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RESEARCH Open Access

Maternal diabetes and obesity influence
the fetal epigenome in a largely Hispanic
population
Heather E. Rizzo1, Elia N. Escaname2,3, Nicholas B. Alana1,3, Elizabeth Lavender2,3, Jonathan Gelfond3 ,
Roman Fernandez3, Matthew A. Hibbs1, Jonathan M. King1*, Nicholas R. Carr4 and Cynthia L. Blanco2,3

Abstract

Background: Obesity and diabetes mellitus are directly implicated in many adverse health consequences in adults
as well as in the offspring of obese and diabetic mothers. Hispanic Americans are particularly at risk for obesity,
diabetes, and end-stage renal disease. Maternal obesity and/or diabetes through prenatal programming may alter
the fetal epigenome increasing the risk of metabolic disease in their offspring. The aims of this study were to
determine if maternal obesity or diabetes mellitus during pregnancy results in a change in infant methylation of
CpG islands adjacent to targeted genes specific for obesity or diabetes disease pathways in a largely Hispanic
population.

Methods: Methylation levels in the cord blood of 69 newborns were determined using the Illumina Infinium
MethylationEPIC BeadChip. Over 850,000 different probe sites were analyzed to determine whether maternal
obesity and/or diabetes mellitus directly attributed to differential methylation; epigenome-wide and regional
analyses were performed for significant CpG sites.

Results: Following quality control, agranular leukocyte samples from 69 newborns (23 normal term (NT), 14
diabetes (DM), 23 obese (OB), 9 DM/OB) were analyzed for over 850,000 different probe sites. Contrasts between
the NT, DM, OB, and DM/OB were considered. After correction for multiple testing, 15 CpGs showed differential
methylation from the NT, associated with 10 differentially methylated genes between the diabetic and non-diabetic
subgroups, CCDC110, KALRN, PAG1, GNRH1, SLC2A9, CSRP2BP, HIVEP1, RALGDS, DHX37, and SCNN1D. The effects of
diabetes were partly mediated by the altered methylation of HOOK2, LCE3C, and TMEM63B. The effects of obesity
were partly mediated by the differential methylation of LTF and DUSP22.

Conclusions: The presented data highlights the associated altered methylation patterns potentially mediated by
maternal diabetes and/or obesity. Larger studies are warranted to investigate the role of both the identified
differentially methylated loci and the effects on newborn body composition and future health risk factors for
metabolic disease. Additional future consideration should be targeted to the role of Hispanic inheritance. Potential
future targeting of transgenerational propagation and developmental programming may reduce population obesity
and diabetes risk.
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Background
Childhood obesity and diabetes mellitus are an increas-
ing epidemic in the USA [1]. In 2015, an estimated 30.3
million people in the USA had diabetes mellitus (DM).
Approximately 12.7 million children and adolescents
ages 2 to 19 are obese, and it is estimated that > 25% of
children will be classified as overweight or obese by kin-
dergarten [2]. Hispanic Americans are particularly at risk
for obesity, diabetes, and end-stage renal disease [3]. The
risk of obesity is 35% higher in the Hispanic population,
with obese Hispanic and non-Hispanic black adolescent
females among those at highest risk of developing type
II diabetes [1, 4]. Concomitant obesity and diabetes dur-
ing pregnancy are also associated with increased risk of
metabolic syndrome in the offspring [5]. In South Texas
alone, 29% of mothers have a pre-pregnancy BMI of 30
or above, and 4.8% of mothers go on to develop gesta-
tional diabetes (GDM) [6]. This study seeks to investi-
gate whether previously identified and unidentified
associations occur between maternal diabetes, obesity,
and altered newborn methylation in an already high-risk
Hispanic population of South Texas.
The combination of obesity and gestational diabetes

mellitus is estimated to complicate up to 9.2% of preg-
nancies, with the highest risks for gestational diabetes
affecting ethnic and racial minority women [7]. Expos-
ure to a diabetic intrauterine environment during
pregnancy is associated with an increase in dyslipid-
emia, subclinical vascular inflammation, and endothe-
lial dysfunction processes in the offspring, all of which
are linked with development of cardiovascular disease
later in life [8]. Maternal obesity and gestational dia-
betes have additionally been linked to increased risk of
asthma, poorer cognitive performance, mental health
disorders, neurodevelopmental disorders including
cerebral palsy, and immune and infectious disease-
related outcomes [9].
Increasing evidence has shown that transgenerational

non-genetic inheritance can occur through in utero ex-
posure of the developing fetus to the maternal environ-
ment or through either the male or female germline
[10]. The concept of “gestational programming” is asso-
ciated with alterations to the epigenome (non-genomic)
as opposed to alteration in the genomic DNA sequence
[11–13]. Significant hypermethylation of DNA may also
occur globally in the placenta of mothers with GDM as
well as the cord and neonatal blood of infants born to
mothers with GDM, particularly genes associated with
metabolic disease [14–17]. This hypermethylation may
repress transcription leading to dysregulation of meta-
bolic pathways. Epigenetic mechanisms may contribute
to altered beta cell mass and beta cell failure, similarly as
observed in diabetes [18]. Pregnancy complications with
fetal exposure to glucocorticoids, either from maternal

stress or synthetic glucocorticoids, can also lead to pro-
longed alteration of hypothalamic-pituitary-adrenal
function [19, 20].
While pre-pregnancy maternal obesity is associated

