
THE WEARABLE INSTRUMENT APPROACH FOR PILOTS

A Thesis

by

ERIC MICHAEL BURKE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ann McNamara
Committee Members, Louis Tassinary

Thomas Ferris
Sherman Finch

Head of Department, Tim McLaughlin

August 2015

Major Subject: Visualization

Copyright 2015 Eric Michael Burke

ABSTRACT

Pilot errors caused by heads-down time or misinterpretation of published in-

strument approach procedures have been attributed to multiple incidents of fatal

controlled flight into terrain while approaching airports in instrument meteorological

conditions. This study was motivated by the idea that wearable heads-up devices

such as Google Glass can supplement standard paper or tablet-based instrument

approach plates by decreasing heads-down time and pilot error. In order to eval-

uate the utility of Google Glass in the field of aviation, this thesis was comprised

of two phases: the development of a custom instrument approach software applica-

tion for Google Glass, and the execution of a simulator study to compare the effects

between the usage of Google Glass and current tablet-based instrument approach

plates in regards to pilot error, preference, and heads-down time. Results showed

that the introduction of Google Glass into the cockpit can help pilots fly a safer

approach when compared to simply using a tablet-based approach plate alone. More

specifically, when Google Glass was used together with a tablet-based instrument

approach plate, pilots had a quicker reaction time when they did indeed commit a

navigational error, and their total heads-down time was reduced, allowing them to

focus more on cockpit instrumentation and flying the aircraft. While Google Glass is

currently a moot point in the gadget world, the knowledge gained from this research

should translate well to the development of more advanced software for forthcoming

wearable heads-up devices.

ii

DEDICATION

To my family

iii

ACKNOWLEDGEMENTS

First and foremost, thank you to my wife Josephine for all of your patience, belief,

nerves, and support during this entire journey. Thank you for all of those times when

you waited on me to come home after spending all day and/or night at the lab. When

I lost my way, you would help me find it again; you could find encouragement in my

most discouraging of moments. A huge part of my success is because of you.

Special thanks to Kevin Gabriel, owner of Solo Flight Training in Houston, Texas

and host of the simulator study for this research. Your kindness and willingness to

help a stranger is most appreciated. Thank you to Professor and Aerospace Medical

Association Safety Committee member Dr. Douglas Boyd for all of the extremely

helpful aviation articles and information you have provided to me.

Thanks to my brother and USAF C-17 pilot Nick Burke, and to USAF C-130

pilot Aaron Sanchez, as well as former USAF F-16 and commercial “big iron” pilot

Mr. Ed Cole. I could not have developed the study’s software without all of your

feedback and insights.

Thank you to my parents for helping us find our footing before starting the

master’s program, and for allowing me to set up a makeshift flight simulator in your

house.

Advisory committee: thank you to committee chair Ann McNamara for meeting

with me every week; to Louis Tassinary for convincing me to start this project as

early as possible; to Thomas Ferris for all of the equipment from your Human Factors

Lab; to Sherman Finch for teaching me the true meanings of mobile technology and

user experience.

iv

NOMENCLATURE

ADS-B Automatic Dependent Surveillance Broadcast System

API Application Programming Interface

ASRS Aviation Safety Reporting System

ATIS Automatic Terminal Information Service

EAP Electronic Approach Plate

EFB Electronic Flight Bag

FAA Federal Aviation Administration

GA General Aviation

HUD Heads-Up Display

HMD Head-Mounted Display

IAP Instrument Approach Plate

IDE Integrated Development Environment

IFR Instrument Flight Rules

IHADSS Integrated Helmet and Display Sight System

IMC Instrument Meteorological Conditions

KIAH Airport Code for the George Bush Intercontinental Airport

MDA Minimum Descent Altitude

NDB Non-Directional Beacon

PIC Pilot in Command

UDP User Datagram Protocol

VFR Visual Flight Rules

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . x

1. INTRODUCTION . 1

1.1 Wearable Computers in Aviation . 7
1.2 Thesis Overview . 7

2. LITERATURE REVIEW . 9

2.1 Distraction and Loss of Situational Awareness 9
2.2 Related Work . 11

2.2.1 Experimental Study of Electronically Based Instrument Ap-
proach Plates . 11

2.2.2 Instrument Approach Plate Software 12
2.2.3 Brilliant Eyes . 12
2.2.4 Aero Glass . 13
2.2.5 Adventia European College of Aeronautics 13
2.2.6 Integrated Helmet and Display Sight System 14

2.3 Summary . 14

3. THE IMPORTANCE OF RESEARCH . 16

4. METHODOLOGY . 19

4.1 Definitions . 19
4.2 Phase 1 - Software Development . 20

vi

4.2.1 Overview . 20
4.2.2 Breakdown of the Glassware Application 23
4.2.3 Development Lifecycle . 25
4.2.4 Technology . 25
4.2.5 Connectivity . 26

4.3 Phase 2 - Flight Simulator Experimental Study 28
4.3.1 Research Participants . 30
4.3.2 Flight Simulator Apparatus 30
4.3.3 Experimental Design . 31
4.3.4 Procedure . 35
4.3.5 Measures . 36

5. RESULTS . 38

5.1 Summary of Hypothesis . 38
5.2 Heads-Down Time . 38

5.2.1 Number of Glances . 38
5.2.2 Average Duration Per Glance 39
5.2.3 Average Heads-Down Time 40
5.2.4 Number of Glances Per Minute 41

5.3 Flight Performance . 44
5.3.1 Altitude Violations Per Scenario 44
5.3.2 Average Reaction Time Per Altitude Violation 45
5.3.3 Ascent Time to 7000’ in Scenario B 46

5.4 Summary of Results . 48

6. CONCLUSION AND FUTURE PLANS 50

6.1 Glassware Revisions . 51
6.2 Future Directions . 52

6.2.1 Tablet-Based Electronic Flight Bag 53
6.2.2 Microsoft HoloLens . 53

REFERENCES . 56

APPENDIX A. GOOGLE GLASS SOFTWARE CODE 59

A.1 Airport Class . 59
A.2 LiveCard Service . 60
A.3 Xplane Connection . 102
A.4 LiveCard Menu . 109

vii

LIST OF FIGURES

FIGURE Page

1.1 An IAP of Easterwood airport, College Station, Texas. 2

1.2 Foreflight Electronic IAP on the iPad. A stylus has been used to
highlight important information [8]. 6

4.1 Each figure on the right represents what was presented on Glass’ dis-
play based on the aircraft’s position in relation to the instrument
approach plate (left). 22

4.2 A representation (upper right) of what a pilot would see while flying
with Google Glass. 24

4.3 Display colors. Green = good; Yellow = warning to stop descending
and fix altitude; Red = ascend immediately to avoid danger. 24

4.4 Packets containing GPS data were sent from the computer to Glass
via UDP connection. 27

4.5 An Android smartphone with location service enabled sends GPS data
over Bluetooth to Glass using the MyGlass application. 27

4.6 Data flow from the Redbird FMX flight simulator (1.) to the Bad Elf
GPS device (2.) to an Android smartphone (3.) and finally to Google
Glass (4.). 28

4.7 In the cockpit of a Redbird FMX flight simulator, the pilot is using
Google Glass and the custom-made application. 29

4.8 The steam gauge “six pack,” similar to the instrumentation used in
the experiment. 31

4.9 Scenario A. The yellow aircraft symbol represents the starting position
of the aircraft. 34

4.10 Scenario B. 34

viii

4.11 Flight debriefing in Cloud Ahoy. The yellow aircraft symbol represents
the current position of the airplane along the flight path. The bubbles
labeled “DPLOY,” “JELLI,” etc. represent the step-down fixes on an
IAP and their respective geographic locations. 37

5.1 Number of glances . 39

5.2 Average duration per glance . 40

5.3 Average heads-down time . 41

5.4 Effects of display on glances per minute 43

5.5 Effects of time on glances per minute. The pattern of means suggests
that there were two times during the scenarios that required the most
glances per minute. 43

5.6 Altitude violations per scenario . 45

5.7 Average reaction time per violation 46

6.1 I-IAH localizer frequency with morse code identifier. 51

6.2 A hypothetical alert and notification represented on a tablet IAP. . . 54

ix

LIST OF TABLES

TABLE Page

4.1 Between-participants flight simulator study. P = Practice Scenario; *
= Scenario + Missed Approach. Note the missing scenario for pilot
#6. This pilot was mistakenly instructed to complete the practice
scenario using the wrong device, thus results from the first flight were
disregarded. 32

5.1 Mixed-model ANOVA. 2 display x 2 scenario x 7 time. 42

x

1. INTRODUCTION

The approach and subsequent landing of an aircraft in instrument meteorological

conditions (IMC) is arguably one of the most complex and critical phases of flight.

As pilots transition from the en route “cruise” phase to the approach, their work-

load increases as they prepare the aircraft for landing. This increase of workload

can drastically increase a pilot’s vulnerability to errors, especially when navigating

through adverse weather conditions. In order to safely fly an approach, pilots use

Federal Aviation Administration-certified instrument approach plates (IAPs), as seen

in Figure 1.1. IAPs provide navigation, communication, and procedural information

“to transition from en route flight to approach and landing, or if necessary, to execute

a missed approach” [19, p. 7]. Traditionally, the IAP and other information vital

to the safe and normal operation of the aircraft has been presented in paper format

[19]. In addition to the IAP, this information includes flight manuals, checklists, and

aeronautical charts including approach plates [26, p. 8D1-1]. Paper IAPs are black

text on a white page, and provide pilots with the aeronautical information required

to execute instrument approaches to airports [16]. As such, the sheer quantity of

paper material required by pilots to carry onboard an aircraft can weigh up to 40

pounds. Moreover, many of these paper charts have a lifespan of only 56 days and

must be continually replaced.

The layout of an instrument approach plate is depicted by areas A through D in

Figure 1.1. Area A contains communication and airport identification information;

Area B contains a plan view or overhead depiction of the terminal area; Area C

displays a profile depiction of vertical navigation information; Area D displays min-

ima data for landing including ceiling visibility minimums according to the type of

1

Figure 1.1: An IAP of Easterwood airport, College Station, Texas.

2

aircraft flying the approach [19].

Before beginning an approach, “the obvious starting point in approach plate

review is to find out as early as possible what approach you will fly” [18, p. 85].

This is usually done during the enroute phase of flight using the automated terminal

information service (ATIS) frequency found in AREA A of figure 1.1. The next step

is to familiarize oneself with the airport’s plan (overhead) view, as seen in AREA C.

Afterwards, the pilot tunes in the frequency of the “localizer, VHF omnidirectional

range, or non-directional beacon used for the final approach” into the navigation

radio [18, p. 86]. The localizer, which was used primarily in this study, is an antenna

located on the departure end of the runway and provides approaching aircraft with

a “full ‘fly-left’ and a full ‘fly-right’ indication” [5, p. 127]. Next, the final approach

course in AREA A is set using a dial on the horizontal situation indicator (HSI). The

HSI is an instrument that provides the pilot with vertical and/or lateral guidance

to the approach course. The pilot then turns his/her attention to the step-down

fixes and minimum descent altitude (AREA D). Upon reaching the final approach

fix shown in AREA B and C, the pilot starts a countdown timer to establish the

missed approach point. The time can be compared with the list under the airport

diagram in AREA D. If the timer runs out before the pilot breaks out of the clouds

and establishes visual contact with the runway, the pilot is required to execute a

missed approach. Instructions for the missed approach can be found in AREA A

and C. While not a comprehensive explanation of how instrument approaches are

flown, the above paragraph serves as an example of the linear flow of information on

the approach chart. Note that the pilot does not need all of the information from

the chart at once; only small amounts of this information are relevant at any given

time during the approach.

Today, the paper-based flight bag and paper IAPs are slowly disappearing from

3

the cockpit due to the proliferation of the electronic flight bag (EFB). The EFB con-

tains digital copies of the paper IAPs, and has been designed to “replace the heavy

and cumbersome traditional [paper] pilot flight bag,” with a small and lightweight

device such as the iPad, android tablet, smartphone, or other hand-held mobile hard-

ware [1, p. 4]. The EFB can contain a digital database of every IAP in existence

and update them automatically. Indeed, the electronic version of the instrument

approach plate offers a more flexible way of presenting approach information to the

aircrew, and is currently used by many general aviation (GA) and airline pilots [19].

This feature, however, makes the task of designing EFBs and navigation-related soft-

ware crucial because they will be used mainly during the phases of flight associated

with a majority of aircraft accidents [11]. Due to the proliferation of the EFB, the

electronic instrument approach plate will be considered as the “traditional” method

of displaying approach information throughout the remainder of this paper.

There are quite a few commercial EFBs available to general aviation pilots that

offer high resolution and current databases of nearly every IAP in existence. Pop-

ular examples include Garmin Pilot, ForeFlight, WingX Pro, and Avare. These

applications run on Android and iOS devices; Garmin Pilot and WingX are sup-

ported on Android and iOS, while ForeFlight is available only for iOS. Due to a

phone’s screen size, it is more common to see these applications used on a tablet

[6]. The EFB can use the device’s built-in GPS receiver in order to provide situa-

tional awareness, ground speed, altitude, rate of turn and vertical airspeed to the

pilot via user interface [10]. For increased GPS accuracy, an iPad or Android tablet

can be wirelessly tethered via Bluetooth to an external GPS receiver such as the

commercially-available Dual Electronics iPad/Android GPS XGPS150A. In regards

to electronic IAPs, most of these applications can offer real-time position information

of the airplane, superimposing a moving blue dot in the chart’s plan view (AREA B

4

of figure 1.1).

