

u2i

^

^

R

PSG

LLR1

LLR2

PSG

LLR3

LLR4

PSG

LLR5

LLR6

PSG

LLR7

LLR8

PSG

LLR9

LLR10

PSG

LLR11

LLR12

PSG

LLR13

LLR14

PSG

LLR15

LLR16

Partial Sum Generator (PSG)

……

To PU

Stage 0 Stage 1 Stage 2 Stage 3

PSG

PSG

PSG

PSG

PSG

PSG

PTU

PTU

PTU

PTU

PTU

PTU

PTU

Fig. 3. Overview of proposed system when code length = 16

pre-computation as introduced in [7], which calculate the f
function and all the possible result of g functions in the same
clock cycle, the latency can be reduced to N−1. In our design,
if this subtree is belong to fast constituent polar codes, the
latency can be further reduced.

For N 0, the βv are all set to 0, and for N 1, the βv
are determined by hard decision of input LLRs. Both of the
two computations need only one clock cycle after they are
activated. For N SPC , according to Eq. (5), Eq. (6), and Eq. (7),
only three operations needed. Finding the minimum LLR can
be done by a comparator tree, which is naturally existed in SC
decoder with tree architecture since every PU has a comparator
for Eq. (1). For N LLRs, finding the smallest one use Log2N
clock cycles. Meanwhile, we can obtain the parity bit when
the minimum LLR is found, which will be explained in the
next subsection. After that, one more clock cycle is need for
signal parity check which is done by a XOR gate. Thus,
totally, decoding a length N N SPC constituent polar codes
need Log2N+1 clock cycles. For N REP , according to Eq. (8),
an accumulation operation is needed. Similar to the comparator
tree, an adder tree also exists in SC decoder within the tree
architecture since every PU has an adder for Eq. (2). For a
length N N REP constituent polar code, it needs Log2N clock
cycles to decode.

N 0 and N 1 have time complexity O(1) and N SPC and
N REP have time complexity O(log2N). Compared with com-
monly discussed SC architecture in [5], [7] and [8], which all
have linear time complexity O(N), we can benefit significantly
from proposed scheduling scheme in term of latency, especially
with very large N . The latency reduction of N = 1024 polar
code with different rate will be presented in the next section.

The main challenge for fast-SSC decoder is that the ar-
chitecture subject to the rate of codes. This is due to the
reason that polar codes with different rates do not have the uni-
form distribution of constituent polar codes. Proposed design
overcomes this obstacle by exploring the similarity between
the decoding architecture of fast constituent and regular polar
codes. The specific designed PU allows the tree architecture
to deal with both fast constituent and regular polar codes,
which means the entire decoding processing can run smoothly
no matter what the distributions of constituent codes are.
This architecture is independent and does not relay on the

+

-

from PSG
Mode

Select1

LLR1

LLR2

Unsigned

Comparator
|LLR1|

|LLR2|

Sign(LLR1)

Sign(LLR2)

F function

or

Minimum

or

G function

or

Accumulation

S2C

Mode

Select3

to PSG

parity

or 0

Select Signal

for PTU R

Mode

Select2

C2S

C2S

R

R

(a)

+

-

LLR1

LLR2

Unsigned

Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

Select Signal

for De-Mux

Partial Sum

u1
^

u2
^

R

Single Parity

Check Bit

C2S

C2S

(b)

Fig. 4. (a) Design details of PU, (b) Design details of PU0

distribution of constituent codes. This property provides the
flexibility for multiple rates. To switch from one rate to another
rate, only the control signals for given PUs need to be modified.

C. Processing Unit Design

Fig. 4a shows design details of PU. A single PU can
perform f and g functions in Eq. (1) and Eq. (2), respec-
tively. Also a PU tree can help to find the minimum val-
ues or do accumulation for multiple inputs. In Fig. 4a, S
stands for signed magnitude number and C stands for
2′s complement number. Unlike the PU design in [8], in
which data are initially stored as signed magnitude form, our
design use 2’s complement as initial form. We do this for
two reasons. 1). According to synthesis result, the critical
path of PU is along with the g function path. By moving
number system convert modules to the f function path, which
means using 2’s complement as initial data form, the critical
path is still along with g function path, but with significant
reduction. 2). Compared with four number system convert
modules are used in [8], only three are used if use 2’s
complement number. This is more hardware efficient. The
benefits of this modification can be seen in section IV.

For each PU, two LLRs are fed simultaneously. Since
we use the pre-computation technique, f and g functions
are calculated at the same time, and which one needs to
be output is determined by mode select 2. According to
Eq. (2), there are only two types of possible results for g
function, sum or difference. Its final result depends on the
corresponding partial sum. So two registers are used here to
hold the most recently computed values until the corresponding
partial sum is calculated. When it calculates the sum for
decoding N REP , only additions are needed. The datapath
is decided by Mode select 1 signal. When f function is
performed, according to Eq. (1), both 2 inputs are divided into
two parts: sign bit and unsigned number. Each part is processed
separately first, and then results of two parts are combined
together to obtain the updated value. C to S and S to C
modules are needed before and after comparisons, respectively.
When it deals with N SPC , the result of comparison should
be recorded using a register as the select signal for PTU.
Since the processing of searching minimum value lasts several
clock cycles, there should be a feedback of the register to

Figure 5.3: Overview architecture of TCSC decoder for a (8, 4) polar code.

41

PU

PU

PU

PU

PU

PU

PU

PU

R

R

R

R

R

R

R

R

PU

PU

PU

PU

R

R

R

R

PUR

PUR

PU0

u2i-1

u2i

^

^

R

PSG

LLR1

LLR2

PSG

LLR3

LLR4

PSG

LLR5

LLR6

PSG

LLR7

LLR8

PSG

LLR9

LLR10

PSG

LLR11

LLR12

PSG

LLR13

LLR14

PSG

LLR15

LLR16

Partial Sum Generator (PSG)

……

To PU

Stage 0 Stage 1 Stage 2 Stage 3

PSG

PSG

PSG

PSG

PSG

PSG

PTU

PTU

PTU

PTU

PTU

PTU

PTU

Fig. 3. Overview of proposed system when code length = 16

pre-computation as introduced in [7], which calculate the f
function and all the possible result of g functions in the same
clock cycle, the latency can be reduced to N−1. In our design,
if this subtree is belong to fast constituent polar codes, the
latency can be further reduced.

For N 0, the βv are all set to 0, and for N 1, the βv
are determined by hard decision of input LLRs. Both of the
two computations need only one clock cycle after they are
activated. For N SPC , according to Eq. (5), Eq. (6), and Eq. (7),
only three operations needed. Finding the minimum LLR can
be done by a comparator tree, which is naturally existed in SC
decoder with tree architecture since every PU has a comparator
for Eq. (1). For N LLRs, finding the smallest one use Log2N
clock cycles. Meanwhile, we can obtain the parity bit when
the minimum LLR is found, which will be explained in the
next subsection. After that, one more clock cycle is need for
signal parity check which is done by a XOR gate. Thus,
totally, decoding a length N N SPC constituent polar codes
need Log2N+1 clock cycles. For N REP , according to Eq. (8),
an accumulation operation is needed. Similar to the comparator
tree, an adder tree also exists in SC decoder within the tree
architecture since every PU has an adder for Eq. (2). For a
length N N REP constituent polar code, it needs Log2N clock
cycles to decode.

N 0 and N 1 have time complexity O(1) and N SPC and
N REP have time complexity O(log2N). Compared with com-
monly discussed SC architecture in [5], [7] and [8], which all
have linear time complexity O(N), we can benefit significantly
from proposed scheduling scheme in term of latency, especially
with very large N . The latency reduction of N = 1024 polar
code with different rate will be presented in the next section.

The main challenge for fast-SSC decoder is that the ar-
chitecture subject to the rate of codes. This is due to the
reason that polar codes with different rates do not have the uni-
form distribution of constituent polar codes. Proposed design
overcomes this obstacle by exploring the similarity between
the decoding architecture of fast constituent and regular polar
codes. The specific designed PU allows the tree architecture
to deal with both fast constituent and regular polar codes,
which means the entire decoding processing can run smoothly
no matter what the distributions of constituent codes are.
This architecture is independent and does not relay on the

+

-

from PSG
Mode

Select1

LLR1

LLR2

Unsigned

Comparator
|LLR1|

|LLR2|

Sign(LLR1)

Sign(LLR2)

F function

or

Minimum

or

G function

or

Accumulation

S2C

Mode

Select3

to PSG

parity

or 0

Select Signal

for PTU R

Mode

Select2

C2S

C2S

R

R

(a)

+

-

LLR1

LLR2

Unsigned

Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

Select Signal

for De-Mux

Partial Sum

u1
^

u2
^

R

Single Parity

Check Bit

C2S

C2S

(b)

Fig. 4. (a) Design details of PU, (b) Design details of PU0

distribution of constituent codes. This property provides the
flexibility for multiple rates. To switch from one rate to another
rate, only the control signals for given PUs need to be modified.

C. Processing Unit Design

Fig. 4a shows design details of PU. A single PU can
perform f and g functions in Eq. (1) and Eq. (2), respec-
tively. Also a PU tree can help to find the minimum val-
ues or do accumulation for multiple inputs. In Fig. 4a, S
stands for signed magnitude number and C stands for
2′s complement number. Unlike the PU design in [8], in
which data are initially stored as signed magnitude form, our
design use 2’s complement as initial form. We do this for
two reasons. 1). According to synthesis result, the critical
path of PU is along with the g function path. By moving
number system convert modules to the f function path, which
means using 2’s complement as initial data form, the critical
path is still along with g function path, but with significant
reduction. 2). Compared with four number system convert
modules are used in [8], only three are used if use 2’s
complement number. This is more hardware efficient. The
benefits of this modification can be seen in section IV.

For each PU, two LLRs are fed simultaneously. Since
we use the pre-computation technique, f and g functions
are calculated at the same time, and which one needs to
be output is determined by mode select 2. According to
Eq. (2), there are only two types of possible results for g
function, sum or difference. Its final result depends on the
corresponding partial sum. So two registers are used here to
hold the most recently computed values until the corresponding
partial sum is calculated. When it calculates the sum for
decoding N REP , only additions are needed. The datapath
is decided by Mode select 1 signal. When f function is
performed, according to Eq. (1), both 2 inputs are divided into
two parts: sign bit and unsigned number. Each part is processed
separately first, and then results of two parts are combined
together to obtain the updated value. C to S and S to C
modules are needed before and after comparisons, respectively.
When it deals with N SPC , the result of comparison should
be recorded using a register as the select signal for PTU.
Since the processing of searching minimum value lasts several
clock cycles, there should be a feedback of the register to

Figure 5.4: The design details of PU in TCSC decoder.

PU

PU

PU

PU

PU

PU

PU

PU

R

R

R

R

R

R

R

R

PU

PU

PU

PU

R

R

R

R

PUR

PUR

PU0

u2i-1

u2i

^

^

R

PSG

LLR1

LLR2

PSG

LLR3

LLR4

PSG

LLR5

LLR6

PSG

LLR7

LLR8

PSG

LLR9

LLR10

PSG

LLR11

LLR12

PSG

LLR13

LLR14

PSG

LLR15

LLR16

Partial Sum Generator (PSG)

……

To PU

Stage 0 Stage 1 Stage 2 Stage 3

PSG

PSG

PSG

PSG

PSG

PSG

PTU

PTU

PTU

PTU

PTU

PTU

PTU

Fig. 3. Overview of proposed system when code length = 16

pre-computation as introduced in [7], which calculate the f
function and all the possible result of g functions in the same
clock cycle, the latency can be reduced to N−1. In our design,
if this subtree is belong to fast constituent polar codes, the
latency can be further reduced.

For N 0, the βv are all set to 0, and for N 1, the βv
are determined by hard decision of input LLRs. Both of the
two computations need only one clock cycle after they are
activated. For N SPC , according to Eq. (5), Eq. (6), and Eq. (7),
only three operations needed. Finding the minimum LLR can
be done by a comparator tree, which is naturally existed in SC
decoder with tree architecture since every PU has a comparator
for Eq. (1). For N LLRs, finding the smallest one use Log2N
clock cycles. Meanwhile, we can obtain the parity bit when
the minimum LLR is found, which will be explained in the
next subsection. After that, one more clock cycle is need for
signal parity check which is done by a XOR gate. Thus,
totally, decoding a length N N SPC constituent polar codes
need Log2N+1 clock cycles. For N REP , according to Eq. (8),
an accumulation operation is needed. Similar to the comparator
tree, an adder tree also exists in SC decoder within the tree
architecture since every PU has an adder for Eq. (2). For a
length N N REP constituent polar code, it needs Log2N clock
cycles to decode.

N 0 and N 1 have time complexity O(1) and N SPC and
N REP have time complexity O(log2N). Compared with com-
monly discussed SC architecture in [5], [7] and [8], which all
have linear time complexity O(N), we can benefit significantly
from proposed scheduling scheme in term of latency, especially
with very large N . The latency reduction of N = 1024 polar
code with different rate will be presented in the next section.

The main challenge for fast-SSC decoder is that the ar-
chitecture subject to the rate of codes. This is due to the
reason that polar codes with different rates do not have the uni-
form distribution of constituent polar codes. Proposed design
overcomes this obstacle by exploring the similarity between
the decoding architecture of fast constituent and regular polar
codes. The specific designed PU allows the tree architecture
to deal with both fast constituent and regular polar codes,
which means the entire decoding processing can run smoothly
no matter what the distributions of constituent codes are.
This architecture is independent and does not relay on the

+

-

from PSG
Mode

Select1

LLR1

LLR2

Unsigned

Comparator
|LLR1|

|LLR2|

Sign(LLR1)

Sign(LLR2)

F function

or

Minimum

or

G function

or

Accumulation

S2C

Mode

Select3

to PSG

parity

or 0

Select Signal

for PTU R

Mode

Select2

C2S

C2S

R

R

(a)

+

-

LLR1

LLR2

Unsigned

Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

Select Signal

for De-Mux

Partial Sum

u1
^

u2
^

R

Single Parity

Check Bit

C2S

C2S

(b)

Fig. 4. (a) Design details of PU, (b) Design details of PU0

distribution of constituent codes. This property provides the
flexibility for multiple rates. To switch from one rate to another
rate, only the control signals for given PUs need to be modified.

C. Processing Unit Design

Fig. 4a shows design details of PU. A single PU can
perform f and g functions in Eq. (1) and Eq. (2), respec-
tively. Also a PU tree can help to find the minimum val-
ues or do accumulation for multiple inputs. In Fig. 4a, S
stands for signed magnitude number and C stands for
2′s complement number. Unlike the PU design in [8], in
which data are initially stored as signed magnitude form, our
design use 2’s complement as initial form. We do this for
two reasons. 1). According to synthesis result, the critical
path of PU is along with the g function path. By moving
number system convert modules to the f function path, which
means using 2’s complement as initial data form, the critical
path is still along with g function path, but with significant
reduction. 2). Compared with four number system convert
modules are used in [8], only three are used if use 2’s
complement number. This is more hardware efficient. The
benefits of this modification can be seen in section IV.

For each PU, two LLRs are fed simultaneously. Since
we use the pre-computation technique, f and g functions
are calculated at the same time, and which one needs to
be output is determined by mode select 2. According to
Eq. (2), there are only two types of possible results for g
function, sum or difference. Its final result depends on the
corresponding partial sum. So two registers are used here to
hold the most recently computed values until the corresponding
partial sum is calculated. When it calculates the sum for
decoding N REP , only additions are needed. The datapath
is decided by Mode select 1 signal. When f function is
performed, according to Eq. (1), both 2 inputs are divided into
two parts: sign bit and unsigned number. Each part is processed
separately first, and then results of two parts are combined
together to obtain the updated value. C to S and S to C
modules are needed before and after comparisons, respectively.
When it deals with N SPC , the result of comparison should
be recorded using a register as the select signal for PTU.
Since the processing of searching minimum value lasts several
clock cycles, there should be a feedback of the register to

Figure 5.5: The design details of PU0 in TCSC decoder.

42

0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

B
E

R
/F

E
R

FER (3,5,0)
FER (4,4,0)
FER (4,5,0)
FER (5,6,1)
FER floating point
BER (3,5,0)
BER (4,4,0)
BER (4,5,0)
BER (5,6,1)
BER floating point

Fig. 5. Effect of quantization on the BER/FER performance of (1024, 512)
code

hold this value for the later clock cycles. The input source
is chosen by Mode select 3 signal. Since every PU does
exclusive-or operation to the sign bit of two inputs, according
to Eq. (5), the sign bit of the final value in stage 0 should be
equal to the parity. Eq. (7) can be performed using an XOR
gate. The PU that contains the minimum LLR receives the
parity check bit and the others receive 0s. The transmission
of parity check bit is done by the PTU which is a two
input two output module. One input is the parity check bit
(PCB) and the other is the select signal (SS). The parity
check bit is transmitted via output 1 (O1) or output 2 (O2)
bases on the values of SS. Table. I shows the truth table of
PTU. We can obtain the logic expression of O1 and O2 as:
O1 = PCB and SS , O2 = PCB and SS. This can be
done by two and gates and one Inverter.

TABLE I. TRUTH TABLE OF PTU

PCB SS O1 O2 PCB SS O1 O2
0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1

The PU in stage0, as denote PU0 in Fig. 3, has a simpler
architecture. Fig. 4b shows the design details of PU0. Since
only one more clock cycle need for single parity check, there is
no feed back to this register. Furthermore, N SPC cannot exist
in stage0. So top part in Fig. 4a which is relative to single
parity check can be removed. For g function and N REP , the
output of f function can be feed back to it immediately, and
the sign bit of the result of adding is the partial sum for N REP .

D. Fixed point analysis

Fig. 5 shows the effect of quantization on the (1024, 512)
polar code. For channel outputs and inner LLRs, we use
separate quantization schemes. The quantization schemes are
shown in (C, L, F) format. Where C, L and F are the number
of bits used for presenting channel output, inner LLRs and frac-
tion parts of both channel output and LLRs, respectively. Since
no multiplication or division used, which means the length
of fraction does not change, channel outputs and inner LLRs
use the same fraction precision. As the result of the trade-off
between hardware efficiency and decoding performance, we
choose (4, 5, 0) quantization scheme in our design.

IV. HARDWARE ANALYSIS AND COMPARISON

Table. II shows the hardware comparisons between pro-
posed design and other state-of-the-art designs. All the candi-
dates are (n, k) SC decoder with tree architectures, and they all

TABLE II. HARDWARE COMPARISON OF DIFFERENT (n, k) SC
DECODER WITH q-BIT QUANTIZATION FOR INNER LLRS USING TREE

ARCHITECTURE

Hardware Type [7] [4] [8] Proposed Design
of PU n − 1 n − 1 n − 1 n − 1

of PTU 0 0 0 2/n − 1
of 1 bit REG ≈ 3qn ≈ qn ≈ 3qn ≈ (3q + 1)n

HC 1.3 1 1.3 1.31
Latency (clock cycle) n − 1 2n − 2 0.75n − 1 ≈ (0.1 ∼ 0.3)n

Throughput 2 1 2.67 ≈ 6.69 ∼ 22.26
Throughput/HC 1.53 1 1.74 5.1 ∼ 16.99

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

70

80

90

Code Rate

L
at

en
cy

 R
ed

uc
tio

n(
%

)

Fig. 6. Latency Reduction vs. Code Rate

use q-bit quantization for inner LLRs. All the throughputs and
hardware complexity (HC) are normalized to the SC decoder
in [4], and the hardware complexity is estimated based on
the synthesis results. The latency for proposed design is a
range with respect to the code rates change from 0.05 to 0.95.
From this table, we can see that our proposed design achieves
the highest throughput per unit of hardware complexity. The
exact latency depends on the code rate. Fig. 6 shows the
latency reduction of the proposed design along with code
rates from 0.05 to 0.95. The reduction is relative to the 2b-
SC-Precomputation decoder which so far is known to be the
fastest. The figure shows at least 60% latency reduction can be
achieved by our proposed design. This is very promising for
many applications where high rate channel codes are needed,
such as for data storage system.

Additionally, we implemented the proposed design with
V erilog for the polar code with length=1024 and synthe-
sized it using Nangate FreePDK 45nm process with
Synopsys Design Complier. We calculated the throughput
for (1024, 870) and (1024, 512) polar codes. Table III shows
the synthesis result for (1024, 870) and (1024, 512) polar
codes. Notice that the maximum frequency is higher than that
reported in [8] which use the same process as our design. Our
design in theory should have a lower maximum frequency since
we have one more Mux delay for regular and fast constituent
polar codes. This performance improving is attributable to the
modification we have done to PU as described in section III-C.

TABLE III. SYNTHESIS RESULT FOR (1024, 870) AND (1024, 512)
POLAR CODES

Silicon Area (µm2) 275899
Max Frequency (GHz) 1.04

Latency (1024,870) (clock cycle) 156
Throughtput(1024,870) (Gbps) 5.81

Latency (1024,512) (clock cycle) 266
Throughtput(1024,512) (Gbps) 2.01

V. CONCLUSION

In this paper, we proposed a hardware architecture of fast-
SSC algorithm for polar codes. By exploiting the similarity
between the decoding processing of fast constituent and regular
polar codes, proposed design overcomes the disadvantage of
fast-SSC decoder that lacking decoding flexibility with respect
to multiple code rates. Corresponding scheduling plan and the
intendedly designed PU are also described. Result shows that
proposed design significantly increase the decoding throughput
of polar codes compared with other state-of-art SC decoders.

Figure 5.6: Effect of quantization on the BER/FER performance of a (1024, 512)
polar code.

0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

B
E

R
/F

E
R

FER (3,5,0)
FER (4,4,0)
FER (4,5,0)
FER (5,6,1)
FER floating point
BER (3,5,0)
BER (4,4,0)
BER (4,5,0)
BER (5,6,1)
BER floating point

Fig. 5. Effect of quantization on the BER/FER performance of (1024, 512)
code

hold this value for the later clock cycles. The input source
is chosen by Mode select 3 signal. Since every PU does
exclusive-or operation to the sign bit of two inputs, according
to Eq. (5), the sign bit of the final value in stage 0 should be
equal to the parity. Eq. (7) can be performed using an XOR
gate. The PU that contains the minimum LLR receives the
parity check bit and the others receive 0s. The transmission
of parity check bit is done by the PTU which is a two
input two output module. One input is the parity check bit
(PCB) and the other is the select signal (SS). The parity
check bit is transmitted via output 1 (O1) or output 2 (O2)
bases on the values of SS. Table. I shows the truth table of
PTU. We can obtain the logic expression of O1 and O2 as:
O1 = PCB and SS , O2 = PCB and SS. This can be
done by two and gates and one Inverter.

TABLE I. TRUTH TABLE OF PTU

PCB SS O1 O2 PCB SS O1 O2
0 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1

The PU in stage0, as denote PU0 in Fig. 3, has a simpler
architecture. Fig. 4b shows the design details of PU0. Since
only one more clock cycle need for single parity check, there is
no feed back to this register. Furthermore, N SPC cannot exist
in stage0. So top part in Fig. 4a which is relative to single
parity check can be removed. For g function and N REP , the
output of f function can be feed back to it immediately, and
the sign bit of the result of adding is the partial sum for N REP .

D. Fixed point analysis

Fig. 5 shows the effect of quantization on the (1024, 512)
polar code. For channel outputs and inner LLRs, we use
separate quantization schemes. The quantization schemes are
shown in (C, L, F) format. Where C, L and F are the number
of bits used for presenting channel output, inner LLRs and frac-
tion parts of both channel output and LLRs, respectively. Since
no multiplication or division used, which means the length
of fraction does not change, channel outputs and inner LLRs
use the same fraction precision. As the result of the trade-off
between hardware efficiency and decoding performance, we
choose (4, 5, 0) quantization scheme in our design.

IV. HARDWARE ANALYSIS AND COMPARISON

Table. II shows the hardware comparisons between pro-
posed design and other state-of-the-art designs. All the candi-
dates are (n, k) SC decoder with tree architectures, and they all

TABLE II. HARDWARE COMPARISON OF DIFFERENT (n, k) SC
DECODER WITH q-BIT QUANTIZATION FOR INNER LLRS USING TREE

ARCHITECTURE

Hardware Type [7] [4] [8] Proposed Design
of PU n − 1 n − 1 n − 1 n − 1

of PTU 0 0 0 2/n − 1
of 1 bit REG ≈ 3qn ≈ qn ≈ 3qn ≈ (3q + 1)n

HC 1.3 1 1.3 1.31
Latency (clock cycle) n − 1 2n − 2 0.75n − 1 ≈ (0.1 ∼ 0.3)n

Throughput 2 1 2.67 ≈ 6.69 ∼ 22.26
Throughput/HC 1.53 1 1.74 5.1 ∼ 16.99

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

70

80

90

Code Rate

L
at

en
cy

 R
ed

uc
tio

n(
%

)

Fig. 6. Latency Reduction vs. Code Rate

use q-bit quantization for inner LLRs. All the throughputs and
hardware complexity (HC) are normalized to the SC decoder
in [4], and the hardware complexity is estimated based on
the synthesis results. The latency for proposed design is a
range with respect to the code rates change from 0.05 to 0.95.
From this table, we can see that our proposed design achieves
the highest throughput per unit of hardware complexity. The
exact latency depends on the code rate. Fig. 6 shows the
latency reduction of the proposed design along with code
rates from 0.05 to 0.95. The reduction is relative to the 2b-
SC-Precomputation decoder which so far is known to be the
fastest. The figure shows at least 60% latency reduction can be
achieved by our proposed design. This is very promising for
many applications where high rate channel codes are needed,
such as for data storage system.

Additionally, we implemented the proposed design with
V erilog for the polar code with length=1024 and synthe-
sized it using Nangate FreePDK 45nm process with
Synopsys Design Complier. We calculated the throughput
for (1024, 870) and (1024, 512) polar codes. Table III shows
the synthesis result for (1024, 870) and (1024, 512) polar
codes. Notice that the maximum frequency is higher than that
reported in [8] which use the same process as our design. Our
design in theory should have a lower maximum frequency since
we have one more Mux delay for regular and fast constituent
polar codes. This performance improving is attributable to the
modification we have done to PU as described in section III-C.

TABLE III. SYNTHESIS RESULT FOR (1024, 870) AND (1024, 512)
POLAR CODES

Silicon Area (µm2) 275899
Max Frequency (GHz) 1.04

Latency (1024,870) (clock cycle) 156
Throughtput(1024,870) (Gbps) 5.81

Latency (1024,512) (clock cycle) 266
Throughtput(1024,512) (Gbps) 2.01

V. CONCLUSION

In this paper, we proposed a hardware architecture of fast-
SSC algorithm for polar codes. By exploiting the similarity
between the decoding processing of fast constituent and regular
polar codes, proposed design overcomes the disadvantage of
fast-SSC decoder that lacking decoding flexibility with respect
to multiple code rates. Corresponding scheduling plan and the
intendedly designed PU are also described. Result shows that
proposed design significantly increase the decoding throughput
of polar codes compared with other state-of-art SC decoders.

Figure 5.7: The trend of latency reductions on code rates.

43

6. OVERLAPPING-PATH LIST SUCCESSIVE CANCELLATION DECODER

In order to make polar codes more competitive, the list SC (LSC) decoding

algorithm is presented in [14]. As aforementioned, by overlapping the decoding

paths on a single tree and applying the multiple-bit decision, the overlapping-path

list successive cancellation decoder significantly improve the LSC decoder efficiency.

Following the details of the overlapping-path list successive cancellation (OPLSC)

is presented.

6.1 VLSI Architecture

Figure 6.1 shows the architecture of proposed approach and the example of the

modified architecture of SC decoders associated with the list sizes two and four.

Since the duplicates of SC decoder involve the most hardware complexity, only one

instance of SC decoder is left in the architecture.

In the OPLSC, every path is computed simultaneously in the decoding threads

by judiciously utilizing the decoder hardware as follows: The computation of each

path is overlapped with others’ in the pipeline arrangement. The architecture of SC

decoder is modified to support this paradigm. Since modifications are made only

on architecture and scheduling plan, no decoding performance gain loss or change

is incurred. The sorting module, metrics computation units (MCU), and related

memory components are compatible with other LSC decoders, and the partial sum

generator is scheduled in a similar way to be compatible with the path-overlapping

SC decoder. In the following sections, the details of the scheme and the specific LSC

decoder are discussed.

44

SC Decoder

Metrics

Computation Unit

Path Metrics

Memory

LLR and Partial

Sum Memory

Survival

Path

Memory

Decoding

Output

Sorting

Module

PU

PU

PU

PU

PU

PU

PU

PU

PU

...

...

...

...

...

...

...

…
…

…
…

…
…

.

PU

Example of 2 paths

overlapping SC decoder

PU

PU

PU

PU

PU PU
PU

PU

...

...

...

...

...

...

...

…
…

…
…

…
…

.

PU

Example of 4 paths

overlapping SC decoder

PU

PU

PU

PU

PU

Fig. 2. The architecture of proposed design

reserves only one survival path every layer. If multiple paths
are reserved in every layer, it is LSC decoding. The more paths
survive, the higher chances the correct codeword can be found.
Fig. 1 shows an example of LSC decoding with list size 4 for
(8, 4) polar code from codeword tree aspect.

B. Conventional architecture of LSC

For the LSC algorithm, every information bit can derive
two candidate paths, which are used to represent the decision
of bit as 0 or 1. Each path has its own path metric which
is corresponding to its survival probability. When performing
the LSC decoding, l paths are expanded to 2l paths for each
estimated information bits. Then the metrics of 2l paths are
calculated to decide the l survivals. All the corresponding inner
log likelihood ratios (LLRs) and partial sum of the reserved
paths need to be kept along with l paths as well. Finally, the
l paths are fed back to SC decoders and do all the steps again
and again until the last information bit is decoded.

Although all the LSC designs mentioned in Section I
have differences at some details, the main architecture are
similar. Typically, for a LSC decoder, it has l copies of
SC decoders and one metrics computation units (MCU), one
sorting module and three memory banks with respect to path
metrics, current survival paths and LLRs and partial sums. The
SC decoder consists of multiple processing units (PUs) with a
tree architecture which consumes most of hardware resources.
Such duplications of SC decoder yield a significant hardware
redundancy of LSC decoder design. In our proposed design,
we are trying to avoid such unnecessary redundancy.

III. PROPOSED APPROACH

In this section we present our path-overlapping approach
and discuss how performance optimization is carried out. Fig. 2
shows the architecture of proposed approach and the examples
of the modified architecture of SC decoders associated with
the list sizes two and four. Since the duplications of SC
decoder involves the most hardware complexity, we removed
all the copies and kept only one SC decoder. However, this
modification of architecture does not mean that we just simply
change parallel computing to a single-threaded lazy serial

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 2 1 1 2 1 1 3 2 1 1 L w 2 1 L w 1 L p

2 3 2 1 1 2 1 1

u 1 u 2 u 3 u 4

S=Metrics Sorting, C = LLR copying

Path

NO.

clock cycle

S&C S&C S

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 3 2 1 1 2 1 1 3 2 1 1 2 1 1

2 3 2 1 1 2 1 1

3 2 1 1

4 2 1 1

u 1 u 2 u 3 u 4

S

&

C

S

clock cyclePath

NO.

S=Metrics Sorting, C = LLR copying

L w L p

(b)

Fig. 3. Decoding schedule of the path-overlapping scheme for (8, 4) polar
code with (a) list size = 2 and (b) list size = 4

approach that computes one path at a time. Instead, every
path is computed simultaneously in the decoding threads by
judiciously utilizing the decoder hardware as follows: The
processing timing of each path is overlapped with others in
the pipeline arrangement. The architecture of SC decoder is
modified to support this new paradigm. Since modifications are
made only on architecture and scheduling plan, no decoding
performance gain loss or change is incurred. The sorting mod-
ule, MCU, and related memory components are compatible
with other LSC decoders, and the partial sum generator is
scheduled a similar way to be compatible with the path-
overlapping SC decoder. Thus we do not discuss that in this
paper. In the next subsections, the details of the scheme and
the specific SC decoder are discussed.

A. Path-Overlapping Scheme and Relevant Analysis

Simultaneous processing approach is already presented in
some SC decoders, and it is used for multiple frames in order
to increase the throughput [8]. The SC decoder with tree ar-
chitecture consists of multiple processing unites (PU) arranged
like a binary tree. For every clock cycle, only one stage of
PUs in the tree is activated. The basic idea of simultaneous
processing approach is activating multiple decoding stages in
one clock cycle by feeding in several frames in pipeline. This
means that each frame comes into the decoder with one clock
cycle delay.

Stemming from above idea, we realize that the duplications
of SC decoder in conventional LSC decoder is unnecessary.
All the paths can be fed into the same decoder in pipelined
fashion. Different stages in the single SC decoder can process
different paths simultaneously. Computations of successive
paths are overlapped in temporal with only one clock cycle
delay. However, the decoding scheme is not exactly the same
as multiple frames overlapping SC decoder. Fig. 3a and Fig. 3b
show the decoding schedule of two and four path-overlapping
scheme, respectively. The number means current activated
stages, and the duplicated stage is marked with gray. According
to [8], if a SC decoder is with l path-overlapping scheme,
where l ≤ (2i − 1), it can be constructed by duplicating
(2i−1 − 1) stages, where the index starts from the information
bits side with respect to the tree architecture. The duplication
plan is also presented in Fig. 2. Noticeably in Fig. 3b there
is only one duplication of stage one, which is not the same
as what presented in Fig. 2. This is because the number of
copies in Fig 2 are the minimum requirement for all the case.
The actual requirement is decided by the code length and rate.
Fig. 3b is just a certain case only one stage duplication is
needed for four path-overlapping scheme.

Figure 6.1: The overall architecture of overlapping-path list successive cancellation
decoder.

6.2 Path-Overlapping Scheme

Simultaneous processing approach is already presented in some SC decoders,

where multiple frames are computed in an overlapped fashion so as to increase the

throughput [49]. The SC decoder with tree architecture consists of multiple process-

ing unites (PU) arranged like a binary tree. For every clock cycle, only one stage of

PUs in the tree is activated. The basic idea of simultaneous processing approach is

45

SC Decoder

Metrics

Computation Unit

Path Metrics

Memory

LLR and Partial

Sum Memory

Survival

Path

Memory

Decoding

Output

Sorting

Module

PU

PU

PU

PU

PU

PU

PU

PU

PU

...

...

...

...

...

...

...

…
…

…
…

…
…

.

PU

Example of 2 paths

overlapping SC decoder

PU

PU

PU

PU

PU PU
PU

PU

...

...

...

...

...

...

...

…
…

…
…

…
…

.

PU

Example of 4 paths

overlapping SC decoder

PU

PU

PU

PU

PU

Fig. 2. The architecture of proposed design

reserves only one survival path every layer. If multiple paths
are reserved in every layer, it is LSC decoding. The more paths
survive, the higher chances the correct codeword can be found.
Fig. 1 shows an example of LSC decoding with list size 4 for
(8, 4) polar code from codeword tree aspect.

B. Conventional architecture of LSC

For the LSC algorithm, every information bit can derive
two candidate paths, which are used to represent the decision
of bit as 0 or 1. Each path has its own path metric which
is corresponding to its survival probability. When performing
the LSC decoding, l paths are expanded to 2l paths for each
estimated information bits. Then the metrics of 2l paths are
calculated to decide the l survivals. All the corresponding inner
log likelihood ratios (LLRs) and partial sum of the reserved
paths need to be kept along with l paths as well. Finally, the
l paths are fed back to SC decoders and do all the steps again
and again until the last information bit is decoded.