with adverse offspring outcomes at birth and later in life,
the role of pre-pregnancy BMI is less clear [21]. The
Pregnancy and Childhood Epigenetics (PACE) Consor-
tium found a causal intrauterine effect of maternal BMI
on newborn methylation at just 8/86 sites in a recent
meta-analysis, attributing the identified robust associa-
tions between maternal adiposity and variations in DNA
methylation to genetic or lifestyle factors [22]. Addition-
ally, abnormal maternal nutrition, diet, folic acid, and
vitamin deficiency can induce epigenetic alterations
including DNA methylation, histone modifications,
chromatin remodeling, and/or regulatory feedback by
microRNAs, all of which have the ability to modulate
gene expression and promote a metabolic syndrome
phenotype [23–28].
We conducted epigenetic analysis via epigenome-

wide association studies (EWAS) and regional analysis
targeting genes associated with infant insulin signal-
ing, glucose metabolism, and free fatty acid pathways
in term infants delivered to mothers with normal
weight, obesity, and DM in a highly Hispanic popula-
tion. There are clear disparities in the risk of gesta-
tional diabetes by race and ethnicity, and small
population studies in high-risk ethnicities are lacking.
Our primary analyses focused on identifying areas of
significant methylation differences between diabetic
and non-diabetic Hispanic populations and obese and
non-obese Hispanic populations. Additional analyses
were also performed to determine whether the observed
mediation effects were related to diabetes alone, obesity
alone, or in combination.

Methods
Sample description
The study protocol was approved by the Institutional
Review Board at The University of Texas Health Science
Center, San Antonio (IRB# HSC 2016 0097H). Infants
were prospectively enrolled between the years of 2016–
2018. Limited neonatal data were available for extrapola-
tion and determination of an ideal sample size. Comple-
mentary enrollment in a body composition analysis with
the same inclusion/exclusion criteria occurred during
study completion. A priori power analysis was com-
pleted for body composition analysis enrolling competi-
tive patient enrollment in this cohort. Initial intention
was prospective enrollment of 10 patients from each tar-
geted population [29] but was expanded to 23 per arm
(69) given to variability within targeted populations as
well as to maximize efficiency of array utilization.
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Population
All babies ≥ 37 weeks gestational age and ≤ 48 h old who
were admitted to the newborn nursery at the University
Hospital in San Antonio, TX, and who were eligible for
inclusion were screened for recruitment. Inclusion cri-
teria for enrollment included infants with and without a
maternal history of diabetes mellitus (DM) and obesity
(OB). Maternal diabetes mellitus was defined as abnor-
mal glucose tolerance test during current pregnancy +/−
medical therapy to include insulin or other antidiabetic
agents or diagnosis of type I or type II diabetes prior to
current pregnancy. Maternal obesity was defined as
BMI ≥ 30. Exclusion criteria included infants with con-
genital anomalies, complex congenital heart disease, and
severe central nervous system disease (grade 4 intraven-
tricular hemorrhage; malformations). Infants requiring
supplemental oxygen or admission to the neonatal inten-
sive care unit for any reason were also excluded. Infants
of mothers with DM and/or OB were identified through
the electronic medical record. Eligible participants were
actively recruited after screening for inclusion/exclusion
criteria and confirmed willingness to participate. Written
informed consent was obtained from all participating
mothers prior to enrollment. Potential subjects were
contacted within 24 h of delivery with the cord blood
obtained upon delivery.

Blood collection, DNA extraction, and genome-wide
methylation assay
Whole cord blood samples of 3–5 mL were collected im-
mediately after birth. Blood samples were processed via
centrifugation with 4 mL CPT BD Vacutainer tubes
within 24 h to isolate and enriched for agranular leuko-
cytes. DNA extraction was performed using the DNeasy
Blood and Tissue Kit DNA kit (Qiagen). Isolated DNA
was treated with a bisulfite conversion and run on Illu-
mina MethylationEPIC BeadChip 850K array (UT Health
SA Genomics Core).

Statistical analysis
We calculated means and standard deviations (SD) for
all maternal and newborn characteristics to describe the
study population overall. We additionally examined ma-
ternal pre-pregnancy BMI, age at enrollment, gestational
diabetes status, and mode of delivery as potential con-
founders. Maternal covariates were added to all final
models if they were associated with any of the log-
transformed outcomes in linear regression models at p <
0.05.

Applied software
Quality control (QC) and all statistical analyses were
performed using the R version 3.5.2 statistical analysis
software, and the R-packages SWAN, missmethyl, minfi,

limma, IlluminaHumanMethylation450kanno.ilmn12.hg19,
IlluminaHumanMethylation450kmanifest, IlluminaHuman-
MethylationEPICmanifest, IlluminaHumanMethylationEPI-
Canno.ilm10b2.hg19, bumphunter, RColorBrewer,
matrixStats, minfiData, Gviz, DMRcate, and stringr.