As robust as these applications may be, they all share an intrinsic flaw: they do

not provide constant heads-up capability. Instead, the pilot constantly needs to look

away from cockpit instrumentation in order to read relevant approach information.

In addition, electronic IAPs are just as complex and cluttered as paper IAPs, due

to the fact that they are simply digital copies of their paper counterparts. Pilots

must direct their attention towards the tablet displaying the approach plate, which

is usually located out of direct line-of-sight in the cockpit. This can lead to safety

issues where the pilot becomes distracted from actually flying the airplane, especially

in rough weather conditions. As one can see in Figure 1.2, a pilot has used a stylus

to manually re-write information in colorful, large numbers in order to disambiguate

the important information from the irrelevant, thus enabling a shorter glance at

the screen. As workload increases in the cockpit, these notes will most likely prove

themselves to be very helpful, highlighting the most pertinent information. Regard-

ing the iPad as an EFB, certified flight instructor and professional pilot Michelle

Bassenesi (2011) states that “pilots may spend a considerable amount of time heads-

down attempting to select and exercise system functions,” especially those that have

little experience with the device [1, p. 12]. She states that she had witnessed this

first-hand as her pilot colleagues became distracted by their iPads during a routine

general aviation flight [1, p. 12]. According to ForeFlight Mobile’s (2014) FAQ web-

page, “personal electronic devices such as the iPad and iPhone can take attention

away from the most important and demanding task: flying the airplane and arriving

safely” [7]. Indeed, most of incidents that occurred while using the iPad as an EFB,

as reported by the Aviation Safety Reporting System, were caused by “distractions

due to heads-down time and unfamiliarity with how the iPad worked” [1, p. 13].

One may argue that, despite featuring a real-time moving airplane icon, the elec-

5

Figure 1.2: Foreflight Electronic IAP on the iPad. A stylus has been used to highlight
important information [8].

6

tronic IAP is equally as cluttered as the traditional paper IAP. As mentioned earlier,

notice in Figure 1.2 how the pilot has written the step-down altitudes in large, color-

ful numbers with a stylus, despite the intrinsic scrolling and zooming capabilities of

the iPad. According to Mykityshyn et. al (1994), IAPs are intentionally information

dense due to the fact that the ultimate liability of the charting agency and fear of

litigation often precludes cartographers from simplifying the charts by removing less

important information [19, p. 143].

1.1 Wearable Computers in Aviation

The interest in wearable avionics has been piqued by Google Glass and other

wearables that “very well could transform the whole experience of how we fly in

the future” [22]. Google Glass is a miniature computer that is worn like a pair of

eyeglasses, and features a small screen for displaying information over the wearer’s

right eye. It can be tethered via Bluetooth to a smartphone, enabling the wearer

to read emails, surf the internet, receive instructions from Google Maps, talk on

the phone, or send voice-to-text messages [22]. This is not an exhaustive list of

Google Glass’ capabilities, which has arguably not been exploited by developers

since the beginning of the“Explorer Program” in 2013. However, according to Flying

Magazine, connecting Google Glass to a database of Jeppesen navigation data could

allow it to “potentially take over where the iPad or Android tablet leaves off” in

respect to the display of navigation information and alerts [22].

1.2 Thesis Overview

Building upon the idea of wearable devices taking over where the tablet leaves

off in the cockpit, this thesis aims to assess the utility of Google Glass during the

critical approach and landing phase of flight in instrument conditions. This util-

ity will be derived from the device’s influence on pilot heads-down time, amount

7

of errors committed, reaction time, and overall opinion after being used to fly an

instrument approach. These results will be compared to the usage of the traditional

(electronic) instrument approach plate. It is important to note that results collected

from this study are not Google Glass-specific, instead, they should translate well to

forthcoming wearable technology.

8

2. LITERATURE REVIEW

This chapter provides specific evidence regarding the dangers of heads-down time

and the complexity of approach procedures in a high-workload cockpit environment.

In addition, previous studies and current technology related to the usage of wearable

heads-up displays in aviation are introduced.

2.1 Distraction and Loss of Situational Awareness

While conducting an instrument approach on December 24, 1996, a Learjet 35A

with two crew members and no passengers struck the ground at 250 knots, over

10 miles away from the Lebanon Municipal Airport in Lebanon, New Hampshire.

After executing a missed approach from runway (RWY) 18 at Lebanon Municipal,

the pilots attempted another landing at the same airport on RWY 25. At one point

during the approach, the captain instructed the first officer to descend to 2,300 feet,

which was well below the required altitude of 4,300 feet published on the IAP for

their current position. Soon afterwards, the plane impacted trees, then terrain, and

both crew members were fatally injured. According to the National Transportation

Safety Board (NTSB), the captain’s misinterpretation of the published step-down

fix passage contributed greatly to the aircraft’s early descent into terrain [20]. This

misinterpretation may have stemmed from the pilots’ rushed briefing of the new

instrument procedure which increased their workload, leading to a loss of situational

awareness along the approach course. Not only were both pilots unaware of their

exact location in relation to the airport, but their preoccupation with other tasks,

such as briefing the new approach procedure and flying the airplane distracted them

from noticing their navigation errors.

According to Dismukes, Young, and Sumwalt, “crew preoccupation with one

9

task to the detriment of other tasks is one of the more common forms of error in the

cockpit” [4, p. 4]. Dismukes et. al. reviewed NTSB and Aviation Safety Report-

ing System (ASRS) accident reports attributed to pilot error. Approximately 50%

of those accidents resulted from distraction, interruption, or preoccupation. Their

analysis showed that the task of monitoring the current status or position of the air-

plane was most often neglected while the pilot multitasked during critical moments

of flight. The competing activities that distracted the pilots from performing other

tasks, such as flying the airplane, were grouped into four categories: heads-down

work, searching for other air traffic, responding to abnormal situations, and com-

munication. Periods of heads-down work, such as completing paperwork or briefing

approach plates, could create a situation that is “especially vulnerable because the

monitoring pilot’s eyes are diverted from other tasks” such as flying the airplane [4,

p. 6]. The authors suggested that reducing the amount of heads-down tasks during

critical phases of flight often associated with high workload levels can be achieved by

rescheduling such tasks during lower workload phases of flight. In addition, they ar-

gued that it may be beneficial to integrate head-down tasks with the routine scan of

instrumentation, switching back and forth between heads-up and heads-down tasks

as often as possible. The pilot errors caused by distraction reviewed in Dismukes,

et. al. affected pilots of all experience levels. According to design and usability

expert Donald Norman, an experienced instrument pilot has the potential to manu-

ally fly an aircraft in a largely skill-based or subconscious manner. Certain parallel

tasks, however, require the pilot to devote cognitive resources, such as levelling off

or arresting his/her descent at a required altitude. The task of constantly checking

the altimeter to match the minimum required altitude on the approach plate, for

example, can interfere with other tasks such as keeping the aircraft on course, or

preparing for upcoming approach maneuvers [21].

10

2.2 Related Work

2.2.1 Experimental Study of Electronically Based Instrument Approach Plates

As the EFB has become more popular in the cockpit due to its space- and weight-

saving characteristics, it has been implemented within many different display medi-

ums. In the early 1990s, the lack of high-resolution displays precipitated studies that

sought to declutter the information on the plate in order to best utilise the screen’s

capabilities. One such study was conducted by Mykityshyn, Kuchar, and Hansman

(1994), which compared six IAP formats in a case study with thirteen experienced

airline pilots. Each IAP format differed from the others by either color, declutter-

ing ability, moving aircraft symbol, or direction (north-up vs. track-up). The IAPs

with decluttering ability allowed the pilots to layer information, by either remov-

ing or adding information deemed extraneous or important, respectively. Results of

the study showed that pilots preferred this decluttering ability over the traditional

approach plate format, yet performance results regarding reaction time and error

rates were negligible between all formats. This study displayed each IAP format in

a consistent location, next to the important navigation instruments such as artificial

horizon, altitude, groundspeed, and heading indicators.

The affects of the IAP’s location (heads-down vs. heads-up) on experimental

results, however, was not taken into consideration. In addition, the technology used

to display the IAPs is no longer representative of the commercial devices such as

Apple and Android tablets/phones currently used in the cockpit. However, this

study relates to the thesis due to the small display area and limited resolution (640

x 360 pixels) offered by Google Glass. In the attempt to create a useful tool for this

device, information from the traditional approach plate will need to be presented in

a simple, decluttered format.

11

2.2.2 Instrument Approach Plate Software

Currently there are many commercial over-the-shelf electronic flight bags avail-

able. They range “from small handheld, PDA devices targeted for general aviation

aircraft to complex, multi-display, server-driven devices for high-end installation” [6,

p. 9]. Due to the immense success celebrated by the iPad in personal and profes-

sional settings, it has also expanded its utility into the realm of aviation [14]. Exam-

ples include Garmin Pilot, Foreflight mobile, Apps4av’s Avare, and Hilton Software’s

WingX Pro. As previously stated, the common issue shared with the devices running

these software applications (iPad/Phone, Android tablet/phone) originates from the

fact that the incorporation of such EFBs in the cockpit “has increased pilot heads-

down time away from their primary task of aviating first, and then navigating and

communicating” [14, p. 56]. Although a pilot can use a stylus to highlight important

navigation information on the approach charts (Figure 1.2), these applications do not

offer real-time altitude or position notifications that provide situational awareness to

a possibly distracted and busy pilot.

2.2.3 Brilliant Eyes

In addition to the aforementioned applications for tablets and smartphones, Ae-

rocross in McInney, Texas has developed a working prototype of a wearable HUD

similar to Google Glass called “Brilliant Eyes.” The first prototype, delivered in

February 2013, uses information “generated by a commercially available iPad ap-

plication that takes input from a portable attitude and heading reference system

with GPS and Automatic Dependent Surveillance - Broadcast (ADS-B)” for posi-

tion, weather, attitude and traffic [2]. Brilliant Eyes is an augmented reality head-

mounted device (HMD) that renders an image similar to what would be found in

fighter aircraft like the Air Force’s F-35. However, this technology has not yet been

12

released nor published in experimental papers, thus the utility of the device remains

unknown due to a lack of information from field testing. Should Aerocross incorpo-

rate approach plate procedures into their wearable HUD system, its utility could be

compared to results of this thesis, due to the fact that they have taken the idea one

step further into the realm of augmented reality.

2.2.4 Aero Glass

Aero Glass has been developing augmented reality solutions for pilots using ei-

ther Google Glass, Epson Moverio, or other head mounted devices. According to

the company, pilots wearing these devices running Aero Glass’ software will enjoy

heads-up airport, navigation, flight path, air traffic, and weather information, among

others. Enjoying enthusiastic response from early adopters, Aero Glass is currently

conducting a beta testing phase for their technology. In addition, Aero Glass has

been present at Augmented World Expo and EAA Airventure conventions. While

displaying visually stunning graphics and screenshots from their devices, little data

exists as to the actual utility of the technology.

2.2.5 Adventia European College of Aeronautics

Two pilots from the Adventia European College of Aeronautics flew with Google

Glass for the first time in aviation history on March 5, 2014. Emphasizing safety, pro-

ductivity, efficiency, training, and environmental sustainability, Adventia’s Google

Glass software was implemented by an official Google development team called “Droi-

ders,” adapted from pre-existing checklist “glassware” used by surgeons in the Fac-

ulty of Medicine at Stanford University. Droiders reprogrammed this application in

order to create checklist glassware used before, during, and after flight. In addition to

checklists, the application features a real-time electronic IAP with a superimposed

airplane symbol, similar to the electronic IAP found within EFBs like Foreflight.

13

This feature, however, appears to be merely a proof of concept rather than robust

heads-up electronic IAP solution, due to the fact that the software simply displays

a part of the IAP, which contains too much information for Glass’ small display to

be efficiently read by the pilot.

2.2.6 Integrated Helmet and Display Sight System

Pilots of the AH-64 Apache attack helicopter wear a monocular helmet-mounted

display called the Integrated Helmet and Display Sight System (IHADSS). This

device provides “pilotage, navigation, and weapon-aiming symbology and imagery”

to the pilot’s right eye [15, p. 110901-2]. Due to size and weight constraints, the

IHADSS device is limited only to the pilot’s right eye, forcing the pilot to adapt

regardless of eye dominance or visual perception issues. Similarly, Google Glass’

display location is limited to the wearer’s right eye, thus human factors and ergonomic

issues related to binocular rivalry, depth perception, image quality, and eye relief

faced by pilots using the IHADSS system could be taken into consideration when

designing a navigation application for Google Glass [12].

2.3 Summary

In summary, the risk of distraction or misinterpretation of published approach

information from an IAP poses a real danger to pilots flying in instrument me-

teorological conditions. One danger in particular, controlled flight into terrain, is

one of the most common types of fatal accidents known to instrument flight [3, p.

46]. Controlled flight into terrain occurs when a perfectly functioning aircraft makes

premature contact with the ground resulting in loss of life or property. Such an

occurrence is usually attributable to pilot error, much like the December 24, 1996

Learjet crash mentioned earlier in the chapter. To help mitigate this danger, as well

as reduce distraction and loss of situational awareness in the cockpit, organizations

14

like Aerocross and the Adventia College of Aeronautics have been working towards

solving this problem with head mounted devices. Currently, however, little informa-

tion exists from experimental trials regarding the utility of head mounted displays

in the civilian or commercial cockpit.

