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ABSTRACT 

 

Electrochemical machining (ECM) has gained prominence in the field on precise 

machining and has been subjected to a lot of study in order to bring its use to commercial 

levels. One of the key issues of electrochemical machining is the lack of proper flushing 

ECM by-products. Ultrasonic assisted ECM is often used to minimize the flushing issue. 

This study attempts a novel variation in ultrasonic assistance of ECM by introducing 

ultrasonic waves in the flowing electrolyte without vibrating tool or workpiece. This 

ensures intense agitation in the inter-electrode gap (IEG) with relatively simpler set-up.  

Aluminum 6061 is used as a workpiece material to drill holes. Stainless steel tubes coated 

with Teflon is used as tool. The Teflon coating minimizes the effect of stray current. 

Use of pulsed DC current and ultrasonic vibration improves the quality of the 

ECM’ed holes. The intense ultrasonic cavitation disturbs the anodic reaction in IEG 

negatively affecting MRR. On the other hand, the de-agglomeration of ECM by-products 

and depassivation of anodic workpiece improves surface roughness by approximately 50 

% and the taper angle of the hole by approximately 75%. 



 

iii 

 

ACKNOWLEDGEMENTS 

 

I would to thank my mother, Swati Patel and father, Bimal Patel for their 

encouragement. All my accomplishments are due to their endless motivation and their 

untiring efforts to give me the best of opportunities in life. 

I would like to thank Dr. Hung for the opportunity to work on this study. His 

guidance, support and motivation has been crucial in the completion of this work. I 

would also like to thank Dr. Bukkapatnam and Dr. Wang for their guidance and support 

throughout the course of this research. 

I would like to thank my colleague, Zhujian Feng, in micro/nano manufacturing 

lab for helping me throughout this research study.  

Thanks also go to my friends and colleagues and the department faculty and staff 

for making my time at Texas A&M University a great experience.  

  



iv 

TABLE OF CONTENTS 

 Page 

ABSTRACT .......................................................................................................................ii 

ACKNOWLEDGEMENTS ............................................................................................. iii 

TABLE OF CONTENTS .................................................................................................. iv 

LIST OF FIGURES ........................................................................................................... vi 

LIST OF TABLES ............................................................................................................. x 

NOMENCLATURE .......................................................................................................... xi 

1. INTRODUCTION .......................................................................................................... 1

1.1 Motivation ................................................................................................................ 4 
1.2 Objectives and Scope ............................................................................................... 5 

2. LITERATURE REVIEW ............................................................................................... 6

2.1 Principle of ECM ..................................................................................................... 6 
2.1.1 Theory of ECM ................................................................................................. 7 
2.1.2 Advantages and issues of ECM ......................................................................... 8 

2.1.3 Applications of ECM ....................................................................................... 10 
2.2 Parameters of ECM ................................................................................................ 11 

2.2.1 Interelectrode gap ............................................................................................ 11 
2.2.2 Feed-Rate ......................................................................................................... 12 
2.2.3 Electrolyte ....................................................................................................... 12 
2.2.4 Voltage ............................................................................................................ 13 

2.3 Ultrasonic Waves and Cavitation ........................................................................... 15 
2.3.1 Factors affecting ultrasonic vibration and cavitation ...................................... 18 
2.3.2 Safety and Health Risks related to ultrasonics ................................................ 20 

2.4 Ultrasonic Enhancement of ECM .......................................................................... 20 
2.4.1 Passive films on anodic workpiece material ................................................... 20 
2.4.2 Ultrasonic vibration of tool or workpiece ....................................................... 22 
2.4.3 Ultrasonic vibration of electrolyte ................................................................... 33 

2.5 Summary of literature review ................................................................................. 37 

3. LABORATORY SYSTEM .......................................................................................... 38



v 

3.1 Experimental Set-up ............................................................................................... 38 
3.2 Ultrasonic actuator system ..................................................................................... 40 

4. EXPERIMENTS .......................................................................................................... 43

4.1 Design of experiment ............................................................................................. 43 

4.2 Experimental procedure ......................................................................................... 52 
4.3 Measurement of output parameters ........................................................................ 54 

4.3.1 MRR measurement ......................................................................................... 54 
4.3.2 Surface finish measurement............................................................................. 59 
4.3.3 Taper angle measurement ................................................................................ 62 

5. RESULTS AND DISCUSSION .................................................................................. 65

5.1 ECM by-product formation .................................................................................... 65 
5.2 Material Removal Rate........................................................................................... 67 

5.2.1 MRR measurement calibration ........................................................................ 67 
5.2.2 MRR results .................................................................................................... 68 