Data preprocessing, QC, and filtering
Detection p values were calculated for all samples with
removal of samples below 0.05 from the data set. getQC
and plotQC were used to estimate quality of samples as
well. Subset-quantile within array normalization
(SWAN) was used to normalize the data taking into ac-
count the fact that the array (EPIC methylation bead
chip) contained two different types of probes. Additional
quality controls were completed after normalization: (1)
Detection p values were again used to remove any
probes which failed in one or more samples (7169
probes). (2) Additional probes on sex chromosomes
were removed to reduce sex-linked variation in methyla-
tion between the samples (18,975 probes). (3) Probes as-
sociated with single-nucleotide polymorphisms (SnP)
were removed using dropLociWithSnPs from the minfi
package (28,179 probes). (4) Probes known to be cross-
reactive within the methylation probe set were removed
(38,756 probes). After technical QC, a total of 773,012
sites and 69 individuals were in principle available for
analysis. All images and data were validated by Geno-
meStudio as a quality control measure.

Data transformation
After normalization, the data were processed to calculate
beta values (methylated probe intensity at that site, over
the total probe intensity of both the methylated and
unmethylated probes) and M values (log2 of the methyl-
ated probe intensity over the unmethylated probe inten-
sity). When performing statistical tests, M values were
utilized as beta values tend to have heteroscedasticity;
beta values were used for visualization in the figures and
plots [30].

Epigenome-wide association study
To find differentially methylated positions or probes,
several methods were employed. Differentially methyl-
ated probes were identified using lmfit and ebayes in R
[29]. Descriptors of either diabetic or non-diabetic, or
obese or non-obese, were used under lmfit to design a
linear fit to model the data. ebayes was then used to de-
termine significant methylation values between the
groups. Statistical significance for genome-wide associa-
tions was adjusted for multiple comparisons using a false
discovery rate (Benjamini-Hochberg correction method)
q < 0.05.
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Regional analyses
We examined the association of diabetes and/or obesity
with differentially methylated regions (DMRs) in the cord
blood using the R Bioconductor package bumphunter. In-
stead of employing a probe-wise approach, clusters of
probes in the array are identified using the function clus-
terMaker, and the bumphunter function is used to fit a
linear model accounting for the given sample variables to
each identified cluster of probes in the given length (1000
bp) to determine if a region has a significant change in
methylation compared with the control group. For our
analysis, 1000 permutations were performed [31].

Results
Descriptive statistics of the study population are shown
overall and stratified by maternal comorbidities in
Table 1. Mothers had a mean age of 29.3 (SD = 5.6) at
enrollment and a mean BMI of 29.5 (SD = 4.2). An over-
all Hispanic predominance in patient ethnicity was seen
across all groups. There were significant increases in age
and BMI for both the diabetic (DM) and obese-diabetic
(OB/DM) groups compared with the non-diabetic
healthy weight (NT). There was an increased rate of
cesarean section delivery for the obese (OB) and OB/
DM mothers. Birth weight, length, and occipital-frontal
circumference were similar between all groups.

Epigenome-wide association study
Unadjusted as well as following correction for maternal
age, pre-pregnancy BMI, and method of delivery, a total of
15 CpG sites showed significant differential methylation in
the diabetic subgroup (Fig. 1) with the top 10 CpG
mapped genes of CCDC110, KALRN, PAG1, GNRH1,
SLC2A9, CSRP2BP, HIVEP1, RALGDS, DHX37, and
SCNN1D highlighted in Table 2. An additional six

significant (adj. p value < 0.05) CpG sites were identified,
but lacked an associated gene (cg08242354, cg23184039,
cg00866179, cg17162208, cg24798727).
A similar EWAS on obesity revealed no further

epigenome-wide associated CpG sites (data not shown)
using a linear modeling approach as well as including
covariates (data not shown).

Regional analysis using bumphunter
In regional analyses, we identified three regions that met
p value < 0.05 for diabetes and three regions for obesity
(Table 3). A region of four CpG sites (cg06417478,
cg04657146, cg11738485, and cg23899408) is associated
with HOOK2, or Hook Microtubule Tethering Protein
2, and was significantly hypomethylated compared with
NT in the diabetic subgroup. Additionally, LCE3C
(cg09972436; Late Cornified Envelope 3C) and TMEM63B
(cg25069157; Transmembrane Protein 63B) were also
hypomethylated compared with NT. LTF (cg21787089,
cg01427108; Lactotransferrin) and DUSP22 (cg01516881,
cg26668828 (body); cg18110333, cg05064044 (1stExon; 5′
UTR); Dual Specificity Phosphatase 22) were also differen-
tially methylated with LTF hypermethylated and DUSP22
hypomethylated respectively compared with NT in the
obese subgroup.

Correlation analysis with infant outcome
CpG sites identified during EWAS were directly compared
with infantile demographic and body composition markers
for potential phenotypic association (Table 4). No genes or
cg IDs correlated with infantile birth weight. cg23184039
was associated with changes in birth length, frontal-
occipital circumference, and gestational age; however, this
CpG site is not associated with a gene identified. SLC2A9
and CSRP2BP correlated with gestational age.