15

3. THE IMPORTANCE OF RESEARCH

What is the utility of novel head-mounted display (HMD) devices like Google

Glass in the cockpit? Due to their heads-up nature, do HMDs decrease distrac-

tion and heads-down time by helping the pilot focus his/her attention on flying the

airplane during critical phases of flight? Are they better or worse, or do they com-

pliment the current electronic IAP on a tablet device? This study hypothesizes that,

while not a replacement for the tablet IAP, a HMD can decrease pilot heads-down

time and distraction when used in conjunction with a tablet IAP. Currently, however,

there is no substantial published research that answers these questions.

Given the threat of divided attention and loss of situational awareness when

multitasking, this thesis is motivated by the idea that HMD technology decreases

distraction and pilot heads-down time during critical phases of flight when compared

to the usage of current electronic EFB/IAP technologies that are standard in the

general aviation cockpit. While not a complete replacement for the EFB, the HMD

may offer helpful redundancy when coupled with a tablet IAP. This logic is based

on the idea that the pilot will not need to spend large amounts of heads-down time

while accessing important approach information, because it is already displayed on

Google Glass’ screen. Should the pilot misread the tablet IAP or lose situational

awareness along the approach course and descend prematurely, Google Glass shall

act as a safety barrier, alarming the pilot of this error.

The idea of using heads-up display technology as an aid to pilots has been ac-

cepted for decades, and the implementation of HUDs in the military and commercial

sectors is nothing new. Currently, such technology is not available to the general avi-

ation pilot, and costs many hundreds of thousands of dollars. The relatively low cost

16

and arguably small amount of content availabile for novel wearable display devices

such as Google Glass, however, makes them attractive for human factors and user

experience engineering research. As such, this thesis was developed to accomplish

two phases:

Phase 1.) Design and develop a software application for Google Glass (glassware)

that displays approach plate information that is relevant to the aircraft’s current po-

sition. Despite the wealth of data presented on a standard approach plate, any

information that is not relevant to the pilot at a specific time point will be ignored.

Inspired by the idea that “it is impossible to memorize even a fraction of the infor-

mation printed on an approach plate,” this application will allow the pilot to remain

heads-up while reading key information, and then to put it into use immediately

afterwards [18, p. 85]. Looking back at the 1996 Learjet 35A accident in Lebanon,

New Hampshire, a heads-up visual aid such as Google Glass that presents the current

minimum altitude requirements to the pilots may have helped guide their attention

to their altitude deviation as they descended below minimums. In addition, situa-

tional awareness may have been provided by a simple cross-check between Google

Glass’ instructions and the instructions published on the traditional IAP, compar-

ing current and next step-down fixes. Finally, this study’s prototype was built to be

more intuitive and efficient than the aforementioned Google Glass software presented

in March 2014 by the Adventia European College of Aeronautics.

Phase 2.) Conduct a case study with six instrument flight rules-certified (IFR)

pilots in order to test the utility of Google Glass in the cockpit during instrument me-

teorological conditions (IMC). In order to obtain more accurate results, the ecological

validity of the study was kept as high as possible in a full-motion flight simulator.

Data related to heads-down time, pilot error and preference was recorded. Due to

17

the fact that the pilots in Mykityshyn, Kuchar, and Hansman’s results preferred a

decluttered display over the traditional format, qualitative data related to the declut-

tered instrument approach procedures displayed on Google Glass was also recorded.

In addition, this thesis will take the affects of heads-up or heads-down location on

qualitative and quantitative data into consideration.

The following quote from an unknown author (2002) underlines the core problem

associated with this study:

Aviation in itself is not inherently dangerous. But to an even greater

degree than the sea, it is terribly unforgiving of any carelessness, inca-

pacity or neglect [27].

18

4. METHODOLOGY

4.1 Definitions

The following list of terms define terminology within this study that may be un-

familiar to the reader. Most of these terms are present on the instrument approach

plate that was used by the study’s participants.

Approach Course - The direction of the approach course, based on a 0 - 359 de-

gree heading.

ATIS - Automatic Terminal Information System. This provides a continuous broad-

cast of important airport information including wind speed, weather, active runways,

and approaches. A pilot always listens to this information before starting or deciding

on an approach.

Localizer - The localizer is an antenna located at the far end (departure end) of the

runway and provides “course guidance throughout the descent path to the runway

threshold from a distance of [at least]18 nautical miles” [5, p. 127]. The pilot in-

puts the localizer’s frequency into the navigation panel, and frequently references the

localizer indicator instrument that displays the aircraft’s lateral deviation from the

approach course.

Minimum Descent Altitude - No aircraft executing a non-precision approach (ex-

plained below) may operate below the minimum descent altitude, or MDA, unless

the airport or airport environment can be clearly seen from this altitude [5, p. 168].

Missed Approach - A missed approach will be conducted if the pilot has descended

to the MDA and does not establish visual contact with the airport or airport envi-

ronment. The execution of a missed approach “occurs when your cockpit workload

19

is at a maximum,” thus this procedure must be studied in the cruise phase of flight;

before starting the instrument approach [5, p. 216].

Non-Directional Beacon - (NDB) An electronic navigation aid that provides naviga-

tion fixes or homing points using a low-frequency transmitter [5, p. 124]. The NDB

used in this study was necessary for navigating the missed approach procedure.

Non-Precision Approach - A non-precision approach is an instrument approach where

vertical guidance to the runway (with the exception of the localizer performance with

vertical guidance procedure) is either lacking or not used. As such, the pilot keeps

the aircraft at or above MDA until the airport environment is clearly visible. This

approach contrasts to a precision approach in which the pilot may descend below the

MDA with the help of vertical guidance from a glide-slope indicator found on the

horizontal situation indicator (HSI). Pilots fly non-precision approaches for several

reasons: if their aircraft is not equipped with a glide-slope indicator; if they are un-

familiar with the destination airport; if obstructions proximal to the airport (trees,

towers, etc) make an approach closer to the ground impossible. If the pilot does

not see the airport environment at the MDA before reaching the missed approach

point (as indicated on the respective approach plate), he/she is required to execute

a missed approach.

4.2 Phase 1 - Software Development

4.2.1 Overview

The first phase of this project required the development of a Google Glass soft-

ware application called “glassware” that was installed natively on the device. The

general idea for displaying approach information such as mandatory altitude changes,

navigation radio frequencies, headings, etc. to the pilot via Google Glass entailed

20

constant querying of the plane’s current GPS location and comparing this with in-

structions taken from a traditional IAP. More specifically, the aircraft’s latitude,

longitude, and altitude were constantly sent from the simulator to Google Glass and

parsed by the glassware application. During the software development phase, the

instructions from the traditional IAP were georeferenced and converted into code,

allowing the application to use algorithms that displayed information relevant to the

aircraft’s location. The display of this information was carried out in the form of

periodic push notifications. Attempting to satisfy Google’s strict anti-distraction

protocol, Google Glass’ display remained OFF by default until new information be-

came available, or if the pilot had committed an error. To do so, the screen would

turn ON again with a chime sound, deliberately attempting to capture the pilot’s

attention. After remaining ON for an allotted reading time of 15-20 seconds, the

screen turned OFF until, once again, newer information became available.

Due to time constraints, only one instrument procedure was selected for this

study. The ILS or LOC 08R approach to George Bush Intercontinental (KIAH) was

chosen due to the relatively large amount of required step-down fixes published on

the procedure. During the IAP selection process, many of the IAPs reviewed had

between one and three step-down fixes while the KIAH approach required six. Thus,

KIAH was a more challenging approach, due to the fact that more step-down fixes

increase the possibility of error, and keep the pilot’s workload high throughout the

entire procedure. Each step-down fix was located at a real-world geographic location.

Thus, as the aircraft flew towards one of these locations, instructions related to that

position on the IAP would be displayed on screen. When the aircraft intercepted

this waypoint, the glassware application would change the information displayed to

reflect the instructions at the next upcoming waypoint.

21

Figure 4.1: Each figure on the right represents what was presented on Glass’ display
based on the aircraft’s position in relation to the instrument approach plate (left).

22

4.2.2 Breakdown of the Glassware Application

Taking a closer look at the glassware application, figure 4.1 presents “screenshots”

of Google Glass’ display, representing what the pilots saw at different locations along

the approach procedure. In the upper right of figure 4.2, a box serves as a repre-

sentation of what a pilot would see while flying with Google Glass. The green 7000

represents the step-down altitude of the upcoming waypoint, when compared to the

approach chart, that the aircraft needs to be at or above. The color green represents

that the aircraft’s actual altitude is indeed at or above this number. The line of

text beneath the 7000 represents the respective step-down altitude at the waypoint

after the upcoming waypoint. While flying in instrument meteorological conditions

(IMC), it is always important to remain one step ahead of your aircraft, and this

line accomplishes that by providing the information of the second closest waypoint

in advance. The numbers on the bottom left of the display represent course direction

and frequency information, while the lower right provides a real time indication of

the aircraft’s distance from the airport.

If the aircraft were to descend below the minimums of the upcoming step-down

waypoint, the display would turn on and an alarm chime would sound. Depending

on the severity of the violation, the colors on the display would be either yellow

or red, as depicted in figure 4.3. Yellow was shown when the aircraft’s altitude

exceeded 100’ - 200’ below minimums, symbolizing a mild warning for the pilot to

stop descending. The screen would turn red when the aircraft descended 1000’ or

more below minimums and symbolized that the pilot should ascend immediately.

This margin of error decreased, of course, as the minimum required altitudes became

lower to the ground elevation.

23

Figure 4.2: A representation (upper right) of what a pilot would see while flying with
Google Glass.

Figure 4.3: Display colors. Green = good; Yellow = warning to stop descending and
fix altitude; Red = ascend immediately to avoid danger.

24

4.2.3 Development Lifecycle

Attempting to create a robust, accurate, and relevant prototype, the glassware

was developed using an accelerated spiral software development lifecycle. The spiral

model involves the end-user in each iteration of the software, which reduces the

chances of misunderstandings and increases the accuracy of the software’s content

[9]. Beginning with a storyboard, working prototypes were iteratively built using

Google Glass and a MacBook Pro running XPlane Flight Simulator. The details of

the connection between Google Glass and XPlane are discussed later in the chapter.

Each iteration of the software was tested and evaluated by two active duty Air Force

Strategic Airlift pilots, as well as a retired commercial airline pilot.

4.2.4 Technology

The glassware was written in the Java programming language and deployed onto

Glass using the Android Studio integrated development environment. The software

adheres in part to the “object oriented” programming paradigm, in which objects,

like “airports,” are defined and generalized into classes, such as an “Airport” class, in

order to perform reusable actions with multiple instances of the object. This study,

however, utilized only one airport instance: KIAH. As such, the “Airport” class

contained fields for KIAH’s tower, ground, NDB, localizer, and ATIS frequencies, as

well as an approach course field that was populated with information referenced from

the ILS or LOC 08R IAP. Normally, such information should be stored and accessed

from a database, allowing every approach chart in existence to be used. However,

for this study, the “Airport” class took the place of a database which would have

been more time consuming to implement. Due to the fact that the simulator study

in phase two involved only one airport and one approach procedure, the amount of

data that needed to be stored was limited, thus the “Airport” class was an acceptable

25

solution. Memory was allocated for the class and the fields were populated using the

line of code below:

Airport KIAH = new Airport (29.993479, -95.360698, 109.7, 124.05, 125.35,

326, 87, 121.7);

The first two numbers are the latitude and longitude of KIAH’s localizer, respec-

tively. The third number (109.7) represents the localizer frequency. The fourth and

fifth numbers (124.05, 125.35) are the ATIS and tower frequencies. The sixth number

(326) is the frequency of the NDB needed for the missed approach procedure. The

seventh and eighth numbers (87, 121.7) are the approach course and ground control

frequency numbers.

4.2.5 Connectivity

The glassware could receive GPS data in three different ways. For iterative

development and testing with the MacBook Pro, the MacBook and Google Glass

were connected to the same WiFi network, as shown in figure 4.4. Simulated altitude,

latitude, and longitude data from XPlane on the MacBook were sent from port 49000

to the network via user datagram protocol. UDP allows computers on a shared IP

network to send messages, also known as “datagrams” to other computers on the

network, such as Google Glass. A “XPlane” class within the glassware application

contained methods to receive and parse this data.

For usage in a real airplane, the glassware could receive GPS information via

Google’s MyGlass application installed on an Android smartphone. The MyGlass

application tethers Glass to the smartphone over a wireless Bluetooth connection.

Once Google Glass is tethered to the smartphone, Glass can receive calls, messages,

26

Figure 4.4: Packets containing GPS data were sent from the computer to Glass via
UDP connection.

and even surf the internet using the phone’s cellular connection. Due to the fact that

Google Glass does not have an integrated GPS chip, the MyGlass application also

allows Glass to receive location data from the phone’s onboard GPS device. When

creating software for Google Glass, one can access the smartphone’s GPS data via the

Android application programming interface (API) with the LocationManager and

LocationProvider classes. This method was used several times in a real aircraft

to field test the software with subject matter experts. Figure 4.5 demonstrates this

connection.

Figure 4.5: An Android smartphone with location service enabled sends GPS data
over Bluetooth to Glass using the MyGlass application.