Although all the LSC designs mentioned in Section I
have differences at some details, the main architecture are
similar. Typically, for a LSC decoder, it has l copies of
SC decoders and one metrics computation units (MCU), one
sorting module and three memory banks with respect to path
metrics, current survival paths and LLRs and partial sums. The
SC decoder consists of multiple processing units (PUs) with a
tree architecture which consumes most of hardware resources.
Such duplications of SC decoder yield a significant hardware
redundancy of LSC decoder design. In our proposed design,
we are trying to avoid such unnecessary redundancy.

III. PROPOSED APPROACH

In this section we present our path-overlapping approach
and discuss how performance optimization is carried out. Fig. 2
shows the architecture of proposed approach and the examples
of the modified architecture of SC decoders associated with
the list sizes two and four. Since the duplications of SC
decoder involves the most hardware complexity, we removed
all the copies and kept only one SC decoder. However, this
modification of architecture does not mean that we just simply
change parallel computing to a single-threaded lazy serial

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 2 1 1 2 1 1 3 2 1 1 L w 2 1 L w 1 L p

2 3 2 1 1 2 1 1

u 1 u 2 u 3 u 4

S=Metrics Sorting, C = LLR copying

Path

NO.

clock cycle

S&C S&C S

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 3 2 1 1 2 1 1 3 2 1 1 2 1 1

2 3 2 1 1 2 1 1

3 2 1 1

4 2 1 1

u 1 u 2 u 3 u 4

S

&

C

S

clock cyclePath

NO.

S=Metrics Sorting, C = LLR copying

L w L p

(b)

Fig. 3. Decoding schedule of the path-overlapping scheme for (8, 4) polar
code with (a) list size = 2 and (b) list size = 4

approach that computes one path at a time. Instead, every
path is computed simultaneously in the decoding threads by
judiciously utilizing the decoder hardware as follows: The
processing timing of each path is overlapped with others in
the pipeline arrangement. The architecture of SC decoder is
modified to support this new paradigm. Since modifications are
made only on architecture and scheduling plan, no decoding
performance gain loss or change is incurred. The sorting mod-
ule, MCU, and related memory components are compatible
with other LSC decoders, and the partial sum generator is
scheduled a similar way to be compatible with the path-
overlapping SC decoder. Thus we do not discuss that in this
paper. In the next subsections, the details of the scheme and
the specific SC decoder are discussed.

A. Path-Overlapping Scheme and Relevant Analysis

Simultaneous processing approach is already presented in
some SC decoders, and it is used for multiple frames in order
to increase the throughput [8]. The SC decoder with tree ar-
chitecture consists of multiple processing unites (PU) arranged
like a binary tree. For every clock cycle, only one stage of
PUs in the tree is activated. The basic idea of simultaneous
processing approach is activating multiple decoding stages in
one clock cycle by feeding in several frames in pipeline. This
means that each frame comes into the decoder with one clock
cycle delay.

Stemming from above idea, we realize that the duplications
of SC decoder in conventional LSC decoder is unnecessary.
All the paths can be fed into the same decoder in pipelined
fashion. Different stages in the single SC decoder can process
different paths simultaneously. Computations of successive
paths are overlapped in temporal with only one clock cycle
delay. However, the decoding scheme is not exactly the same
as multiple frames overlapping SC decoder. Fig. 3a and Fig. 3b
show the decoding schedule of two and four path-overlapping
scheme, respectively. The number means current activated
stages, and the duplicated stage is marked with gray. According
to [8], if a SC decoder is with l path-overlapping scheme,
where l ≤ (2i − 1), it can be constructed by duplicating
(2i−1 − 1) stages, where the index starts from the information
bits side with respect to the tree architecture. The duplication
plan is also presented in Fig. 2. Noticeably in Fig. 3b there
is only one duplication of stage one, which is not the same
as what presented in Fig. 2. This is because the number of
copies in Fig 2 are the minimum requirement for all the case.
The actual requirement is decided by the code length and rate.
Fig. 3b is just a certain case only one stage duplication is
needed for four path-overlapping scheme.

(a)

SC Decoder

Metrics

Computation Unit

Path Metrics

Memory

LLR and Partial

Sum Memory

Survival

Path

Memory

Decoding

Output

Sorting

Module

PU

PU

PU

PU

PU

PU

PU

PU

PU

...

...

...

...

...

...

...

…
…

…
…

…
…

.

PU

Example of 2 paths

overlapping SC decoder

PU

PU

PU

PU

PU PU
PU

PU

...

...

...

...

...

...

...

…
…

…
…

…
…

.

PU

Example of 4 paths

overlapping SC decoder

PU

PU

PU

PU

PU

Fig. 2. The architecture of proposed design

reserves only one survival path every layer. If multiple paths
are reserved in every layer, it is LSC decoding. The more paths
survive, the higher chances the correct codeword can be found.
Fig. 1 shows an example of LSC decoding with list size 4 for
(8, 4) polar code from codeword tree aspect.

B. Conventional architecture of LSC

For the LSC algorithm, every information bit can derive
two candidate paths, which are used to represent the decision
of bit as 0 or 1. Each path has its own path metric which
is corresponding to its survival probability. When performing
the LSC decoding, l paths are expanded to 2l paths for each
estimated information bits. Then the metrics of 2l paths are
calculated to decide the l survivals. All the corresponding inner
log likelihood ratios (LLRs) and partial sum of the reserved
paths need to be kept along with l paths as well. Finally, the
l paths are fed back to SC decoders and do all the steps again
and again until the last information bit is decoded.

Although all the LSC designs mentioned in Section I
have differences at some details, the main architecture are
similar. Typically, for a LSC decoder, it has l copies of
SC decoders and one metrics computation units (MCU), one
sorting module and three memory banks with respect to path
metrics, current survival paths and LLRs and partial sums. The
SC decoder consists of multiple processing units (PUs) with a
tree architecture which consumes most of hardware resources.
Such duplications of SC decoder yield a significant hardware
redundancy of LSC decoder design. In our proposed design,
we are trying to avoid such unnecessary redundancy.

III. PROPOSED APPROACH

In this section we present our path-overlapping approach
and discuss how performance optimization is carried out. Fig. 2
shows the architecture of proposed approach and the examples
of the modified architecture of SC decoders associated with
the list sizes two and four. Since the duplications of SC
decoder involves the most hardware complexity, we removed
all the copies and kept only one SC decoder. However, this
modification of architecture does not mean that we just simply
change parallel computing to a single-threaded lazy serial

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 2 1 1 2 1 1 3 2 1 1 L w 2 1 L w 1 L p

2 3 2 1 1 2 1 1

u 1 u 2 u 3 u 4

S=Metrics Sorting, C = LLR copying

Path

NO.

clock cycle

S&C S&C S

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 3 2 1 1 2 1 1 3 2 1 1 2 1 1

2 3 2 1 1 2 1 1

3 2 1 1

4 2 1 1

u 1 u 2 u 3 u 4

S

&

C

S

clock cyclePath

NO.

S=Metrics Sorting, C = LLR copying

L w L p

(b)

Fig. 3. Decoding schedule of the path-overlapping scheme for (8, 4) polar
code with (a) list size = 2 and (b) list size = 4

approach that computes one path at a time. Instead, every
path is computed simultaneously in the decoding threads by
judiciously utilizing the decoder hardware as follows: The
processing timing of each path is overlapped with others in
the pipeline arrangement. The architecture of SC decoder is
modified to support this new paradigm. Since modifications are
made only on architecture and scheduling plan, no decoding
performance gain loss or change is incurred. The sorting mod-
ule, MCU, and related memory components are compatible
with other LSC decoders, and the partial sum generator is
scheduled a similar way to be compatible with the path-
overlapping SC decoder. Thus we do not discuss that in this
paper. In the next subsections, the details of the scheme and
the specific SC decoder are discussed.

A. Path-Overlapping Scheme and Relevant Analysis

Simultaneous processing approach is already presented in
some SC decoders, and it is used for multiple frames in order
to increase the throughput [8]. The SC decoder with tree ar-
chitecture consists of multiple processing unites (PU) arranged
like a binary tree. For every clock cycle, only one stage of
PUs in the tree is activated. The basic idea of simultaneous
processing approach is activating multiple decoding stages in
one clock cycle by feeding in several frames in pipeline. This
means that each frame comes into the decoder with one clock
cycle delay.

Stemming from above idea, we realize that the duplications
of SC decoder in conventional LSC decoder is unnecessary.
All the paths can be fed into the same decoder in pipelined
fashion. Different stages in the single SC decoder can process
different paths simultaneously. Computations of successive
paths are overlapped in temporal with only one clock cycle
delay. However, the decoding scheme is not exactly the same
as multiple frames overlapping SC decoder. Fig. 3a and Fig. 3b
show the decoding schedule of two and four path-overlapping
scheme, respectively. The number means current activated
stages, and the duplicated stage is marked with gray. According
to [8], if a SC decoder is with l path-overlapping scheme,
where l ≤ (2i − 1), it can be constructed by duplicating
(2i−1 − 1) stages, where the index starts from the information
bits side with respect to the tree architecture. The duplication
plan is also presented in Fig. 2. Noticeably in Fig. 3b there
is only one duplication of stage one, which is not the same
as what presented in Fig. 2. This is because the number of
copies in Fig 2 are the minimum requirement for all the case.
The actual requirement is decided by the code length and rate.
Fig. 3b is just a certain case only one stage duplication is
needed for four path-overlapping scheme.

(b)

Figure 6.2: Decoding schedule of the path-overlapping scheme for 2 lists (a) and 4 lists (b).

46

to activate multiple decoding stages in one clock cycle by feeding in several frames

in pipeline. This means that each frame comes into the decoder with one clock cycle

delay.

Similar as the idea for SC decoder, it is found that the duplicates of SC decoder in

conventional LSC decoder is unnecessary, since all the paths can be fed into the same

decoder in pipelined fashion. Different stages in the single SC decoder can process

different paths simultaneously. Computations of successive paths are overlapped in

temporal with only one clock cycle delay. However, the decoding scheme is not

exactly the same as multiple frames overlapping SC decoder. Figure 6.2a and 6.2b

show the decoding schedules of two and four path-overlapping scheme, respectively.

The number means current activated stages, and the duplicated stage is marked

with gray. If a SC decoder is with l path-overlapping scheme, where l(2i1), it can be

constructed by duplicating (2i11) stages, where the index starts from the information

bits side with respect to the tree architecture. The duplication plan is also presented

in Figure 6.1. Noticeably in Figure 6.2b there is only one duplication of stage one,

which is not the same as what presented in Figure 6.1. This is because the number

of copies in Figure 6.1 are the minimum requirement for all the case. The actual

requirement is decided by the code length and rate. Figure 6.2b is just a specific

case where only one stage duplication is needed for four path-overlapping scheme.

Such architecture significantly reduces hardware complexity. Another advantage

of OPLSC is that it reduces the critical path length of decoder. Usually, the critical

path lies in the sorting block. For a conventional LSC decoder, the sorting block is

composed of staged combination logic. Even for very small list size, e. g. list = 4, the

critical path is much longer than any other module. With proposed approach, since

each path metrics comes with pipeline arrangement, naturally, the sorting block is

designed as a pipeline module which has a shorter critical path than that of com-

47

bination logic for the same list size. This means, by applying proposed approach,

OPLSC decoder can run at a much higher frequency.

Although proposed approach can achieve a higher frequency compared with the

conventional LSC decoder, there are some additional clock cycles introduced. These

consist of two parts. The first part is the path pipeline latency Lp. Since all paths

are fed into decoder with one clock cycle delay, for the OPLSC with list size l,

Lp = (l−1). The second part is path waiting latency Lw. After the number of path

extending to the maximum, the pipeline processing has to suspend when estimating

the newly generated information bit since the decoder needs to wait for all the paths

to finish before commencing metric sorting and LLR copying. This waiting period

is referred to as pipeline stalling. The waiting time is equal to Lp. Thus, for the list

size l LSC with respect to (n, k) polar code, Lw = (k− log2l−1) · (l−1). Thus, the

total latency overhead introduced by path-overlapping scheme Lm can be calculated

by:

Lm = Lw + Lp = (k − log2l) · (l − 1). (6.1)

Although the hardware complexity for LSC is significantly reduced by OPLSC,

and it incurs few additional clock cycles to achieve the improvement. Thus, it is

difficult to evaluate such design approach merely in term of the usage of hardware

resource or the latency. Thus we introduce the hardware efficiency (HE) metric which

is noted as e to measure the performance of proposed approach[50]. The e is defined

as: e = Throughput/Area.

From Eq. (6.1), it is shown that the latency overhead would significantly aggregate

with either list size or code rate, which can significantly diminish the e. In order to

achieve a high e with OPLSC architecture, the latency overhead must be reduced to

an acceptable level. In the next sections, we will present three approaches aimed at

48

decreasing the latency overhead.

6.2.1 Latency Reduction via Multi-Decision List SC Decoding

Such architecture significantly reduces hardware complex-
ity. Another advantage of proposed approach is that it can
reduce the critical path length of decoder. Usually, the critical
path lies in the sorting block. For conventional LSC decoder,
the sorting block is composed of staged combination logic.
Even for very small list size, e. g. list = 4, the critical path is
much longer than any other module. With proposed approach,
since each path metrics comes with pipeline arrangement,
naturally, the sorting block is designed as a pipeline module
which has a shorter critical path than that of combination
logic for the same list size. This means, by applying proposed
approach, LSC decoder can run at a much higher frequency.

Although proposed approach can achieve a higher fre-
quency compared with the conventional LSC decoder, there
are some additional clock cycles introduced. These consist of
two parts. The first part is the path pipeline latency Lp. Since
all the paths are fed into decoder with one clock cycle delay,
for the LSC with list size l, Lp = (l − 1). The second
part is path waiting latency Lw. After the number of path
extending to the maximum, the pipeline processing has to
suspend when estimating the newly generated information bit
since the decoder needs to wait for all the paths to finish before
commencing metric sorting and LLR copying. This waiting
period is referred to as pipeline stalling. The waiting time is
equal to Lp. Thus, for the list size l LSC with respect to (n, k)
polar code, Lw = (k − log2l − 1) · (l − 1). Thus, the total
latency overhead introduced by path-overlapping scheme Lm
can be calculated by:

Lm = Lw + Lp = (k − log2l) · (l − 1). (1)

This design approach can be applied to any current existing
LSC decoders. It significantly reduce the hardware complexity
by eliminating redundant instances, and it incurs few additional
clock cycles to achieve the improvement. Thus, it is difficult
to evaluate such design approach merely in term of the usage
of hardware resource or the latency. Thus we introduce the
hardware efficiency (HE) metric which is noted as e to measure
the performance of proposed approach. The e is defined as:
e = Throughput/Area.

From Eq. (1), we can tell that the latency overhead would
significantly aggregate with either list size or code rate, which
can significantly diminish the e. In order to achieve a high e
with proposed approach, the latency overhead must be reduced
to an acceptable level. In the next sections, we will present
three approaches aimed at decreasing the latency overhead.

B. Latency Reduction via Multi-Decision List SC Decoding

The first part of Eq. (1) corresponds to the path waiting
latency. For every instance of estimating an information bit,
the pipeline processing has to suspend until all the paths finish
calculations. This provides an observation that if the times of
estimating the information bit can be reduced, the Lw will
decrease significantly.

Multi-decision is an approach of estimating m bits (m > 1)
instead of just one at the same time. It helps to reduce the
number of estimations. Many approaches can be regarded
as multi-decision [7] [9] [10] [11]. Generally, they can be
classified into two types. The first type is referred to as regular
mutil-decision decoder; it estimates m bits (m > 0) every
time. Most of current multi-decision decoders belong to this
type [7] [9]. The second type is called irregular mutil-decision
decoders; the number of bits estimated every time is not fixed.
Currently, only the list fast-SSC decoder [11] belong to this
type. It simplifies the SC decoding by finding certain pattern in

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

Code Rate

L
at

en
cy

 O
ve

rh
ea

d(
cl

oc
k

cy
cl

e)

single bit decision
2−bit decision
4−bit decision
irregular multi−decision

Fig. 4. latency overhead for different scheme

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Conventioanl

Path Overlapped

Scheme

Path-LLR-

Compute-Ahead

Scheme

T

Discard

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Fig. 5. decoding schedule of path-LLR-compute-ahead scheme

the codewords. Such subcodes with certain pattern also refer
to constituent codes. The number of bits estimated every time
is corresponding to the size of constituent code. Besides, the
distribution of constituent codes irregularly change along with
code rate.

For path-overlapping LSC decoder with mutil-decision, Lm
can be further reduced to Lm = α ·(l−1). For m bits regular
mutil-decision, α = ⌈(k − log2l)/m⌉. For irregular mutil-
decision, α = S − log2l where S is the total number of
constituent codes which irregularly changes along with code
rate. Fig. 4 shows the latency overhead of different schemes
for LSC decoder with code length n = 1024 and list size
l = 4. We can see that all the mutil-decision schemes can
significantly reduce latency overhead, and as increasing of
code rate, the irregular mutil-decision scheme can still keep
a very low latency overhead.

C. Latency Reduction via Path-LLR-Compute-Ahead Scheme

Besides reducing the number of estimations, the other
approach to decrease latency overhead is by avoiding the
pipeline stalling. This can be done via path-LLR-compute-
ahead scheme (PLCAS). Fig. 5 shows this decoding schedule.
A single bar means the decoding process between estimations
of two successive information bits. When pipeline stalling
happens in one path, instead of waiting, current path can do
a pre-estimated between two candidates (0 and 1) which it
solely generates without suspension. The pipeline processing
continues with the one with larger metrics and keeps the other
to compared with the next coming paths. If more suitable paths
are found later, the previous computed ones are discarded. With
this scheme, the Lm for the best case is equal to pipeline
latency Lp, which means the entire processing is handled
without any stalling, and the Lm for the worst case is equal
to simple path-overlapping scheme.

D. Latency Reduction via Adaptive LSC Decoding

In Eq. (1), the second part of the formulation is equal to the
Lp. It is determined by the number of paths set in the pipeline.
This makes the latency overhead increas linearly with respect
to the list size l. If we can decrease the value, the latency
overhead can be significantly reduced. Typically, Lp is fixed

Figure 6.3: The total latency overhead versus the polar codes rates.

The first part of Equation (6.1) corresponds to the path waiting latency. For every

instance of estimating an information bit, the pipeline processing has to suspend until

all the paths finish calculations. This provides an observation that if the times of

estimating the information bit can be reduced, the Lw will decrease significantly.

Multi-decision is an approach of estimating m bits (m > 1) instead of just one at

the same time. It helps to reduce the number of estimations. Many approaches can

be regarded as multi-decision [43, 47, 51, 52]. Generally, they can be classified into

two types. The first type is referred to as regular mutil-decision decoder; it estimates

m bits (m > 0) every time. Most of current multi-decision decoders belong to this

type [47,51]. The second type is called irregular mutil-decision decoders; the number

of bits estimated every time is not fixed. Currently, only the list fast-SSC decoder [52]

49

belong to this type. It simplifies the SC decoding by utilizing constituent codes. The

number of bits estimated every time is corresponding to the size of constituent code.

Besides, the distribution of constituent codes irregularly change along with code rate.

For path-overlapping LSC decoder with mutil-decision, Lm can be further reduced

to Lm = α · (l − 1). For m bits regular mutil-decision, α = d(k − log2l)/me. For

irregular mutil-decision, α = S − log2l where S is the total number of constituent

codes which irregularly changes along with code rate. Figure 6.3 shows the latency

overhead of different schemes for LSC decoder with code length n = 1024 and list

size l = 4. We can see that all the mutil-decision schemes can significantly reduce

latency overhead, and as increasing of code rate, the irregular mutil-decision scheme

can still keep a very low latency overhead.

6.2.2 Latency Reduction via Path-LLR-Compute-Ahead Scheme

Such architecture significantly reduces hardware complex-
ity. Another advantage of proposed approach is that it can
reduce the critical path length of decoder. Usually, the critical
path lies in the sorting block. For conventional LSC decoder,
the sorting block is composed of staged combination logic.
Even for very small list size, e. g. list = 4, the critical path is
much longer than any other module. With proposed approach,
since each path metrics comes with pipeline arrangement,
naturally, the sorting block is designed as a pipeline module
which has a shorter critical path than that of combination
logic for the same list size. This means, by applying proposed
approach, LSC decoder can run at a much higher frequency.

Although proposed approach can achieve a higher fre-
quency compared with the conventional LSC decoder, there
are some additional clock cycles introduced. These consist of
two parts. The first part is the path pipeline latency Lp. Since
all the paths are fed into decoder with one clock cycle delay,
for the LSC with list size l, Lp = (l − 1). The second
part is path waiting latency Lw. After the number of path
extending to the maximum, the pipeline processing has to
suspend when estimating the newly generated information bit
since the decoder needs to wait for all the paths to finish before
commencing metric sorting and LLR copying. This waiting
period is referred to as pipeline stalling. The waiting time is
equal to Lp. Thus, for the list size l LSC with respect to (n, k)
polar code, Lw = (k − log2l − 1) · (l − 1). Thus, the total
latency overhead introduced by path-overlapping scheme Lm
can be calculated by:

Lm = Lw + Lp = (k − log2l) · (l − 1). (1)

This design approach can be applied to any current existing
LSC decoders. It significantly reduce the hardware complexity
by eliminating redundant instances, and it incurs few additional
clock cycles to achieve the improvement. Thus, it is difficult
to evaluate such design approach merely in term of the usage
of hardware resource or the latency. Thus we introduce the
hardware efficiency (HE) metric which is noted as e to measure
the performance of proposed approach. The e is defined as:
e = Throughput/Area.

From Eq. (1), we can tell that the latency overhead would
significantly aggregate with either list size or code rate, which
can significantly diminish the e. In order to achieve a high e
with proposed approach, the latency overhead must be reduced
to an acceptable level. In the next sections, we will present
three approaches aimed at decreasing the latency overhead.

B. Latency Reduction via Multi-Decision List SC Decoding

The first part of Eq. (1) corresponds to the path waiting
latency. For every instance of estimating an information bit,
the pipeline processing has to suspend until all the paths finish
calculations. This provides an observation that if the times of
estimating the information bit can be reduced, the Lw will
decrease significantly.

Multi-decision is an approach of estimating m bits (m > 1)
instead of just one at the same time. It helps to reduce the
number of estimations. Many approaches can be regarded
as multi-decision [7] [9] [10] [11]. Generally, they can be
classified into two types. The first type is referred to as regular
mutil-decision decoder; it estimates m bits (m > 0) every
time. Most of current multi-decision decoders belong to this
type [7] [9]. The second type is called irregular mutil-decision
decoders; the number of bits estimated every time is not fixed.
Currently, only the list fast-SSC decoder [11] belong to this
type. It simplifies the SC decoding by finding certain pattern in

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

1000

Code Rate

L
at

en
cy

 O
ve

rh
ea

d(
cl

oc
k

cy
cl

e)

single bit decision
2−bit decision
4−bit decision
irregular multi−decision

Fig. 4. latency overhead for different scheme

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Conventioanl

Path Overlapped

Scheme

Path-LLR-

Compute-Ahead

Scheme

T

Discard

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Fig. 5. decoding schedule of path-LLR-compute-ahead scheme

the codewords. Such subcodes with certain pattern also refer
to constituent codes. The number of bits estimated every time
is corresponding to the size of constituent code. Besides, the
distribution of constituent codes irregularly change along with
code rate.

For path-overlapping LSC decoder with mutil-decision, Lm
can be further reduced to Lm = α ·(l−1). For m bits regular
mutil-decision, α = ⌈(k − log2l)/m⌉. For irregular mutil-
decision, α = S − log2l where S is the total number of
constituent codes which irregularly changes along with code
rate. Fig. 4 shows the latency overhead of different schemes
for LSC decoder with code length n = 1024 and list size
l = 4. We can see that all the mutil-decision schemes can
significantly reduce latency overhead, and as increasing of
code rate, the irregular mutil-decision scheme can still keep
a very low latency overhead.

C. Latency Reduction via Path-LLR-Compute-Ahead Scheme

Besides reducing the number of estimations, the other
approach to decrease latency overhead is by avoiding the
pipeline stalling. This can be done via path-LLR-compute-
ahead scheme (PLCAS). Fig. 5 shows this decoding schedule.
A single bar means the decoding process between estimations
of two successive information bits. When pipeline stalling
happens in one path, instead of waiting, current path can do
a pre-estimated between two candidates (0 and 1) which it
solely generates without suspension. The pipeline processing
continues with the one with larger metrics and keeps the other
to compared with the next coming paths. If more suitable paths
are found later, the previous computed ones are discarded. With
this scheme, the Lm for the best case is equal to pipeline
latency Lp, which means the entire processing is handled
without any stalling, and the Lm for the worst case is equal
to simple path-overlapping scheme.

D. Latency Reduction via Adaptive LSC Decoding

In Eq. (1), the second part of the formulation is equal to the
Lp. It is determined by the number of paths set in the pipeline.
This makes the latency overhead increas linearly with respect
to the list size l. If we can decrease the value, the latency
overhead can be significantly reduced. Typically, Lp is fixed

Figure 6.4: Decoding schedule of OPLSC.

Besides reducing the number of estimations, the other approach to decrease la-

tency overhead is by avoiding the pipeline stalling, which can be achieved by over-

lapping multiple frames during the OPLSC decoding. Figure 6.4 shows this decoding

50

schedule. A single bar means the decoding process between estimations of two succes-

sive information bits. When pipeline stalling happens in one path, instead of waiting,

current path can do a pre-estimated between two candidates (0 and 1) which it solely

generates without suspension. The pipeline processing continues with the one with

larger metrics and keeps the other to compared with the next coming paths. If more

suitable paths are found later, the previous computed ones are discarded. With this

scheme, the Lm for the best case is equal to pipeline latency Lp, which means the

entire processing is handled without any stalling, and the Lm for the worst case is

equal to simple path-overlapping scheme.

6.2.3 Latency Reduction via Adaptive LSC Decoding

In Equation 6.1, the second part of the formulation is equal to the Lp. It is

determined by the number of paths existing in the pipeline. This makes the latency

overhead increase linearly with respect to the list size l. If we can decrease the list

size, the latency overhead can be significantly reduced. Typically, Lp is fixed for

a LSC with given length. However, by applying adaptive LSC algorithm [53], the

Lp is allowed to change on the fly according to current metrics of each path. The

list size would decrease along the decoding processing, which also means the latency

overhead would get reduction.

The summary of advantages of such techniques applied in OPLSC will be given

in the following section.

6.3 Performance and Analysis

Figure 6.5 shows the improvement of e with proposed design approach for widely

proposed LSC decoders with code length n = 1024 and list size l = 4. The x-axis is

the rate of polar codes, and the y-axis is the ratio of e with proposed approach over

e with original LSC decoders. OPLSC architecture is applied to four types of LSC

51

for a LSC with given length. However, by applying adaptive
LSC algorithm [12], the Lp is allowed to change on the fly
according to current metrics of each path. The list size would
decrease along the decoding processing, which also means the
latency overhead would get reduction.

In [12], basic hardware architecture is also proposed.
Even though the list size would decrease along the decoding
processing, the architecture proposed in [12] still needs l copies
of SC decoder for its initial status. The usage of hardware
resource is same as regular LSC decoder. Proposed approach
can exploit the metric of adaptive LSC decoder via cutting
down the unnecessary hardware complexity. With proposed
approach there is no redundant hardware even when the list
size decrease. Such property allows adaptive LSC decoder to
benefit more in term of e. This will be shown in section. IV.

IV. PERFORMANCE AND ANALYSIS

Fig. 6 shows the improvement of e with proposed design
approach for widely proposed LSC decoders with code length
n = 1024 and list size l = 4. The x-axis is the rate of
polar code, and the y-axis is the ratio of e with proposed
approach over e with ordinary approach. The e with ordinary
approach for a given LSC decoder has a consistent value.
We apply proposed approach to four types of LSC decoder.
They are conventional LSC decoder which also is regarded
as 1-bit decision LSC decoder, 4-bit decision LSC decoder,
irregular multi-bit decision decoder and the adaptive LSC
decoder. We also calculated the upper and lower bound of the
e improvement with PLCAS. These simulations are based on
the decoders described in [4], [7], [11] and [10], the related
synthesis results and the analysis we made in the previous
sections.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

Code Rate

En
er

gy
 E

ff
ic

ie
nc

y
Im

pr
ov

em
en

t o
f O

PL
SC

Curve 1: conventioanl (1-bit decision) LSC decoder
also the lower bound of LSC decoder with PLCAS
Curve 2: 4-bit decision LSC decoder
Curve 3: irregular multi-bit decision LSC decoder
Curve 4: adaptive LSC decoder
Curve 5: upper bound of LSC decoder with PLCAS

Fig. 6. the improvement of e with proposed design approach

In Fig. 6, all the curves are beyond the ratio of one, which
means with the proposed approach, all the decoders are able
to achieve a better hardware efficiency. According to curve
1 and curve 2, the hardware efficiency of regular decision
decoder, 1-bit and 4-bit decision decoder, is decreasing alone
with the code rate increasing. This is because the latency
overhead is larger at higher code rate. Besides, the regular
multi-bit (4-bit) decoder achieves more improvement of e
than that of conventional (1-bit) decoder, which is due to
the latency reduction as we described in section III-B. This
can easily derive that for n − bit-decision regular decoder,
the bigger the n, the more the improvement of e can be
achieved with proposed approach. Curve 1 and 5 indicate the
range of the e improvement with PLCAS. The actual value
depends on the channel outputs and channel quality. According
to curve 4 and curve 1, we can tell that the adaptive LSC
help proposed approach to dramatically increase the hardware
efficiency. Such increasing benefits from the decreasing of
latency overhead as we analyze in section III-D. Another very

interesting phenomenon is about the improvement of irregular
multi-bit decision (list fast-SSC decoder). The gain of e does
not change too much with code rate varying. This is because
the latency overhead of irregular multi-bit decision decoder
does not linearly change along with coder rate. The average
improvement of irregular multi-bit decision is less than that
of regular one. This is due to the inherent latency of irregular
LSC decoder is already very low [10].

Noticeably all the improvements are calculated based on
the assumption that the maximum frequency of decoder with
proposed approach or ordinary approach are the same. How-
ever, according to the analysis in section III-A, the maxi-
mum frequency of decoder with proposed approach should
be higher, which indicates that the improvements of e in
Fig. 6 should be even more in practice. Additionally, all the
approaches mentioned above are not conflicting with each
other. Using multiple approaches together can further increase
the hardware efficiency. The above mentioned properties in-
dicate that proposed approach can measurably contain the
hardware complexity associated with large scale LSC decoder
implementation.

V. CONCLUSION

This paper presents a novel design approach to improve
the hardware efficiency of LSC decoder via path-overlapping
scheme. The details of design approach and three strategies to
reduce the latency overhead are also presented. The numerical
results show that the conventionally used LSC decoders can
significantly achieve a higher hardware efficiency using the
proposed approach.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
Information Theory, IEEE Transactions on, vol. 55, no. 7, pp. 3051–
3073, 2009.

[2] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in Information Theory, 2009. ISIT 2009.
IEEE International Symposium on. IEEE, 2009, pp. 1488–1492.

[3] I. Tal and A. Vardy, “List decoding of polar codes,” in Information
Theory Proceedings (ISIT), 2011 IEEE International Symposium on.
IEEE, 2011, pp. 1–5.

[4] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg,
“Hardware architecture for list successive cancellation decoding of polar
codes,” Circuits and Systems II: Express Briefs, IEEE Transactions on,
vol. 61, no. 8, pp. 609–613, 2014.

[5] J. Lin and Z. Yan, “Efficient list decoder architecture for polar codes,”
in Circuits and Systems (ISCAS), 2014 IEEE International Symposium
on. IEEE, 2014, pp. 1022–1025.

[6] C. Zhang, X. You, and J. Sha, “Hardware architecture for list successive
cancellation polar decoder,” in Circuits and Systems (ISCAS), 2014
IEEE International Symposium on. IEEE, 2014, pp. 209–212.

[7] B. Yuan and K. Parhi, “Low-latency successive-cancellation list de-
coders for polar codes with multibit decision,” 2015.

[8] C. Zhang and K. Parhi, “Low-latency sequential and overlapped archi-
tectures for successive cancellation polar decoder,” Signal Processing,
IEEE Transactions on, vol. 61, no. 10, pp. 2429–2441, 2013.

[9] C. Xiong, J. Lin, and Z. Yan, “Symbol-based successive cancellation
list decoder for polar codes,” in Signal Processing Systems (SiPS), 2014
IEEE Workshop on. IEEE, 2014, pp. 1–6.

[10] T. Che, J. Xu, and G. Choi, “Tc: Throughput centric successive
cancellation decoder hardware implementation for polar codes,” arXiv
preprint arXiv:1504.06247, 2015.

[11] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Un-
rolled polar decoders, part ii: Fast list decoders,” arXiv preprint
arXiv:1505.01466, 2015.

[12] C. Zhang, Z. Wang, X. You, and B. Yuan, “Efficient adaptive list
successive cancellation decoder for polar codes,” in Signals, Systems
and Computers, 2014 48th Asilomar Conference on, Nov 2014, pp.
126–130.

Figure 6.5: The improvement of energy efficiency of OPLSC.

decoder. They are conventional LSC decoder which also is regarded as 1-bit decision

LSC decoder, 4-bit decision LSC decoder, irregular multi-bit decision decoder and

the adaptive LSC decoder. We also calculated the upper and lower bound of the e

improvement with PLCAS. These simulations are based on the decoders described

in [43,44,47,52].

In Figure 6.5, all the curves are beyond the ratio of one, which means with the

proposed approach, all the decoders are able to achieve a better hardware efficiency.

According to curve 1 and curve 2, the hardware efficiency of regular decision decoder,

1-bit and 4-bit decision decoder, is decreasing alone with the code rate increasing.

This is because the latency overhead is larger at higher code rate. Besides, the regular

multi-bit (4-bit) decoder achieves more improvement of e than that of conventional

(1-bit) decoder, which is due to the latency reduction as we described in section 6.2.1.

This can easily derive that for n− bit-decision regular decoder, the bigger the n, the

more the improvement of e can be achieved with proposed approach. Curve 1 and 5

indicate the range of the e improvement with PLCAS. The actual value depends on

52

the channel outputs and channel quality.

According to curve 4 and curve 1, we can tell that the adaptive LSC help proposed

approach to dramatically increase the hardware efficiency. Another very interesting

phenomenon is about the improvement of irregular multi-bit decision (list fast-SSC

decoder). The gain of e does not change too much with code rate varying. This is

because the latency overhead of irregular multi-bit decision decoder does not linearly

change along with coder rate. The average improvement of irregular multi-bit deci-

sion is less than that of regular one. This is due to the inherent latency of irregular

LSC decoder is already very low [43].

Noticeably all the improvements are calculated based on the assumption that

the maximum frequency of decoder with proposed approach or ordinary approach

are the same. However, according to the analysis in Section 6.1, the maximum fre-

quency of decoder with OPLSC approach should be higher, which indicates that the

improvements of e in Figure 6.5 should be even more in practice. Additionally, all

the approaches mentioned above are not conflicting with each other. Using mul-

tiple approaches together can further increase the hardware efficiency. The above

mentioned properties indicate that proposed approach can measurably contain the

hardware complexity associated with large scale LSC decoder implementation.

6.4 Summary

This chapter introduces overlapping path LSC decoder to improve the hardware

efficiency of LSC decoder via path-overlapping scheme. The details of design ap-

proach and three strategies to reduce the latency overhead are also presented. The

numerical results show that the conventionally used LSC decoders can significantly

achieve a higher hardware efficiency by equipping OPLSC architecture.

