
IMPROVING THE CHARACTERISTICS OF WATER-BASED 

DRILLING FLUIDS USING NANOPARTICLES 

 

 

A Dissertation 

by 

OMAR SAAD AHMED MAHMOUD  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 

 

 

Chair of Committee,  Hisham A. Nasr-El-Din 
Committee Members, Jerome Schubert 
 Berna Hascakir 
 Mahmoud El-Halwagi 
Head of Department, A. Daniel Hill 
 

December 2017 

 

Major Subject: Petroleum Engineering 

 

Copyright 2017 Omar Saad Ahmed Mahmoud 



 

ii 

 

ABSTRACT 

 

The capabilities of different types of nanoparticles (NPs) had been exploited to 

develop a water-based drilling fluid having better characteristics for harsh drilling 

conditions. More specifically, the objectives of this work are to: 1) investigate the 

effectiveness of using different oxide NPs: ferric oxide (of sizes <50 nm), magnetic iron 

oxide (of average particle size 50 –100 nm), silica NPs (size =12 nm), and zinc oxide NPs 

(of sizes <100 nm) on the rheological properties and filter cake characteristics of Ca-

bentonite-based drilling fluid at downhole conditions, 2) conduct a sensitivity analysis of 

the rheological properties of these drilling fluids and investigate the effect of charge 

potential, 3) determine the optimum concentration of NPs,  and 4) evaluate the effect of 

different drilling fluid additives on the performance of NPs/Ca-bentonite fluids by 

formulating and testing a complete bentonite-based drilling fluid formula.  

A reduction of 43% in the fluid loss volume was achieved when using 0.5 wt% of 

ferric oxide NPs with 7 wt% Ca-bentonite suspension compared to that without NPs. 

However, using silica or zinc oxide NPs at different concentrations resulted in an increase 

in the fluid loss volume and filter cake thickness. The inductively coupled plasma (ICP) 

analysis of the filtrate fluids and the scanning electron microscopy-energy dispersive 

spectroscopy (SEM-EDS) of the filter cakes revealed the replacement of the cations 

dissociated from the Ca-bentonite by ferric oxide NPs at the investigated conditions, 

which promoted the formation of rigid clay platelet structure. Furthermore, using 0.5 wt% 

of NPs provided less agglomeration, as shown by the SEM images, and less filter cake 
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permeability. Moreover, the produced filter cake consisted of two layers, as indicated by 

the computed-tomography (CT) scan. Increasing the concentration of NPs resulted in an 

increase in the fluid loss and filter cake thickness. At high NP concentration (2.5 wt%), a 

new layer of the agglomerated NPs generated in the filter cake close to the surface of 

formation, which adversely affected the cake characteristics. The ferric oxide and 

magnetic iron oxide NPs/Ca-bentonite fluids were found to have stable rheological 

properties at different NP concentrations and temperatures (up to 200°F). Additionally, 

thermally aging these fluids at 350°F for 16 hours showed minor changes in their 

rheological properties, which confirmed their applicability in drilling downhole 

environments.  

The ferric oxide NPs improved the filter cake and filtration properties of Ca-

bentonite-based drilling fluids in the presence of polymer and other additives under both 

static and dynamic filtration (at 100 rpm). The best filter cake characteristics were 

obtained when using a NP concentration of 0.3-0.5 wt%. Furthermore, the formulated 

NPs/Ca-bentonite-based drilling fluids could withstand downhole conditions up to 500 psi 

and 350°F and produced a filter cake that has 0.151-in. thickness, 6.9 ml filtrate loss 

volume, and 0.428 µd permeability at this conditions. Moreover, it was noticed that the 

ultrasonication for at least one hour and bentonite hydration for 16 hours are recommended 

for better preparation of the formulated ferric oxide NPs/Ca-bentonite-based drilling fluid.  
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NOMENCLATURE 

 

A = Cross-sectional area of the filter core disk, in.2 

ASCH = Aluminosilicate clay hybrid 

API = American Petroleum Institute 

CMC = Carboxymethyl cellulose 

CNC = Cellulose nano-crystals 

CT = Computed tomography 

CTN = Computed tomography number 

fsc = Volume fraction of the solids in the filter cake 

fsm = Volume fraction of solids in the drilling fluid 

HP/HT = High-pressure/high-temperature 

ICP-OES = Inductively coupled plasma-optical emission spectrometry 

ICH = Iron oxide clay hybrid 

GO = Graphene oxide 

K = Consistency index, lbf. sn/100 ft2 

kc = Permeability of the filter cake, d 

km = Permeability of the filter medium, d 

LCM = Lost circulation material  

LP/LT = Low-pressure/low-temperature 

Lc = Thickness of the filter cake, in. 

Lm = Thickness of the filter medium, in. 
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MFC = Microfibrillated cellulose 

MWCNTs = Multi-walled carbon nano-tubes 

n = Flow behavior index (dimensionless) 

NWBM = Nano-fluid/water-based drilling muds 

NP = Nanoparticle 

PAC = Polyanionic cellulose 

PALS = Phase analysis light scattering  

Pal = Palygorskite 

PAM = Polyacrylamide 

q = Filtrate fluid rate, ml/ in.2.s 

ROP = Rate of penetration 

R2 = Regression coefficient (dimensionless) 

SDFL = Nano-silica composite with core-shell structure 

SEM-EDS = Scanning electron microscopy-energy dispersive spectrometry  

t = Time of filtration, s 

Vf = Cumulative filtrate volume, ft3 

XG = Xanthan gum 

XRD = X-ray diffraction 

XRF = X-ray fluorescence 

ZnO-Am = Zinc oxide NP-acrylamide composite 

∆pc = Pressure drop across the filter cake, psi 

∆pm = Pressure drop across the filter medium, psi 
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∆pt = Total pressure drop, psi 

µ = Viscosity of the filtrate, cp 

µp = Plastic viscosity, cp 

∑Q2 = Sum of square errors, (lbf/100 ft2)2 

τ = Shear stress, lbf/100 ft2 

τo = Yield stress, lbf/100 ft2 

��  = Shear rate, s-1 

ζ = Zeta potential, mV 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW1,2 

 

Introduction 

Drilling deeper, longer, and more complex oil and gas wells becomes possible by 

improvements in field technologies, especially by formulating and using more efficient 

drilling fluids. However, these fluids must be engineered so that they can minimize 

formation damage. The invasion of drilling fluid filtrate into formation is considered as 

one of the common sources of damage (Amaefule et al. 1988). The formation of a low 

permeability and thin filter cake (a high efficiency filter cake) on the face of the porous 

medium and proper filtrate fluid loss volumes can reduce the excessive formation damage 

problems. Additionally, optimizing the rheological properties is important for formulating 

stable and effective drilling fluids. 

Generally, one can classify drilling fluids into three main types: water-based, 

synthetic-based, and oil-based drilling fluids. Synthetic-based and Oil-based drilling fluids 

have many disadvantages such as the higher cost, the environmental and disposal 

problems, and the safety and health issues (Growcock et al. 1998; Foxenberg et al. 2008). 

Because of the drawbacks of oil-based and synthetic-based types, a trend of selecting 

                                                 

1 Reprinted with a permission from “Nanoparticle-Based Drilling Fluids for Minimizing Formation Damage 
in HTHP Applications” by Mahmoud, O., Nasr-El-Din, H. A., Vryzas, Z., and Kelessidis, V. C. SPE-
171849-MS, Copyright 2016 by Society of Petroleum Engineers. 
2 Reprinted with a permission from “Characterization of Filter Cake Generated by Nanoparticle-Based 
Drilling Fluid for HP/HT Applications” by Mahmoud, O., Nasr-El-Din, H. A., Vryzas, Z., and Kelessidis, 
V. C. SPE-184572-MS, Copyright 2017 by Society of Petroleum Engineers. 
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water-based drilling fluids was followed. However, the need to address the drawbacks of 

water-based fluids, especially while drilling harsh conditions, is a top priority. Bentonite-

based fluid is one of the most commonly used water-based drilling fluids. Bentonite is a 

montmorillonite clay that can provide good rheological properties, pumpability, and 

cutting carrying capacity while drilling (Bourgoyne et al. 1991). However, the temperature 

limit above which bentonite starts to chemically breakdown is 250°F (Kelessidis et al. 

2006). The breakdown of bentonite increases the fluid loss into the formation and reduces 

the drilling fluid capability for carrying cuttings.  

Nanoparticles (NPs), as additives, have been thoroughly investigated to address 

the challenges of bentonite-based drilling fluids. A NP is any particle having one or more 

dimensions in the range of 1 to 100 nanometer (nm). The small size of particles yields a 

high surface-area-to-volume ratio, which leads to many changes in the interparticle 

spacing and gives superior functions (Lu et al. 2007; Behari 2010). Different types of NPs 

have been tested for enhancing and controlling the rheological properties of drilling fluids 

(Agarwal et al. 2011; Amanullah et al. 2011; Abdo and Haneef 2013; Ismail et al. 2014) 

and for fluid loss mitigation (Javeri et al. 2011; Cai et al. 2012; Zakaria et al. 2012; 

Contreras et al. 2014). 

In this chapter, a detailed literature survey and a brief introduction to the research 

problem have been presented. Additionally, the applications of NPs in the drilling fluid 

technology will be surveyed in order to examine the benefits behind using such particles. 

At the end of the chapter, the objectives of this research work have been defined and stated. 
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Drilling Fluid  

The drilling fluid (mud) is a mixture of liquids, chemicals, and solids that are 

pumped into the wellbore to facilitate the drilling process. A variety of downhole 

conditions result in the choice of different types of drilling fluid. When choosing a 

particular mud, factors such as the depth, type of formation, and local structure should be 

considered. Drilling fluid must have different functions. Table I-1 shows the functions of 

drilling muds and their corresponding properties (Bourgoyne et al. 1991).  

Function of the Drilling Fluid Corresponding Property 

Controlling subsurface pressures and prevent caving. Drilling fluid density 

Carrying cuttings out of the hole. Drilling fluid viscosity 

Suspending cuttings while stopping circulation. Drilling fluid gel strength 

Cooling and lubricating the drill/string and bit. Additive content 

Forming a thin, impermeable filter cake on the face of the borehole. Filtrate fluid loss control 

Easily releasing the drilling cuttings when reaching the surface facilities. Viscosity/gel strength 

Helping in supporting the weight of the drill/string and casing. Drilling fluid density 

Ensuring getting maximum information out of the drilled formation.  

Not damaging the mud circulation system. 

 

 
Table I- 1―Functions of the drilling fluid and the corresponding properties. 

 

Many additives have been introduced to help in the drilling process. The drilling 

fluid properties affect the drilled formation, wire line logs, and drill return logs. The 

drilling fluid must allow the obtaining of all information necessary for evaluating and 

estimating the productive capabilities of the penetrated formations.  

Drilling mud is considered as the most important component in the drilling process 

and the success of a drilling operation is normally related to its efficiency. Various types 
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of drilling fluids are being classified and used based on their behavior during the drilling 

operation. Synthetic-based and oil-based drilling fluids have different disadvantages as 

aforementioned. However, water-based drilling fluids have drawbacks, especially when 

drilling high pressure/high temperature (HP/HT) wells. In this research work, we are 

focusing on water-based type, more specifically, the bentonite-based fluids. 

Bentonite is a montmorillonite clay that has a film-like shape (Fig. I-1). Its basic 

structure consists of two silica sheets, where Si4+ is tetrahedrally coordinated with oxygen, 

combined with one layer via octahedral coordination. In the latter layer, the central ion 

might be either Mg2+ (a trioctahedral sheet) or Al3+ (a dioctahedral sheet). Charge 

shortages results in the clay particles because of the extensive isomorphous substitution 

(without fundamental change of the structure) for Si4+ and Al3+ by other cations (Grim 

1968). Montmorillonite carries a negative charge mainly from the replacement of 

aluminum with magnesium, neutralized by soluble mono- or di-valent cations, which 

balance charge deficiencies (weak bonding). 

Montmorillonite is a dispersible and hydrophilic clay mineral of the smectite 

group. It is a mineral that has a higher tendency to swell when becoming in contact with 

water. Furthermore, it has an extraordinary capability to exchange cations, typically 

sodium (Na+) and calcium (Ca2+). Based on the exchangeable cation, montmorillonite can 

be classified as Na- and Ca-montmorillonite. Na-montmorillonite is commonly known as 

a premium drilling fluid additive. The difference between Na- and Ca-montmorillonite is 

the relative proportions of the two cations in the interlayer region. In Ca-montmorillonite, 

the Ca2+ predominates; however, the Na+ cations are dominants in Na-montmorillonite. 
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Although the cations occupy the same volume in space, the charge density of the Ca2+ is 

twice that of the Na+ (Marcus 1991; Casillas-Ituarte et al. 2010). The negatively charged 

montmorillonite lattice sheets are more tightly held together by the Ca2+ (Bowyer and 

Moine-L 2008; Keren 1988). Thus, Ca-montmorillonite, having a better “glue” in between 

the lattice sheets, does not disperse in water as readily as Na-montmorillonite. This means 

that hydration (swelling) does not occur to the same extent. However, Ca-montmorillonite 

is a mineral with a high surface energy, and shows high affinity for water (Chassin et al. 

1986). In Appendix A, the dehydration process of a suspension of 7 wt% bentonite 

consisting mainly of Ca-montmorillonite in deionized water at 212°F (100°C) is showed 

as a function of time. 

 

Fig. I- 1―Structure of montmorillonite (Grim 1968). 
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Ca-bentonite was selected to be used, as a lower-cost alternative of Na-bentonite. 

The objective is to formulate a promising water-based mud by improving the properties 

of Ca-bentonite using NPs. Reducing the filter loss properties of the formulated drilling 

fluid is the main goal of this research. Additionally, the rheological properties of the 

drilling fluid at downhole conditions will be investigated and optimized. 

Invasion of mud filtrate while drilling is one of the most common sources of 

damaging the productive formations (Amaefule et al. 1988). This problem is a major 

contributor in the injectivity or productivity reduction in petroleum wells. Losses of the 

filtrate fluid into the porous formations during drilling happens because of the difference 

between the hydrostatic pressure of the mud column and the hydrostatic pressure of the 

fluids in the formation (Hoberock and Bratcher 1998). As a result of this filtrate fluid 

invasion a filter cake is forming on the face of the wellbore due to the accumulation and 

deposition of the solids and cuttings (Civan 1994, 1996). The filter cakes stabilize and 

protect the formation from extra drilling fluid invasion and allow better fluid circulation 

through the wellbore. Figs. I-2 and I-3 show schematic illustrations of the drilling fluid 

filtrate invasion through the deposited filter cake and porous formation and the generation 

of a filter cake on the wellbore (formation face) during drilling.  

The most important factors and parameters that could control the drilling fluid 

filtrate invasion include: formation properties (permeability, porosity, pore size and 

structure), mud properties, and the properties of the deposited filter cake. Better designing 

of the drilling fluid and selecting the additives to be used can produce a good-quality filter 

cake. Such a cake can withstand high differential pressures (overbalance drilling) and 
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reduces the possibilities of many drilling problems. Filter cakes can be considered as a 

key to minimize formation damage and maximize reservoir return permeability. 

 
 
Fig. I- 2―Filtrate fluid invasion through the deposited filter cake and porous formation during drilling (Civan 
1994). 

 

 
 
Fig. I- 3―Formation of the filter cake while filtrate fluid i nvasion (Civan 1994). 
 

Characterizing the filter cake is very important because of their key rule in the 

drilling process. Filter cake properties, such as filtrate fluid loss, thickness, permeability, 



 

8 

 

porosity, structure, and texture are essential parameters that should be carefully identified 

and optimized. The structure and texture of the filter cake give better understanding of the 

interaction between different drilling additives. Scanning electron microscopy (SEM) was 

thoroughly used in the literature for such investigations (Hartman et al. 1988; Chenevert 

and Huycke 1991; Plank and Gossen 1991; Kelessidis et al. 2006; Barry et al. 2015). 

Additionally, thin-section photography was also introduced and used to investigate the 

filter cake structure and the interaction of solids and cuttings with the formation surface 

(Li and He 2015). The computed-tomography (CT) scan was also used in different studies 

to investigate the cake homogeneity, thickness, and porosity (Elkatatny et al. 2011, 2012, 

2013). Bageri et al. (2013) summarized the most commonly techniques and models that 

used to evaluate and characterize the filter cake properties. 

Applications of Nanoparticles in the Drilling Fluid Technology 

The nanotechnology started as a promising technology at the end of the 1980's 

decade. By this beneficial technology new nano-materials can be developed and designed 

by rearranging molecules or atoms of particles with larger sizes (Ju et al. 2012). A 

nanometer (nm) is one thousand millionth of a meter. The range of the nano-scale is 

usually can be defined as the range starting from 1 nanometer up to 100 nanometer (Fig. 

I-4). So that, one can define nanotechnology as the technology of designing, fabricating 

and utilizing of functional structures and materials with at least one dimension measured 

in nanometers (Kelsall et al. 2005). The extraordinary change in properties when using 

nano-materials may be because of their relatively high surface-area-to-volume ratio when 

compared to the same materials in larger dimensions (Fig. I-5).  
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Fig. I- 4―Scale of particle-size (Cai et al. 2012). 
 

 
 
Fig. I- 5―Surface-area-to-volume ratio of nanoparticles (El-Diasty and Aly 2015) 

 

Nanotechnology can contribute in different areas of the petroleum industry. Nano-

materials can be used to change reservoir properties such as wettability and improve 

mobility ratio. Its capability as a less expensive, more efficient, and environmentally 

friendly material might giving it a more promising role in the coming developments. 

However, many of the applications are still only in laboratory and research development.  

Several research studies have been conducted for developing novel drilling fluids 

using predominantly nanoparticles (NPs) among a variety of additives. NPs are now 

commercially available at affordable prices and are suitable as drilling fluid additives 

because of their attractive properties stemming from their high surface-area-to-volume 

ratio. Friedheim et al. (2012) and Hoelscher et al. (2013) provide a brief overview of the 
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nanotechnology applications in the drilling fluid industry. Different types of NPs have 

been used in the drilling fluid technology as rheological property controller, fluid loss 

reducer, and shale stabilizers. Two methods can be followed in the preparation of NPs-

based drilling fluids, either by using ex-situ or in-situ procedures. The ex-situ preparation 

is the addition of NPs to the aqueous solution, which is later can be added to the drilling 

fluid. However, the addition of the precursors that generate the NPs directly to the drilling 

fluid is called in-situ preparation. Alsaba et al. (2014) recommend the in-situ procedures 

of NP preparation in order to mitigate the water content increasing in mud into the 

circulation system. In the following section, a detailed review of nanotechnology 

applications in drilling fluids has been presented; specifically, the applications of NPs as 

a rheological property modifiers, fluid loss controllers, and wellbore strengthening agents. 

Rheological Property and Fluid Loss Controller 

Different NPs-based drilling fluids had been formulated and tested by Amanullah 

et al. (2011). The authors noticed the difficulty of using either salt or fresh water as the 

fluid phase to prepare NPs-based drilling fluid without the use of chemical additives (i. e., 

surfactants or polymers). It was also found that the developed NPs-based drilling fluids 

had satisfactory rheological properties. Moreover, a significant reduction in the filtrate 

fluid and spurt loss were obtained when using NPs compared to the base. Additionally, 

the authors reported the deposition of a thin and compact filter cake, which might be 

resulted in preventing the problem of pipe sticking while drilling. The drilling fluid 

formulations of this NPs-based drilling fluids and also for a macroparticle-based drilling 

mud were reported in more details by Amanullah and Al-Arfaj (2013). 
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Agarwal et al. (2011) studied stabilizing invert emulsion fluids for HP/HT drilling 

applications by using nano-clay and nano-silica. The authors noticed that using nano-clay 

and nano-silica together was the way to get the best properties. It was also found that nano-

clay is easily dispersed in the oil phase and it showed better gel structure. The test results 

showed also that the nature of nano-silica (either hydrophilic or hydrophobic) has 

significant effect on the behavior of the formed gel. When Agarwal et al. (2011) used 

barite as a weighing material, they found a loss of yield stress. However, they mentioned 

that the yield stress of the invert emulsion drilling fluid might be regained by increasing 

the nano-silica content. Moreover, they had reported that aging the NPs-based drilling 

fluid at 225°C for 96 hour results in relatively small decrease in the yield stress; however, 

the emulsion remained stable.  

Jung et al. (2011) investigated the effectiveness of using iron oxide NPs (3 nm and 

30 nm) to improve the HP/HT properties of Na-bentonite-based fluids. The rheological 

properties were studied at different temperatures (20-200°C) and pressures (1-100 atm). 

The filter cake characteristics and filtrate loss capacity were also investigated in this study. 

The authors reported that the increase in NP concentration resulted in an increase in 

viscosity and yield stress of the bentonite fluids. Furthermore, the smaller size NPs (3 nm) 

was found to be effective in improving the viscosity of this type of suspensions. Jung et 

al. (2011) explained the test results through two concepts. The first theory is that, oxide 

NPs embedded randomly on the surface of clay particle in the pore structure of the 

dispersion, which insure better connections between clay particles and enhance gelation 

of the fluids. The second theory was that this improvement in the rheological properties 
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upon adding oxide NPs may be due to the synergy generated by homocoagulation of the 

exceeds NPs and heterocoagulation of bentonite with NPs.  

Javeri et al. (2011) studied the using of silicon NPs as additives to reduce the 

probability of pipe sticking by the generation of a thinner filter cake on the surface of 

formation. The size of silicon particles used in this study was 40-130 nm. The results 

showed the formation of a continuous, low permeability/low porosity filter cake. 

Furthermore, they mentioned that the filter cake thickness was less than in normal cases 

because there was less volume of filtrate entering the formation. Moreover, they found 

that the used NPs do not have high impact on the viscosity of the drilling fluid and have 

thermal stability at high temperatures up to 2500°F.  

Manea (2011) designed a novel drilling fluid by applying nanotechnology. The 

author was focusing on water-based drilling fluids with low solid content by using nano-

size polymers. In this study, a nano-polymer was synthesized and investigated as a filtrate 

loss reducer additive. Nano-size particles were synthesized by grinding in a planetary mill 

that have agate bowl and 20 agate ball of 20 mm diameter. The authors reported that the 

extraordinary properties of this polymer were obtained because of its ability to adsorb free 

water from the system and form gel. Furthermore, this nano-polymer was also found to be 

sensitive to the change of pH of suspensions with a swellability increases in alkaline 

medium. Moreover, the cumulative volume of filtrate fluid loss upon the addition of nano-

polymer was found to have small values. The author explained the test results as an impact 

of the increase in total specific area with the decrease in particle size, which results in 

bigger interaction area with the continuous medium and significant swelling capability. 
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Ravi et al. (2011) presented a lost circulation formulation to reduce the filtrate fluid 

loss. The lost circulation composition comprised Portland cement in an amount of about 

10 to 20 wt% (of the lost circulation composition), NPs (a particular nano-silica) in an 

amount of about 0.5 to 4 wt% and having a particle size of about 1 to100 nm, amorphous 

silica in an amount of about 5 to 10 wt%, synthetic clay in an amount of about 0.5 to 2 

wt%, sub-micron sized calcium carbonate in an amount of about 15 to 50 wt%, and water 

in an amount of about 60 to 75 wt%. Lost circulation additives were formed with a mix of 

cement and nano-materials to reduce the setting time for filter cake formation and gel 

strength development. However, the authors mentioned that high amounts of the NPs were 

required with the cement to produce the filter cake and develop the gel strength. 