Table 1 Maternal and infant demographic metrics

Non-diabetic healthy weight Diabetic healthy weight Non-diabetic obese Diabetic obese

Maternal agea 27.4 (6.3) 32.1 (5.5) 27.6 (5.0) 33.8 (5.4)

Maternal pre-pregnancy BMIa 23.82 (3.26) 26.24 (1.93) 35.31 (6.21) 34.58 (4.75)

Ethnicity (n)

Hispanic 16 10 22 9

Non-Hispanic white 3 1 0 0

African American 2 1 1 0

Other 2 2 0 0

Infant born to condition (n) 23 14 23 9

C-section (%) 17% 29% 30% 44%

Birth weight in gramsa 3464 (463) 3405 (348) 3764 (465) 3809 (474)

Gestational age at birtha 39.8 (1.1) 38.7 (0.8) 40.0 (1.0) 39.3 (1.5)

Birth length in centimetera 51.3 (2.4) 50.9 (1.8) 52.1 (2.4) 50.9 (1.8)

Frontal-occipital circumference in centimetera 34.5 (1.1) 34.4 (0.9) 35.1 (1.1) 35.2 (1.2)
aMean values (standard deviation)

Rizzo et al. Clinical Epigenetics           (2020) 12:34 Page 4 of 10



Fig. 1 Scatter plots showing the beta value of the top 10 significantly methylated probes found by comparison between diabetic and non-
diabetic groups using linear regression and empirical Bayes statistics for differential expression
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Discussion
In this study, we sought to characterize how the fetal epi-
genome could be altered by the maternal environment,
potentially predisposing the infant to long-term comor-
bidities of metabolic syndrome.
We identified multiple genes of interest through

EWAS or regional analysis with significant differential
methylation potentially caused by the presence of mater-
nal diabetes or obesity in a largely Hispanic population.
The genes identified from our population have not been
previously reported in existing literature as differentially
methylated in regard to maternal comorbidities during
pregnancy. Genes identified are often hypomethylated

when compared with the non-diabetic groups indicating
potential elevated expression patterns in the newborns
born to diabetic mothers, although we did not confirm
gene expression profiles.

Epigenome-wide association study
Epigenome-wide association study found 15 (p adj. <
0.05) significant probes in a comparison between the
diabetic and non-diabetic samples (Additional file 1); all
15 probes were hypomethylated compared with the non-
diabetic group. No significant probes were found in a
comparison between the NT and OB groups. Of the

Table 2 Top differentially methylated probes from a comparison of diabetic vs non-diabetic samples

Gene ID cg ID Gene name Function/pathway Associated
disorders/
diseases

Gene
location

Mean
difference
(M value)

Adjusted
p value

CCDC110 cg07221855 Coiled-coil domain-
containing protein 110

Body − 0.484995 0.000916

KALRN cg20807374 Kalirin Signaling receptor binding; promotes the
exchange of GDP by GTP; activates specific
Rho GTPase family members; regulates
neuronal shape, growth, and plasticity;
interacts with the huntingtin-associated pro-
tein 1

Huntington’s
disease,
coronary heart
disease

Body − 0.608775 0.002236

PAG1 cg01108434 Phosphoprotein
associated with
glycosphingolipid-
enriched microdomains

Type III transmembrane adaptor protein;
binds to tyrosine kinase csk protein;
regulation of T cell activation

5′UTR − 0.584836 0.002785

GNRH1 cg25710809 Progonadoliberin-1 Hormone receptor binding/activity; signaling
receptor activity; gonadotropin-releasing
hormone receptor pathway

Hypo-
gonadotropic
hypogonadism

TSS1500 − 0.511411 0.002785

SLC2A9 cg26210521 Solute carrier family 2,
facilitated glucose
transporter member 9

Glucose transporter 9 (GLUT9); located in
proximal tubules, reabsorption of nutrients,
water, and other into the blood and
excretion into the urine; reabsorbing and
excreting glucose

Renal
hypouricemia,
gout

Body − 0.519168 0.004015

CSRP2BP cg19354792 Cysteine-rich protein 2-
binding protein

Histone acetyltransferase activity; zinc finger
protein adapters, acetyltransferase domain

Cytochrome c
oxidase
deficiency

Body;
TSS1500

− 0.463411 0.004738

HIVEP1 cg14398337 Human immunodeficiency
virus type I enhancer
binding protein 1/zinc
finger protein 40

Transcription factor belonging, enhancer
elements of several viral promoters, binds to
a sequence motif, transcriptional regulation
of both viral and cellular genes

OCD, ADHD Body − 0.427399 0.006924

RALGDS cg10509965 RAL guanine nucleotide
dissociation stimulator

Guanyl-nucleotide exchange factor,
exchange of GDP and GTP in a G-protein;
enzyme regulator activity; G-protein coupled
receptor signaling pathway; MAPK cascade;
cell cycle

Body − 0.300234 0.018452

DHX37 cg04226314 ATP-dependent RNA
helicase DHX37 related

RNA helicase; ATP-dependent helicase activ-
ity; catalytic activity, acting on RNA; rRNA
processing, gene expression; DEAD box, em-
bryogenesis, spermatogenesis, and cellular
growth and division

Body − 0.504887 0.030713

SCNN1D cg12120973 Amiloride-sensitive
sodium channel subunit
delta

Ion channel; cation transport; regulation of
biological processes; sensory perception of
pain and taste; transport of glucose and
other sugars, bile salts and organic acids,
metal ions, and amine compounds

5′UTR;
1stExon;
Body

− 0.430032 0.034144
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probes found in the DM comparison, ten are known to
be associated with genes; the other five have no cur-
rently known gene association. A review of the genes as-
sociated with the significant probes found that several of
the genes were associated with diabetes and/or obesity.

