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ABSTRACT

The ability to quickly and cheaply localize radiation sources is incredibly impor-

tant in the national security field. The ever increasing amount of intercontinental

shipping makes cargo containers a likely vector for the transfer of prohibited ma-

terial. Current methodology for detection of neutron sources suffers from size and

expense limitations. The single pixel neutron camera offers a simple design that is

inexpensive to implement allowing for an increase in detection points. The com-

pressive sensing framework provides fast and accurate localization of sources among

surrounding shielded material. Additionally, this design frees the detector from vol-

ume restrictions allowing for increased detection efficiency. This makes finding weak

sources more likely. Finally, the focus is shifted from detector to collimator design,

which is generally simpler and has fewer restrictions.

Using MCNP numerical simulations, various source geometries were imaged and

localized. The collimator featured a simple, multiplex type design that allows taking

measurements at each individual pixel location. The ability of a compressive sensing

based device was proven to achieve the objectives outlined above. Additionally, the

simulations of the design show that sources can be localized using ∼ 5% sampling

rate. This means fast and accurate identification of sources even in heavily shielded

containers. Single pixel neutron detection devices are shown to be ideal for cheap

and durable course spatial detection.
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1. INTRODUCTION: NEUTRON IMAGING AND COMPRESSIVE SENSING

Source localization within large, shielded volumes is a problem of great importance

in the nuclear security field. Over 90% of shipping is currently being accomplished

via cargo containers[1]. The containers offer a large volume within which dangerous

or illegal materials can be hidden[1]. The difficulty in detecting this material comes

from the fact that other items in the container can be positioned to shield targets

from detection. This leads to an increased threat for transfer of undesirable materials.

Neutron imaging is ideal to resolve this problem because interrogation techniques

are designed to identify the inner structure of some target and neutrons typically in-

teract well with the materials of interest in nuclear security. Current systems can be

extremely fragile and expensive. They have limits on the neutron energies to which

they are sensitive. Additionally, the fine temporal and spatial resolution of some

modern digital systems may be unnecessary in situations where only the position of

the material needs to be identified.

The single pixel compressive sensing methodology has been developed for exactly this

scenario. It allows for a single detector to build a 2D image from a series of samples.

This will reduce the dependence on expensive detector arrays and can allow for more

flexible detection of various neutron energies. The second part is especially important

because it allows for better classifications of the material.

1.1 Neutron Imaging

The process of imaging neutrons has significant benefits and a long history. Neu-

trons interact with the nuclei making them complementary to x-ray based imaging.
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The neutron particle has a neutral charge meaning it is not affected by electrical

fields, thus making its presence difficult to detect directly. The same property allows

it to penetrate further into material. This being the case, a nuclear reaction must

be induced giving off products that can be measured. A long standing method for

accomplishing this was film, which had a metallic layer, that converted neutrons to

a detectable form of radiation[2]. Typical materials found in more modern detectors

include Boron-10, Gadolinium, Lithium-6, and other strong absorbers[2]. The basic

imaging system is laid out below.

Figure 1.1: Typical setup for neutron imaging system[3]

The source puts out a stream of neutrons, which may have some distribution in en-

ergy and direction. Since detectors are generally tuned to detect a specific energy

range and the angular distribution will add blur, the neutrons must be collimated.

2



The collimator simply rejects all the undesirable neutrons, allowing a stream per-

pendicular to the target object. The neutrons then pass through the object being

imaged, interacting through scattering or absorption reactions. The detected image

is given as a shadow of the neutrons with only the neutrons able to make it through

being counted.

An alternative case is when the target and source are one and the same. In this

case the neutrons are simply collimated and detected allowing for the source to be

localized. This is useful when a neutron source is surrounded by shielding material

and the goal is to identify its location.

State of the art methods for imaging neutrons involve CCD cameras, imaging plates,

silicon flat panels, and pixel detectors[2]. These methods possess high spatial resolu-

tion but have difficulty detecting high-energy neutrons. The detection areas are on

the order of 100 cm2 so these methods are not ideal for large scale imaging without

significant cost[2]. As neutron energy increases, the detection volume experiences

limitations on how much it can be shrunk. This is primarily because neutral parti-

cles will travel further prior to interacting. The very high-energy neutrons needed

for some methods need extremely large volumes to be detected.

Neutron imaging can be broken down into two categories: passive and active interro-

gation. Passive interrogation means that detection is focused on the neutrons given

of by the target. This is the method used for detecting radioactive sources which

emit neutron particles. Active interrogation is performed by transmitting a neutron

flux through the target and measuring the shielding properties. This is a good way

to measure density differences and to check the hydrogen content of the target. Ac-
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tive interrogation also gives the ability to select neuron energy, which determines the

interaction cross-sections.

These cross-sections will determine the type of interactions that occur within the

target material and therefore will decide which characteristics are displayed. For ex-

ample, fissile material can have a higher probability of interaction at lower energies

but the higher energy neutrons have a higher fission neutron yield. Also hydrogen

rich materials will have a high likelihood of scattering meaning that items surrounded

by hydrogen can be difficult to image. These characteristics are problem specific and

can be tweaked to obtain the desired information.

Neutron detection systems typically have three measures of quality. These measures

are spatial resolution, time resolution, and image quality[2]. The spatial resolution is

related to how detailed an individual image can be. The time resolution determines

how quickly an image can be obtained. The image quality is a description of the signal

to noise ratio. The compressive sensing methodology will allow the time resolution

to be sacrificed for spatial resolution and image quality. This is primarily useful for

allowing a simple neutron detector with no spatial resolution to be able to construct

a 2D image by taking a series of samples. As the number of samples increases, the

image quality and available spatial resolution also increase. The increase in sampling

time lowers the time resolution of the detector.

1.2 Compressive Sensing

In recent years there has been significant interest in the compressed sensing field[4].

This relatively new field allows for sampling at rates lower than the Shannon-Nyquist

rate of two times the bandwidth[4]. This means that a data set of N elements can be
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restored from K < N samples. The ability to restore data with fewer samples is due

to the exploitation of structure. The Shannon-Nyquist theorem does not assume that

the data has any structure therefore the limit is a theoretical maximum[4]. Since

most data does have structure, that structure can be exploited in order to reduce

the sampling rate.

The primary structure that is exploited by compressed sensing is sparsity in some

basis[4]. This means that the data can be represented using a basis that has fewer

degrees of freedom than the original basis. The sparsity structure is used to create

operators and reconstruction algorithms. These algorithms allow for the recovery

of sparse data from an underdetermined system. Solving an optimization problem,

whose goal is to minimize the solution in a norm while minimizing complexity, typi-

cally does this.

The other piece of the data reconstruction is the sampling method. The sampling

must be incoherent with the sparsity basis. For this reason, random sampling is com-

monly used due its incoherent nature. Sampling is achieved by randomly mapping

the basis to obtain the sample elements. With these sample values and the random

map the signal can be reconstructed.

The basis to create a single pixel neutron camera is obtained from the work per-

formed by Duarte et al. The members of the digital signals processing group at Rice

university created a single pixel light camera using lens components, a digital micro-

mirror device (DMD), a photodiode, and an analog to digital converter (ADC)[5].