Abdo and Haneef (2012) investigated a new clay (ATR), which offers bigger 

surface area and higher reactivity, as a drilling fluid additive. The ATR was found to be 

consisting mainly of montmorillonite and has a chain like structure. Different sizes of 

ATR (micro and nano) were used in this study. ATR in NP sizes were found to be 

applicable for use as a drilling fluid additive and can generate better rheological properties 

(relatively low viscosity and high gel strength). Furthermore, regular bentonite (in smaller 

particle sizes) was also examined but was found to have inconsistent behavior because of 

high flocculation. Moreover, Abdo and Haneef (2012) reported that a combination of 

regular bentonite and ATR NPs displays the best and optimized set of properties because 

of the combining effect of the characteristics bentonite (high density) and ATR NPs (low 

viscosity and high gel strength).  
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Graphene oxide (GO) was used with water-based drilling fluids as a fluid loss 

reducer (Kosynkin et al. 2012). In this study, dispersions of GO in xanthan gum aqueous 

solutions were tested using standard API filtration tests. It was noticed that the best GO 

concentration that should be used is 0.2 wt% by carbon content. Additionally, better 

performance was obtained when using a combination of two shapes of GO (large flake 

and powdered GO in a ratio of 3:1). When using this combination, an average fluid loss 

volume of 6.1 ml and a filter cake thickness of 20 µm were obtained. A regular drilling 

fluid containing 12 g/L of clays and polymers was also tested in this study. In this case, 

an average fluid loss of 7.2 ml (+18 %) and a filter cake thickness of 280 µm were 

obtained. Moreover, the authors reported that the GO solutions exhibited higher thermal 

stability and shear thinning behavior when compared with clay-based fluid loss additives. 

Friedheim et al. (2012) also investigated the effectiveness of using GO NPs as 

viscosity and fluid loss control additives with a slurry of bentonite and barite in water. It 

was found that GO NPs have a significant potential on the rheological parameters when 

used in a concentration of 2 lb/bbl. Furthermore, the system was also examined after aging 

for 16 hours at 150°F. The authors reported that the GO NPs effectively enhance both 

rheological and filtrate loss properties of the system. The authors concluded that the GO 

NPs are easily deformable to fit into the contours of the formation because of their sheet-

like structure; however, the cost effectiveness and the long-term stability of GO NPs is a 

critical issue that must be addressed for field application.  

Polyanionic cellulose (PAC) and Carboxymethyl cellulose (CMC) polymers in NP 

sizes were investigated as fluid loss reducer additives (Fereydouni et al. 2012). An in-
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house made CMC NPs were used in this study, which made by using of ball milling at 500 

rpm rotational velocity for 1 to 1.5 hour at 25 to 30°C.  PAC NPs were also made in-house 

(ball milling at 400 rpm, 2 to 2.5 hour residence time, and room temperature). The authors 

reported a reduction of the API fluid loss volume and filter cake thickness when using 

CMC and PAC NPs compared with regular-size polymers of the same type. Moreover, a 

cost advantage when using CMC and PAC NPs was also reported in this study.  

Abdo and Haneef (2013) investigated the using of a natural clay mineral in nano-

sizes, palygorskite (Pal), to stabilize the rheological properties of drilling fluid at HP/HT 

environments. Pal were reported to be available in Oman and has a fibrous rod-like 

microstructure (Fig. I-6). In this study, Pal was synthesized and tested in nano-sizes of 10-

20 nm. It was found that the elongate needle shape of Pal NPs gave them unique colloidal 

properties when compared to the flake-shape of montmorillonite particles. Moreover, it 

was reported that montmorillonite alone was found to not be stable at HP/HT 

environments. However, adding a small concentration of Pal increased the 

montmorillonite stability at such conditions.  

Nasser et al. (2013) developed a nano-fluid by using nano-graphite and nano-

silicon wires. The authors concluded that the developed nano-fluids showed better 

rheological properties at temperatures up to 90°C. More specifically, this nano-fluids had 

higher viscosity when compared with that of a regular drilling fluid at the range of tested 

temperatures. 

Anoop et al. (2014) studied the rheological properties of nano-fluids composed of 

mineral oil and silica NPs at HP/HT environments. It was found that the viscosity of the 
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nano-fluids increases with the increase in NP concentration. Furthermore, a decrease in 

the viscosity of the nano-fluids at higher temperatures was also reported. The power law 

was found to be the best fit model for all cases. Moreover, there was non-essential 

reduction in the viscosity of the nano-fluids at a temperature of 100°C. 

Fig. I- 6―SEM images of Pal: (a) regular Pal (needle like clusters), and (b) uniformly dispersed Pal NPs (Abdo 
and Haneef 2013). 

 

Zakaria and Husein (2014) developed an in-house NP fluid loss circulation 

material (LCM).  The aim of this study was to reduce the invasion of fluids in very tight 

formations such as shale. Both in-situ and ex-situ procedures of NP preparation and 

addition to oil-based drilling fluid were investigated in this study. Standard API filter press 

test results showed a reduction greater than 70% in the fluid invasion compared to 9% 

reduction when using a commercial LCM. Moreover, thinner mud cakes were deposited 

when using this materials, which indicating high potential for mitigating formation 

(a) (b) 
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damage and differential pipe sticking. Additionally, a good stability was found when 

sealing this NPs-based drilling fluid for a period of more than 6 weeks. 

Contreras et al. (2014) examined the effectiveness of using in-house prepared iron-

based NPs (NP1) and calcium-based NPs (NP2) as LCM with oil-based drilling fluids in 

the presence of glide graphite. Both API fluid loss (at 100 psi and 78°F) and HP/HT 

filtration tests (at 500 psi and 250°F) were conducted. Ceramic disks of 775 md 

permeability were used to simulate porous formation. It was found that under HP/HT 

conditions, NP1 gave higher reduction in the fluid loss when used at low concentrations; 

however, NP2 showed a perfect performance at high concentration. Under API filtration, 

these results were found to be reversed. It was also reported that the effect of graphite as 

a filtrate reduction agent becomes less significant under both HP/HT and LP/LT with 

increasing the NP concentration. However, using graphite in combination with NP1 

yielded a better filtration loss reduction at both HP/HT and LP/LT (Fig. I-7).  

Multi-walled carbon nano-tubes (MWCNTs) were also investigated as an additive 

to water-based and ester-based drilling fluids (Ismail et al. 2014). Determining the 

optimum concentration of MWCNTs to generate better rheological properties at various 

temperatures was the goal of this research. In the case of water-based drilling fluid, it was 

found that the major rheological properties (plastic viscosity, yield point and gel strength) 

are not much affected by using different concentration of MWCNTs. However, in the case 

of ester-based drilling fluid, emulsion stability and gel strength are slightly increased with 

the increase in MWCNTs concentration. Moreover, it was also found that increasing the 

temperature resulted in a decrease in the rheological properties of water-based drilling 
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fluid. However, ester-based drilling fluid showed an increase in all of the rheological 

properties when increasing temperature.  

 

Fig. I- 7―Images of the generated filter cakes (Contreras et al. 2014). 
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William et al. (2014) studied the effect of using nano-fluids of CuO and ZnO NPs 

(< 50 nm) in a xanthan gum (XG) as an additive with water-based drilling fluids. Two-

step method was used to prepare the nano-fluids (Ponmani et al. 2014). Different NP 

concentrations into a base fluid 0.4 wt% XG in water were investigated. An ultrasonication 

tank was used in the preparation with a sonication time of one hour. The rheological 

properties of the nano-fluid/water-based drilling muds (NWBM) were examined at 

different temperatures (up to 110°C) and pressures (0.1 and 10 MPa). It was found that 

the thermal and electrical properties of the NWBM improved by 35% compared to base 

fluid (without nano-fluids), further enhancements were observed with the increase in the 

NP concentration. The CuO NPs-based nano-fluids were found to have better thermal 

properties at HP/HT condition compared with ZnO NP-based nano-fluids. Moreover, the 

test results showed that at higher temperatures, the effect of pressure on the rheological 

properties of NWBM are more significant, which indicated better rheological stability. 

The authors reported that stabilizing the viscosity of NWBM at higher temperatures is the 

most important role that the nano-fluids played.  

Barry et al. (2015) examined the effectiveness of using two types of NP 

intercalated clay hybrids, iron-oxide clay hybrid (ICH) and aluminosilicate clay hybrid 

(ASCH) on the properties of Na-bentonite suspensions. In this study, both API fluid loss, 

LP/LT (25°C, 6.9 bar), and HP/HT fluid loss (200°C and 70 bar) were investigated. The 

results showed a reduction in the fluid loss of up to 37% and 47% in both LP/LT and 

HP/HT fluid loss when using ICH and ASCH with bentonite fluids compared to the base 

(without NPs). Furthermore, it was found that adding 0.5 wt% of pure Fe2O3 NPs (3 and 
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30 nm) into bentonite suspensions increased the API fluid loss by 14% compared to the 

base; however, it decreased the filtration volume at HP/HT by 28% compared to the base 

fluid. Moreover, the authors concluded that the reduction in both LP/LT and HP/HT 

filtrate volume when using clay hybrids (ICH and ASCH) was because of the 

reconstruction of clay platelet in suspension due to the changes in surface charge. Both 

SEM images (Fig. I-8) and zeta potential measurements were used to demonstrate the 

aforementioned conclusions. 

 

Fig. I- 8―SEM images of the filter cakes after LP/LT filter press experiments for different samples with the 
corresponding illustrations of bentonite clay platelet interaction (Barry et al. 2015). 

 

TiO2/polyacrylamide (TiO2/PAM) nano-composite was also investigated to 

improve the rheological properties of water-based drilling fluid (Sadeghalvaad and 

Sabbaghi 2015). Enhancement in the plastic viscosity and yield point of the drilling fluid 

were reported when adding the nano-composite. Additionally, it was found that the 

increase in nano-composite concentration results in an increase in the shear thinning 
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behavior. Moreover, SEM images showed that the pure PAM sample has a smooth surface 

and the grains of TiO2 appears on the surface and in between the PAM particles in the 

nano-composite (Fig. I-9). 

 

Fig. I- 9―SEM images of: (a) pure polyacrylamide (PAM), and (b) TiO2/polyacrylamide (TiO2/PAM) nano-
composite (Sadeghalvaad and Sabbaghi 2015). 

 

Li et al. (2015a) examined using polyanionic cellulose (PAC) and cellulose nano-

crystals (CNC) with bentonite-based drilling fluids. The effect of CNC was found to be 

more significant than PAC on improving the rheological properties of 

PAC/CNC/bentonite-based drilling fluids. Furthermore, the Sisko model was found to 

well-performing the fluid rheological properties. Moreover, the test results showed a little 

effect of the CNC on the API fluid loss of PAC/CNC/bentonite based drilling fluids. 

However, a better reduction in the API fluid loss was reported when increasing the 

concentrations of bentonite and PAC. 

The effect of using cellulose NPs (CNP) (microfibrillated cellulose, MFC, and 

cellulose nano-crystals, CNC) on the rheological and fluid loss behavior of bentonite-

based drilling fluids was also studied by Li et al. (2015b). It was found that using MFC 

and CNC improved the shear stress, yield point, and viscosity of the drilling fluids, which 
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yielding better cutting carrying capability. Furthermore, a reduction in the filter cake 

thickness and filtrate loss were also noticed for CNC/bentonite fluids; however, MFC was 

found to have relatively small effect on the fluid loss in addition to generating thicker filter 

cakes. The authors explained that the CNC polymer forms films and creates core-shell 

structure. It was also concluded that the properties of CNC/bentonite fluids are suitable 

for mitigating differential pipe sticking. 

Mao et al. (2015) introduced and developed a type of hydrophobic nano-silica 

composite associated with a polymer (SDFL) to be used for enhancing the properties of 

water-based drilling fluids. It was reported that the SDFL has a core-shell structure. 

Excellent thermal stability, filtrate loss reduction, and rheological properties were 

obtained when using SDFL compared to the base. For example, a reduction of 69% in the 

HP/HT fluid loss was obtained when using 0.5 wt% of the SDFL. 

Using Fe4O3 NPs as a drilling fluid additive was also investigated (Amarfio et al. 

2015). It was reported that at defined shear rates, using Fe4O3 NPs can keep stable shear 

stresses of the fluid with the increase in temperature. Additionally, a predictive model was 

developed to estimate the Fe4O3 NPs mass fractions and shear rates when drilling at higher 

temperature. 

Taha and Lee (2015) investigated the applicability of a nano-graphene fluid to 

enhance the drilling fluid performance. The authors applied the tested nano-based drilling 

fluid in drilling an onshore well under HP/HT conditions.  Enhancement in the thermal 

stability and a reduction of 30% in the fluid loss were observed when using nano-graphene 

compared to the control. Furthermore, improvements in the rate of penetration (ROP) by 
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125%, a reduction in the torque by 20%, and an increase of greater than 75% in the bit life 

were reported in this study when using nano-graphene. 

A composite of zinc oxide NPs and an acrylamide (ZnO-Am) was also investigated 

as a water-based drilling fluid additive for drilling shale formations (Aftab et al. 2016). 

Over a temperature range up to 150°F, both apparent viscosity and plastic viscosity were 

increased when using the ZnO-Am. Furthermore, a reduction of 14% in the API fluid loss 

was observed when using the composite compared to the control fluid. However, at 

HP/HT a slightly less reduction in the fluid loss volume was obtained. Moreover, it was 

found that using the composite resulted in a decrease in the shale swelling capacity from 

16% to 9%. 

Amarfio and Abdulkadir (2016) examined the using of Al2O3 NPs to enhance the 

properties of water-based drilling fluids. It was found that using Al2O3 NPs resulted in an 

improved thermal stability under high temperatures. Furthermore, it was reported that at 

defined shear rates, using Al2O3 NPs can keep stable shear stresses of the fluid with the 

increase in temperature. 

Li et al. (2016) studied the using of SiO2 NPs as a drilling fluid additive while 

drilling unconventional wells. Enhancements in the rheological properties and a reduction 

in the filtrate fluid loss were observed when using NPs compared to the control (without 

using NPs). Furthermore, it was reported that NP-based drilling fluid was able to generate 

a thin filter cake with a better texture.  

Salih et al. (2016) examined the using of nano-silica as a drilling fluid additive. 

The authors reported that using nano-silica in a concentration of 0.1 to 0.3 wt% has more 
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impact on the drilling fluid properties than at the other concentrations (greater than 0.5 

wt%). Furthermore, the pH of the fluid was reported to have a great impact on the 

sensitivity of nano-silica in the fluids. 

Belayneh et al. (2016) studied the using of SiO2 NPs as a bentonite-based drilling 

fluid additive. The bentonite fluids used in this study were treated by different types of 

polymers (HV-CMC, LV-CMC, and XG) and salts (KCl, NaCl). The control fluid 

formulated for this study was containing 0.3 g of XG in 25 g bentonite per 500 g water, 

0.2 g LV-CMC, and 2.5 g KCl. An upward shift on the rheogram (shear stress versus shear 

rate) of the control fluid was observed when adding the NPs. Additionally, a shear thinning 

behavior was noticed in this case. It was also found that adding 0.25g of SiO2 NPs gave a 

maximum value of yield stress (10 Pa) when compared to that of the control (5.5 Pa). 

Moreover, the optimum NP concentration was found to be 0.25 g, which gave a reduction 

of 4.5% in the API fluid loss compared to that of the control. However, Adding less than 

(0.2 g) or greater than this concentration (0.3 g) resulted in increasing the fluid loss by 

8.7% and 13%, respectively, compared to the control. 

Tin oxide (SnO2) NPs were also investigated as an additive to water-based drilling 

fluid (Parizad and Shahbazi 2016). The test results revealed improvements in the 

rheological, thixotropy, electrical thermal, and filtration and filter cake properties of the 

drilling fluid upon the addition of SnO2 NPs. It was found that adding 2.5 g/L of SnO2 

NPs resulted in a reduction of 20% in the filtrate loss volume. However, less 

improvements on the filtration characteristics was noticed in case of using higher NP 

concentrations. Additionally, it was reported that the increase in the NP concentration 
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yielded an increase in the flow consistency index (K) and a reduction in the flow behavior 

index (n).  

Wellbore Strengthening and Shale Stability agents 

Sensoy et al. (2009) discussed the effectiveness of silica NPs to reduce shale 

permeability around the wellbore. The theory explained was that the NPs are playing a 

key rule of plugging the pore throats and building an internal filter cake, which reducing 

the invasion of the fluids into shale formations. It was found that a concentration of at least 

10 wt% of silica NPs having an average size of 20 nm should be used for successful shale 

plugging. The SEM were used in this research to investigate the type of plugging (Fig. I-

10). It was noticed that the NPs plugged the pores that have the same NP size. 

Additionally, a group of NPs can aggregate together and plug one big pore throat. 

Moreover, four types of real drilling fluids were studied with and without the addition of 

NPs. The authors reported a reduction of 16 to 72% in the fluid loss into Atoka shale when 

using NPs. However, in the case of Gulf of Mexico shale the reduction in the fluid 

penetration was noticed to be from 17 to 27%. 

  

Fig. I- 10―SEM images of: (a) NPs plugging different pore throats, (b) aggregated particles plugging a pore 
throat (Sensoy et al. 2009).  
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Srivatsa et al. (2011) studied a bio polymer-surfactant fluid containing NPs as a 

drilling fluid additive for fluid loss reduction. Silica NPs were found to give better results 

when compared sized calcium carbonates. Furthermore, it was also noticed that the 

surfactant had low thermal stability at high temperatures. However, the bio-polymer was 

reported to be stable up to 350°F. The authors concluded that a combination of silica NPs 

and bio-polymer is recommended for high temperature drilling. Additionally, the increase 

in NP concentration was found to reduce the fluid loss; however, the aggregation of NPs 

in the polymer fluid might be a restriction of increasing the NP concentration.  

Cai et al. (2012) also investigated the capability of nonmodified silica NPs as shale 

plugging additives in the drilling fluid. In this study, six different types of commercial and 

nonmodified silica NPs were examined and screened. Two types of regularly used water-

base drilling fluid were studied in the presence and absence of 10 wt% of NPs. Atoka shale 

outcrops and the three-step pressure penetration experiment were used throughout this 

study. A higher reduction in the shale permeability was observed upon the addition of 

nonmodified NPs. Furthermore, an increase in plastic viscosity, a decrease in yield point, 

and a reduction in the filtrate fluid loss were also noticed when adding NPs compared with 

the base. Moreover, the most effective sizes and concentrations of NPs to get a highly 

reducing in the shale permeability was reported to be from 7 to 15 nm and 10 wt%, 

respectively. 

Hoelscher et al. (2012) investigated the application of silica NPs (5 to 100 nm) as 

a water-based drilling fluids additive with shale formations. The NPs were screened by 

running stability tests in various salt solutions and temperatures. The successful NP sizes 
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were then used to run a modified API filter loss test, in which the smallest available 

hydrophilic filter membrane (100 nm pores) was used. Furthermore, for better 

understanding of the mechanism of shale pore plugging, a shale membrane tester was 

used. It was reported that, silica NPs at low concentrations in a water-based drilling fluid 

can physically plug shale pores, which was considered as a more environmentally friendly 

and cost-effective method. 

Silica NPs with 20 nm diameter was also examined as a water-based drilling fluid 

additives for shale drilling (Sharma et al. 2012). The authors reported that the developed 

drilling fluids are stable with a proper range of change in the rheological properties at 

elevated pressures and temperatures. The NP-based fluids were also reported to have good 

lubricant capabilities. Additionally, a reduction of 10 to 100 times was observed in the 

filtrate penetration into the shale when using NPs. Some tests were also conducted to 

reveal the effect of NPs on naturally-fractured shale. For shales without fractures, it was 

reported that using the NPs alone can effectively plug the pores. However, using NPs 

alone could not be effectively plug the pores of fractured shales. In the latter case, a 

suitable NP size and concentration should be used to formulate an effective NP-based 

drilling fluid. 

Two types of aqueous silica NPs were also investigated for shale wellbore stability 

maintenance through physical plugging the pore throats (Akhtarmanesh et al. 2013). It 

was reported that the NP-based fluids had convenient stability for long time at room 

temperatures. Different tests were conducted using real shale outcrops from a field in Iran. 

Three different drilling fluids were investigated with and without adding aqueous silica 
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NPs. It was found that the fluid invasion into this shale were reduced up to 68% upon the 

addition of NPs. Moreover, a concentration of 10 wt% of NPs was found to be the 

minimum concentration needed to obtain a satisfactory reduction in the permeability and 

fluid invasion. Additionally, using NPs of 35 nm size showed better pore plugging 

performance when compared to the 50 nm NPs. 

Nwaoji et al. (2013) developed and tested a NPs-based lost circulation material 

(LCM) as a blend for drilling application to achieve wellbore strengthening. Different 

types of core outcrops were used to conduct hydraulic fracture experiments. It was found 

that a blend of iron-III hydroxide NPs (1 ml) and graphite (5 gm) in water-base fluid 

increased the fracture pressure by 70% with a moderate impact on the rheological 

properties. Moreover, a blend of calcium carbonate NPs (10 ml) and graphite (5 gm) in 

invert emulsion drilling fluid increased the fracture pressure by 36% with a moderate 

impact on the rheological properties. Additionally, an increase of 25% in the fracture 

pressure was achieved when using impermeable concrete core, which revealed the well-

performance of these NPs-based blends in wellbore strengthening.   

Husein and Hareland (2014) presented a type of drilling fluid that containing NPs 

and granular particles, which can act as a LCM to provide wellbore strengthening. The 

examined drilling fluid was an invert emulsion-based fluid. Different types of NPs were 

investigated (i.e., hydroxide, oxide, sulphate, sulphide, and carbonate) in addition to a 

granular particles (graphite or calcium carbonate). Low NP and granular particle 

concentrations were used (less than 5 wt% and less than 10 wt%, respectively). It was 

reported that, because of the low concentrations of the NPs and granular particles there 
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was insignificantly change in the other properties of the fluid.  However, the developed 

fluids showed better applicability to strengthening the wellbore. Moreover, this study had 

investigated both the in-situ and ex-situ preparation of NPs in the drilling fluids.  

Based on the aforementioned survey, metal oxide NPs, more specifically iron 

oxides and silica NPs, were found to be capable of reducing the filtration loss, forming a 

good-quality filter cake (i.e., thin and very low permeability cake with less filtrate 

invasion), and maintaining optimal rheological properties when used in low 

concentrations. All of the previous work was focusing mainly on investigating the 

properties of water-based drilling fluids in the presence of NPs. For bentonite-based 

drilling fluids, the Na-montmorillonite was the mostly used clay. However, to the best of 

our knowledge, the Ca-bentonite were not investigated as a drilling fluid additive in the 

previous work. In the following research, the effectiveness of NPs to improve the 

rheological and fluid loss properties of bentonite-based drilling fluid consisting mainly of 

Ca-montmorillonite will be investigated under downhole conditions.  

Research Objectives 

This research work aims at experimentally investigate the effectiveness of using 

different types of NPs on the filter cake properties of Ca-bentonite fluids at downhole 

conditions up to 500 psi and 350°F using real Indiana limestone outcrops. A combination 

of CT scan, SEM-EDS, and ICP-OES will be used to provide detailed insights on the rule 

that the NPs play for building the filter cake structure. Furthermore, a sensitivity analysis 

of the rheological properties of this NPs/Ca-bentonite-based drilling fluids will be 

conducted at temperatures up to 200°F to assess their stability. Moreover, this work 
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intends to determine the optimum NP concentration, which provides a base for more 

efficient and environmentally friendly drilling operations and less formation damage. 