For the actual simulator study, Google Glass was connected to a full-size, full-

motion flight simulator made by Redbird Flight Simulations of Austin, Texas. The

27

simulator used Microsoft Flight Simulator X, which could output the simulated lat-

itude, longitude, and altitude data to a Bad Elf handheld GPS receiver using a

proprietary USB device from Redbird called Cygnus. In order to send this data to

the glassware, the Bad Elf was paired via Bluetooth with an Android smartphone

that had mock locations enabled through the developer settings. Enabling mock

locations overrode the phone’s onboard GPS chip, forcing it to only consider the

location information sent from the Bad Elf. Google Glass was then tethered via

Bluetooth to the smartphone using the aforementioned MyGlass application, and a

connection from the simulator to Glass was established. Figure 4.6 demonstrates

the flow of data from the FMX simulator to the study’s custom software on Google

Glass.

Figure 4.6: Data flow from the Redbird FMX flight simulator (1.) to the Bad Elf
GPS device (2.) to an Android smartphone (3.) and finally to Google Glass (4.).

4.3 Phase 2 - Flight Simulator Experimental Study

Google Glass with custom glassware application and a tablet displaying an IAP

were tested in Redbird FMX flight simulators at Solo Flight Training in Houston,

Texas and Redbird Flight Simulations in Austin, Texas. Figure 4.7 displays what

the simulator looked like inside of the cabin. Quantitative and qualitative results

28

gathered from the usage of Glass and the tablet were compared to assess the utility

of the device in the cockpit. Information from air traffic control was not provided;

air traffic control can act as a “safety net” for pilots, reminding them of possible al-

titude violations or course deviations. In order to shift the responsibility of avoiding

controlled flight into terrain onto the display devices, air traffic control was elimi-

nated. Therefore, the participants were instructed to fly a complete non-precision

approach as instructed on the tablet IAP or glassware application. A non-precision

approach was chosen due to the fact that these approaches have a five-fold greater

risk of controlled flight into terrain than a precision approach [3, p. 46].

Figure 4.7: In the cockpit of a Redbird FMX flight simulator, the pilot is using
Google Glass and the custom-made application.

29

4.3.1 Research Participants

Six IFR-certified pilots participated in the study and were voluntarily recruited

from the Texas A&M Flying Club of College Station, Texas, Solo Flight Training in

Houston, and Redbird Flight Simulations in Austin. All participants were proficient

IFR pilots and were comfortable flying in IMC. Two of the pilots were certified

instrument flight instructors and one was a retired Army combat helicopter pilot.

The others were experienced GA pilots. As expected, all participants were skilled

tablet IAP users, yet all were unfamiliar with Google Glass. All participants were

male, between the ages of 25 and 55, with a mean age of 45.

4.3.2 Flight Simulator Apparatus

The Redbird FMX flight simulator offered a full-sized airplane cockpit with 220-

degree wrap-around monitors, realistic controls and avionics, aircraft seats, and a full-

motion platform capable of pitch, yaw, and roll. The simulator’s instrument panel

could be customized with interchangeable avionics to reproduce an accurate cockpit

of many different aircraft. As such, the simulator was set up as a Piper Arrow, which

is a single engine aircraft commonly used as a flight trainer. Steam gauges (figure

4.8) were chosen as the avionics of choice instead of the more modern glass panel

display system. Steam gauges are round instruments that display heading, altitude,

airspeed, attitude, and rate of turn and climb, and are usually grouped together

on the instrument panel in an arrangement known as the “six pack” or “basic-t.”

Historically, “steam gauges have been the norm, and instructional techniques have

been optimised for steam gauges,” and all of the participants were familiar with them

[17, p. 62].

30

Figure 4.8: The steam gauge “six pack,” similar to the instrumentation used in the
experiment.

4.3.3 Experimental Design

The utility of Google Glass in the cockpit was tested and compared to that of an

electronic tablet-based IAP as a between participants experiment. Three conditions

were designed that involved the usage of these devices during two non-precision

instrument approaches. In the first condition, pilots #1 and #4 flew both approaches

using only the tablet-based IAP. This condition established the experimental control,

due to the fact that tablet-based IAPs are currently quite popular among GA pilots.

The second condition had pilots #2 and #5 fly the approaches only with Google

Glass. Finally, the third condition required pilots #3 and #6 to fly with both Google

Glass and the tablet-based IAP. Every pilot, regardless of device used, flew a simple

practice approach with their respective device(s). A visual representation of this can

be observed in table 4.1.

A between-participants experiment was chosen in favor of a within-participants

experiment for several reasons. Firstly, each scenario occupied roughly 30 minutes of

31

Pilot # Practice Flight 1 Flight 2 Condition

Pilot 1 P Scenario A Scenario B* Tablet
Pilot 2 P Scenario B Scenario A* Glass
Pilot 3 P Scenario A Scenario B* Both
Pilot 4 P Scenario B Scenario A* Tablet
Pilot 5 P Scenario A Scenario B* Glass
Pilot 6 P - Scenario A* Both

Table 4.1: Between-participants flight simulator study. P = Practice Scenario; * =
Scenario + Missed Approach. Note the missing scenario for pilot #6. This pilot was
mistakenly instructed to complete the practice scenario using the wrong device, thus
results from the first flight were disregarded.

the participants’ time. If each pilot flew all three conditions, as a within-participants

experiment requires, the study would have taken one and a half hours, plus an

additional ten-15 minutes for the practice scenario for each pilot. This duration was

neither in the time budget of the study nor of the participants. In addition, a longer

experiment runs the risk of fatiguing the participants, where “performance in the

later trials is worse than those on the earlier ones because the participant is either

tired or bored” [23, p. 56]. As such, the between-participants method allowed the

study to be limited to one hour for each participant. Secondly, a between-participants

study may have avoided noticeable “carry over” effects that a within-participants

study may have provoked as the participant switched from one device to another.

For example, a study where the participant would have used Google Glass first and

the tablet IAP second might have produced different results than using the tablet

first and Glass second. Indeed, everyone has different levels of confidence and prior

knowledge with new technologies, thus the difference in performance due to the order

of devices used may not have been attributable to the devices themselves [23, p. 52].

As stated before, every pilot flew a practice scenario “P” before beginning with

the experimental scenarios. The practice scenario’s role was to familiarize the pilot

32

with the simulator and their assigned IAP device. The practice scenario did not

involve the same approach flown in the experimental scenarios.

The overall backstory behind each experimental scenario was as follows: the pilot

was cleared for a different approach than what they were expecting to fly during the

study. However, as they neared the airport, the wind and weather conditions at

the airport had suddenly changed, thus they were told to use another approach

(RWY 08R) instead. According to the subject matter experts consulted during

the glassware’s development, such a situation is uncommon in real life. However,

these situations can indeed occur, and thus require a pilot to quickly learn and

adapt to a new approach procedure. Due to the aircraft’s proximity to the airfield,

the pilot’s workload increases as he/she concentrates on briefing themselves of the

new procedure. Both experimental scenarios used the same ILS or LOC RWY 08R

procedure for the non-precision approach into KIAH. In the attempt to prevent the

pilot from memorizing the procedure after the first flight, thus avoiding the “learning

effect,” each scenario started at a different geographic location and altitude. In

addition, the RWY 08R procedure was specifically chosen for this study due to the

large amount of step-down fixes published on the chart.

Scenario A began with the aircraft in dense clouds, 30 nautical miles northwest of

the airport at 8000 feet mean sea level (msl). The thick cloud layer extended down

to 1100’ msl. The weather below 1100’ msl was rainy with a visibility of two statute

miles. Once the aircraft intercepted the localizer path at the LASSY initial approach

fix, gusting crosswinds from the north at 15-20 knots made it more challenging for the

pilot to remain on course, thus increasing the amount of effort expended to simply

fly the aircraft. Figure 4.9 provides a top-down view of scenario A’s flightpath.

Scenario B began similarly with the aircraft in dense clouds, 30 nautical miles

southwest of the airport at 6000’ msl. The cloud layer and breakout altitude of

33

Figure 4.9: Scenario A. The yellow aircraft symbol represents the starting position
of the aircraft.

1100’ remained the same. The wind speed and gusts also remained the same, but

blew from the opposite direction. The 6000’ starting altitude was 1000’ below the

minimums of the first waypoint, LASSY, thus the amount of time needed by the

pilot to notice and correct this issue was recorded. Figure 4.10 provides a top-down

view of scenario B’s flightpath.

Figure 4.10: Scenario B.

34

Table 4.1 displays a “*” behind the second scenario of every participant. This

denotes a required missed approach at the end of the respective scenario. Unbe-

knownst to the pilot, weather conditions at the airport were set to be inconducive to

a safe non-precision approach, thus the pilot needed to execute a missed approach.

Instructions for the missed approach procedure were present on both the tablet IAP

and Google Glass application. Assigning the missed approach to the second flight of

every participant effectively created an experimental control for this procedure. If in

fact a “learning effect” was present from the first to second flight, every pilot would

have at least initiated the challenging missed approach with the same “experience”

level.

4.3.4 Procedure

The six pilots were tested over a period of three non-consecutive days. Originally,

the study was planned for two consecutive Fridays, but a last minute cancellation

of one of the participants precipitated the need for a third day. Upon arrival at the

testing center, the participants were introduced to the experiment and their assigned

IAP device(s). After signing a consent form, they completed a short practice scenario

in the simulator, followed by either scenario A or B. For the pilots using Google

Glass, the practice scenario ensured that they could read Glass’ screen without any

difficulty. The pilots using the tablet positioned the device either on their lap or on a

tablet holder, located to the lower left of the instrument panel. The experimenter was

present in the cockpit at all times during the study, but would only answer technical

questions that otherwise may have hindered the pilot from completing the scenario.

After the first flight, the participants were given a short questionnaire regarding

their perceived level of workload and proficiency while flying the approach with their

assigned IAP device(s). During this time, they were also given the chance to relax

35

for at least ten minutes. Afterwards, the pilots completed the second flight scenario.

At the conclusion of the study, the participants were similarly questioned about the

second flight, and were given a final questionnaire regarding their opinion of the IAP

device and, if Google Glass was used, their suggestions for overall improvement of

the technology for implementation in general aviation.

4.3.5 Measures

Video recordings of the pilots documented the amount of heads-down times

(glances) the pilot made in order to read information from the tablet IAP. In addi-

tion, the duration of the glance was also recorded. These recordings were obviously

more important for the analysis of pilots #1, #3, #4, and #6, due to the fact that

pilots #2 and #5 did not use a tablet IAP and thus, did not need to look down. Be-

cause the pilots were asked to use the think-aloud protocol as they navigated, audio

recordings documented their decisions made as they progressed along the approach

procedure. Flight performance data such as minimum altitude observance and nav-

igational accuracy was recorded by a web application called Cloud Ahoy, which was

installed on the Android smartphone receiving GPS data from the simulator. Using

this data, Cloud Ahoy recorded every step of the flight onto a debriefing website. An

example of this can be seen in the following figure:

36

Figure 4.11: Flight debriefing in Cloud Ahoy. The yellow aircraft symbol repre-
sents the current position of the airplane along the flight path. The bubbles labeled
“DPLOY,” “JELLI,” etc. represent the step-down fixes on an IAP and their respec-
tive geographic locations.

37

5. RESULTS

5.1 Summary of Hypothesis

It was hypothesized that the heads-up nature of Google Glass could supplement

current paper or tablet instrument approach-display methods. More specifically, it

was expected that Google Glass could reduce pilot heads-down time and distraction

when used in conjunction with the tablet IAP. In addition, based on previous NTSB

reports of controlled flight into terrain by pilots misinterpreting their approach charts,

it was predicted that the pilots using Google Glass would make less altitude-related

mistakes when compared to the usage of a tablet IAP by itself.

Of the six participants, four were completely confident that they had accurately

and safely flown both experimental scenarios with their respective IAP device(s). In

addition, only one mentioned that he had been reading approach information for too

long during both scenarios. On average, it took the participants around 25 minutes to

complete each scenario. Despite the relative difficulty of the scenarios, there were no

accidents due to weather, unrecoverable pilot error, or controlled flight into terrain.

5.2 Heads-Down Time

5.2.1 Number of Glances

The number of glances, which represent the number of times the pilots looked

away from cockpit instrumentation in order to read instrument approach instructions

(with lower numbers being better), was affected by the device(s) used. Results from

the Google Glass-only condition have been omitted from this section due to the fact

that the users never needed to look down in order to read navigational instructions.

For the other conditions, each glance was tallied regardless of the duration. The

38

pilots in the tablet-only condition looked down an average of 59 times, while those

in the tablet + Google Glass condition looked an average of 22 times. However, in

chapter 4 it was stated that one of the four scenarios in the tablet + Glass condition

was omitted due to a mistake made during the practice scenario preceding it. As

a result, one of the pilots, pilot #6, effectively had only one valid scenario count

towards the final results. Figure 5.1 provides a graphical representation of these

results.

Figure 5.1: Number of glances

5.2.2 Average Duration Per Glance

The average duration per glance was slightly shorter within the tablet-only con-

dition than the tablet + Google Glass condition. This duration was calculated from

39

when the pilot began looking at the tablet IAP until he resumed his scan of the

instrument panel, and is graphically depicted in figure 5.2. Indeed, the pilots in

the tablet-only condition spent an average of 2.11 seconds per heads-down occur-

rence, while the tablet + Google Glass group spent an average of 2.54 seconds per

occurrence.