5.3 Profile Roughness .................................................................................................. 74 

5.4 Hole Taper Angle ................................................................................................... 83 

6. CONCLUSION AND RECOMMENDATIONS ......................................................... 86

REFERENCES ................................................................................................................. 88 

APPENDIX A: COSMOS PROGRAMS ......................................................................... 94 

APPENDIX B: DESCRIPTION OF COMPONENTS .................................................... 97 

Velmex BiSlide positioning system and VXM controller ........................................... 97 

Everlast 255 Ext DC power supply .............................................................................. 98 
Longer WT600-2J peristaltic pump ........................................................................... 100 

Branson SLPe ultrasonic probe system ...................................................................... 101 
Fluke 45 multimeter and Tektronic current probe ..................................................... 102 
Keysight 34450 multimeter ........................................................................................ 103 
Alicona IF 3D profiler ................................................................................................ 103 
Mitutoyo Vision System and Olympus Optical Microscope ..................................... 104 

APPENDIX C: MRR DATA ......................................................................................... 106 

APPENDIX D: SURFACE ROUGHNESS DATA ....................................................... 110 

APPENDIX E: TAPER ANGLE DATA ....................................................................... 115 



vi 

LIST OF FIGURES 

Page 

Figure 1: System Design Requirements and Major Issues in Electrochemical Micro-

Machining (EMM). Reprinted from Pa (2009). .................................................. 4 

Figure 2: Principle of Electrochemical Machining ............................................................ 6 

Figure 3: Agglomeration of ECM By-Products ................................................................. 9 

Figure 4: Drilling By ECM. Reprinted from McGeough (2005) ..................................... 10 

Figure 5: Comparing Current Density Vs Efficiency for Pulsed and Continuous 

Current. Reprinted from Bhattacharyya et al. (2004). ...................................... 14 

Figure 6: Micro-Jet Formation Due to Asymmetric Collapse of Cavitation Bubble. 

Reprinted from Wess (2006) ............................................................................ 15 

Figure 7: Creation of Cavitation Bubbles and Their Collapse. (A) Displacement 

Graph, (B) Transient Cavitation, (C) Stable Cavitation, and (D) Pressure 

Graph. Reprinted from Capelo-Martinez (2009). ............................................. 17 

Figure 8: Influence of Ultrasonic Vibration Frequency On MRR. Reprinted from 

Bhattacharyya et al. (2007). .............................................................................. 22 

Figure 9: Influence of Ultrasonic Vibration Frequency On Overcut Reprinted from 

Bhattacharyya et al. (2007). .............................................................................. 23 

Figure 10: Effect of Ultrasonic Vibration Frequency and Power on Surface 

Roughness during UEMM (Ultrasonic-Assisted Electrochemical Micro-

Machining) Reprinted from Pa (2009). ............................................................ 24 

Figure 11: Set-Up for Surface Smoothening Using ECM. Reprinted from Pa (2006). ... 25 

Figure 12: Contribution of Different Factors Towards Surface Finish. Reprinted from 

Pa (2006). .......................................................................................................... 25 

Figure 13: Effect of Interelectrode Voltage on Surface Roughness. Curve 1: ECM 

with Ultrasonic Vibrations, Curve 2: ECM Without Ultrasonic Vibrations 

Adapted from Ruszaj et al. (2001). ................................................................... 26 

Figure 14: Influence of Power of Ultrasonic Vibrations and Pulse Time on Surface 

Roughness. Reprinted from Ruszaj et al. (2007). ............................................. 27 



vii 

Figure 15: Modelling of IEG (1mm) With Ultrasonic Vibration of Tool Reprinted 

from Skoczypiec (2010). .................................................................................. 28 

Figure 16: Pressure of Electrolyte Close to Anode Surface. Ultrasonic Vibration 

Amplitude 5 µm and Period of Vibration = 50 µs. Reprinted from 

Skoczypiec (2010). ........................................................................................... 29 

Figure 17: Schematic of a Disk-Shaped Tool. Reprinted from Wang et al. (2016). ........ 29 

Figure 18: Radial Overcut at Different Machining Speeds for ECM With and Without 

Ultrasonic Tool Vibration. Reprinted from Wang et al. (2016). ...................... 30 

Figure 19: Process Stability Comparison with ECM Performed with and Without Use 

of Ultrasonic Vibrating Tool. Reprinted from Wang et al. (2016). .................. 31 

Figure 20: ECJM By Ultrasonic Vibration of Workpiece. Reprinted from Mitchell-

Smith et al. (2016). ........................................................................................... 32 