53

7. EXPRESS JOURNEY BELIEF PROPAGATION DECODER∗

In [54], different types of constituent codes are introduced to reduce the com-

plexity of BP decoding algorithm. In this chapter, the simplifications on constituent

codes are discussed with the details on scheduling techniques, which are designed to

optimizing the hardware efficiency. To be specific, different scheduling techniques

are discussed to reduce the decoding latency with constrained hardware resources.

However, the specific scheduling techniques impose the difficulties on memory access

of XJBP decoder. With specific scheduling techniques, VLSI architectures of the

XJBP decoders are also presented which can accommodate the benefits of XJBP

decoding algorithm as well as maintaining the feasibility of the XJBP decoder.

7.1 Algorithm Simplification

The general idea of XJBP decoding algorithm is to refine the estimation of the

transmitted codeword x̂ without traversing the entire factor graph in each iteration.

The various constituent codes are studied in this section to simplify the factor graph

so as to reduce the decoding the complexity.

7.1.1 All-frozen N 0 Codes

First type of the useful constituent codes are the codes whose left leaf nodes are

all frozen bits. These codes are referred as N 0 codes. Figure 7.1 shows an example of

N 0 code, where the shadowed nodes of {(1, 2), (2, 2)} compose a N 0 code. For those

codes, there is no necessity to compute their LLRs, since the codeword is fixed by

the frozen bits already. If the frozen bits are set to 0, the nodes of N 0 codes are also

∗Reprinted, with permission, from J. Xu T. Che G. Choi, XJ-BP: Express Journey Belief Prop-
agation Decoding for Polar Codes, 2015 IEEE Global Communications Conference (GLOBECOM),
and Dec. 2015. c© 2015 IEEE.

54

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Figure 7.1: An example of N 0 codes in shadow and N 1 codes in gray.

0 in the encoding factor graph. Thus, by setting messages Ri,j of nodes N 0 codes

as ∞ before the decoding, the decoding can be performed in each iteration without

operating redundant processing elements left to the N 0 codes.

7.1.2 All-information N 1 Codes

As the counterpart of the N 0 codes, N 1 codes have their all leaf nodes of infor-

mation bits. An existence of N 1 code in the n = 8 polar code example is given in

Figure 7.1. In the figure, the grayed codeword {(7, 2), (8, 2)} is a N 1 code whose leaf

nodes are all information bits.

From the aspect of the factor graph, the refinement does originate from checking

information provided by the frozen bits on leaf nodes. Since there is no frozen bits on

the leaf nodes, it is implied that the messages do not get refined by further message

55

passing through N 1 codes. From the Eq. (2.12) and (2.13), it also shows that the

Ri,j+1 and Ri+2j−1,j+1 are not updated with consistent zeros of Ri,j and Ri+2j−1,j.

Thus the computations for N 1 codes could be removed through BP decoding.

7.1.3 Repetition NREP Codes

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Figure 7.2: An example of NREP codes in shadow and N SPC codes in gray.

Another observation from the factor graph is that there exist considerable amount

of constituent codes which only have a single information bit on the last leaf nodes.

Those codes duplicate the only information bit by multiple times to construct the

codeword. The repetition codes are referred as NREP codes. The example given in

Figure 2.5 does contain a NREP code as shows in Figure 7.2, where the shadowed

nodes {(1, 3), (2, 3), (3, 3), (4, 3)} constitute a NREP code.

56

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Figure 7.3: The simplified factor graph for the example of NREP and N SPC codes.

Since we already know that NREP codes are formed by duplication, the conven-

tional factor graph can be simplified so as to avoid message passing through multiple

message stages. The corresponding example of the factor graph of the NREP code

is given in the Figure 7.3, where the top 4 shadowed nodes constitute a repetition

code. Since each node is a duplication of others, they share the belief messages with

others in the factor graph. The message passing rule of the NREP codes follows the

theory of factor graph [38] as:

Ri,j =
∑

k 6=i
Lk,j (7.1)

For a repetition code with length l, the complexity of conventional BP isO(l log l).

Whereas the complexity of the proposed updating rule is O(l). Specifically, the

57

proposed algorithm for length-l NREP codes takes (2l − 1) two-input additions.

Indiscriminately treating nodes ofNREP codes as normal nodes by using conventional

BP consumes (2l log2 l) comparisons operations and same amount of additions.

7.1.4 Single Parity Check N SPC Codes

The other type of constituent codes exists in polar codes is the single parity check

code. For those constituent codes that only have a single frozen bit on the first leaf

node, the codewords are actually single parity check (SPC) codes, the sums of whose

codewords are always zero in binary field. The SPC codes are also referred as N SPC .

As Figure 7.2 shows, the leaf nodes of the grayed constituent codeword with

nodes: {(5, 3), (6, 3), (7, 3), (8, 3)} are all information bits except the first one. Similar

to NREP codes, it is unnecessary to evaluate through all conventional computations

to update the messages R of those nodes. Since the codeword is a SPC code, the

factor graph of the N SPC codes could be modeled as a parity check node connected

with all bits of the codeword. The modified factor graph of the N SPC code in the

example is shown in Figure 7.3. In the figure, an additional parity check nodes is

added to propagate the belief information among the nodes. With the consistency

on using min-sum algorithm, the parity check update is written as:

Ri,j =
∏

k 6=i
sgn(Lk,j) ·min

k 6=i
|Lk,j| (7.2)

Similar as the repetition codes, the complexity of the modified message passing

algorithm is O(l) for length-l single parity check code which is superior to the com-

plexity of the conventional algorithm, O(l log l). Thus with longer constituent codes,

more computation are saved with the proposed algorithm.

Noticeably, the N 0 and N 1 codes are not usually included in N SPC and NREP

58

codes in reality. Simplifications of message passing on those four different types of

constituent codes are all applied simultaneously. The distributions of exclusive con-

stituent codes in a (1024, 512) are shown in Table 7.1. As the table shows, there are

considerable amount of constituent codes in the polar code. There are more number

of NREP and N SPC codes than N 0 and N 1 codes. Thus an efficient BP algorithm

design for the NREP and N SPC codes could substantially further reduce the BP

decoding complexity. Also notice that the distribution of the constituent codes does

also depend on the code rate and polar codes with rate of 0.5 contain relatively less

number of constituent codes. With higher code rate, it is more attractive to apply

the proposed methods to simplify the message passing. The details of complexity

analysis will be presented in Section 7.6.

Table 7.1: Number of all constituent codes with different sizes in a (1024, 512) polar
code with rate of 0.5

Constituent codes sizes
All

4 8 16 32 64 128

N 0 3 3 2 2 0 1 11

N 1 3 3 2 1 0 0 9

NREP 16 8 4 1 1 1 31

N SPC 15 5 3 1 1 0 25

With the constituent codes applied to reduce computations, the journey for mes-

sage passing is simplified so that the LLRs of û are not immediately available from

BP iterations. Thus in the proposed algorithm, we focus on refining the estimations

of transmitted codeword x̂ instead of messages û. The estimated LLRs of x̂, the

soft estimations of transmitted codeword x in log likelihood ratio, are represented

by Eq. (2.15). As aforementioned, Li,m+1 are LLRs from the channel outputs. So

59

in our algorithm, Ri,m+1 is refined in iterations to accomplish decoding. The details

how the computations are scheduled to accommodate the simplification is presented

in the next section.

7.2 Early Termination

Before discussion the performance of proposed algorithm, an early termination

technique is presented here, which is important to introduce for the efficiency mea-

surements of XJBP decoding.

In this work, we apply early termination technique to determine whether the

decoding is successfully done or not. Polar codes belong to the block codes. In

[33], three different early termination techniques are proposed based on the usage of

estimation of transmitted message û. However, in our proposed algorithm, û is not

available because of the simplified BP graph. In the absence of û, we employ a more

straight-forward method based on the estimation of transmitted codeword x̂.

Noticeably, it is claimed in [33] that BP decoders do not output x̂. However,

actually BP decoder does provide with information x̂.

For block codes, H matrix could be used for codeword detection. According to

the coding theory [3], the parity check matrix H could be derived given generator

matrix G′. Here G′ is a k × n matrix consisting rows of matrix G corresponding to

the positions of the information bits. Then the termination of a decoding is indicated

by the equation:

x̂H = 0 (7.3)

60

where x̂ is the hard decision of the transmitted codeword estimations, i.e.

x̂i =





0, LLRx̂
i > 0

1, otherwise

(7.4)

Noticeably, the early termination technique proposed here is not only specific to

the proposed decoding algorithm, but it can be used in any other BP decoders.

7.3 VLSI Architecture and Resource Assignments

Overall architecture of proposed decoder is given in Figure 7.4. The proposed

architecture mainly contains three processing units, array of conventional processing

elements (PE), array of adders and the array of comparators. The tasks are assigned

and distributed by a controller, which coordinates the data flow and control signals

of the three units to perform XJ BP decoding.

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

Figure 7.4: An overview of XJBP decoder.

The overviews of the three types of processors, the PE array, adder array and

comparator array, are given in Figure 7.5. The PE array consists of a set of processing

elements (PEs). Each PE handles Equation 2.12 or Equation 2.13 depending on the

61

computation demand. For NREP , the belief propagation updates are based on

Equation 7.1, which can be written as:

Ri,j =
∑

Lk,j − Li,j (7.5)

This indicates that the repetition codes updates can be accomplished by deducting

the sum of right-to-left LLRs of the repetition codes by the corresponding right-to-

left LLR for each input. Thus, the processes can be implemented as multiple-stage

adder to sum all inputs, as the output of each port is the difference between the

sum and corresponding input. Similarly, the belief propagation updates of N SPC

codes can be simplified by observing Equation 7.2. For a l long N SPC codes, instead

of looking for minimum of l − 1 elements for each entry, alternatively we are going

to search the two minimums out of all inputs. But for each output, one of the two

minimums is selected based on if corresponding input is equal to the other minimum.

Therefore, the implementations for the N SPC codes consist of a set of 4 : 2 sorters.

Each sorters get the two minimums out of the four inputs. For a l long N SPC codes,

by iteratively applying the set of sorters, two minimum values are able to get acquired

from l inputs. Then the output will be acquired after a further comparator to check

if the corresponding input is equal to one of the two minimum, the other minimum

will be assigned to the output.

To fully utilize the timing, the delay of one cycle of repetition codes updates and

single parity check code updates should be close to that of the normal processing

elements. Thus, 4 : 2 sorters and four-input adders are applied in the context of

this architecture. In the following, the early termination techniques and scheduling

strategies are discussed to explore the advantages of the proposed architecture.

62

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

(a)

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

(b)

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

(c)

Figure 7.5: (a) Structure of array of processing elements. (b) Array of adders to
decoder repetition codes. (c) Array of comparators to decoder SPC codes.

7.4 XJBP Scheduling

In this section, the details on how the computations are scheduled in the proposed

architecture are discussed.

7.4.1 Round-trip Scheduling

First of all, let us recall the conventional scheduling of belief propagation decoders.

As Figure 4.2 shows, the conventional scheduling strategy propagates the LLR always

in a single direction from right to left. For a long n polar code, according to the

Figure 4.2, each iteration consists of m stages of computations, where m = log2(n)

is the number of stages in the factor graph. For each stage, the messages of both

direction Ri+1;j and Li,j of each stage are computed. And the computations are

repeated in one-way direction from left to right iteratively.

However, naturally the belief are propagated in a back-and-forth fashion. An-

other way to schedule the computations is to separately update right-to-left mes-

63

Clock
Cycles

1

Stage1
Ri,1

Li,1

2

3 4 5

Ri,1

Li,1

6

7 8

Ri,1

Li,1

9

Stage2
Ri,2

Li,2

 Ri,2

Li,2

Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

Ri,3

Li,3

Clock
Cycles

1

Stage1
Ri,1

Li,1

2

3 4 5

Ri,1

Li,1

Ri,1

Li,1

6 7 8

9

Stage2
Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

 Ri,2

Li,2

Ri,3

Li,3

Ri,2

Li,2

Clock
Cycles

1

Stage1 Li,1

2

3 4 5

6

Stage2 Li,2

Stage3 Li,3

Ri,2

Ri,3

Ri,1

7

Li,1

8

9 10 11

12

Li,2

Li,3

Ri,2

Ri,3

Ri,1

Clock
Cycles 1

Stage1 Li,1

2

3

4

Stage2 Li,2

Stage3

Ri,2

Ri,1

5

Li,1

6

7

8

Li,2 Ri,2

Ri,1

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

Clock
Cycles 1

Stage1 C1

2

C2

3

4

Stage2

Stage3

C3

C4

R1

5

Li,1

6

7

8

Li,2 Ri,2

Ri,1

Attempt to access more
data than bandwidth

Attempt to access data
with different address

Figure 7.6: The computation scheduling and dependency for round trip BP of a
n = 8, r = 0.5 polar code.

sages and left-to-right messages as mentioned in [35]. An example of dependency of

a n = 8, r = 0.5 polar code is presented in the Figure 7.6. As the figure shows, the

computations of each iteration are separated to two parts. In the first part, the right-

to-left Li,j messages are updated from column m+1 to the most left nodes existing in

the factor graph. The second is following to update the other direction messages Ri,j

from leftto the column m + 1. Since in each iteration there is a round trip through

the factor graph, this scheduling scheme is referred as round-trip scheduling. Though

each iteration of this modified scheduling contains a longer round-trip visit of nodes

instead of one-way traverse, the amount of computations is same as that of the con-

ventional scheduling, because only half of messages, either Li,j or Ri,j , are updated

in each direction.

Furthermore, with XJBP decoding, the propagation path could be simplified.

Figure 7.7 shows the express journey propagation path for an example of a n =

8, r = 0.5 polar code. For XJBP decoding, the propagation does not even reach the

most right bits, because of the existences of constituent codes. By Figure 7.7, the

advantages of XJBP decoders are shown more clearly, since the decoding cycles are

reduced more substantially in each iteration.

64

Clock
Cycles

1

Stage1
Ri,1

Li,1

2

3 4 5

Ri,1

Li,1

6

7 8

Ri,1

Li,1

9

Stage2
Ri,2

Li,2

 Ri,2

Li,2

Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

Ri,3

Li,3

Clock
Cycles

1

Stage1
Ri,1

Li,1

2

3 4 5

Ri,1

Li,1

Ri,1

Li,1

6 7 8

9

Stage2
Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

 Ri,2

Li,2

Ri,3

Li,3

Ri,2

Li,2

Clock
Cycles

1

Stage1 Li,1

2

3 4 5

6

Stage2 Li,2

Stage3 Li,3

Ri,2

Ri,3

Ri,1

7

Li,1

8

9 10 11

12

Li,2

Li,3

Ri,2

Ri,3

Ri,1

Clock
Cycles 1

Stage1 Li,1

2

3

4

Stage2 Li,2

Stage3

Ri,2

Ri,1

5

Li,1

6

7

8

Li,2 Ri,2

Ri,1

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

Clock
Cycles 1

Stage1 C1

2

C2

3

4

Stage2

Stage3

C3

C4

R1

5

Li,1

6

7

8

Li,2 Ri,2

Ri,1

Attempt to access more
data than bandwidth

Attempt to access data
with different address

Figure 7.7: The computation scheduling and dependency for round trip XJBP of a
n = 8, r = 0.5 polar code.

To verify the reliability of the round trip scheduling and XJBP decoding, Fig-

ure. 7.8 shows the performances and efficiency of round-trip scheduling strategies as

well as equipped with XJBP decoding. In the experiments, the maximum number

of iterations of both decoders are set to 60. From Figure.7.8b, we can see that the

performance of round-trip scheduling strategy outperforms the conventional BP de-

coding, while the XJBP decoding algorithm does not impose any degradation on the

belief propagation decoding. In terms of efficiency, through Figure.7.8a, the num-

bers of iterations of round-trip scheduling is much less than that of normal scheduling

technique.

Table 7.2: This is a comparison of number of iterations in different BP decoders
Traditional[31] 5-stage SMS[32] 5-stage Folding[33] XJBP

number of
iterations

40 21.9 24.5 4.1

Performance
Difference

-0.3dB 0 -0.3dB 0

Furthermore, we compare the number of iterations of our proposed method with

65

1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

E
b
/N

0
 [dB]

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Conventional BP
Conventional BP with round trip
XJBP with round trip

(a)

1 1.5 2 2.5 3 3.5
10

-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 [dB]

F
E

R

Min-sum
Min-sum round-trip
XJ-BP

(b)

Figure 7.8: The comparison between roundtrip scheduling and conventional schedul-
ing in terms of efficiency (number of iterations) (a) and performance (Frame error
rate) (b).

state-of-the-art BP decoders in Table 7.2. By using the round trip scheduling, the ef-

ficiency of BP decoding is improved significantly. Furthermore, compared with other-

of-the-art BP basded decoder, the round trip did not impose any performance degra-

66

dation. Specifically, the Min-Sum algorithm based round trip scheduling achieves the

same performance as scaled min-sum algorithm but with much one sixth iterations.

By studying the case of the n = 8 polar code, advantages of XJBP decoding and

round-trip scheduling are presented. However, for large scale polar code, the schedul-

ing for XJBP will be difficult. In the following, the dependencies and scheduling are

studies in the context for a more general case.

7.4.2 Dependency

Before we start trying to scheduling all computations, we first look into the

dependencies graph of the XJBP decoding. As aforementioned, each iteration of

decoding process contains two parts of propagation, first part is propagate the belief

information from the channel input to the constraints (From right to left in the

context figures). The second one is sent back the refined belief information from

left to right. In the first phase, each stage breaks down a longer polar code to two

constituent codes. And the constituent codes might have some special properties like

NREP or N SPC .

Figure 7.9 shows the process of LLR propagation in the first phase of XJBP

decoding for a 128 long polar codes with rate of 0.5. As the figure shows, the

dependency of the first phase is similar as a tree, where the data in each node

depends on its parent node. Every stage breaks down a polar code into two smaller

pieces. The root node is a conventional 128 long polar code, referred as C node in

the figure. Every C node has two child nodes, which are generated by the a set of

Equation 2.12 and Equations 2.13. In the third stage, first special constituent codes

appear. There are a 32 long repetition code and a 32 long single parity check code,

which are referred as R and S nodes in the figure, respectively. With deeper the

position, a node represents a shorter length constituent code. The leave nodes in

67

C

C C

R C C S

C C C C

0 C C S R C C 1

0 S R S R S R 1

C

R S

C

C C

C C C C

C

C C

C

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19SP
C

R
EP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Figure 7.9: The dependency for belief propagation of a n = 128, r = 0.5 polar code.

the dependencies trees must be a special constituent code, which falls in the set of

N 0,N 1,NREP ,N SPC

To explore a more accurate data dependency between different computation, the

data flow graph for an entire iteration of the 128 long polar code case is presented in

Figure 7.10. In that figure, each iteration is accomplished by collecting left-to-right

LLRs R:,n at the most right layer in the coding structure. In the bottom half of

the dependency graph, nodes are presenting the LLR propagation from left to right.

Every stage increase the size of constituent codes by two. For each special constituent

codes, they are fed into right-to-left LLRs and output left-to-right LLRs. Thus, in

the middle of the data flow, nodes are all special constituent codes. Noticeably,

although only one node is used in the graph to present each stage processing, the

scales of the processes of nodes are different. In the top half, with the decreasing

size of polar codes, deeper nodes have relatively smaller scale of processes. However

for the bottom half, nodes in deeper stages involve more parallel computations.

By the proposed the architecture mentioned above with unlimited resources, each

68

C

C C

R C C S

C C C C

0 C C S R C C 1

0 S R S R S R 1

C

R S

C

C C

C C C C

C

C C

C

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19SP
C

R
EP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Figure 7.10: The dependency for an iteration of BP decoding of a n = 128, r = 0.5
polar code.

C node consumes one cycle to accomplish processing. However, R nodes and C

nodes need iteratively using the adders and comparators to acquire the sum and

minimum respectively. And the delays of R and C nodes depend on the scales of the

corresponding repetition codes and single parity check codes. For a long n N SPC ,

it takes log2(n) + 1 to finish updating LLRs, while for a long n NREP , it takes

dlog4(n)e+ 1 to update LLRs.

Based on the dependency, different scheduling strategies are explored to utilize

the resource efficiently to schedule all computation. However, the problem of deciding

whether a schedule exists for a set of dependent tasks and a given deadline is NP-

complete problem [55]. To solve the scheduling problem, strategies employed in this

69

thesis to make the problem easier are described in the following.

7.4.2.1 Add resource constraints

As mentioned above, the XJBP consists of different hardware units to delivery

the final results. For a certain hardware implementation, the resource is fixed. So

an alternative exploration can be done through scheduling optimization for a certain

hardware resource, which simplifies the problem substantially.

7.4.2.2 Split problems into static and dynamic part

Another idea to simplify the scheduling problem in this thesis is that we split the

problem into Static and Dynamic parts. By doing this, more efforts are paid for a

specific polar code size and length. A better optimal schedule is explored in off-line

to minimize the decisions to be taken at run-time.

7.4.2.3 Use scheduling algorithms from high-level synthesis

To statically schedule tasks, different parameters could be utilized to explore

the optimal schedule. In this thesis, according to proposed architectures, different

assumptions are made with corresponding algorithms to schedule computations to

improve the hardware efficiency.

In the following, based on the simplification above, different situations are given

to discuss the optimal solutions for computations scheduling.

7.4.3 Scheduling Without Priority

A straight scheduling method is to handle all ready tasks as soon as possible

without considering the priority among different tasks. Figure 7.11 shows the idea

of this straight

Besides the straight forwards scheduling algorithms, a more sophisticated schedul-

ing strategy based on ASAP/ALAP methods called list scheduling (LS) is mentioned

70

C

C C

R C C S

C C C C

0 C C S R C C 1

0 S R S R S R 1

C

R S

C

C C

C C C C

C

C C

C

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19SP
C

R
EP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Figure 7.11: An example of ASAP scheduling for XJBP decoding of a n = 128, r =
0.5 polar code.

[56]. The idea of list scheduling is to take more factors into considerations to im-

prove the efficiency. Following gives more discussion with priorities to schedule all

computations events.

7.4.4 Scheduling With Priority

Recall the dependency figure 7.10, tasks have different-length paths to final results

in the end. Thus different path has different urgency to be processed. Longer path

is more urgent to process. In this thesis, we recognize the tasks on longer path has

71

higher priorities. Based on this assumption, different scheduling algorithms can be

developed to schedule all tasks.

As aforementioned, all C nodes have one cycle delay to process the LLRs, while S

and R nodes have multiple cycle to accomplish the belief propagation update. Thus,

the question arises first here is whether the hardware has the ability to interrupt the

tasks and resume them later. If the hardware allows SEP and REP tasks interrupted,

we refer the corresponding scheduling algorithm as preemptive, non-preemptive oth-

erwise. The answer to the question depends on the micro-architecture applied in the

practice. In following, two scheduling cases of both preemption and non-preemption

are discussed.

7.4.4.1 Scheduling with preemption

If the hardware implementation allows the interruptions of multiple-cycles tasks,

a simple modification on the ASAP scheduling algorithm can be made to apply the

idea of priority. Instead of processing the assigned tasks till they finish, a task which

arrives later but with higher priority occupies the hardware resource by interrupting

the unfinished tasks.

Figure 7.12 presents an example of computations for a n = 128, r = 0.5 polar

code scheduled by the proposed preemptive scheduling method. In the example,

we assume that there are constrained resource to compute 64 LLRs associated with

conventional polar codes, repetition constituent codes and single parity check codes

inclusively.

Noticeably, as mentioned above, nodes with different layers have different scales

of complexity. Before the propagate the LLRs from left to right, the scales of nodes

get decreased by half each at each dependency progress. Thus it is assumed that the

hardware can handle more nodes with smaller scales.

72

C

C C

R C C S

C C C C

0 C C S R C C 1

0 S R S R S R 1

C

R S

C

C C

C C C C

C

C C

C

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19SP
C

R
EP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E Figure 7.12: An example of preemptive scheduling with priority for XJBP decoding

of a n = 128, r = 0.5 polar code.

From the comparison between Figure 7.12 and Figure 7.11, we can see that the

more urgent paths with more nodes receive more consideration to schedule as soon

as possible. Although the less urgent tasks are ready more earlier because of their

early executed predecessors, less urgent tasks are paused when tasks on critical paths

arrive. In this study case, the preemptive scheduling algorithm with consideration

of priority does not impose any delays on the critical path. Without instantiating

any new hardware resource, the schedule reduces the number of cycles by 2, which

is around 11% of total delays in the ASAP scheduling algorithm. However, the

73

deduction on the computation delays also depend on the code length, which will be

discussed later in this section.

Algorithm 1 Preemptive Scheduling Algorithm for XJBP with priority

initialization
set time t = 0
computer priorities of all nodes;
while Any nodes are not scheduled do

Pick tasks with highest priority from the ready tasks group ci ∈ C
if Uci is occupied then

Pause the task in the Uci
Push the paused task into ready tasks group

end
Schedule task ci on resource Uci at timej;
Update candidate tasks C
set time t+ +

end
return schedule;

Algorithm 1 shows the details of the scheduling process. In this static scheduling,

the ready tasks are pulled from container one by one, if the hardware resource are

available to new tasks. The tasks are scheduling at the time. While if all hardware

are busy at the moment, the priorities between the ready tasks and undergoing tasks

are compared to determine if the undergoing tasks should be paused to allow more

urgent tasks get processed.

It is noticeable that the deductions on the decoding latency depend on the code

sizes and code rates. Given the resources of hardware, Table 7.3 shows amounts

of delays of conventional BP decoding, XJBP decoding with ASAP scheduling and

XJBP decoding with preemptive scheduling based on priority. In the entries of the

first column of the table, numbers stand for the hardware resource allocate for normal

constituent codes, NREP codes and N SPC codes. For example, for 1024 long polar

74

Table 7.3: Decoding delays of XJBP with different code sizes
code sizes n

Hardware
resource

scheduling 1024 2048 4096 8192 16k

C Units: n/4
S Units: n/32
R Units: n/32

regularBP 40 44 48 52 56
XJBP-ASAP 34 35 43 45 48
XJBP-LS 27 29 35 35 40

C Units: n/8
S Units: n/64
R Units: n/64

regularBP 80 88 96 104 112
XJBP-ASAP 64 62 79 83 90
XJBP-LS 50 52 62 62 73

codes, (1/2, 1/8, 1/8) means that at each cycle, there are most a 512 long normal

constituent, a 128 long repetition code and 128 long single parity check code could

be processed by the hardware. Because that there exist much more conventional

constituent polar codes in the data flow, there are more resource of normal PE units

allocated than resource for the special constituent codes. From the table, we can tell

that with any long polar codes, the XJBP decoding algorithm significantly reduces

the number of cycles by around 35% for each iteration with introducing a overhead

on the hardware resource for special constituent codes.

However, the scheduling algorithm discussed in this subsection is based on as-

sumption that the tasks could be interrupted on the fly. This results in a extra

memory spaces to store the interrupted tasks and its status. An alternative way to

optimize the schedules could be made without this assumption, which is referred as

non-preemptive scheduling. Following the discussions on the non-preemptive schedul-

ing are given.

7.4.4.2 Scheduling without preemption

Different with preemptive scheduling, non-preemptive schedule does not interrupt

on on-going tasks. This will results in idle cycles of processors even when there are

75

ready tasks for the processor.

C

C C

R C C S

C C C C

0 C C S R C C 1

0 S R S R S R 1

C

R S

C

C C

C C C C

C

C C

C

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19SP
C

R
EP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

P
E

Figure 7.13: An example of non preemptive scheduling with priority for XJBP de-
coding of a n = 128, r = 0.5 polar code.

Figure 7.13 shows the scheduled tasks for the same example as above. In this

schedule, continuous multiple-cycle processes of repetition and single parity check

codes updates are not interrupted during the running. From the figure, we can see

that processor does always execute computations even when the corresponding tasks

are ready. This is because that during the time executing low-priority tasks, higher-

priority tasks may arrive to request processing. Compared with schedule of ASAP

76

without priority in Figure 7.11, the non-preemptive scheduling algorithm can still

reduce the processing delays, although the improvement is relatively less significant

than preemptive scheduling.

Algorithm 2 Scheduling Algorithm for Static Non-preemptive

initialization
computer priorities of all nodes;
while Any nodes are not scheduled do

Pick the task with the highest priority ci ∈ C
j = 0
while j++ do

if |cji |+ |gj| ≤ B and Not Violating Dependency then
break

end
Schedule task ci at timej;

end
Update candidate tasks C

end
return schedule;

Algorithm 2 gives heuristic static scheduling algorithm for the proposed non-

preemptive situations. Instead of scheduling ready tasks at a time, only the tasks

satisfied by the following condition will be scheduled. The condition is that if the

scheduled task does not conflict with other same-type higher-priority tasks which are

scheduled based on ASAP after the task scheduled. In other word, if the schedule

results in potential higher-priority tasks conflicting, the schedule is not accepted.

The non-preemptive scheduling algorithm has the most complexity in running

time. And the delay of this algorithm stands intermediate position between ASAP

scheduling and preemptive priority scheduling algorithm.

77

7.5 Memory Access

After discussing about the scheduling problem of XJBP, the details of hardware

implementation are given in this section. Because of the introductions of sophisti-

cated scheduling algorithms, the memory access become more complicated.

Clock
Cycles

1

Stage1
Ri,1

Li,1

2 3 4 5

Ri,1

Li,1

6 7 8

Ri,1

Li,1

9

Stage2
Ri,2

Li,2

 Ri,2

Li,2

Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

Ri,3

Li,3

Clock
Cycles

1

Stage1
Ri,1

Li,1

2 3 4 5

Ri,1

Li,1

Ri,1

Li,1

6 7 8 9

Stage2
Ri,2

Li,2

Stage3
Ri,3

Li,3

Ri,3

Li,3

 Ri,2

Li,2

Ri,3

Li,3

Ri,2

Li,2

Clock
Cycles

1

Stage1 Li,1

2 3 4 5 6

Stage2 Li,2

Stage3 Li,3

Ri,2

Ri,3

Ri,1

7

Li,1

8 9 10 11 12

Li,2

Li,3

Ri,2

Ri,3

Ri,1

Clock
Cycles 1

Stage1 Li,1

2 3 4

Stage2 Li,2

Stage3

Ri,2

Ri,1

5

Li,1

6 7 8

Li,2 Ri,2

Ri,1

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

Clock
Cycles 1

Stage1 C1

2

C2

3 4

Stage2

Stage3

C3 C4

R1

5

Li,1

6 7 8

Li,2 Ri,2

Ri,1

Attempt to access more
data than bandwidth

Attempt to access data
with different address

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=14

Attempt to access more
data than bandwidth

Attempt to access data
with different address

Figure 7.14: An example of memory accesses for XJBP decoding of a n = 128, r = 0.5
polar code.

Figure 7.14 shows an example of memory access problems in the context. In the

figure, there show two potential memory access problem with the proposed scheduling

algorithm in a traditional share-memory architecture. First of all, with a traditional

shared memory architecture, the bandwidth is limited. However, in the proposed

78

method, different units may request accessing memory at same time, which result in

requirement on higher memory bandwidth than the conventional one. Furthermore,

the problem is not just about the bandwidth. With the design of different processing

units for conventional BP nodes, single parity check nodes, repetition codes nodes,

it is possible that different units attempt to access data which do not belong to a

single line in the traditional memory.

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

(a)

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

(b)

Figure 7.15: The comparison between shared memory micro-architecture (a) and
distributed memory micro-architecture (b).

Thus instead of using a shared-memory architecture, we distributed the memory

into each local processing units. Figure 7.15 gives the traditional shared memory

79

access BP decoder and proposed distributed memory access. In the proposed method

as shown in Figure 7.15b, each of those distributed memory is dedicated to store

associated data so as to solve the problems mentioned above. In the following, the

details of the each processor along with its memory are discussed.

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

SwitchFigure 7.16: Implementation of a conventional processing element of XJBP decoder.

Figure 7.16 shows the internal structure of the array of conventional process-

ing elements. Each processing element is design to handle the classic BP decoding

equations2.12 and 2.13. MEMl and MEMr are used to store data which are fed into

the processing elements. For each PE, there are four inputs, two of which are given

by MEMl and the other two given by MEMr. The observation is made that in the

scheduling figures 7.11, 7.12 and 7.13, the C nodes have two child nodes in the top

half and two parent nodes in the bottom half. By further observation, we can tell

following conclusions:

80

• In the top half data graph, the outputs of C nodes can be split into two parts

as forwarding to right or left.

• The inputs of repetition codes must come from the left-part outputs of C nodes.

• The inputs of single parity check codes must come from the right-part outputs

of C nodes.

• In the bottom half data graph, the inputs of C nodes can be split into two

parts as forwarded from right or left.

• The outputs of repetition codes must be fed into the left-part inputs of C nodes.

• The outputs of single parity check codes must come from the right-part inputs

of C nodes.

Guided by the above observations, the micro-architecture of processing elements

can be explored easily. First of all, the outputs of the array of PEs are split into

two parts as shown in the data flow. If the current tasks of C node have repetition

codes as left child node, left-part data are forwarded to REP codes unit. Otherwise,

the left-part data are fed back to memory for next conventional codes computation.

Similarly, depending on the type of right child node type, the right-part data can be

forwarded to SPC codes units or fed back to memory of PE array itself.

On the propagation way back from left to right, the inputs of the array of pro-

cessing elements can be split into two parts, from left predecessor or from right

predecessor. As the observation, we can tell that the inputs from left predecessor

can be from either the PE array itself or from the repetition codes processors. Thus

multiplexers are given in this proposed architecture to allow the data to be directly

fed by the repetition codes units. Vice versa, the from-right-predecessor data also

have options of directly from SPC units or from PE array itself.

81

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

MEMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

MEMr
control

From C

… MUX
To C

MEMr
control

From C

To C

SPC
Processor

MEM

MUX

 MUX MUX

4:2
sorter

… MUX MUX MUX

Switch

4:2
sorter

4:2
sorter

SPC
Processor

4:2
sorter

Switch

4:2
sorter

4:2
sorter

(a)

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

MEMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

MEMr
control

From C

… MUX
To C

MEMr
control

From C

To C

SPC
Processor

MEM

MUX

 MUX MUX

4:2
sorter

… MUX MUX MUX

Switch

4:2
sorter

4:2
sorter

SPC
Processor

4:2
sorter

Switch

4:2
sorter

4:2
sorter

(b)

Figure 7.17: The implementation details of REP processor(a) and SPC processor
(b).

Once we have the micro-architecture of C nodes, the processors of REP and SPC

codes can be correspondingly designed, because REP and SPC processors have to

follow the interaction with the conventional PE array. Following gives the details

about the REP and SPC processors.