Figure 5.2: Average duration per glance

5.2.3 Average Heads-Down Time

The average heads-down time represents the average amount of time that the

pilots in the respective condition spent heads-down, reading instructions from the

tablet IAP. While the tablet-only condition produced a shorter average heads-down

time per glance, as seen in figure 5.3, the the overall average of the heads-down time

40

for this condition was still 100% longer than the tablet + Google Glass condition.

This was due to the higher average number of glances, as shown in figure 5.1.

Figure 5.3: Average heads-down time

5.2.4 Number of Glances Per Minute

The number of glances per minute was calculated by breaking the approach course

into seven segments. Each segment represented the duration of flight between each

step-down fix. A 2 x 2 x 7 mixed-model analysis of variance was performed using

two display conditions (tablet and tablet + glass), two scenarios (A and B), and the

aforementioned seven time segments. Table 5.1 provides a visual representation of

this analysis. The effects of the displays on glances per minute were treated as fixed

factors and between-subjects; each display represented independent “fixed” variables,

41

and each pilot used only one type of display. The effects of the scenarios were treated

similarly as fixed factors, yet labeled as within-subjects, for the scenarios were flown

by every participant. Finally, the effects of time were also considered as fixed factors

and within-subjects. The mixed-model ANOVA showed that there was a large mean

difference between the two display conditions, as well as a large variability across the

seven time segments. However, due to the small sample size of participants and large

amount of the variability of means, the p-values never reached conventional levels of

statistical importance (α = 0.05) for either condition (p>α). Despite the results, the

pattern of means for glances per minute and display does suggest that the usage of

Google Glass might lead to fewer downward glances throughout the approach. This

is represented in figure 5.4, in which the tablet-only condition returned an expected

mean of 2.37, while the tablet + Google Glass condition returned .8119.

Source Deg. of Freedom Sums of Squares Mean Square F-ratio P-value

Intercept 1 142.734 142.734 47.668 0.0203
Display 1 25.4904 25.4904 8.5129 0.1001
Pilot 2 5.98865 2.99433 2.0392 0.1441
Scenario 1 0.08868 0.08868 0.0604 0.8072
Time 6 18.4128 3.06881 2.0899 0.0772
Error 38 55.7992 1.46840 - -
Total 48 109.118 - - -

Table 5.1: Mixed-model ANOVA. 2 display x 2 scenario x 7 time.

Interestingly, it was also observed with the bi-modal distribution in figure 5.5 that

time periods #1 and #4 (Start-DPLOY and REIGN-EELPO) produced the largest

amount of glances per minute. More glances per minute during the beginning of

the flight made sense, due to the fact that the pilots were briefing themselves of

the approach information. However, the peak of expected means during the REIGN-

42

Figure 5.4: Effects of display on glances per minute

Figure 5.5: Effects of time on glances per minute. The pattern of means suggests
that there were two times during the scenarios that required the most glances per
minute.

43

EELPO time segment (#4) was unexpected. This could have resulted from the pilots

preparing themselves for reaching the final approach fix located in the following time

segment #5 (MATON). The final approach fix in this study was 5.6 nautical miles

from the airport and was represented on the IAP by a small cross on the side-view

of the approach course. According to the subject-matter experts consulted during

the software development phase, it is important to have gear, flaps, and airspeed set

for landing when reaching this point. In order to determine the actual reason behind

the peak of expected means in period #4, a study with more participants would be

needed.

5.3 Flight Performance

5.3.1 Altitude Violations Per Scenario

The number of instances when the aircraft descended below minimum altitude

requirements was recorded from all conditions. At higher altitudes (7000’ - 4000’), a

deviation less than 200’ below minimums was not recorded, while at lower altitudes

(3000’ - 2000’), a deviation of less than 100’ was similarly ignored. These “buffers”

represented margins of error suggested by the subject matter experts during the

glassware’s iterative development phase. At the minimum descent altitude, however,

no deviations were tolerated. Despite the fact that over half of the participants re-

ported being confident that they had correctly and accurately flown each scenario, a

closer look at the altitude violations revealed that everyone, regardless of condition,

had descended below required minimums at least once throughout the entire exper-

iment. A total of four violations occurred in the tablet-only condition, nine in the

Google Glass-only condition, and four in the tablet + Google Glass condition. As

seen in figure 5.6, the tablet-only condition committed an average of one violation

per scenario; the Glass-only condition committed two, and the tablet + Glass con-

44

dition committed 1.3. Due to the fact that one of the four scenarios in the tablet +

Glass condition was omitted from the final results, more violations in this condition

were possible, thus the reported number of four serves as the least amount of possible

violations in this condition.

Figure 5.6: Altitude violations per scenario

5.3.2 Average Reaction Time Per Altitude Violation

The average reaction time, as shown in figure 5.7, represents the average amount

of time per violation that it took the pilots to realize their aircraft’s incorrect altitude

and subsequently ascend within or above the aforementioned “buffers.” The slowest

reaction time came from the tablet-only condition at 1 minute and 33 seconds per

violation. A faster reaction time was recorded from the Google Glass-only condition

45

at 23 seconds. The quickest reaction time came from the tablet + Google Glass

condition at 19 seconds. Once again, due to the omitted scenario in the tablet

+ Google Glass condition, this time serves as an accurate prediction of the actual

average reaction time in this condition. Despite the slight differences between the

reaction times of the Google Glass-only and tablet + Google Glass conditions, it is

believed that the devices themselves had little affect on these results. Instead, the

differences can more likely be attributed to the performance of the pilots themselves.

Figure 5.7: Average reaction time per violation

5.3.3 Ascent Time to 7000’ in Scenario B

Ascent time to 7000’ in scenario B represents the amount of time it took the

participants to ascend from the starting altitude of 6000’ to the published required

46

altitude of 7000’, before arriving at the first waypoint, LASSY. Both pilots in the

tablet-only condition never ascended to 7000’ feet. In the Google Glass-only con-

dition, pilot #2 took 46 seconds to ascend to 7000’, while pilot #5 took 2 minutes

and 26 seconds. In the tablet + Google Glass condition, only one measurement was

recorded, for the omitted scenario of pilot #6 contained the results in question. As

such, pilot #3 took 2 minutes and 18 seconds to ascend. It is important to note

that the accuracy of this test, in aviation terms, could easily be discounted. Indeed,

pilots typically descend from an enroute structure to a waypoint or step-down fix on

an approach chart; they usually do not expect to ascend to begin an approach. How-

ever, this test arguably served as a good measure for the real-time utility of Google

Glass or similar head-mounted devices that provide instructions or reminders in the

form of push notifications. In addition, it can be argued that many air accidents are

caused because the pilot was not “expecting” to have to do something, sometimes

this has been as simple as flying at a higher altitude. Every pilot was instructed to

fly the approach exactly as instructed on the IAP, thus any neglect thereof or lack

of double checking with the experimenter could be argued as a mistake. In addition,

consider a scenario where a pilot has briefed him/herself of a specific approach, only

to be told shortly before arrival that the expected runway has been closed. This

would precipitate the need for quickly selecting another runway, and thus, an alter-

nate approach procedure. Should this occur in real life, air traffic control will more

often than not vector the pilot to a new position and altitude, however this may not

always be the case. Thus, in order to correctly fly the new procedure, it is possible

that the pilot would need to ascend again to a new starting altitude.

47

5.4 Summary of Results

Despite the omitted scenario in the tablet + Glass condition, one could conclude

that a head-mounted device like Google Glass used in conjunction with a tablet

IAP reduces the amount of times a pilot must look down in order to read an IAP

while flying in IMC. Although the average heads-down time per occurrence from

the tablet-only condition was shorter, and no differences in the amount of violations

between the tablet-only and tablet + Glass conditions were recorded, the tablet-

only condition produced the longest reaction times when the pilot did indeed violate

minimum altitude requirements. For example, one of the pilots in the tablet-only

condition misread the IAP and began descending prematurely. With no altitude

warning provided by the tablet IAP, the pilot finally realized his mistake after 1

minute and 17 seconds into the descent; nearly 1000’ feet below the current required

altitude. According to Dismukes, et. al, “controlled flight into terrain is one of

the most common types of fatal [...] accidents,” and a frequent scenario thereof

“is crashing short of the runway while executing a non-precision approach requiring

stepdown fixes” [3, p. 46]. As such, this misinterpretation of the approach procedure

represents a real danger in aviation, especially when mountains, power lines, trees,

or tall buildings can greatly reduce the survivable margin of error. In addition, both

pilots in the tablet-only condition did not realize the need to ascend from 6000’ to

7000’ in the beginning of scenario B. Every other participant who flew with Google

Glass ascended quickly after starting this scenario.

The participants in the Google Glass-only condition committed more altitude

violations than the other two conditions combined. Although the reaction time with

Google Glass was shorter and thus less “serious” violations were committed, one

of the participants in this condition was doubtful about his flight performance and

48

adherence to the approach procedure. Upon further questioning, this concern was

partially due to the glassware’s linear presentation of information. Both pilots who

flew in this condition stated that they wanted to see all of the IAP information

before starting the approach, just like they could when flying with a traditional

tablet or paper IAP. This makes sense, due to the fact that pilots typically attempt

to memorize as much of the information on the IAP as possible before starting the

procedure. After completing the study, both participants mentioned that Google

Glass was not a robust replacement for the tablet IAP, but would offer an excellent

form of redundancy for pilots when used in conjunction with an electronic or paper

IAP.

Due to these results, one may argue that Google Glass represents another “slice

of cheese” in James Reason’s swiss cheese model. The swiss cheese model suggests

that “barriers in the system (the slices themselves) are intended to prevent errors

that result in [...] adverse events” [24]. In this study, these barriers, or defenses, are

the pilot’s experience, cockpit instrumentation, and preparedness for the approach.

According to Reason, multiple failures of the barriers “must be aligned for any ad-

verse events to occur” [24]. Thus, the study’s weather conditions, and the approach’s

difficulty and time sensitive nature were designed to exploit the flaws in each of these

layers of “cheese.” As such, Google Glass represents one more of these barriers, essen-

tially forming a safety net that could prevent a common mode failure when the pilot,

although experienced, has forgotten to cross-check cockpit instrumentation with the

approach instructions due to high levels of workload from the last-minute nature or

difficulty level of the approach. Air traffic control, although omitted from this study,

forms another “slice,” yet as as seen with the December 1996 Learjet crash, they can

also fail to notify the pilot in enough time (or at all).

49

6. CONCLUSION AND FUTURE PLANS

Due to air accidents in the past involving prolonged heads-down time and the

misinterpretation of traditional IAPs, this study aimed to develop a robust and

unobtrusive software application for Google Glass that attempted to reduce pilot

workload, distraction, and the danger of controlled flight into terrain for pilots ap-

proaching an airport in IMC. The current lack of scholarly publications related to this

type of research offered the chance for the thesis to pioneer something that not many

had tried before. Therefore, a case study with six IFR-certified pilots was conducted

in a full-sized, full-motion flight simulator in order to compare the heads-down time,

and number and duration of step-down altitude violations made by pilots using ei-

ther an electronic IAP on a tablet, Google Glass with custom approach software, or

a combination of the two while conducting a non-precision localizer approach. The

experimental study, however, was not carried out perfectly. Due to a mistake made

during a practice flight in the tablet + Google Glass condition, the results of the

following experimental scenario were omitted from the paper. Unfortunately, this

lead to an unbalanced experiment with incomplete results from the tablet + Google

Glass condition. Despite the imbalance, the results have shown that the usage of

Google Glass and a tablet-based IAP together help pilots fly a safer approach when

compared to the usage of a tablet-based or paper IAP alone. More specifically, pilots

using Google Glass during an approach had a quicker reaction time when they did

indeed commit an altitude violation, and the total heads-down time was drastically

reduced, allowing them to focus more on their scan of cockpit instrumentation.

50

6.1 Glassware Revisions

As expected, the qualitative data recorded from the two participants in the Glass-

only condition provided valuable feedback that would make the development of a

more precise iteration of the glassware application possible. For example, both pilots

mentioned that they were missing the morse code identifiers that accompany local-

izer, non-directional beacon, or VHF Omnidirectional Range navigation frequencies

found on the standard IAP. The morse code identifiers, as shown in figure 6.1, are

simply morse code symbols that allow the pilot to confirm that they have input the

correct frequency into their navigation radio. Indeed, after dialing in a frequency,

the radio plays back the audible morse code beeps, allowing the pilot to compare

them with the symbols printed on the IAP. In addition, the participants mentioned

that it is generally a good idea to have at least the first two steps of the missed

approach procedure memorized before crossing over the final approach fix. The final

approach fix is located four to seven miles from the airport and represents when the

aircraft may either intercept the glide slope (for a precision approach) or descend to

the MDA (for a non-precision approach).

Figure 6.1: I-IAH localizer frequency with morse code identifier.

In addition, both pilots mentioned that they wanted to receive the approach

course, minimum descent altitude, and localizer frequency as soon as they started

the flight scenario. Indeed, the experimental version of the glassware displayed the

51

approach course and localizer frequency only when the aircraft flew within five miles

of the first waypoint, LASSY; after roughly six minutes after the start of the flight.

In addition, the minimum descent altitude was displayed towards the end of the

approach when it became most relevant to the pilot. Despite multiple iterations

with the subject matter experts during the glassware’s development, the participants

felt that these items were still displayed too late, thus contributing to their lack of

confidence while flying the approach and trust in the glassware. The pilots flying in

the tablet + Glass condition did not notice this shortcoming. If another study could

be conducted with these revisions, perhaps the results obtained in the Glass-only

condition would be more favorable to the usage of the technology as a stand-alone

device.