A complete NPs/Ca-bentonite-based drilling fluid will be formulated and tested in 

order to reveal the effectiveness of using NPs to enhance the properties of Ca-bentonite-

based fluids in the presence of polymers and different drilling fluid additives. Moreover, 

the effect of NP concentration, temperature, differential pressure, drilling conditions 

(static or dynamic), and the drilling fluid preparation method on the filter cake properties 

will be investigated. 
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CHAPTER II  

EXPERIMENTAL SETUP AND MATERIALS3,4 

 

Introduction 

In this chapter, the materials that used in this research work are introduced. The 

characterization of the bentonite showed that it was consisting mainly of Ca-

montmorillonite. Furthermore, the specification of the nanoparticles (NPs) and the drilling 

fluid additives (i.e., viscosifiers, filtrate control additives, thinners, alkalinity agents, and 

weighting materials) are presented. Additionally, the Indiana limestone outcrops, which 

used to simulate the formation, are characterized on the basis of their porosity and 

permeability. Moreover, the experimental setups, fluid preparation methods, and the 

procedures that were followed for each measurement are discussed in details.  

Materials 

Bentonite  

The bentonite was supplied by a local service company in powder form (specific 

gravity = 2.6, and tan color). It was an untreated bentonite that meets API specifications 

13A, section 10 requirements (2010). The X-ray diffraction (XRD) mineralogical analysis 

of the bentonite (Fig. II-1 ) showed that it mainly contained Ca-montmorillonite 

                                                 

3 Reprinted with a permission from “Nanoparticle-Based Drilling Fluids for Minimizing Formation Damage 
in HTHP Applications” by Mahmoud, O., Nasr-El-Din, H. A., Vryzas, Z., and Kelessidis, V. C. SPE-
171849-MS, Copyright 2016 by Society of Petroleum Engineers. 
4 Reprinted with a permission from “Characterization of Filter Cake Generated by Nanoparticle-Based 
Drilling Fluid for HP/HT Applications” by Mahmoud, O., Nasr-El-Din, H. A., Vryzas, Z., and Kelessidis, 
V. C. SPE-184572-MS, Copyright 2017 by Society of Petroleum Engineers. 
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(Al 2Ca0.5O12Si4) and Mg-montmorillonite minerals (Al0.86Fe0.1H.Li0.08Mg0.14O10Si3.9) with 

the calcium type being the predominant mineral, and it had low percentages of quartz 

(SiO2) and illite (Al2H2K.O12Si4). Table II-1 shows the X-ray fluorescence (XRF) 

analysis of bentonite as oxides. The XRF values revealed that the SiO2:Al 2O3 ratio is 3:1, 

as expected for montmorillonite. The ratio [(CaO+MgO)/(Na2O+K2O)] confirmed that it 

is mainly Ca-montmorillonite (Veblen et al. 1990; Garcia-Romero and Suarez 2010). The 

d50 of the bentonite was 68 µm, as determined by sieve analysis (Fig. II-2 ). The used 

bentonite is consisting mainly of Ca-montmorillonite, which is a natural clay of the 

smectite group. These type of clay minerals have particles with a plate-like, crystalline 

structure as shown by SEM (Fig. II-3 ). Clays of the smectite group are belong to the 

phyllosilicate 2:1 family. Their crystalline structure is formed by an Al3+ octahedral layer 

sandwiched between two Si4+ tetrahedral layers.  A high negative charge is included in the 

layers because of the interfoliaceous cations (Grandjean 1997; Luckham and Rossi 1999).  
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Fig. II- 1― Spectrum XRD of bentonite. 
 

Oxides  SiO2 Al 2O3 Fe2O3  MgO SO3 CaO K2O P2O5 TiO2 

Concentration (wt%)  64.93 17.28 7.49 3.3 2.01 1.97 0.94 0.94 0.35 

 
Table II- 1―XRF analysis of bentonite. 

 

 

Fig. II- 2―Particle-size distribution of bentonite. 
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Fig. II- 3―Scanning electron microscopy image of bentonite (X500-50 µm). 
 

Nanoparticles  

The NPs used throughout this research work were supplied by Sigma Aldrich and 

used as received, which are: 

• The ferric oxide (Fe2O3) NPs (molecular weight =159.69 g/mol) were supplied in 

powder form. These NPs had a dark brown color with a spherical shape and an 

average diameter of less than 50 nm. The surface area of these NPs was 50-

245 m2/g with a purity of greater than 97% as per manufacturer specifications. Fig. 

II-4  shows the SEM image of the Fe2O3 NPs as received. 
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Fig. II- 4― Scanning electron microscopy image of ferric oxide NPs (X200-200 µm). 

 

• The silica (SiO2) NPs had a white color. These particles had a molecular weight of 

60.08 g/mol, a specific surface area of 175-225 m2/g, an average diameter of 12 

nm, and a purity of greater than 97% as per manufacturer specifications. 

• The magnetic iron oxide (Fe3O4) NPs: With dark color and a spherical shape, these 

particles had a diameter of 50-100 nm, a molecular weight of 231.53 g/mol, a 

surface area of greater than 60 m2/g, a density of 4.8-5.1 g/ml, and a purity of 

greater than 97% as per manufacturer specifications. 
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• The zinc oxide (ZnO) NPs: These particles had a white color, a molecular weight 

of 81.39 g/mol, a specific surface area of 15-25 m2/g, an average diameter of less 

than 100 nm, and a purity of greater than 97% as per manufacturer specifications. 

Drilling Fluid Additives 

The polymer (Hyperbranched bis-MPA polyester-64-hydroxyl, generation a4) was 

used to control the rheological properties. It was supplied by Sigma Aldrich in powder 

form and white color. It has a molecular weight of 7323.32 g/mol and its chemical formula 

is C315H512O189.  

Polyanionic cellulose (PAC-R) polymer was used to control the rheological and 

filtration properties. Ferro-chrome lignosulfonate-based thinner and sodium hydroxide 

(NaOH) pellets were used as thinning and alkalinity control agents. Calcium carbonate 

(CaCO3) of d50 equals 25 µm and manganese tetraoxide (d50 = 5 µm) were used as 

weighting materials. All of the above mentioned materials were provided by a local service 

company. 

Core Outcrops and Deionized Water 

Throughout the sample preparation, deionized water was used, which obtained 

from a purification water system that has a resistivity of 18.2 MΩ.cm at 78°F. Indiana 

limestone cores of 2.5-in. diameter and 1-in. thickness were used to simulate the formation 

in the filtration experiments at the tested conditions. The initial porosity of the Indiana 

limestone core disks were determined by dividing the pore volume by the disk bulk 

volume. The pore volume for each core was determined as the difference in weight of the 

core in saturated and dried conditions. The initial porosity of the cores was found to have 
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an average value of 10-15 vol%. The permeability of these cores was determined using 

Darcy’s equation and was found to be within an average value of 200 md. 

 Zeta Potential Measurements 

Zeta potential can be defined as the potential difference between the stationary 

layer of fluid attached to a dispersed particle and the medium in which the particle is 

dispersed (Hunter 1988). Potential stability of a colloidal system might be revealed from 

the magnitude of zeta potential measurement. If the measured zeta potentials of particles 

dispersed in a medium within a value of ±30 mV, this means higher tendency of the 

particles to aggregate and flocculate over time. However, the particles with zeta potentials 

out of the range of ±30 mV are normally considered to be stable. 

The zeta potential of the prepared suspensions was determined using the Phase 

Analysis Light Scattering (PALS) technique (Alotaibi et al. 2011) (Fig. II-5 ). The 

electrode of the instrument is coated with Pd. A He-Ne laser is used as a light source. The 

zeta potential range of the instrument is from –200 to +200 mV with an accuracy of ±2% 

and it normally measures the electrophoretic mobility of charged, colloidal suspensions.  

NP suspensions for zeta potential measurements were prepared by mixing the NP 

with deionized water for 5 minutes under mechanical stirring using a five-spindle, single 

speed multi mixer (load speed of 11,000 rpm) (Fig. II-6 ). Each solution was then mixed 

using an Ultrasonic Homogenizer model 150VT (Fig. II-7 ) for 15 minutes at ambient 

conditions. Different suspensions with different NP concentration (0.1 to 0.5 wt%) were 

prepared for the measurement at different temperatures. Bentonite suspensions were 

prepared by adding 7 wt% of bentonite to deionized water and mixing for 20 minutes 
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under mechanical stirring. The suspensions were then sonicated for 15 minutes at ambient 

conditions. HCl or NaOH puffer solution were used to adjust the pH of the suspensions. 

Then, the solutions were shaken and the pH was measured directly before running the 

measurement using a pH/Ion 510 microprocessor-based meter. A polystyrene cuvette was 

used to hold 1.5 ml of the sample. At least five runs were automatically averaged for each 

measurement within a standard error of ±3%. 

 

 
Fig. II- 5―Brookhaven Zeta Potential Analyzer (ZetaPALS). 
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Fig. II- 6―OFITE Multi Mixer (11,000 RPM). 
 

 

 
Fig. II- 7―Model 150 VT Ultrasonic Homogenizer. 
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Rheological Measurements 

NPs/Ca-Bentonite Suspensions 

The effectiveness of adding NPs on the rheological behavior of bentonite 

suspension was examined using a rotational viscometer (Grace M3600) (Fig. II-8 ). The 

measurements were conducted at fixed speeds of 600, 300, 200, 100, 60, 30, 6, and 3 rpm. 

At the inner fixed cylinder of the viscometer, these speeds give Newtonian shear rates of 

1021.38, 510.67, 340.46, 170.23, 102.14, 51.069, 10.21, and 5.11 s-1, respectively 

(Kelessidis and Maglione 2008). The rheological studies were conducted at various 

temperatures from 120 to 200°F and ambient pressure. 

 
 
Fig. II- 8―Grace M3600 Viscometer. 
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The examined samples were prepared by following the American Petroleum 

Institute Standards (API Specifications 13A 1993; API 13B-1 2003). The base fluid was 

formed using a bentonite concentration of 7 wt% mixed in 600 ml of deionized water. 

Different NP concentrations were used (0.3, 0.5, 1.5 and 2.5% by weight). First, bentonite 

was added to deionized water and mixed for 20 minutes under mechanical stirring using 

the multi mixer. After that, the desired concentration of NP was added slowly to minimize 

the agglomeration, and mixing continued for 20 more minutes. The samples were then 

sealed in plastic containers and left for 16 hours at room temperature for bentonite to 

hydrate. The samples were remixed for 5 minutes before conducting the rheological 

measurements. Table II-2 shows the weights of NP and bentonite used to prepare different 

NPs/Ca-bentonite suspensions. 

Nanoparticle Concentration, wt% 
Weight, g 

Bentonite Nanoparticle 

0.0 45.161 0.000 

0.3 45.307 1.942 

0.5 45.405 3.243 

1.0 45.652 6.522 

1.5 45.902 9.836 

2.0 46.154 13.187 

2.5 46.409 16.575 

 
Table II- 2―Weights of bentonite and NPs used to prepare the suspensions. 
 

Rheological measurements were also conducted on some samples after thermal 

aging. Dynamic aging of the samples was carried out using an aging cell to determine if 

the NPs could maintain effectiveness in preserving the rheological properties of these 

types of drilling fluids. A volume of 200 ml of the fluids that have 0.5 wt% NPs was put 
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inside a Teflon liner and loaded in the aging cell (Fig. II-9 ). The aging cell was pressurized 

to 300 psi by nitrogen gas at 78°F. Then, the cell was placed in the rolling oven at 350°F 

for 16 hours. After that, the cell was cooled, and the aged fluid was agitated for five 

minutes at 11,000 rpm before running the rheological measurements.  

 
 
Fig. II- 9―Aging Cell and Teflon Liner. 
 

Fully Formulated Drilling Fluid  

A complete Ca-bentonite-based drilling fluid formulation was used to investigate 

the effectiveness of using ferric oxide NPs as an additive to enhance the drilling fluid 

properties at HP/HT conditions. The drilling fluid was prepared by mixing 319 ml of 

deionized water with 7 wt% of bentonite for 20 minutes using the multi-mixer (11,000 

rpm). After that the desired amount of NPs were added slowly and mixing continued for 
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10 more minutes. The wt% of NPs was calculated based on the total weight of bentonite 

suspension. For instance, the weight of 0.5 wt% NPs was 1.724 g, while the weight of 7 

wt% bentonite was 24.14 g in the drilling fluid formula that contains a concentration of 

0.5 wt% NPs.  The suspension was then ultrasonicated for one hour at ambient conditions 

using the Ultrasonic Homogenizer. 

 After that, the drilling fluid additives were added slowly to the NPs/Ca-bentonite 

suspension under mechanical stirring using the multi mixer (Table II-3). Firstly, 0.25 g 

of the hyper-branched polymer and 0.25 g of PAC-R were added slowly and mixed for 10 

minutes for each of them. Then, 1 g of the thinner and 0.5 g of NaOH were added 

simultaneously and mixed for a total time of 10 minutes. Finally, 30 g and 20 g of the 

weighting materials CaCO3 and Mn3O4, respectively, were added separately and mixed 

for 10 minutes.  Table II-4 summarizes the laboratory formula and mixing times to 

prepare a 1 barrel equivalent of the drilling fluid that contains 0.5 wt% of NPs.  

Filtration Loss Measurements 

NPs/Ca-Bentonite Suspension 

The filtration characteristics and filter cake generation of the NPs/Ca-bentonite 

suspensions were investigated using an OFITE HP/HT filter press (Fig. II-10). The setup 

includes a 500 ml cell which was modified to use 2.5-in. in diameter and 1-in. in thickness 

cores instead of filter papers, cell caps, valve stems, heating element, and a nitrogen-gas 

line. The suspensions were put in the cell, and the cell was then put in the heating jacket. 

A differential pressure from 300 to 500 psi and a temperature range of 175 to 250°F were 

used. Furthermore, the fluid loss volume was measured as a function of time for 30 
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minutes, as per API standards. The filtrate fluids were collected and analyzed for the 

concentrations of key ions using ICP-OES. Moreover, a Toshiba Aquilion RXL CT 

scanner was used to investigate the produced filter cakes. CT images were taken through 

the full cake diameter and analyzed using Imagej® software. A Miniature Scanning 

Electron Microscope with X-ray NanoAnalysis (Evex Mini-SEM) was used for the SEM-

EDS analysis of the filter cakes. 

  Amount Added   

Additive Description/Function Lab Units (per 350 ml ) Field Unit (per bbl) 
Mixing 

Time, 

  Quantity  Unit  Quantity  Unit  min 

Deionized Water Base liquid 319 ml 0.911 bbl ― 

Ca-Bentonite 
Clay for viscosity/API 

filtrate control 
24 g 24 lbm 20 

Hyper-branched 

Polymer 
Viscosifier 0.25 g 0.25 lbm 10 

Pac-R 
API HP/HT filtrate 

control 
0.25 g 0.25 lbm 10 

Lignosulfonate-

based Thinner 
Thinner 1 g 1 lbm 

10 

Caustic soda Alkalinity agent 0.5 g 0.5 lbm 

Calcium carbonate 

(25 µm) 

Weighting and bridging 

material 
30 g 30 lbm 10 

Manganese 

tetraoxide (5 µm) 
Weighting material 20 g 20 lbm 10 

 
Table II- 3―Laboratory formula to prepare 1 barrel equivalent of the bentonite based drilling fluid. 
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  Amount Added   

Additive Description/Function Lab Units (per 350 ml ) Field Unit (per bbl) 
Mixing 

Time, 

  Quantity  Unit  Quantity  Unit  min 

Deionized Water Base liquid 319 ml 0.911 bbl ― 

Ca-Bentonite 
Clay for viscosity/API 

filtrate control 
24.14 g 24.14 lbm 20 

Ferric oxide NPs Nanoparticles  1.724 g 1.724 lbm 10 

Ultras onication for 1 hour  

Hyper-branched 

Polymer 
Viscosifier 0.25 g 0.25 lbm 10 

Pac-R 
API HP/HT filtrate 

control 
0.25 g 0.25 lbm 10 

Lignosulfonate-

based Thinner 
Thinner 1 g 1 lbm 

10 

Caustic soda Alkalinity agent 0.5 g 0.5 lbm 

Calcium carbonate 

(25 µm) 

Weighting and bridging 

material 
30 g 30 lbm 10 

Manganese 

tetraoxide (5 µm) 
Weighting material 20 g 20 lbm 10 

 
Table II- 4―Laboratory formula to prepare 1 barrel equivalent of the drilling fluid having 0.5 wt% of NPs. 
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Fig. II- 10―OFITE Dynamic HP/HT Filter Press. 
 

Fully Formulated Drilling Fluid  

The filtration properties and the filter cake characteristics of the NPs/Ca-bentonite-

base drilling fluids were investigated at different conditions of pressure and temperature 

using the HP/HT filter press. In this study, the effectiveness of ferric oxide NPs on the 

filter cake properties of Ca-bentonite-based drilling fluids had been investigated. A 

complete drilling fluid formula containing polymer and different drilling fluid additives 

was formulated and examined. The filtration volume was determined with time for 30 

minutes, and the filtrate fluids were collected. The CT scanner was used to investigate the 

formed filter cakes. CT images were taken through the full cake diameter and analyzed 
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using the software. The CT data was analyzed to determine the filter cake thickness and 

CT number (CTN). SEM-EDS was used to analyze the dried filter cakes for surface 

morphology and elemental content. Moreover, a parametric study was conducted on the 

performance of the formulated NPs/Ca-bentonite-based drilling fluid to reveal their 

effectiveness. The investigated parameters were: the NP concentration, drilling fluid 

preparation method (using ultrasonication and bentonite hydration), filtration temperature 

and differential pressure, and the drilling conditions (static or dynamic filtration).  
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CHAPTER III 

USING NANOPARTICLES TO DEVELOP MODIFIED CA-

BENTONITE FLUIDS 5,6 

 

Introduction 

In this chapter, the analysis of the measurements carried out on the NPs/Ca-

bentonite suspensions are presented and discussed. The objective is to investigate 

experimentally the influence of using NPs on the properties of Ca-bentonite-based fluids 

under downhole conditions (up to 350°F and 500 psi). Different types of oxide NPs were 

used in this study. Zeta potential measurements were conducted at different temperatures 

and NP concentrations, which gave insights onto their stability in suspensions and the role 

of charge potential. Furthermore, the sensitivity of the rheological properties of these 

NPs/Ca-bentonite fluids are studied at temperatures up to 200°F, with and without using 

thermal aging (at 350°F for 16 hours), to assess their stability. A combination of 

computed-tomography (CT) scan, scanning electron microscopy-energy dispersive 

spectroscopy (SEM-EDS), X-ray diffraction (XRD), and inductively coupled plasma-

optical emission spectrometry (ICP-OES) provided detailed insights on the effect of NPs 

on the filter cake characteristics and the role of NPs in building the cake structure. The 

                                                 

5 Reprinted with a permission from “Nanoparticle-Based Drilling Fluids for Minimizing Formation Damage 
in HTHP Applications” by Mahmoud, O., Nasr-El-Din, H. A., Vryzas, Z., and Kelessidis, V. C. SPE-
171849-MS, Copyright 2016 by Society of Petroleum Engineers. 
6 Reprinted with a permission from “Development and Testing of Novel Drilling Fluids Using Fe2O3 and 
SiO2 Nanoparticles for Enhanced Drilling Operations” by Vryzas, Z., Mahmoud, O., Nasr-El-Din, H. A., 
and Kelessidis, V. C. IPTC-18381-MS, Copyright 2015 by Socity of Petroleum Engineers. 
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obtained rheological measurements were fitted to the classical drilling fluid models to 

determine the best fit-model, which can then be applied for more efficient drilling fluid 

design. 

A reduction of 43% in the filtrate fluid volume was achieved when using 0.5 wt% 

of ferric oxide or magnetic iron oxide NPs compared to that of the base fluid. However, 

using silica or zinc oxide NPs led to an increase in the filtrate loss volume and filter cake 

thickness. Using 0.5 wt% of ferric oxide NPs provided less agglomeration and reduced 

the filter cake permeability. Additionally, the EDS and ICP-OES analysis showed a 

replacement of the cations dissociated from the bentonite by NPs, which promoted the 

formation of a rigid clay-platelet structure. Moreover, the produced filter cakes consisted 

of two layers, as indicated by the CT scan analysis. Increasing the concentration of NPs 

resulted in an increase in the fluid loss and filter cake thickness. At a higher ferric oxide 

or magnetic iron oxide NP concentration (2.5 wt%), a new layer of NPs formed, which 

adversely affected the filter cake characteristics, as demonstrated by CT scan analysis and 

SEM-EDS elemental mapping. The NPs/Ca-bentonite fluids have stable rheological 

properties at different temperatures (up to 200°F) and different NP concentrations. 

Additionally, aging these fluids at 350°F for 16 hours showed minor changes in 

rheological properties. The Herschel-Bulkley was found to be the best fit model for the 

experimental data of the tested NPs/Ca-bentonite fluids with R2 values higher than 0.99 

and minimum ∑Q2 values, especially at higher temperatures. 
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Zeta Potential Analysis 

The zeta potential (ζ) measurements gives a good indication about the potential 

stability of a colloidal system. If the suspended particles in the system have a large 

negative or positive ζ, then they will repulse each other and there will be no tendency for 

them to come together. This repulsion results in a greater separation between particles in 

the suspension and reduces the particle aggregation/flocculation caused by Van der Waals 

interactions. However, if the particles have lower magnitudes of ζ then there will be no 

force to prevent the particles coming together and flocculating (Hunter 1988). A general 

dividing line can be drawn between the stable and unstable suspension cases. Particles 

with ζ values of more positive than +30 mV or more negative than -30 mV are generally 

considered stable.  

Bentonite  

A sample of 7 wt% of bentonite suspension had been prepared for such 

measurement. The pH of the suspension was 8.65. The measurements showed that, the 

used Ca-bentonite had a mean ζ of -44.8 mV, which indicated stable suspension with a 

negative surface charge (Table III-1) .  Generally, the ζ of bentonite suspensions is 

negative over a pH range of 2 to 12 (Missana and Adellm 2000; Yalcin et al. 2002), which 

reveals high affinity to attach with particles that have positive surface charge. 

pH 
Zeta potential ( ξ) (mV)   

Run 1 Run 2 Run 3 Mean Standard Deviation Standard Error 

8.65 - 43.01 - 46.39 - 45.00 - 44.80 1.6988 0.9808 

 
Table III- 1―Zeta potential of 7 wt% Ca- bentonite suspension at 78°F. 
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Nanoparticles 

Often, the NPs are applied in wet conditions, which resulting in potential changes 

in charged conditions because of aggregation and surface reactions. Table II-2 shows the 

ζ of the Fe2O3 NPs suspensions that had different NP concentration at two different 

temperatures 78°F and 100°F. The measured ζ values ranged from +39.53 to +44.96 mV 

at 78°F and from +39.12 to +48.43 mV at 100°F, which indicating a stable NP suspension 

and a positively charged NP surface. The measurements at two different temperature 

showed that the change in temperature had a relatively small effect on the surface charge 

of these particles. Wang et al. (2013) measured the effect of pH on the zeta potential of 

different types of iron-based NPs at various particle concentrations. The authors reported 

that the ζ of those NPs is positive at low pH and decreases with increasing the pH until 

becomes negative at high pH. 

Nanoparticle 

Concentration, 

wt% 

pH* 

Temperature = 78°F   Temperature = 100°F  

Zeta Potential, 

mV 
Standard Error 

 

 

Zeta 

Potential, 

mV 

Standard Error 

0.1 5.90 +40.25 1.13  +39.12 0.42 

0.2 4.66 +44.96 0.56  +40.47 0.72 

0.3 4.28 +43.89 0.93  +48.43 0.94 

0.4 4.15 +42.29 1.03  +42.10 1.31 

0.5 4.05 +39.53 0.84  +41.48 1.60 

* pH was measured at 78°F 

Table III- 2―Zeta potential of ferric oxide NPs measured at different concentrations and two different 
temperatures (78°F and 100°F). 