Figure 21: Increase in High Current Density Region (A) Without Ultrasonic 

Vibration, (B) With Ultrasonic Vibration, (C) Magnification of High and 

Low Current Density Region. Reprinted from Mitchell-Smith et al. (2016). .. 33 

Figure 22: Use of Ultrasonic Bath to Enhance ECM.  UB : Ultrasonic Bath, WP : 

Workpiece, TE : Tool Electrode, WM: Electrolyte, TGUS: Ultrasonic 

Transducer, EG: Electrical Generator. Reprinted from Nicoară et al. (2006). . 34 

Figure 23: Ultrasonic Vibration of Electrolyte in ECDM Process. Reprinted from Han 

et al. (2009). ...................................................................................................... 36 

Figure 24: Influence Electrolyte Formation and Pulsed Voltage on Tool Depth. 

Reprinted from Han et al. (2009). ..................................................................... 36 

Figure 25: Laboratory Horizontal ECM System with Ultrasonic Probe System ............. 38 

Figure 26: Schematic Showing Incorporation of Ultrasonic Actuator ............................. 41 

Figure 27: Approximate Values of Amplitudes in Micron In Term of Percentage 

Settings. Adapted from Corporation (2007) ..................................................... 44 

Figure 28: A Typical Voltage Vs Time Graph of Two Repetitions of The Same 

Operating Conditions: 15 µm Av, 22 A Ip, 125 Fc, 10 Fr .................................. 48 

Figure 29: A Typical Current Vs Time Graph of Two Repetitions of The Same 

Operating Conditions: 15 µm Av, 22 A Ip, 125 Fc, 10 Fr .................................. 48 



viii 

Figure 30: A Typical Voltage Vs Time Graph of Two Repetitions of The Same 

Operating Conditions: 15 µm Av, 26 A Ip, 275 Fc, 10 Fr .................................. 49 

Figure 31: A Typical Current Vs Time Graph of Two Repetitions of The Same 

Operating Conditions: 15 µm Av, 26 A Ip, 275 Fc, 10 Fr .................................. 49 

Figure 32: Section View by Wire- EDM of A Pair of Holes. Machining Conditions: 

36 µm Av, 22 A Ip, 275 Fc, 15 µm/Sec Fr. ........................................................ 50 

Figure 33: Typical 3D Model of Showing Regions in The Sidewall Not Scanned 

(Operating Conditions: 0 µm Av, 26 A Ip , 275 Hz Fc , 15 µm/S Fr) ................ 55 

Figure 34: Calculating the Diameter of the Hole Using Mitutoyo Vision System .......... 56 

Figure 35: Measuring Hole Depth Using Vision System ................................................. 57 

Figure 36: 3D Model of Typical Hole Drilled for Calibration ......................................... 57 

Figure 37: Surface Roughness Measurement Location .................................................... 59 

Figure 38: Line Measurement at the Bottom of the Hole. (a) 3D Model of the Sample 

Surface (b) Line Measurement Module Showing Top View of the Surface 

on which Sample Line is Drawn for Measurement .......................................... 61 

Figure 39: Definition of Wall Taper Angle in An ECM'ed Hole ..................................... 62 

Figure 40: Taper Angle Measurement by 3D Profiler ..................................................... 64 

Figure 41: Effect of Peak Current and Feed Rate on MRR (Operating Conditions: 125 

Hz Fc, 36 µm Av). Interval Plot Is 95% Confidence Interval (CI) of the 

Mean. ................................................................................................................ 68 

Figure 42: Illustration of Overcut In ECM ....................................................................... 69 

Figure 43: Comparison of Hole Groove At (A) Low (10 µm/S) and (B) High (15 

µm/S) Feed Rates (Operating Conditions: 0 µm Av 22 A Ip, 125 Hz Fc) ......... 70 

Figure 44: Effect of DC Pulse Frequency and Ultrasonic Vibration on MRR 

(Operating Conditions: 22A Ip, 15 µm/S Fr). Interval Plot Is 95% CI of The 

Mean. ................................................................................................................ 71 

Figure 45: Residual Plots for Linear Regression Model of MRR .................................... 73 

Figure 46: Effect of Stray Current and Voltage Distribution during ECM. ..................... 75 



ix 

Figure 47: Effect of Feed Rate at Different Levels of Fc and Av. Interval Plots Are 

95% CI of The Mean. ....................................................................................... 76 

Figure 48: Effect of DC Pulse Frequency and Ultrasonic Vibration Amplitude on 

Average Line Roughness (Ra) (Operating Conditions: 22A Ip, 15 µm/S Fr). 