One lens focuses the scene onto the DMD, which then allows for random linear maps

of the scene to be captured by the photodiode via the second lens[5]. The ADC
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then converts the voltage sensed by the photodiode to a digital signal. This pro-

cess produces one sample and is repeated for different random maps on the DMD,

generating a vector of voltage values. The scene is then reconstructed using Total

Variation (TV) minimization via the l1magic software suite[5].

1.3 New Work

In order to improve current detection methods, compressive sensing techniques can

be applied to neutron imaging platforms. The improvements lie in effectively utiliz-

ing large detection areas. The image producing neutrons are collimated into a beam

that then hits the detector array. The neutrons incident on the detection surface

produce a single integrated value. This result has no spatial dependence regardless

of the surface dimensions. This will lead to blur in the image reducing the spatial

resolution.

An alternative approach is to collect a random map of neutron incident on the detec-

tion surface. Although this also yields a single integrated value, as multiple random

samples are collected an image can be reconstructed. The random maps are con-

trolled by the collimator passing and blocking neutrons in spatial coordinates. The

resolution of this image will depend solely on the collimator dimensions and the sam-

pling time will depend on source strength coupled with image complexity.

This approach allows for simple and inexpensive detectors to be used for identifying

materials inside a volume. The ability to use larger detectors means greater efficiency

and less noise. This becomes important when imaging heavily shielded targets since

very few neutrons will penetrate so it is important to capture as many as possi-

ble. Passive systems can scan both living and inanimate targets in order to identify
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radioactive sources. Active systems can be used to find non-neutron emitting but

still hazardous items in inanimate targets. The methodology is versatile and eas-

ily adapted to multiple uses because it primarily deals with the collimator design.

Detection is especially effective if it is needed to quickly identify neutron emitters

within simple geometries containing limited hydrogen material.
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2. THEORY

Image reconstruction in the single pixel camera is accomplished by solving a variant

of the l1 minimization problem. This takes the form of minimizing the gradient of

the pixels while constraining the solution by the inner products of the image and a

random map. The reason l1 minimization works is due to the shape of the norms.

The lp norms have the following form:

‖x‖p =

(
N∑
i=1

xpi

)1/p

. (2.1)

It is important to note that for p < 1 the above definition does not satisfy the

triangle inequality, which is one of the requirements for a norm[6]. Also, the norm

given when p = 0 is defined as the number of nonzero elements in the vector x. On

the unit circle the norms for the various p values form the geometric shapes depicted

in Figure 2.1.

Figure 2.1: Various lp norms shown in R2
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For lp norms, as p increases the error in estimating some value becomes spread out

among the coefficients[6]. This is because the intersection of a line with the shape

will give an estimate, whose minimum distance from the actual value becomes larger

with p and will fall between the axes. This makes the estimated coefficients sparse

for the l1 norm but not for the higher p norms[6]. The way the estimates fall on the

norms is graphically shown in Figure 2.2.

Figure 2.2: Estimation of variables (x1, x2) in R2 using l1 and l2 norms

The line A is able to provide an estimate in l1 that is sparse in the two coefficients

x1 and x2. This is due to the anisotropic nature of the l1 norm. Conversely, the l2

norm more evenly distributes the estimate between the two coefficients. This lack of

sparsity is why the l2 norm and higher p norms are not suited for reconstruction.

With this logic, the l0 norm allows for the sparsest possible reconstruction of data.

Unfortunately, l0 minimization problems are np hard so l1 minimization is the next

best choice. The above figure shows that the l1 norm will provide sparse solutions

and a good approximation of the l0 norm. With the satisfaction of some properties

with regard to the problem, it can be shown that l0 = l1 with a high degree of
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probability.

2.1 Compressive Sensing Theory

The compressive sensing framework differs from a regular camera in that instead of

measuring pixels the camera measures a series of inner products between the scene

and some test function[5]. The inner product in this case is the sum of an element-

wise multiplication of two vectors. The image, which is located in RN space, is

reconstructed using K measurements where K < N . This is possible because the

image structure can be exploited. A common structure type in the case of images is

sparsity, meaning that pixel values can be represented with some m < N coefficients.

This is the basis for image compression. The test functions are random maps since

the random basis is incoherent with most fixed basis to a high degree of probability[7].

The image reconstruction problem is presented as a matrix A operating on some

image x to give a set of measurements b that have lower dimensionality than the

original. This can be written as,

Ax = b. (2.2)

In order to guarantee that l1 minimization will yield recovery of the desired set of

coefficients the vector x must have certain properties. These properties describe the

behavior of the system Ax and prove that a unique solution exists, this solution is

the sparsest, and the l1 solution is the equivalent of the l0 solution.

Sparsity and incoherent sampling are the two properties that guarantee these results.

Still this result is not applicable to all A matrices or all m-sparse x vectors[8]. The

applicability of these guarantees depends on the support of x as well as its sign se-
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quence. It has been shown that if x has a fixed support perfect recovery via l1 can

be achieved for an “overwhelming majority” of sign sequences[8].

2.1.1 Sparsity

Sparsity plays a key role in ability to reconstruct a compressed image. It is impor-

tant to represent the image in the sparsest manner possible. The number of non-zero

coefficents is directly related to the number of samples needed for recovery[8].

Since the image is likely sparse in some basis, the image vector x is decomposed into

a series of coefficients and orthonormal vectors. An example of the sparsifying basis

are wavelets. The wavelet coefficients are sparse for images with many of the values

being close to zero. This being the case they can be discarded with little effect to

reconstruction quality. The expansion is as follows:

x =
N∑
i=1

αiψi, (2.3)

where ψi is a single orthonormal vector and αi =< x, ψi >. The α coefficients can be

described as m-sparse meaning there are m non-zero values. The operator < ·, · >

represents the standard dot product.

The basis vectors are combined to from the sparsifying matrix, Ψ. This matrix is

used to further decompose the problem to:

A′α = b, (2.4)

where A′ = ΦΨ.
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The Φ matrix is the sampling methodology for this design and is described in the

sampling section. The end result is a sparse representation of the image using a series

of coefficients that are then found through the solution of an optimization problem.

2.1.2 Incoherent Sampling

The camera design employed for neutron imaging is a multiplex type. The standard

measurement style for these types of cameras is a raster scan[5]. This means that

each pixel is sampled at a time with all the other collimator flaps shut. In this case

the φm is a delta function. The raster scan time is equal to the detection time mul-

tiplied by the number of pixels. Compressive sensing handles this a little differently.

The sampling basis needs to be incoherent with the sparsity basis in order to recon-

struct the image. Coherence is measured in the following way.

µ(Φ,Ψ) =
√
n max

1≤i,j≤n
|< φi, ψj >| (2.5)

The value for coherence is shown as µ which is calculated as a function of the total

number of pixels n and the inner product between the columns of the sampling and

sparsifying basis.

It has been shown by Candes et al. that the number of samples required for recon-

struction and the mutual coherence of the sampling and sparsifying basis has the

following relationship.[8]

k ≥ O(µ2(Φ,Ψ)m log(n)) (2.6)

The number of samples required for reconstruction k is dependent on the mutual
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coherence µ, number of non-zero elements m, and the total number of elements n.

When this relationship is satisfied, the vector x is recovered by l1 minimization to

high probability.