Now, let us look into repetition and single parity check codes processors in the

preemptive scheduling. Figure 7.17 shows the internal structures of NREP and N SPC

82

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

MEMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

MEMr
control

From C

… MUX
To C

MEMr
control

From C

To C

SPC
Processor

MEM

MUX

 MUX MUX

4:2
sorter

… MUX MUX MUX

Switch

4:2
sorter

4:2
sorter

SPC
Processor

4:2
sorter

Switch

4:2
sorter

4:2
sorter

(a)

SPC
REP

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

RAMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

PE array

REP
Processor

RAMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

RAM

MUX

Array of
conventional PEs

Adders
REP

Comparators
SPC

Controller

PE
PE

PE

Selector

Adder
Adder

Adder

M
U
X

M
U
X

Selector

Com
p

Com
p

Com
p

M
U
X

M
U
X

Array of
conventional PEs

Adders
REP

Comparators
SPC

ControllerMEM

Array of
Conventional PEs

Adders
REP

Comparators
SPC

Controller

MEM MEM MEM

RAMl

…
Left Path Right Path

To REP To SPC

RAMr

PE PE PE PE

control

IntLvr MUX

From REP

MUX

From SPC

PE array

MEMr
control

From C

add add add

…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEMr
control

From C

add add add…
Switch

MUXMUX MUXMUX MUXMUX

To C

REP
Processor

MEM

MUX

RAMr
control

From C

> > >
…

Switch

 MUX

To C

SPC
Processor

RAMr
control

From C

To C

SPC
Processor

RAM

MUX

 MUX MUX

> > >
… MUX MUX MUX

Switch

MEMr
control

From C

… MUX
To C

MEMr
control

From C

To C

SPC
Processor

MEM

MUX

 MUX MUX

4:2
sorter

… MUX MUX MUX

Switch

4:2
sorter

4:2
sorter

SPC
Processor

4:2
sorter

Switch

4:2
sorter

4:2
sorter

(b)

Figure 7.18: The implementation details of non-preemptive REP processor(a) and
SPC processor(b).

codes processors. With the micro architecture design of PE array, the repetition

codes processor is much more straight forward. First of all, the inputs of the processor

must be from the C nodes as PE array. The outputs of the processor must feed PE

array back. The internal structure of REP processor are consisting of multiple adders.

In our design, 4 : 1 adders, which have four inputs and sum as output, are used to

get a comparable delay with the conventional PE.

For a larger scale repetition code, multiple cycles are needed to accomplish up-

dates. An additional memory is allocated to allow the interruption in the preemptive

83

scheduling algorithm. The calculated data are saved in a memory until accessed by

the C node. Similarly, single parity check code processors have same architecture

but replacing the adders with 4 : 2 sorter to select the two minimum values of the

input vector.

After talking with preemptive units, the structures of non-preemptive NREP and

N SPC codes processors are given in the Figure 7.18. The structures have only one

difference between preemptive and non-preemptive structure. The non-preemptive

hardware solutions get rid off the additional memory, since there does not exist data

which need store temporarily.

Following gives the discussion about hardware consumption of the proposed

micro-architecture and comparisons with other state-of-the-art BP decoders.

7.6 Results and Discussion

In this section, the hardware performance is presented. The complexity of XJBP

decoder is analyzed and compared with other state-of-the-art BP decoders with-

out consideration of implementation details. Furthermore, a fixed-point analysis on

XJBP decoder is given to guarantee the feasibility of the XJBP decoder in practice.

In the end, the hardware synthesis results are given and discussed.

7.6.1 Complexity Estimation and Analysis

In this subsection, we set up experiments to verify the efficiency and analyze

the complexity of the XJBP decoding algorithm. As an example, (1024, 512) polar

code is used to emulate the proposed decoder to estimate the complexity with max

number of iterations of 60.

First of all, the average numbers of iterations of those algorithms are summarized

in the Figure 7.8a. It is shown in the figure that with the round-trip scheduling com-

putations, the efficiency of the BP algorithm is significantly increased. Noticeably

84

scaled min-sum BP algorithm reduces the number of iterations. However the reduc-

tion is at the cost of the additional scaling computation in each node update. The

interesting phenomenon from this experiment is that the round-trip scheduling signif-

icantly improves the iteration efficiency without the additional computational com-

plexity cost. Under the condition of high Eb/N0 = 3.5, the round-trip BP scheduling

only takes 3.98 average iterations to complete decoding. As mentioned above, the

amounts of computations for conventional scheduling and round-trip scheduling in

each iteration are the same. Compared with 24.5 average number of iterations con-

sumed by the conventional MS BP decoding, the decoding efficiency is immediately

improved by 83.7% without considering the simplification on factor graph yet. Also,

it is addressed that the proposed XJ-BP algorithm does not reduce the number of

iterations compared with the traditional BP but with round-trip scheduling.

Secondly, we evaluate the reduction of computations in each iteration resulting

from the proposed XJ approach for message passing. As mentioned above, compu-

tations for nodes of N 0 and N 1 codes could be removed directly. The computations

of NREP and N SPC codes are reduced by XJ-BP. The numbers of total operations

(2-input addition or 2-input comparison) are shown in the Table. 7.4. In the table,

polar codes are set at rate = 0.5 and the channel polarization is done under the

binary erasure channel (BEC) model with erasure ratio of 0.3. It is shown that the

total number of computations could be reduced by about 40% in each iteration us-

ing the proposed simplified BP algorithm. And we found that this ratio is kept at

about 40% even with significantly longer code length. In another word, the proposed

simplification saves around 40% amount of computations regardless of lengths of the

polar codes.

Another factor that affects the simplification is the code rate. Table. 7.5 shows

the number of computations for proposed algorithm decoding a polar code of length

85

Table 7.4: Number of computations of XJ-BP algorithm with all polar codes at
rate = 0.5

Polar code sizes

128 256 512 1024 2048

Conventional BP 1792 4096 9216 20480 45056

XJ-BP 1040 2488 5536 12160 27304

Ratios [%] 58.0% 60.9% 60.1% 59.4% 60.6%

1024 at different typical code rates. As the table shows, the proposed algorithm

saves more computation resource to decode polar code with higher code rates. This

is because that more constituent codes exist in the factor graph with more unbalanced

number of frozen bits and information bits.

Table 7.5: Computations of XJ-BP algorithm in each iteration at different code rates

Code Rates

1/2 2/3 3/4 5/6 7/8

conventional BP 20480 20480 20480 20480 20480

XJ-BP 12160 11488 10680 9376 8936

Ratios [%] 59.4% 56.1% 52.3% 45.8% 44.6%

Finally, the overall complexity reduction is evaluated by considering both the

reduced number of iterations and simplified computations in each iteration. Take

the (1024, 512) codes as an example, Figure 7.19 shows the average numbers of com-

putations to decode one codeword at different levels of Eb/N0. Due to the extra

scaling operations, SMS consumes around 34% more computations over the conven-

tional MS decoding algorithm, although SMS outperforms conventional BP in terms

of decoding performance. Compared with conventional BP decoding, the round-trip

scheduling reduces the number of computations by 83.7% at Eb/N0 = 3.5 resulting

86

TABLE II. NUMBER OF COMPUTATIONS OF XJ-BP ALGORITHM WITH
ALL POLAR CODES AT RATE = 0.5

Polar code sizes
128 256 512 1024 2048

Conventional BP 1792 4096 9216 20480 45056
XJ-BP 1040 2488 5536 12160 27304

Ratios [%] 58.0% 60.9% 60.1% 59.4% 60.6%

TABLE III. COMPUTATIONS OF XJ-BP ALGORITHM IN EACH
ITERATION AT DIFFERENT CODE RATES

Code Rates
1/2 2/3 3/4 5/6 7/8

conventional BP 20480 20480 20480 20480 20480
XJ-BP 12160 11488 10680 9376 8936

Ratios [%] 59.4% 56.1% 52.3% 45.8% 44.6%

1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2
x 10

6

E
b
/N

0
 [dB]

A
ve

ra
ge

 n
um

be
r

of
 c

om
pu

ta
tio

ns

Min−sum
Min−sum round−trip
Scaled min−sum BP in [7]
XJ−BP

Fig. 6. Average numbers of computations consumed to decode each codeword
of by the proposed BP decoding algorithm for (1024, 512) polar code with
rate = 0.5.

higher code rates. This is because that more constituent codes
exist in the factor graph with more unbalanced number of
frozen bits and information bits.

Finally, the overall complexity reduction is evaluated by
considering both the reduced number of iterations and sim-
plified computations in each iteration. Take the (1024, 512)
codes as an example, Fig. 6 shows the average numbers of
computations to decode one codeword at different levels of
Eb/N0. Due to the extra scaling operations, SMS consumes
around 34% more computations over the conventional MS
decoding algorithm, although SMS outperforms conventional
BP in terms of decoding performance. Compared with con-
ventional BP decoding, the round-trip scheduling reduces the
number of computations by 83.7% at Eb/N0 = 3.5 resulting
from the reduced number of iterations. Based on round-trip
scheduling, the proposed method does not yield any further
improvement on number of necessary iterations. However
the XJ-BP decoding simplifies factor graph so as to reduce
the computations in each iteration by 40.6%. As a results,
the overall complexity is reduced by 90.4% using XJ-BP,
compared with conventional BP decoding.

C. Discussions
From the aspect of practical implementation, the conven-

tional BP processing element symmetrically computes updates

for messages Ri,j and Li,j . Traditional computations for Ri,j

as shown in Eq. (2) are as same as those for Li,j in Eq. (1).
In practical implementation for the proposed algorithm, the
processing elements should be designed as only to deal with
functions G(x, y + z) and G(x, y) + z to satisfy only one-
direction message computations.

The message updating rules are different between normal
nodes and nodes of the constituent codes in mathematics. But
the basic operations of additions and comparisons for them
are similar. Thus the proposed processing elements could be
multiplexed between normal and specific constituent codes.

VI. CONCLUSION

In this paper, a novel method is proposed to simplify
belief propagation decoding algorithms for polar codes. By
modifying the BP rules for the specific constituent codes, the
proposed method significantly simplifies the factor graph of
message passing in each iteration. Additionally, a novel round-
trip scheduling approach is developed based on the obser-
vations that BP decoding algorithm works more efficiently
with it. The computational efficiencies of different BP-based
decoding strategies are evaluated by counting numbers of
basic operations. The results show that the proposed XJ-BP
algorithm reduces the computational complexity of MS BP
decoding by 90.4% while yielding the same performance as
that of the SMS BP decoding algorithm.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
Information Theory, IEEE Transactions on, vol. 55, no. 7, pp. 3051–
3073, 2009.

[2] A. Eslami and H. Pishro-Nik, “On bit error rate performance of polar
codes in finite regime,” in Communication, Control, and Computing
(Allerton), 2010 48th Annual Allerton Conference on. IEEE, 2010,
pp. 188–194.

[3] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar
decoder architectures using 2-bit decoding,” Circuits and Systems I:
Regular Papers, IEEE Transactions on, vol. 61, no. 4, pp. 1241–1254,
2014.

[4] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast
polar decoders: Algorithm and implementation,” Selected Areas in
Communications, IEEE Journal on, vol. 32, no. 5, pp. 946–957, 2014.

[5] A. Pamuk, “An FPGA implementation architecture for decoding of
polar codes,” in Wireless Communication Systems (ISWCS), 2011 8th
International Symposium on. IEEE, 2011, pp. 437–441.

[6] B. Yuan and K. K. Parhi, “Architecture optimizations for BP polar
decoders,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013, pp. 2654–2658.

[7] B. Yuan and K. Parhi, “Early Stopping Criteria for Energy-Efficient
Low-Latency Belief-Propagation Polar Code Decoders,” Signal Pro-
cessing, IEEE Transactions on, vol. 62, no. 24, pp. 6496–6506, Dec
2014.

[8] Y. Zhang, Q. Zhang, X. Pan, Z. Ye, and C. Gong, “A simplified belief
propagation decoder for polar codes,” in Wireless Symposium (IWS),
2014 IEEE International. IEEE, 2014, pp. 1–4.

[9] Y. S. Park, Y. Tao, S. Sun, and Z. Zhang, “A 4.68 gb/s belief propagation
polar decoder with bit-splitting register file,” in VLSI Circuits Digest of
Technical Papers, 2014 Symposium on. IEEE, 2014, pp. 1–2.

[10] J. Guo, M. Qin, A. Guillen i Fabregas, and P. H. Siegel, “Enhanced
belief propagation decoding of polar codes through concatenation,” in
Information Theory (ISIT), 2014 IEEE International Symposium on.
IEEE, 2014, pp. 2987–2991.

[11] T. Richardson and R. Urbanke, Modern coding theory. Cambridge
University Press, 2008.

[12] T. K. Moon, “Error correction coding,” Mathematical Methods and
Algorithms. Jhon Wiley and Son, 2005.

Figure 7.19: Average numbers of computations consumed to decode each codeword
of by the proposed BP decoding algorithm for (1024, 512) polar code with rate = 0.5.

from the reduced number of iterations. Based on round-trip scheduling, the proposed

method does not yield any further improvement on number of necessary iterations.

However the XJ-BP decoding simplifies factor graph so as to reduce the computa-

tions in each iteration by 40.6%. As a results, the overall complexity is reduced by

90.4% using XJ-BP, compared with conventional BP decoding.

7.6.1.1 Discussion

From the aspect of practical implementation, the conventional BP processing

element symmetrically computes updates for messages Ri,j and Li,j. Traditional

computations for Ri,j as shown in Equation (2.13) are as same as those for Li,j

in Equation (2.12). In practical implementation for the proposed algorithm, the

processing elements should be designed as only to deal with functions G(x, y + z)

and G(x, y)+z to satisfy only one-direction message computations. Thus, one should

be aware of that the processing element for regular codes in this thesis consume only

87

half of the resource consumed by ”Processing Elements” in other state-of-the-art BP

decoders.

7.6.2 Fixed-point Analysis

Before showing the synthesis results, a fixed-point performance of the proposed

architecture is analyzed to determine how many bits are necessarily to assign on the

belief propagation so that the hardware performance could be promised.

1 1.5 2 2.5 3 3.5
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

F
E

R

floating point
(7,6,1)
(6,6,0)
(6,5,1)

Figure 7.20: Quantized error correction performance of XJBP.

The results of the proposed architecture are briefly summarized in Table 7.6.

The table shows the area and power consumption of all units in this proposed micro

architecture. Since there are only comparison and addition involved in the com-

putations of the proposed algorithms, we apply same quantization scheme on both

88

channel input LLRs and internal propagation LLRs. We use three number (C, I, F)

to represent quantization scheme, where C, I and F stand for the total number of

bits assigned on each value, number of bits assigned on integer part and number

of bits assigned on fraction parts respectively. Figure 7.20 shows the performances

of the floating-point model and fixed-point model at different quantization schemes.

It is clearly shown in the figure that with scheme (7, 6, 1), there is no degradation

from the floating point model. With one bit reduction on the fraction part, scheme

(6, 6, 0) only results in a negligible degradation on the error correction performance.

However, if we reduce one bit on the integer part, a error floor appears and results

in unexpected performance degradation on the error correction capability. Thus, we

adopt quantization scheme (7, 6, 1) to implement our XJBP decoder.

7.6.3 Synthesis Results and Discussion

Table 7.6: This is a logic consumption table for XJBP

normal codes
256 PE

REP codes
32 adder

SPC codes
32 adder

equivalent gate count 85.2k 10.5k 26.9k
Delay(ns) 1.88 1.1 1.78
Power(mW)(@ 500MHz) 28.2 4.74 10.3

To estimate the power consumption of the proposed deocder, RTL model for a

(1024, 512) polar XJBP decoder is developed in Verilog HDL. The consumption on

logic and memory are sperated estimated to deliver a clear picture on power consump-

tion on proposed decoder. The design is synthesized by SynopsysDesignCompiler

with FreePDK CMOS 45nm library. The supply voltage is set to 1.1 volts with

typical timing model at 27 C.

89

Table 7.6 shows the hardware consumption on computation units, which includes

256 conventional processing elements, 32 repetition codes and single parity check

codes processing units. It is shown in the table that the two new introduced units

for repetition codes and single parity check decoding does yield less latency than the

conventional PE. It means that the proposed idea does not reduce the clock frequency

of traditional BP decoders designs. Besides the timing information, it can be seen in

the table that the proposed new processing units consume less hardware resources

than normal PUs in terms of gate counts. As mentioned above, this is because that

the special computation resource are demanded less in the factor graph and they are

more efficient to delivery updates. Also the power consumption of all units based

on clock frequency at 500MHz are estimated in the synthesis report. Similar as

the gate counts, REP and SPC units consumes much less power. Specifically, REP

codes consumes more less power, since they have simpler computations of additions

instead of 4 : 2 sorting in the SPC PUs.

Table 7.7: This is a memory consumption table for XJBP

Normal P-REP NP-REP P-SPC NP-SPC

bits 71260 3416 1708 5824 2912
gate count (k) 470 22.5 11.3 38.4 19.2
Power (mW) (@500MHz) 271.2 13 6.5 22.2 11.1

For BP decoder, all LLRs in the factor graph need to store in memory for access

during the propagation. Although XJBP decoder eliminate a portion of LLRs by

simplifying the factor using constituent codes, the space to store LLR is still consid-

erable. To estimate the memory consumption, the numbers of bits necessary to store

in each unit are first examined in simulation. Along with the synthesis results on

90

memory space, the numbers of bits for each module are presented in the Table 7.7.

In the table, the memory consumption of different processing units are listed. No-

ticeably, to support preemptive scheduling method, the hardware architecture needs

extra memory space to save the paused tasks. Therefore, the memories consumed

by preemptive PUs and non-preemptive PUs are separated. From the table, we can

see that conventional BP PUs consume most amount of memories because of the

abundant amount conventional tasks. Similar as the results in logic consumption,

the memory consumption of SPC is higher that of REP. This is because of the longer

delays of SPC codes updating, which results in more data temporarily saved in SPC

local memory.

Table 7.8: This is a total hardware consumption table for XJBP

Normal
PUs

SPC
PUs

REP
PUs

total

Preemptive
gate count (k) 555.2 65.3 33 653.5
power (mW) (@500MHz) 299.4 32.5 17.7 349.6

Non-Preemptive
gate count (k) 555.2 46.1 21.8 623.1
power (mW) (@500MHz) 299.4 21.4 11.24 332

To give a more clear picture on hardware resource consumption, Table 7.8 presents

total consumption from both memory and logic. Conventional processing elements

consumes most of total hardware resource (approximately 90%). This implies that

the introduction of SPC and REP units does not results in much overhead but signifi-

cantly reduce the number of cycles in each iteration. From the table, it is also shown

that because of the the large portion contribution of conventional processing ele-

ments, the difference of hardware resources between non-preemptive and preemptive

91

situation is limited. It indicates that the advantages of non-preemptive scheduling

will be eliminated on cases when non-preemptive scheduling results in more latency

than preemptive scheduling.

To give a more comprehensive answer to this question and compare with other

state-of-the-art BP decoders, a detailed comparison is given in Table 7.9. In Ta-

ble 7.9, polar code (1024, 512) is taken as a case to study the hardware performance

of different BP decoders.

The number of iterations used in decoding in each frame is based on BPSK

channel with SNR = 0.5. All hardware results are based on FreePDK CMOS 45nm

library with supply voltage of 1.1 volts and typical timing model at 27 C. The

efficiency is analyzed based on both power and area[50]. The power efficiency is

defined as:

Power Efficiency =
Clock Frequency× n

power× latency
(7.6)

where n is the code length of polar codes. The definition turns out the results which

stand for the number of bits decoded by each unit amount of energy. In addition

The area efficiency is defined as:

Area Efficiency =
Throughput

Gate count
(7.7)

which gives the throughput achieved by each unit amount of hardware resources

in terms of gate counts. To be more accurate and fair on hardware capacity, the

throughput in the definition is derived based on the maximum clock frequency which

can be achieved:

Throughput =
Max Frequency× k
Decoding latency

(7.8)

where k is the number of information bits in each codeword of polar codes.

92

Traditional [31] 5-stage SMS [33] 5-stage MS[32] ASAP Preemptive NP

number of iterations 40 21.9 24.5 4 4 4

average cycles per iteration 20*P 2.13 2.13 34 27 34

Logic

Consumption

#PE

C 1024/P 5120 5120 256 256 256

SPC n.a. n.a. n.a. 32 32 32

REP n.a. n.a. n.a. 32 32 32

delay(ns) 1.88 1.93 1.45 1.88 1.88 1.88

Memory (bits) 157,696 788,480 788,480 75,880 80,500 75,880

Total Gate Count (100K) 3.4/P 19.2 15.7 6.2 6.5 6.2

Throughput

(@Max Freq)

340/P Mbps

@ 532MHz

5.69Gbps

@518MHz

6.77Gbps

@690MHz

2.00Gbps

@532MHz

2.52Gbps

@532MHz

2.00Gbps

@532MHz

Power (mW) @500MHz / / / 332 349.6 332

Energy Efficiency (bit/nJ) 3.05 4.55 4.97 11.3 13.6 11.3

Area Efficiency (Mbps/Kgates) 1 2.96 4.31 3.26 3.87 3.26

Performance Difference -0.3dB 0dB -0.3dB 0dB 0dB 0dB

Table 7.9: This is a hardware comparison table between XJBP and other state-of-the-art BP decoders

93

The performances among proposed different scheduling strategies, ASAP, Pre-

emptive and Non Preemptive are presented in the most right columns. As shown in

the table, the preemptive scheduling takes less number of iterations because of con-

sideration of tasks priorities as analyzed in the Section 7.4 but with more hardware

consumption on extra memory space in the REP and SPC PUs. Furthermore, non-

preemptive scheduling does also consider tasks priorities, however, for the (1024, 512)

polar codes, the scheduling does not help reduce the amount of cycles in each itera-

tion. On the hardware consumption side, compared with preemptive scheduling, the

extra memory saved by non-preemptive scheduling contribute a limited portion of the

total power consumption of XJBP decoder. That results in the hardware efficiency

non-preemptive scheduling inferior to that of preemptive scheduling in practice.

Compared with other state-of-the-art BP decoders, the numbers of iterations are

substantially reduced by proposed XJBP decoder. Array-architecture BP decoders

in [32,33] significantly reduce the cycles for each iteration. Along with optimization

on gate level design in [32], they turn out a considerable area efficient design on BP

decoder. However, much more hardware resource are consumed in [32, 33] as the

cost to achieve the small number of cycles for each iteration. As a results, the power

efficiency of our proposed XJBP decoder substantially outperform the multi-stage

folding BP decoders. Noticeably, although the proposed XJBP decoder has much

higher power efficiency, the area efficiency among XJBP decoder and the state-of-

the-art decoders are comparable. This is because of two factors. First is the area

efficiency is derived based on the maximum frequency. Due to the optimization on

gate level design in [32, 33], BP decoders of those achieve a higher clock frequency.

Second reason is that in XJBP decoders, multiple processors are introduced to reduce

the number of cycle in each iteration but which does also result in some idle cycles

of some processors due to the dependency problem.

94

To give a more comprehensive comparison among implementations of different al-

gorithms, the results of state-of-the-art SC decoders are also included in Table 7.10.

As the results shown in table, we can see that the SC decoders consumes much

less area because of its advantages on computations complexity. However, the se-

rial decoding nature impose the difficulty for SC based decoder to achieve higher

throughput. As a result, proposed BP decoder outcomes better performances than

SC-based decoder as well as state-of-the-art BP based decoder in terms of energy

and area efficiency.

Table 7.10: Hardware consumption comparisons among SC and BP decoders

[39] [29] [33] XJBP

algorithm SC SC BP-SMS BP-MS

Total Gate Count (100K) 3.4 3.4 19.2 6.5

Throughput (Gbps) @ Max Freq 0.3 0.8 5.69 2.52

Latency (cycles) 2046 767 47 136

Power (mW) @ 500MHz 84 84 / 349.6

Energy Efficiency (bit/nJ) 2.98 7.94 4.55 11.3
Area Efficiency (Mbps/Kgates) 0.88 2.35 2.96 3.87

To sum up, by using static scheduling techniques on XJBP decoder, the number

of cycles per iteration is substantially reduced which turns out much higher energy

efficiency performance on hardware implementation. XJBP makes the MS decoders

to achieve same performance as SMS decoders without introducing extra scaling

hardware computations. To compare with same error correction ability BP decoder

of [33], the proposed XJBP decoder enhances power efficiency and area efficiency by

3X and 1.3X, respectively.

95

8. OTHER WORKS∗

Before the invention of polar codes, LDPC codes are applied widely because

its near-capacity error correction performance. Besides development of polar codes

decoders, I also put my effort on improving energy efficiency of LDPC decoders. For

this target, techniques of asynchronous circuits are employed to implement LDPC

decoder. This chapter will present my contributions to the asynchronous LDPC

decoders.

Similar as error correction codes decoding, compressive sensing is another in-

teresting problem in the field of signal processing, whose reconstruction problem

is similar as decoding problem which searches for a solution by given a projection

over a matrix. This chapter also shows my contributions on the compressive sensing

techniques.

8.1 Asynchronous Design for Precision-Scaleable LDPC Decoder

Low-density parity-check codes [5,7] are powerful error correction codes that per-

form very close to the Shannon limit and are used in many communication standards

such as IEEE 802.16e (WiMAX) [57], DVB-S2 and IEEE 802.11n (WiFi) [58]. LDPC

performance is significantly affected by the decoding algorithm. Excellent LDPC

performance is achieved by soft decoding typically with the sum-product (SP) al-

gorithm. The algorithm operates by iteratively passing a posteriori probability or

∗Reprinted, with permission, from J. Xu T. Che E. Rohani G.Choi, Asynchronous Design for
Precisionscaleable Energy Efficient LDPC Decoder, Signals, Systems and Computers, 2014 48th
Asilomar Conference on, and Nov. 2014. c© 2014 IEEE. Reprinted, with permission, from J. Xu
E. Rohani M. Rahman G. Choi, Signal Reconstruction Processor Design for Compressive Sensing,
Circuits and Systems (ISCAS), 2014 IEEE International, and Jun. 2014. c© 2014 IEEE. Reprinted,
with permission, from J. Xu G. Choi, Compressive Sensing and Reception for MIMO-OFDM Based
Cognitive Radio, Computing, Networking and Communications (ICNC), 2015 International Con-
ference on, and Feb. 2015. c© 2015 IEEE.

96

log-likelihood ratio (LLR) messages along the edges of a factor graph [59], which

involves check-node update and variable-node update. In practice, the variants of

SP algorithm such as min-sum (MS), offset min-sum (OMS) algorithms are used to

be implemented for avoiding overflow and efficient hardware implementation.

LDPC decoder is first implemented in hardware using fully-parallel architecture

by [60]. However, fully-parallel LDPC decoder suffers from a lot of aspects such as

complex interconnect issues to access the memory, inefficient logic utilization. To effi-

ciently address those problems, [50] proposes an improved architecture which utilizes

the value-reuse property of the OMS algorithm with layer decoding. For an explo-

ration of the low-power design on the existing LDPC architectures, [61] proposes

LDPC decoder equipped with the dynamic voltage and frequency scaling (DVFS)

technique. In [61], the decoder is designed to run at minimum clock frequency and

supply voltage to meet latency requirements by estimating the necessary number of

iterations. The synchronous circuits have to assure that the critical path in the de-

sign does not violate the time limitation imposed by the clock frequency. Although

DVFS technique enables the low-power operation of the LDPC decoder, it requires

the strictly accurate voltage and frequency controls to make sure that the completion

time of synchronous circuits do not violate the limitation of the clock frequency. [62]

proposes a design with an adaptive wordwidth mechanism to reduce the power con-

sumption by optimizing the datapath in the hardware. Without dynamically scaling

voltage and frequency, the power reduction is relatively moderate in [62]. Scaling

voltage and frequency helps significantly reduce the power consumption though, it

introduces difficulties on the coordination between voltage and scaling to avoid time

violation.

Fortunately, the natures of asynchronous circuits overcome the problems men-

tioned in DVFS technique and make asynchronous circuits a efficient method to

97

do low-power design [63]. Asynchronous circuits has recently received increasing

attentions also because of its high operation speed, omission of clock distribution

related problems, and robustness with respect to variations in supply voltage [64].

An asynchronous baseband processor framework design for satellite communication

is proposed in [65] to mitigate the radioactive interference. [66] proposes a fully

parallel LDPC decoder with the asynchronous circuits. Since the check nodes in a

fully-parallel have substantially various transmission delays at each iteration, [66]

proposes to utilize asynchronous techniques to speed up the interleaver of the LDPC

decoder so as to enhance the logic utilization. In [67], we present a precision-scalable

LDPC decoder on asynchronous circutis techniques.

8.1.1 Proposed System

Figure 8.1 shows the overview system for the proposed LDPC decoder. The

LDPC decoder is composed by the check nodes units (CNU) and variable nodes

units (VNU) which iteratively refine the received bit stream. In the proposed sys-

tem, the LDPC decoder consists of precision-scaleable units which are designed in

asynchronous circuits as delay variously depending on the precision of the calcula-

tion in use. The control model is introduced here to determine the pair of necessary

computation precision and voltage supply, for a given decoding fidelity, according

to the interference strength. Different with the conventional synchronous precision-

scalable design, event-driven asynchronous circuits allow not to dynamically scale

the operating frequency along with voltage scaling. To accommodate the precision

scalability, the modifications of CNU and VNU are presented in this following.

The basic data flow chart of LDPC decoder is given in Figure 8.2. There are

different algorithms on how to propagate the belief through the check nodes and

variable nodes. In practice, min-sum algorithm and its variants are popular for

98

2

Detector

Received
Symbols

LDPC Decoder

Variable N
odes

Check N
odes

Iteratively decoding

Voltage
Regulator

SNR
Estimator

sink

Control

Fig. 1. The overview system flow of proposed LDPC decoder

V1
V2
V3
V4
V5
V6
V7
V8

V9

V1
V2
V3
V4
V5
V6
V7
V8

V9

Check nodes
Update

Variable nodes
Update

iteration

S1

S2

S3

S4
S5

S6

S1

S2

S3

S4
S5

S6

Fig. 2. Generic LDPC decoding data flow graph

II. PROPOSED SYSTEM

Fig. 1 shows the overview system for the proposed LDPC
decoder. The LDPC decoder is composed by the check nodes
units (CNU) and variable nodes units (VNU) which iteratively
refine the received bit stream. In the proposed system, the
LDPC decoder consists of precision-scalable units which are
designed in asynchronous circuits as delay variously depending
on the precision of the calculation in use. The control model
is introduced here to determine the pair of necessary com-
putation precision and voltage supply, for a given decoding
fidelity, according to the interference strength. Different with
the conventional synchronous precision-scalable design, event-
driven asynchronous circuits allow not to dynamically scale the
operating frequency along with voltage scaling. To accommo-
date the precision scalability, the modifications of CNU and
VNU are presented in this paper.

A. LDPC Decoding Flow
The basic data flow chart of LDPC decoder is given in

Fig. 2. In literature there are different algorithms on how to
propagate the belief through the check nodes and variable
nodes. In practice, min-sum algorithm and its variants are
popular for its simplified operation on belief propagation (BP).
In this paper, min-sum algorithm is taken as the example to

DATA

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Fig. 3. Asynchronous circuits data path model

be applied on our precision-adaptive decoder design in asyn-
chronous circuits. Noticeably, although min-sum algorithm is
taken to be implemented in our paper, the design flow could be
extended to apply any other BP LDPC decoding algorithms.

When to update the check nodes at ith iteration, for each
variable node Vn and the set of its neighboring variable nodes
m ∈ M(n), the message sent from variable nodes to check
nodes, Qi

nm, could be presented as:

Qi
nm = yn +

∑

m′∈M(n)\m

R(i)
mn. (1)

R
(i)
mn is the message sent from check nodes Sm to variable

node Vn. It is updated in the other phase of variable nodes
update by the following equation:

R(i)
mn = (

∏

n′∈N(m)\m

sign(Qi
n′m)) min

n′∈N(m)\m
(Qi

n′m) (2)

In this paper, those computations above are implemented in
a way that the precision is reconfigurable so that only necessary
bits of precision will be used to compute Qi

nm and R
(i)
mn on

the fly. The details of the implementation will be presented in
the Section IV.

B. Asynchronous Circuits
In synchronous circuits, significant effort on design, per-

formance and timing must be given to ensure correct register-
to-register data forwarding. Especially for DVFS technique,
when the voltage scaling, frequency scaling needs be carefully
scheduled to avoid any flaws in the clock-driven data forward-
ing paths. Asynchronous circuits are unlike the synchronous
circuits that consist of registers and combination logic, driven
by a global clock. On the contrary, in asynchronous circuits,
data forwarding from the input to the output ports are con-
trolled by handshaking between receiving and forwarding units
via acknowledgement signals. The processing-flow model of
asynchronous circuits is shown in Fig. 3. The REQ signal
from previous stage informs the next stage that the new data is
ready. Then the combinational logic (CL) circuit commences
to compute. After the combinational computing, the control
module (CTL) generates an ACK signal and send it back to
the previous module to inform that current computing cycle is
complete and it is ready to receive new data.

In this paper, the combinational logic for the VNU and
CNU are designed with the scalability of the precision. Under
different configurations of the precision, the combinational
logic costs different amount of resources in terms of voltage
or time to complete computations. Due to the nature of the
clock-free asynchronous circuits, the voltage could be scaled
down for low-precision calculations so as to reduce the power
consumption. The details on how the precision impacts the
decoding performance and precision-scalable units implemen-
tation are discussed in the remaining of this paper.

Figure 8.1: The overview system flow proposed LDPC decoder.

its simplified operation on belief propagation. In this paper, min-sum algorithm

is taken as the example to be applied on our precision-adaptive decoder design in

asynchronous circuits. Noticeably, although min-sum algorithm is taken to be im-

plemented in our paper, the design flow could be extended to apply other BP LDPC

decoding algorithm.

When to update the check nodes at ith iteration, for each variable node Vn and

the set of its neighboring variable nodes m ∈ M(n), the message sent from variable

nodes to check nodes, Qi
nm, could be presented as:

Qi
nm = yn +

∑

m′∈M(n)\m
R(i)
mn (8.1)

99

2

Detector

Received
Symbols

LDPC Decoder

Variable N
odes

Check N
odes

Iteratively decoding

Voltage
Regulator

SNR
Estimator

sink

Control

Fig. 1. The overview system flow of proposed LDPC decoder

V1
V2
V3
V4
V5
V6
V7
V8

V9

V1
V2
V3
V4
V5
V6
V7
V8

V9

Check nodes
Update

Variable nodes
Update

iteration

S1

S2

S3

S4
S5

S6

S1

S2

S3

S4
S5

S6

Fig. 2. Generic LDPC decoding data flow graph

II. PROPOSED SYSTEM

Fig. 1 shows the overview system for the proposed LDPC
decoder. The LDPC decoder is composed by the check nodes
units (CNU) and variable nodes units (VNU) which iteratively
refine the received bit stream. In the proposed system, the
LDPC decoder consists of precision-scalable units which are
designed in asynchronous circuits as delay variously depending
on the precision of the calculation in use. The control model
is introduced here to determine the pair of necessary com-
putation precision and voltage supply, for a given decoding
fidelity, according to the interference strength. Different with
the conventional synchronous precision-scalable design, event-
driven asynchronous circuits allow not to dynamically scale the
operating frequency along with voltage scaling. To accommo-
date the precision scalability, the modifications of CNU and
VNU are presented in this paper.

A. LDPC Decoding Flow
The basic data flow chart of LDPC decoder is given in

Fig. 2. In literature there are different algorithms on how to
propagate the belief through the check nodes and variable
nodes. In practice, min-sum algorithm and its variants are
popular for its simplified operation on belief propagation (BP).
In this paper, min-sum algorithm is taken as the example to

DATA

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Fig. 3. Asynchronous circuits data path model

be applied on our precision-adaptive decoder design in asyn-
chronous circuits. Noticeably, although min-sum algorithm is
taken to be implemented in our paper, the design flow could be
extended to apply any other BP LDPC decoding algorithms.

When to update the check nodes at ith iteration, for each
variable node Vn and the set of its neighboring variable nodes
m ∈ M(n), the message sent from variable nodes to check
nodes, Qi

nm, could be presented as:

Qi
nm = yn +

∑

m′∈M(n)\m

R(i)
mn. (1)

R
(i)
mn is the message sent from check nodes Sm to variable

node Vn. It is updated in the other phase of variable nodes
update by the following equation:

R(i)
mn = (

∏

n′∈N(m)\m

sign(Qi
n′m)) min

n′∈N(m)\m
(Qi

n′m) (2)

In this paper, those computations above are implemented in
a way that the precision is reconfigurable so that only necessary
bits of precision will be used to compute Qi

nm and R
(i)
mn on

the fly. The details of the implementation will be presented in
the Section IV.