Interval Plot Is 95% CI of The Mean. ............................................................... 77 

Figure 49: 2 Typical Surface Topography Samples (Operating Conditions: Fc = 

275Hz, Ip=22A, Fr=15 µm/S). .......................................................................... 80 

Figure 50: Effect of DC Pulse Frequency and Ultrasonic Vibration Amplitude on 

Average Peak Roughness (Rz) (Operating Conditions: 22 A Ip, 15 µm/S Fr). 

Interval Plot Is 95% CI of The Mean. ............................................................... 81 

Figure 51: Residual Plots for Linear Regression Model of Line Surface Roughness 

(Ra) .................................................................................................................... 82 

Figure 52: Illustrating Erosion Areas in ECM'ed Hole At “6 ‘O’ Clock” Position ......... 83 

Figure 53: Effect of DC Pulse Frequency and Ultrasonic Vibration Amplitude on 

Taper Angle of Hole (Operating Conditions: 22A Ip, 15µm/S Fr). Interval 

Plot Is 95% CI of The Mean. ............................................................................ 85 

Figure 54: (A) Velmex Bislide Positioning System ("Velmex Motorized BiSlide 

Systems," 2016) (B) VXM Controller System ("Velmex Motor Controllers - 

VXM," 2016) .................................................................................................... 98 

Figure 55: Pulsed DC Power Source For ECM System ("PowerTIG 255EXT - TIG 

Welders | Everlast Generators," 2016) ............................................................ 100 

Figure 56: One Unit of Longer Peristaltic Pump for Electrolyte Circulation with 

KZ25 Pump Head ........................................................................................... 101 

Figure 57: Branson SLPe Ultrasonic Probe System ("Branson Ultrasonic SLP Cell 

Disruptor 150 watts 117V 101-063-726," 2016) ............................................ 102 

Figure 58: Current Monitoring Using (A) Tektronix Current Probe ("A621 A622 

Current Probes Datasheet | Tektronix," 2016) and Fluke45 Multimeter 

("Fluke 45 Dual Display Multimeter," 2016) ................................................. 102 

Figure 59: Keysight Multimeter For Voltage Monitoring ("34450A Digital 

Multimeter," 2016) ......................................................................................... 103 

Figure 60: Alicona IF 3D Profiler  ("Alicona InfiniteFocus," 2016) ............................. 104 



x 

LIST OF TABLES 

Page 

Table 1: Influence of Ultrasonic Field on Material Removal. Reprinted from Nicoară 

et al. (2006) ....................................................................................................... 35 

Table 2: Experimental Input Parameter............................................................................ 43 

Table 3: Order of Experimental Runs .............................................................................. 51 

Table 4: Average MRR, Line Roughness and Taper Angle Measurements. * Taper 

Angle and Rz, were Measured Only for Samples ECM’ed at 22 A Ip and 15 

µm/S fr .............................................................................................................. 66 

Table 5: Calibration Results of Volume Measurement by Alicona IF Profiler ................ 67 



xi 

NOMENCLATURE 

CFD Computational Fluid Dynamics 

CI Confidence interval 

EBM Electron Beam Machining 

ECDM Electrochemical Discharge Machining 

EDM Electrical Discharge Machining 

EMM Electrochemical micro-machining 

IEG Inter-electrode gap 

LBM Laser Beam Machining 

SEM Scanning Electron Microscope 

UEMM Ultrasonic-assisted Electrochemical Micro-machining 

WEDM Wire-Electrical Discharge Machining 



 

1 

 

1. INTRODUCTION  

 

Development of non-traditional machining processes was due to the realization 

that traditional processes like drilling, turning and milling have their limitations due to 

material removal by physical contact. One of the major limitations of conventional 

machining is to have the cutting tool material harder than the workpiece material.  In the 

recent years, the requirement of machining accuracy, surface quality and the need to 

machine hard materials has increased tremendously. This need is particularly clear in 

medical device and aerospace industries. In medical device manufacturing, material 

removal by physical contact maybe detrimental because of contamination and significant 

subsurface damage. Conventional machining processes like drilling and milling require 

deburring to be performed separately, which may be difficult for complex features.  

Non-traditional machining processes use thermal, electrical, chemical, mechanical 

energy. However, material is not removed using physical contact of a sharp cutting tool 

like conventional machining. Because of this features machined with non-traditional 

process have certain advantages. 

For instance, non-traditional machining processes enable the machining of 

materials that are difficult to machining by conventional methods. Titanium and tungsten 

are notable examples. Due to the contact of cutting tool with the workpiece, surface defects 

are much more prominent in traditional machining. Non-traditional machining processes, 

specifically electrochemical machining (ECM) machine with almost no subsurface 

defects.  
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Non-traditional machining processes also enable the fabrication of complex 

geometric features which are normally difficult to machine with conventional methods. 