6.2 Future Directions

Since the beginning of the study, Google Glass has become a “moot” point in the

gadget world. It was expensive ($1500), imposing, and poorly marketed. In addition,

most of the apps developed for Google Glass by the “Explorers” program were not

innovative enough; they accomplished nothing more than what one could already

do with a smartphone. However, the overarching and future-oriented goal of this

study was not simply to focus on building content for Glass. Instead, the goal was

to explore what could be done with novel HMD technology to improve the current

and fallible instrument approach system. Should the HMD prove itself useful in a

potentially dangerous and high-stress situation, then the methodology of displaying

time-sensitive and important information on the device could be further applied to

future projects in several ways; to forthcoming heads-up technology like Microsoft’s

HoloLens, or to the enrichment of current tablet electronic flight bags.

52

6.2.1 Tablet-Based Electronic Flight Bag

This study could support the enrichment of current commercial over-the-shelf

EFBs that are becoming increasingly popular in general and commercial aviation.

All of these applications offer a wide range of safety-oriented features, such as pop-up

notifications when other air traffic is in the vicinity, when weather conditions have

changed, or when runways at destination airports have closed. Thanks to the study,

another similar feature could be added that resembles the glassware application’s

method of displaying simplified information and warnings based on real-time GPS

location. A similar wearable solution has been released by Hilton Software, devel-

opers of the WingX Pro tablet EFB. They have developed a Pebble smartwatch

version of their WingX software that provides vibration feedback based on certain

pre-defined conditions. When tethered via Bluetooth to a tablet running the WingX

tablet software, the watch vibrates when an instrument approach timer has expired,

when passing over a step-down altitude waypoint, when violating a pre-selected min-

imum altitude, or when descending below 1000’ of the destination’s field elevation

[13]. However, the altitude warning with the smartwatch is not automatic, leaving

room for error should the wearer program in the wrong altitude. Figure 6.2 displays

a wireframe of what this thesis-inspired information display feature could look like.

Based on GPS location, small pop-up messages could highlight relevant information,

reducing heads-down time and the amount of data that the pilot needs to remember.

6.2.2 Microsoft HoloLens

At the time of this writing, the upcoming HoloLens from Microsoft promises

seamless integration of the digital and real worlds, allowing interactions with spatial

representations of people, objects, and information. The device is a completely self-

contained computer and, unlike Google Glass, does not rely on a connection to a

53

Figure 6.2: A hypothetical alert and notification represented on a tablet IAP.

54

smartphone or any other computer. Worn on the user’s head, the HoloLens “uses a

novel holographic display [...] that can trick the eye into perceiving 3-D objects,” and

“sensors in the headset allow the device to figure out how to present virtual objects so

they fit in with the real world” [25]. Essentially, a HoloLens wearer can walk around

a hologram, viewing and manipulating it from any angle. In addition, HoloLens

uses cameras to track eye and hand movements, allowing the user to interact with

information via hand gestures. Using the results from this thesis, an IAP application

for the HoloLens could be developed that places approach information in the 3-D

space of a cockpit. The pilot could pick and choose what information he/she needs

from an IAP and set them “virtually” in front of the instrument panel with a simple

hand movement. Should a piece of information become irrelevant, another swipe of

the hand could knock it away from view. In addition, an alarm system, much like

the one this thesis’ glassware featured, should be built into the software. Indeed, the

thesis showed that such an alarm can quickly remind pilots of errors, allowing for a

quick response time in correcting the error. Imagine a scenario with the HoloLens,

for example, where the pilot accidentally brushes important 3-D floating textual

or graphical information out of his/her field of view. Should the pilot fail to realize

their mistake, the application would put the information back in the original location

with an audible or visual warning. Similarly, if the pilot forgets to place relevant

information in front of the instrument panel, the software could do so automatically.

55

REFERENCES

[1] Michelle Bassanesi and Gary Tindall. Heads up, heads down: The ipad and

its use in the general aviation cockpit. http://www.aviationplatform.com/

attachments/article/62/Bassanesi_Ipad.pdf, November 2011.

[2] John W Croft. Finding focus; texas company readies ’augmented reality’ for

general aviation cockpits. Aviation Week & Space Technology, 175(35):47–48,

October 2013.

[3] R Key Dismukes, Benjamin A Berman, and Loukia D Loukopoulos. The limits

of expertise: Rethinking pilot error and the causes of airline accidents. Ashgate

Publishing, Ltd., 2007.

[4] R Key Dismukes, Grant E Young, Robert L Sumwalt III, and Cynthia H Null.

Cockpit interruptions and distractions: Effective management requires a care-

ful balancing act. http://asrs.arc.nasa.gov/publications/directline/

dl10_distract.htm, December 1998.

[5] Federal Aviation Administration. Instrument Flying Handbook. Number AC

61-27C. Department of Transportation, 1980.

[6] Fredric S Fitzsimmons. The electronic flight bag: A multi-function tool for the

modern cockpit. Technical report, DTIC Document, 2002.

[7] Foreflight. Frequently asked questions. http://foreflight.com/support/

georef#56.

[8] Foreflight Mobile. Ds annotations plate on map. http://www.foreflight.

com/static/img/5.4/ds-Annotations-plate-on-map.png.

56

[9] Armando Fox and David Patterson. Engineering Software as a Service. Number

1.1.0. Strawberry Canyon LLC, July 2014.

[10] Garmin. Garmin pilot. https://buy.garmin.com/en-US/US/on-the-go/

apps/garmin-pilot-/prod115856.html.

[11] Christopher J Hamblin. Usability of mobile devices in the cockpit, 2004.

[12] Keith L Hiatt, Clarence E Rash, Eric S Harris, and William H Gilberry. Apache

aviator visual experiences with the ihadss helmet-mounted display in operation

iraqi freedom. Technical report, DTIC Document, 2004.

[13] Hilton Software. Wearable wingx: Wingx pro7 for pebble.

http://hiltonsoftware.com/pr/WingXPro7ForPebble-PressRelease.pdf, March

2014.

[14] Robert E Joslin. Human factors hazards of ipads in general aviation cockpits.

In Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

volume 57, pages 56–60. SAGE Publications, 2013.

[15] Hua Li, Xin Zhang, Guangwei Shi, Hemeng Qu, Yanxiong Wu, and Jianping

Zhang. Review and analysis of avionic helmet-mounted displays. Optical Engi-

neering, 52(11):110901–110901, 2013.

[16] Kristen K Liggett, John M Reising, Thomas J Solz, and David C Hartsock.

A comparison of military electronic approach plate formats. In Proceedings of

the Human Factors and Ergonomics Society Annual Meeting, volume 40, pages

15–19. SAGE Publications, 1996.

[17] Roneil S Lindo, John E Deaton, John H Cain, and Celine Lang. Methods of

instrument training and effects on pilots’ performance with different types of

57

flight instrument displays. Aviation Psychology and Applied Human Factors,

2(2):62, 2012.

[18] J. Mac McClellan. How to read approach charts. Flying Magazine, 119(5):84–91,

May 1992.

[19] Mark G Mykityshyn, James K Kuchar, and R John Hansman. Experimental

study of electronically based instrument approach plates. The International

Journal of Aviation Psychology, 4(2):141–166, 1994.

[20] National Transportation Safety Board. Ntsb identification: Nyc97fa194.

http://www.ntsb.gov/_layouts/ntsb.aviation/brief2.aspx?ev_id=

20001208X07226&ntsbno=NYC97FA194&akey=1.

[21] Donald A Norman and Tim Shallice. Attention to action. Springer, 1986.

[22] Stephen Pope. The future of aviation. Flying Magazine, 141(7):78–82, July

2014.

[23] Helen C. Purchase. Experimental Human-Computer Interaction. Cambridge

University Press, 32 Avenue of the Americas, New York, NY 10013-2473, USA,

2012.

[24] J Reason, E Hollnagel, and J Paries. Revisiting the swiss cheese model of

accidents. Journal of Clinical Engineering, 27:110–115, 2006.

[25] Tom Simonite. Microsoft’s hololens will put realistic 3-d people in your living

room. Computing news, MIT Technology Review, May 2015.

[26] Peter Skaves. Electronic flight bag (efb) policy and guidance. In Digital Avionics

Systems Conference (DASC), 2011 IEEE/AIAA 30th, pages 8D1–1. IEEE, 2011.

[27] Unknown. Great aviation quotes. http://www.skygod.com/cgi/search.pl.

58

APPENDIX A

GOOGLE GLASS SOFTWARE CODE

This program was written in the Java programming language by Eric Burke. The

software was written as a LiveCard application. Code snippets for the XplaneConnec-

tion.java file have been taken from Zubair Khan’s open-source Avare EFB software

and modified for usage in this study.

A.1 Airport Class

// Created by Eric on 01/11/14.

public class Airport

{

double locLatitude;

double locLongitude;

double locFreq;

double atisFreq;

double towerFreq;

double ndbFreq;

double gndFreq;

int appCrs;

public Airport(double locLatitude, double locLongitude, double

locFreq, double atisFreq, double towerFreq, double ndbFreq, int

appCrs, double gndFreq) {

this.locLatitude = locLatitude;

this.locLongitude = locLongitude;

59

this.locFreq = locFreq;

this.atisFreq = atisFreq;

this.towerFreq = towerFreq;

this.ndbFreq = ndbFreq;

this.appCrs = appCrs;

this.gndFreq = gndFreq;

}

public double getLocLatitude() {return locLatitude;}

public double getLocLongitude() {return locLongitude;}

public double getLocFreq() {return locFreq;}

public double getAtisFreq() {return atisFreq;}

public double getTowerFreq() {return towerFreq;}

public double getNdbFreq() {return ndbFreq;}

public int getAppCrs() {return appCrs;}

public double getGndFreq() {return gndFreq;}

}

A.2 LiveCard Service

package com.example.eric.approachlive;

import com.google.android.glass.media.Sounds;

import com.google.android.glass.timeline.LiveCard;

import com.google.android.glass.timeline.LiveCard.PublishMode;

import com.google.android.glass.timeline.GlRenderer;

import android.app.Activity;

import android.app.PendingIntent;

import android.app.Service;

60

import android.content.Context;

import android.content.Intent;

import android.graphics.Color;

import android.location.Criteria;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.media.AudioManager;

import android.opengl.EGLConfig;

import android.os.Bundle;

import android.os.Handler;

import android.os.IBinder;

import android.os.PowerManager;

import android.util.Log;

import android.widget.RemoteViews;

import android.opengl.GLES20;

import android.widget.Toast;

import java.io.IOException;

import java.io.InputStream;

import java.util.List;

import java.util.Timer;

import java.util.TimerTask;

/**

* A {@link Service} that publishes a {@link LiveCard} in the timeline.

*/

61

public class LiveCardService extends Service {

// Log tag

private static final String TAG = "ApproachLiveCardService";

// Live card and remoteviews on the card

private LiveCard mLiveCard;

RemoteViews remoteViews;

// Location Services

private LocationManager mLocationManager;

private List<String> mLocationProviders;

private String mLocationProvider;

private Handler mHandler;

// Declare GPS variables

double mDistNXT;

double mDistLOC;

double mDist;

double mEstablished;

private String mAltText;

private String mDme;

private String mAppCourse;

private String mLowerRightInfo;

private String mLowerLeftInfo;

private String mLowerUpLeftInfo;

private String mTowerFrequency;

62

private String nextInfo;

private String missedInfo;

private String underlineInfo;

// Classes

Airport kiah;

// XPlane Class

XplaneConnection XP;

// Waypoint active boolean values

public boolean ttoroActive = false;

public boolean bgbukActive = false;

public boolean lassyActive = false;

public boolean dployActive = false;

public boolean jelliActive = false;

public boolean reignActive = false;

public boolean eelpoActive = false;

public boolean matonActive = false;

public boolean sakcoActive = false;

public boolean kiahActive = false;

public boolean landActive = false;

public boolean missedActive = false;

// Waypoint reached boolean values

public boolean ttoroReached = false;

public boolean bgbukReached = false;

63

public boolean lassyReached = false;

public boolean dployReached = false;

public boolean jelliReached = false;

public boolean reignReached = false;

public boolean eelpoReached = false;

public boolean matonReached = false;

public boolean sakcoReached = false;

public boolean kiahReached = false;

// Push notification counter boolean value

private boolean counter = false;

private boolean altCounter = false;

private boolean screenTurnOff = false;

// XP data boolean value

public boolean xPlaneStarted = false;

// Use either GPS or Xplane data

public boolean xPlaneConnected = false;

@Override

public IBinder onBind(Intent intent) {

return null;

}

@Override

public int onStartCommand(Intent intent, int flags, int startId) {

if("TTORO".equals(intent.getAction()) && !ttoroActive) {

64

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

ttoroActive = true;

Toast.makeText(this, "TTORO selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("BGBUK".equals(intent.getAction()) && !bgbukActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

bgbukActive = true;

Toast.makeText(this, "BGBUK selected.",

Toast.LENGTH_SHORT).show();

65

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("LASSY".equals(intent.getAction()) && !lassyActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

lassyActive = true;

Toast.makeText(this, "LASSY selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

66

counter = false;

}

if("DPLOY".equals(intent.getAction()) && !dployActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

dployActive = true;