Compressive sensing sampling sets φm to a random map of 0’s and 1’s. This map is

achieved through the flap positions, where closed flaps correspond to a 0 and open

flaps correspond to a 1. The sampling time for compressive sensing is the detection

time multiplied by m, which is a number of samples much smaller than the pixel

count. Mathematically this is shown in the following formulation:

b[m] = 〈φm, x〉. (2.7)

The combination of all the random maps build the sampling matrix, Φ. The fact that

φm is a random map yields two positive properties. The measurements are robust

meaning the loss of a single measurement will not significantly affect image quality[5].

The addition of measurements will progressively improve the reconstruction[5].

2.1.3 Convex Optimization

In mathematics, optimization problems are formulated to solve a minimization (or

maximization) of a function under some constraints. The constraints can also be

descriped as a series of functions, which define the region where the problem is

feasible. This is shown as,

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, · · · ,m.
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The function f0 is called the objective function. This function and all the constraint

functions, fi, map the n dimensional vector x from Rn to R. The value of f0 evaluated

at some solution x = {x1, · · · , xn} is known as the objective value. The constraint

functions are bounded by a corresponding constant, bi. The values for each element

of x can be bounded or unrestricted through the use of the constraint functions. The

overall goal is to find an x that satisfies the constraints and minimizes the objective.

The various classes of optimization problems are defined based on the form of the

objective and constraint functions[9]. For convex optimization, the functions, fi(x)

for i = 0, · · · ,m must satisfy

fi(αx + βy) ≤ αf(x) + βf(y). (2.8)

The vectors x,y are contained in Rn while α, β are scalars such that α + β = 1 and

they are both nonnegative.

It is important to understand that in order for optimization problems to guarantee a

solution certain conditions must be met. These conditions, called the Karush Kuhn

Tucker (KKT) conditions, are assumed to be met. Additionally, the problems that

are being solved are assumed to have feasible solutions. These assumptions are valid

since this class of problems has been show to be feasible under the conditions required

by this design[10].

2.1.3.1 Total Variation Minimization

A subclass of convex optimization problems, this technique minimizes a discrete

gradient in a 2D matrix making it useful for image reconstruction[10].
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Mathematically, the total variation is described as:

TV(x) :=
∑
ij

√
(Dh;ijx)2 + (Dv;ijx)2 =

∑
ij

‖Dijx‖2, (2.9)

where the gradient is given as:

Dh;ijx =


xi+1,j − xij, i < n

0, i = n

, Dv;ijx =


xi,j+1 − xij, j < n

0, j = n

.

The minimization problem used for restoring the image data attempts to find the

smallest possible variation subject to the l2 norm of the difference between the esti-

mate and the observed data being less than some prescribed amount. This is shown

as:

min TV(x) subject to ‖Ax− b‖2 ≤ ε. (2.10)

The A matrix is a linear map from the actual image x to the vector of observations, b.

The error ε is the maximum allowed deviation between the solution iterations. This

methodology is ideal for the imaging case because it takes into account the variation

in two dimensions. Since images are two-dimensional signals they can be accurately

represented in this problem.

This problem can be reformulated as a second-order cone program (SOCP) and

therefore can be solved using standard interior point methods[10]. In l1magic the

TV problems are solved by implementing a type of interior point method called the

log-barrier algorithm.
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Interior point methods are able to solve problems of the following form[9]

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m

Ax = b

where the fi for i = 0, · · · ,m are convex and twice differentiable. The matrix A

must have a rank equal to the number of rows[9].

The log-barrier formulation transforms this problem by satisfying the fi constraints

through a penalty function.

minimize f0(x) +
m∑
i=1

I(fi(x))

subject to Ax = b

The penalty function I has the following values for some constraint value.

I(u) =


0, u ≤ 0

∞, u > 0

For the log-barrier method, I(u) = (−1/τ) log(−u) is the commonly used approx-

imation for the penalty function[9]. This function satisfies the desired constraint

values and maintains the convexity of the problem. Now lets look at how the f0 and

fi functions are formulated.
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The standard TV2 problem re-written in SOCP form has the following structure:

min
z
〈c0, z〉 subject to A0z = b

fi(z) ≤ 0, i = 1 . . . n. (2.11)

Each constraint, fi, can be in one of two forms: linear, fi(z) = 〈ci, z〉 + di and

second-order conic, fi(z) = 1
2

(‖Aiz‖22 − (〈ci, z〉+ di)
2).

Applying the general form to the problem at hand yields,

min
x,t

∑
ij

tij subject to ‖Dij‖2 ≤ tij i, j = 1 . . . n

‖Ax− b‖2 ≤ ε. (2.12)

The constraints for this problem can be rewritten by squaring both sides and sub-

tracting the right hand side. This yields two constraint types:

ftij =
1

2
(‖Dij‖22 − t2ij) ≤ 0 i, j = 1 . . . n

fε =
1

2
(‖Ax− b‖22 − ε2) ≤ 0.

Equation 2.12 is transformed into a set of unconstrained minimization problems

that are solved through Newtons method[10]. Newtons method finds the direction

of steepest decent for a quadratic norm and travels that path to find the optimal

solution[9].
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This is shown as:

min
x,t

∑
ij

tij +
1

τκ

∑
i

−log(−f) (2.13)

In Eq. (2.13) the variable τ has the following property, τκ > τκ−1. This parameter

also sets the accuracy of the estimation[9]. The inequality constraints are taken care

of through a penalty function, which becomes infinite as the constraints are met or

exceeded[10]. This can be clearly seen since as f approaches 0 the log(0) → ∞.

As the iteration count, κ, increases the solution to Eq. (2.13), tκ, approaches the

solution to Eq. (2.12), t∗[10].

Each subproblem is solved using a few iterations of Newtons method with good

accuracy and each following subproblem uses the solution to the previous problem

as a starting point[10].

2.2 Error Analysis

The error analysis goal was to compare the number of samples taken to the quality

of the reconstruction. The samples are random maps so it is possible for an image

to get worse if the sample is a poor mapping of the space. Eventually, as the sample

size increases the reconstruction error will drop.

In order to determine reconstruction quality, the mean squared error was used. This

took the l2 norm of the difference between the original image x and the reconstruction

x̂.

ε =
‖x− x̂‖2
‖x‖2

=

(∑N
i=1(xi − x̂i)2

)1/2
(∑N

i=1 x
2
i

)1/2 (2.14)

The error ε has the form of exponential decay as more samples are added. At some
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number of samples less than or equal to the number of pixels in the image the error

is zero.

The initial drop in error is large and than the error plateaus at some low level. This

large drop will usually signal that most of the image is reconstructed properly.
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3. CAMERA DESIGN

The ability to convert the single pixel theory to a real world device required the res-

olution of several engineering challenges. The source of the neutrons determines the

material and detector requirements. The neutrons will be emitted at some energy.

If the interrogation type is active than the designer can optimize the system to work

with the neutrons that will provide desired object penetration. Conversely, a passive

interrogation may have to deal with a wider range of energies requiring a different

setup. For this process the system must be tuned to detect specific target materials.

The source type also impacts the make up of the collimator. The collimation ma-

terial must have high absorption to scattering cross-section ratio for neutrons. For

lower energy neutrons materials like boron work, but for fast neutrons high-density

materials provide the best attenuation. The collimator itself needs a way to provide

spatially selective attenuation so that the random maps of neutrons can be detected.