 

On the other hand, the zeta potential of silica NPs ranged from -26.72 to -20.87 

mV at 78°F and from -24.05 to -13.44 mV at 100°F, which indicated an incipient 



 

52 

 

instability of the colloidal suspension (Table II-3) . The increase in temperature adversely 

affected the stability of silica NPs in suspensions by changing the ζ values toward the 

range of instability. Shin et al. (2008) measured the ζ of silica NPs with an average size of 

150 (±17.9) nm. The ζ value of this pure silica NPs was reported to be -43.1(±1.9) mV. 

Xu et al. (2003) used silica powder of a mean volumetric diameter of 0.83 µm to evaluate 

the influence of complexation on the ζ of this powder. The authors found that the ζ of the 

pure silica powder suspensions were negatively charged over a wide range of pH. 

Nanoparticle 

Concentration, 

wt% 

pH* 

Temperature = 78°F   Temperature = 100°F  

Zeta Potential, 

mV 
Standard Error 

 

 

Zeta 

Potential, 

mV 

Standard Error 

0.1 7.01 -25.81 0.50  -22.99 0.98 

0.2 6.58 -25.20 0.78  -19.86 1.23 

0.3 6.33 -24.70 0.86  -18.56 1.38 

0.4 6.23 -20.87 0.37  -13.44 0.94 

0.5 6.25 -26.72 0.55  -24.05 1.19 

* pH was measured at 78°F 

Table III- 3―Zeta potential of Silica NPs measured at different concentrations and two different temperatures 
(78°F and 100°F). 
 

Zeta potential measurements of magnetic iron oxide (Fe3O4) NPs (average 

diameter 50-100 nm) are shown in Table III-4 . The zeta potential shifted from negative 

values at low concentration to positive values at concentration greater than 0.25 wt%. At 

a NP concentration of 0.5 wt%, the zeta potential was +18.7 mV. In addition, the values 

are in the range of low stability suspensions. These results matched what was mentioned 

in the literature (Wang et al. 2013). 
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Zeta potential measurements of zinc oxide (ZnO) NPs (average diameter <100 nm) 

are shown in Table III-5 . The zeta potential values for the suspensions of ZnO NPs 

showed that the surface charge of this type of particles is almost neutral with a maximum 

value of nearly +1 mV at a NP concentration of 0.3 wt%. 

 

Nanoparticle Concentration, 

wt% pH* 

Temperature = 78°F 

 
Zeta Potential,  

mV 
Standard Error 

0.1 6.02 -18.71 2.17 

0.2 5.61 -22.38 1.20 

0.3 5.69 17.41 1.51 

0.4 5.51 18.71 1.04 

0.5 5.33 18.78 1.14 

* pH was measured at 78°F 

Table III- 4― Zeta potential of magnetic iron oxide (Fe3O4) NPs at different concentrations. 
 

 

Nanoparticle Concentration, 

wt% pH* 

Temperature = 78°F 

 
Zeta Potential,  

mV 
Standard Error 

0.1 7.12 0.17 0.21 

0.2 7.19 0.81 0.28 

0.3 7.34 0.97 0.71 

0.4 7.50 0.51 0.57 

0.5 7.57 0.11 0.41 

* pH was measured at 78°F 

Table III- 5― Zeta potential of zinc oxide (ZnO) NPs at different concentrations. 
 

Rheological Analysis 

The rheological studies were conducted on the Ca-bentonite-based suspensions 

having different concentrations of NPs at various temperatures (120, 140, 160, 180, and 

200°F) and ambient pressure. The fluctuations in the data may be due to a possible 
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evaporation of water from the base fluid at atmospheric pressure (see Appendix A for 

more information about Ca-bentonite dehydration). The resulted shear stress versus shear 

rate data was fitted to the most common non-Newtonian rheological models (Bingham 

Plastic and Herschel-Bulkley). These models can be described as follows (Eqs. III-1 , and 

III-2 ): 

Bingham Plastic model: 

 � = ��	 + �	�� 		 , ……………..………………………………………………. (III-1) 

 
where τ is the shear stress (lbf/100 ft2), τo is the yield stress (lbf/100 ft2), µp is the plastic 

viscosity (cp), and ��  is the shear rate (s-1). 

Herschel-Bulkley model: 

 � = ��	 + 
���	   , …………………………………………………………….. (III-2) 

 
where K is the consistency index (lbf. sn/100 ft2), and n is the flow behavior index 

(dimensionless).   

Ca-Bentonite Base Fluid 

Fig. III-1 shows the shear stress versus shear rate (rheograms) of the base fluid (7 

wt% bentonite in deionized water) at different temperatures. The yield stress increased 

and the viscosity decreased with the increase in temperature. The yield stress was 

estimated from the rheograms by extrapolating the shear stress-shear rate curve to zero 

shear rate and fitting the experimental data with the rheological model. The rheological 

parameters were determined by the least-square fit method (Table III-6 ). The regression 

coefficient (R2) and sum of square errors (∑Q2) were used to indicate the best fit between 
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measured and predicted values. The results indicated that the Herschel-Bulkley model best 

fitted the experimental data with R2 and ∑Q2 values better than the other model especially 

at high temperatures. 

 

Fig. III- 1― Rheograms of the base fluid (7 wt% bentonite) at different temperatures. 
 

Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 9.64 8.00 0.9966 1.7547  9.25 0.0331 0.9046 0.9947 2.8112 

140 10.41 7.08 0.9961 1.6646  10.26 0.0228 0.9389 0.9949 2.0196 

160 12.75 6.11 0.9942 1.6235  12.31 0.0278 0.8923 0.9984 0.5174 

180 14.32 6.21 0.9953 1.4850  14.36 0.0120 1.0105 0.9997 0.0826 

200 14.96 4.84 0.9944 1.0835  14.88 0.0145 0.9486 0.9979 0.4083 

 
Table III- 6― Bingham Plastic and Herschel-Bulkley model constants of the base fluid (7 wt% Ca-bentonite) at 
different temperatures (pH = 8.36 at 78°F). 
 

Annis (1967) reported that at high temperatures the flow curves of bentonite 

suspensions becomes more shear-thinning and non-Newtonian with increasing 

temperature, which results in higher yield stresses and lower plastic viscosities. 
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Additionally, this change indicated a flocculation of bentonite in suspension, which was 

found to increase with time at high temperatures. Bentonite becomes more dispersed when 

exposed to high temperatures for long times. This cause the increase in the number of 

individual clay platelets in suspension, and the increase in viscosities at low shear rates. 

Moreover, the flocculation of clay suspension at high temperatures was reported to be a 

result of modifications in the electrical double layer surrounding the clay platelets due to 

release of the ions (Alderman et al. 1988). 

NPs/Ca-Bentonite Fluids  

Better rheological properties at high temperatures were obtained when adding 

ferric oxide NPs to the base fluid. Fig. III-2 shows the rheograms of the fluids that have 

0.5 wt% ferric oxide NPs at different temperatures. Higher yield stress values were 

obtained at different temperatures comparing to that of the base fluid (Fig. III-1). Higher 

yield stress results in more efficient hole-cleaning while drilling by ensuring better 

dynamic suspension of the drilling cuttings.  

For bentonite suspensions, the zeta potential (ζ) is negative over a pH range from 

2 to 12 (Missana and Adell 2000; Yalcin et al. 2002). Table III-1 shows that the ζ of the 

bentonite used at this study had a mean value of -44.8 mV at 78°F. Table III-2 shows the 

zeta potential (ζ) of the Fe2O3 NP suspensions. The ζ of this type of NPs were relatively 

constant, positive, and ranged from +39.53 to +44.96 mV at 78°F and from +39.12 to 

+48.43 mV at 100°F. These measurements indicated the randomly embedding of ferric 

oxide NPs on the surface of clay particle in the formed pore structure, which supported 

gelation and increased the yield stress and viscosity of suspension (Baird and Walz 2006; 
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Szabo et al. 2007; Jung et al. 2011; Barry et al. 2015). The same behavior was followed 

when using different concentrations of magnetic iron oxide Fe3O4 NPs. 

 

Fig. III- 2― Rheograms of the fluid containing 0.5 wt% of ferric oxide NPs at different temperatures. 
 

This enhancement in the rheological properties increased with increasing the NP 

concentration. Fig. III-3 shows the rheograms of different ferric oxide NP concentrations 

at 140°F. This might be explained as a synergy effect of homocoagulation between the 

exceeded ferric oxide NPs and heterocoagulation of ferric oxide NPs with bentonite 

particles in suspension (Tombácz et al. 2001). Table III-7 shows the fitted rheological 

parameters of the fluids containing 0.5 wt% of ferric oxide NPs at different temperatures. 

The Herschel-Bulkley model best fitted the experimental data with R2 values higher than 

0.99 and minimum ∑Q2 values, especially at higher temperatures. In addition, the increase 

in the consistency index (K) implies a relatively increased viscosity compared to that of 

the base fluid. For more details, see Appendix B. 
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Fig. III- 3― Rheograms of the fluid containing different concentrations of ferric oxide NPs at 140°F. 
 

 Bingham Plastic Model  Herschel-Bulkley Model 

Temperature τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 16.36 8.90 0.9977 1.5315  15.55 0.0628 0.8303 0.9968 2.2210 

140 18.55 7.29 0.9950 2.0324  17.21 0.0706 0.7907 0.9945 3.0057 

160 20.09 6.61 0.9931 2.2420  19.70 0.0334 0.8764 0.9936 2.5098 

180 20.66 6.24 0.9961 1.1418  20.18 0.0277 0.8964 0.9985 0.5145 

200 21.16 6.51 0.9974 0.8486  21.04 0.0165 0.9736 0.9987 0.4398 

 
Table III- 7― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
ferric oxide NPs at different temperatures (pH = 8.15 at 78°F). 

 

Using silica NPs resulted in a decrease in yield stress. Fig. III-4 and Table III-8 

show the rheograms and the fitted rheological parameters of the fluids that have 0.5 wt% 

of silica NPs at different temperatures. Fig. III-5  shows the rheograms at 140°F and 
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different silica NPs concentrations. The Herschel-Bulkley was the best fit model of the 

experimental data. A better viscosity profile (an increase in K and a decrease in n values) 

was obtained when adding silica NPs. Despite the fact that the decrease in the NP size can 

enhance the rheological properties of Ca-bentonite suspensions, the addition of negatively 

charged NPs could have an adversely effect on the properties of such suspension. The zeta 

potential (ζ) for the suspensions of silica NPs are negative and range from -26.72 to -20.87 

mV at 78°F and from -24.05 to -13.44 mV at 100°F (Table III-3). The clay surface has a 

strong negative charge; however, the edge surfaces of the layers has a much weaker 

positively charged double layer. The addition of negatively charged NPs resulted in a weak 

edge-to-edge platelet structure, and thus, a weak yield structure (Luckham and Rossi 

1999). The same behavior was followed when using different concentrations of magnetic 

iron oxide zinc oxide NPs. 

 

Fig. III- 4― Rheograms of the fluid containing 0.5 wt% of silica NPs at different temperatures. 
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The apparent viscosity of all the fluids tested in this work decreased with 

increasing shear rate (i.e., shear-thinning behavior) (Fig. III-6 ). An increase in the 

concentration of NPs stabilized the viscosity at higher temperatures, which is an indication 

of the capability of NPs to restrain and suppress the reduction in viscosity (for more 

details, see Appendix B). 

Temperature  
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 3.49 9.59 0.9934 5.0166  2.95 0.0627 0.8289 0.9984 1.1188 

140 4.18 9.63 0.9933 4.6674  3.71 0.0718 0.8130 0.9975 2.0959 

160 5.26 9.63 0.9929 5.4799  5.16 0.0489 0.8608 0.9974 2.2486 

180 6.86 9.86 0.9924 6.0933  6.60 0.0343 0.9199 0.9951 3.8995 

200 9.35 9.91 0.9959 4.5486  9.48 0.0177 1.0221 0.9956 5.1903 

 
Table III- 8 ― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
silica NPs at different temperatures (pH = 7.7 at 78°F). 
 

 

Fig. III- 5― Rheograms of fluid containing different concentrations of silica NPs at 140°F. 
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Fig. III- 6―The change of apparent viscosity with shear rate for the fluids having: (a) different ferric oxide NP 
concentrations at 140°F, (b) a silica NP concentration of 0.5 wt% at different temperatures. 
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Tables III-9 and III-10  show the rheological parameters at different temperatures 

for the aged drilling fluids having 0.5 wt% of NPs. The experimental data after aging for 

NPs/Ca-bentonite-based fluids fitted the Herschel-Bulkley model with a regression 

coefficient (R2) higher than 0.9, but relatively higher sum of square errors, ∑Q2.  Aging 

samples having ferric oxide NPs resulted in minor changes in the rheological properties at 

different temperatures compared to the unaged suspensions. This indicated a stable 

rheological behavior of this fluids at high temperature conditions. For the samples having 

silica NPs, aging resulted in a change in the yield stress by two or three times at all 

temperatures compared to the unaged suspensions. This change indicated unstable 

rheological properties behavior of this silica NPs/Ca-bentonite-based fluid. For more 

details, see Appendix B. 

Filtration Loss Analysis  

Filter Press Results  

Table III-11  shows the filtration and filter cake characteristics for the experiments 

conducted at a differential pressure of 300 psi and 250°F. Three identical filtration tests 

had been conducted using three samples of the base fluid. The results revealed that the 

cumulative filtrate volume and filter cake thickness were within 5% of each other, which 

indicating the repeatability of the filtration test results (Table III-11). Adding ferric oxide 

or magnetic iron oxide NPs at 0.5 wt% concentration improved the fluid loss and filter 

cake characteristics. A reduction of 42.5 vol% in the filtrate loss volume was achieved 

compared to that of the base fluid (Table III-11 and Fig. III-7 ). The high temperatures 

induced the dissociation of Ca2+ cations from the surface of bentonite (Ramos-Tejada et 
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al. 2001; Laribi et al. 2006). Strong electrical attraction produced between the ferric oxide 

NPs (with large surface-area-to-volume ratio and positive surface charge) and the 

negatively charged face of the clay platelet. Additionally, this also kept the clay platelet 

dispersed and flocculated in suspension, which generated a low porosity/low permeability 

filter cake. Using 0.3 wt% of ferric oxide NPs was not enough for building a rigid clay 

platelet structure, which resulted in higher filtrate fluid volume compared to the sample 

that had 0.5 wt% NPs. However, at higher NP concentration (1.5 and 2.5 wt%), the filtrate 

volume and filter cake thickness increased because of the agglomeration of the excess 

NPs, which reduced the filter cake efficiency. The fluid loss results when using magnetic 

iron oxide Fe3O4 NPs were almost the same compared to the samples containing ferric 

oxide NP; however, the filter cake thickness values were lower. Moreover, the samples 

containing silica or zinc oxide NPs showed lower filter cake efficiency at different NP 

concentrations (Table III-11 and Fig. III-7). Adding silica NPs at any concentration 

increased the filtrate volume and filter cake thickness. The silica NPs, with negative 

surface charge, acted as a diflocculant in the bentonite suspension, which promoted clay 

platelet dispersion at elevated temperatures (Bourgoyne et al. 1991). This led to the 

formation of a weak edge-to-edge bentonite platelet structure (Luckham and Rossi 1999). 

In addition, the silica NPs were also found to be unstable in suspensions (Table III- 3). 

The effect of dynamic filtration was examined at 100 rpm for the sample that have 

0.5 wt% of ferric oxide NPs. A decrease in the filter cake thickness by 18.24% and an 

increase in the filtrate volume by 79.71 vol% was obtained compared to the sample that 

has the same NP concentration under static condition (Table III-11). The cake is 
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simultaneously eroded and deposited because of the circulation that affect the solid 

particles under dynamic condition (Al-Abduwani et al. 2005), which led to these changes 

in filtrate volume and cake thickness. For more details of the filtrate loss volumes, see 

Appendix C. 

Temperature  
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 11.93 27.15 0.9810 120.3  16.56 0.0127 1.1792 0.9653 186.4 

140 15.24 26.21 0.9839 90.95  13.89 0.1470 0.8491 0.9933 30.49 

160 17.37 26.83 0.9884 70.99  17.06 0.0828 0.9281 0.9924 39.73 

180 23.52 25.53 0.9809 95.62  26.92 0.0333 1.0417 0.9795 88.76 

200 27.71 25.55 0.9878 66.72  27.46 0.1287 0.8603 0.9938 23.56 

 
Table III- 9― Bingham Plastic and Herschel-Bulkley model constants for the fluids containing 0.5 wt% of ferric 
oxide NPs at different temperatures measured after aging for 16 hours at 350°F (pH = 8.15 at 78°F). 
 

Temperature  
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 10.12 34.08 0.9827 177.8  14.51 0.0961 0.9243 0.9881 185.7 

140 14.75 32.58 0.9938 75.97  10.91 0.3033 0.7771 0.9995 3.55 

160 18.54 27.25 0.9975 16.22  18.30 0.0889 0.9383 0.9985 9.63 

180 20.64 27.25 0.9968 24.91  20.46 0.0602 0.9924 0.9967 23.86 

200 21.97 27.04 0.9943 41.49  19.57 0.1767 0.8412 1.5628 7.71 

 
Table III- 10― Bingham Plastic and Herschel-Bulkley model constants for fluid containing 0.5 wt% of silica NPs 
at different temperatures measured after aging for 16 hours at 350°F (pH = 7.7 at 78°F). 
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Ferric 

Oxide NPs 

Mode 

of  

Filtration 

Filter Cake 

Thickness 

Percentage 

Change In 

Thickness 

Cumulative 

Filtrate 

Volume 

Percentage 

Change in 

Filtrate 

Volume 

Filter Cake 

Permeability 

Percentage 

Change in 

Permeability 

Spurt 

Loss 

Volume 

(wt%)  (in.) 
(%) 

 

(ml)  

 
(%) (µd) 

(%) 

 
(ml) 

0.0* Static 0.3084 ― 12 ― 1.459 ― 6.0 

0.0 Static 0.3102 ― 12 ― 1.492 ― 6.4 

0.0 Static 0.3005 ― 11.9 ― 1.428 ― 6.7 

0.3 Static 0.3123 1.25 10 -16.67 0.857 -41.278 1.5 

0.5 Static 0.3618 17.32 6.9 -42.5 0.345 -76.384 0.5 

1.5 Static 0.433 40.4 9 -25 0.664 -54.464 2.5 

2.5 Static 0.476 54.35 11.9 -0.83 1.298 -11.023 3.5 

0.5 Dynamic 0.2958 -18.24** 12.4 79.71** 1.113 222.607** 0.5 

Silica NPs  
 

 

 

 

 

 

 

 

 

 

 

 
 

(wt%)         

0.5 Static 0.3462 12.26 13.6 13.33 1.338 -8.247 3.5 

1.5 Static 0.428 38.78 18.9 57.5 2.93 100.822 1.0 

Magnetic 
Fe3O4 NPs 

        

(wt%) 
        

0.5 Static 0.2176 -29.44 9.25 -22.92 0.936 -35.846 0.5 

1.5 Static 0.2921 -5.29 9 -25 0.885 -39.342 0.5 

2.5 Static 0.2667 -13.52 9 -25 0.785 -46.196 0.5 

Zinc Oxide 
NPs 

        

(wt%) 
        

0.5 Static 0.3412 10.64 13.2 10 2.71 85.744 
 

3 

* The base fluid that used in calculating the perce nt changes in the different properties 
** The percentage compared to that of the same conc entration under static filtration. 

 
Table III- 11―Cumulative filtrate volume (for 30 min.) and filter cake properties of the fluids that having 
different NP types and concentrations at 250°F and 300 psi. 
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Fig. III- 7―Cumulative filtrate volume (30 minutes) and filter cake thickness for the cakes having different NP 
concentrations formed under static filtrations at 250°F and 300 psi differential pressure. 
 

CT Scan Analysis of the Filter Cake  

The filter cakes were CT scanned after the filtration test using a computed-

tomography (CT) scanner. The images were taken through the full cake diameter. The 

filter cake generally consisted of two layers under wet conditions (Fig. III-8 ). The top 

layer (close to the drilling fluid) had a low CT-number (CTN) compared to the bottom 

layer (close to the formation surface). CT attenuation data is normally presented in a 

standardized scale with Hounsfield units (HU) that is normalized to air at –1000 HU and 

water at 0.0 HU. Thus, each HU represents a 0.1% change in density with respect to the 

calibration density scale (Wellington and Vinegar 1987; Akin and Kovscek 2003). 
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Fig. III- 8―CT scan images of the filter cakes having ferric oxide NPs under static conditions at  250°F and 300 
psi differential pressure, (a) with 0.5 wt%, and (b) with 2.5 wt% of NPs. 
 

Fig. III-9 shows the CTN profile through the filter cake diameter for each layer. 

The CTNs were averaged to be 299.46, 285.25, 292.89, and 305.27 HU for the top layer 

of the filter cakes that have 0.0, 0.3, 0.5, and 1.5 wt% of ferric oxide NPs, respectively. 

The CTNs of the bottom layer increased with the increase in the ferric oxide NP 

concentration. The average CTN of the bottom layer were 362.07, 377.08, 384.78, and 

450.99 HU for the cakes that have 0.0, 0.3, 0.5, and 1.5 wt% of ferric oxide NPs, 

respectively. The specific gravities of bentonite and ferric oxide and magnetic iron oxide 

are 2.6, 5.24, and 5.17, respectively. The CTN profiles indicated that the NPs playing a 

key role in building the bentonite clay platelet structure in the bottom layer. Moreover, 

increasing the NP concentration reduced the cake efficiency. The NPs agglomerated and 

a new layer (third layer) of NPs (average CTN = 545.37 HU) settled down below the main 

filter cake layer (bottom layer) when using high NP concentration of 2.5 wt%. Jung et al. 

(2011) noticed the same behavior with Na-bentonite suspension that had 5.0 wt% of 3 nm 

ferric oxide NPs. They reported that a filter cake was produced with a nondeformable and 

relatively dense lower layer and a very large airy upper layer. The authors attributed that 

to the compaction of NPs. Fig. III-10  shows the 3D cross-section of the filter cake when 
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using 2.5 wt% of ferric oxide NPs, in which the agglomerated NPs (the third layer) 

appeared as a layer has a reddish brown color.  

Fig. III- 9―CTNs through the filter cake of the samples that have different nanoparticle concentrations under 
static conditions at a differential pressure of 300 psi and a temperature of 250°F: (a) 0.0 wt%, (b) 0.5 wt% ferric 
oxide, (c) 1.5 wt% ferric oxide, (d) 2.5 wt% ferric oxide, (e) 0.5 wt% silica, and (f) 1.5 wt% silica nanoparticles. 
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Fig. III- 10―3D CT scan cross-section of the filter cake having 2.5 wt% of ferric oxide NPs. 
 

The CTNs were averaged to be 274.51 and 280.46 HU for the top layer of the filter 

cakes that have 0.5 and 1.5 wt% silica NPs, respectively (Fig. III-9e and III-9f). However, 

the average CTNs of the bottom layer were 404.40 and 405.84 HU for the same cakes, 

respectively (Fig. III-9e and III-9f). The CTN results for the filter cakes containing silica 

NPs revealed that this type of NPs settled down in the bottom layer without building a 

good structure with the bentonite particles, which reduced the cake efficiency. 