Toast.makeText(this, "DPLOY selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("JELLI".equals(intent.getAction()) && !jelliActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

67

resetWaypoints();

jelliActive = true;

Toast.makeText(this, "JELLI selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("REIGN".equals(intent.getAction()) && !reignActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

reignActive = true;

Toast.makeText(this, "REIGN selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

68

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("EELPO".equals(intent.getAction()) && !eelpoActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

eelpoActive = true;

Toast.makeText(this, "EELPO selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("MATON".equals(intent.getAction()) && !matonActive) {

69

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

matonActive = true;

Toast.makeText(this, "MATON selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("SAKCO".equals(intent.getAction()) && !sakcoActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

sakcoActive = true;

Toast.makeText(this, "SAKCO selected.",

Toast.LENGTH_SHORT).show();

70

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("KIAH".equals(intent.getAction()) && !kiahActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

kiahActive = true;

Toast.makeText(this, "KIAH selected.",

Toast.LENGTH_SHORT).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

71

}

if("LANDING".equals(intent.getAction()) && !landActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

landActive = true;

Toast.makeText(this, "DO YOU SEE AIRPORT ENVIRONMENT?",

Toast.LENGTH_LONG).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if("MISSED".equals(intent.getAction()) && !missedActive) {

counter = false; // This allows to switch from one to the next

without pushNot. problems

altCounter = false;

screenTurnOff = false;

resetWaypoints();

72

missedActive = true;

Toast.makeText(this, "MISSED APPROACH SELECTED.",

Toast.LENGTH_LONG).show();

// Start Xplane listener and receiver. If() allows starting XP

from any WP if !running.

if (!xPlaneStarted && xPlaneConnected){

xPlaneStarted = true;

this.XP = new XplaneConnection();

XP.start();

}

pushNotification(2);

}

if (mLiveCard == null) {

// Create live card object

mLiveCard = new LiveCard(this, TAG);

// Set rendering view of the live card

remoteViews = new RemoteViews(getPackageName(),

R.layout.live_card02);

// Can contain TextView, ImageView, etc

mLiveCard.setViews(remoteViews);

// Display the options MENU when the live card is tapped.

Intent menuIntent = new Intent(this,

LiveCardMenuActivity.class);

mLiveCard.setAction(PendingIntent.getActivity(this, 100,

menuIntent, 0));

mLiveCard.publish(PublishMode.REVEAL);

73

// Runs this live card every xxxx milliseconds

// mHandler = new Handler();

// mHandler.postDelayed(runnable, 2000);

// setup location manager

mLocationManager = (LocationManager)

getSystemService(LOCATION_SERVICE);

Criteria criteria = new Criteria();

criteria.setAccuracy(Criteria.ACCURACY_FINE);

mLocationProviders = mLocationManager.getProviders(criteria,

true /* enabledOnly */);

for (String provider : mLocationProviders) {

mLocationManager.requestLocationUpdates(provider,

1000, // update every 1 sec (1000 millisec)

0, // update every 1 meters

mLocationListener);

}

}

else {mLiveCard.navigate();}

return START_STICKY;

}

/*

private Runnable runnable = new Runnable() {

@Override

public void run() {

74

makeUseOfNewLocation(XP);

mHandler.postDelayed(this, 2000);

}

};*/

// listener for the location

private LocationListener mLocationListener = new LocationListener() {

@Override

public void onLocationChanged(Location location) {

makeUseOfNewLocation(location);

}

@Override

public void onProviderDisabled(String provider) {

}

@Override

public void onProviderEnabled(String provider) {

}

@Override

public void onStatusChanged(String provider, int status, Bundle

extras) {

}

};

protected void makeUseOfNewLocation(Location location) {

if (location != null) {

double GPSlatitude;

double GPSlongitude;

75

double GPSaltitude;

GPSlatitude = location.getLatitude();

GPSlongitude = location.getLongitude();

GPSaltitude = location.getAltitude() * 3.28;

/*

GPSlatitude = XP.xLat;

GPSlongitude = XP.xLon;

GPSaltitude = XP.xAlt;

*/

boolean established = false;

int currentMinimum;

int color = Color.BLACK;

// kiah airport information

kiah = new Airport(29.993479, -95.360698, 109.7, 124.05,

125.35, 326, 87, 121.7);

// Populate distance function

mDistLOC = distance(GPSlatitude, GPSlongitude,

kiah.getLocLatitude(), kiah.getLocLongitude());

// Convert doubles to strings

mAppCourse = getResources().getString(R.string.course_info,

kiah.appCrs);

mTowerFrequency = getResources().getString(R.string.tower_info,

kiah.getTowerFreq());

76

/*:::*/

/*:: Hardcoded KIAH check for ILS LOC APPROACH :*/

/*:::*/

if (lassyActive) {

mDistNXT = distance (GPSlatitude, GPSlongitude, 29.9919,

-95.8607); // Lat Long of LASSY

mDme = getResources().getString(R.string.lassy_info,

mDistNXT);

if (mDistNXT > 5.0 || mDistNXT < 5.0 && mDistNXT > 0.5) {

if (mDistNXT > 5.0){

mLowerLeftInfo =

getResources().getString(R.string.atis_info,

kiah.atisFreq);

}

else if (mDistNXT < 5.0 && mDistNXT > 0.5){

pushNotification(1);

mLowerUpLeftInfo =

getResources().getString(R.string.loc_info,

kiah.locFreq);

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

remoteViews.setTextColor(R.id.atisfreq, Color.CYAN);

remoteViews.setTextColor(R.id.locfreq, Color.CYAN);

}

mAltText = "7000";

77

underlineInfo = "_____________";

nextInfo = "7000 after LASSY";

if (GPSaltitude < 6800){

pushNotification(3);

if (GPSaltitude >= 6300){

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.YELLOW);

remoteViews.setTextColor(R.id.underline,

Color.YELLOW);

}

else if (GPSaltitude < 6300) {

color = Color.RED;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

remoteViews.setTextColor(R.id.underline,

Color.WHITE);

}

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

78

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

remoteViews.setTextColor(R.id.underline,

Color.GREEN);

}

}

else if (mDistNXT < 0.5 && mDistNXT > 0) {

counter = false;

pushNotification(1);

altCounter = false;

screenTurnOff = false;

lassyActive = false;

dployActive = true;

}

}

if (dployActive) {

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

mDistNXT = distance (GPSlatitude, GPSlongitude, 29.9924,

-95.7647); // Lat Lon of DPLOY

mDme = getResources().getString(R.string.dme_info, mDist);

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

79

mLowerUpLeftInfo =

getResources().getString(R.string.tower_info,

kiah.towerFreq);

remoteViews.setTextColor(R.id.locfreq, Color.CYAN);

remoteViews.setTextColor(R.id.atisfreq, Color.WHITE);

if (mDistNXT > 0.3) {

mAltText = "7000";

underlineInfo = "_____________";

nextInfo = "5000 after DPLOY at 21.2 DME";

if (GPSaltitude < 6800){

pushNotification(3);

if (GPSaltitude >= 6300){

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.YELLOW);

remoteViews.setTextColor(R.id.underline,

Color.YELLOW);

}

else if (GPSaltitude < 6300){

color = Color.RED;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

remoteViews.setTextColor(R.id.underline,

Color.WHITE);

80

}

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

remoteViews.setTextColor(R.id.underline,

Color.GREEN);

}

}

else if (mDistNXT < 0.3 && mDistNXT > 0) {

counter = false;

pushNotification(1);

altCounter = false;

screenTurnOff = false;

dployActive = false;

jelliActive = true;

}

}

if (jelliActive) {

81

mDistNXT = distance (GPSlatitude, GPSlongitude, 29.9927,

-95.68334); // Lat Lon of JELLI

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

mDme = getResources().getString(R.string.dme_info, mDist);

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

mLowerUpLeftInfo =

getResources().getString(R.string.tower_info,

kiah.towerFreq);

remoteViews.setTextColor(R.id.atisfreq, Color.WHITE);

remoteViews.setTextColor(R.id.locfreq, Color.WHITE);

if (mDistNXT > 0.3) {

mAltText = "5000";

underlineInfo = "_____________";

nextInfo = "4000 after JELLI 16.9 DME";

if (GPSaltitude < 4800){

pushNotification(3);

if (GPSaltitude >= 4500){

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.YELLOW);

82

remoteViews.setTextColor(R.id.underline,

Color.YELLOW);

}

else if (GPSaltitude < 4500){

color = Color.RED;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

remoteViews.setTextColor(R.id.underline,

Color.WHITE);

}

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

remoteViews.setTextColor(R.id.underline,

Color.GREEN);

}

}

else if (mDistNXT < 0.3 && mDistNXT > 0) {

counter = false;

pushNotification(1);

83

altCounter = false;

screenTurnOff = false;

jelliActive = false;

reignActive = true;

}

}

if (reignActive) {

mDistNXT = distance (GPSlatitude, GPSlongitude, 29.9929,

-95.6110); // Lat Lon REIGN

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

mDme = getResources().getString(R.string.dme_info, mDist);

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

mLowerUpLeftInfo =

getResources().getString(R.string.tower_info,

kiah.towerFreq);

remoteViews.setTextColor(R.id.atisfreq, Color.WHITE);

remoteViews.setTextColor(R.id.locfreq, Color.WHITE);

if (mDistNXT > 0.3) {

mAltText = "4000";

underlineInfo = "_____________";

nextInfo = "3000 after REIGN at 13.2 DME";

84

if (GPSaltitude < 3800){

pushNotification(3);

if (GPSaltitude >= 3500){

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.YELLOW);

remoteViews.setTextColor(R.id.underline,

Color.YELLOW);

}

else if (GPSaltitude < 3500){

color = Color.RED;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

remoteViews.setTextColor(R.id.underline,

Color.WHITE);

}

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

85

remoteViews.setTextColor(R.id.underline,

Color.GREEN);

}

}

else if (mDistNXT < 0.3 && mDistNXT > 0) {

counter = false;

pushNotification(1);

altCounter = false;

screenTurnOff = false;

reignActive = false;

eelpoActive = true;

}

}

if (eelpoActive) {

mDistNXT = distance (GPSlatitude, GPSlongitude, 29.9931,

-95.53576); // Lat Lon EELPO

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

mDme = getResources().getString(R.string.dme_info, mDist);

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

mLowerUpLeftInfo =

getResources().getString(R.string.tower_info,

kiah.towerFreq);

remoteViews.setTextColor(R.id.atisfreq, Color.WHITE);

86

remoteViews.setTextColor(R.id.locfreq, Color.WHITE);

if (mDistNXT > 0.3) {

mAltText = "3000";

underlineInfo = "_____________";

nextInfo = "2000 after EELPO at 9.2 DME";

if (GPSaltitude < 2900){

pushNotification(3);

if (GPSaltitude >= 2700){

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.YELLOW);

remoteViews.setTextColor(R.id.underline,

Color.YELLOW);

}

else if (GPSaltitude < 2700){

color = Color.RED;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

remoteViews.setTextColor(R.id.underline,

Color.WHITE);

}

}

else {

if (altCounter){

87

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

remoteViews.setTextColor(R.id.underline,

Color.GREEN);

}

}

else if (mDistNXT < 0.3 && mDistNXT > 0) {

counter = false;

pushNotification(1);

altCounter = false;

screenTurnOff = false;

eelpoActive = false;

matonActive = true;

}

}

if (matonActive) {

mDistNXT = distance (GPSlatitude, GPSlongitude, 29.99326,

-95.46647); // Lat Lon MATON

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

mDme = getResources().getString(R.string.dme_info, mDist);

88

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

mLowerUpLeftInfo =

getResources().getString(R.string.tower_info,

kiah.towerFreq);

remoteViews.setTextColor(R.id.atisfreq, Color.WHITE);

remoteViews.setTextColor(R.id.locfreq, Color.WHITE);

if (mDistNXT > 0.3) {

mAltText = "2000";

underlineInfo = "_____________";

nextInfo = "MDA 940 aft MATON 5.6 DME";

if (GPSaltitude < 1900){

pushNotification(3);

if (GPSaltitude >= 1700){

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.YELLOW);

remoteViews.setTextColor(R.id.underline,

Color.YELLOW);

}

else if (GPSaltitude < 1700){

color = Color.RED;

89

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

remoteViews.setTextColor(R.id.underline,

Color.WHITE);

}

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

remoteViews.setTextColor(R.id.underline,

Color.GREEN);

}

}

else if (mDistNXT < 0.3 && mDistNXT > 0) {

counter = false;

pushNotification(1);

altCounter = false;

screenTurnOff = false;

matonActive = false;

sakcoActive = true;

}

90

}

if (sakcoActive) {

mDistNXT = distance(GPSlatitude, GPSlongitude, 29.99336,

-95.40295); // Lat Lon SAKCO

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

mDme = getResources().getString(R.string.dme_info, mDist);

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

mLowerUpLeftInfo =

getResources().getString(R.string.ground_info,

kiah.gndFreq);

remoteViews.setTextColor(R.id.atisfreq, Color.WHITE);

remoteViews.setTextColor(R.id.locfreq, Color.CYAN);

if (mDistNXT > 0.3){

mAltText = "MDA 940";

nextInfo = "GEAR?";

underlineInfo = "";

if (GPSaltitude < 940){

pushNotification(3);

color = Color.RED;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

91

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

}

}

else if (mDistNXT < 0.3 && mDistNXT > 0) {

counter = false;

pushNotification(1);

altCounter = false;

screenTurnOff = false;

kiahReached = false;

sakcoActive = false;

kiahActive = true;