B. Asynchronous Circuits
In synchronous circuits, significant effort on design, per-

formance and timing must be given to ensure correct register-
to-register data forwarding. Especially for DVFS technique,
when the voltage scaling, frequency scaling needs be carefully
scheduled to avoid any flaws in the clock-driven data forward-
ing paths. Asynchronous circuits are unlike the synchronous
circuits that consist of registers and combination logic, driven
by a global clock. On the contrary, in asynchronous circuits,
data forwarding from the input to the output ports are con-
trolled by handshaking between receiving and forwarding units
via acknowledgement signals. The processing-flow model of
asynchronous circuits is shown in Fig. 3. The REQ signal
from previous stage informs the next stage that the new data is
ready. Then the combinational logic (CL) circuit commences
to compute. After the combinational computing, the control
module (CTL) generates an ACK signal and send it back to
the previous module to inform that current computing cycle is
complete and it is ready to receive new data.

In this paper, the combinational logic for the VNU and
CNU are designed with the scalability of the precision. Under
different configurations of the precision, the combinational
logic costs different amount of resources in terms of voltage
or time to complete computations. Due to the nature of the
clock-free asynchronous circuits, the voltage could be scaled
down for low-precision calculations so as to reduce the power
consumption. The details on how the precision impacts the
decoding performance and precision-scalable units implemen-
tation are discussed in the remaining of this paper.

Figure 8.2: Generic LDPC decoding data flow graph.

R
(i)
mn is the message sent from check nodes Sm to variable node Vn. It is updated in

the variable nodes update phase by the following equation:

R(i)
mn = (

∏

n′∈N(m)\m
sign(Qi

n′m)) min
n′∈N(m)\m

(Qi
n′m) (8.2)

In the proposed asynchronous circuits, those computations above are imple-

mented in a way that the precision is reconfigurable so that minimum necessary

precision will be used to do computation on the fly. The details of the implementa-

tion will be presented in the next subsection.

Asynchronous circuits are unlike the synchronous circuits that consist of registers

and combination logic, driven by a global clock. On the contrary, in asynchronous

100

2

Detector

Received
Symbols

LDPC Decoder

Variable N
odes

Check N
odes

Iteratively decoding

Voltage
Regulator

SNR
Estimator

sink

Control

Fig. 1. The overview system flow of proposed LDPC decoder

V1
V2
V3
V4
V5
V6
V7
V8

V9

V1
V2
V3
V4
V5
V6
V7
V8

V9

Check nodes
Update

Variable nodes
Update

iteration

S1

S2

S3

S4
S5

S6

S1

S2

S3

S4
S5

S6

Fig. 2. Generic LDPC decoding data flow graph

II. PROPOSED SYSTEM

Fig. 1 shows the overview system for the proposed LDPC
decoder. The LDPC decoder is composed by the check nodes
units (CNU) and variable nodes units (VNU) which iteratively
refine the received bit stream. In the proposed system, the
LDPC decoder consists of precision-scalable units which are
designed in asynchronous circuits as delay variously depending
on the precision of the calculation in use. The control model
is introduced here to determine the pair of necessary com-
putation precision and voltage supply, for a given decoding
fidelity, according to the interference strength. Different with
the conventional synchronous precision-scalable design, event-
driven asynchronous circuits allow not to dynamically scale the
operating frequency along with voltage scaling. To accommo-
date the precision scalability, the modifications of CNU and
VNU are presented in this paper.

A. LDPC Decoding Flow
The basic data flow chart of LDPC decoder is given in

Fig. 2. In literature there are different algorithms on how to
propagate the belief through the check nodes and variable
nodes. In practice, min-sum algorithm and its variants are
popular for its simplified operation on belief propagation (BP).
In this paper, min-sum algorithm is taken as the example to

DATA

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Fig. 3. Asynchronous circuits data path model

be applied on our precision-adaptive decoder design in asyn-
chronous circuits. Noticeably, although min-sum algorithm is
taken to be implemented in our paper, the design flow could be
extended to apply any other BP LDPC decoding algorithms.

When to update the check nodes at ith iteration, for each
variable node Vn and the set of its neighboring variable nodes
m ∈ M(n), the message sent from variable nodes to check
nodes, Qi

nm, could be presented as:

Qi
nm = yn +

∑

m′∈M(n)\m

R(i)
mn. (1)

R
(i)
mn is the message sent from check nodes Sm to variable

node Vn. It is updated in the other phase of variable nodes
update by the following equation:

R(i)
mn = (

∏

n′∈N(m)\m

sign(Qi
n′m)) min

n′∈N(m)\m
(Qi

n′m) (2)

In this paper, those computations above are implemented in
a way that the precision is reconfigurable so that only necessary
bits of precision will be used to compute Qi

nm and R
(i)
mn on

the fly. The details of the implementation will be presented in
the Section IV.

B. Asynchronous Circuits
In synchronous circuits, significant effort on design, per-

formance and timing must be given to ensure correct register-
to-register data forwarding. Especially for DVFS technique,
when the voltage scaling, frequency scaling needs be carefully
scheduled to avoid any flaws in the clock-driven data forward-
ing paths. Asynchronous circuits are unlike the synchronous
circuits that consist of registers and combination logic, driven
by a global clock. On the contrary, in asynchronous circuits,
data forwarding from the input to the output ports are con-
trolled by handshaking between receiving and forwarding units
via acknowledgement signals. The processing-flow model of
asynchronous circuits is shown in Fig. 3. The REQ signal
from previous stage informs the next stage that the new data is
ready. Then the combinational logic (CL) circuit commences
to compute. After the combinational computing, the control
module (CTL) generates an ACK signal and send it back to
the previous module to inform that current computing cycle is
complete and it is ready to receive new data.

In this paper, the combinational logic for the VNU and
CNU are designed with the scalability of the precision. Under
different configurations of the precision, the combinational
logic costs different amount of resources in terms of voltage
or time to complete computations. Due to the nature of the
clock-free asynchronous circuits, the voltage could be scaled
down for low-precision calculations so as to reduce the power
consumption. The details on how the precision impacts the
decoding performance and precision-scalable units implemen-
tation are discussed in the remaining of this paper.

Figure 8.3: Asynchronous circuits data path model.

circuits, data forwarding from the input to the output ports are controlled by hand-

shaking between receiving and forwarding units via acknowledgement signals. The

processing-flow model of asynchronous circuits is shown in Figure 8.3. The REQ

signal from previous stage informs the next stage that the new data is ready. Then

the combinational logic (CL) circuit commences to compute. . After the combina-

tional computing, the control module (CTL) generates an ACK signal and send it

back to the previous module to inform that current computing cycle is complete and

it is ready to receive new data. In this paper, the combinational logic for the VNU

and CNU are designed with the scalability of the precision. Under different configu-

rations of the precision, the combinational logic costs different amount of resources

in terms of voltage or time to complete computations. Due to the nature of the

clock-free asynchronous circuits, the voltage could be scaled down for low-precision

calculations so as to reduce the power consumption. The details on how the precision

impacts the decoding performance and precision-scalable units implementation are

discussed in the following.

8.1.2 Implementation of the Proposed System

As aforementioned, the decoding procedure is operated by the iterations between

two basic computation units, VNUs and CNUs. Here, the two units with the precision

101

reconfigurablility are implemented as asynchronous circuits.

8.1.2.1 Variable node units

3

10 12 14 16 18 20 22
10−3

10−2

10−1

SNR [dB]

FE
R

8 bits
6 bits
4 bits

Fig. 4. FER performances for different word lengths

III. IMPACTS OF PRECISION ON DECODING
PERFORMANCE

In this section, we present how the performance is affected
by the different selections of the precision and what parameters
have impacts on the performance along with the adjustment
of the precision. In our case, the clipping scheme is chosen
to optimize the FER performance. All simulation results are
based on the 16QAM 4 × 4 MIMO wireless transmission
with 2304 code size and 1/2 coding rate LDPC codes in IEEE
802.16e standard.

To obtain the decoding performances with different pre-
cisions, we exhaustively search the best clipping window for
each number of precision. We found that with reserving more
signifcant bits in the LLR, the FER curve drops more earlier
under lower SNR. However, the clipping window to reserve
more signifcant bits also results in a relatively higher error
floor. With shifting the LLR clipping window to contain more
least signifcant bits (LSBs), the FER curves do not drop until
a relatively high SNR is given. The clipping window with
more LSBs needs higher SNR to achieve a given target FER
decoding performance though, it mitigates the effect of error
floor.

This impact could be explained as following. With limited
precision, the details of LLR are lost with clipping window
with more MSBs to achieve low error floor. Although LSBs
keep more details of the LLR, the clipping window with more
LSBs obscures the confidences of the LLR so as to result in
degraded performance when SNR is relatively low.

In this paper, the optimal clipping window is determined
based on the error floor below the FER of 10−3. If we move
the clipping window to least significant side, the first window
which gives no error floor before FER dropping to 10−3 is
recognized as the optimal clipping window.

To derive the optimal clipping parameters for the proposed
precision-scalable LDPC decoder, the performances of the
min-sum LDPC decoder with different precisions are sim-
ulated. For each precision, the optimal clipping scheme is
derived by the methoed mentioned in the previous. Fig. 4

Sum

in1

in2

in3

out1

out2

out3

VNU
Precision scalable adder

FA FA

Precision Control

... FA

Fig. 5. Asynchronous precision-scalable VNU design

shows the optimal decoding performances of the proposed
LDPC decoder with precisions of 8, 6 and 4 bits. As shown
in the figure, under the given circumstance, within 3 dB
difference on the SNR the necessary precision of the LLR
could be reduced from 8-bit to 4-bit for a given FER target.

In the following, to utilize the reduction on necessary
precision, the details how the precision-scalable LDPC decoder
is implemented are given.

IV. IMPLEMENTATION OF THE PROPOSED SYSTEM

As aforementioned, the decoding procedure is operated by
the iterations between two basic computation units, VNUs
and CNUs. In this section, the two units with the precision
reconfigurablility are implemented with consideration of the
asynchronous circuits.

A. Variable Node Units
The variable node units with precision-scalability is pre-

sented first. Each VNU has multiple inputs and the same
number of outputs. Without losing the generality, Fig. 5 shows
a VNU with 3 inputs and outputs. The inputs are fed the
values from the outputs of the CNUs. The VNU generates
the outputs by the summations of the input values except
the value from the corresponding input with same index, as
described in (1). The number of inputs is as many as 7 in
the standard LDPC matrix. To reduce the complexity of the
VNU, usually the VNU is designed to sum all inputs together
first and then subtract the input value from the summation for
the corresponding output. This algorithm is implemented by a
adder tree which sums all inputs first and multiple adders to
subtract the inputs.

The precision scalability is augmented by designing a
precision-reconfigurable adder. As Fig. 5 shows, the carry-in
for each full adder is gated by a control signal. The control
signal could gate each specific carry-in signal. Therefore,
the precision of adder is adjusted by enabling the specific
number of full adders by the control signals. Thus the critical
path is reduced for less precision requirement operation. In
the asynchronous fashion, there is no clock to constraint the
completion. Each stages passes the data to the neighbor by the
asynchronous protocol. With different precisions, the delays
of the unit are adjusted without any overhead on the clock
configuration. Therefore, asynchronous circuits offer more
feasibility of the scalability than conventional synchronous
circuits.

B. Check Node Units
Compared with the VNU, CNU is of greater complexity

to execute (2). The CNU also contains multiple inputs and
outputs. Each output of the CNU is the minimum values out of

Figure 8.4: Asynchronous precision-salable VNU design.

The variable node units with precision-scalability is presented first. Each VNU

has multiple inputs and the same number of outputs. Without losing the generality,

Figure 8.4 shows a VNU with 3 inputs and outputs. The inputs are fed the values

from the outputs of the CNUs. The VNU generates the outputs by the summations

of the input values except the value from the corresponding input with same index,

as described in Equation8.1. The number of inputs is as many as 7 in the standard

LDPC matrix. To reduce the complexity of the VNU, usually the VNU is designed to

sum all inputs together first and then subtract the input value from the summation

for the corresponding output. This algorithm is implemented by a adder tree which

sums all inputs first and multiple adders to subtract the inputs.

The precision scalability is augmented by designing a precision-reconfigurable

adder. As Figure 8.4shows, the carry-in for each full adder is gated by a control signal.

The control signal could gate each specific carry-in signal. Therefore, the precision

102

of adder is adjusted by enabling the specific number of full adders by the control

signals. Thus the critical path is reduced for less precision requirement operation.

In the asynchronous fashion, there is no clock to constraint the completion. Each

stages passes the data to the neighbor by the asynchronous protocol. With different

precisions, the delays of the unit are adjusted without any overhead on the clock

configuration. Therefore, asynchronous circuits offer more feasibility of the scalability

than conventional synchronous circuits.

8.1.2.2 Check node units

4

the all inputs except the corresponding input with same index.
An efficient way to complete the computation is first to sort out
all the inputs to get the minimum and second minimum (sub-
min) values. Subsequently the inputs are compared with the
min and sub-min value to determine which to be propagated
to the output. Fig. 6 shows the architecture of the CNU. The
critical path of the CNU is marked by the dashed line in
the figure, which consists of the absolute value calculation,
a sorting unit and a comparator.

In the first operation, the 2’s complementary number is
translated to sign-magnitude number. Then the magnitude
values are passed to the sorting units to get the minimum
and sub-minimum values out of all of the magnitudes. Finally,
the minimum and sub-minimum values are selected in the
comparator for each output. From the figure, it is shown
that the critical path mainly contains the sorting units and
a comparator. And sorting unit could be made by multiple
comparators. Therefore, to reduce the completion time of the
CNU in lower precision, we proposed the precision-scalable
comparator for the comparator as well as the sorting operator.

To accommodate the scalability of the precision, the bit
comparator units (BCUs) is introduced as the single units in
the comparators. As Fig.7 shows, the proposed comparator is
composed by multiple BCUs which are concatenated together.
The most right BCU corresponds to the MSB, while the left
most one is for LSB. For a certain number of precision, the
necessary number of BCUs are clipped out by the precision
control signal. The critical path of the proposed comparator
starts from the right to the left. Since the values after absolute
operation are unsigned, each BCU plays role on determine
which value of the inputs is greater by checking if two bits
are same are not. Also the BCU needs notify the BCU in the
next level if the comparison is done. If the comparison is done
by the previous stage BCU, the subsequent BCUs output the
results correspondingly.

The details of the BCU is also given in the figure. Inputs a
and b are the two bits of the operators. They are compared by
a XOR gate to determine if comparison between the two bits
is done in this stage. The ack input is used to acknowledge the
BCU that the comparison is done by the previous BCU. The
winner input indicates which number has the greater value.

Distinct with conventional comparator, since we utilize the
asynchronous technique here, the comparator proposed here is
not only equipped with ability of precision reconfiguration, it is
also designed to get the result as soon as possible by checking
from MSB to LSB. If the comparison is done earlier in more
significant bits, the critical path for the following BCUs is
reduced, so that the computation could be completed earlier
without the clock constraints.

In the following, the evaluations of the proposed method
in terms of computation latency, voltage scaling and power
reduction are given.

V. SETUP AND SIMULATION

To evaluate the proposed method, we first synthesize
the precision-scalable computation units by Synopsys Design
Compiler on Nangate 45nm library. The original design with-
out precision reduction is referenced as the baseline design. For
timing analysis of the proposed method, the critical paths under
different precision configurations are extracted by Synopsys
Primetime and evaluated by the Synopsys Hspice.

CNU
in1
in2
in3
in4
in5

Abs()

Sign()

Com
parator

sorting
Sub_min

out1
out2
out3
out4
out5

Fig. 6. Asynchronous precision-scalable CNU design

Precision scalable comparator

BCU

Precision Control

... BCUBCU
...

Bit Comparator Unit

a
b

ack
winner

ack_out

M
U

X

b

M
U

X

b

winner_out

a Bit of winner

Fig. 7. Proposed asynchronous comparator

A. Timing Analysis of the proposed units
First of all, the delays of the proposed units with different

precision configurations are evaluated by the SPICE simula-
tion. And the results are shown in the Fig. 8. As the figure
shows, the latency of the computation units are substantially
affected by the number of bits involved in the computation. To
utilize the time reduction of the lower-precision computation
in high-SNR situations, the supply voltage could be tuned
down without losing throughput. Because the asynchronous
circuits applied, overhead of frequency control is dismissed as
we mentioned above. The results voltage scaling is discussed
in the following subsection.

B. Voltage Scaling
Here we examined the necessary voltage supplies for

computations under different precision without losing the
throughput. VNU is taken as an example here to illustrate
the voltage scaling. Fig. 9 shows the latency over the sup-
ply voltage of VNU with different precisions. The baseline
latency is referenced as the 8-bit full precision. To achieve the
same latency, lower voltage supplies are sufficient for those
lower-precision computations according to the curves. And the
voltage scaling points are indicated as the necessary voltage
supply for different precisions.

C. Comparisons with full-precision decoding
According to the supply voltages reductions examined

above, we derived the normalized power reduction to the
LDPC decoder running at full precision by the power, P ∝

Figure 8.5: Asynchronous precision-salable CNU design

Compared with the VNU, CNU is of greater complexity to execute Equation 8.2.

Figure 8.5 shows the architecture of the CNU. The critical path of the CNU is marked

by the dashed line in the figure, which consists of the absolute value calculation,

a sorting unit and a comparator. In the first operation, the 2’s complementary

number is translated to sign-magnitude number. Then the magnitude values are

103

passed to the sorting units to get the minimum and sub-minimum values out of all

of the magnitudes. Finally, the minimum and sub-minimum values are selected in

the comparator for each output. From the figure, it is shown that the critical path

mainly contains the sorting units and a comparator. And sorting unit could be made

by multiple comparators. Therefore, to reduce the completion time of the CNU in

lower precision, we proposed the precision-scalable comparator for the comparator

as well as the sorting operator.

4

the all inputs except the corresponding input with same index.
An efficient way to complete the computation is first to sort out
all the inputs to get the minimum and second minimum (sub-
min) values. Subsequently the inputs are compared with the
min and sub-min value to determine which to be propagated
to the output. Fig. 6 shows the architecture of the CNU. The
critical path of the CNU is marked by the dashed line in
the figure, which consists of the absolute value calculation,
a sorting unit and a comparator.

In the first operation, the 2’s complementary number is
translated to sign-magnitude number. Then the magnitude
values are passed to the sorting units to get the minimum
and sub-minimum values out of all of the magnitudes. Finally,
the minimum and sub-minimum values are selected in the
comparator for each output. From the figure, it is shown
that the critical path mainly contains the sorting units and
a comparator. And sorting unit could be made by multiple
comparators. Therefore, to reduce the completion time of the
CNU in lower precision, we proposed the precision-scalable
comparator for the comparator as well as the sorting operator.

To accommodate the scalability of the precision, the bit
comparator units (BCUs) is introduced as the single units in
the comparators. As Fig.7 shows, the proposed comparator is
composed by multiple BCUs which are concatenated together.
The most right BCU corresponds to the MSB, while the left
most one is for LSB. For a certain number of precision, the
necessary number of BCUs are clipped out by the precision
control signal. The critical path of the proposed comparator
starts from the right to the left. Since the values after absolute
operation are unsigned, each BCU plays role on determine
which value of the inputs is greater by checking if two bits
are same are not. Also the BCU needs notify the BCU in the
next level if the comparison is done. If the comparison is done
by the previous stage BCU, the subsequent BCUs output the
results correspondingly.

The details of the BCU is also given in the figure. Inputs a
and b are the two bits of the operators. They are compared by
a XOR gate to determine if comparison between the two bits
is done in this stage. The ack input is used to acknowledge the
BCU that the comparison is done by the previous BCU. The
winner input indicates which number has the greater value.

Distinct with conventional comparator, since we utilize the
asynchronous technique here, the comparator proposed here is
not only equipped with ability of precision reconfiguration, it is
also designed to get the result as soon as possible by checking
from MSB to LSB. If the comparison is done earlier in more
significant bits, the critical path for the following BCUs is
reduced, so that the computation could be completed earlier
without the clock constraints.

In the following, the evaluations of the proposed method
in terms of computation latency, voltage scaling and power
reduction are given.

V. SETUP AND SIMULATION

To evaluate the proposed method, we first synthesize
the precision-scalable computation units by Synopsys Design
Compiler on Nangate 45nm library. The original design with-
out precision reduction is referenced as the baseline design. For
timing analysis of the proposed method, the critical paths under
different precision configurations are extracted by Synopsys
Primetime and evaluated by the Synopsys Hspice.

CNU
in1
in2
in3
in4
in5

Abs()

Sign()

Com
parator

sorting
Sub_min

out1
out2
out3
out4
out5

Fig. 6. Asynchronous precision-scalable CNU design

Precision scalable comparator

BCU

Precision Control

... BCUBCU
...

Bit Comparator Unit

a
b

ack
winner

ack_out

M
U

X

b

M
U

X

b

winner_out

a Bit of winner

Fig. 7. Proposed asynchronous comparator

A. Timing Analysis of the proposed units
First of all, the delays of the proposed units with different

precision configurations are evaluated by the SPICE simula-
tion. And the results are shown in the Fig. 8. As the figure
shows, the latency of the computation units are substantially
affected by the number of bits involved in the computation. To
utilize the time reduction of the lower-precision computation
in high-SNR situations, the supply voltage could be tuned
down without losing throughput. Because the asynchronous
circuits applied, overhead of frequency control is dismissed as
we mentioned above. The results voltage scaling is discussed
in the following subsection.

B. Voltage Scaling
Here we examined the necessary voltage supplies for

computations under different precision without losing the
throughput. VNU is taken as an example here to illustrate
the voltage scaling. Fig. 9 shows the latency over the sup-
ply voltage of VNU with different precisions. The baseline
latency is referenced as the 8-bit full precision. To achieve the
same latency, lower voltage supplies are sufficient for those
lower-precision computations according to the curves. And the
voltage scaling points are indicated as the necessary voltage
supply for different precisions.

C. Comparisons with full-precision decoding
According to the supply voltages reductions examined

above, we derived the normalized power reduction to the
LDPC decoder running at full precision by the power, P ∝

Figure 8.6: Proposed asynchronous comparator

To accommodate the scalability of the precision, the bit comparator units (BCUs)

is introduced as the single units in the comparators. As Figure 8.6 shows, the pro-

posed comparator is composed by multiple BCUs which are concatenated together.

104

The most right BCU corresponds to the MSB, while the left most one is for LSB.

For a certain number of precision, the necessary number of BCUs are clipped out

by the precision control signal. The critical path of the proposed comparator starts

from the right to the left. Since the values after absolute operation are unsigned,

each BCU plays role on determine which value of the inputs is greater by checking

if two bits are same are not. Also the BCU needs notify the BCU in the next level

if the comparison is done. If the comparison is done by the previous stage BCU, the

subsequent BCUs output the results correspondingly. The details of the BCU is also

given in the figure. Inputs a and b are the two bits of the operators. They are com-

pared by a XOR gate to determine if comparison between the two bits is done in this

stage. The ack input is used to acknowledge the BCU that the comparison is done by

the previous BCU. The winner input indicates which number has the greater value.

Distinct with conventional comparator, since we utilize the asynchronous technique

here, the comparator proposed here is not only equipped with ability of precision

reconfiguration, it is also designed to get the result as soon as possible by checking

from MSB to LSB. If the comparison is done earlier in more significant bits, the

critical path for the following BCUs is reduced, so that the computation could be

completed earlier without the clock constraints. In the following, the evaluations of

the proposed method in terms of computation latency, voltage scaling and power

reduction are given.

8.1.3 Simulations and Analysis

To evaluate the proposed method, we first synthesize the precision-scalable com-

putation units by Synopsys Design Compiler on Nangate FreePDK 45nm library. The

original design without precision reduction is referenced as the baseline design. For

timing analysis of the proposed method, the critical paths under different precision

105

configurations are extracted by Synopsys Primetime and evaluated by the Synopsys

Hspice.

5

2 4 6 8
0

100

200

300

400

500

600

Precision [bits]

La
te

nc
y

[p
s]

VNU
comparator

Fig. 8. Units delays for different precisions

0.8 0.85 0.9 0.95 1 1.05 1.1
400

450

500

550

600

650

700

Vdd [V]

La
te

nc
y

[p
s]

7 bits
6 bits
5 bits
4 bits

Voltage
Scaling
Points

Baseline
Latency

Fig. 9. Voltage Scaling to align processing latency

High SNR Low SNR

4 5 6 7 8
0

20

40

60

80

100

Precision [bits]

P
ow

er
 c

on
su

m
pt

io
n

[%
] VNU

CNU
Total

Fig. 10. Normalized power reduction compared with fixed precision LDPC
decoder

V 2
dd. Fig. 10 shows the relatively power consumption compared

with full 8-bit precision LDPC decoder. With high SNR
environments, 4-bit precision LDPC decoder could be taken to
do decoding for a given target transmission reliability with only
cost of 49% power consumption as the full-precision running

decoder.
Noticeably, the specific algorithm and simulation environ-

ment are set in this paper though, the method presented in this
paper is algorithm independent and could be applied into any
other specific cases.

VI. CONCLUSION AND DISCUSSION

In this paper, we explored the feasibility and effect of
the precision-scalable energy-efficient LDPC decoder equipped
with the asynchronous techniques. The IEEE 802.16e is taken
as the background for the design in this paper. To design a solid
precision-scalable LDPC decoder, the impacts of LLR clipping
on the performance of different precision computations are
also studied. To get an optimal performance, we found the
clipping schemes should be carefully taken for calculations
with different precisions. Furthermore, the basic units in the
LDPC decoder, VNU and CNU are explored and modified as
precision-reconfigurable. A series of experiments and deriva-
tion are deducted to show that the proposed LDPC decoder is
able to operate with 4-bit precision, half of the normally used
precision under higher SNR to achieve 51% power reduction.

REFERENCES
[1] R. G. Gallager, “Low-density parity-check codes,” Information Theory,

IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.
[2] D. J. MacKay, “Good error-correcting codes based on very sparse

matrices,” Information Theory, IEEE Transactions on, vol. 45, no. 2,
pp. 399–431, 1999.

[3] IEEE 802.16 Working Group and others, “IEEE Standard for Local and
Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband
Wireless Access Systems,” IEEE Std, vol. 802, pp. 16–2004, 2004.

[4] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” Information Theory, IEEE Transactions on,
vol. 47, no. 2, pp. 498–519, Feb 2001.

[5] A. J. Blanksby and C. J. Howland, “A 690-mw 1-gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 3, pp. 404–412, 2002.

[6] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
architectures for layered decoding for irregular LDPC codes of WiMax,”
in Communications, 2007. ICC’07. IEEE International Conference on.
IEEE, 2007, pp. 4542–4547.

[7] W. Wang, E. Kim, K. K. Gunnam, and G. S. Choi, “Low-power vlsi
design of ldpc decoder using dynamic voltage and frequency scaling
for additive white gaussian noise channels,” Journal of Low Power
Electronics, vol. 5, no. 3, pp. 303–312, 2009.

[8] T. Mohsenin, H. Shirani-mehr, and B. M. Baas, “LDPC Decoder
with an Adaptive Wordwidth Datapath for Energy and BER Co-
optimization,” VLSI Des., vol. 2013, pp. 7:7–7:7, Jan. 2013. [Online].
Available: http://dx.doi.org/10.1155/2013/913018

[9] T. Lin, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “An ultra-low power
asynchronous-logic in-situ self-adaptive system for wireless sensor
networks,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 2, pp.
573–586, 2013.

[10] J. Spars and S. Furber, Principles Asynchronous Circuit Design.
Springer, 2002.

[11] E. Rohani, J. Xu, T. Che, M. Rahman, G. Choi, and M. Lu, “Asyn-
chronous baseband processor design for cooperative mimo satellite
communication,” in Circuits and Systems (MWSCAS), 2014 IEEE 57th
International Midwest Symposium on. IEEE, 2014, pp. 833–836.

[12] N. Onizawa, V. C. Gaudet, and T. Hanyu, “Low-energy asynchronous
interleaver for clockless fully parallel ldpc decoding,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 58, no. 8, pp.
1933–1943, 2011.

Figure 8.7: Units delays for different bits of precision

First of all, the delays of the proposed units with different precision configurations

are evaluated by the SPICE simulation. And the results are shown in the Figure 8.7.

As the figure shows, the latency of the computation units are substantially affected

by the number of bits involved in the computation. To utilize the time reduction of

the lower-precision computation in high-SNR situations, the supply voltage could be

tuned down without losing throughput. Because the asynchronous circuits applied,

overhead of frequency control is dismissed as we mentioned above.

106

5

2 4 6 8
0

100

200

300

400

500

600

Precision [bits]

La
te

nc
y

[p
s]

VNU
comparator

Fig. 8. Units delays for different precisions

0.8 0.85 0.9 0.95 1 1.05 1.1
400

450

500

550

600

650

700

Vdd [V]

La
te

nc
y

[p
s]

7 bits
6 bits
5 bits
4 bits

Voltage
Scaling
Points

Baseline
Latency

Fig. 9. Voltage Scaling to align processing latency

High SNR Low SNR

4 5 6 7 8
0

20

40

60

80

100

Precision [bits]

P
ow

er
 c

on
su

m
pt

io
n

[%
] VNU

CNU
Total

Fig. 10. Normalized power reduction compared with fixed precision LDPC
decoder

V 2
dd. Fig. 10 shows the relatively power consumption compared

with full 8-bit precision LDPC decoder. With high SNR
environments, 4-bit precision LDPC decoder could be taken to
do decoding for a given target transmission reliability with only
cost of 49% power consumption as the full-precision running

decoder.
Noticeably, the specific algorithm and simulation environ-

ment are set in this paper though, the method presented in this
paper is algorithm independent and could be applied into any
other specific cases.

VI. CONCLUSION AND DISCUSSION

In this paper, we explored the feasibility and effect of
the precision-scalable energy-efficient LDPC decoder equipped
with the asynchronous techniques. The IEEE 802.16e is taken
as the background for the design in this paper. To design a solid
precision-scalable LDPC decoder, the impacts of LLR clipping
on the performance of different precision computations are
also studied. To get an optimal performance, we found the
clipping schemes should be carefully taken for calculations
with different precisions. Furthermore, the basic units in the
LDPC decoder, VNU and CNU are explored and modified as
precision-reconfigurable. A series of experiments and deriva-
tion are deducted to show that the proposed LDPC decoder is
able to operate with 4-bit precision, half of the normally used
precision under higher SNR to achieve 51% power reduction.

REFERENCES
[1] R. G. Gallager, “Low-density parity-check codes,” Information Theory,

IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.
[2] D. J. MacKay, “Good error-correcting codes based on very sparse

matrices,” Information Theory, IEEE Transactions on, vol. 45, no. 2,
pp. 399–431, 1999.

[3] IEEE 802.16 Working Group and others, “IEEE Standard for Local and
Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband
Wireless Access Systems,” IEEE Std, vol. 802, pp. 16–2004, 2004.

[4] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” Information Theory, IEEE Transactions on,
vol. 47, no. 2, pp. 498–519, Feb 2001.

[5] A. J. Blanksby and C. J. Howland, “A 690-mw 1-gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 3, pp. 404–412, 2002.

[6] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
architectures for layered decoding for irregular LDPC codes of WiMax,”
in Communications, 2007. ICC’07. IEEE International Conference on.
IEEE, 2007, pp. 4542–4547.

[7] W. Wang, E. Kim, K. K. Gunnam, and G. S. Choi, “Low-power vlsi
design of ldpc decoder using dynamic voltage and frequency scaling
for additive white gaussian noise channels,” Journal of Low Power
Electronics, vol. 5, no. 3, pp. 303–312, 2009.

[8] T. Mohsenin, H. Shirani-mehr, and B. M. Baas, “LDPC Decoder
with an Adaptive Wordwidth Datapath for Energy and BER Co-
optimization,” VLSI Des., vol. 2013, pp. 7:7–7:7, Jan. 2013. [Online].
Available: http://dx.doi.org/10.1155/2013/913018

[9] T. Lin, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “An ultra-low power
asynchronous-logic in-situ self-adaptive system for wireless sensor
networks,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 2, pp.
573–586, 2013.

[10] J. Spars and S. Furber, Principles Asynchronous Circuit Design.
Springer, 2002.

[11] E. Rohani, J. Xu, T. Che, M. Rahman, G. Choi, and M. Lu, “Asyn-
chronous baseband processor design for cooperative mimo satellite
communication,” in Circuits and Systems (MWSCAS), 2014 IEEE 57th
International Midwest Symposium on. IEEE, 2014, pp. 833–836.

[12] N. Onizawa, V. C. Gaudet, and T. Hanyu, “Low-energy asynchronous
interleaver for clockless fully parallel ldpc decoding,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 58, no. 8, pp.
1933–1943, 2011.

Figure 8.8: Voltage scaling to align processing latency

Here we examined the necessary voltage supplies for computations under differ-

ent precision without losing the throughput. VNU is taken as an example here to

illustrate the voltage scaling. Figure 8.8 shows the latency over the supply voltage

of VNU with different precisions. The baseline latency is referenced as the 8-bit full

precision. To achieve the same latency, lower voltage supplies are sufficient for those

lower-precision computations according to the curves. And the voltage scaling points

are indicated as the necessary voltage supply for different bits of precision.

According to the supply voltages reductions examined above, we derived the nor-

malized power reduction to the LDPC decoder running at full precision by the power,

P ∝ V 2
dd. Figure 8.9 shows the relatively power consumption compared with full 8-

bit precision LDPC decoder. With high SNR environments, 4-bit precision LDPC

decoder could be taken to do decoding for a given target transmission reliability with

only cost of 49% power consumption as the full-precision running decoder.

107

5

2 4 6 8
0

100

200

300

400

500

600

Precision [bits]

La
te

nc
y

[p
s]

VNU
comparator

Fig. 8. Units delays for different precisions

0.8 0.85 0.9 0.95 1 1.05 1.1
400

450

500

550

600

650

700

Vdd [V]

La
te

nc
y

[p
s]

7 bits
6 bits
5 bits
4 bits

Voltage
Scaling
Points

Baseline
Latency

Fig. 9. Voltage Scaling to align processing latency

High SNR Low SNR

4 5 6 7 8
0

20

40

60

80

100

Precision [bits]

P
ow

er
 c

on
su

m
pt

io
n

[%
] VNU

CNU
Total

Fig. 10. Normalized power reduction compared with fixed precision LDPC
decoder

V 2
dd. Fig. 10 shows the relatively power consumption compared

with full 8-bit precision LDPC decoder. With high SNR
environments, 4-bit precision LDPC decoder could be taken to
do decoding for a given target transmission reliability with only
cost of 49% power consumption as the full-precision running

decoder.
Noticeably, the specific algorithm and simulation environ-

ment are set in this paper though, the method presented in this
paper is algorithm independent and could be applied into any
other specific cases.

VI. CONCLUSION AND DISCUSSION

In this paper, we explored the feasibility and effect of
the precision-scalable energy-efficient LDPC decoder equipped
with the asynchronous techniques. The IEEE 802.16e is taken
as the background for the design in this paper. To design a solid
precision-scalable LDPC decoder, the impacts of LLR clipping
on the performance of different precision computations are
also studied. To get an optimal performance, we found the
clipping schemes should be carefully taken for calculations
with different precisions. Furthermore, the basic units in the
LDPC decoder, VNU and CNU are explored and modified as
precision-reconfigurable. A series of experiments and deriva-
tion are deducted to show that the proposed LDPC decoder is
able to operate with 4-bit precision, half of the normally used
precision under higher SNR to achieve 51% power reduction.