The SLC2A9 gene produces GLUT-9, a transport pro-
tein which facilitates the transport of glucose, fructose,
and other sugars, and expression is specifically localized to
insulin-containing β cells regulating glucose-stimulated
insulin secretion [32]. In a study that looked at the levels

Table 3 Probes and genes associated with significantly differentially methylated regions found using bumphunter analysis for both
obese and diabetic comparisons

Gene ID cg ID Gene name Function/pathway Associated disorders/
diseases

Gene
location

Mean
difference
(M value)

P
value

Comparison

HOOK2 cg06417478,
cg04657146,
cg11738485,
cg23899408

Hook
Microtubule
Tethering
Protein 2

Positioning or formation of
aggresomes

Body − 0.7415667 0.001 Diabetic

LCE3C cg09972436 Late Cornified
Envelope 3C

Keratinization and developmental
biology

Psoriatic arthritis TSS1500 − 0.8573606 0.04 Diabetic

TMEM63B cg25069157 Transmembrane
Protein 63B

Osmosensitive calcium-permeable
cation channel

Body − 0.8412484 0.04 Diabetic

LTF cg21787089,
cg01427108

Lactotransferrin Regulation of iron homeostasis,
host defense against a broad
range of microbial infections, anti-
inflammatory activity, regulation of
cellular growth and differentiation
and protection against cancer de-
velopment and metastasis

Mastitis, kerato-
conjunctivitis sicca,
rheumatoid vasculitis,
Clostridium difficile col-
itis, dental caries

Body 0.6222828 0.016 Obese

DUSP22 cg01516881,
cg26668828

Dual Specificity
Phosphatase 22

Activates the Jnk signaling
pathway; dephosphorylates and
deactivates p38 and stress-
activated protein kinase/c-Jun N-
terminal kinase

Alk-negative
anaplastic large cell
lymphoma

Body − 0.5737223 0.029 Obese

DUSP22 cg18110333,
cg05064044

Dual Specificity
Phosphatase 22

Activates the Jnk signaling
pathway; dephosphorylates and
deactivates p38 and stress-
activated protein kinase/c-Jun N-
terminal kinase

Alk-negative
anaplastic large cell
lymphoma

1stExon;
5′UTR

− 0.5694813 0.03 Obese

Table 4 Correlation analysis with EWAS identified probes and infantile demographic

Gene ID cg ID Birth weight Birth length Gestational age Frontal-occipital circumference

CCDC110 cg07221855 0.0316 0.1342 0.216 0.2299

KALRN cg20807374 0.0379 0.1486 0.1914 0.1076

PAG1 cg01108434 − 0.144 0.065 0.1099 − 0.1295

GNRH1 cg25710809 − 0.0047 0.1698 0.2007 0.2128

SLC2A9 cg26210521 0.0372 0.2344 0.2397 0.0826

CSRP2BP cg19354792 − 0.0779 0.1156 0.2569 0.0694

HIVEP1 cg14398337 − 0.0216 0.0774 0.1003 0.0971

RALGDS cg10509965 0.0511 0.2327 0.1567 0.1666

DHX37 cg04226314 0.0675 0.1983 0.1781 0.1802

SCNN1D cg12120973 0.1393 0.2301 0.1719 0.1544

None cg23184039 0.1846 0.2463 0.2682 0.2642

None cg24798727 − 0.036 0.1752 0.1676 0.1455

None cg17162208 0.0308 0.1806 0.1518 0.2326

None cg00866179 − 0.0146 0.1271 0.1459 0.0644

None cg08242354 0.034 0.1235 0.149 0.1847

Bold are considered significant, p < 0.05
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of glucose transporter expression in placental tissue from
mothers with diabetes mellitus, they found there was a
significant increase in the expression of GLUT-9 in dia-
betic mothers controlled by insulin, as well as pregesta-
tional diabetes [33].
KALRN, or Kalirin RhoGEF Kinase, is a guanine ex-

change factor which acts on several Rho GTPases.
Potential diseases associated with this gene include
Huntington’s disease, coronary heart disease, various
cardiovascular disorders, and ischemic stroke possibly
related to nitric oxide signaling pathways [34].
GNRH1 encodes the precursor to gonadotropin-releasing

hormone-1 (GnRH1). The effect of DM on GnRH expres-
sion is associated with the regulation of B and T cell re-
sponse in pregnancy. One study found that antibodies
against GnRH1, LH, and other related hormones were
present more often in patients with diabetes mellitus [35].
RALGDS encodes a guanylyl-nucleotide exchange factor

(GEFs) specifically involved in signal transduction path-
ways regulating cell growth and cancer/tumorigenesis in
humans [36]. In addition, RalGDS activates Akt kinase
whose abnormal expression is implicated in diabetes mel-
litus pathology [37, 38]. Akt interacts with insulin receptor
substrate 1, PI3K, and GLUT4 translocation during insulin
stimulation, as well as inactivates glycogen-synthase
kinase-3, promoting glycogen synthesis [38].

Regional association study (DM)
Regional association study between DM and non-DM
found three regions that were significant between the
two comparisons. Of the most relevant to this study,
four probes in a region associated with the gene HOOK2
were found to be hypomethylated in the DM group
compared with the non-DM group. HOOK2 belongs to
the HOOK family of proteins, which are responsible for
trafficking and anchoring of organelles in the cell
through the binding and directing of microtubules [36].
A study of DNA methylation in adipose tissue from sub-
jects with type II diabetes and obesity, using the 450K
Illumina beadchip, identified HOOK2 as significantly
differentially methylated from the healthy group, al-
though their findings indicated that HOOK2 was hyper-
methylated while our results show the genes being
hypomethylated [39]. In an additional DNA methylation
study on mothers with gestational diabetes, HOOK2 was
found to be commonly differentially methylated in the
maternal blood, placenta, and umbilical cord [40].