}

}

if (kiahActive) {

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

mDme = getResources().getString(R.string.dme_info, mDist);

92

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

mLowerUpLeftInfo =

getResources().getString(R.string.ground_info,

kiah.gndFreq);

remoteViews.setTextColor(R.id.atisfreq, Color.WHITE);

remoteViews.setTextColor(R.id.locfreq, Color.WHITE);

if (mDist > 1.0 || mDist < 1.0 && mDist > 0.3) {

if (mDist > 1.0) {

counter = false;

mAltText = "MDA 940";

nextInfo = "VDP at 0.9 DME";

underlineInfo = "";

}

else {

pushNotification(1);

mAltText = "MDA 940";

nextInfo = "You have reached the VDP";

underlineInfo = "";

}

}

else if (mDist < 0.3 && GPSaltitude >= 1200) {

counter = false;

pushNotification(1);

93

altCounter = false;

screenTurnOff = false;

kiahActive = false;

missedActive = true;

}

if (GPSaltitude < 940){

pushNotification(3);

color = Color.RED;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.WHITE);

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

}

}

if (landActive) {

mDist = distance (GPSlatitude, GPSlongitude,

kiah.locLatitude, kiah.locLongitude);

94

mDme = getResources().getString(R.string.dme_info, mDist);

mLowerLeftInfo =

getResources().getString(R.string.course_info,

kiah.appCrs);

mLowerUpLeftInfo =

getResources().getString(R.string.ground_info,

kiah.gndFreq);

mAltText = "Arrival";

nextInfo = "Airport elevation 96";

underlineInfo = "";

if (GPSaltitude > 1500){

pushNotification(3);

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.YELLOW);

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.latLonCoordinate,

Color.GREEN);

95

}

}

if (missedActive) {

mDme = "BVP 326";

mLowerLeftInfo = "HUB 117.1";

mLowerUpLeftInfo = "IAH 116.1";

mAltText = "";

nextInfo = "";

missedInfo = "Climb to 3000 on BVP NDB bearing 085 to MKAYE

INT and hold.";

if (GPSaltitude < 2900){

pushNotification(3);

color = Color.BLACK;

remoteViews.setTextColor(R.id.missedInfo, Color.YELLOW);

}

else {

if (altCounter){

screenTurnOff = false;

altCounter = false;

pushNotification(4);

}

color = Color.BLACK;

remoteViews.setTextColor(R.id.missedInfo, Color.GREEN);

}

}

96

else if (!missedActive){missedInfo = "";}

// Populate the layout display variables

remoteViews.setTextViewText(R.id.underline, underlineInfo);

remoteViews.setTextViewText(R.id.nextInfo, nextInfo);

remoteViews.setTextViewText(R.id.latLonCoordinate, mAltText);

remoteViews.setTextViewText(R.id.missedInfo, missedInfo);

remoteViews.setTextViewText(R.id.distance, mDme);

remoteViews.setTextViewText(R.id.atisfreq, mLowerLeftInfo);

remoteViews.setTextViewText(R.id.locfreq, mLowerUpLeftInfo);

remoteViews.setTextViewText(R.id.appcourse, mLowerRightInfo);

remoteViews.setInt(R.id.layout, "setBackgroundColor", color);

// display it

mLiveCard.setViews(remoteViews);

}

}

// Turn off all active waypoints

public void resetWaypoints() {

ttoroActive = false;

bgbukActive = false;

lassyActive = false;

dployActive = false;

jelliActive = false;

reignActive = false;

eelpoActive = false;

matonActive = false;

sakcoActive = false;

kiahActive = false;

97

landActive = false;

missedActive = false;

}

private double distance(double lat1, double lon1, double lat2, double

lon2) {

double theta = lon1 - lon2;

double dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) +

Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *

Math.cos(deg2rad(theta));

dist = Math.acos(dist);

dist = rad2deg(dist);

dist = dist * 60 * 1.1515;

dist = dist * 0.8684;

return (dist);

}

/*:::*/

/*:: This function converts decimal degrees to radians :*/

/*:::*/

private double deg2rad(double deg) {

return (deg * Math.PI / 180.0);

}

/*:::*/

/*:: This function converts radians to decimal degrees :*/

/*:::*/

private double rad2deg(double rad) {

return (rad * 180 / Math.PI);

}

98

public void pushNotification(int type){

PowerManager pm = (PowerManager) getSystemService(POWER_SERVICE);

PowerManager.WakeLock wl =

pm.newWakeLock(PowerManager.FULL_WAKE_LOCK |

PowerManager.ACQUIRE_CAUSES_WAKEUP |

PowerManager.ON_AFTER_RELEASE, "My Tag");

AudioManager audio = (AudioManager)

getSystemService(Context.AUDIO_SERVICE);

switch(type){

case 1:

if(!pm.isScreenOn() && !counter) {

// Always call setViews() to update the live card’s

RemoteViews.

mLiveCard.setViews(remoteViews);

// Move to the live card before turning on the screen

mLiveCard.navigate();

audio.playSoundEffect(Sounds.SUCCESS);

wl.acquire(20000);

counter = true;

}

else if (pm.isScreenOn() && !counter){

wl.acquire(10000);

audio.playSoundEffect(Sounds.SUCCESS);

counter = true;

}

99

break;

case 2:

if (pm.isScreenOn() && !counter){

// Always call setViews() to update the live card’s

RemoteViews.

mLiveCard.setViews(remoteViews);

// Move to the live card before turning on the screen

mLiveCard.navigate();

audio.playSoundEffect(Sounds.SUCCESS);

wl.acquire(20000);

counter = true;

//Log.d(TAG, "In push 2 and counter is " + counter);

}

break;

case 3:

if (!pm.isScreenOn()){

// Always call setViews() to update the live card’s

RemoteViews.

mLiveCard.setViews(remoteViews);

// Move to the live card before turning on the screen

mLiveCard.navigate();

audio.playSoundEffect(Sounds.ERROR);

wl.acquire(20000);

100

altCounter = true;

Log.d(TAG, "Keeping screen on");

}

break;

case 4:

if (pm.isScreenOn() && !screenTurnOff){

// Always call setViews() to update the live card’s

RemoteViews.

mLiveCard.setViews(remoteViews);

// Move to the live card before turning on the screen

mLiveCard.navigate();

wl.acquire();

wl.release();

screenTurnOff = true;

Log.d(TAG, "Turning screen off");

}

break;

}

}

@Override

public void onDestroy() {

// stop listening to location

if(mLocationProviders != null) {

mLocationManager.removeUpdates(mLocationListener);

}

if (xPlaneConnected){

101

// mHandler.removeCallbacks(runnable);

XP.disconnect();

}

if (mLiveCard != null && mLiveCard.isPublished()) {

mLiveCard.unpublish();

mLiveCard = null;

}

// System.exit kills everything on exit, freeing up the port

connected to Xplane.

System.exit(0);

super.onDestroy();

}

}

A.3 Xplane Connection

/*

Copyright (c) 2012, Apps4Av Inc. (apps4av.com)

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

* Redistributions of source code must retain the above copyright

notice, this list of conditions and the following disclaimer.

* * Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

102

*

* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF

THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

*/

package com.example.eric.approachlive;

import android.util.Log;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import org.json.JSONObject;

public class XplaneConnection {

public XplaneConnection() {}

private Thread mThread;

double xLon, xLat, xAlt;

DatagramSocket mSocket;

103

private static boolean mRunning;

// default port is 0

private int mPort = 49002;

private boolean mConnected = false;

final String TAG = "XplaneConnection";

public void start() {

Log.d(TAG, "Starting XPlane Listener");

mRunning = true;

/*

* Thread that reads Xplane

*/

mThread = new Thread() {

@Override

public void run() {

Log.d(TAG, "Xplane reading data");

byte[] buffer = new byte[1024];

/*

* This state machine will keep trying to connect to

* ADBS/GPS receiver

*/

while(mRunning) {

int red = 0;

/*

* Read.

*/

104

red = read(buffer);

if(red <= 0) {

if(!mRunning) {

break;

}

try {

Thread.sleep(1000);

} catch (Exception e) {

}

/*

* Try to reconnect

*/

//Log.d(TAG, "Listener error, re-starting listener");

disconnect();

connect(mPort);

continue;

}

String input = new String(buffer);

if(input.startsWith("XGPS")) {

String tokens[] = input.split(",");

if(tokens.length >= 6) {

/*

* Make a GPS location message from ownship

message.

*/

JSONObject object = new JSONObject();

105

try {

object.put("type", "ownship");

object.put("longitude",

Double.parseDouble(tokens[1]));

xLon = Double.parseDouble(tokens[1]);

//Log.d(TAG, "longitude " +

Double.parseDouble(tokens[1]));

object.put("latitude",

Double.parseDouble(tokens[2]));

xLat = Double.parseDouble(tokens[2]);

object.put("speed",

Double.parseDouble(tokens[5]));

object.put("bearing",

Double.parseDouble(tokens[4]));

object.put("altitude",

Double.parseDouble(tokens[3]));

xAlt =

(Double.parseDouble(tokens[3]))*3.28084;

object.put("time",

System.currentTimeMillis());

} catch (Exception e1) {

continue;

}

/*

if(mHelper != null) {

try {

mHelper.sendDataText(object.toString());

106

Logger.Logit(object.toString());

} catch (Exception e) {

}

}*/

}

}

}

}

};

mThread.start();

}

public boolean connect(int port) {

mPort = port;

/*

* Make socket

*/

try {

mSocket = new DatagramSocket(mPort);

}

catch(Exception e) {

Log.d(TAG, "Failed! Connecting socket " + e.getMessage());

return false;

}

Log.d(TAG, "Success!");

mConnected = true;

107

return true;

}

public void disconnect() {

Log.d(TAG, "Disconnecting from device");

//Logger.Logit("Disconnecting from device");

/*

* Exit

*/

try {

mSocket.close();

}

catch(Exception e2) {

Log.d(TAG, "Error stream close");

}

mConnected = false;

Log.d(TAG, "Listener stopped");

}

private int read(byte[] buffer) {

DatagramPacket pkt = new DatagramPacket(buffer, buffer.length);

try {

mSocket.receive(pkt);

}

catch(Exception e) {

return -1;

}

108

return pkt.getLength();

}

}

A.4 LiveCard Menu

package com.example.eric.approachlive;

import android.app.Activity;

import android.content.Intent;

import android.util.Log;

import android.view.Menu;

import android.view.MenuItem;

import android.widget.Toast;

import android.app.Service;

import android.app.IntentService;

/**

* A transparent {@link Activity} displaying a "Stop" options menu to

remove the {@link com.google.android.glass.timeline.LiveCard}.

*/

public class LiveCardMenuActivity extends Activity {

private static final String TAG = "ApproachLiveCardMenu";

@Override

public void onAttachedToWindow() {

super.onAttachedToWindow();

// Open the options menu right away.

openOptionsMenu();

}

109

@Override

public boolean onCreateOptionsMenu(Menu menu) {

getMenuInflater().inflate(R.menu.live_card, menu);

return true;

}

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.action_stop:

// Stop the service which will unpublish the live card.

stopService(new Intent(this, LiveCardService.class));

return true;

case R.id.action_land:

Intent land = new Intent(this, LiveCardService.class);

land.setAction("LANDING");

startService(land);

return true;

case R.id.action_missed:

Intent missed = new Intent(this, LiveCardService.class);

missed.setAction("MISSED");

startService(missed);

return true;

/* Commented out as to not delete forever

case R.id.action_ttoro:

Intent ttoro = new Intent(this, LiveCardService.class);

ttoro.setAction("TTORO");

startService(ttoro);

110

return true;

case R.id.action_bgbuk:

Intent bgbuk = new Intent(this, LiveCardService.class);

bgbuk.setAction("BGBUK");

startService(bgbuk);

return true;

*/

case R.id.action_lassy:

Intent lassy = new Intent(this, LiveCardService.class);

lassy.setAction("LASSY");

startService(lassy);

return true;

case R.id.action_dploy:

Intent dploy = new Intent(this, LiveCardService.class);

dploy.setAction("DPLOY");

startService(dploy);

return true;

case R.id.action_jelli:

Intent jelli = new Intent(this, LiveCardService.class);

jelli.setAction("JELLI");

startService(jelli);

return true;

case R.id.action_reign:

Intent reign = new Intent(this, LiveCardService.class);

reign.setAction("REIGN");

startService(reign);

return true;

111

case R.id.action_eelpo:

Intent eelpo = new Intent(this, LiveCardService.class);

eelpo.setAction("EELPO");

startService(eelpo);

return true;

case R.id.action_maton:

Intent maton = new Intent(this, LiveCardService.class);

maton.setAction("MATON");

startService(maton);

return true;

case R.id.action_sakco:

Intent sakco = new Intent(this, LiveCardService.class);

sakco.setAction("SAKCO");

startService(sakco);

return true;

case R.id.action_kiah:

Intent kiah = new Intent(this, LiveCardService.class);

kiah.setAction("KIAH");

startService(kiah);

return true;

default:

return super.onOptionsItemSelected(item);

}

}

@Override

public void onOptionsMenuClosed(Menu menu) {

super.onOptionsMenuClosed(menu);

112

// Nothing else to do, finish the Activity.

finish();

}

}

113