REFERENCES
[1] R. G. Gallager, “Low-density parity-check codes,” Information Theory,

IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.
[2] D. J. MacKay, “Good error-correcting codes based on very sparse

matrices,” Information Theory, IEEE Transactions on, vol. 45, no. 2,
pp. 399–431, 1999.

[3] IEEE 802.16 Working Group and others, “IEEE Standard for Local and
Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband
Wireless Access Systems,” IEEE Std, vol. 802, pp. 16–2004, 2004.

[4] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” Information Theory, IEEE Transactions on,
vol. 47, no. 2, pp. 498–519, Feb 2001.

[5] A. J. Blanksby and C. J. Howland, “A 690-mw 1-gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 3, pp. 404–412, 2002.

[6] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
architectures for layered decoding for irregular LDPC codes of WiMax,”
in Communications, 2007. ICC’07. IEEE International Conference on.
IEEE, 2007, pp. 4542–4547.

[7] W. Wang, E. Kim, K. K. Gunnam, and G. S. Choi, “Low-power vlsi
design of ldpc decoder using dynamic voltage and frequency scaling
for additive white gaussian noise channels,” Journal of Low Power
Electronics, vol. 5, no. 3, pp. 303–312, 2009.

[8] T. Mohsenin, H. Shirani-mehr, and B. M. Baas, “LDPC Decoder
with an Adaptive Wordwidth Datapath for Energy and BER Co-
optimization,” VLSI Des., vol. 2013, pp. 7:7–7:7, Jan. 2013. [Online].
Available: http://dx.doi.org/10.1155/2013/913018

[9] T. Lin, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “An ultra-low power
asynchronous-logic in-situ self-adaptive system for wireless sensor
networks,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 2, pp.
573–586, 2013.

[10] J. Spars and S. Furber, Principles Asynchronous Circuit Design.
Springer, 2002.

[11] E. Rohani, J. Xu, T. Che, M. Rahman, G. Choi, and M. Lu, “Asyn-
chronous baseband processor design for cooperative mimo satellite
communication,” in Circuits and Systems (MWSCAS), 2014 IEEE 57th
International Midwest Symposium on. IEEE, 2014, pp. 833–836.

[12] N. Onizawa, V. C. Gaudet, and T. Hanyu, “Low-energy asynchronous
interleaver for clockless fully parallel ldpc decoding,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 58, no. 8, pp.
1933–1943, 2011.

Figure 8.9: Normalized power reduction compared with fixed precision LDPC de-
coder

8.2 Reconstruction of Compressive Sensing

The essence of decoding for block error correction codes is to search for a original

vector given its projection over a tall matrix. Another similar topic based on the

problem is compressive sensing reconstruction problem [68].

Conventional sampling theory requires sampling rate be faster than Nyquist sam-

pling rate to avoid aliasing. Compressive sensing (CS) [69, 70] is a technique which

allows sampling of sparse or compressible signals efficiently below the Nyquist rate.

According to CS theories, a sparse time discrete sparse signal can be exactly recov-

ered by some of its projections over a random basis. The CS theory allows sensor to

operate at a much lower sampling frequency than the Nyquist rate when the signal

108

is sparse enough. Thus CS theory could be used as a framework to reduce sam-

pling rate for ultra-wideband spectrum sensor [71], power-sensitive wireless sensor

networks[72] and transmission bandwidth limited sensor terminals. Recent years, ef-

forts have been made on bringing the CS theory to practical implementation. In[72],

a circuit is designed to acquire multi-channel data with a single ADC by utilizing

CS theory. [73] proposed a circuit implementation of the analog front-end based

on CS theory. Although the feasibility of CS was proven by the above circuit de-

sign and implementation, few attention has been paid on digital design of CS signal

reconstruction. An efficient CS reconstruction design is necessary for real-time ap-

plications and power-sensitive back-end processing. Thus a design that can easily

instantiate a VLSI implementation for compressive sensing signal reconstruction is

desired.

In [74], we emphasizes architectural composition that lends to efficient data path

and control for real-time application as well as for low-power implementation ap-

proaches.

8.2.1 Compressive Sensing Model

Given a length N vector of time-discrete signal x̃ ∈ R̃N , if it can be presented

as ~x =
∑N

i=1 ψia[i] where ψi is ith column of known orthogonal basis and ~a has only

K non-zero elements, ~x is called a K-sparse signal. In this paper, we define the

occupancy of the signal by the ratio K/N . According to CS theories, ~x could be

exactly recovered from M measurements of projections of ~x over a random basis, Φ.

The M -long measurements could be written as ỹ = ΦΨã. The spreading matrix Φ is

a random rectangle matrix which has M rows and N columns. The binary elements

of ±1 is usually taken in Φ for easy signal acquisition in reality.

To reconstruct ~x from ~y, the K-nonzero-elements vector ~a needs to be estimated

109

from the following equation:

ˆ̃a = arg min‖ã‖0 s .t . ỹ = ΦΨã (8.3)

By x̃ = Ψã, ~x could be reconstructed from the estimated â.

8.2.2 Reconstruction Algorithm

Given a compressively sensed signal vector ~y, the recovery performance does

highly depend on the selection of reconstruction algorithms. The literature de-

scribes several approaches to solve (8.3). Those approaches can fall into three general

categories: convex relaxation, combinational algorithm and greedy pursuits. Each

approach has certain advantages as well as inherent shortcomings. Combinational

algorithm can swiftly reconstruct data, while it needs unusual structured samples

which may not be easy to acquire in reality. Convex relaxation reconstruction can

succeed with a small number of measurements. But it tend to be computationally

burdensome. Greedy pursuits stand the intermediate position between the two other

algorithms in terms of sampling efficiency and reconstruction complexity. However,

algorithms of greedy pursuits require a matrix-inverse operation in each iteration,

which is expensive in terms of hardware cost.

Iterative hard thresholding (IHT) [70, 75], the algorithm selected in our design,

belongs to the set of convex relaxation algorithms. Although IHT has its native

bottleneck of computation complexity to perfectly recover sparse signal. With the

careful selection on transform matrix Ψ and number of iterations, IHT is a good

candidate for hardware implementation, which we will discuss in detail in following.

IHT is a simple and efficient algorithm that iteratively approaches the solution of

110

(8.3). For a given measurement vector ỹ , ~̂a could be found by the following iterations:

~a[i+1] = HK

(
~a[i] + BT (~y −B~ai)

)
(8.4)

where B = ΦΨ and HK(~z) is a non-linear operation which set all elements except

the largest K ones of vector ~z to zero. The computational bottleneck of IHT is at

the operator matrix multiplication B and BT . At first, the two matrix operations

at each iteration appears too complicated to be a good choice for hardware imple-

mentation. However, a closer examination of the equations reveals that each matrix

multiplication could be decomposed into two easy hardware-friendly computations:

B = ΦΨ ,BT = ΨTΦT (8.5)

If Ψ is selected as a structured operator such as Fourier transform, Ψã could be

computed as fast Fourier transform (FFT) in an efficient manner in hardware im-

plementation. And ΨT operation is nothing but the inverse fast Fourier transform

(IFFT) with a constant scale. The binary matrix Φ multiplication could be easily

implemented by some multiple-stage adders.

8.2.3 Modification on IHT

As discussed above, the IHT algorithm is suitable for efficient hardware imple-

mentation due to its simple straightforward computation in each iteration. As shown

in Eq. (8.4), the largest K elements need to be picked out in each iteration. While

in realistic situation, the number of K is unknown at first. It implies that an estima-

tion of occupancy is necessary for IHT reconstruction, as well as for greedy search

algorithms.

To eliminate dependence on knowledge of sparsity, here we propose a modifi-

111

cation to IHT. In our modified-IHT (MIHT) algorithm, the sparse signal can be

reconstructed without knowing the sparsity. IHT iteration function (8.4) is modified

as follows:

~a[i+1] = H̃r[i]

(
~a[i] + BT (~y −B~a[i])

)
(8.6)

where H̃r[i](~z) reserve all elements whose Norm-2 values are not less than r[i] ·max ‖zj‖

, zj ∈ ~z:

if p̃ = H̃r[i](z̃), pj =





0 ‖zj‖ < r[i] ·max ‖zj‖

zj else

(8.7)

where j is the index of the element. r[i] is fraction number between 0 and 1 . The

value of r[i] initially is 1 and does decrease monotonously with the number of itera-

tions. The reason we propose this strategy based on observation on IHT simulation

experiments: If we define the estimation error as err = B~a[i]− ~y, each iteration does

nothing but reducing the estimation error by zero-forcing −err on ~a itself. In the

proposed algorithm, initially only frequency components with significant contribu-

tion are considered, i.e. r[i] is close to one. With additional iterations, the ~a starts to

become increasingly sparse. Meanwhile, the value of threshold ratio of r[i] is sweeping

down to select more and more components. To acquire an efficient convergence, our

threshold function is selected based on an insight drawn from the results reported in

[76]: the upper error bound of IHT, ‖~a−~̂a‖, does decrease exponentially with number

of iteration i. Following exponential function is taken as our threshold function:

r[i] = t−i0 (8.8)

To evaluate reconstruction fidelity of the modified algorithm, we introduce the

112

complexity. However, algorithms of greedy pursuits require a
matrix-inverse operation in each iteration, which is expensive
in terms of hardware cost.

Iterative hard thresholding (IHT) [2] [6], the algorithm
selected in our design, belongs to the set of convex relaxation
algorithms. Although IHT has its native bottleneck of compu-
tation complexity to perfectly recover sparse signal. With the
careful selection on transform matrix Ψ and number of itera-
tions, IHT is a good candidate for hardware implementation,
which we will discuss in detail in following.

IHT is a simple and efficient algorithm that iteratively
approaches the solution of (1). For a given measurement vector
~y , ~̂a could be found by the following iterations:

~a[i+1] = HK

(
~a[i] + BT (~y − B~ai)

)
(2)

where B = ΦΨ and HK(~z) is a non-linear operation which
set all elements except the largest K ones of vector ~z to zero.
The computational bottleneck of IHT is at the operator matrix
multiplication B and BT . At first, the two matrix operations
at each iteration appears too complicated to be a good choice
for hardware implementation. However, a closer examination
of the equations reveals that each matrix multiplication could
be decomposed into two easy hardware-friendly computations:

B = ΦΨ ,BT = ΨTΦT (3)

If Ψ is selected as a structured operator such as Fourier
transform, Ψ~a could be computed as fast Fourier transform
(FFT) in an efficient manner in hardware implementation.
And ΨT operation is nothing but the inverse fast Fourier
transform (IFFT) with a constant scale. The binary matrix Φ
multiplication could be easily implemented by some multiple-
stage adders.

C. Modification on IHT
As discussed above, the IHT algorithm is suitable for

efficient hardware implementation due to its simple straight-
forward computation in each iteration. As shown in Eq. (2),
the largest K elements need to be picked out in each iteration.
While in realistic situation, the number of K is unknown at
first. It implies that an estimation of occupancy is necessary for
IHT reconstruction, as well as for greedy search algorithms.

To eliminate dependence on knowledge of sparsity, here we
propose a modification to IHT. In our modified-IHT (MIHT)
algorithm, the sparse signal can be reconstructed without
knowing the sparsity. IHT iteration function (2) is modified
as follows:

~a[i+1] = H̃r[i]

(
~a[i] + BT (~y − B~a[i])

)
(4)

where H̃r[i]
(~z) reserve all elements whose Norm-2 values are

not less than r[i] · max ‖zj‖ , zj ∈ ~z:

if ~p = H̃r[i](~z), pj =

{
0 ‖zj‖ < r[i] · max ‖zj‖
zj else

(5)

where j is the index of the element. r[i] is fraction number
between 0 and 1 . The value of r[i] initially is 1 and does
decrease monotonously with the number of iterations. The
reason we propose this strategy based on observation on IHT
simulation experiments: If we define the estimation error as
err = B~a[i] − ~y, each iteration does nothing but reducing

0 2 4 6 8 10
0

50

100

150

Occupancy [%]

S
R

N
R

 [d
B

]

Modified IHT 10 iterations
Modified IHT 30 itrations
IHT 10 iterations
IHT 30 iterations

Fig. 1. Comparison between Modified IHT with t0 = 0.82 and original IHT
at 25% Nyquist Sampling Rate

the estimation error by zero-forcing −err on ~a itself. In the
proposed algorithm, initially only frequency components with
significant contribution are considered, i.e. r[i] is close to one.
With additional iterations, the ~a starts to become increasingly
sparse. Meanwhile, the value of threshold ratio of r[i] is sweep-
ing down to select more and more components. To acquire an
efficient convergence, our threshold function is selected based
on an insight drawn from the results reported in [6]: the upper
error bound of IHT, ‖~a−~̂a‖, does decrease exponentially with
number of iteration i. Following exponential function is taken
as our threshold function:

r[i] = t−i
0 (6)

To evaluate reconstruction fidelity of the modified algo-
rithm, we introduce the definition of signal-to-reconstruction-
noise ratio (SRNR) here:

SRNR
(
~x, ~̂x

)
= 20 log10

(
‖~x‖

‖~x− ~̂x‖

)
(7)

where ~x is the input signal vector and x̂ is the recovered
data. The recovery fidelity of the modified algorithm with
comparison of original IHT algorithm is shown in Fig. 1. In the
figure, the input signals contain K frequency tones out of 256-
point Fourier transform frequency components. The position
of K active tones are randomly chosen. The amplitude of
the K active frequencies are i.i.d. Gaussian. As Fig. 1 shows,
the modified algorithm is working but the convergence speed
of modified one is slower than the original IHT algorithm.
The selections of coefficient t0 and number of iterations are
discussed at the following Section, where the implementation
details are also discussed.

III. IMPLEMENTATION OF THE PROPOSED ALGORITHM

To keep consistency and fair comparisons with other state-
of-the-art works, a case study is presented in this section
to show how parameters are determined. The analog-mixed
circuits implementation in [5] is referenced as an interface
specification from the compressive sensing front-end. Each
frame of signals is compressive sensed in a size of 256
window and sampled signals have 7 ENOBs. The occupancy
of the signal is defined as K/256. K is the active and
conjugate symmetric distributed tones among 256 tones for
real time-domain signal. The sampling rate of 29% Nyquist
sampling rate and target recoverable occupancy of 4% are
set for alignment. Although interface specification is aligned

Figure 8.10: Comparison between modified IHT with t0 = 0.82 and original IHT at
25% Nyquist sampling rate

definition of signal-to-reconstruction-noise ratio (SRNR) here:

SRNR
(
~x, ~̂x
)

= 20 log10

(
‖~x‖
‖~x− ~̂x‖

)
(8.9)

where ~x is the input signal vector and x̂ is the recovered data. The recovery fidelity

of the modified algorithm with comparison of original IHT algorithm is shown in

Figure 8.10. In the figure, the input signals contain K frequency tones out of 256-

point Fourier transform frequency components. The position of K active tones are

randomly chosen. The amplitude of the K active frequencies are i.i.d. Gaussian.

As Figure 8.10 shows, the modified algorithm is working but the convergence speed

of modified one is slower than the original IHT algorithm. The selections of coeffi-

cient t0 and number of iterations are discussed at the following Section, where the

implementation details are also discussed.

113

FFT

AdderIFFT

Selector
Threshold

Generator

r[i]

Slow Clock

Domain

Fast Clock

Domain

Path 1

Path P

ADD 1

ADD 2

7-stage

Adder

7-stage

Adder

7-Stage

Adder

Estimated â

T T
y

Sensed vector y

7-stage

Adder

7-stage

Adder

7-stage

Adder

8-stage

Adder

8-stage

Adder

8-stage

Adder

FFF

FFF

1 2 M

T
1

T
2

T
256 a[i]

a[i]

a[i]

T a[i]

T T a[i]

IFFT

T
1

T
2

T
256

Fig. 2. Parallel Architecture for Compressive Sensing Reconstruction

with previous works for consistency and fair comparisons. We
emphasize that approach is flexible to any specifications and
the system is adaptable to varying and unknown degree of
signal sparsity.

A. Overall Architecture
The modified reconstruction algorithm could be in imple-

mented in a parallel architecture as shown in Fig. 2. Each path
processes the problem (4) in an iterative fashion. The problem
(4) could be rewritten as:

~a[i+1] = H̃r[i]

(
ΨTΦT~y + ~a[i] − ΨTΦTΦΨ~a[i]

)
(8)

where ΨTΦTΦΨ~a[i] is calculated in each iteration. As Fig. 2
shows, each path starts the computation by feeding ~a[i] into
FFT block. For frequency-domain sparse signal, Ψ~a[i] and
ΨT~a[i] is implemented efficiently by FFT and IFFT blocks.
ΦT and Φ are random matrix with binary content(1 or -
1), which could be implemented by multiple stage adders.
Thus the FFT is followed by M 8-stage adders, the ADD1
block shown in the Fig. 2, to compute ΦΨ~a[i]. M is the
number of the measurements in compressive sensing. The
mth adder calculates sum of

∑256
j=1 φmjdj , where dj is the

jth elements of the input and φmj is the binary elements
on mth row and jth column. The multiplications with -1 is
carried out by two’s complementary operations. Subsequently,
ΨTΦTΦΨ~a[i] is computed by another multiple-stage adders
and an IFFT block.

Although ~a is updated in each iteration, the term ΨTΦT~y
is calculated once for each reconstruction. So the ΨTΦT~y
could be derived in a slow clock speed as shown in Fig. 2 for
low-power optimization.

Multiple three-input adders are used to sum Ψ~a[i],
ΨTΦT~y and ΨTΦTΦΨ~a[i] together. The threshold ratio is
generated by the threshold generator. For exponential function,
a shift adder is used in the generator as the accumulative

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Occupancy [%]

P
ro

b
of

 A
cc

ep
ta

bl
e

R
ec

ov
er

y t
0
=0.72

t
0
=0.75

t
0
=0.79

Fig. 3. Successful recovery rate with different threshold function coefficient
t0 at 20 iterations

multiplier. The Selector block in Fig. 2 generate Ψ~a[i+1] by
resetting all elements less than the threshold.

Furthermore, each iteration has its critical path delay for
processing the iteration Eq. (4). Assuming that the critical path
delay for each iteration is d, each path could be implemented
by careful pipelining to improve throughput. If each path is
pipelined as k segments, each of which has delay of di, the
clock frequency for fast clock domain, ff , should not be
larger than 1/max(di). In our design, the iteration path is
functionally pipelined as Fig. 2 shows. To meet throughput
requirements, a parallel architecture is necessary. The paral-
lelism, P , should obey the following constraint:

P >
n · Throughput

N · ff
(9)

where n is the number of iterations necessary for reconstruct
sparse signal. The slow clock speed should also meet the
throughput requirement by constraint:

fs =
Throughput
N · P (10)

B. Selection on Number of Iterations
If the signal is sparse enough, IHT is able to do exact data

recovery with sufficient iterations[6]. The modified algorithm
shows the similar property in our experiment. However, the
value of t0 in threshold function affect the fidelity considerably.
Here, we show how values of t0 is related with the number of
iterations. And a set of reasonable parameters is selected for
target specifications.

Fig. 3 shows, with 20 iterations, different values of factor
t0 result in different reliability on reconstruction. t0 = 0.75 is
shown as the coefficient which provides the best fidelity out of
all three t0 values shown in the figure. We could also see that,
given a certain combination of iterations and t0, the proposed
algorithm could reconstruct signals with unknown and vary
sparsity which is less than a certain threshold.

For the efficiency of the proposed design, a fine search on
number of iterations is performed to look for the minimum
number of iterations that yield maximum SRNR of 44 dB
SRNR (7 ENOBs) at target occupancy, 4%. We set up the
experiments for each pair of iterations and t0 to explore
the relationship between recovery reliability and number of
iterations. Fig. 4 shows how t0 affects the recovery fidelity.
We see that, basically raising the threshold vale t0 could
result in a higher SRNR, while also leading to have more
number of iterations. To optimize our design, given a certain
number of iterations, t0 is chosen as the one who can achieve

Figure 8.11: Parallel architecture for compressive sensing reconstruction

8.2.4 Implementation of Proposed Algorithm

The modified reconstruction algorithm could be in implemented in a parallel

architecture as shown in Figure 8.11. Each path processes the problem (8.6) in an

iterative fashion. The problem (8.6) could be rewritten as:

ã[i+1] = H̃r[i]

(
ΨTΦT ỹ + ã[i] −ΨTΦTΦΨã[i]

)
(8.10)

114

where ΨTΦTΦΨã[i] is calculated in each iteration. As Figure 8.11 shows, each path

starts the computation by feeding ~a[i] into FFT block. For frequency-domain sparse

signal, Ψ~a[i] and ΨT~a[i] is implemented efficiently by FFT and IFFT blocks. ΦT and

Φ are random matrix with binary content(1 or -1), which could be implemented by

multiple stage adders. Thus the FFT is followed by M 8-stage adders, the ADD1

block shown in the Figure 8.11, to compute ΦΨã[i]. M is the number of the measure-

ments in compressive sensing. The mth adder calculates sum of
∑256

j=1 φmjdj , where

dj is the jth elements of the input and φmj is the binary elements on mth row and

jth column. The multiplications with -1 is carried out by two’s complementary op-

erations. Subsequently, ΨTΦTΦΨã[i] is computed by another multiple-stage adders

and an IFFT block.

Although ~a is updated in each iteration, the term ΨTΦT ỹ is calculated once for

each reconstruction. So the ΨTΦT ỹ could be derived in a slow clock speed as shown

in Figure 8.11 for low-power optimization.

Multiple three-input adders are used to sum Ψ~a[i], ΨTΦT ỹ and ΨTΦTΦΨã[i] to-

gether. The threshold ratio is generated by the threshold generator. For exponential

function, a shift adder is used in the generator as the accumulative multiplier. The

Selector block in Figure 8.11 generate Ψ~a[i+1] by resetting all elements less than the

threshold.

If the signal is sparse enough, IHT is able to do exact data recovery with sufficient

iterations[76]. The modified algorithm shows the similar property in our experiment.

However, the value of t0 in threshold function affect the fidelity considerably. Here,

we show how values of t0 is related with the number of iterations. And a set of

reasonable parameters is selected for target specifications.

Figure 8.12 shows, with 20 iterations, different values of factor t0 result in different

reliability on reconstruction. t0 = 0.75 is shown as the coefficient which provides the

115

FFT

AdderIFFT

Selector
Threshold

Generator

r[i]

Slow Clock

Domain

Fast Clock

Domain

Path 1

Path P

ADD 1

ADD 2

7-stage

Adder

7-stage

Adder

7-Stage

Adder

Estimated â

T T
y

Sensed vector y

7-stage

Adder

7-stage

Adder

7-stage

Adder

8-stage

Adder

8-stage

Adder

8-stage

Adder

FFF

FFF

1 2 M

T
1

T
2

T
256 a[i]

a[i]

a[i]

T a[i]

T T a[i]

IFFT

T
1

T
2

T
256

Fig. 2. Parallel Architecture for Compressive Sensing Reconstruction

with previous works for consistency and fair comparisons. We
emphasize that approach is flexible to any specifications and
the system is adaptable to varying and unknown degree of
signal sparsity.

A. Overall Architecture
The modified reconstruction algorithm could be in imple-

mented in a parallel architecture as shown in Fig. 2. Each path
processes the problem (4) in an iterative fashion. The problem
(4) could be rewritten as:

~a[i+1] = H̃r[i]

(
ΨTΦT~y + ~a[i] − ΨTΦTΦΨ~a[i]

)
(8)

where ΨTΦTΦΨ~a[i] is calculated in each iteration. As Fig. 2
shows, each path starts the computation by feeding ~a[i] into
FFT block. For frequency-domain sparse signal, Ψ~a[i] and
ΨT~a[i] is implemented efficiently by FFT and IFFT blocks.
ΦT and Φ are random matrix with binary content(1 or -
1), which could be implemented by multiple stage adders.
Thus the FFT is followed by M 8-stage adders, the ADD1
block shown in the Fig. 2, to compute ΦΨ~a[i]. M is the
number of the measurements in compressive sensing. The
mth adder calculates sum of

∑256
j=1 φmjdj , where dj is the

jth elements of the input and φmj is the binary elements
on mth row and jth column. The multiplications with -1 is
carried out by two’s complementary operations. Subsequently,
ΨTΦTΦΨ~a[i] is computed by another multiple-stage adders
and an IFFT block.

Although ~a is updated in each iteration, the term ΨTΦT~y
is calculated once for each reconstruction. So the ΨTΦT~y
could be derived in a slow clock speed as shown in Fig. 2 for
low-power optimization.

Multiple three-input adders are used to sum Ψ~a[i],
ΨTΦT~y and ΨTΦTΦΨ~a[i] together. The threshold ratio is
generated by the threshold generator. For exponential function,
a shift adder is used in the generator as the accumulative

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Occupancy [%]

P
ro

b
of

 A
cc

ep
ta

bl
e

R
ec

ov
er

y t
0
=0.72

t
0
=0.75

t
0
=0.79

Fig. 3. Successful recovery rate with different threshold function coefficient
t0 at 20 iterations

multiplier. The Selector block in Fig. 2 generate Ψ~a[i+1] by
resetting all elements less than the threshold.

Furthermore, each iteration has its critical path delay for
processing the iteration Eq. (4). Assuming that the critical path
delay for each iteration is d, each path could be implemented
by careful pipelining to improve throughput. If each path is
pipelined as k segments, each of which has delay of di, the
clock frequency for fast clock domain, ff , should not be
larger than 1/max(di). In our design, the iteration path is
functionally pipelined as Fig. 2 shows. To meet throughput
requirements, a parallel architecture is necessary. The paral-
lelism, P , should obey the following constraint:

P >
n · Throughput

N · ff
(9)

where n is the number of iterations necessary for reconstruct
sparse signal. The slow clock speed should also meet the
throughput requirement by constraint:

fs =
Throughput
N · P (10)

B. Selection on Number of Iterations
If the signal is sparse enough, IHT is able to do exact data

recovery with sufficient iterations[6]. The modified algorithm
shows the similar property in our experiment. However, the
value of t0 in threshold function affect the fidelity considerably.
Here, we show how values of t0 is related with the number of
iterations. And a set of reasonable parameters is selected for
target specifications.

Fig. 3 shows, with 20 iterations, different values of factor
t0 result in different reliability on reconstruction. t0 = 0.75 is
shown as the coefficient which provides the best fidelity out of
all three t0 values shown in the figure. We could also see that,
given a certain combination of iterations and t0, the proposed
algorithm could reconstruct signals with unknown and vary
sparsity which is less than a certain threshold.

For the efficiency of the proposed design, a fine search on
number of iterations is performed to look for the minimum
number of iterations that yield maximum SRNR of 44 dB
SRNR (7 ENOBs) at target occupancy, 4%. We set up the
experiments for each pair of iterations and t0 to explore
the relationship between recovery reliability and number of
iterations. Fig. 4 shows how t0 affects the recovery fidelity.
We see that, basically raising the threshold vale t0 could
result in a higher SRNR, while also leading to have more
number of iterations. To optimize our design, given a certain
number of iterations, t0 is chosen as the one who can achieve

Figure 8.12: Successful recovery rate with different threshold function coefficient t0
at 20 iterations

best fidelity out of all three t0 values shown in the figure. We could also see that, given

a certain combination of iterations and t0, the proposed algorithm could reconstruct

signals with unknown and vary sparsity which is less than a certain threshold.

For the efficiency of the proposed design, a fine search on number of iterations is

performed to look for the minimum number of iterations that yield maximum SRNR

of 44 dB SRNR (7 ENOBs) at target occupancy, 4%. We set up the experiments for

each pair of iterations and t0 to explore the relationship between recovery reliability

and number of iterations. Figure 8.13 shows how t0 affects the recovery fidelity. We

see that, basically raising the threshold vale t0 could result in a higher SRNR, while

also leading to have more number of iterations. To optimize our design, given a

certain number of iterations, t0 is chosen as the one who can achieve highest SRNR.

For example, when 18 iterations are taken to reconstruct data, the best coefficient

t0 should be selected as 0.79, which is able to provide SRNR of 38.67. The extensive

characterization on number of iterations is summarized in Table 8.1. To be aligned

with the front-end design [73], we target our SRNR as 44 dB. As Table 8.1 shows,

116

0.72 0.74 0.76 0.78 0.8 0.82 0.84
15

20

25

30

35

40

t
0
 [dB]

S
R

N
R

 [d
B

]
15 Iterations
16 Iterations
17 Iterations
18 Iterations

Fig. 4. SRNR with different threshold function coefficient t0

1 2 3 4 5 6

20

40

60

80

100

Occupancy [%]

S
R

N
R

 [d
B

]

Norm2 with no quantization noise
Fixed−point model
Norm1 with no quantization noise

Fig. 5. Reconstruction performance among Norm-1, Norm-2 floating point
model and fixed-point model

highest SRNR. For example, when 18 iterations are taken to
reconstruct data, the best coefficient t0 should be selected as
0.79, which is able to provide SRNR of 38.67. The extensive
characterization on number of iterations is summarized in
Table I. To be aligned with the front-end design [5], we target
our SRNR as 44 dB. As Table I shows, 22 is the least number
of iterations to reconstruct the signal to our expected SRNR
level. Thus 22 iterations along with t0 = 0.80 is applied in
our design.

TABLE I. SRNR WITH DIFFERENT NUMBERS OF ITERATIONS

Iterations t0 SRNR (dB) Iterations t0 SRNR (dB)
15 0.75 34.04 19 0.78 41.07
16 0.76 36.61 20 0.79 43.04
17 0.76 37.91 21 0.79 42.98
18 0.79 38.67 22 0.80 44.91

C. Norm 1 Approximation and Quantization
To simplify the selector block which resets all elements but

ones with larger amplitudes than threshold, we use the Norm-1
of each complex number to approximate Norm-2. Fig. 5 shows
the reconstruction performance between Norm-1 and Norm-2.
A negligible SRNR degradation does exist as signal is sparse
enough with occupancy lower than 3%. At occupancy of 4%,
the lost of Norm-1 approximation is around 4 dB in SRNR.

Fig. 5 also shows the reconstruction fidelity of fixed-point
model. In the fixed-point model, input is quantized to 7 bits.
And the width of internal nodes are quantized to necessary
minimum number of the bits. As Fig. 5 shows, with fixed-point
model the system is degraded, because the IHT and modified
algorithm are sensitive with the quantization noise. However,
with an input of 7 ENOBs, the system can recover signal by
30dB SRNR at occupancy of 4%.

TABLE II. CS RECONSTRUCTION DESIGN POWER CONSUMPTION

Power
consumption
@ 88 MHz

FFT 41.08 mW
ADD1 30.3 mW
ADD2 51.28 mW
IFFT 36.48 mW

Adder + Selector 5.647 mW
Overall 165 mW

IV. SYNTHESIS RESULTS

To implement the architecture with above parameters, a
fixed-point model is first set up in Matlab. Corresponding
register-transistor-level (RTL) design is implemented in Ver-
ilog. RTL implementation is functionally verified with output
from that of fixed-point model. Then RTL is synthesized using
Synopsys Design Compiler with TSMC 45nm technology
standard cell library.

To determine the parallelism and the frequency, one single
path of the proposed architecture in Section III is implemented
and synthesized. The critical path has the delay of 4.05 ns. To
target the equivalent sampling speed of 1 GSPS, the parallelism
is determined by Eq. (9). Power consumption of the proposed
system is summarized in Table II. Our design consumes 165
mW at 88 MHz. It takes 22 cycles, latency of 0.25µs to
reconstruct one set of samples.

V. CONCLUSION

In this paper, an exploration on digital circuits design of
compressive sensing reconstruction is provided. An modifica-
tion to a hardware-friendly algorithm is made to adapt un-
known and varying degree of sparsity of signals. A correspond-
ing iterative architecture is given for the modified algorithm.
An existing analog front-end compressive sensor is referenced
as interface specification for designing implementation pa-
rameters. The design parameters are studied empirically. We
implemented the fixed-point model in RTL coding, which can
reconstruct compressive sensed 4%-occupancy sparse signal
of 7 ENOBs by SRNR of 30 dB with consuming 165 mW as
equivalent Nyquist Sampling rate of 1 GSPS.

Current effort is being paid on several questions such as
higher reconstruction fidelity, higher recoverable occupancy
and low-power exploration on circuits implementation to make
proposed system applicable to commercial devices.

REFERENCES
[1] D. Donoho, “Compressed sensing,” Information Theory, IEEE Transac-

tions on, vol. 52, no. 4, pp. 1289–1306, 2006.
[2] E. Candes and et al, “Robust uncertainty principles: exact signal recon-

struction from highly incomplete frequency information,” Information
Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489–509, 2006.

[3] Z. Tian and G. Giannakis, “Compressed sensing for wideband cognitive
radios,” in Acoustics, Speech and Signal Processing, 2007. ICASSP 2007.
IEEE International Conference on, vol. 4, 2007, pp. IV–1357–IV–1360.

[4] Y. Kim, W. Guo, B. Gowreesunker, N. Sun, and A. Tewfik, “Multi-
channel sparse data conversion with a single analog-to-digital converter,”
Emerging and Selected Topics in Circuits and Systems, IEEE Journal on,
vol. 2, no. 3, pp. 470–481, 2012.

[5] X. Chen, E. Sobhy, Z. Yu, S. Hoyos, J. Silva-Martinez, S. Palermo,
and B. Sadler, “A sub-nyquist rate compressive sensing data acquisition
front-end,” Emerging and Selected Topics in Circuits and Systems, IEEE
Journal on, vol. 2, no. 3, pp. 542–551, 2012.

[6] T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and Computational Harmonic Analysis,
vol. 27, no. 3, pp. 265 – 274, 2009.

Figure 8.13: SRNR with different threshold function coefficient t0

22 is the least number of iterations to reconstruct the signal to our expected SRNR

level. Thus 22 iterations along with t0 = 0.80 is applied in our design.

Table 8.1: SRNR with different numbers of iterations
Iterations t0 SRNR (dB) Iterations t0 SRNR (dB)

15 0.75 34.04 19 0.78 41.07

16 0.76 36.61 20 0.79 43.04

17 0.76 37.91 21 0.79 42.98

18 0.79 38.67 22 0.80 44.91

8.2.5 Simulations and Analysis

To implement the architecture with above parameters, a fixed-point model is

first set up in Matlab. Corresponding register-transistor-level (RTL) design is im-

plemented in Verilog. RTL implementation is functionally verified with output from

that of fixed-point model. Then RTL is synthesized using Synopsys Design Compiler

with TSMC 45nm technology standard cell library.

117

Table 8.2: CS reconstruction design power consumption

Power

consumption

@ 88 MHz

FFT 41.08 mW

ADD1 30.3 mW

ADD2 51.28 mW

IFFT 36.48 mW

Adder + Selector 5.647 mW

Overall 165 mW

To determine the parallelism and the frequency, one single path of the proposed

architecture is implemented and synthesized. The critical path has the delay of 4.05

ns. To target the equivalent sampling speed of 1 GSPS, the parallelism is determined

by:

P >
n · Throughput

N · ff
(8.11)

where n is the number of iterations necessary for reconstruct sparse signal. Power

consumption of the proposed system is summarized in Table 8.2. Our design con-

sumes 165 mW at 88 MHz. It takes 22 cycles, latency of 0.25µs to reconstruct one

set of samples.

In this work, an exploration on digital circuits design of compressive sensing re-

construction is provided. An modification to a hardware-friendly algorithm is made

to adapt unknown and varying degree of sparsity of signals. A corresponding iter-

ative architecture is given for the modified algorithm. An existing analog front-end

compressive sensor is referenced as interface specification for designing implementa-

tion parameters. The design parameters are studied empirically. We implemented

the fixed-point model in RTL coding, which can reconstruct compressive sensed

4%-occupancy sparse signal of 7 ENOBs by SRNR of 30 dB with consuming 165

mW as equivalent Nyquist Sampling rate of 1 GSPS.