This was accomplished through a flap structure that can be expanded to provide

shielding while maintaining spatial resolution. If the particle count is very low, colli-

mator channels should be filled with a gas that has low interaction probability with

neutrons so that they would not be deflected away from the detector.

3.1 Source and Problem Geometry

The source of neutrons in an imaging problem will typically determine much of the

setup required. The design was tested with two source types: a 0.75 MeV isotropic

source with various geometries and a 14 MeV plane source emitting neutron directly

at the detection area. The various source configurations are shown in the table below.

The 0.75 MeV source is indicative of typical fission/source neutron energies, which

are in the 1 MeV range[11]. The geometries for the these sources were a Texas A&M
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Case Geometry W × L×H (cm) Radius (cm) Energy (MeV)

1 Texas A&M Logo 100× 20× 60 N/A 0.75
2a Sphere N/A 1 0.75
2b Sphere N/A 3 0.75
3 Plane 256× 0× 256 N/A 14.0

Table 3.1: Source configuration for various test cases

University logo surrounded by air and a spherical source in a cylinder of water. The

logo was meant to test the imaging ability of the camera while the sphere was meant

to check the ability to localize sources within shielding.

The 14.0 MeV source is a perpendicular plane that is used to penetrate the imaging

target and determine composition. This is a type of active interrogation that uses

highly penetrating neutrons to investigate the contents of a shipping container.

3.1.1 Case 1

The first problem looked at a Texas A&M logo shaped source made of air that isotrop-

ically emitted neutrons. The material was chosen to be air to avoid self-shielding and

criticality considerations. The neutrons were emitted at 0.75 MeV. The collimator

was modeled using borated polyethylene with a 32 × 32 grid of square channels all

filled with ordinary air. This geometry shown in Figure 3.1 is meant to prove the

ability of this detection scheme to image the source shape.

This logo is able to provide a complex source shape. This is important because the

sources can be arranged in complex geometries. The geometric properties can be

telling of the intent or danger associated with them. For instance, the likelihood of

criticality can be analyzed by looking at the neutron energies emitted and the spatial
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Figure 3.1: Texas A&M logo shaped, 0.75 MeV neutron source (a) front view (b)
top down view

arrangement. This type of analysis goes hand in hand with isotopic composition

studies.

3.1.2 Case 2a

Part one of the second problem looked at a spherical source made of air in a cylin-

drical drum of water. Water is a strong moderator of neutrons and therefore will

make it more difficult to determine the source shape and location. The neutrons

were again emitted isotropically at 0.75 MeV. The collimator remained unchanged

from the previous problem. This problem is meant to show how detection is affected

by strong scattering. Figure 3.2 show this below.
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Figure 3.2: Smaller cylinder of H2O with a spherical, 0.75 MeV neutron source (a)
front view (b) top down view

The ability to localize a source surrounded by shielding material is important for find-

ing hidden sources being transported past checkpoints. Once radiation is detected,

this capability will help identify exactly where it is coming from.

3.1.3 Case 2b

Part two of the second problem increased the size of the cylinder and placed the

source in a more shielded location. The increase in moderation made source detec-

tion more difficult. The source energies and collimator remained unchanged from the

previous problem. This problem is meant to stress detection capabilities with regard

to shielding. The setup is shown below in Figure 3.3.

Increasing shielding is important in order to gauge the affect it has on detection time

and the ability to detect the source at all. This section allows the detector to be
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pushed to the limit.

Figure 3.3: Larger cylinder of H2O with a spherical, 0.75 MeV neutron source (a)
front view (b) top down view

3.1.4 Case 3

The third problem looked at a plane source that emitted 14 MeV neutrons (typical

in active interrogation) into the collimation direction. The neutrons pass through a

shipping ULD loaded with a variety of shielding, radioactive, and explosive material.

The collimator was modeled using densalloy (a high density shielding material) with

a 64 × 64 grid of square channels all filled with ordinary air. The change in the

collimator was due to the higher energy of neutrons. This problem geometry was
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inspired by work being performed at Idaho National Laboratory (INL) and Common-

wealth Science and Industrial Research Organisation (CSIRO) with regard to active

interrogation[12][13]. This setup shown in the figure below is meant to demonstrate

detection under active interrogation.

Figure 3.4: ULD containing radioactive and explosive material with various shields
(a) front view (b) top down view

This test showed the density plots generated through the active interrogation of var-

ious material types. The highly scattering materials are extremely difficult to image

while the organic materials provide good contrast. This will give an approximation

of real world performance.

3.2 Collimator Materials and Geometry

The material make up of the collimator is important to provided the necessary shield-

ing properties. The information on the configuration of the collimator for each prob-
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lem is shown in table format below.

Case Structure Fill gas Channel count

1 Borated Poly Air 32× 32
2a Borated Poly Air 32× 32
2b Borated Poly Air 32× 32
3 Densalloy Air 64× 64

Table 3.2: Collimator configuration for various test cases

The number of channels is increased for problem 3 since there are more objects to re-

solve. The slower neutrons are stopped using boron while the faster ones are shielded

with tungsten. The fill gas used was air. An additional set of trials was run with

helium fill gas, which is predicted to yield 4% more neutrons reaching the source

per meter of collimator length[14]. This is relative to air that causes scattering and

creates undesirable interactions.

The material selection is based on the cross-section data relative to neutron energy.

The goal is to find the highest absorption cross-section for the energy of neutrons

that the source emits. This will allow all neutrons that are not within the direction

cone aimed at the collimator channels to be absorbed. If the neutrons scatter off the

walls they can distort the image and lead to inaccurate results. Also, the absorption

is important to reduce the background noise that exists when neutrons are detected

in closed channels. Too much of this noise will require more samples and will interfere

with the reconstruction algorithm. The plots generated using ENDF data are shown

below.
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Figure 3.5: Boron-10 total and scattering cross-sections for neutron interactions

As can be seen, the boron-10 cross-section increases with decreasing energy making

it a good collimating material for neutrons below 1 MeV.

Figure 3.6: Tungsten-184 total and scattering cross-sections for neutron interactions
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The main element of densalloy is tungsten. This cross-section provides better at-

tenuation at 14 MeV than boron making it the material of choice for the very high

energy neutrons.

The design of the Rice single pixel camera hinges on the ability of the DMD chip to

reflect random subsets of the light from a scene on to a photodiode. Since neutrons

cannot easily be reflected in this manner a special collimator design was created to

replace the DMD.

The collimator would have absorbing flaps that can be opened or shut to create

the same random subsets. When shut, the flaps would prevent neutrons from being

detected and therefore contributing to the total reading. When open the neutrons

would pass through freely and enter the detection space. This mimics the DMD

mirror passing along light or deflecting it.

Figure 3.7: Dimensions for the first collimator

Figure 3.7 above and Figure 3.8 below show the composition and the dimensions of
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the first collimator. This is a longer collimator with fewer channels. This design is

used for cases 1, 2a, and 2b.

Figure 3.8: Materials for the first collimator

Figure 3.9 and Figure 3.10 below show the designs of the second collimator. This is

a shorter collimator but has a much larger face with four times as many channels.

This was done for better resolution. This design is used for case 3.
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Figure 3.9: Dimensions for the second collimator

Figure 3.10: Materials for the second collimator
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3.3 MCNP Simulations

Since the detection apparatus was not physically constructed, the various components

had to be simulated computationally. The source, collimator, and detector portions

were created in Monte Carlo N-Particle (MCNP) code. Three source problems were

created to simulate different detection scenarios.