Figs. III-11 and III-12 shows the CT scan analysis of the filter cake containing 

2.5 wt% of magnetic iron oxide Fe3O4 NPs through the filter cake in the direction of fluid 

flow. The CTNs were averaged to be 158.75, 226.12, 241.77, 265.90, 311.46 and 407.85 

HU for the CT-slice numbers 1, 2, 3, 4, 5 and 6, respectively. The CTNs of the filter cake 

slices increased with the increase of the slice number in the direction of flow. Additionally, 
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the CT-slice numbers 2, 3, and 4 presented the top layer of the filter cake in this case; 

however the CT-slice number 5 presented the bottom layer of the filter cake. Again, the 

NPs agglomerated at this concentration (2.5 wt% of NPs) and a new layer (third layer) of 

NPs (average CTN = 407.85 HU) settled down below the main filter cake layer (bottom 

layer), which presented in the CT-slice number 6. 

SEM-EDS Analysis of the Filter Cake  

The filter cakes were dried in an oven at 250°F for three hours before running the 

SEM-EDS analysis. Fig. III-13 shows the SEM images of filter cakes for the samples that 

have different ferric oxide NP concentrations. The bottom layer of the filter cake with 0.5 

wt% ferric oxide NPs had a smoother surface morphology (Fig. III-13b ) with minor 

agglomeration and low porosity/low permeability structure compared to the cakes with 

higher NP concentration. 

Moreover, the EDS elemental analysis of the filter cakes containing ferric oxide 

NPs shows that the increase in NP concentration resulted in an increase in iron 

concentration and a decrease in calcium and magnesium concentrations in the filter cakes 

(Fig. III-14 ). This results confirmed the dissociation of cations from the Ca-bentonite clay 

surface and the embedding of ferric oxide NPs on the surface of clay particle, which 

support linking between bentonite particles. The EDS analysis of the third layer in the 

cake formed when using 2.5 wt% ferric oxide NPs showed that it is mainly contained 

ferric oxide NPs. The morphology of this layer showed high porosity/high permeability 

structure (Fig. III-15a ). The SEM-EDS analysis for the filter cake that has 0.5 wt% of 

silica NPs showed the formation of a high porous/high permeable clay platelet structure 
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(Fig. III-15b ). Additionally, Fig. III-14 shows also the EDS elemental analysis of the filter 

cake containing 0.5 wt% of silica NPs, which indicating that this layer is mainly contained 

silica NPs as revealed from the CT scan analysis. 

  

  

  

Fig. III- 11― CT scan images through the filter cake in the direction of fluid flow for the sample that has 2.5 
wt% magnetic iron oxide Fe3O4 nanoparticles under static conditions at 250°F and a differential pressure of 300 
psi. 

CT-Slice #  1 CT-Slice #  2 

CT-Slice #  3 CT-Slice #  4 

CT-Slice #  5 CT-Slice #  6 



 

72 

 

 

Fig. III- 12― CTN profile through the filter cake in the direction of fluid flow for the sample that has 2.5 wt% 
magnetic iron oxide Fe3O4 nanoparticles under static conditions at 250°F and a differential pressure of 300 psi. 
 

Filter Cake Permeability  

As a supportive way to quantify the changes in the filter cake properties upon the 

addition of NPs, the filter cake permeability was calculated using the Bourgoyne et al. 

(1991) model. In this model, the permeability was calculated using Eq. III-3 and the 

relationship between the cumulative filtrate volume and the square root of time (Fig. III-

16): 

 �
 = 8.4 × 10��	���	∆�� � 
��

�� − 1 		!	 √#√$		,					 ………………….…………..…… (III-3) 

 
where A= cross-sectional area of the core (in.2), kc = permeability of the filter cake (d), t = 

time of filtration (s), Vf = cumulative filtrate volume (ft3), ∆pc = pressure drop across the 

filter cake (psi), µ = viscosity of the filtrate (cp), fsc = volume fraction of the solids in the 

cake, and fsm = initial volume fraction of solids in the drilling fluid. The pressure drop 
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across the filter cake was determined as the difference between the total applied 

differential pressure and the pressure drop across the core (using Darcy’s equation for 

linear flow). The viscosity of the filtrate was assumed to be constant and equals the 

viscosity of the filtrate of the base fluid = 0.32 cp at 250ºF, which was determined by 

extrapolating the data of Fig. III-17 to 250ºF. It was measured using a capillary tube 

viscometer. 

  

 

 

Fig. III- 13―SEM images (X1000-30 µm) of the dried filter cake surface for samples having different 
concentrations ferric oxide NPs: (a) 0.0 wt%, (b) 0.5 wt%, (c) 1.5 wt%, and (d) 2.5 wt% of NPs. The images show 
that adding 0.5 wt% to the base fluid results in less agglomeration (shown as red circules) and less porous surface 
compared to the filter cakes containing higher NP concentration or that for the base fluid. 
 

 

(a) (b) 

(c) (d) 



 

74 

 

 

Fig. III- 14―EDS elemental analysis of the surface of the bottom layer of the filter cakes as a function of 
nanoparticle concentration. 
 

 

Fig. III- 15―SEM images: (a) for the surface of the third layer (agglomerated ferric oxide NP layer) formed in 
the filter cake containing 2.5 wt% of ferric oxide NPs (X500-50 µm), and (b) for the surface of the filter cake 
containing 0.5 wt% of silica NPs (X1000-30 µm). Both images show highly porous/permeable microstructure. 
Image (b) shows different clay-platelet structure compared to the filter cakes containing ferric oxide NPs (SEM 
images in Fig. III-13). 
 

Adding 0.5 wt% of ferric oxide NPs resulted in the formation of a less permeable 

filter cake. Its permeability was 0.345 µd with a reduction of 76.38% compared to that of 
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oxide NPs in any other concentration (either less or greater than 0.5 wt%) or silica NPs 

generated a higher permeability filter cake (Table III-11). It was also noted that using 

magnetic iron oxide Fe3O4 resulted in a reduction the filter cake permeability at different 

NP concentrations. However, using ferric oxide NPs in any other concentration (either 

less or greater than 0.5 wt%), silica, or zinc oxide NPs generated a higher permeability 

filter cake (Table III-11). 

 

Fig. III- 16―Cumulative filtrate volume (for 30 min.) as a function of square root of time for the fluids containing 
different concentrations of ferric oxide NPs at 250ºF and 300 psi differential pressure. 
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Fig. III- 17―Viscosity of the filtrate fluid against temperature for the base fluid. 
 

Elemental Analysis of Filtrate Fluid  

The filtrate fluid samples were collected to measure the concentration of cations 

using ICP-OES. Fig. III-18 shows the concentration of different cations in the filtrate fluid 

of the samples that have different concentrations of ferric oxide NPs. The concentration 

of Ca2+ increased with the increase of NP concentration, which confirmed the dissociation 

of Ca2+ cations. A decrease in the concentration of Al3+ and Si4+ cations in the filtrate with 

the addition of NPs was also observed, which indicated better NPs/Ca-bentonite platelet 

structure. However, the increase in NP concentration resulted in the agglomeration of NPs 

and the formation of high porosity/high permeability filter cakes as indicated by SEM-

EDS and CT scan. 
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Fig. III- 18― ICP-OES analysis of the filtrate fluids for the samples having different ferric oxide NP 
concentrations at 300 psi and 250°F. 
 

Effect of Filtration Temperature and Pressure  
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cakes increased then decreased when changing pressure from 200 up to 400 psi at constant 

temperature of 250°F, with the best performance achieved at a pressure of 300 psi.  

Moreover, at 500 psi and 350°F, a good-quality filter cake with a permeability of 0.060 

µd is formed. This revealed the applicability of this type of NPs/Ca-bentonite fluids to 

drill harsh environments. Additionally, it indicated that the effect of temperature on the 

filter cake properties of this NPs/Ca-bentonite suspensions was predominant when 

compared with pressure effect. For more details of the filtrate loss volumes, see Appendix 

C. 

Temperature Pressure Filter Cake Thickness 
Cumulative  

Filtrate Volume 

Filter Cake 

Permeability 

(°F) (psi)  (in.) (ml ) (µd) 

175 300 0.2314 12.4 1.113 

200 300 0.2673 11.8 1.008 

250 300 0.2618 6.9 0.345 

300 300 0.2923 6.4 0.296 

250 200 0.3184 13.0 1.830 

250 400 0.2796 9.6 0.500 

350 500 0.2876 3.3 0.060 

 
Table III- 12― Cumulative filtrate volume (for 30 min.) and filter cake properties of the fluids having 0.5 wt% 
of ferric oxide NPs at different filtration conditi ons of pressure and temperature. 
 

Formation Damage Analysis 

CT scan analysis was conducted for investigating the effect of the NPs/Ca-

bentonite based fluids on damaging the cores. The core disks were CT scanned in dry, wet, 

and directly after the filtration experiment to study the change in the CTNs in the direction 

of flow (Fig. III-19 ). CT attenuation data is normally presented in a standardized scale 
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with Hounsfield units (HU) that is normalized to air at –1000 HU and water at 0.0 HU. 

Thus, each HU represents a 0.1% change in density with respect to the calibration density 

scale (Wellington and Vinegar 1987; Akin and Kovscek 2003). So that, the increase in the 

CTNs of the core after experiments might represent the percentage of the solid particles 

which accompanied the filtrate invasion into the formation. On other words, the CTNs can 

be used to check the change in the core porosity after the experiments. 

The porosity of the core disks can be determined using the CTNs a using the 

following equation (Eq. III-4 ) 

		'()(*+,- = ./0	�
	#12	��32	4�	52#	���64#4��7�./0	�
	#12	��32	4�	638	���64#4��7
./0	�
	59#23�./0	�
	943 	 …… (III-4)  

The CTNs of water and air are 0.0 and –1000 HU, respectively. For calculating the 

initial porosity of the core disks, the CTNs of the wet cores saturated with deionized water 

were used. However, the final core porosity of the core was calculated using the CTNs of 

the cores measured directly after the filtration experiments.  

 

 

 

 

 

 

 

 

Fig. III- 19―CT scan image of the filter cake and core disk in the direction of fluid flow. 
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Three different core disks were analyzed as examples of the formation damage 

analysis when using this type of NPs/Ca-bentonite based fluids. Figs. III-20 and III-21  

show the CTN and porosity profiles of the core disk used for running the experiment of 

the sample having 0.5 wt% of zinc oxide NPs, which shows lower filtration performance. 

The CTNs were averaged to be 1921.68, 2025.58, and 1980.33 HU for the dry, saturated 

core before experiment, and saturated core after experiment, respectively. The change in 

the CTN after the experiments revealed a change in the core porosity. More specifically, 

a decrease in the core porosity was occurred after the experiment. The porosity was 

calculated using Eq. III-4 and was averaged to be 10.38% and 7.31% for the core disk 

before and after the experiment, respectively (Fig. III-21). This revealed a little damage 

of the formation due to the invasion of solids with the filtrate fluid. The first 0.2 inches of 

the core thickness (close to the filter cake) showed an increase in the porosity after the 

experiment, which might be due to the increase in the fracture porosity at this region 

because of the high spurt pressure. 
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Fig. III- 20―CTN profile through the core disk (in the direction of fluid flow) used for running the experiment 
of the sample having 0.5 wt% of zinc oxide NPs. 
 

 

Fig. III- 21―Porosity profile through the core disk (in the direction of fluid flow) used for running the experiment 
of the sample having 0.5 wt% of zinc oxide NPs. 
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Figs. III-22 and III-23  show the CTN and porosity profiles of the core disk used 

for running the experiment of the sample having 1.5 wt% of magnetic iron oxide Fe3O4 

NPs, which shows higher filtration performance. The CTNs were averaged to be 1928.89, 

2031.51, and 2012.835 HU for the dry, saturated core before experiment, and saturated 

core after experiment, respectively. Again, a decrease in the core porosity was occurred 

after the experiment. The porosity was averaged to be 10.26% and 8.39% for the core disk 

before and after the experiment, respectively. A little damage of the formation where 

occurred. The first 0.2 inches of the core thickness showed an increase in the porosity after 

the experiment, which confirming the hypothesis of the fracture porosity increase at this 

region because of the high spurt pressure. 

 

Fig. III- 22―CTN profile through the core disk (in the direction of fluid flow) used for running the experiment 
of the sample having 1.5 wt% of magnetic iron oxide Fe3O4 NPs. 
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Fig. III- 23―Porosity profile through the core disk (in the direction of fluid flow) used for running the experiment 
of the sample having 1.5 wt% of magnetic iron oxide Fe3O4 NPs. 
 

The more interesting part was that the decrease in the core porosity when using 

magnetic iron oxide Fe3O4 NPs was small compared to that when using zinc oxide NPs, 

which confirming the formation of a good-quality filter cake. That was also confirmed 

when analyzing the CTN profiles of the core disk used for running the experiment of the 

sample having 2.5 wt% of magnetic iron oxide Fe3O4 NPs. The CTNs were averaged to 

be 1940.29, 2038.44, and 2019.99 HU for the dry, saturated core before experiment, and 

saturated core after experiment, respectively (Figs. III-24). The porosity was averaged to 

be 9.83% and 8.49% for the core disk before and after the experiment, respectively, which 

revels a little damage of the formation (Figs. III-25). 
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Fig. III- 24―CTN profile through the core disk (in the direction of fluid flow) used for running the experiment 
of the sample having 2.5 wt% of magnetic iron oxide Fe3O4 NPs. 
 

 

Fig. III- 25―CTN profile through the core disk (in the direction of fluid flow) used for running the experiment 
of the sample having 2.5 wt% of magnetic iron oxide Fe3O4 NPs. 
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Conclusions 

The effectiveness of using different types of oxide NPs for improving the 

rheological properties and filter cake characteristics of Ca-bentonite-based fluids had been 

investigated. Results yielded the following conclusions: 

1. Adding ferric oxide and magnetic iron oxide NPs at an optimum concentration of 

0.5 wt% improved the filter cake characteristics at the investigated conditions (up 

to 350ºF and 500 psi); however, using silica or zinc oxide NPs reduced the filter 

cake efficiency of such fluids. 

2. The filter cake of these fluids consisted of two layers as revealed by CT scan 

analysis. The layer close to the rock surface was the main layer, in which the NPs 

played a key role in building the filter cake microstructure. 

3. Using the optimum NP concentration generated a rigid/smoother surface filter cake 

morphology with less particle agglomeration and low porosity/low permeability 

structure as indicated by SEM-EDS analysis. 

4. A third layer consisting mainly of the agglomerated NPs formed when using higher 

concentrations of ferric oxide or magnetic iron oxide NPs (2.5 wt%), which 

reduced the total filter cake efficiency. 

5. The ferric oxide and magnetic iron oxide NPs promoted better clay-platelet 

microstructure after the dissociation of Ca2+ cations from the bentonite at such 

conditions because of their positively surface charge, which produced a good-

quality filter cake. 
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6. The filter cakes that have optimum concentration of ferric oxide NPs could 

withstand downhole conditions up to 350ºF and 500 psi. Moreover, the effect of 

temperature on the filter cake characteristics was predominant compared to 

pressure. 

7. Ferric oxide and magnetic iron oxide NPs with positive surface charges were stable 

in suspensions and building a strong yield structure with Ca-bentonite, which 

produced fluids with better rheological properties. On the other hand, using silica 

NPs that had negative surface charge generated suspensions with higher viscosities 

and weaker yield structure. 

8. Aging at 350°F for 16 hours shows that the rheological properties of Ca-bentonite-

based fluids that has ferric oxide NPs remains stable over time with minor loss in 

the gel structure. On the other hand, aging silica NP-based fluids under the same 

conditions showed unstable rheological properties. 

9. The Herschel-Bulkley was found to be the best fit model for the experimental data 

of the tested NPs/Ca-bentonite fluids with R2 values higher than 0.99 and minimum 

∑Q2 values, especially at higher temperatures. 

10. The CT scan analysis of the core disks showed a little decrease of the core porosity 

after the filtration process using the NPs/Ca-bentonite suspensions, which 

confirming its capability to minimize formation damage. 
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CHAPTER IV 

CHARACTERIZATION OF THE FILTER CAKE GENERATED BY 

NANOPARTICLE/CA-BENTONITE-BASED DRILLING FLUID 7 

 

Introduction 

Having an efficient filter cake is an important property of the drilling fluid and can 

affect success of the drilling operations. This chapter focuses on characterizing the filter 

cake produced by Ca-bentonite-based drilling fluid that contains ferric oxide (Fe2O3) 

nanoparticles (NPs) at downhole conditions. A complete drilling fluid formula was 

formulated and used for this part of study to check the effect of using this type of NPs in 

the presence of different drilling fluid additives. Furthermore, the effect of different 

parameters on the filter cake characteristics, such as NP concentration, fluid preparation 

method, and filtration conditions were investigated.  

The results showed that the ferric oxide NPs improved the filter cake and filtration 

properties of Ca-bentonite-based drilling fluid in the presence of polymer and other 

additives. It was found that lower NP concentration is preferred for obtaining a good-

quality filter cake. The best filter cake characteristics were obtained when using 0.3-0.5 

wt% of NPs. Furthermore, this drilling fluid can withstand downhole conditions up to 500 

psi and 350°F. At such conditions, filter cake properties of 0.151-in. thickness, 6.9 ml 

                                                 

7 Reprinted with a permission from “Characterization of Filter Cake Generated by Nanoparticle-Based 
Drilling Fluid for HP/HT Applications” by Mahmoud, O., Nasr-El-Din, H. A., Vryzas, Z., and Kelessidis, 
V. C. SPE-184572-MS, Copyright 2017 by Society of Petroleum Engineers. 
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filtrate volume, and 0.428 µd permeability were obtained. The addition of NPs to the 

drilling fluid improved the filter cake properties under both static and dynamic filtration. 

Additionally, SEM-EDS analysis confirmed the efficiency of using this type of NPs to 

generate a smoother, less porous filter cake morphology. Moreover, ultrasonication for 

one hour and bentonite hydration for 16 hours are recommended for better preparation of 

this types of NPs/Ca-bentonite-based drilling fluids.  

Properties of the Drilling Fluid  

Table IV-1 summarizes the properties of the Ca-bentonite-based drilling fluid 

(without the addition of NPs) and the drilling fluid that contains 0.5 wt% of NPs. The 

density of the drilling fluid was measured at ambient conditions using mud balance and 

was determined to be 9.6 ppg. The drilling fluid was measured to have a pH of 11. The 

rheological properties of the drilling fluid were determined at 140°F and atmospheric 

pressure using the rotational viscometer. The Ca-bentonite-based drilling fluid has a 

plastic viscosity of 17.6 cp, and yield point of 11.7 lbf/100 ft2. The 10-s and 10-min gel 

strength were measured to be 8 and 13 lbf/100 ft2, respectively. However, the properties 

of the drilling fluid that contains 0.5 wt% of NPs were 15 cp for the plastic viscosity and 

12, 10, and 17 lbf/100 ft2 for the yield point, 10-s and 10-min gel strength, respectively. 

The results showed a relatively small change in the rheological properties of the drilling 

fluid when adding NPs. The addition of NPs increased the yield stress and gel strength of 

this type of Ca-bentonite-based drilling fluids, which improves their cutting carrying 

capacity (Bourgoyne et al. 1991). 
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Fig. IV-1 shows the particle size distribution of the solids presented in the drilling 

fluid using sieve analysis. The mean diameter of the solids used, d50, was 123 µm, which 

confirmed the applicability of this drilling fluid formulation to prevent pore blockage of 

the formation (Abrams 1977). 

Property Condition Unit 

Value 

Bentonite Based 

Drilling Fluid 

Drilling F luid  

Contains 0.5 wt% 

of Nanoparticles 

Density  78°F and 14.7 psi ppg 9.5 9.6 

Plastic viscosity  140°F and 14.7 psi cp 17.6 15 

Yield point  140°F and 14.7 psi lbf/100 ft2 11.7 12 

10-s gel strength  140°F and 14.7 psi lbf/100 ft2 8 10 

10-min gel strength  140°F and 14.7 psi lbf/100 ft2 13 17 

pH 78°F and 14.7 psi ― 11 11 

 
Table IV- 1― Properties of the Ca-bentonite-based drilling fluid and the drilling fluid containing 0.5 wt% of 
ferric oxide NPs. 
 

 

Fig. IV- 1― Particle-size distribution of solids in the drilling fluid. 
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Filter Press Measurements and Analysis 

The HP/HT filter press was used to investigate the filtration properties and 

generate the filter cakes. The desired differential pressure and temperature were applied. 

The filtration fluid volume was measured as a function of time for 30 minutes. Table IV-

2 shows a list of the performed filter press experiments and the studied parameters 

throughout this investigation. The CT scanner was used to investigate the produced filter 

cakes. CT images were taken through the full cake diameter and analyzed using Imagej™ 

software. The CT data was analyzed to determine the filter cake thickness and CT number 

(CTN). Moreover, SEM-EDS was used to analyze the dried filter cakes. 

The filter cake permeability was calculated using the model developed by Li et al. 

(2005), which was found to be the simplest and best way of calculation for this kind of 

drilling fluid (Elkatatny et al. 2012). The permeability in this model is calculated using 

Darcy’s equation of liquid flow through the porous media. Additionally, the resistance of 

the filter media (filter disk) for the flow was also included. Calculations in this method 

mainly depending on the relationship between the cumulative filtrate volume and time. 

Eqs. IV-1, IV-2  and IV-3  can be used for these calculations in field units: 

:	 = 	0.173	�= ∆	�
$>�		 , ……………….…………………………………………….. (IV-1) 

∆�# 	= 	∆�= + ∆��		 , ………………………..……………………………………. (IV-2) 

and 

:	 = 	0.173	�� ∆	�
$>�		 , ………………….……………………...……………………. (IV-3) 
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Parameter 
NP Concentration, 

wt% 

Temperature, 

ºF 

Differential 

Pressure, 

psi 

Rotation 

at 100 rpm 

Sonication 

Time, 

hr 

Hydration  

Time, 

hr 

NP 

Concentration 

0.0 250 300 No 1.0 0.0 

0.3 250 300 No 1.0 0.0 

0.5 250 300 No 1.0 0.0 

1.0 250 300 No 1.0 0.0 

Differential 

Pressure  

and 

Temperature 

 

0.5 200 300 No 1.0 0.0 

0.5 300 300 No 1.0 0.0 

0.5 250 200 No 1.0 0.0 

0.5 250 400 No 1.0 0.0 

0.5 350 500 No 1.0 0.0 

Dynamic 

Filtration 

0.0 250 500 No 0.0 0.0 

0.0 250 500 Yes 0.0 0.0 

0.5 250 500 No 0.0 0.0 

0.5 250 500 Yes 0.0 0.0 

Sonication 

Time 

0.5 250 300 No 0.0 0.0 

0.5 250 300 No 0.5 0.0 

Bentonite 

Hydration 

0.0 250 500 No 0.0 16 

0.5 250 500 No 0.0 16 

 
Table IV- 2―The performed filter press experiments and the investigated parameter. 
 

where q = the filtrate rate (ml/in.2.s), km = permeability of the filter medium (d), kc = 

permeability of the filter cake (d), Lm = thickness of the filter medium (in.), Lc = thickness 

of the filter cake (in.), ∆pt = total pressure drop (psi), ∆pm = pressure drop across the filter 

medium (psi), ∆pc = pressure drop across the filter cake (psi), and µ = viscosity of the 

filtrate (cp). The viscosity of the filtrate was measured using a capillary tube viscometer 

and was determined to be 0.2 cp at 250°F. The value of the filtrate rate q (ml/in.2.s) was 

determined by dividing the slope of the cumulative volume versus time curve on the cross-



 

92 

 

sectional area of the filter disk, which is 3.976 in.2. The slope of the curve should be 

determined for the part starting at 430 s when flow through the already formed cake starts 

(Li et al. 2005). 