Current effort is being paid on several questions such as higher reconstruction

118

fidelity, higher recoverable occupancy and low-power exploration on circuits imple-

mentation to make proposed system applicable to commercial devices.

8.3 Compressive Sensing on MIMO-OFDM Cognitive Radio

According to CS theories, a time-discrete sparse signal can be exactly recovered

by some of its projections over a random basis. Thus CS theory could be utilized to

reduce sampling rate for ultra-wideband spectrum sensor [71], power-sensitive wire-

less sensor networks and transmission bandwidth limited sensor terminals. In [77–79],

applications of CS on spectrum sensing and reception for conventional CR network

are explored. While, to the best of our acknowledgement, no attention has been paid

on the application of CS on CR system with MIMO, which is an enabled technique

in most current current and emerging wireless standard. From the aspect the devel-

opment of CS technique, recently more and more effort has been paid on bringing CS

from theory to practical circuit implementation. [72] proposed a efficient CS-based

analog to digital converter (ADC) for multi-channel signals sampling. In reference

to the multi-channel ADC [72], the question we address in this paper is whether or

not we can reduce the hardware cost of MIMO-OFDM based CR receivers with a

new architecture based on CS theory.

8.3.1 Proposed System

Figure 8.14 shows the both structures for the ordinary and proposed system of

4 × 4 MIMO scheme, while the number of antennas could be scaled. The over-

all architecture of the proposed MIMO-OFDM based CR receiver exploiting CS is

shown in Figure 8.14b. To compare with the conventional one, the equivalent tra-

ditional MIMO-OFDM transceiver is also illustrated in Figure 8.14a. Assuming the

MIMO-OFDM based CR signal in each antenna is sparse, which means only lim-

ited number of subcarriers are in the use, the signal is able to be received by the

119

2

ADC FFT

ADC FFT

ADC FFT

ADC FFT

MIMO
Detection

 fs

 fs

 fs

 fs

IFFT

IFFT

IFFT

IFFT

MIMO
Constellation

Mapping

x1(n)

x2(n)

x3(n)

x4(n)

y1(n)

y2(n)

y3(n)

y4(n)

(a)

ADC
Compressive

Sampling
Reconstruction fs

IFFT

IFFT

IFFT

IFFT

MIMO
Constellation

Mapping

t1(n)

t2(n)

t3(n)

t4(n)

r1(n)

r2(n)

r3(n)

r4(n)

q1(n)

q2(n)

q3(n)

q4(n)

x1(n)

x2(n)

x3(n)

x4(n)

y(n)

(b)

Fig. 1. Structures of conventional and proposed MIMO-OFDM transmission system. (a), and (b) are the models of conventional MIMO-OFDM transimission
system and proposed MIMO-OFDM communication framework exploiting compressive sensing correspondingly.

signal in each antenna is sparse, which means only limited
number of subcarriers are in the use, the signal is able to be
received by the specific novel reception architecture. Different
from the traditional MIMO-OFDM receiver, the proposed one
first randomly modulates and sums the signals together. Then
the signal is sampled by a single ADC, who has the same rate
same as the ADCs in the ordinary architecture. The DSP block
for the proposed system replaces the conventional DSP blocks
consisting of FFT units for each channel and MIMO detector.
Instead of transforming the signals on timing domain to Fourier
domain, the CS reconstruction algorithm directly separates
and recoveries ths signals on the frequency domain where
the signal represents sparsity. The mathematics model of the
proposed system and solution will be discussed at Section III.

A. Modulating signals with random sequences
The value of the pseudo-random sequence for modulation

should be selected to be hardware-friendly. In this paper, we
choose qi(n) as random binary value (±1) to modulate signals.
In practice, the pseudo-random random sequence could be
generated by linear feedback shift registers (LFSR).

B. DSP Block
In the proposed system, the DSP block plays the role

on separating the compressively sampled data. In conven-
tional CS reconstruction problem, there are multiple algorithms
proposed for solving this problem such as l1 linear/convex
optimization [9], greedy algorithms [10] and approximate
message passing (AMP) [11]. Without knowing any spectrum
utilization information such like the occupancy and locations
of the occupied frequency points, those ordinary algorithms
suffer from their burdensome computational complexity and
undetermined number of iterations. However, in the proposed
OFDM based communication system, the receiver could easily
have the knowledge of utilization of spectra by information
synchronization before the transmission or spectrum sensing
by FFT. Thus here we give a straightforward algorithm utiliz-
ing the information about the occupancy of the OFDM channel
to separate and reconstruct signals in Section IV.

C. Merits and applications of the proposed architecture
In the proposed system, the number of samples sensed

by the proposed receiver is significantly reduced. Besides
alleviating the resource consumption of mixed signal block,

the DSP unit of the proposed model also has the advantages
compared with the ordinary DSP in terms of hardware con-
sumption. First of all, the buffer size for samples in DSP is
directly decreased for less number of ADCs. Second, since the
reconstruction algorithms provides the amplitudes on Fourier
domains where the information is carried, there is no need
transform between frequency domain and time domain. Some
potential applications are given below:

1) Massive MIMO systems: For large number of antennas
MIMO system, massive number of ADCs necessary for tradi-
tional detection. However, at time of usage valley, only a small
quantity of users are accessing channel and most subcarriers
are idle. Thus the proposed model could help reduce the power
consumption to acquire data.

2) Low-power wireless MIMO relay: For wireless MIMO
relay, if the input signals are sparse enough on OFDM channel,
the relay could save power by sensing less samples as proposed
in this work. Also the bandwidth for next relay transmission
could be saved for other usage without fully decoding.

III. SPARSE SIGNAL MODEL
In this section, the model of the proposed system is derived.

First of all, the theory background of CS and the mathematical
model of the MIMO-OFDM based signal are introduced. By
depicting how the sparse signals from multiple channels are
mixed together and sampled, we present the objective problem
to demodulate the mixed signal.

A. Compressive Sensing Background
If a length N vector can be presented as x⃗ =

∑N
i=1 ψia[i]

where ψi is ith column of known orthogonal basis and a⃗ has
only K non-zero elements, according to CS theories, x⃗ could
be exactly recovered from M measurements of projections of
x⃗ over a random basis, Φ. The M -long measurements could
be written as y⃗ = ΦΨa⃗. The flat matrix Φ is a random matrix
which has M rows and N columns. In our proposed model,
because the random modulation and mixture with the MIMO
channel matrix, we build up out specific flat matrix Φ, which
will also be discussed in this section later.

To detect the useful information of a⃗ from y⃗, the K-
nonzero-elements vector a⃗ needs to be estimated from the
following equation:

ˆ̃a = arg min∥ã∥0 s .t . ỹ = ΦΨã (1)

(a)

2

ADC FFT

ADC FFT

ADC FFT

ADC FFT

MIMO
Detection

 fs

 fs

 fs

 fs

IFFT

IFFT

IFFT

IFFT

MIMO
Constellation

Mapping

x1(n)

x2(n)

x3(n)

x4(n)

y1(n)

y2(n)

y3(n)

y4(n)

(a)

ADC
Compressive

Sampling
Reconstruction fs

IFFT

IFFT

IFFT

IFFT

MIMO
Constellation

Mapping

t1(n)

t2(n)

t3(n)

t4(n)

r1(n)

r2(n)

r3(n)

r4(n)

q1(n)

q2(n)

q3(n)

q4(n)

x1(n)

x2(n)

x3(n)

x4(n)

y(n)

(b)

Fig. 1. Structures of conventional and proposed MIMO-OFDM transmission system. (a), and (b) are the models of conventional MIMO-OFDM transimission
system and proposed MIMO-OFDM communication framework exploiting compressive sensing correspondingly.

signal in each antenna is sparse, which means only limited
number of subcarriers are in the use, the signal is able to be
received by the specific novel reception architecture. Different
from the traditional MIMO-OFDM receiver, the proposed one
first randomly modulates and sums the signals together. Then
the signal is sampled by a single ADC, who has the same rate
same as the ADCs in the ordinary architecture. The DSP block
for the proposed system replaces the conventional DSP blocks
consisting of FFT units for each channel and MIMO detector.
Instead of transforming the signals on timing domain to Fourier
domain, the CS reconstruction algorithm directly separates
and recoveries ths signals on the frequency domain where
the signal represents sparsity. The mathematics model of the
proposed system and solution will be discussed at Section III.

A. Modulating signals with random sequences
The value of the pseudo-random sequence for modulation

should be selected to be hardware-friendly. In this paper, we
choose qi(n) as random binary value (±1) to modulate signals.
In practice, the pseudo-random random sequence could be
generated by linear feedback shift registers (LFSR).

B. DSP Block
In the proposed system, the DSP block plays the role

on separating the compressively sampled data. In conven-
tional CS reconstruction problem, there are multiple algorithms
proposed for solving this problem such as l1 linear/convex
optimization [9], greedy algorithms [10] and approximate
message passing (AMP) [11]. Without knowing any spectrum
utilization information such like the occupancy and locations
of the occupied frequency points, those ordinary algorithms
suffer from their burdensome computational complexity and
undetermined number of iterations. However, in the proposed
OFDM based communication system, the receiver could easily
have the knowledge of utilization of spectra by information
synchronization before the transmission or spectrum sensing
by FFT. Thus here we give a straightforward algorithm utiliz-
ing the information about the occupancy of the OFDM channel
to separate and reconstruct signals in Section IV.

C. Merits and applications of the proposed architecture
In the proposed system, the number of samples sensed

by the proposed receiver is significantly reduced. Besides
alleviating the resource consumption of mixed signal block,

the DSP unit of the proposed model also has the advantages
compared with the ordinary DSP in terms of hardware con-
sumption. First of all, the buffer size for samples in DSP is
directly decreased for less number of ADCs. Second, since the
reconstruction algorithms provides the amplitudes on Fourier
domains where the information is carried, there is no need
transform between frequency domain and time domain. Some
potential applications are given below:

1) Massive MIMO systems: For large number of antennas
MIMO system, massive number of ADCs necessary for tradi-
tional detection. However, at time of usage valley, only a small
quantity of users are accessing channel and most subcarriers
are idle. Thus the proposed model could help reduce the power
consumption to acquire data.

2) Low-power wireless MIMO relay: For wireless MIMO
relay, if the input signals are sparse enough on OFDM channel,
the relay could save power by sensing less samples as proposed
in this work. Also the bandwidth for next relay transmission
could be saved for other usage without fully decoding.

III. SPARSE SIGNAL MODEL
In this section, the model of the proposed system is derived.

First of all, the theory background of CS and the mathematical
model of the MIMO-OFDM based signal are introduced. By
depicting how the sparse signals from multiple channels are
mixed together and sampled, we present the objective problem
to demodulate the mixed signal.

A. Compressive Sensing Background
If a length N vector can be presented as x⃗ =

∑N
i=1 ψia[i]

where ψi is ith column of known orthogonal basis and a⃗ has
only K non-zero elements, according to CS theories, x⃗ could
be exactly recovered from M measurements of projections of
x⃗ over a random basis, Φ. The M -long measurements could
be written as y⃗ = ΦΨa⃗. The flat matrix Φ is a random matrix
which has M rows and N columns. In our proposed model,
because the random modulation and mixture with the MIMO
channel matrix, we build up out specific flat matrix Φ, which
will also be discussed in this section later.

To detect the useful information of a⃗ from y⃗, the K-
nonzero-elements vector a⃗ needs to be estimated from the
following equation:

ˆ̃a = arg min∥ã∥0 s .t . ỹ = ΦΨã (1)

(b)

Figure 8.14: Structures of conventional (a) and proposed (b) MIMO-OFDM transmission system.

120

specific novel reception architecture. Different from the traditional MIMO-OFDM

receiver, the proposed one first randomly modulates and sums the signals together.

Then the signal is sampled by a single ADC, who has the same rate same as the

ADCs in the ordinary architecture. The DSP block for the proposed system replaces

the conventional DSP blocks consisting of FFT units for each channel and MIMO

detector. Instead of transforming the signals on timing domain to Fourier domain,

the CS reconstruction algorithm directly separates and recoveries ths signals on the

frequency domain where the signal represents sparsity. The mathematics model of

the proposed system and solution will be discussed in the next subsection.

8.3.1.1 Modulating signals with random sequences

The value of the pseudo-random sequence for modulation should be selected to

be hardware-friendly. In this paper, we choose qi(n) as random binary value (±1)

to modulate signals. In practice, the pseudo-random random sequence could be

generated by linear feedback shift registers (LFSR).

8.3.1.2 DSP block

In the proposed system, the DSP block plays the role on separating the com-

pressively sampled data. In conventional CS reconstruction problem, there are mul-

tiple algorithms proposed for solving this problem such as l1 linear/convex opti-

mization [74], greedy algorithms [80] and approximate message passing (AMP) [81].

Without knowing any spectrum utilization information such like the occupancy and

locations of the occupied frequency points, those ordinary algorithms suffer from

their burdensome computational complexity and undetermined number of iterations.

However, in the proposed OFDM based communication system, the receiver could

easily have the knowledge of utilization of spectra by information synchronization

before the transmission or spectrum sensing by FFT. Thus here we give a straightfor-

121

ward algorithm utilizing the information about the occupancy of the OFDM channel

to separate and reconstruct signals in following.

8.3.2 Sparse Signal Model

In this section, the model of the proposed system is derived. The background of

conventional MIMO wireless communication is first breifly introduced. The proposed

mathematical model is derived in following.

8.3.2.1 Conventional MIMO-OFDM model

Figure 8.14a shows a equivalent baseband model for a MIMO-OFDM system.

Assuming there are Nf subcarriers in each channle, the nth output of the IFFT on

the ith antenna is xi(n) could be expressed as:

xi(n) =
1√
Nf

Nf−1∑

m=0

ai(m) exp(j2πnm/Nf) (8.12)

, where ai(m) is the complex modulated signals on subcarrier on ith transmit an-

tenna. When a user tries to access a MIMO-OFDM channel, some of Nf subcarriers

would be assigned to the user for the duration of usage. The transmitted signal could

also be described in a vector-matrix format as follows:

xxxi = FFFH
Nf
aiaiai (8.13)

Then the signals are transmitted over multiple antennas. Let us denote the channel

impulse response (CIR) vector hijhijhij between the ith transmit antenna and jth receive

antenna as hijhijhij. Suppose that there are L multipath between the transmitter and

122

receiver, hijhijhij could be presented as:

hhhij =

[
hij,0, . . . , hij,L−1

]T
(8.14)

The complex baseband equivalent received signal is the transmitted signal con-

voluted by the CIR. To protect from the intersymbol interference (ISI), the cyclic

prefix (CP) is added before each transmit vector xixixi. Thus the received signals on

jth receive antenna from ith transmit antenna could be expressed as vector-matrix

format as:

yyyi→j = HHH ijxxxi (8.15)

where yyyi→j is the signals received by jth receive antenna from ith transmit antenna

and HHH ij is a matrix of the operation of the cyclic convolution with the CIR vector

hijhijhij as shown below:




hij,0 . . . 0 0 . . . hij,1
...

. . . 0
... 0 hij,L−1

hij,L−1 . . . hij,0 0
... 0

0
. hij,0

...
...

...
. . .

...
. . . 0

0 . . . 0 hij,L−1 . . . hij,0




For a Nt×Nr MIMO-OFDM system (Nt and Nr are the number of transmit and

receive antennas correspondingly), the receive vectors could be expressed as below:




y1y1y1

...

y
Nr
y
Nr
y
Nr




=




HHH11 . . . HHHNt1

...
. . .

...

HHH1Nr . . . HHHNtNr







x1x1x1

...

x
Nt
x

Nt
x

Nt




+ VVV (8.16)

123

where VVV is the additive white noise. For the convenience, we denote the above

channel matrix as HHH. The above equation could be represented as, yyy = HxHxHx + VVV .

To measure the performance of our proposed work, in this paper, the definition of

signal-to-noise ratio (SNR) for the wireless channel is defined as:

SNR = 20 log10

‖HxHxHx ‖2

‖ VVV ‖2

dB (8.17)

In the conventional MIMO-OFDM problem, instead of solving (8.16), the detec-

tion will be accomplished by first applying FFT to transform received signals on

Fourier domain to simplify as a diagonal matrix. Here we denote hhh′m as the channel

gain matrix for the symbols on mth subcarrier, whose element, h′ij,m, is the gain be-

tween jth transmit antenna and ith receive antenna. Then the conventional MIMO

detector demodulates the transmitted symbols by solving the following equations:




y′1(m)

...

y′
Nr

(m)




=




h′11,m . . . h′Nt1,m

...
. . .

...

h′1Nr,m
. . . h′NtNr,m







a′1(m)

...

a′
Nt

(m)




+ VVV ′ (8.18)

where VVV ′ is the corresponding additive noise on the subcarrier, y′1(m) is the signals

after FFT on the mth subcarrier. An exhaustive search on all possibilities of aaa (m)

could find âaa(m), which minimizes ‖y′y′y′(m)−hhh′mâaa(m)‖. This solution âaa(m) is also called

maximum likelyhood (ML) solution for MIMO detection. However, ML suffers from

its high computation complexity. Instead of using ML, zero-forcing (ZF) algorithm

or other trade-off tree-search algorithms [82] are used in practice.

Instead of using the conventional method, the detection problem and method to

the problem of the proposed system is described in the following.

124

8.3.2.2 Sparse signal model for the proposed system

As aforementioned, the baseband signal sent on each antenna is a superposition

of a number of subcarriers, which are column vectors of the Nf -point DFT matrix

FFFNf
as shown at (8.13).

Subsequently, the received signals yyyj could be presented as (8.16). In our proposed

system, the received signals are modulated with random sequences qqqj again and

summed together by a single ADC, the sampled data yyycs could be expressed as:

yyycs =
Nr∑

j=1

qqqjrrrj (8.19)

where qqqj is a vector, whose elements are random binary number, ±1. qi is used

to modulate the signal from the ith receive antenna. This equation could also be

presented in a vector-matrix format as below:

yyycs =

[
QQQ1 QQQ2 . . . QQQNr

]




rrr1

rrr2

...

rrrNr




(8.20)

where QQQj is a diagonal matrix with the random binary number on the diagonal. As

(8.20) shows, using the flat matrix consisting of multiple diagonal matrixs, the total

number of samples acquired by the receiver is reduced by the factor of the number

of receive antennas. Here we denote the above flat matrix as QQQ. Thus the sampled

125

data could be represented as:

yyycs = QQQHHH




FFFH
Nf

. . . 000

...
. . . 000

000 . . . FFFH
Nf







aaa1

...

aaaNr




+ nnn0

= QHFQHFQHF ·ααα + nnn0

(8.21)

where aaai is the Nf × 1 OFDM vector on the ith transmit antenna and aaai is sparse

when the subcarriers are rarely occupied. FFFNf
is the FFT matrix as aforementioned.

Furthermore, we define BBB as QHFQHFQHF and ααα as the concatenated vector from aaai. nnn0

is the equivalent noise after randomly modulation and mixture. Now we can arrive

the question to our model that detecting MIMO-OFDM symbols ααα by much less

samples:

α̂̂α̂α = arg min ‖ yyycs −BBBααα ‖, s.t. αi = 0, i ∈ Πidle (8.22)

where ai is the ith element of the vector ααα, Πidle is the set of indices where the

subcarriers are not occupied. Compared with conventional receivers, the mixed-signal

block is relaxed by the reduction on number of signal acquisitions. For the DSP part,

the traditional detector units are replaced by a unit could solve the equation (8.22).

Different with ordinary CS problem, (8.22) provides additional constraint on the

positions of idle subcarriers. In [83], we also propose a straightforward algorithm to

reconstruct the data with utilization of the additional constraints. The reconstruction

algorithm is given in the following subsection.

8.3.3 Reconstruction

In the proposed architecture, the randomly modulated signals are mixed together

and sampled. Given a compressed signal vector yyycs, ααα needs to be recovered where the

126

information is carried. To solve question (8.22), âaa is intuitively found by the linear

combination of some column vectors out of BBB as close as possible to yyycs. Without

effective occupancy information, traditional CS algorithms suffer from undetermined

number of iterations and excessive complexity. Since in the proposed scenario, the

band usage of the communication channel could be acquired by pre-information or

FFT for OFDM-based channels. In this paper, we try to utilize the occupancy

information in order to simplify the reconstruction processes compared with those

ordinary algorithms.

First of all, we denote Πbusy as the set of all indices, where subcarriers are occu-

pied, e.g. αααi 6= 0, i ∈ Πbusy. And also bbbi is defined as the ith column vector of BBB.

As aforementioned, to solve the question (8.22) is essential to find the closest linear

combination of the some column vectors to yyycs. In the scenario in this paper the set

of active subcarriers, Πbusy, is known. Thus we pick those columns bbbi, i ∈ Πbusy from

BBB which are corresponding the positions of the busy subcarriers indices to form a

new matrix. Noticeably, because that the position of non-zero entries are unknown

in the conventional CS sensor, the traditional CS reconstructors such as orthogonal

matching pursuit (OMP) have to iteratively pursue those bases which contribute

the sensed signal. Thus the iteration does considerably aggregates the complexity

in the ordinary reconstruction algorithms. In our proposed reconstruction, BBBΠ is

introduced as a matrix, whose columns are consisting of bbbi, i ∈ Πbusy. Then the

pseudo-inverse of BBBΠ, is calculated and applied to project the sampled data yyycs to

α̂̂α̂αΠ as below:

α̂̂α̂αΠ = BBB†Π · yyycs s.t. BBB†Π = (BBBT
ΠBBBΠ)−1BBBT

Π (8.23)

where α̂̂α̂αΠ is the reconstructed signals on those busy subcarriers. The length of the

vector α̂̂α̂αΠ is equal to the number of elements in Πbusy. The values of elements in

127

α̂̂α̂αΠ are mapped to the elements of α̂̂α̂α with corresponding indices in Πbusy. By slicing

the reconstructed symbols, the sent bit stream could be demodulated out. The

performance based on the proposed architecture is discussed in the following section.

8.3.4 Setup and Simulation

To show the performance of our proposed system structure, we set up the sim-

ulation for our proposed model in MATLAB. In the simulation, we suppose that

there are Nf = 256 subcarriers for users over the given channel bandwidth. Different

MIMO schemes of 2×2, 3×3 and 4×4 are simulated. For each scheme, simulations

are run for different occupancy of the OFDM channel. The performance is evaluated

by the successful reconstruction rate (SRR) and the bit error rate (BER). The per-

formance comparisons with the conventional MIMO detectors such as ML and ZF

detector are also presented. In our simulation, we also assume that there are three

fading paths between transmitter and receiver and the channel state information

(CSI) of the channel is perfectly known.

8.3.4.1 Reconstruction fidelity

First of all, the sparse reconstruction algorithm introduced mentioned above is

tested for different occupancy. SRR is defined as ratio of the number of correctly

reconstructed symbols over the total number of symbols transmitted. Figure 8.15

in general shows how the occupancy of the OFDM wireless channel affects SRR. In

the experiment, the symbols are modulated by 16QAM and the SNR is 15 dB. As

shown in the figure, the successful reconstruction rate is degraded as more number of

subcarriers are occupied. We also scale up MIMO system from 2×2 to 4×4 in order

to evaluate the scaling effect. We find that the MIMO system of the moderate scale

is more resilient to the increase of occupancy. For example, less than 44 subcarriers

out of 256 total subcarriers could be achieved over 95% SRR at 2×2 MIMO scheme.

128

4

where ai is the ith element of the vector ααα, Πidle is the set
of indices where the subcarriers are not occupied. Compared
with conventional receivers, the mixed-signal block is relaxed
by the reduction on number of signal acquisitions. For the
DSP part, the traditional detector units are replaced by a
unit could solve the equation (8). Different with ordinary CS
problem, (8) provides additional constraint on the positions of
idle subcarriers. In this paper, we also propose a straightfor-
ward algorithm to reconstruct the data with utilization of the
additional constraints. The reconstruction algorithm is given in
the following section.

IV. RECONSTRUCTION
In the proposed architecture, the randomly modulated sig-

nals are mixed together and sampled. Given a compressed sig-
nal vector yyycs, ααα needs to be recovered where the information
is carried. To solve question (8), âaa is intuitively found by the
linear combination of some column vectors out of BBB as close
as possible to yyycs. Without effective occupancy information,
traditional CS algorithms suffer from undetermined number
of iterations and excessive complexity. Since in the proposed
scenario, the band usage of the communication channel could
be acquired by pre-information or FFT for OFDM-based chan-
nels. In this paper, we try to utilize the occupancy information
in order to simplify the reconstruction processes compared
with those ordinary algorithms.

First of all, we denote Πbusy as the set of all indices, where
subcarriers are occupied, e.g. αααi ̸= 0, i ∈ Πbusy . And also bbbi
is defined as the ith column vector of BBB. As aforementioned,
to solve the question (8) is essential to find the closest linear
combination of the some column vectors to yyycs. In the scenario
in this paper the set of active subcarriers, Πbusy , is known.
Thus we pick those columns bbbi, i ∈ Πbusy from BBB which are
corresponding the positions of the busy subcarriers indices to
form a new matrix. Noticeably, because that the position of
non-zero entries are unknown in the conventional CS sensor,
the traditional CS reconstructors such as orthogonal matching
pursuit (OMP) have to iteratively pursue those bases which
contribute the sensed signal. Thus the iteration does consider-
ably aggregates the complexity in the ordinary reconstruction
algorithms. In our proposed reconstruction, BBBΠ is introduced
as a matrix, whose columns are consisting of bbbi, i ∈ Πbusy .
Then the pseudo-inverse of BBBΠ, is calculated and applied to
project the sampled data yyycs to α̂̂α̂αΠ as below:

α̂̂α̂αΠ = BBB†
Π · yyycs s.t. BBB†

Π = (BBBT
ΠBBBΠ)−1BBBT

Π (9)

where α̂̂α̂αΠ is the reconstructed signals on those busy subcar-
riers. The length of the vector α̂̂α̂αΠ is equal to the number of
elements in Πbusy . The values of elements in α̂̂α̂αΠ are mapped
to the elements of α̂̂α̂α with corresponding indices in Πbusy . By
slicing the reconstructed symbols, the sent bit stream could
be demodulated out. The performance based on the proposed
architecture is discussed in the following section.

V. SETUP AND SIMULATION
To show the performance of our proposed system structure,

we set up the simulation for our proposed model in MATLAB.
In the simulation, we suppose that there are Nf = 256 sub-
carriers for users over the given channel bandwidth. Different
MIMO schemes of 2 × 2, 3 × 3 and 4 × 4 are simulated. For
each scheme, simulations are run for different occupancy of
the OFDM channel. The performance is evaluated by the suc-
cessful reconstruction rate (SRR) and the bit error rate (BER).
The performance comparisons with the conventional MIMO
detectors such as ML and ZF detector are also presented. In
our simulation, we also assume that there are three fading
paths between transmitter and receiver and the channel state
information (CSI) of the channel is perfectly known.

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

Number of active subcarriers out of 256

SR
R

2 × 2 MIMO
2 × 3 MIMO
4 × 4 MIMO

Fig. 2. Successful reconstruction rate at 15 dB SNR

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

BE
R

4
8
12
16
20
24
28
32

Fig. 3. Detection performance of the proposed system at 4 × 4 MIMO

A. Reconstruction fidelity
First of all, the sparse reconstruction algorithm introduced

in Section IV is tested for different occupancy. SRR is defined
as ratio of the number of correctly reconstructed symbols over
the total number of symbols transmitted. Fig. 2 in general
shows how the occupancy of the OFDM wireless channel
affects SRR. In the experiment, the symbols are modulated
by 16QAM and the SNR is 15 dB. As shown in the figure, the
successful reconstruction rate is degraded as more number of
subcarriers are occupied. We also scale up MIMO system from
2×2 to 4×4 in order to evaluate the scaling effect. We find that
the MIMO system of the moderate scale is more resilient to the
increase of occupancy. For example, less than 44 subcarriers
out of 256 total subcarriers could be achieved over 95% SRR
at 2×2 MIMO scheme. However, to target same SRR, only 28
active tones could be carried at 4 × 4 MIMO scheme. This is
because that we mix signals from all receive antennas together.
At same level of the channel occupancy, larger scale MIMO
increases the crowdedness of the mixed signal.

To further evaluate the fidelity of detection in wireless
channel, Fig. 3 shows the detection capability of the proposed
architecture for 4 × 4 MIMO scenario. In the figure, the
numbers in legend represent the amount of active subcarriers.
It is shown in Fig. 3 that less occupancy signals could be
demodulated with higher reliability. For instance, to achieve
BER of 10−3, the MIMO-OFDM signals with 4 active sub-
carriers outperforms the one with 8 active subcarriers by 3 dB.
Moreover, with the occupancy of the channel increasing, the
BER gap between signals of different occupancy is reducing.
For example, to target same BER level, there is only 1 dB gap
between the signal with 20 and 24 subcarriers.

From Fig. 3, we also show that the proposed architecture
can successfully detect signals which has 32 subcarriers at 4×4
MIMO system.

Figure 8.15: Successful reconstruction rate at 15 dB SNR

However, to target same SRR, only 28 active tones could be carried at 4× 4 MIMO

scheme. This is because that we mix signals from all receive antennas together. At

same level of the channel occupancy, larger scale MIMO increases the crowdedness

of the mixed signal.

To further evaluate the fidelity of detection in wireless channel, Figure 8.16 shows

the detection capability of the proposed architecture for 4 × 4 MIMO scenario. In

the figure, the numbers in legend represent the amount of active subcarriers. It is

shown in Figure 8.16 that less occupancy signals could be demodulated with higher

reliability. For instance, to achieve BER of 10−3, the MIMO-OFDM signals with 4

active subcarriers outperforms the one with 8 active subcarriers by 3 dB. Moreover,

with the occupancy of the channel increasing, the BER gap between signals of dif-

ferent occupancy is reducing. For example, to target same BER level, there is only

1 dB gap between the signal with 20 and 24 subcarriers.

From Figure 8.16, we also show that the proposed architecture can successfully

129

4

where ai is the ith element of the vector ααα, Πidle is the set
of indices where the subcarriers are not occupied. Compared
with conventional receivers, the mixed-signal block is relaxed
by the reduction on number of signal acquisitions. For the
DSP part, the traditional detector units are replaced by a
unit could solve the equation (8). Different with ordinary CS
problem, (8) provides additional constraint on the positions of
idle subcarriers. In this paper, we also propose a straightfor-
ward algorithm to reconstruct the data with utilization of the
additional constraints. The reconstruction algorithm is given in
the following section.

IV. RECONSTRUCTION
In the proposed architecture, the randomly modulated sig-

nals are mixed together and sampled. Given a compressed sig-
nal vector yyycs, ααα needs to be recovered where the information
is carried. To solve question (8), âaa is intuitively found by the
linear combination of some column vectors out of BBB as close
as possible to yyycs. Without effective occupancy information,
traditional CS algorithms suffer from undetermined number
of iterations and excessive complexity. Since in the proposed
scenario, the band usage of the communication channel could
be acquired by pre-information or FFT for OFDM-based chan-
nels. In this paper, we try to utilize the occupancy information
in order to simplify the reconstruction processes compared
with those ordinary algorithms.

First of all, we denote Πbusy as the set of all indices, where
subcarriers are occupied, e.g. αααi ̸= 0, i ∈ Πbusy . And also bbbi
is defined as the ith column vector of BBB. As aforementioned,
to solve the question (8) is essential to find the closest linear
combination of the some column vectors to yyycs. In the scenario
in this paper the set of active subcarriers, Πbusy , is known.
Thus we pick those columns bbbi, i ∈ Πbusy from BBB which are
corresponding the positions of the busy subcarriers indices to
form a new matrix. Noticeably, because that the position of
non-zero entries are unknown in the conventional CS sensor,
the traditional CS reconstructors such as orthogonal matching
pursuit (OMP) have to iteratively pursue those bases which
contribute the sensed signal. Thus the iteration does consider-
ably aggregates the complexity in the ordinary reconstruction
algorithms. In our proposed reconstruction, BBBΠ is introduced
as a matrix, whose columns are consisting of bbbi, i ∈ Πbusy .
Then the pseudo-inverse of BBBΠ, is calculated and applied to
project the sampled data yyycs to α̂̂α̂αΠ as below:

α̂̂α̂αΠ = BBB†
Π · yyycs s.t. BBB†

Π = (BBBT
ΠBBBΠ)−1BBBT

Π (9)

where α̂̂α̂αΠ is the reconstructed signals on those busy subcar-
riers. The length of the vector α̂̂α̂αΠ is equal to the number of
elements in Πbusy . The values of elements in α̂̂α̂αΠ are mapped
to the elements of α̂̂α̂α with corresponding indices in Πbusy . By
slicing the reconstructed symbols, the sent bit stream could
be demodulated out. The performance based on the proposed
architecture is discussed in the following section.

V. SETUP AND SIMULATION
To show the performance of our proposed system structure,

we set up the simulation for our proposed model in MATLAB.
In the simulation, we suppose that there are Nf = 256 sub-
carriers for users over the given channel bandwidth. Different
MIMO schemes of 2 × 2, 3 × 3 and 4 × 4 are simulated. For
each scheme, simulations are run for different occupancy of
the OFDM channel. The performance is evaluated by the suc-
cessful reconstruction rate (SRR) and the bit error rate (BER).
The performance comparisons with the conventional MIMO
detectors such as ML and ZF detector are also presented. In
our simulation, we also assume that there are three fading
paths between transmitter and receiver and the channel state
information (CSI) of the channel is perfectly known.

0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

Number of active subcarriers out of 256

SR
R

2 × 2 MIMO
2 × 3 MIMO
4 × 4 MIMO

Fig. 2. Successful reconstruction rate at 15 dB SNR

0 5 10 15 20 25
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR (dB)

BE
R

4
8
12
16
20
24
28
32

Fig. 3. Detection performance of the proposed system at 4 × 4 MIMO

A. Reconstruction fidelity
First of all, the sparse reconstruction algorithm introduced

in Section IV is tested for different occupancy. SRR is defined
as ratio of the number of correctly reconstructed symbols over
the total number of symbols transmitted. Fig. 2 in general
shows how the occupancy of the OFDM wireless channel
affects SRR. In the experiment, the symbols are modulated
by 16QAM and the SNR is 15 dB. As shown in the figure, the
successful reconstruction rate is degraded as more number of
subcarriers are occupied. We also scale up MIMO system from
2×2 to 4×4 in order to evaluate the scaling effect. We find that
the MIMO system of the moderate scale is more resilient to the
increase of occupancy. For example, less than 44 subcarriers
out of 256 total subcarriers could be achieved over 95% SRR
at 2×2 MIMO scheme. However, to target same SRR, only 28
active tones could be carried at 4 × 4 MIMO scheme. This is
because that we mix signals from all receive antennas together.
At same level of the channel occupancy, larger scale MIMO
increases the crowdedness of the mixed signal.

To further evaluate the fidelity of detection in wireless
channel, Fig. 3 shows the detection capability of the proposed
architecture for 4 × 4 MIMO scenario. In the figure, the
numbers in legend represent the amount of active subcarriers.
It is shown in Fig. 3 that less occupancy signals could be
demodulated with higher reliability. For instance, to achieve
BER of 10−3, the MIMO-OFDM signals with 4 active sub-
carriers outperforms the one with 8 active subcarriers by 3 dB.
Moreover, with the occupancy of the channel increasing, the
BER gap between signals of different occupancy is reducing.
For example, to target same BER level, there is only 1 dB gap
between the signal with 20 and 24 subcarriers.