Case Width (cm) Length (cm) Height (cm) Fill

1 330 920 330 Air
2a 330 920 330 Air
2b 330 920 330 Air
3 660 620 660 Air

Table 3.3: Universe dimensions for the different cases

The problem only modeled neutron transport. This is because other particles can be

shielded out and the health physics aspect was not something that this experiment

encompassed. This simplification therefore should not alter real world results.

The detector was simulated with a void. This can be assumed to be accurate since

the detector volume can be expanded until all neutrons that enter are captured with-

out interfering with the design. The creation of a small void was done to reduce the

problem size and reduce run time.

These problems were run once with all the collimator flaps simulated open. This

yielded an FMESH (this is an MCNP mesh tally object) file that gave the neutron

fluxes at the detector region across a grid of channels and wall areas. The grid data

was parsed and uploaded into Matlab for manipulation. The code simulated detector
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operations by creating an array of 2D random maps that are multiplied element-wise

into the image and then summed to give a single sample value. The sample vector

is generated at a preselected subsampling rate and the result is then restored using

l1magic TV minimization solvers.

The noise was taken to be zero so that the data behind the closed flap was not

counted. This perhaps gave better results than can be expected in real life but the

flap thickness can be increased to provide this kind of shielding. Also, moderation

can be applied to the neutrons so that only desired energies are allowed to enter the

collimator thereby reducing noise. These are all design problems that can be looked

at prior to construction.
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4. RESULTS

The problems were run by taking the MCNP FMESH tally results and focusing on

the values that penetrate the collimator channels. These images were sampled using

various rates to observe the reconstruction quality and the l2 error associated with

the reconstruction. In many cases the images themselves are much more indicative

of the effectiveness of the reconstruction. The l2 error measures a sum of differences

squared, which can be deceiving. The example of this is an image that has some

localized values of 1 and 0’s everywhere else. The reconstructions will display the

position of the 1’s but some of there pixels will be contained in the range [0, 1].

This will lead to some high value for l2 error. Yet if the interest is localization the

reconstruction is able to determine this even with high levels of error. For this reason

a combination of l2 error and the images themselves are used to judge the quality of

reconstruction.

4.1 Case 1

The first case looks at a large source that fills the detection window. The Texas

A&M University logo has a complicated shape making this more of an imaging case

vs simple localization. Due to the size of the source there is nothing to localize if

anything, it is the boundaries between regions that are being identified.

This test will show that complex images can be reconstructed and that this can be

done with much fewer samples than raster scan. In short, this is the initial feasibility

study for the design.
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Figure 4.1: The MCNP detector results of the Texas A&M University logo, which
are used for sampling.

Figure 4.1 above shows the reference model of the Texas A&M University logo. This

is what all the reconstructions are compared to for visual and error analysis. The

image has clear delineations between the logo and the background.

Figure 4.2 shows how the various sampling rates performed. Elements of the source

structure are visible at as low as 20% while the whole shape is clearly visible at 25%.

The improvement continues showing a near perfect reconstruction at 50%. This

shows that the collimator design works in rebuilding images and that the sampling

rate is much lower than the full pixel count.
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Figure 4.3: The normalized l2 reconstruction error against sampling percentage.

Figure 4.3 show the l2 error as the sample size increases. The plot shows that error

does not fully drop until sample size is greater the 70%. This displays the property

discussed above where the l2 error remains high but the reconstruction quality is

satisfactory. In many cases these levels of l2 error are not even visible.

The fluctuations in the plot are regions where additional samples increased the sum

of the differences squared. This can happen due to the averaging across boundaries.

When the images are viewed though, the reconstructions continually improve with

sample rate.
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4.2 Case 2a

Case 2a involves locating a spherical source located at position (44, 10) in a medium

sized cylinder of water. This cylinder is about the size of a common household

trashcan. This provides a moderate amount of scattering due to the hydrogen and

increases detection difficulty. This is a pure localization problem.

Figure 4.4 show the image being sampled. The is a very simple geometry with small

region of pixels with values of larger than zero. This image is very sparse and the

goal is to reconstruct it with a small sampling rate.

Figure 4.4: The MCNP detector results of the spherical source in cylindrical water
container case 2a, which are used for sampling.
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Figure 4.5 proves that reconstruction with a low sample count is possible. The source

is localized with only 5% of the pixel count. Additionally, even though adding

more samples improves the error the localization is unchanged. This means that

concentrated sources can be accurately identified with a low sample count. This is

one of the main uses for this technology.

Figure 4.6: The normalized l2 reconstruction error against sampling percentage.

The l2 error has a sharp drop off as additional samples are taken. At about 10% the

image is perfectly reconstructed. The error in this problem is not the main attribute

of interest. Since most of the pixels in the image are 0’s, the reconstructions tend to
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introduce some low level noise at low sample rates. This significantly affects error

while having no affect on localization.

4.2.1 Case 2a with Helium Fill Gas

The various cases were run with helium fill gas instead of air. Case 2 results show

the most meaningful deviation with the change in fill gas. This corresponds to the

previous discussion, which links low particle count to the need for fill gas.

Figure 4.7: The MCNP detector results of the spherical source in cylindrical water
container case 2a with helium fill gas, which are used for sampling.

Figure 4.7 shows the image that is detected when air is replaced with helium fill gas.

There is an increase in non-zero pixel count relative to Figure 4.4. Additionally, the

flux is asymmetric since the source is unevenly shielded. This characteristic cannot

be seen in the air filled image.
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Figure 4.8 describes the reconstruction quality with a change in sampling rate. At

about 5% the source is well reconstructed and localized. This is the same number of

samples as the air filled image. The localization of the source is worse because the

asymmetry makes the source appear to be shifted. This is expressed by a move to

the left in the helium images.

Figure 4.9: The helium fill gas normalized l2 reconstruction error against sampling
percentage.

Figure 4.9 shows that there is an increase in l2 error against the air filled example.

This is seen in the 5% and 10% reconstructions where the error is practically gone for
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air but is significant for helium. This is a result of the increased number of non-zero

pixels.

4.3 Case 2b

Case 2b is meant to further stress the system by increasing the cylindrical water

shielding. Now, the shield is approximately the size of an oil drum. The source

is placed along the centerline at (55, 70), which is the position providing maximum

shielding when viewed from both sides.

Figure 4.10 show the reference image. This is almost like sampling a delta function

since most of the pixel values are zero. This test will determine if identifying a

small subset of positive values is possible with a low sampling rate. The concern is

a situation where the random map misses the non-zero pixels for too many samples.

Figure 4.10: The MCNP detector results of the spherical source in cylindrical water
container case 2b, which are used for sampling.
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Although the reconstruction quality is slightly worse, Figure 4.11 shows that a sam-

pling rate of 3% is able to clearly localize the source. This is a very important result

because it covers the cases of course collimator channels, large distance from the

source, and heavier amounts of shielding. In all these cases the image will have most

of the pixels with no detection and a small subset with some signal.

Figure 4.12: The normalized l2 reconstruction error against sampling percentage.