Regional association study (OB)
Three regions were identified as significantly differen-
tially methylated between OB and non-OB groups using
a regional association study. Two of the probes identified
are associated with the gene LTF, which encodes lacto-
transferrin (Lf). Lf is a member of the iron-binding

protein transferrin family and is involved in the regula-
tion of iron homeostasis, anti-inflammatory response,
cell growth regulation, differentiation, innate immune
response, and antimicrobial activity [36]. Lf has also
been shown to be positively correlated in individuals di-
agnosed with insulin resistance and type II diabetes and
negatively correlated with body adiposity [41]. Moreno-
Navarrete et al. confirmed these results, finding a de-
crease of Lf in hyperglycemic and obese individuals and
an increase in insulin sensitive adults [42].
Four of the probes identified are associated with the

gene DUSP22, encoding dual specificity phosphatase 22,
or JNK pathway-associated phosphatase, and implicated
in insulin receptor phosphorylation [36]. DUSP22 also
represses the activation of T cells by phosphorylation of
Lck, a Src-family tyrosine kinase involved in activation
of T cell receptors during adaptive immune response.
DUSP22 knockout mice were found to have depressed
immune response, and later in life increased autoanti-
bodies [43].

Correlation analysis with infant outcome
There were no identified CpG sites associated with birth
weight changes. SLC2A9, or the GLUT-9 transport pro-
tein and CSRP2BP, a Cysteine-rich protein 2-binding
protein correlated with gestational age. It is unclear the
phenotypic significance of these associations as no
changes were noted in the infant body composition an-
thropometrics. Interestingly, cg23184039, which has not
been associated with a gene ID, was associated with in-
creased birth length, frontal-occipital circumference, and
gestational age in our population. This could potentially
represent a future target for larger studies including ex-
pression and body composition beyond infancy.

Limitations
It is important to note that we have not shown experi-
mentally that the methylation status of these significant
genes has a phenotypic effect, only that there is a correl-
ation between the conditions of obesity and diabetes and
the differential methylation identified in the 69 samples.
While we acknowledge the small sample size evaluated,
the population of this study was almost exclusively com-
prised of mothers of Hispanic ethnicity, as such it should
be noted that our results may reflect a more narrowed
analysis of the epigenetic effects of maternal diabetes
and obesity which is specific to populations of Hispanic
ethnicity. Additionally, the identified genes detected
through probe wise and peak detection and their differ-
ential methylation may or may not be associated with al-
tered protein expression, which was not determined
during this project. Without evaluation of protein ex-
pression or additional biomarkers, we are unable to po-
tentially link these effects on phenotype or potential
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development of obesity or diabetes in the offspring be-
yond neonatal body composition.

Conclusion
Differential DNA methylation in the fetal epigenome is
associated with exposure to maternal obesity and dia-
betes mellitus in a highly Hispanic population. DNA
methylation of genes identified such as SLC2A9,
HOOK2, LTF, and DUSP22 all have direct or indirect
links to diabetes or obesity including immune or inflam-
matory regulatory pathways, signaling pathways, and
clinical disorders related to diabetes and obesity. Future
prospective studies are needed to assess the effects of
maternal obesity and diabetes and its differential methy-
lation effects on protein expression and offspring pheno-
typic effect including body composition and clinical risk
of acquired disease in this high-risk population.
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correction for covariates is presented.

Abbreviations
DM: Diabetes mellitus; DNA: Deoxyribonucleic acid; EWAS: Epigenome-wide
association study; OB: Obesity; QC: Quality control; SD: Standard deviation;
SNP: Single-nucleotide polymorphism

Acknowledgements
The authors would like to acknowledge the assistance and dedication of the
Trinity (Chelsea Cole, Sarah Fordin) and University Health (Diana Anzueto,
Rachel Jacob, and Robin Tragus) research teams.

Financial disclosure
All authors have indicated they have no financial relationships relevant to
this article to disclose.
The view(s) expressed herein are those of the author(s) and do not reflect
the official policy or position of the Brooke Army Medical Center, the US
Army Medical Department, the US Army Office of the Surgeon General, the
Department of the Air Force, the Department of the Army or the
Department of Defense, or the US Government.

Authors’ contributions
JMK, NRC, and CLB, as senior authors, contributed to the conception and
design of the experiments, collected and analyzed the data, and oversaw the
drafting of the manuscript. ENE, HER, EL, and NBA collected and analyzed
the data, with HER, MAH, RF, and JG contributing significantly to the
execution of the statistical analysis plan. All authors were involved in writing
the manuscript, and all authors approved the final submitted and published
versions.

Funding
This work was supported by a Collaborative Research Grant from the San
Antonio Medical Foundation (CLB, JMK, NRC), Trinity University Biology
Department, and Long School of Medicine Pilot Projects (CLB).

Availability of data and materials
The datasets generated and/or analyzed during the current study are not
publicly available due to legal restrictions but are available from the
corresponding author on reasonable request.

Ethics approval and consent to participate
The mothers provided written informed consent at recruitment. All study
protocols were reviewed by the Institutional Review Board at University of
Texas Health Science Center, San Antonio.