Effect of Nanoparticle Concentration  

The drilling fluid was prepared following the formulation described in chapter II 

and four different NP concentrations were used (0.0, 0.3, 0.5, and 1.0 wt%). Static 

filtration experiments were conducted at a differential pressure of 300 psi and a 

temperature of 250°F (experiments number 1 to 4 in Table IV-2). Fig. IV-2 shows the 

cumulative filtrate volume after 30 minutes and the thickness of the generated filter cakes. 

 

Fig. IV- 2― Cumulative filtrate volume (30 minutes) and filter cake thickness for the filter cakes having different 
concentrations of ferric oxide NPs formed under static filtration at 250°F and 300 psi differential pressure. 
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thickness of the cake that has 0.0 wt% of NPs. Furthermore, the cumulative filtrate volume 

decreased by 16.9 and 3.9% for the drilling fluids that contain 0.3 and 0.5 wt% of NPs, 

respectively; however, it increased by 15.6% for the sample that contains 1.0 wt% of NPs 

compared to the base. These results confirmed what is found in the absence of the drilling 

fluid additives. It was found that, the 0.5 wt% of ferric oxide NPs is the optimum 

concentration, which should be used with the 7 wt% Ca-bentonite suspension to obtain the 

best filter cake characteristics. However, using a higher concentration of NPs resulted in 

the agglomeration of the excess NPs and thus, less filter cake efficiency.  

Fig. IV-3 shows the CT scan images of the filter cakes. The images were taken 

through the full cake diameter. The filter cakes generally consisted of two layers. The top 

layer (close to the drilling fluid) had a low CT number (CTN) compared to the bottom 

layer (close to the formation surface). The average CTN for each layer are shown in Fig. 

IV-4 . The CTN were averaged to be 607.60, 735.45, 794.08, and 929.48 for the top layer 

of the filter cakes that have 0.0, 0.3, 0.5, and 1.0 wt% of NPs, respectively. Moreover, the 

average CTN for the bottom layer (close to the formation surface) were 790.70, 872.01, 

961.28, and 1007.40 for the cakes containing 0.0, 0.3, 0.5, and 1.0 wt% of NPs, 

respectively. The increase in the average CTN in each layer with the increase in NP 

concentration indicated that the NPs play a key role in building a different bentonite 

platelet structure (Barry et al. 2015). Each increase in the CTN by 1 HU represents a 0.1% 

change in density with respect to the calibration density scale (Wellington and Vinegar 

1987; Akin and Kovscek 2003). 
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Fig. IV- 3― CT scan images of the filter cakes having different concentrations of ferric oxide NPs formed under 
static filtration at 250°F and 300 psi differential pressure: (a) with 0.0 wt%, (b) with 0.3 wt%, (c) with 0.5 wt%, 
and (b) with 1.0 wt% of NPs. 
 

 

Fig. IV- 4― Average CTNs throughout the filter cakes having different concentrations of ferric oxide NPs 
generated under static filtration at 250°F and 300 psi differential pressure. 
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The filter cakes were dried in an oven at 250°F for three hours before running the 

SEM-EDS analysis. Both sides of the filter cake were analyzed, the top surface (the 

surface of the top layer) and the bottom surface (the base of the bottom layer). Fig. IV-5 

shows the SEM images of the top surface of the filter cakes that have 0.0 and 0.5 wt% of 

NPs. Adding 0.5 wt% of NPs to the drilling fluid resulted in generating a less porous 

structure and smoother surface morphology (Hartman et al. 1988; Chenevert and Huycke 

1991; Plank and Gossen 1991).  

 
Fig. IV- 5―SEM images (X100-300 µm) of the top surface of the dried filter cakes having different concentrations 
of ferric oxide NPs formed under static filtration at 250°F and 300 psi differential pressure: (a) with 0.0 wt%, 
and (b) with 0.5 wt% of NPs. The images show that adding 0.5 wt% of NPs to the drilling fluid results in less 
porous structure. 
 

Fig. IV-6 shows the EDS spectrum analysis of the top surface of the filter cake 

that has 0.5 wt% of NPs. The EDS counted aluminum (Al) and silicon (Si) because of the 

used Ca-bentonite, which belongs to the smectite group of clays and is formed by an Al3+ 

octahedral layer sandwiched between two Si4+ tetrahedral layers. The calcium (Ca) and 

manganese (Mn) appeared because of the CaCO3 and Mn3O4, which were used as bridging 

and weighting materials. Additionally, these temperatures induced the dissociation of 

Ca2+ cations from the surface of bentonite platelet (Ramos-Tejada et al. 2001; Laribi et al. 
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2006). The EDS did not count for iron (Fe), which indicated better distribution of ferric 

oxide NPs in-between the clay platelet in this layer. 

 

Fig. IV- 6― EDS spectrum analysis of the top surface of the dried filter cake having 0.5 wt% ferric oxide NPs 
formed under static filtration at  250°F and 300 psi differential pressure. 
 

Fig. IV-7 shows the SEM-EDS of the bottom surface (close to the rock surface) of 

the same filter cakes. The bottom surface of the filter cake with 0.5 wt% of NPs had a 

smoother surface morphology and less porous structure (Hartman et al. 1988; Chenevert 

and Huycke 1991; Plank and Gossen 1991). Furthermore, the EDS spectrum analysis of 

the bottom surface showed that the Al, Si, Ca, and Mn appeared in this surface. An 

increase in the concentration of Ca was found when comparing to the elemental analysis 

of the top surface that has the same NP concentration. Moreover, traces of iron (Fe) 

appeared in the EDS spectrum of the cake that has 0.5 wt% of NPs (Fig. IV-8). This Fe 

concentration appeared in the EDS was found to increase in the cake containing higher 

NP concentration. This confirmed the hypothesis that using NP concentration greater than 
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0.5 wt% will adversely affect the cake characteristics because of the agglomeration of 

NPs.  

Fig. IV- 7― SEM images of the bottom surface of the dried filter cakes having different ferric oxide NP 
concentrations formed under static condition at 300 psi differential pressure and 250°F: (a) with 0.0 wt% (X100-
300), and (b) with 0.5 wt% of NPs (X150-500 µm). The images show that adding 0.5 wt% of NPs to the drilling 
fluid results in less porous surface.  
 

 

Fig. IV- 8―EDS spectrum analysis of the bottom surface of the dried filter cake having 0.5 wt% ferric oxide NP 
concentration formed under static condition at 300 psi differential pressure and 250°F. Traces of iron appears in 
this surface. 
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Li et al. model (2005) was used to determine the filter cake permeability (Table 

IV-3  summarizes the calculations). Fig. IV-9 shows the cumulative filtrate volume versus 

time curves, from which the filtrate rate was calculated (for detailed results, see Appendix 

D). A relatively decrease in the filter cake permeability was observed with the increase in 

NP concentration up to 0.5 wt%. The permeabilities were determined to be 0.598, 0.562, 

and 0.456 µd for the cakes that have 0.0, 0.3, and 0.5 wt% of NPs, respectively. However, 

using 1.0 wt% of NPs generated a relatively small increase in the filter cake permeability 

(0.465 µd) compared to the cake that has 0.5 wt% NPs. This permeability trend gave a 

reasonable explanation of the filtrate fluid loss profile. 

 

Fig. IV- 9―Cumulative filtrate volume as a function of time for drilling fluids containing different concentratio ns 
of ferric oxide NPs at 250ºF and 300 psi differential pressure. 
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and temperatures of 200, 250, 300 and 350°F (experiments number 3, and 5 to 9 in Table 

IV-2). Table IV-4 summarizes the filter cake characteristics.  At a constant pressure of 

300 psi, the increase in temperature from 200 to 300°F resulted in an increase in the filter 

cake thickness and a decrease in the cumulative filtrate volume. The same trends of the 

filter cake thickness and cumulative filtrate volume were obtained at a constant 

temperature of 250°F and differential pressures from 200 to 400 psi.  The optimum 

characteristics were found to be 0.197 in. cake thickness and 7.4 ml filtrate volume at 

250°F and 300 psi. Furthermore, at 500 psi and 350°F, a filter cake thickness of 0.151 in. 

and a filtrate volume of 6.9 ml were obtained, which confirmed the applicability of this 

type of drilling fluid to generate a good-quality filter cake at such harsh conditions. 

NP Concentration, Filtrate Rate, 
Filter Cake 

Thickness, 
∆pm , ∆pc , 

Filter Cake 

Permeability, 

wt% (x 10-4) ml/in. 2.s in.  psi  psi   µd 

0.0 6.159 0.2519 0.00356 300 0.598 

0.3 6.315 0.2308 0.00365 300 0.562 

0.5 4.514 0.1968 0.00425 300 0.456 

1.0 7.822 0.1543 0.00453 300 0.465 

 
Table IV- 3―Filter cake permeability calculations for different NP concentrations at 250ºF and 300 psi. 
 

The average CTN of both layers in the filter cake at different temperatures and 

pressures are shown in Table IV-4.  The CTN was relatively close in magnitudes for either 

the top or bottom layer at temperatures of 250, 300, and 350°F and pressures of 300, 400, 

and 500 psi. However, at the condition of 200°F and 300 psi, the CTN for the top layer 

was relatively higher compared to that of the top layer at the other conditions of pressure 

and temperature. Moreover, at 250°F and 200 psi, the CTN for the bottom layer was 
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relatively low and the CTN for the top layer was relatively high compared to that of the 

top layers at higher pressures. These results indicating that below 250°F and 200 psi this 

NPs/Ca-bentonite-based drilling fluid may not performing well. 

Temperature, Pressure, 
Filter Cake 

Thickness, 

Cumulative 

Filtrate Volume, 

Filter Cake 

Permeability, 

CT Number , 

Top Layer  Bottom Layer  

°F psi  in.  ml  µd   

200 300 0.1271 9.0 0.385 964.95 1024.19 

250 300 0.1968 7.4 0.343 794.08 961.28 

300 300 0.2187 8.6 0.430 781.99 1023.37 

250 200 0.1553 9.9 0.460 823.48 836.02 

250 400 0.2115 9.5 0.309 770.61 978.64 

350 500 0.1514 6.9 0.428 787.88 968.28 

 
Table IV- 4― Filter cake characteristics of the drilling fluid containing 0.5 wt% of ferric oxide NPs at different 
conditions of pressure and temperature. 
 

 
Fig. IV-10 shows the cumulative filtrate volume curves versus time (for detailed 

results, see Appendix D). The slope was determined and used to calculate the filter cake 

permeability. The cake had low permeability at different conditions of pressure and 

temperature (Table IV-4). These results confirmed the applicability of this kind of 

NPs/Ca-bentonite-based drilling fluid to build-up a filter cake with good characteristics, 

which can withstand harsh conditions of pressure and temperature. 



 

101 

 

 

 

Fig. IV- 10―Cumulative filtrate volume as a function of time for drilling fluids containing 0.5 wt% of ferric oxid e 
NPs at: (a) 300 psi and different temperatures, and (b) 250ºF and different pressures. 
 

Effect of Dynamic Filtration  

The HP/HT filter press was used under dynamic mode at a rotational speed of 100 

rpm to run these experiments. The drilling fluids that have 0.0 and 0.5 wt% of NPs had 

been investigated at a differential pressure of 500 psi and 250°F (experiments number 11 

to 13 in Table IV-2). As a comparison, two other experiments were conducted at the same 
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conditions under static filtration (experiments number 10 and 12 in Table IV-2). No 

ultrasonication was used while preparing these drilling fluids.  

Table IV-5 shows the characteristics of the filter cake generated under both static 

and dynamic filtration. For the drilling fluid with no NPs, a decrease in the filter cake 

thickness by 36.98% and an increase in the cumulative filtrate volume by 81.43% were 

observed compared to the cake that generated under static conditions. However, the cake 

thickness decreased by 29% and the filtrate volume increased by 4.5% for the cake having 

0.5 wt% of NPs generated at dynamic filtration compared to the one formed at static 

conditions. Al-Abduwani et al. (2005) reported that under dynamic filtration, the produced 

filter cake is simultaneously eroded and deposited because of the circulation that affect 

the solid particles. 

NP 

Concentration 

Rotational 

Speed 

Filter Cake 

Thickness, 

Cumulative 

Filtrate 

Volume, 

Filter Cake 

Permeability, 

CT Number  

Top Layer 
Bottom 

Layer 

wt% rpm  in.  ml  µd   

0.0 0 0.338 7.0 0.681 597.83 756.99 

0.0 100 0.213 12.7 0.489 649.87 819.85 

0.5 0 0.231 8.9 0.417 597.43 778.67 

0.5 100 0.164 9.3 0.209 703.48 824.07 

 
Table IV- 5― Filter cake characteristics of the drilling fluids that have 0.0 and 0.5 wt% of ferric oxide NPs at 
500 psi and 250°F (effect of dynamic filtration). 
 

The interested part was when comparing the characteristics of the cake that has 0.5 

wt% of NPs with the one that has 0.0 wt% NPs under dynamic filtration. Using ferric 

oxide NPs resulted in a decrease in the cake thickness by 23% and a decrease in the filtrate 

fluid volume by 26.77%. The filter cake permeability was also calculated and presented 
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in Table IV-5. Using 0.5 wt% NPs relatively improved the filter cake characteristics at 

this condition of pressure and temperature under both static and dynamic conditions. Fig. 

IV-11 shows the cumulative filtrate volume versus time curves for both drilling fluids (for 

detailed results, see Appendix D).  

 

 

Fig. IV- 11― Cumulative filtrate volume as a function of time for drilling fluids containing different 
concentrations of ferric oxide NPs under both static and dynamic conditions at 250ºF and 500 psi differential 
pressure: (a) with 0.0 wt%, and (b) with 0.5 wt% of NPs. 
 

Fig. IV-12 shows the SEM images of the bottom surface (close to the rock surface) 

of the filter cakes generated under dynamic filtration (100 rpm). The filter cake with 0.5 
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wt% of NPs has a smoother surface morphology and less porous structure compared to the 

cake with no NPs (Hartman et al. 1988; Chenevert and Huycke 1991; Plank and Gossen 

1991). Furthermore, the EDS elemental analysis of this surface did not count for the 

elemental iron (Fe), which might be because of the better distribution of NPs in the cake 

due to the circulation of drilling fluid (Fig. IV-13).  

Effect of Drilling Fluid Preparation Method  

All of the drilling fluids used in this research work were prepared following the 

formulation and procedures mentioned in chapter II unless otherwise stated.  Mechanical 

stirring using the multi mixer and ultrasonication of the NPs/Ca-bentonite suspension for 

one hour was used before adding the other additives. In the following sections, the effect 

of two parameters on the drilling fluid preparation have been investigated: (1) the 

ultrsonication time, and (2) the effect of bentonite hydration. 

  

Fig. IV- 12―SEM images (X100-300 µm) of the bottom surface of the dried filter cakes having different 
concentrations of ferric oxide NPs formed under dynamic filtration (100 rpm) at 250°F and 500 psi differential 
pressure: (a) with 0.0 wt%, and (b) with 0.5 wt% of NPs. The cake has 0.5 wt% of NPs shows less porous 
structure.  

(a) (b) Less porous surface  
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Fig. IV- 13―EDS spectrum analysis of the bottom surface of the dried filter cake having 0.5 wt% ferric oxide 
NP concentration formed under dynamic filtration (100 rpm) at 250°F and 300 psi differential pressure.  
 

Effect of Ultrasonication  

Three different drilling fluids having 0.5 wt% of NPs were prepared using 

ultrasonication time of: 0.0, 0.5, and 1.0 hour.  Then, filter press experiments were 

conducted at a differential pressure of 300 psi and a temperature of 250°F under static 

conditions (experiments number 3, 14, and 15 in Table IV-2).  

Table IV-6 shows the properties of the filter cakes generated under such 

conditions. The filter cake of the drilling fluid sonicated for one hour had the optimal 

properties of 0.197 in. cake thickness, 7.4 ml filtrate volume, and 0.343 µd filter cake 

permeability. This showed the importance of ultrasonicating this type of NPs/Ca 

bentonite-based drilling fluid for one hour to obtain good characteristics. Moreover, the 

average CTN of the filter cake layers relatively decreased when sonicated, which indicated 

a better suspension of NPs in the drilling fluid while deposited to form the cake. Fig. IV-
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14 shows the cumulative filtrate volume plotted against time curves, which were used in 

the permeability calculation (for detailed results, see Appendix D). 

Sonication Time, 
Filter Cake 

Thickness, 

Cumulative 

Filtrate Volume, 

Filter Cake 

Permeability, 

CT Number  

Top Layer  Bottom Layer  

hr  in.  ml  µd   

0.0 0.1611 8.45 0.456 848.02 997.23 

0.5 0.2109 9.10 0.629 794.60 960.24 

1.0 0.1968 7.40 0.343 794.08 961.28 

 
Table IV- 6― Filter cake characteristics of the drilling fluid having 0.5 wt% of ferric oxide NPs at 300 psi and 
250°F and different ultrasonication times. 
 

 

Fig. IV- 14― Cumulative filtrate volume as a function of time for the drilling fluids containing 0.5 wt% ferric 
oxide NP concentration under static filtration at 250ºF and 300 psi differential pressure prepared using different 
times of ultrasonication (0, 0.5 and 1 hour). 
 

Effect of Bentonite Hydration 

In this section, the effect of bentonite hydration on the filter cake characteristics 

was examined. The bentonite hydration is preferred by the API standards while the 
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preparation of bentonite suspensions (API Specifications 13A 1993; API 13B-1 2003). The 

same procedures mentioned in chapter II were followed except that the ultrasonication 

was replaced by hydration in a plastic container. The bentonite and the NPs/Ca-bentonite 

suspensions was sealed in a plastic container and left for 16 hours at room temperature to 

hydrate. After that, the other drilling fluid additives were added following the 

aforementioned procedures.  

The filtration experiments were conducted under static mode at a differential 

pressure of 500 psi and a temperature of 250°F (experiments number 16 and 17 in Table 

IV-2). The results were compared to the experiments number 10 and 12, which were 

conducted at the same conditions without hydration. Table IV-7 and Fig. IV-15 show the 

filter cake characteristics and the cumulative filtrate volume versus time curve for 

experiments 16 and 17. The cake generated by the drilling fluid that has 0.5 wt% of NPs 

(hydrated for 16 hours) has better characteristics compared to the one that has no NPs. A 

decrease in the filter cake thickness, cumulative filtrate volume, and filter cake 

permeability by 20.6, 14.3, and 12.8, respectively, was observed. This confirmed the 

availability of the NPs to generate a good-quality filter cake. Moreover, those cakes had 

better properties when compared to the cakes generated by the drilling fluids without 

hydration (experiments 10 and 12). The best cake characteristics were obtained for the 

filter cake of the drilling fluid that contains 0.5 wt% of NPs, which hydrated for 16 hours.  

These properties are 0.204 in. thickness, 7.2 ml filtrate volume, and 0.402 µd filter cake 

permeability.    
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Fig. IV-16 shows the SEM image of the top surface (close to the drilling fluid) of 

the filter cakes generated under static conditions for the drilling fluid that has 0.5 wt% 

with and without bentonite hydration. The hydration results in a better surface morphology 

and cake structure (Hartman et al. 1988; Chenevert and Huycke 1991; Plank and Gossen 

1991). 

NP 

Concentration 

Hydration 

Time, 

Filter Cake 

Thickness, 

Cumulative 

Filtrate Volume, 

Filter Cake 

Permeability, 

CT Number  

Top Layer 
Bottom 

Layer 

wt% hr  in.  ml  µd   

0.0 16 0.257 8.4 0.461 568.77 811.41 

0.5 16 0.204 7.2 0.402 673.24 802.95 

 
Table IV- 7― Filter cake characteristics of the drilling fluids that have 0.0 and 0.5 wt% of ferric oxide NPs at 
500 psi and 250°F (effect of bentonite hydration). 
 

 

Fig. IV- 15― Cumulative filtrate volume as a function of time for the drilling fluid containing 0.0 and 0.5 wt% 
ferric oxide NP concentrations under static filtration at 500 psi differential pressure and 250ºF prepared using 
bentonite hydration for 16 hours. 
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Fig. IV- 16― SEM images of the top surface of the dried filter cakes having 0.5 wt% of ferric oxide NPs formed 
under static conditions at  250°F and 500 psi differential pressure: (a) with no hydration (X100-300), and (b) with 
16 hours of hydration (X150-500 µm).   
 

Conclusions 

The effectiveness of using ferric oxide NPs (size less than 50 nm) on the filter cake 

characteristics and filtration properties of Ca-bentonite-based drilling fluid has been 

investigated in the presence of polymers and other drilling fluid additives. Based on the 

results obtained the following conclusions can be drawn: 

1. Using ferric oxide NPs improved the filter cake and filtration characteristics of Ca-

bentonite-based drilling fluids in the presence of polymer and other additives.  

2. The NP concentration less than 1.0 wt% should be used for generating a good-

quality cake. The best cake characteristics were obtained at 0.3-0.5 wt% NPs. 

3. The NPs/Ca-bentonite-based drilling fluids could withstand downhole conditions 

up to 500 psi and 350°F. At such conditions, a filter cake with 0.151 in. thickness, 

6.9 ml filtrate volume, and 0.428 µd permeability was generated. 

(a) (b) 
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4. Adding ferric oxide NPs to the Ca-bentonite-based drilling fluids enhanced their 

filter cake characteristics under both static and dynamic filtration compared to the 

base fluid. 

5. The ultrasonication of this type of NPs/Ca-bentonite-based drilling fluids for one 

hour is recommended while preparation. At such preparation method, a filter cake 

with 0.197 in. thickness, 7.4 ml filtrate volume, and 0.343 µd permeability was 

deposited. 

6. Bentonite hydration for 16 hours is recommended while preparing this kind of 

NPs/Ca-bentonite-based drilling fluids. A filter cake with 0.204 in. thickness, 7.2 

ml filtrate volume, and 0.402 µd permeability was generated when the drilling 

fluid was hydrated before filtration. 

7. SEM-EDS analysis confirmed the efficiency of ferric oxide NPs to form a 

smoother morphology/less porous filter cake because of its ability to form a rigid 

bentonite-platelet structure in the drilling fluid. 
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CHAPTER V  

CONCLUSIONS AND RECOMMENDATIONS 

 

Different types and sizes of oxide NPs had been investigated for improving the 

characteristics of Ca-bentonite-based fluids to be used as a fluid for drilling harsh 

environments. Ferric oxide (of sizes <50 nm), magnetic iron oxide (of average particle 

size 50 –100 nm), silica (size =12 nm), and zinc oxide NPs (of sizes <100 nm) had been 

tested throughout this investigation. Based on the experimental results obtained the 

following conclusions can be drawn: 

1. Nanoparticle modified Ca-bentonite can be used a drilling fluid additive instead of 

Na-bentonite for drilling environments up to 350ºF and 500 psi. 

2. Adding ferric oxide and magnetic iron oxide NPs at an optimum concentration of 

0.5 wt% improved the filter cake characteristics of Ca-bentonite-based fluids at the 

investigated conditions. However, using silica or zinc oxide NPs reduced the filter 

cake efficiency of such fluids. 

3. A reduction of 43% in the filtrate fluid loss volume and 76.4% in the filter cake 

permeability was achieved upon the addition of 0.5 wt% of ferric oxide NPs to 7 

wt% Ca-bentonite-based fluid compared to that without NPs. The magnetic iron 

oxide NPs showed the same reduction in the filter loss at the same NP 

concentration. However it showed a reduction in the filter cake permeability of 

35.8% compared to the base and a good achievement in reducing the filter cake 

thickness.  
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4. The filter cake of the fluids having iron oxide NPs consisted of two layers as 

revealed by CT scan analysis. The layer close to the rock surface was the main 

layer, in which the NPs played a key role in building the filter cake microstructure. 