The l2 error plot is very similar to case 2a. The values are higher at the beginning

because of the delta function like nature of the reference image. The error drops off

faster towards the end because the image is sparser than in the previous case.
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4.3.1 Case 2b with Helium Fill Gas

Case 2b has the lowest non-zero pixel count of all the tests run. This is primarily

because the source is surounded by a large amount of water. The fill gas ends up

having very little effect because there are so few particles that penetrate.

Figure 4.13: The MCNP detector results of the spherical source in cylindrical water
container case 2b with helium fill gas, which are used for sampling.

Figure 4.13 shows the image captured by the detector when air is replaced with

helium in the collimator channels. There are slightly more non-zero pixels than

shown in Figure 4.10.
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Figure 4.14 shows the reconstructions as the sampling rate is changed. At about

5% the source is well reconstructed and localized. This is slightly more samples

than the air filled image. Images with higher non-zero pixel counts generally take

more samples to reconstruct but in this case since the difference is relatively small

the likelihood is that more samples are required due to the random reconstruction

basis.

Figure 4.15: The helium fill gas normalized l2 reconstruction error against sampling
percentage.

Figure 4.15 shows that indeed there is an increase in l2 error against the air filled
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example. The concern is that particle count can be so low that some sources are not

detected at all. When dealing with very small incident particle counts a helium fill

gas should be considered.

4.4 Case 3

Case 3 takes a wide variety of shielding materials and places targets inside for active

interrogation. The source directs a perpendicular plane beam through the material

to be imaged. The desire is to observe the density variations that will be produced.

The ULD container will have some typical explosive materials and a sphere of

weapons grade plutonium. The goal is to distinguish the materials of interest within

their respective shields. Also, this problem will measure the ability to reconstruct

something with a more complicated geometry.

Figure 4.16: The MCNP detector results of the ULD test problem, which are used
for sampling.
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Figure 4.16 shows the reference image. The cylinderical tank with propane and

gasoline is clearly distinguishable. Also, the fertilizer is seen within its container.

All three materials have distinct colors meaning that densities can be estimated for

these portions of the image. Unfortunately, the flux penetrating the other regions

of interest is much lower due to shielding. The image is then viewed in log scale in

order to see if finer features can be identified.

Figure 4.17: The MCNP detector results of the ULD test problem in logarithmic
view, which are used for sampling.

Figure 4.17 is able to distinguish some materials in the shielded boxes. The weapons

grade plutonium sphere can be seen in the center box around the (-50,-50) position.

The contrast between the surrounding material is faint. Also, the TNT is barely

visible in the wooden box near the (30,60) position. The other materials are too

heavily shielded to be detected.
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Figures 4.18 and 4.19 show how the reconstructions progress as more samples are

increased. As sampling rate goes beyond 20%, the quality is near perfect. This

means that everything that was identifiable in the original image is visible in the

reconstruction. The log images are slightly less successful. The TNT or weapons

grade plutonium only become visible above the 40% sampling mark. This is due to

the large differential between the flux through the shielded box and the rest of the

ULD. The hope is to fix this by zooming the collimator once shielded volumes are

identified, The collimator can ’zoom’ in on that portion by shutting all the flaps that

are not pointing at the region of interest.

Figure 4.20: The normalized l2 reconstruction error against sampling percentage.
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Figure 4.20 shows the decay the l2 with increased sampling. The error decays

smoothly and is negligible around 30%. It seems that as the image complexity

increases the drop off in error is smoother and the visual reconstruction matches

the l2 plots better. Still it seems that to measure complicated images with decades

difference in results, the collimator needs many samples and problem regions require

refocusing and additional imaging.
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5. CONCLUSION AND FUTURE WORK

The testing of the compressive sensing based single pixel neutron detector has shown

that there are many benefits and applications to this sort of setup. This design is

simple and therefore can be implanted without expense. This becomes especially

pertinent when scaling this system for large portals and reproducing it in multiple

locations. Localization of the sources can be done quickly meaning that materials of

interest can be identified in large volumes so that further study can be performed.

Detector efficiency can be significantly increased since the detector volume is no

longer tied to image resolution. The overall shift for this type of product is away

from detector design and toward creative implementations of a collimator.

The goal of this project was to create an inexpensive and simple imaging system

for localizing neutron sources. The compressive sensing based single pixel neutron

detector accomplishes both of these goals. The design only requires a collimator

attachment and can function with any detector available. This is a technology that

is especially applicable to multiplexing systems since it will produce similar quality

results with much fewer samples. The simplicity of the design makes it easily re-

configurable to any situation. The collimator length can be adjusted, the material

composition can be modified, and the channel shape can changed all to meet design

needs. The general idea of allowing random maps of neutron streams has many pos-

sible implementations.

Localization of sources can be accomplished with remarkably few samples. As shown

in the results, sample rates of as low as 5% were able to identify the position of the
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source even with significant amounts of shielding. Although more complicated im-

ages require ever increasing sampling rates, this system can quickly give an estimate

location with some information regarding the source shape and surrounding shielding.

This approach has benefits for sources with low emission rates. If there are few par-

ticles to detect it becomes important to measure all the ones that enter the detector

area. Since in many cases the detector efficiency will be strongly affected by material

properties, the one parameter that can be changed to increase efficiency is detector

volume. Of course, increasing volume will reduce the resolution in a standard array

system. This is not the case in the single pixel setup since the collimator controls

resolution.

The design of a detector can be complicated by material and size considerations.

The amount of materials used in constructing a detector is much larger than those

used in the collimator. The neutron particle is opaque to many types of interactions

making it difficult to measure in a small detector volume. Additionally, nearby

detectors can detect off-angle neutrons creating blur. Focusing on the collimator

may allow for a solution to problems that required resolutions or energy ranges

which are difficult to measure with an array of detectors. For these reasons, moving

the design considerations toward the collimator can simplify the overall detection

system while increasing the useful range to additional problems.

5.1 Future Work

The ability to restore signals from a limited sample can be expanded into two new

areas: resolving particle energies and 3D reconstruction. The resolution of energies

is important in identifying the composition of the material being measured. Specific
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energies are keyed to certain materials so identifying the neutron energy spectrum

can be used to determine the material makeup. Another interesting area is 3D model

reconstruction. Multiple images can be used to estimate a higher dimensional model

through minimization. These areas will further the ability to interrogate volumes for

constituents of interest.

The ability to reconstruct energy distributions is problematic since detectors have a

difficult time differentiating between particle energies and since higher energy par-

ticles have a lower likelihood of being detected. This difficulty can be overcome by

resolving energies using the same principles from 2D reconstruction. A inner product

would be taken of the energy distribution and a random map supplying the samples

used to rebuild the full distribution. The random mapping can be accomplished by

placing shields that have designed material compositions and thickness, which block

select energies. Only a random set of energies would be allowed to pass, the sum

of which becomes the measurement. With the set of measurements and the random

map composed of shield combinations, the full distribution can be reconstructed.

This method has promise as long as the distribution is smooth and can be repre-

sented in a sparse basis.