Competing interests
The authors declare that they have no competing interests. The view(s)
expressed herein are those of the author(s) and do not reflect the official
policy or position of Brooke Army Medical Center, the US Army Medical
Department, the US Army Office of the Surgeon General, the Department of
the Air Force and Army, Department of Defense or the US Government.

Author details
1Department of Biology, Trinity University, 1 Trinity Place, San Antonio, TX
78212, USA. 2Pediatrics, University of Texas Health Science Center San
Antonio, San Antonio, TX, USA. 3University Health System, San Antonio, TX,
USA. 4Department of Neonatal Medicine, Brooke Army Medical Center, San
Antonio, TX, USA.

Received: 14 October 2019 Accepted: 5 February 2020

References
1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity and trends in

body mass index among US children and adolescents, 1999-2010. Jama.
2012;307(5):483–90.

2. Cunningham SA, Kramer MR, Narayan KM. Incidence of childhood obesity in
the United States. N Engl J Med. 2014;370(5):403–11.

3. Yracheta JM, Alfonso J, Lanaspa MA, Roncal-Jimenez C, Johnson SB,
Sanchez-Lozada LG, et al. Hispanic Americans living in the United States
and their risk for obesity, diabetes and kidney disease: genetic and
environmental considerations. Postgrad Med. 2015;127(5):503–10.

4. Pan L, May AL, Wethington H, Dalenius K, Grummer-Strawn LM. Incidence
of obesity among young U.S. children living in low-income families, 2008-
2011. Pediatrics. 2013;132(6):1006–13.

5. Ruchat SM, Hivert MF, Bouchard L. Epigenetic programming of obesity and
diabetes by in utero exposure to gestational diabetes mellitus. Nutr Rev.
2013;71(Suppl 1):S88–94.

6. Berlanga J, Mangla A. Health profiles 2013 vital statistics reports. City of San
Antonio: Metropolitan Health District; 2013.

7. DeSisto CL, Kim SY, Sharma AJ. Prevalence estimates of gestational diabetes
mellitus in the United States, Pregnancy Risk Assessment Monitoring System
(PRAMS), 2007-2010. Prev Chronic Dis. 2014;11:E104.

8. Vrachnis N, Antonakopoulos N, Iliodromiti Z, Dafopoulos K, Siristatidis C,
Pappa KI, et al. Impact of maternal diabetes on epigenetic
modifications leading to diseases in the offspring. Exp Diabetes Res.
2012;2012:538474.

9. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, Eriksson JG,
et al. Influence of maternal obesity on the long-term health of offspring.
Lancet Diabetes Endocrinol. 2017;5(1):53–64.

10. Elshenawy S, Simmons R. Maternal obesity and prenatal programming. Mol
Cell Endocrinol. 2016;435:2–6.

11. Szyf M. Nongenetic inheritance and transgenerational epigenetics. Trends
Mol Med. 2015;21(2):134–44.

12. Desai M, Jellyman JK, Ross MG. Epigenomics, gestational programming and
risk of metabolic syndrome. Int J Obes. 2015;39(4):633–41.

13. Li S, Wong EM, Dugue PA, AF MR, Kim E, Joo JE, et al. Genome-wide
average DNA methylation is determined in utero. Int J Epidemiol. 2018;
47(3):908–16.

14. Chen D, Zhang A, Fang M, Fang R, Ge J, Jiang Y, et al. Increased
methylation at differentially methylated region of GNAS in infants born to
gestational diabetes. BMC Med Genet. 2014;15:108.

15. Reichetzeder C, Dwi Putra SE, Pfab T, Slowinski T, Neuber C, Kleuser B, et al.
Increased global placental DNA methylation levels are associated with
gestational diabetes. Clin Epigenetics. 2016;8:82.

16. Finer S, Mathews C, Lowe R, Smart M, Hillman S, Foo L, et al. Maternal
gestational diabetes is associated with genome-wide DNA methylation
variation in placenta and cord blood of exposed offspring. Hum Mol Genet.
2015;24(11):3021–9.

17. Hjort L, Martino D, Grunnet LG, Naeem H, Maksimovic J, Olsson AH,
et al. Gestational diabetes and maternal obesity are associated with

Rizzo et al. Clinical Epigenetics           (2020) 12:34 Page 9 of 10

https://doi.org/10.1186/s13148-020-0824-9
https://doi.org/10.1186/s13148-020-0824-9


epigenome-wide methylation changes in children. JCI Insight. 2018;
3(17).

18. Chavey A, Ah Kioon MD, Bailbe D, Movassat J, Portha B. Maternal diabetes,
programming of beta-cell disorders and intergenerational risk of type 2
diabetes. Diabetes Metab. 2014;40(5):323–30.

19. Anwar MA, Saleh AI, Al Olabi R, Al Shehabi TS, Eid AH. Glucocorticoid-
induced fetal origins of adult hypertension: association with epigenetic
events. Vasc Pharmacol. 2016;82:41–50.

20. Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 2:
mechanisms. Nat Rev Endocrinol. 2014;10(7):403–11.

21. Day SE, Coletta RL, Kim JY, Garcia LA, Campbell LE, Benjamin TR, et al.
Potential epigenetic biomarkers of obesity-related insulin resistance in
human whole-blood. Epigenetics. 2017;12(4):254–63.

22. Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et al.
Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA
methylation: findings from the pregnancy and childhood epigenetics
(PACE) consortium. Hum Mol Genet. 2017;26(20):4067–85.