5. Using the optimum NP concentration (0.5 w%) generated a rigid/smoother surface 

filter cake morphology with less particle agglomeration and low porosity/low 

permeability structure as indicated by SEM-EDS analysis. 

6. A third layer consisting mainly of the agglomerated NPs formed when using higher 

concentrations of ferric oxide or magnetic iron oxide NPs (2.5 wt%), which 

reduced the filter cake efficiency (i. e., producing a thick, permeable filter cake 

with high fluid loss volume). 

7. The ferric oxide and magnetic iron oxide NPs promoted better bentonite-platelet 

microstructure after the dissociation of Ca2+ cations from the bentonite at such 

conditions because of their positively surface charge, which produced a good-

quality filter cake. 

8. The filter cakes that have optimum concentration of ferric oxide NPs can withstand 

downhole conditions up to 350ºF and 500 psi. Moreover, the effect of temperature 

on the filter cake characteristics of this type of NPs/Ca-bentonite-based fluids is 

predominant compared to pressure. 

9. Ferric oxide and magnetic iron oxide NPs with positive surface charges were stable 

in suspensions and building a strong yield structure with Ca-bentonite, which 

produced fluids with better rheological properties. On the other hand, using silica 
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NPs that had negative surface charge generated suspensions with higher viscosities 

and weaker yield structure. 

10. Aging at 350°F for 16 hours shows that the rheological properties of Ca-bentonite-

based drilling fluid that has ferric oxide NPs remains stable over time with minor 

loss in the gel structure. On the other hand, aging silica NPs-based fluids under the 

same conditions showed unstable rheological properties. 

11. The Herschel-Bulkley was found to be the best fit model for the experimental data 

of the tested NPs/Ca-bentonite fluids with R2 values higher than 0.99 and minimum 

∑Q2 values, especially at higher temperatures. 

12. The CT scan analysis of the core disks showed a little decrease of the core porosity 

after the filtration process using the NPs/Ca-bentonite suspensions, which 

confirming its capability to minimize formation damage. 

 

Ferric oxide NPs had been selected and used for formulating and investigating the 

filter cake characteristics and filtration properties of a Ca-bentonite-based drilling fluid in 

the presence of polymers and other drilling fluid additives. Based on the experimental 

results obtained the following conclusions can be yielded: 

1. Ferric oxide NPs improved the filter cake and filtration characteristics of Ca-

bentonite-based drilling fluids in the presence of polymer and other additives.  

2. A NP concentration of less than 1.0 wt% should be used for generating a good-

quality filter cake. The best cake characteristics were obtained at NP 

concentrations of 0.3-0.5 wt%. 
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3. The NPs/Ca-bentonite-based drilling fluids could withstand downhole conditions 

up to 500 psi and 350°F. At such conditions, a filter cake with 0.151 in. thickness, 

6.9 ml filtrate volume, and 0.428 µd permeability was generated. 

4. Adding ferric oxide NPs to the Ca-bentonite-based drilling fluids enhanced their 

filter cake characteristics under both static and dynamic filtration compared to the 

base fluid. 

5. The ultrasonication of this type of NPs/Ca-bentonite-based drilling fluids for one 

hour is recommended while preparation. At such preparation method, a filter cake 

with 0.197 in. thickness, 7.4 ml filtrate volume, and 0.343 µd permeability was 

deposited. 

6. Bentonite hydration for 16 hours is recommended while preparing this kind of 

NPs/Ca-bentonite-based drilling fluids. A filter cake with 0.204 in. thickness, 7.2 

ml filtrate volume, and 0.402 µd permeability was generated when the drilling 

fluid was hydrated before filtration. 

7. SEM-EDS analysis confirmed the efficiency of ferric oxide NPs to form a 

smoother morphology/less porous filter cake because of its ability to form a rigid 

bentonite-platelet structure in the drilling fluid. 

 

This research provides a lab investigation of an improved NPs/Ca-bentonite-based 

fluid for drilling applications. The ferric oxide and magnetic iron oxide NPs have the 

potential to promote drilling fluid rheological and filtration characteristics, which provides 

a high-efficiency drilling practices and less potential to damage the formation. This work 
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opens a new window on using NPs to enhance the properties Ca-bentonite and formulate 

higher-efficiency fluids for safer, lower cost drilling applications, and less potential to 

damage the formation. 
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APPENDIX A  

DEHYDRATION OF CA-BENTONITE SUSPENSIONS  

 

Introduction 

The purpose of this appendix is to present in detail the images that show the 

dehydration, at 212°F (100°C) and ambient pressure, of the 7 wt% Ca-bentonite 

suspension in deionized water.  The examined samples were prepared by following the 

American Petroleum Institute Standards (API Specifications 13A 1993; API 13B-1 2003). 

The fluid was formulated using a bentonite concentration of 7 wt% mixed in 600 ml of 

deionized water for 20 minutes under mechanical stirring. In this case, a sample of 100 ml 

were used directly after preparing (without sealing in plastic containers for bentonite to 

hydrate). The sample was put in a water bath at 212°F (100°C) and the following set of 

images were taken, which show the physical change in the Ca-bentonite sample as a 

function of time. 
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Fig. A- 1―Base Fluid in a water bath at 212°F (100°C) at time zero. 
 

Fig. A- 2―Base Fluid in a water bath at 212°F (100°C) after 30 minutes. 
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Fig. A- 3―Base Fluid in a water bath at 212°F (100°C) after 60 minutes. 
 

Fig. A- 4―Base Fluid in a water bath at 212°F (100°C) after 90 minutes. 
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Fig. A- 5―Base Fluid in a water bath at 212°F (100°C) after 120 minutes. 
 

Fig. A- 6―Base Fluid in a water bath at 212°F (100°C) after 150 minutes. 
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Fig. A- 7―Base Fluid left for 16 hours after thermal aging in a water bath at 212°F (100°C) for 150 minutes. 
 

  

Fig. A- 8―Base Fluid left for 24 hours at ambient pressure and temperature (no water bath). 
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APPENDIX B  

DETAILED RHEOLOGICAL MEASUREMENT RESULTS 

 

Introduction 

The purpose of this appendix is to present the detailed results of the rheological 

measurement in chapter III. The rheological measurements are conducted on the 7 wt% 

Ca-bentonite-based suspensions having different concentrations of NPs at various 

temperatures (120, 140, 160, 180, and 200°F) and ambient pressure. The fluctuations in 

the data may be due to a possible evaporation of water from the base fluid at atmospheric 

pressure. The resulted shear stress versus shear rate data was fitted to the non-Newtonian 

rheological models (Bingham Plastic and Herschel-Bulkley). These models can be 

described as (Eqs. III-1 , and III-2 ): 

Bingham Plastic model: 

 � = ��	 + �	�� 		 , ……………..………………………………………………. (III-1) 

 
where τ is the shear stress (lbf/100 ft2), τo is the yield stress (lbf/100 ft2), µp is the plastic 

viscosity (cp), and ��  is the shear rate (s-1). 

Herschel-Bulkley model: 

 � = ��	 + 
���	   , …………………………………………………………….. (III-2) 

 
where K is the consistency index (lbf. sn/100 ft2), and n is the flow behavior index 

(dimensionless). 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 9.64 8.00 0.9966 1.7547  9.25 0.0331 0.9046 0.9947 2.8112 

140 10.41 7.08 0.9961 1.6646  10.26 0.0228 0.9389 0.9949 2.0196 

160 12.75 6.11 0.9942 1.6235  12.31 0.0278 0.8923 0.9984 0.5174 

180 14.32 6.21 0.9953 1.4850  14.36 0.0120 1.0105 0.9997 0.0826 

200 14.96 4.84 0.9944 1.0835  14.88 0.0145 0.9486 0.9979 0.4083 

 
Table B- 1― Bingham Plastic and Herschel-Bulkley model constants of the base fluid at different temperatures. 
 

Temperature Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 12.52 17.07 22.08 

140 11.96 16.84 22.13 

160 12.09 17.98 24.23 

180 12.92 19.65 26.24 

200 11.85 18.44 26.14 

 
Table B- 2―Apparent viscosity of the base fluid at different temperatures and shear rates. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 26.70 25.52 25.79 27.57 25.27 

510.69 18.21 17.96 19.18 20.96 19.67 

340.46 15.70 15.73 17.23 18.66 18.59 

170.23 12.15 12.81 14.48 16.53 16.55 

102.14 11.35 12.02 14.13 15.45 16.05 

51.07 10.49 10.89 13.40 14.84 15.47 

10.21 9.58 10.55 12.53 14.59 15.06 

5.11 10.93 11.70 13.94 15.57 15.92 

 
Table B- 3―Rheograms of the base fluid at different temperatures. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 16.36 8.90 0.9977 1.5315  15.55 0.0628 0.8303 0.9968 2.2210 

140 18.55 7.29 0.9950 2.0324  17.21 0.0706 0.7907 0.9945 3.0057 

160 20.09 6.61 0.9931 2.2420  19.70 0.0334 0.8764 0.9936 2.5098 

180 20.66 6.24 0.9961 1.1418  20.18 0.0277 0.8964 0.9985 0.5145 

200 21.16 6.51 0.9974 0.8486  21.04 0.0165 0.9736 0.9987 0.4398 

 
Table B- 4― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
ferric oxide NPs at different temperatures. 
 

Temperature Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 16.56 24.35 34.12 

140 15.99 24.67 33.39 

160 16.02 24.77 35.75 

180 15.93 25.46 35.29 

200 16.43 25.98 36.27 
 
Table B- 5―Apparent viscosity of the fluid containing 0.5 wt% of ferric oxide NPs at different temperatures and 
shear rates. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 35.33 34.11 34.18 33.97 35.05 

510.69 25.97 26.32 26.42 27.15 27.71 

340.46 23.50 23.74 25.45 25.10 25.79 

170.23 20.10 21.30 21.76 22.53 23.53 

102.14 18.01 19.77 21.63 22.07 22.52 

51.07 16.97 19.35 20.39 21.38 21.38 

10.21 16.27 17.65 20.17 20.39 21.39 

5.11 16.97 19.51 20.96 21.63 21.90 

 
Table B- 6―Rheograms of the fluid containing 0.5 wt% of ferric oxide NPs at different temperatures and shear 
rates. 
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 Bingham Plastic Model  Herschel-Bulkley Model 

NP Concent. τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(wt%) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

0.0 9.64 8.00 0.9966 1.7547  9.25 0.0331 0.9046 0.9947 2.8112 

0.5 16.36 8.90 0.9977 1.5315  15.55 0.0628 0.8303 0.9968 2.2210 

1.5 17.75 9.40 0.9992 0.9089  16.93 0.0321 0.9349 0.7817 722.05 

2.5 21.65 11.72 0.9995 2.3054  20.87 0.0378 0.9419 0.9995 1.8826 

 
Table B- 7― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
ferric oxide NPs at 120°F and different NP concentrations. 
 

 Bingham Plastic Model  Herschel-Bulkley Model 

NP Concent. τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(wt%) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

0.0 10.41 7.08 0.9961 1.6661  10.28 0.0218 0.9450 0.9951 1.9551 

0.5 18.55 7.29 0.9950 2.0324  17.63 0.0357 0.8855 0.9937 3.5443 

1.5 19.39 8.99 0.9992 0.5874  19.39 0.0188 1.0002 0.7410 883.44 

2.5 23.87 10.13 0.9998 0.8209  23.78 0.0257 0.9728 0.9998 0.9446 

 
Table B- 8― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
ferric oxide NPs at 140°F and different NP concentrations. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 3.49 9.59 0.9934 5.0166  2.95 0.0627 0.8289 0.9984 1.1188 

140 4.18 9.63 0.9933 4.6674  3.71 0.0718 0.8130 0.9975 2.0959 

160 5.26 9.63 0.9929 5.4799  5.16 0.0489 0.8608 0.9974 2.2486 

180 6.86 9.86 0.9924 6.0933  6.60 0.0343 0.9199 0.9951 3.8995 

200 9.35 9.91 0.9959 4.5486  9.48 0.0177 1.0221 0.9956 5.1903 

 
Table B- 9― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
silica NPs at different temperatures. 
 

Temperature 
Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 12.86 15.22 21.93 

140 11.72 11.34 11.15 

160 57.76 194.18 502.59 

180 30.55 42.26 67.23 

200 16.07 15.24 14.80 

 
Table B- 10―Apparent viscosity of the fluid containing 0.5 wt% of silica NPs at different temperatures and shear 
rates. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 22.52 23.77 24.23 26.70 30.49 

510.69 13.71 14.45 15.52 17.37 20.12 

340.46 10.83 11.94 12.91 14.79 17.09 

170.23 7.80 8.39 9.29 10.86 12.88 

102.14 6.06 6.86 7.80 9.02 11.03 

51.07 4.49 5.15 6.16 7.17 9.43 

10.21 2.47 2.99 4.14 5.33 7.87 

5.11 3.20 4.28 5.36 6.96 9.57 

 
Table B- 11―Rheograms of the fluid containing 0.5 wt% of silica NPs at different temperatures and shear rates. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 3.99 17.76 0.9808 109.03  4.15 0.2586 0.7192 0.9991 2.6967 

140 8.72 18.52 0.9779 57.991  4.89 0.47616 0.6356 0.9976 6.4152 

160 7.69 16.29 0.9747 50.328  8.45 0.0631 0.8907 0.9827 27.033 

180 10.21 26.71 0.9764 173.67  6.93 0.5559 0.6446 0.9986 6.8195 

200 13.60 27.13 0.9824 131.78  11.84 0.3134 0.7315 0.9968 13.836 

 
Table B- 12― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 1.5 wt% of 
silica NPs at different temperatures. 
 

Temperature 
Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 19.63 24.15 29.91 

140 20.54 26.69 34.81 

160 18.11 23.49 31.04 

180 25.93 36.45 45.33 

200 28.89 39.88 52.18 

 
Table B- 13―Apparent viscosity of the fluid containing 1.5 wt% of silica NPs at different temperatures and shear 
rates. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 41.88 43.82 38.64 55.31 61.65 

510.69 25.76 28.47 25.06 38.88 42.54 

340.46 21.27 24.75 22.07 32.23 37.11 

170.23 14.62 18.41 16.57 22.21 26.87 

102.14 11.56 13.12 14.20 17.89 20.89 

51.07 8.08 10.69 9.36 13.06 16.05 

10.21 4.66 5.47 5.36 7.73 13.26 

5.11 5.05 6.23 6.40 8.53 12.84 

 
Table B- 14―Rheograms of the fluid containing 1.5 wt% of silica NPs at different temperatures and shear rates. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 12.97 39.67 0.9825 255.05  6.64 0.76 0.6685 0.9988 12.533 

140 13.06 39.42 0.9846 289.70  9.15 0.72 0.6665 0.9992 7.1081 

160 18.99 37.77 0.9891 220.62  16.92 0.35 0.7628 0.9989 9.7751 

180 24.68 37.44 0.9866 251.60  18.57 0.71 0.6611 0.9994 4.7979 

200 29.45 35.58 0.9786 303.56  25.22 0.68 0.6558 0.9989 9.8033 

 
Table B- 15― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 2.5 wt% of 
silica NPs at different temperatures. 
 

Temperature Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 39.77 51.83 61.93 

140 38.27 51.66 62.71 

160 40.04 55.58 68.09 

180 41.95 60.57 75.09 

200 41.86 63.18 81.36 

 
Table B- 16―Apparent viscosity of the fluid containing 2.5 wt% of silica NPs at different temperatures and shear 
rates. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 84.83 81.63 85.42 89.49 89.29 

510.69 55.28 55.10 59.28 64.61 67.39 

340.46 44.03 44.59 48.42 53.40 57.85 

170.23 31.12 32.23 35.40 38.88 45.01 

102.14 26.66 23.88 28.51 33.03 39.30 

51.07 17.20 17.09 23.02 28.67 33.24 

10.21 9.29 12.32 18.27 21.65 26.23 

5.11 8.91 12.25 18.58 22.76 27.20 

 
Table B- 17―Rheograms of the fluid containing 2.5 wt% of silica NPs at different temperatures and shear rates. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 7.21 10.43 0.9947 6.4146  5.31 0.1010 0.7903 0.9985 1.4973 

140 8.32 11.58 0.9893 14.278  6.16 0.1643 0.7226 0.9981 1.8480 

160 9.01 12.77 0.9902 13.689  7.36 0.1693 0.7272 0.9990 1.5024 

180 11.49 10.94 0.9932 6.8780  10.38 0.1411 0.7440 0.9959 5.8067 

200 16.01 11.13 0.9921 9.8226  13.22 0.1959 0.7081 0.9975 3.6249 

 
Table B- 18― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
ferric oxide NPs + 0.5 wt% of silica NPs at different temperatures. 
 

Temperature 
Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 13.80 17.53 21.67 

140 14.39 19.39 19.39 

160 15.84 21.21 26.88 

180 16.33 21.87 21.87 

200 18.60 26.14 34.95 

 
Table B- 19―Apparent viscosity of the fluid containing 0.5 wt% of ferric oxide NPs + 0.5 wt% of silica NPs at 
different temperatures and shear rates. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 29.45 30.70 33.80 34.84 39.68 

510.69 18.69 20.68 22.63 23.32 27.88 

340.46 15.42 17.23 19.11 21.37 24.85 

170.23 11.17 12.57 14.38 15.28 20.68 

102.14 9.22 10.86 12.25 14.79 18.45 

51.07 8.32 9.54 10.37 12.67 17.20 

10.21 5.36 5.99 7.21 10.50 13.64 

5.11 6.20 7.14 7.95 11.49 14.83 

 
Table B- 20―Rheograms of the fluid containing 0.5 wt% of ferric oxide NPs + 0.5 wt% of silica NPs at different 
temperatures and shear rates. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 20.49 6.93 0.9959 1.6714  20.56 0.0112 1.0407 0.9969 1.4756 

140 21.92 6.81 0.9912 3.3216  21.85 0.0317 0.8849 0.9858 6.2719 

160 24.09 6.82 0.9977 0.9584  24.08 0.0159 0.9844 0.9973 1.1423 

180 25.88 6.39 0.9959 1.2419  25.35 0.0302 0.8500 0.9955 13.528 

200 27.19 6.33 0.9908 3.0319  26.52 0.0740 0.7513 0.3092 0.7672 

 
Table B- 21― Bingham Plastic and Herschel-Bulkley model constants fitted for the fluid containing 0.5 wt% of 
ferric oxide NPs (using 15 min. ultrasonication) at different temperatures. 
 

Temperature 
Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 16.73 25.29 35.74 

140 17.08 26.08 26.08 

160 18.11 28.75 40.63 

180 18.52 30.19 30.19 

200 18.75 30.22 44.84 

 
Table B- 22―Apparent viscosity of the fluid containing 0.5 wt% of ferric oxide NPs (using 15 min. 
ultrasonication) at different temperatures and shear rates. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 35.68 36.45 38.64 39.51 40.00 

510.69 26.98 27.81 30.67 32.20 33.95 

340.46 25.41 26.11 28.32 30.42 32.42 

170.23 22.14 24.07 26.64 28.94 30.60 

102.14 21.96 24.26 25.77 27.27 29.20 

51.07 21.23 22.96 24.84 26.24 27.87 

10.21 20.81 22.30 24.07 25.58 26.87 

5.11 20.58 21.99 24.16 26.24 27.08 

 
Table B- 23―Rheograms of the fluid containing 0.5 wt% of ferric oxide NPs (using 15 min. ultrasonication) at 
different temperatures and shear rates. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 19.67 22.48 0.9917 33.028  17.93 0.1673 0.8138 0.9977 10.375 

140 25.53 22.05 0.9927 27.074  23.36 0.2099 0.7804 0.9985 6.4759 

160 26.73 27.25 0.9968 12.143  24.74 0.1001 0.8910 0.9979 7.0505 

180 27.80 12.54 0.9840 19.666  26.66 0.0849 0.8362 0.9825 20.808 

200 16.43 12.04 0.9910 10.816  14.80 0.1132 0.7917 0.5201 6.0592 

 
Table B- 24― Bingham Plastic and Herschel-Bulkley model constants for the base fluid at different temperatures 
measured after aging for 16 hours at 350°F. 
 

Temperature 
Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 30.45 40.93 53.85 

140 32.89 45.98 45.98 

160 34.37 45.72 61.53 

180 25.57 35.60 35.60 

200 19.74 27.41 36.91 

 
Table B- 25―Apparent viscosity of the base fluid at different temperatures and shear rates measured after aging 
for 16 hours at 350°F. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 64.95 70.18 73.31 54.55 42.12 

510.69 43.65 49.05 48.77 37.98 29.24 

340.46 38.29 43.93 43.76 38.81 26.25 

170.23 28.40 34.32 34.50 32.89 20.78 

102.14 25.34 31.12 31.75 31.29 20.75 

51.07 22.07 27.88 28.72 29.14 17.72 

10.21 16.26 22.87 24.44 26.32 14.34 

5.11 18.34 24.19 27.64 26.98 15.73 

 
Table B- 26―Rheograms of the base fluid at different temperatures and shear rates measured after aging for 16 
hours at 350°F. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 11.93 27.15 0.9810 120.31  16.56 0.01268 1.1792 0.9653 186.42 

140 15.24 26.21 0.9839 90.95  13.89 0.14704 0.8491 0.9933 30.49 

160 17.37 26.83 0.9884 70.99  17.06 0.08283 0.9281 0.9924 39.73 

180 23.52 25.53 0.9809 95.62  26.92 0.03328 1.0417 0.9795 88.765 

200 27.71 25.55 0.9878 66.72  27.46 0.12868 0.8603 0.9938 23.56 

 
Table B- 27― Bingham Plastic and Herschel-Bulkley model constants for the fluid containing 0.5 wt% of ferric 
oxide NPs at different temperatures measured after aging for 16 hours at 350°F. 
 

Temperature 
Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 28.75 38.35 49.00 

140 30.27 40.50 40.50 

160 32.10 43.11 55.76 

180 33.89 47.58 47.58 

200 36.08 51.53 68.93 

 
Table B- 28―Apparent viscosity of the fluid containing 0.5 wt% of ferric oxide NPs at different temperatures 
and shear rates measured after aging for 16 hours at 350°F. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 61.40 64.57 68.47 72.30 76.96 

510.69 40.90 43.20 45.98 50.75 54.96 

340.46 34.84 36.34 39.65 44.17 49.01 

170.23 24.78 27.71 29.55 36.48 40.79 

102.14 20.02 22.94 25.18 31.68 35.56 

51.07 14.83 18.03 20.22 26.25 29.73 

10.21 8.74 11.54 14.94 19.31 25.58 

5.11 9.71 12.50 15.98 20.31 27.99 

 
Table B- 29―Rheograms of the fluid containing 0.5 wt% of ferric oxide NPs at different temperatures and shear 
rates measured after aging for 16 hours at 350°F. 
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Temperature 
Bingham Plastic Model  Herschel-Bulkley Model 

τo µp R2 ∑Q2  τo k n R 2 ∑Q2 

(°F) (lbf/100 ft 2) (cp)  (lbf/100 ft 2)2  (lbf/100 ft 2) (lbf. s n/100 ft 2)   (lbf/100 ft 2)2 

120 10.12 34.08 0.9827 177.78  14.51 0.09613 0.9243 0.9881 185.71 

140 14.75 32.58 0.9938 75.97  10.91 0.30332 0.7771 0.9995 3.55 

160 18.54 27.25 0.9975 16.22  18.30 0.08893 0.9383 0.9985 9.63 

180 20.64 27.25 0.9968 24.91  20.46 0.06018 0.9924 0.9967 23.86 

200 21.97 27.04 0.9943 41.49  19.57 0.17674 0.8412 1.5628 7.71 

 
Table B- 30― Bingham Plastic and Herschel-Bulkley model constants for fluid containing 0.5 wt% of Silica NPs 
at different temperatures measured after aging for 16 hours at 350°F. 
 