The other possible expansion is to take the various measurements to build higher di-

mensional models. Compressive sensing has been used to rebuild a three-dimensional

model from two-dimensional projections using optimization algorithms. The method-

ology is different than what was used above. These problems use background-

subtracted silhouettes to solve multi-view estimation problems, which allow multiple

2D views of the same object to be reconstructed into a 3D model.
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This technology has many possible implementations and is very versatile in sense

that it is easily adaptable to many problem types. The design in this paper allows

for simple and yet affective interrogation. More sophisticated designs can be built

to optimize toward the properties being measured and the constraints imposed by

the problem. These designs and the advancements allowed through the field of

compressive sensing are greatly needed as demand for superior interrogation systems

increases in the future.
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APPENDIX A

SAMPLE MCNP SCRIPT

Cargo Container with collimator and shield

c ********************* BLOCK 1: CELL CARDS *****************************

c This is the collimator box

1 0 1 -2 3 -4 5 -6 fill=1 IMP:N=1 IMP:P,E,H=0

c Lattice

2 0 7 -8 9 -10 11 -12 u=1 fill=2 lat=1 IMP:N=1 IMP:P,E,H=0

c Hole

3 4 -0.000166 13 -14 15 -16 17 -18 u=2 IMP:N=1 IMP:P,E,H=0

4 20 -18.13 (-13:14:-15:16:-17:18) u=2 IMP:N=1 IMP:P,E,H=0

c This is the extra shielding

5 20 -18.13 19 -20 IMP:N=1 IMP:P,E,H=0 $ Borated Poly

c This is the Detector shield

6 20 -18.13 -21 IMP:N=1 IMP:P,E,H=0 $ Borated Poly

c This is the back shield

7 4 -0.000166 -22 IMP:N=1 IMP:P,E,H=0

c This is the front shield

8 4 -0.000166 -23 IMP:N=1 IMP:P,E,H=0

c This is the Detector

9 4 -0.000166 -24 IMP:N=1 IMP:P,E,H=0

c This is the detector void

10 0 -25 IMP:N=0 IMP:P,E,H=0

c This is the ULD

11 9 -2.6989 26 -27 IMP:N=1 IMP:P,E,H=0
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c This is the mix cylinder housing (steel)

12 8 -7.92 44 45 46 (-28:-29:-30) IMP:N=1 IMP:P,E,H=0

c This is the mix cylinder liquid (gasoline)

13 10 -0.6837 -47 (-44:-45:-46) IMP:N=1 IMP:P,E,H=0

c This is the mix cylinder gas (propane)

14 18 -0.00187939 47 (-44:-45:-46) IMP:N=1 IMP:P,E,H=0

c This is the large box (wood + wgpu)

15 7 -0.593 32 -31 IMP:N=1 IMP:P,E,H=0

16 6 -19.84 -32 IMP:N=1 IMP:P,E,H=0

c This is the small box 1 (wood + tnt)

17 7 -0.593 34 -33 IMP:N=1 IMP:P,E,H=0

18 12 -1.654 -34 IMP:N=1 IMP:P,E,H=0

c This is the small box 2 (steel + rdx)

19 8 -7.92 36 -35 IMP:N=1 IMP:P,E,H=0

20 13 -1.806 -36 IMP:N=1 IMP:P,E,H=0

c This is the small box 3 (pvc + nitro)

21 19 -1.406 38 -37 IMP:N=1 IMP:P,E,H=0

22 15 -1.13 -38 IMP:N=1 IMP:P,E,H=0

c This is the small box 4 (al + water + ammonium nitrate)

23 9 -2.6989 48 -39 IMP:N=1 IMP:P,E,H=0

24 5 -1 40 -48 IMP:N=1 IMP:P,E,H=0

25 17 -1.730 -40 IMP:N=1 IMP:P,E,H=0

c This is the medium box

26 8 -7.92 -41 IMP:N=1 IMP:P,E,H=0

c This is the fert cylinder

27 9 -2.6989 42 -43 IMP:N=1 IMP:P,E,H=0

28 11 -0.990 -42 IMP:N=1 IMP:P,E,H=0

62



c This is the surrounding region in the ULD

98 1 -0.001205 28 4I 33 35 3I 43 -26 IMP:N=1 IMP:P,E,H=0

c This is the surrounding region

99 1 -0.001205 20 27 -100 IMP:N=1 IMP:P,E,H=0

c This is the blackhole

100 0 100 IMP:N,P,E,H=0

c ********************* BLOCK 2: SURFACE CARDS *************************

c Outer Lattice

1 px -130

2 px 126

3 py 520

4 py 720

5 pz -130

6 pz 126

c Small box

7 px -2

8 px 2

9 py 520

10 py 720

11 pz -2

12 pz 2

c Hole

13 px -1

14 px 1

15 py 520

16 py 720
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17 pz -1

18 pz 1

c This is the collimator box 1

19 box -130 518 -130 256 0 0 0 212 0 0 0 256

c This is the collimator box 2

20 box -150 518 -150 296 0 0 0 212 0 0 0 296

c This is the detector shield

21 box -130 726 -130 256 0 0 0 4 0 0 0 256

c This is the back shield

22 box -130 720 -130 256 0 0 0 2 0 0 0 256

c This is the front shield

23 box -130 518 -130 256 0 0 0 2 0 0 0 256

c This is the detector

24 box -130 722 -130 256 0 0 0 2 0 0 0 256

c This is the absorption void

25 box -130 724 -130 256 0 0 0 2 0 0 0 256

c This is inner ULD

26 box -100 315 -90 200 0 0 0 160 0 0 0 180

c This is outer ULD

27 box -101 314 -91 202 0 0 0 162 0 0 0 182

c Gas/Liquid Cyl outer

28 rcc -70 395 30 40 0 25 30

29 sph -70 395 30 30

30 sph -30 395 55 30

c Gas/Liquid Cyl inner

44 rcc -70 395 30 40 0 25 29

45 sph -70 395 30 29

64



46 sph -30 395 55 29

47 box -100 315 0 100 0 0 0 160 0 0 0 45

c This is large box

31 box -100 355 -90 100 0 0 0 80 0 0 0 90

32 sph -50 395 -45 4

c This is small box 1

33 box 0 355 45 50 0 0 0 80 0 0 0 45

34 sph 25 395 67 5

c This is small box 2

35 box 0 355 0 50 0 0 0 80 0 0 0 45

36 sph 25 395 22 5

c This is small box 3

37 box 0 355 -45 50 0 0 0 80 0 0 0 45

38 sph 25 395 -23 5

c This is small box 4

39 box 0 355 -90 50 0 0 0 80 0 0 0 45

48 box 1 356 -89 48 0 0 0 78 0 0 0 43

40 sph 25 395 -68 5

c This is medium box

41 box 50 355 -90 50 0 0 0 80 0 0 0 90

c This is fert container

42 rcc 75 395 1 0 0 60 20

43 rcc 75 395 0 0 0 62 21

c This is the universe

100 box -330 200 -330 660 0 0 0 620 0 0 0 660

c ********************* BLOCK 3: DATA CARDS ****************************
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MODE N

PHYS:n 15.0 0.1

NPS 10e9

CUT:N j 0.01

c

c --- Building Materials

c Density = -0.001205

m1 & $ Air (C:-0.000124, N:-0.755268, O:-0.231781, Ar:-0.012827) [NIST]