From Fig. 3, we also show that the proposed architecture
can successfully detect signals which has 32 subcarriers at 4×4
MIMO system.

Figure 8.16: Detection performance of the proposed system at 4× 4 MIMO

detect signals which has 32 subcarriers at 4× 4 MIMO system.

8.3.4.2 Different scales of MIMO system

To examine the impact of the scale of MIMO on the detection fidelity, the de-

tection reliability over different scales of MIMO is simulated. Figure 8.17 shows

the reconstructed BER in relationship with the number of busy subcarriers in the

channel over different MIMO schemes. From the figure, we show that in very lim-

ited occupied OFDM channel, larger scale of MIMO has the diversity to provide

higher wireless communication fidelity. But as the occupancy of the OFDM channel

increasing, the detection ability is gradually degraded. Larger scale of MIMO has

more diversity over the MIMO channel, however, where the sampled signals are more

crowded since signals from all receive antennas are summed together. Thus at some

point, the diversity of MIMO is beat by the crowd, where larger scale of MIMO fails

to provide transmission as reliable as smaller scale does.

130

5

10 20 30 40 50 60
10−6

10−5

10−4

10−3

10−2

10−1

100

Number of active subcarriers

BE
R

2×2 MIMO
3×3 MIMO
4×4 MIMO

Fig. 4. Detection performance of different MIMO scales at 15 dB SNR

5 10 15 20 25

10−4

10−3

10−2

10−1

SNR

BE
R

8 CS
32 CS
8 ML
32 ML
8 ZF
32 ZF

Fig. 5. The performances comparisons with conventional MIMO detection

B. Different Scales of MIMO System
To examine the impact of the scale of MIMO on the

detection fidelity, the detection reliability over different scales
of MIMO is simulated. Fig. 4 shows the reconstructed BER in
relationship with the number of busy subcarriers in the channel
over different MIMO schemes. From the figure, we show that
in very limited occupied OFDM channel, larger scale of MIMO
has the diversity to provide higher wireless communication
fidelity. But as the occupancy of the OFDM channel increasing,
the detection ability is gradually degraded. Larger scale of
MIMO has more diversity over the MIMO channel, however,
where the sampled signals are more crowded since signals
from all receive antennas are summed together. Thus at some
point, the diversity of MIMO is beat by the crowd, where
larger scale of MIMO fails to provide transmission as reliable
as smaller scale does.

C. Comparisons with conventional MIMO receiver
To compare our proposed CS-based detector with the

conventional MIMO detectors, we present the ML and ZF
detection performance with ours in Fig. 5, where 3×3 MIMO
is applied. The legends of the figure show the number of oc-
cupied subcarriers as well as the detection method, where CS,
ML and ZF indicate the proposed receiver, conventional ML
detection and ZF detection respectively. As shown in the figure,
the proposed receiver outperforms the ZF detector substan-
tially. And with lightly occupied MIMO-OFDM channel, the
proposed architecture performance is close to that of the ML
detection. When the number of active subcarriers increases, the
proposed performance is degraded more dramatically than the
other two. However, with 32 active subcarriers, the proposed
detector still outperform the ZF detector. This phenomenon is
explained before as that increasing occupancy on the channel

will results in more crowded compressive sensed signals which
is more difficult to reconstruct.

VI. CONCLUSION AND DISCUSSION
In this paper, an exploration on application of compressive

sensing technique on MIMO-OFDM based cognitive radio
is discussed. In the proposed architecture, the signals from
multiple channels are summed together to reduce the samples
by Nr times, where Nr is the number of receive antennas. To
recover the compressively sensed signal, the simplified recon-
struction method is also presented. A multitude of MATLAB
simulations are conducted to analyze the reception fidelity of
the proposed receiver over the wireless communication. The
simulation results show that the proposed architecture is able
to efficiently detect MIMO-OFDM based CR signals. And
the detection performance does depend on the occupancy of
OFDM channel and the scale of the MIMO scheme. Moreover,
it is also shown that the proposed receiver substantially out-
performs the conventional ZF detector. Although the proposed
receiver is not able to provide optimal detection performance,
the idea presented in this paper is still valuable as a scheme to
efficiently receive MIMO-OFDM based CR signals and reduce
the complexity of the reception. In practice, the proposed
design can augment ML detection by simply multiplexing to
accommodate high-occupancy signals.

Current effort is being paid on several questions such as
higher reconstruction performance on algorithms level and
low-power exploration on circuits implementation of the DSP
block to make the proposed system more applicable to com-
mercial devices.

REFERENCES
[1] F. C. Commission et al., “Spectrum policy task force report, fcc 02-

155,” 2002.
[2] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,”

Signal Processing Magazine, IEEE, vol. 24, no. 3, pp. 79–89, 2007.
[3] D. Donoho, “Compressed sensing,” Information Theory, IEEE Trans-

actions on, vol. 52, no. 4, pp. 1289–1306, 2006.
[4] Z. Tian and G. Giannakis, “Compressed sensing for wideband cognitive

radios,” in Acoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference on, vol. 4, 2007, pp. IV–1357–
IV–1360.

[5] Z. Yu, S. Hoyos, and B. Sadler, “Mixed-signal parallel compressed
sensing and reception for cognitive radio,” in Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference
on, March 2008, pp. 3861–3864.

[6] M. Duarte and Y. Eldar, “Structured compressed sensing: From theory to
applications,” Signal Processing, IEEE Transactions on, vol. 59, no. 9,
pp. 4053–4085, Sept 2011.

[7] J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collaborative spectrum
sensing from sparse observations in cognitive radio networks,” Selected
Areas in Communications, IEEE Journal on, vol. 29, no. 2, pp. 327–
337, February 2011.

[8] Y. Kim, W. Guo, B. Gowreesunker, N. Sun, and A. Tewfik, “Multi-
channel sparse data conversion with a single analog-to-digital con-
verter,” Emerging and Selected Topics in Circuits and Systems, IEEE
Journal on, vol. 2, no. 3, pp. 470–481, 2012.

[9] J. Xu, E. Rohani, M. Rahman, and G. Choi, “Signal reconstruction
processor design for compressive sensing,” in Circuits and Systems
(ISCAS), 2014 IEEE International Symposium on. IEEE, 2014, pp.
2539–2542.

[10] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, pp. 301 – 321, 2009.

[11] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing
algorithms for compressed sensing,” Proceedings of the National
Academy of Sciences, vol. 106, no. 45, pp. 18 914–18 919, 2009.
[Online]. Available: http://www.pnas.org/content/106/45/18914.abstract

[12] P. Bhagawat, R. Dash, and G. Choi, “Array like runtime reconfigurable
mimo detectors for 802.11 n wlan: a design case study,” in Proceedings
of the 2009 Asia and South Pacific Design Automation Conference.
IEEE Press, 2009, pp. 751–756.

Figure 8.17: Detection performance of different MIMO scales at 15 dB SNR

8.3.4.3 Comparisons with conventional MIMO receiver

To compare our proposed CS-based detector with the conventional MIMO de-

tectors, we present the ML and ZF detection performance with ours in Figure 8.18,

where 3 × 3 MIMO is applied. The legends of the figure show the number of oc-

cupied subcarriers as well as the detection method, where CS, ML and ZF indicate

the proposed receiver, conventional ML detection and ZF detection respectively. As

shown in the figure, the proposed receiver outperforms the ZF detector substantially.

And with lightly occupied MIMO-OFDM channel, the proposed architecture perfor-

mance is close to that of the ML detection. When the number of active subcarriers

increases, the proposed performance is degraded more dramatically than the other

two. However, with 32 active subcarriers, the proposed detector still outperform the

ZF detector. This phenomenon is explained before as that increasing occupancy on

the channel will results in more crowded compressive sensed signals which is more

difficult to reconstruct.

131

5

10 20 30 40 50 60
10−6

10−5

10−4

10−3

10−2

10−1

100

Number of active subcarriers

BE
R

2×2 MIMO
3×3 MIMO
4×4 MIMO

Fig. 4. Detection performance of different MIMO scales at 15 dB SNR

5 10 15 20 25

10−4

10−3

10−2

10−1

SNR

BE
R

8 CS
32 CS
8 ML
32 ML
8 ZF
32 ZF

Fig. 5. The performances comparisons with conventional MIMO detection

B. Different Scales of MIMO System
To examine the impact of the scale of MIMO on the

detection fidelity, the detection reliability over different scales
of MIMO is simulated. Fig. 4 shows the reconstructed BER in
relationship with the number of busy subcarriers in the channel
over different MIMO schemes. From the figure, we show that
in very limited occupied OFDM channel, larger scale of MIMO
has the diversity to provide higher wireless communication
fidelity. But as the occupancy of the OFDM channel increasing,
the detection ability is gradually degraded. Larger scale of
MIMO has more diversity over the MIMO channel, however,
where the sampled signals are more crowded since signals
from all receive antennas are summed together. Thus at some
point, the diversity of MIMO is beat by the crowd, where
larger scale of MIMO fails to provide transmission as reliable
as smaller scale does.

C. Comparisons with conventional MIMO receiver
To compare our proposed CS-based detector with the

conventional MIMO detectors, we present the ML and ZF
detection performance with ours in Fig. 5, where 3×3 MIMO
is applied. The legends of the figure show the number of oc-
cupied subcarriers as well as the detection method, where CS,
ML and ZF indicate the proposed receiver, conventional ML
detection and ZF detection respectively. As shown in the figure,
the proposed receiver outperforms the ZF detector substan-
tially. And with lightly occupied MIMO-OFDM channel, the
proposed architecture performance is close to that of the ML
detection. When the number of active subcarriers increases, the
proposed performance is degraded more dramatically than the
other two. However, with 32 active subcarriers, the proposed
detector still outperform the ZF detector. This phenomenon is
explained before as that increasing occupancy on the channel

will results in more crowded compressive sensed signals which
is more difficult to reconstruct.

VI. CONCLUSION AND DISCUSSION
In this paper, an exploration on application of compressive

sensing technique on MIMO-OFDM based cognitive radio
is discussed. In the proposed architecture, the signals from
multiple channels are summed together to reduce the samples
by Nr times, where Nr is the number of receive antennas. To
recover the compressively sensed signal, the simplified recon-
struction method is also presented. A multitude of MATLAB
simulations are conducted to analyze the reception fidelity of
the proposed receiver over the wireless communication. The
simulation results show that the proposed architecture is able
to efficiently detect MIMO-OFDM based CR signals. And
the detection performance does depend on the occupancy of
OFDM channel and the scale of the MIMO scheme. Moreover,
it is also shown that the proposed receiver substantially out-
performs the conventional ZF detector. Although the proposed
receiver is not able to provide optimal detection performance,
the idea presented in this paper is still valuable as a scheme to
efficiently receive MIMO-OFDM based CR signals and reduce
the complexity of the reception. In practice, the proposed
design can augment ML detection by simply multiplexing to
accommodate high-occupancy signals.

Current effort is being paid on several questions such as
higher reconstruction performance on algorithms level and
low-power exploration on circuits implementation of the DSP
block to make the proposed system more applicable to com-
mercial devices.

REFERENCES
[1] F. C. Commission et al., “Spectrum policy task force report, fcc 02-

155,” 2002.
[2] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,”

Signal Processing Magazine, IEEE, vol. 24, no. 3, pp. 79–89, 2007.
[3] D. Donoho, “Compressed sensing,” Information Theory, IEEE Trans-

actions on, vol. 52, no. 4, pp. 1289–1306, 2006.
[4] Z. Tian and G. Giannakis, “Compressed sensing for wideband cognitive

radios,” in Acoustics, Speech and Signal Processing, 2007. ICASSP
2007. IEEE International Conference on, vol. 4, 2007, pp. IV–1357–
IV–1360.

[5] Z. Yu, S. Hoyos, and B. Sadler, “Mixed-signal parallel compressed
sensing and reception for cognitive radio,” in Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference
on, March 2008, pp. 3861–3864.

[6] M. Duarte and Y. Eldar, “Structured compressed sensing: From theory to
applications,” Signal Processing, IEEE Transactions on, vol. 59, no. 9,
pp. 4053–4085, Sept 2011.

[7] J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collaborative spectrum
sensing from sparse observations in cognitive radio networks,” Selected
Areas in Communications, IEEE Journal on, vol. 29, no. 2, pp. 327–
337, February 2011.

[8] Y. Kim, W. Guo, B. Gowreesunker, N. Sun, and A. Tewfik, “Multi-
channel sparse data conversion with a single analog-to-digital con-
verter,” Emerging and Selected Topics in Circuits and Systems, IEEE
Journal on, vol. 2, no. 3, pp. 470–481, 2012.

[9] J. Xu, E. Rohani, M. Rahman, and G. Choi, “Signal reconstruction
processor design for compressive sensing,” in Circuits and Systems
(ISCAS), 2014 IEEE International Symposium on. IEEE, 2014, pp.
2539–2542.

[10] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, pp. 301 – 321, 2009.

[11] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing
algorithms for compressed sensing,” Proceedings of the National
Academy of Sciences, vol. 106, no. 45, pp. 18 914–18 919, 2009.
[Online]. Available: http://www.pnas.org/content/106/45/18914.abstract

[12] P. Bhagawat, R. Dash, and G. Choi, “Array like runtime reconfigurable
mimo detectors for 802.11 n wlan: a design case study,” in Proceedings
of the 2009 Asia and South Pacific Design Automation Conference.
IEEE Press, 2009, pp. 751–756.

Figure 8.18: The performances comparisons with conventional MIMO detection

In this work, an exploration on application of compressive sensing technique on

MIMO-OFDM based cognitive radio is discussed. In the proposed architecture, the

signals from multiple channels are summed together to reduce the samples by Nr

times, where Nr is the number of receive antennas. To recover the compressively

sensed signal, the simplified reconstruction method is also presented. A multitude of

MATLAB simulations are conducted to analyze the reception fidelity of the proposed

receiver over the wireless communication. The simulation results show that the

proposed architecture is able to efficiently detect MIMO-OFDM based CR signals.

And the detection performance does depend on the occupancy of OFDM channel

and the scale of the MIMO scheme. Moreover, it is also shown that the proposed

receiver substantially outperforms the conventional ZF detector.

8.4 Summary

In this chapter, three works on related signal processing field are discussed. As

near-capacity error correction codes already applied in many protocols, an hard-

132

ware efficient LDPC decoders based on asynchronous circuits techniques is explored

and discussed. In following, compressive sensing which inherently contains simi-

lar mathematical problem as error correction codes are discussed and analyzed in

two dimensions exploration as of both hardware reconstruction and application on

practical communication problem.

133

9. SUMMARY

9.1 Contributions

In this dissertation, hardware efficiency improvements on different types of polar

codes decoders are explored in algorithm and VLSI architecture level.

A hardware architecture of fastSSC algorithm for successive cancellation (SC)

polar code decoders is presented. By exploiting the similarity between the decod-

ing processing of fast constituent and regular polar codes, an unified hardware is

presented to overcome the disadvantage of fast-SSC decoder that lacking decoding

flexibility with respect to multiple code rates. Corresponding scheduling plan and

the intendedly designed PU are also described. Compared with other state-of-art SC

decoders, result shows that throughput centric successive cancellation decoder signif-

icantly increases the decoding throughput of polar codes by at least 2.5X depending

on polar code rates.

The OPLSC hardware design approach for LSC decoding of polar codes is also

introduced. By applying overlapping-path scheme, the l instances of (l > 1) succes-

sive cancellation (SC) decoder for LSC with list size l can be cut down to only one.

This results in a dramatic reduction of the hardware complexity without any decod-

ing performance loss. Simulation results show that with proposed design approach

the hardware efficiency is improved significantly over the other state-of-the-art LSC

decoders.

To improve the hardware efficiency of BP polar codes decoder, the express journey

belief propagation (XJBP) decoding algorithm is presented. The proposed algorithm

facilitates belief propagation by utilizing the specific constituent codes that exist in

the factor graph, which results in an express journey (XJ) for belief propagation in

134

each decoding iteration. In addition, this XJBP decoder employs a round-trip mes-

sage passing scheduling method for the increased efficiency. The proposed method

simplifies min-sum (MS) BP decoder by 40.6%. Along with the round-trip schedul-

ing, the XJBP algorithm reduces the computational complexity of MS BP decoding

by 90.4%; this enables an energy-efficient hardware implementation of BP decoding

in practice.

As a co-design part for XJBP algorithm, the corresponding hardware architecture

is set up to practice XJBP algorithm. The feasibility and efficiency are studied in

scheduling problem first. By using different strategies of scheduling algorithm, it is

shown that with constrained hardware resource, the proposed scheduling strategies

save up to 40% decoding latency. With the proposed static scheduling strategy,

the practical memory access problem is identified. Furthermore, the memory access

problem is solved by the introduction of distributed memory architecture. The final

results shows the proposed XJBP hardware implementation can achieve 3X power

efficiency improvement without any performance loss.

9.2 Future Work

Although polar codes received numerous attentions and gained considerable suc-

cess since it is invented, there are still many opportunities and challenges for further

exploration and research to adopt polar codes in practice. The future works to

achieve this objective are listed below.

First, polar codes achieve the channel capacity with very large code sizes, however

large-size polar codes decoders is constrained by the limitation of hardware resources.

To date, works on concatenated polar codes show that concatenated shorter polar

codes are able to outperform a long polar code in terms of error correction perfor-

mance. Future effort will be paid on energy efficient decoders which uses the special

135

property of concatenated polar codes.

Second, the simplifications presented in this dissertation for polar codes are based

on constituent codes, however, which depend on the distributions of frozen bits in

the coding structure. While the selections of positions of frozen bits are determined

by the channel models, future work will be spent on a more flexible decoder for polar

codes.

Third, although in terms of error correction capability, LSC decoders outperform

SC and BP based decoders, LSC decoders consume too much hardware resource

to be competitive at resource-limited scenarios. Different from SC decoder, which

has theoretical bottle neck of limited search space, BP decoder has the potential

to achieve the comparable performance as the LSC decoder. Future investigation

will be given on the variances of BP decoding algorithm to improve error correction

performance of BP decoders.

136

REFERENCES

[1] Marvin K Simon and Mohamed-Slim Alouini. Digital communication over fading

channels, volume 95. John Wiley & Sons, 2005.

[2] Claude Elwood Shannon. A mathematical theory of communication. ACM

SIGMOBILE Mobile Computing and Communications Review, 5(1):3–55, 2001.

[3] Todd K Moon. Error correction coding. Mathematical Methods and Algorithms.

Jhon Wiley and Son, 2005.

[4] Claude Berrou and Alain Glavieux. Near optimum error correcting coding and

decoding: Turbo-codes. Communications, IEEE Transactions on, 44(10):1261–

1271, 1996.

[5] Robert G Gallager. Low-density parity-check codes. Information Theory, IRE

Transactions on, 8(1):21–28, 1962.

[6] C Nerrou, Alain Glavieux, and Punya Thitimajshima. Near Shannon limit

error-correcting coding and decoding: Turbo-Codes (1). In Proc. IEEE Int.

Conf. Commun, pages 1064–1070, 1993.

[7] David JC MacKay and Radford M Neal. Near Shannon limit performance of

low density parity check codes. Electronics letters, 32(18):1645–1646, 1996.

[8] Thomas J Richardson, M Amin Shokrollahi, and Rüdiger L Urbanke. Design

of capacity-approaching irregular low-density parity-check codes. Information

Theory, IEEE Transactions on, 47(2):619–637, 2001.

[9] Erdal Arikan. Channel polarization: A method for constructing capacity-

achieving codes for symmetric binary-input memoryless channels. Information

Theory, IEEE Transactions on, 55(7):3051–3073, 2009.

137

[10] A Eslami and H Pishro-Nik. On bit error rate performance of polar codes in

finite regime. In Communication, Control, and Computing (Allerton), 2010 48th

Annual Allerton Conference on, pages 188–194. IEEE, 2010.

[11] Jing Guo, Minghai Qin, Albert Guillen i Fabregas, and Paul H Siegel. Enhanced

belief propagation decoding of polar codes through concatenation. In Informa-

tion Theory (ISIT), 2014 IEEE International Symposium on, pages 2987–2991.

IEEE, 2014.

[12] Kai Niu and Kai Chen. CRC-aided decoding of polar codes. Communications

Letters, IEEE, 16(10):1668–1671, 2012.

[13] Irina Tal and Alexander Vardy. How to construct polar codes. Information

Theory, IEEE Transactions on, 59(10):6562–6582, 2013.

[14] Ido Tal and Alexander Vardy. List decoding of polar codes. Information Theory,

IEEE Transactions on, 61(5):2213–2226, 2015.

[15] Amin Alamdar-Yazdi and Frank R Kschischang. A simplified successive-

cancellation decoder for polar codes. IEEE communications letters, 15(12):1378–

1380, 2011.

[16] K Niu and K Chen. Stack decoding of polar codes. Electronics letters,

48(12):695–697, 2012.

[17] Kai Chen, Kai Niu, and Jiaru Lin. Improved successive cancellation decoding of

polar codes. Communications, IEEE Transactions on, 61(8):3100–3107, 2013.

[18] Ryuhei Mori and Toshiyuki Tanaka. Performance of polar codes with the con-

struction using density evolution. Communications Letters, IEEE, 13(7):519–

521, 2009.

138

[19] Satish Babu Korada, Eren Şaşoğlu, and Rüdiger Urbanke. Polar codes: Charac-

terization of exponent, bounds, and constructions. Information Theory, IEEE

Transactions on, 56(12):6253–6264, 2010.

[20] Nadine Hussami, Satish Babu Korada, and Rüdiger Urbanke. Performance of

polar codes for channel and source coding. In Information Theory, 2009. ISIT

2009. IEEE International Symposium on, pages 1488–1492. IEEE, 2009.

[21] Ying Wang and Krishna R Narayanan. Concatenations of polar codes with

outer BCH codes and convolutional codes. In Communication, Control, and

Computing (Allerton), 2014 52nd Annual Allerton Conference on, pages 813–

819. IEEE, 2014.

[22] Eran Hof and Shlomo Shamai. Secrecy-achieving polar-coding. In 2010 IEEE

Information Theory Workshop, 2010.

[23] O Ozan Koyluoglu and Hesham El Gamal. Polar coding for secure transmission

and key agreement. Information Forensics and Security, IEEE Transactions on,

7(5):1472–1483, 2012.

[24] Dong-Min Shin, Seung-Chan Lim, and Kyeongcheol Yang. Mapping Selection

and Code Construction for 2ˆ m-ary Polar-Coded Modulation. Communications

Letters, IEEE, 16(6):905–908, 2012.

[25] Naveen Goela, Satish Babu Korada, and Michael Gastpar. On LP decoding of

polar codes. In Information Theory Workshop (ITW), 2010 IEEE, pages 1–5.

IEEE, 2010.

[26] Emmanuel Abbe and Emre Telatar. MAC polar codes and matroids. In In-

formation Theory and Applications Workshop (ITA), 2010, pages 1–8. IEEE,

2010.

139

[27] Erdal Arıkan. Systematic polar coding. IEEE Commun. Lett, 15(8):860–862,

2011.

[28] Bin Li, Hui Shen, and David Tse. An adaptive successive cancellation list

decoder for polar codes with cyclic redundancy check. Communications Letters,

IEEE, 16(12):2044–2047, 2012.

[29] Bo Yuan and Keshab K Parhi. Low-latency successive-cancellation polar decoder

architectures using 2-bit decoding. Circuits and Systems I: Regular Papers,

IEEE Transactions on, 61(4):1241–1254, 2014.

[30] Gabi Sarkis, Pascal Giard, Alexander Vardy, Claude Thibeault, and Warren J

Gross. Fast polar decoders: Algorithm and implementation. Selected Areas in

Communications, IEEE Journal on, 32(5):946–957, 2014.

[31] Alptekin Pamuk. An FPGA implementation architecture for decoding of polar

codes. In Wireless Communication Systems (ISWCS), 2011 8th International

Symposium on, pages 437–441. IEEE, 2011.

[32] Bo Yuan and Keshab K Parhi. Architecture optimizations for BP polar decoders.

In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International

Conference on, pages 2654–2658. IEEE, 2013.

[33] Bo Yuan and K.K. Parhi. Early Stopping Criteria for Energy-Efficient Low-

Latency Belief-Propagation Polar Code Decoders. Signal Processing, IEEE

Transactions on, 62(24):6496–6506, Dec 2014.

[34] Yingxian Zhang, Qingshuang Zhang, Xiaofei Pan, Zhan Ye, and Chao Gong. A

simplified belief propagation decoder for polar codes. In Wireless Symposium

(IWS), 2014 IEEE International, pages 1–4. IEEE, 2014.

140

[35] Youn Sung Park, Yaoyu Tao, Shuanghong Sun, and Zhengya Zhang. A 4.68

Gb/s belief propagation polar decoder with bit-splitting register file. In VLSI

Circuits Digest of Technical Papers, 2014 Symposium on, pages 1–2. IEEE, 2014.

[36] Ramtin Pedarsani, S Hamed Hassani, Ido Tal, and Emre Telatar. On the con-

struction of polar codes. In Information Theory Proceedings (ISIT), 2011 IEEE

International Symposium on, pages 11–15. IEEE, 2011.

[37] Erdal Arıkan et al. A performance comparison of polar codes and reed-muller

codes. IEEE Commun. Lett, 12(6):447–449, 2008.

[38] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge

University Press, 2008.

[39] Camille Leroux, Ido Tal, Alexander Vardy, and Warren J Gross. Hardware

architectures for successive cancellation decoding of polar codes. In Acoustics,

Speech and Signal Processing (ICASSP), 2011 IEEE International Conference

on, pages 1665–1668. IEEE, 2011.

[40] Camille Leroux, Alexandre J Raymond, Gabi Sarkis, and Warren J Gross. A

semi-parallel successive-cancellation decoder for polar codes. Signal Processing,

IEEE Transactions on, 61(2):289–299, 2013.

[41] Anadi Mishra, Alexandre J Raymond, Luca Gaetano Amaru, Gabi Sarkis,

Camille Leroux, Pascal Meinerzhagen, Andreas Burg, and Warren J Gross. A

successive cancellation decoder ASIC for a 1024-bit polar code in 180nm CMOS.

In Solid State Circuits Conference (A-SSCC), 2012 IEEE Asian, pages 205–208.

IEEE, 2012.

[42] Chuan Zhang, Bo Yuan, and Keshab K Parhi. Reduced-latency sc polar decoder

architectures. In Communications (ICC), 2012 IEEE International Conference

141

on, pages 3471–3475. IEEE, 2012.

[43] Tiben Che, Jingwei Xu, and Gwan Choi. TC: Throughput Centric Successive

Cancellation Decoder Hardware Implementation for Polar Codes. arXiv preprint

arXiv:1504.06247, 2015.

[44] Alexios Balatsoukas-Stimming, Alexandre J Raymond, Warren J Gross, and

Andreas Burg. Hardware architecture for list successive cancellation decoding

of polar codes. Circuits and Systems II: Express Briefs, IEEE Transactions on,

61(8):609–613, 2014.

[45] Jun Lin and Zhiyuan Yan. An efficient list decoder architecture for polar

codes. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

23(11):2508–2518, 2015.

[46] Chuan Zhang, Xiaohu You, and Jin Sha. Hardware architecture for list succes-

sive cancellation polar decoder. In Circuits and Systems (ISCAS), 2014 IEEE

International Symposium on, pages 209–212. IEEE, 2014.

[47] Bo Yuan and Keshab K Parhi. Low-latency successive-cancellation list decoders

for polar codes with multibit decision. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 23(10):2268–2280, 2015.

[48] Tiben Che, Jingwei Xu, and Gwan Choi. Overlapped List Successive Cancel-

lation Approach for Hardware Efficient Polar Code Decoder. arXiv preprint

arXiv:1511.00577, 2015.

[49] Chenghui Zhang and Keshab Parhi. Low-latency sequential and overlapped

architectures for successive cancellation polar decoder. Signal Processing, IEEE

Transactions on, 61(10):2429–2441, 2013.

142

[50] Kiran K Gunnam, Gwan S Choi, Mark B Yeary, and Mohammed Atiquzzaman.

VLSI architectures for layered decoding for irregular LDPC codes of WiMax.

In Communications, 2007. ICC’07. IEEE International Conference on, pages

4542–4547. IEEE, 2007.

[51] Chenrong Xiong, Jun Lin, and Zhiyuan Yan. Symbol-based successive cancel-

lation list decoder for polar codes. In Signal Processing Systems (SiPS), 2014

IEEE Workshop on, pages 1–6. IEEE, 2014.

[52] Gabi Sarkis, Pascal Giard, Alexander Vardy, Claude Thibeault, and Warren J

Gross. Unrolled Polar Decoders, Part II: Fast List Decoders. arXiv preprint

arXiv:1505.01466, 2015.

[53] Chuan Zhang, Zhongfeng Wang, Xiaohu You, and Bo Yuan. Efficient adaptive

list successive cancellation decoder for polar codes. In Signals, Systems and

Computers, 2014 48th Asilomar Conference on, pages 126–130. IEEE, 2014.

[54] J. Xu, T. Che, and G. Choi. XJ-BP: Express Journey Belief Propagation De-

coding for Polar Codes. In 2015 IEEE Global Communications Conference

(GLOBECOM), pages 1–6, Dec 2015.

[55] Michael R Garey, David S. Johnson, and Larry Stockmeyer. Some simplified

NP-complete graph problems. Theoretical computer science, 1(3):237–267, 1976.

[56] Jürgen Teich. Digitale Hardware/Software-Systeme: Synthese und Optimierung.

Springer-Verlag, 2013.

[57] IEEE 802.16 Working Group et al. IEEE standard for local and metropolitan

area networks. part 16: Air interface for fixed broadband wireless access systems.

IEEE Std, 802:16–2004, 2004.

143

[58] Brian P Crow, Indra Widjaja, Jeong Geun Kim, and Prescott T Sakai.

IEEE 802.11 wireless local area networks. Communications Magazine, IEEE,

35(9):116–126, 1997.

[59] Frank R Kschischang, Brendan J Frey, and Hans-Andrea Loeliger. Factor graphs

and the sum-product algorithm. Information Theory, IEEE Transactions on,

47(2):498–519, 2001.

[60] Andrew J Blanksby and Chris J Howland. A 690-mW 1-Gb/s 1024-b, rate-1/2

low-density parity-check code decoder. Solid-State Circuits, IEEE Journal of,

37(3):404–412, 2002.

[61] Weihuang Wang, Euncheol Kim, Kiran K Gunnam, and Gwan S Choi. Low-

Power VLSI Design of LDPC Decoder Using Dynamic Voltage and Frequency

Scaling for Additive White Gaussian Noise Channels. Journal of Low Power

Electronics, 5(3):303–312, 2009.

[62] Tinoosh Mohsenin, Houshmand Shirani-mehr, and Bevan M Baas. LDPC

decoder with an adaptive wordwidth datapath for energy and BER co-

optimization. VLSI Design, 2013:7, 2013.

[63] Tong Lin, Kwen-Siong Chong, Joseph S Chang, and Bah-Hwee Gwee. An ultra-

low power asynchronous-logic in-situ self-adaptive system for wireless sensor

networks. Solid-State Circuits, IEEE Journal of, 48(2):573–586, 2013.

[64] Jens Spars and Steve Furber. Principles Asynchronous Circuit Design. Springer,

2002.

[65] Ehsan Rohani, Jingwei Xu, Tiben Che, Mosaddequr Rahman, Gwan Choi, and

Mi Lu. Asynchronous baseband processor design for cooperative mimo satellite

144

communication. In Circuits and Systems (MWSCAS), 2014 IEEE 57th Inter-

national Midwest Symposium on, pages 833–836. IEEE, 2014.

[66] Naoya Onizawa, Vincent C Gaudet, and Takahiro Hanyu. Low-energy asyn-

chronous interleaver for clockless fully parallel LDPC decoding. Circuits and

Systems I: Regular Papers, IEEE Transactions on, 58(8):1933–1943, 2011.

[67] Jingwei Xu, Tiben Che, Ehsan Rohani, and Gwan Choi. Asynchronous design

for precision-scaleable energy-efficient LDPC decoder. In Signals, Systems and

Computers, 2014 48th Asilomar Conference on, pages 136–140. IEEE, 2014.

[68] Fan Zhang. LDPC Codes over Large Alphabets and Their Applications to Com-

pressed Sensing and Flash Memory. PhD thesis, Texas A&M University, 2010.

[69] David L Donoho. Compressed sensing. Information Theory, IEEE Transactions

on, 52(4):1289–1306, 2006.

[70] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty

principles: Exact signal reconstruction from highly incomplete frequency infor-

mation. Information Theory, IEEE Transactions on, 52(2):489–509, 2006.

[71] Zhi Tian and Georgios B Giannakis. Compressed sensing for wideband cognitive

radios. In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE

International Conference on, volume 4, pages IV–1357. IEEE, 2007.

[72] Youngchun Kim, Wenjuan Guo, B Vikrham Gowreesunker, Nan Sun, and

Ahmed H Tewfik. Multi-channel sparse data conversion with a single analog-to-

digital converter. Emerging and Selected Topics in Circuits and Systems, IEEE

Journal on, 2(3):470–481, 2012.

[73] Xi Chen, Ehab Ahmed Sobhy, Zhuizhuan Yu, Sebastian Hoyos, Jose Silva-

Martinez, Samuel Palermo, and Brian M Sadler. A sub-nyquist rate compressive

145

sensing data acquisition front-end. Emerging and Selected Topics in Circuits and

Systems, IEEE Journal on, 2(3):542–551, 2012.

[74] Jingwei Xu, Ehsan Rohani, Mosaddequr Rahman, and Gwan Choi. Signal recon-

struction processor design for compressive sensing. In Circuits and Systems (IS-

CAS), 2014 IEEE International Symposium on, pages 2539–2542. IEEE, 2014.

[75] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for com-

pressed sensing. Applied and Computational Harmonic Analysis, 27(3):265–274,

2009.

[76] Thomas Blumensath and Mike E Davies. Normalized iterative hard threshold-

ing: Guaranteed stability and performance. Selected Topics in Signal Processing,

IEEE Journal of, 4(2):298–309, 2010.

[77] Zhuizhuan Yu, Sebastian Hoyos, and Brian M Sadler. Mixed-signal parallel com-

pressed sensing and reception for cognitive radio. In Acoustics, Speech and Sig-

nal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages

3861–3864. IEEE, 2008.

[78] Marco F Duarte and Yonina C Eldar. Structured compressed sensing: From

theory to applications. Signal Processing, IEEE Transactions on, 59(9):4053–

4085, 2011.

[79] Jia Meng, Wotao Yin, Husheng Li, Ekram Hossain, and Zhu Han. Collaborative

spectrum sensing from sparse observations in cognitive radio networks. Selected

Areas in Communications, IEEE Journal on, 29(2):327–337, 2011.

[80] Deanna Needell and Joel A Tropp. CoSaMP: Iterative signal recovery from in-

complete and inaccurate samples. Applied and Computational Harmonic Anal-

ysis, 26(3):301–321, 2009.

146

[81] David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing algo-

rithms for compressed sensing. Proceedings of the National Academy of Sciences,

106(45):18914–18919, 2009.

[82] Pankaj Bhagawat, Rajballav Dash, and Gwan Choi. Array like runtime re-

configurable MIMO detectors for 802.11 n WLAN: a design case study. In

Proceedings of the 2009 Asia and South Pacific Design Automation Conference,

pages 751–756. IEEE Press, 2009.

[83] Jingwei Xu and Gwan Choi. Compressive sensing and reception for MIMO-

OFDM based cognitive radio. In Computing, Networking and Communications

(ICNC), 2015 International Conference on, pages 884–888. IEEE, 2015.

147