Temperature 
Apparent Viscosity (cp)  

(°F) 1021.381 s-1 510.6905 s-1 340.4603 s-1 

120 34.04 43.57 53.85 

140 36.13 46.41 46.41 

160 36.36 48.20 58.01 

180 36.93 50.09 50.09 

200 37.34 50.65 63.29 

 
Table B- 31―Apparent viscosity of the fluid containing 0.5 wt% of ferric oxide NPs at different temperatures 
and shear rates measured after aging for 16 hours at 350°F. 
 

Shear rate Shear Stress (lb/100 ft 2) 

(s-1) 120°F 140°F 160°F 180°F 200°F 

1021.38 72.61 77.07 77.55 78.77 79.64 

510.69 46.47 49.50 51.41 53.43 54.02 

340.46 37.29 38.74 41.25 43.16 45.01 

170.23 25.14 26.80 28.68 30.60 32.41 

102.14 21.38 22.94 25.24 25.81 26.35 

51.07 13.75 18.03 20.81 23.05 24.90 

10.21 6.44 11.54 19.07 20.58 21.38 

5.11 5.88 12.50 18.85 20.94 18.71 

 
Table B- 32―Rheograms (shear stress versus shear rate) of the fluid containing 0.5 wt% of ferric oxide NPs at 
different temperatures and shear rates measured after aging for 16 hours at 350°F. 
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APPENDIX C  

DETAILED FLUID LOSS RESULTS OF NPS/CA-BENTONITE 

SUSPENSIONS 

 

Introduction 

The purpose of this appendix is to present the detailed results of the filter press 

measurement of the fluid loss volumes as a function of time for the data in chapter III. The 

measurements of the NPs/Ca-bentonite suspensions were investigated using an OFITE 

HP/HT filter press (Fig. II-10). The setup includes a 500 ml cell which was modified to 

use 2.5-in. in diameter and 1-in. in thickness cores instead of filter papers, cell caps, valve 

stems, heating element, and a nitrogen-gas line. The suspensions were put in the cell, and 

the cell was then put in the heating jacket. A differential pressure from 300 to 500 psi and 

a temperature range of 175 to 250°F were used. Furthermore, the fluid loss volume was 

measured as a function of time for 30 minutes, as per API standards.  
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Time Cumulative Filtrate Volume  (ml) 

(min) Base 
(1) 

Base 
(2) 

Base 
(3) 

0.3 wt% 
Ferric Oxide 

NPs 

0.5 wt% 
Ferric Oxide 

NPs 

1.5 wt% 
Ferric Oxide 

NPs 

2.5 wt% 
Ferric Oxide 

NPs 

1 7.2 8.3 8.2 1.65 1.4 2.75 4.2 

2 7.6 8.5 8.4 1.7 1.6 2.8 4.6 

3 8 8.7 8.6 1.8 2 3.3 4.8 

4 8.2 8.9 8.8 1.85 2.4 3.7 6 

5 8.5 9.1 9 1.9 3.6 4 6.3 

6 8.7 9.3 9.1 2 4 4.5 6.7 

7 9 9.5 9.3 2.1 4.2 5 6.9 

8 9.2 9.7 9.5 2.2 4.4 5.5 7 

9 9.4 9.8 9.7 2.3 4.6 6 7.4 

10 9.6 9.9 9.9 2.4 4.8 6.3 7.6 

11 9.8 10.1 10 2.6 5 6.5 7.8 

12 10 10.2 10.1 2.8 5.15 6.7 8.1 

13 10.1 10.3 10.2 3 5.25 6.8 8.4 

14 10.2 10.4 10.3 3.5 5.35 7 8.8 

15 10.4 10.5 10.4 4.4 5.5 7.1 9 

16 10.6 10.6 10.5 5 5.7 7.2 9.4 

17 10.8 10.7 10.6 5.8 5.8 7.4 9.8 

18 10.9 10.8 10.7 6 5.9 7.6 10.2 

19 11 10.9 10.8 6.2 6 7.8 10.4 

20 11.1 11 10.9 7.2 6.1 8 10.6 

21 11.2 11.1 11 7.5 6.2 8.1 10.8 

22 11.25 11.2 11.1 8 6.3 8.2 11 

23 11.35 11.3 11.2 8.5 6.4 8.3 11.4 

24 11.45 11.4 11.3 9 6.5 8.4 11.6 

25 11.55 11.5 11.4 9.3 6.6 8.5 11.8 

26 11.6 11.6 11.5 9.5 6.7 8.6 11.8 

27 11.7 11.7 11.6 9.7 6.75 8.7 11.8 

28 11.8 11.8 11.7 9.8 6.8 8.8 11.8 

29 11.9 11.9 11.8 9.9 6.85 8.9 11.8 

30 12 12 11.9 10 6.9 9 11.9 
 
Table C- 1―Detailed fluid loss volumes for the base fluid and samples containing different concentrations of 
ferric oxide NPs at 250ºF and 300 psi. 
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Time Cumulative Filtrate Volume  (ml) - 0.5 wt% Fer ric Oxide NPs 

(min) 175°F, 
 300 psi 

200°F,  
300 psi 

250°F,  
300 psi 

300°F,  
300 psi 

250°F,  
200 psi 

250°F,  
400 psi 

350°F,  
500 psi 

1 6.2 3 1.4 3.3 5.3 2.5 2 

2 6.6 3.2 1.6 3.4 5.33 3.2 2.2 

3 7.2 3.8 2 3.5 5.37 3.3 2.24 

4 7.4 3.9 2.4 3.55 5.4 3.5 2.28 

5 7.7 4 3.6 3.6 5.48 3.7 2.3 

6 8 4.1 4 4 5.55 4 2.32 

7 8.2 4.2 4.2 4.4 5.6 4.6 2.35 

8 8.7 4.5 4.4 4.8 6.6 5.2 2.37 

9 9 4.8 4.6 5 7.5 5.5 2.39 

10 9.2 5.2 4.8 5.3 7.8 5.9 2.4 

11 9.4 5.6 5 5.6 8.1 6.4 2.42 

12 9.5 5.9 5.15 6 8.8 6.6 2.44 

13 9.6 6 5.25 6 9.3 6.7 2.46 

14 9.7 6.4 5.35 6 9.5 7.2 2.48 

15 9.9 6.5 5.5 6 9.65 7.6 2.5 

16 10.1 6.7 5.7 6 9.8 8.2 2.6 

17 10.3 6.9 5.8 6 9.9 8.3 2.7 

18 10.4 7.1 5.9 6 10 8.3 2.75 

19 10.5 7.4 6 6 10.4 8.4 2.8 

20 10.7 7.7 6.1 6 10.6 8.4 2.85 

21 10.9 8 6.2 6 10.8 8.5 2.87 

22 11.1 8.3 6.3 6 11 8.5 2.89 

23 11.3 8.5 6.4 6 11.2 8.6 2.94 

24 11.5 8.8 6.5 6 11.6 8.7 2.97 

25 11.6 9 6.6 6 12 8.8 3 

26 11.8 9.3 6.7 6 12.2 8.9 3.1 

27 12.1 9.7 6.75 6.2 12.5 9 3.15 

28 12.2 10.4 6.8 6.27 12.7 9.1 3.2 

29 12.3 11 6.85 6.35 12.9 9.4 3.25 

30 12.4 11.8 6.9 6.4 13 9.6 3.3 
 
Table C- 2― Detailed fluid loss volumes for the samples containing 0.5 wt% of ferric oxide NPs at a different 
pressures and temperatures. 
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Time Cumulative Filtrate Volume  (ml) 

(min) 
0.5 wt% 
Silica 
NPs 

1.5 wt% 
Silica NPs 

2.5 wt% 
Silica NPs 

0.5 wt% 
Fe3O4 NPs 

1.5 wt% 
Fe3O4 NPs 

2.5 wt% 
Fe3O4 NPs 

0.5 wt% 
Zinc Oxide 

NPs 

1 3.5 3.4 3.8 2 2 1.7 4 

2 3.6 4.8 5 2.3 2.4 2.4 4.3 

3 4 5.8 6.3 2.9 3 2.9 4.4 

4 4.4 6.6 7.2 3.3 3.5 3.3 4.6 

5 4.8 7.5 7.9 3.8 4 3.9 4.8 

6 5 8.3 8.4 4.2 4.5 4.5 5.1 

7 5.6 9.1 8.6 4.8 4.9 5.1 6 

8 6.2 9.8 8.9 5.2 5.3 5.6 6.4 

9 6.6 10.3 9.1 5.5 5.8 5.9 7 

10 7 11 9.3 5.9 6.1 6.1 8 

11 8 11.6 9.4 6.2 6.3 6.3 8.9 

12 8.8 12.1 9.5 6.4 6.4 6.4 9 

13 9.5 12.4 9.6 6.7 6.5 6.5 9.05 

14 10.2 13.1 9.7 6.9 6.7 6.8 9.4 

15 11.1 13.4 9.8 7.2 6.85 6.9 10 

16 11.6 13.8 9.9 7.4 7 7 10.5 

17 11.9 14.3 10 7.6 7.1 7.2 11.4 

18 12.4 14.9 10.1 7.8 7.3 7.3 11.5 

19 12.6 15.3 10.3 7.9 7.4 7.4 11.6 

20 12.8 15.5 10.5 8.05 7.5 7.6 11.8 

21 13 16 10.6 8.2 7.7 7.8 12 

22 13.1 16.4 10.7 8.35 7.8 8 12.1 

23 13.2 16.7 10.8 8.5 7.9 8.1 12.3 

24 13.3 17 10.9 8.6 8.05 8.2 12.5 

25 13.4 17.4 10.95 8.75 8.3 8.3 12.6 

26 13.5 17.7 11 8.85 8.45 8.5 12.7 

27 13.6 18.1 11.05 8.95 8.6 8.6 12.8 

28 13.6 18.3 11.1 9.05 8.7 8.7 12.9 

29 13.6 18.6 11.2 9.15 8.8 8.8 13.1 

30 13.6 18.9 11.3 9.25 9 9 13.2 
 
Table C- 3― Detailed fluid loss volumes for the samples containing silica, magnetic iron oxide, and zinc oxide 
NPs at 250ºF and 300 psi. 
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Time Cumulative Filtrate Volume  (ml) 

(min) 
Base (4) 
(Dyn., 

100 rpm) 

Base (5) 
(Dyn., 

100 rpm) 

0.5 wt% 
Ferric 
Oxide 
NPs 

(Dyn., 
100 rpm) 

Base (6)  
(15 min 

Ultrasonic.) 

Base (7) 
 (15 min 

Ultrasonic.) 

0.5 wt% Ferric 
Oxide NPs  

(15 min 
Ultrasonic.) 

0.5 wt% Silica 
NPs  

(15 min 
Ultrasonic.) 

1 3.2 3.3 2 1.75 3.8 2.3 5.2 

2 4 4.4 3.5 2.4 4.2 2.35 5.3 

3 5.2 5.2 5.1 3 4.8 2.4 5.7 

4 6.3 5.9 5.2 3.8 5 2.5 6.2 

5 7 6.4 5.4 4.9 5.1 3.2 6.8 

6 7.5 6.8 6.5 6.2 5.8 3.22 7.3 

7 7.7 7.3 7 6.9 6.6 3.25 7.6 

8 7.9 7.6 7.2 7.15 6.9 3.28 8.4 

9 8 7.85 7.3 7.2 7.1 3.3 9 

10 8.1 8.1 7.4 7.4 7.3 3.35 10 

11 8.2 8.35 7.45 7.5 7.6 3.4 10.8 

12 8.3 8.55 7.5 7.6 7.65 3.4 11.3 

13 8.45 8.75 7.55 7.75 7.7 3.45 11.4 

14 8.5 8.9 7.6 7.85 8.4 3.45 11.5 

15 8.55 9 8.2 8 8.4 3.5 11.6 

16 8.65 9.1 9.2 8.15 8.4 3.5 11.8 

17 8.75 9.2 10 8.25 8.6 3.55 12.2 

18 8.9 9.3 10.15 8.35 8.7 3.55 12.5 

19 9.1 9.4 10.3 8.45 9 3.55 12.8 

20 9.2 9.5 10.4 8.55 9.1 3.6 13.2 

21 9.3 9.6 10.7 8.65 9.2 3.6 13.3 

22 9.4 9.75 10.9 8.75 9.3 3.6 13.5 

23 9.45 9.85 11 8.85 9.4 3.6 13.8 

24 9.55 9.9 11.2 9 9.5 3.65 14.5 

25 9.65 10.05 11.5 9.05 9.6 3.65 14.6 

26 9.75 10.15 11.7 9.15 9.6 3.65 14.7 

27 9.85 10.2 11.8 9.2 9.6 3.65 14.7 

28 9.9 10.3 12 9.25 9.7 3.65 14.7 

29 10 10.35 12.2 9.3 9.8 3.7 14.7 

30 10.1 10.4 12.4 9.5 10 3.7 15 
 
Table C- 4― Detailed fluid loss volumes for the base fluid and samples containing 0.5 wt% of ferric oxide and 
silica NPs at 250ºF and 300 psi when using dynamic filtration (100 rpm) or ultrasonication for 15 minu tes while 
preparation. 
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APPENDIX D  

DETAILED FLUID LOSS RESULTS OF FULLY FORMULATED 

DRILLING FLUID 

 

Introduction 

The purpose of this appendix is to present the detailed results of the filter press 

measurement of the fluid loss volumes as a function of time for the data in chapter IV.  

The measurements of the Ca-bentonite based drilling fluid (fully formulated) were 

investigated using an OFITE HP/HT filter press (Fig. II-10). The setup includes a 500 ml 

cell which was modified to use 2.5-in. in diameter and 1-in. in thickness cores instead of 

filter papers, cell caps, valve stems, heating element, and a nitrogen-gas line. The drilling 

fluids were put in the cell, and the cell was then put in the heating jacket. A differential 

pressure from 300 to 500 psi and a temperature range of 175 to 250°F were used. 

Furthermore, the fluid loss volume was measured as a function of time for 30 minutes, as 

per API standards.  
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Time 
Cumulative Filtrate Volume  (ml) 

(min) Base (1) 0.3 wt% Ferric Oxide 
NPs 

0.5 wt% Ferric Oxide 
NPs 

1.5 wt% Ferric Oxide 
NPs 

1 2.35 2.4 3.8 3.7 

2 2.85 2.5 3.9 4 

3 3.5 2.8 4.5 4.6 

4 3.8 3 4.8 4.7 

5 4 3.05 4.9 4.8 

6 4.15 3.1 5 5 

7 4.65 3.2 5 5.2 

8 4.75 3.4 5.05 5.4 

9 4.85 3.6 5.1 5.6 

10 5 3.8 5.2 5.8 

11 5.15 3.9 5.3 6.2 

12 5.25 4 5.5 6.6 

13 5.4 4.4 5.55 6.8 

14 5.55 4.6 5.6 6.9 

15 5.7 4.7 5.7 7 

16 6.2 4.75 5.9 7.2 

17 6.3 4.8 6 7.4 

18 6.35 4.9 6.1 7.5 

19 6.35 5.1 6.2 7.6 

20 6.4 5.3 6.3 7.7 

21 6.4 5.4 6.4 7.8 

22 6.6 5.5 6.5 8 

23 6.7 5.6 6.6 8.1 

24 6.9 5.7 6.7 8.2 

25 7.3 5.85 6.8 8.3 

26 7.35 6 6.9 8.4 

27 7.4 6.1 7 8.5 

28 7.45 6.2 7.1 8.6 

29 7.55 6.3 7.2 8.7 

30 7.77 6.4 7.4 8.9 
 
Table D- 1―Detailed fluid loss volumes for the Ca-bentonite-based drilling fluid and fluids containing different 
concentrations of ferric oxide NPs at 250ºF and 300 psi (No hydration, 1 hour of ultrasonication, and static 
filtration). 
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Time Cumulative Filtrate Volume  (ml) - 0.5 wt% Fer ric Oxide NPs 

(min) 200°F,  
300 psi 

250°F,  
300 psi 

300°F,  
300 psi 

350°F, 
300 psi 

250°F,  
200 psi 

250°F,  
400 psi 

350°F,  
500 psi 

1 3.7 3.8 3.8 4.9 6.2 5.9 3.1 

2 4 3.9 4.3 5.5 6.4 6 3.4 

3 4.3 4.5 4.8 5.8 6.7 6.2 3.5 

4 4.5 4.8 5 6 7 6.6 3.6 

5 5 4.9 5.2 6.1 7.2 6.8 3.7 

6 5.1 5 5.6 6.2 7.3 6.9 3.8 

7 5.2 5 5.9 6.3 7.4 7 4 

8 5.3 5.05 6.2 6.4 7.5 7.1 4.2 

9 5.4 5.1 6.3 6.5 7.65 7.6 4.4 

10 5.6 5.2 6.5 6.6 7.8 7.7 4.5 

11 5.8 5.3 6.6 6.7 7.9 7.8 4.6 

12 6 5.5 6.7 6.8 8.05 7.9 4.8 

13 6.1 5.55 6.75 7 8.2 8 5 

14 6.2 5.6 7 7.1 8.3 8.2 5.1 

15 6.3 5.7 7.1 7.2 8.4 8.3 5.2 

16 6.5 5.9 7.25 7.3 8.5 8.4 5.3 

17 7 6 7.4 7.4 8.6 8.5 5.5 

18 7.2 6.1 7.45 7.5 8.8 8.6 5.6 

19 7.4 6.2 7.6 7.6 8.9 8.7 5.7 

20 7.5 6.3 7.65 7.7 9 8.8 5.8 

21 7.6 6.4 7.7 7.8 9.1 8.85 5.9 

22 7.8 6.5 7.8 7.9 9.2 8.9 6 

23 8 6.6 7.95 8 9.3 9 6.1 

24 8.1 6.7 8 8.1 9.4 9.05 6.2 

25 8.2 6.8 8.1 8.2 9.5 9.1 6.4 

26 8.3 6.9 8.2 8.3 9.6 9.2 6.5 

27 8.4 7 8.3 8.4 9.7 9.3 6.6 

28 8.6 7.1 8.4 8.5 9.75 9.4 6.7 

29 8.8 7.2 8.45 8.6 9.8 9.45 6.8 

30 9 7.4 8.6 8.7 9.9 9.5 6.9 
 
Table D- 2― Detailed fluid loss volumes for the Ca-bentonite-based drilling fluid containing 0.5 wt% of ferric 
oxide NPs at different pressures and temperatures (No hydration, 1 hour of ultrasonication, and static filtration).  
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Time Cumulative Filtrate Volume  (ml) 

(min) Base (No Ultrasonic.) 
0.5 wt% Ferric 
Oxide NPs (No 

Ultrasonic.) 

0.5 wt% Ferric 
Oxide NPs (30 

min. Ultrasonic.) 

0.5 wt% Ferric 
Oxide NPs (60 min 

Ultrasonic.) 

1 2.35 2.5 3.5 3.8 

2 2.85 3.1 4 3.9 

3 3.5 3.3 4.4 4.5 

4 3.8 3.5 4.7 4.8 

5 4 4 5 4.9 

6 4.15 4.6 5.3 5 

7 4.65 4.8 5.7 5 

8 4.75 5 6 5.05 

9 4.85 5.3 6.2 5.1 

10 5 5.6 6.4 5.2 

11 5.15 5.9 6.6 5.3 

12 5.25 6.2 6.8 5.5 

13 5.4 6.3 7 5.55 

14 5.55 6.4 7.2 5.6 

15 5.7 6.5 7.4 5.7 

16 6.2 6.6 7.6 5.9 

17 6.3 6.8 7.8 6 

18 6.35 7 8 6.1 

19 6.35 7.1 8.1 6.2 

20 6.4 7.3 8.2 6.3 

21 6.4 7.5 8.3 6.4 

22 6.6 7.7 8.4 6.5 

23 6.7 7.8 8.5 6.6 

24 6.9 7.9 8.6 6.7 

25 7.3 8 8.7 6.8 

26 7.35 8.1 8.8 6.9 

27 7.4 8.2 8.9 7 

28 7.45 8.3 9 7.1 

29 7.55 8.4 9.05 7.2 

30 7.77 8.45 9.1 7.4 
 
Table D- 3― Detailed fluid loss volumes for the Ca-bentonite-based drilling fluid containing no NPs and 0.5 wt 
% of ferric oxide NPs at 250ºF and 300 psi using different ultrasonication times while preparation (No hydration 
and static filtration). 
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Time 
Cumulative Filtrate Volume  (ml)  

(min) 

Base (3) (No 
Hyd., No 

Ultrasonic., 
Static 

filtration) 

Base (4) (16 
hrs Hyd., No 
Ultrasonic., 

Static 
filtration) 

Base (5)  
(No Hyd., No 
Ultrasonic., 

Dyn.100 rpm) 

0.5 wt% 
Ferric Oxide 

NPs (No 
Hyd., No 

Ultrasonic., 
Static 

filtration) 

0.5 wt% 
Ferric Oxide 
NPs (16 hrs 

Hyd., No 
Ultrasonic., 

Static 
filtration) 

0.5 wt% 
Ferric Oxide 

NPs  
(No Hyd., No 
Ultrasonic., 

Dyn. 100 
rpm) 

1 1.6 2.5 3.7 2.2 1.95 4.2 

2 2 3 4.2 3.1 2.15 4.5 

3 2.2 3.25 4.9 3.5 2.25 5.2 

4 2.4 3.5 5.2 3.9 2.4 5.3 

5 2.6 3.9 5.7 4.3 2.6 5.4 

6 2.8 4.2 6.15 4.6 2.75 5.7 

7 3 4.45 6.7 4.9 2.9 5.9 

8 3.2 4.7 6.8 5.1 3.15 6.4 

9 3.4 5.05 7 5.3 3.3 6.5 

10 3.5 5.2 7.5 5.6 3.45 6.7 

11 3.7 5.4 8.1 5.9 3.7 6.8 

12 3.85 5.6 8.3 6 4 7.2 

13 4 5.8 8.4 6.1 4.2 7.3 

14 4.3 6 8.6 6.2 4.4 7.4 

15 4.3 6.2 8.7 6.35 4.6 7.5 

16 4.7 6.35 9 6.55 4.9 7.6 

17 4.85 6.5 9.3 6.75 5.05 7.7 

18 5.15 6.7 9.5 7 5.2 7.8 

19 5.4 6.9 9.7 7.15 5.35 7.9 

20 5.75 7.05 9.8 7.4 5.5 8 

21 5.85 7.15 9.9 7.75 5.7 8.1 

22 5.9 7.3 10.5 7.85 5.9 8.3 

23 6 7.5 11 8 6.1 8.4 

24 6.1 7.6 11.5 8.15 6.25 8.6 

25 6.2 7.75 11.7 8.3 6.4 8.7 

26 6.4 7.9 11.9 8.4 6.55 8.8 

27 6.5 8.08 12.1 8.5 6.7 8.9 

28 6.7 8.2 12.3 8.6 6.85 9 

29 6.85 8.3 12.5 8.7 7 9.15 

30 7 8.4 12.7 8.9 7.15 9.3 
 
Table D- 4― Detailed fluid loss volumes for the Ca-bentonite-based drilling fluid and fluids containing 0.5 wt% 
of ferric oxide at 250ºF and 500 psi when using 16 hours of hydration while preparation or dynamic filtration 
(100 rpm). 