6000.80c -0.000124 &

7014.80c -0.755268 &

8016.80c -0.231781 &

18040.80c -0.012827

m2 & $ Borated polyethylene

6000.80c -0.774645 &

1001.80c -0.125355 &

5010.80c -0.1

m3 & $ Boron carbide rho=2.52

5011.80c -0.782610 &

6000.80c -0.217390

m4 & $ Helium gas rho=0.000166

2004.80c -1

m5 & $ water rho=1

1001.80c 0.6665667 &

1002.80c 0.000100 &

8016.80c 0.3332063 &

8017.80c 0.000127

mt5 lwtr.60t
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m6 & $ WGPu, DOE 3013, rho = 19.84

94238.80c -0.000500 &

94239.80c -0.935000 &

94240.80c -0.060000 &

94241.80c -0.004000 &

94242.80c -0.000500

m7 & $ wood rho=0.593

1001.80c -0.057889 &

6012.42c -0.482667 &

8016.80c -0.459444

m8 & $ steel 316 rho=7.92

14000.42c -0.010 &

24000.42c -0.170 &

25055.80c -0.020 &

26000.42c -0.655 &

28000.42c -0.120 &

42000.42c -0.025

m9 & $ aluminum rho=2.6989

13027.80c -1

m10 & $ gasoline rho=0.6837

1001.80c -0.16 &

6012.42c -0.84

m11 & $ fertilizer rho=0.990

1001.80c -0.0000504 &

8016.80c -0.0007176 &

11023.80c -0.0087350 &

12000.62c -0.0002058 &
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16000.62c -0.0001590 &

17000.42c -0.4778000 &

19000.62c -0.5117000 &

20000.62c -0.0002758 &

35079.80c -0.0003303

m12 & $ tnt rho=1.654

1001.80c -0.022189 &

6012.42c -0.370160 &

7014.80c -0.185004 &

8016.80c -0.422648

m13 & $ rdx rho=1.806

1001.80c -0.027227 &

6012.42c -0.162222 &

7014.80c -0.378361 &

8016.80c -0.432190

m14 & $ hmx rho=1.902

1001.80c -0.027227 &

6012.42c -0.162222 &

7014.80c -0.378361 &

8016.80c -0.432190

m15 & $ nitro rho=1.13

1001.80c -0.022193 &

6012.42c -0.158671 &

7014.80c -0.185040 &

8016.80c -0.634096

m16 & $ petn rho=1.773

1001.80c -0.025506 &
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6012.42c -0.189961 &

7014.80c -0.177223 &

8016.80c -0.607310

m17 & $ ammonium nitrate rho=1.730

1001.80c -0.050370 &

7014.80c -0.349978 &

8016.80c -0.599652

m18 & $ propane rho=0.00187939

1001.80c -0.182855 &

6012.42c -0.817145

m19 & $ pvc rho=1.406

1001.80c -0.048382 &

6012.42c -0.384361 &

17000.42c -0.567257

m20 & $ densalloy rho=18.13

26000.42c 0.015 &

28000.42c 0.035 &

74000.21c 0.95

c

c --- rectangular plane source perpendicular to the y-axis.

c

SDEF POS=0 310 0 X=d1 Y=310 Z=d2 PAR=1 ERG=14

VEC=0 1 0 DIR=1

SI1 -130 126

SP1 0 1

SI2 -130 126

SP2 0 1

69



c

FMESH14:n GEOM=XYZ ORIGIN=-129 719 -129

IMESH= 125 IINTS= 127

JMESH= 721 JINTS= 1

KMESH= 125 KINTS= 127

FMESH24:n GEOM=XYZ ORIGIN=-129 517 -129

IMESH= 125 IINTS= 127

JMESH= 519 JINTS= 1

KMESH= 125 KINTS= 127

PRINT 128
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APPENDIX B

MATLAB RECONSTRUCTION SCRIPT

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This Script will allow for the simulation of single pixel imaging by

% creating the test functions, computing the inner product, and

% reconstructing the image

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

path(path, ’./Functions’);

path(path, ’./DTCWT’);

path(path, ’./Wave2D’);

filt = 0;

% Resize original image

tmp_mesh=det1./max(max(det1));

y2=tmp_mesh(1:2:127,1:2:127);

rest=tmp_mesh; rest(1:2:127,1:2:127)=0;

in1=-128:4:124; in2=-128:4:124;

figure;pcolor(in1, in2, y2); colormap(gray),axis image; caxis([0 1]); shading(’flat’)

figure;pcolor(in1, in2, log(y2)); colormap(gray),axis image; shading(’flat’)

% Generate the test functions using psuedorandom number generator with

% time seed and Mersenne Twister Number Generator

rng(’shuffle’, ’twister’);

w=64; l=64;

test_fun=round(double(rand(w,l,w*l)));

cnt1=1;

% Sampling percentage

samples = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7];

for subrate = samples

% Number of sample points

w=64; l=64;
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m=round(w*l*subrate);

% Create compression vector

y=squeeze(zeros(m,1));

% Set photodiode efficiency

n=1;

offset=0; %sum(sum(rest));

tmp=zeros(64,64);

for i=1:m

tmp=y2.*test_fun(:,:,i);

% Compute the inner product

y(i) = n*(sum(sum(tmp))+offset);

end

phi=zeros(l*w,m);

for k=1:m

z=1;

for i=1:w

for j=1:l

phi(k,z)=test_fun(i,j,k);

z=z+1;

end

end

end

phi=phi(1:m,:);

% Optimization parameters

epsilon = 0.01;

% Set initial solution and run TV minimizer

% Output is in column format, raster scan of reconstructed image

% Initial point: minimum energy

x0 = phi\y;

estIm = tvqc_logbarrier(x0, phi, [], y, epsilon,1e-4,2);
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% Reshape output; flip upside down

xtvqc = reshape(estIm,sqrt(w^2),sqrt(l^2));

xtvqc = flipud(xtvqc);

% Normalize output

xtvqc = (xtvqc-min(min(xtvqc)))/(max(max(xtvqc))-min(min(xtvqc)));

tmp_mesh2=xtvqc;

if filt

thresh=7e-2; stages=3;

tmp_mesh2=denC2D(tmp_mesh2,thresh,stages);

tmp_mesh2=(tmp_mesh2-min(min(tmp_mesh2)))/(max(max(tmp_mesh2))-min(min(tmp_mesh2)));

end

l2(cnt1) = sum(sum((y2-imrotate(tmp_mesh2,-90)).^2)).^.5/sum(sum((y2).^2)).^.5;

cnt1 = cnt1+1;

% Show reconstruction

name1 = sprintf(’p3_recons_%d.fig’, subrate);

name2 = sprintf(’p3_recons_log_%d.fig’, subrate);

name3 = sprintf(’p3_recons_%d.png’, subrate);

name4 = sprintf(’p3_recons_log_%d.png’, subrate);

h = pcolor(in1, in2, imrotate(tmp_mesh2,-90)),colormap(gray),axis image; shading(’flat’)

saveas(h, name1)

saveas(h, name3)

h = pcolor(in1, in2, log(imrotate(tmp_mesh2,-90))),colormap(gray),axis image; shading(’flat’)

saveas(h, name2)

saveas(h, name4)

end

% Show the L2 error

name1 = sprintf(’p3_recons_l2error.fig’);

name2 = sprintf(’p3_recons_l2error.png’);

figure; h= plot(samples, l2); xlabel(’Percent sampled’,’fontsize’,18); ylabel(’L_2 error’,’fontsize’,18)

saveas(h, name1)

saveas(h, name2)
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