23. Jaeger K, Saben JL, Moley KH. Transmission of metabolic dysfunction across
generations. Physiology. 2017;32(1):51–9.

24. Kitsiou-Tzeli S, Tzetis M. Maternal epigenetics and fetal and neonatal
growth. Curr Opin Endocrinol Diab Obes. 2017;24(1):43–6.

25. Chango A, Pogribny IP. Considering maternal dietary modulators for
epigenetic regulation and programming of the fetal epigenome. Nutrients.
2015;7(4):2748–70.

26. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM,
Stephenson J, et al. Origins of lifetime health around the time of
conception: causes and consequences. Lancet. 2018;391(10132):1842–52.

27. Lillycrop K, Murray R, Cheong C, Teh AL, Clarke-Harris R, Barton S, et al.
ANRIL promoter DNA methylation: a perinatal marker for later adiposity.
EBioMedicine. 2017;19:60–72.

28. Vanhees K, Vonhogen IG, van Schooten FJ, Godschalk RW. You are
what you eat, and so are your children: the impact of micronutrients
on the epigenetic programming of offspring. Cell Mol Life Sci. 2014;
71(2):271–85.

29. Maksimovic J, Phipson B, Oshlack A. A cross-package Bioconductor
workflow for analysing methylation array data. F1000Res. 2016;5:1281.

30. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, et al. Comparison of
Beta-value and M-value methods for quantifying methylation levels by
microarray analysis. BMC Bioinformatics. 2010;11:587.

31. Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, et al. Bump
hunting to identify differentially methylated regions in epigenetic
epidemiology studies. Int J Epidemiol. 2012;41(1):200–9.

32. Evans SA, Doblado M, Chi MM, Corbett JA, Moley KH. Facilitative glucose
transporter 9 expression affects glucose sensing in pancreatic beta-cells.
Endocrinology. 2009;150(12):5302–10.

33. Stanirowski PJ, Szukiewicz D, Pyzlak M, Abdalla N, Sawicki W, Cendrowski K.
Impact of pre-gestational and gestational diabetes mellitus on the
expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 in human
term placenta. Endocrine. 2017;55(3):799–808.

34. Penzes P, Remmers C. Kalirin signaling: implications for synaptic pathology.
Mol Neurobiol. 2012;45(1):109–18.

35. Roth B, Berntorp K, Ohlsson B. The expression of serum antibodies against
gonadotropin-releasing hormone (GnRH1), progonadoliberin-2, luteinizing
hormone (LH), and related receptors in patients with gastrointestinal
dysfunction or diabetes mellitus. Drug Target Insights. 2014;8:45–50.

36. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al.
The GeneCards suite: from gene data mining to disease genome sequence
analyses. Curr Protoc Bioinformatics. 2016;54(1.30):1–1 3.

37. Hao Y, Wong R, Feig LA. RalGDS couples growth factor signaling to Akt
activation. Mol Cell Biol. 2008;28(9):2851–9.

38. Zdychova J, Komers R. Emerging role of Akt kinase/protein kinase B
signaling in pathophysiology of diabetes and its complications. Physiol Res.
2005;54(1):1–16.

39. Rodriguez-Rodero S, Menendez-Torre E, Fernandez-Bayon G, Morales-
Sanchez P, Sanz L, Turienzo E, et al. Altered intragenic DNA methylation of
HOOK2 gene in adipose tissue from individuals with obesity and type 2
diabetes. PLoS One. 2017;12(12):e0189153.

40. Wu P, Farrell WE, Haworth KE, Emes RD, Kitchen MO, Glossop JR, et al.
Maternal genome-wide DNA methylation profiling in gestational diabetes
shows distinctive disease-associated changes relative to matched healthy
pregnancies. Epigenetics. 2018;13(2):122–8.

41. Mayeur S, Veilleux A, Pouliot Y, Lamarche B, Beaulieu JF, Hould FS, et al.
Plasma lactoferrin levels positively correlate with insulin resistance despite
an inverse association with total adiposity in lean and severely obese
patients. PLoS One. 2016;11(11):e0166138.

42. Moreno-Navarrete JM, Botas P, Valdes S, Ortega FJ, Delgado E, Vazquez-
Martin A, et al. Val1483Ile in FASN gene is linked to central obesity and
insulin sensitivity in adult white men. Obesity (Silver Spring). 2009;17(9):
1755–61.

43. Li JP, Yang CY, Chuang HC, Lan JL, Chen DY, Chen YM, et al. The
phosphatase JKAP/DUSP22 inhibits T-cell receptor signalling and
autoimmunity by inactivating Lck. Nat Commun. 2014;5:3618.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Rizzo et al. Clinical Epigenetics           (2020) 12:34 Page 10 of 10


	Maternal Diabetes and Obesity Influence the Fetal Epigenome in a Largely Hispanic Population
	Repository Citation
	Authors

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Sample description
	Population
	Blood collection, DNA extraction, and genome-wide methylation assay
	Statistical analysis
	Applied software
	Data preprocessing, QC, and filtering
	Data transformation
	Epigenome-wide association study
	Regional analyses

	Results
	Epigenome-wide association study
	Regional analysis using bumphunter
	Correlation analysis with infant outcome

	Discussion
	Epigenome-wide association study
	Regional association study (DM)
	Regional association study (OB)
	Correlation analysis with infant outcome
	Limitations

	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	Financial disclosure
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher’s Note