The ability of Wire-Electrical Discharge Machining (WEDM) machines to machine 

complex features is a notable example. This requirement is particularly of importance in 

the electronics industry, where there are often complex micro-features.   

Different non-traditional machining processes have their own set of advantages 

and disadvantages. Electrical Discharge Machining (EDM) produces features but the 

biggest limitation of EDM is the thermal effects causing surface damage. Processes like 

Laser Beam Machining (LBM), Electron Beam Machining (EBM) and Ultrasonic 

Machining (USM) offer high dimensional control but very low material removal rates. 

Compared to these processes, ECM offers good material removal rates, dimensional 

control, surface finish and almost negligible surface damage.  

For this reason, ECM has been identified as one of the most promising non-

traditional machining process.  

ECM is an anodic dissolution machining process where workpiece is anode and 

tool is cathode. When cathode and anode are placed in contact with electrolyte solution 

and current passed through the circuit, metal ions are removed from the anode. In this 

manner, different features are fabricated on workpiece (anode). 

 The is negligible tool wear and surface damage to the work-piece, making ECM 

advantageous over conventional processes where tool wear is a major concern. ECM also 

gives burr-free features and easily machines hard-to-machine materials as long as they are 

conductive. 
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However, to apply ECM in mass production, there are several issues that need to 

be solved. The biggest problem in ECM, especially with deep hole drilling using ECM, is 

the disposal of electrolyte sludge. Improper flushing of electrolyte slows down the anodic 

dissolution rate, promotes formation of passivation layer, and negatively affects the 

dimensional accuracy of machined feature.  

This project studies a new approach to improve flushing of debris and subsequently 

improve hole quality during machining by ECM. This approach uses ultrasonic waves 

applied to flowing electrolyte during machining. The outcome of this method was 

observed on the Material Removal Rate, surface finish and hole taper. 
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 1.1 Motivation 

 

 

Figure 1: System Design Requirements and Major Issues in Electrochemical 

Micro-Machining (EMM). Reprinted from Pa (2009). 

 

A lot of research has been done in ultrasonic enhancement of ECM and EDM to 

solve issues of conventional ECM (Figure 1). However, the ultrasonic enhancement of 

ECM by generating ultrasonic field in the electrolyte is an area that has not been 

explored as much as vibration of tool/workpiece has. Also, the electrochemical cells 

which enable high frequency vibration for either workpiece/tool require the mounting of 

an ultrasonic head on them. This increases the set-up complexity and cost. Moreover, 

ultrasonic vibration of the tool or work might not be purely longitudinal in reference to 

the feed direction, and slight transverse vibration might bring about dimensional 
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inaccuracies for the feature being machined. Lastly, since vibration is externally 

provided to the electrolyte itself, the vibration of the tube supplying electrolyte cannot 

influence the ultrasonic vibrations significantly. 

The idea is that the cavitation imparted to the flowing electrolyte will cause the 

collapse of bubbles near machining area removing machining products accumulated in 

the IEG or in the machined feature.  

With a relatively easier set-up, ultrasonic field can be generated close enough to 

the machining area to reduce the effect of machining products remaining suspended in 

the IEG. This is the motivation of this research. A laboratory set-up has been developed 

for the same. 

1.2 Objectives and Scope 

The scope of this study is limited to electrochemical machining of aluminum 

using hollow stainless steel tubes as tool. The electrolyte used for ultrasonic 

enhancement is a potassium bromide (KBr) at constant concentration and flow-rate. 

Pulsed DC current with variable frequency and amplitude is used to drive the 

electrochemical reactions. 

The primary objectives of this study are: 

1. Design and incorporate an ultrasonic actuator to the existing laboratory ECM 

system. 

2. Study the influence of ultrasonic waves on ECM and how it affects MRR of 

workpiece and quality of machined surface. 
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2. LITERATURE REVIEW

2.1 Principle of ECM 

Figure 2: Principle of Electrochemical Machining 

Electrochemical machining comes from the concept of electroplating, where 

anode material is plated on the cathode by ion transporting and flow of current (Figure 

2). However, it was seen that if there is constant flushing of the electrolyte between 

cathode and anode then the material does leave the anode, but is not deposited on the 

cathode. 

On proper design of cathode, the anode material is then left with a cavity that is 

the negative mirror image the anode shape. This process is called electrochemical 

machining (Bhattacharyya et al., 2004). 
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The cathode is the tool and the anode is the workpiece. The common area 

between the workpiece and the electrode is known as the machining zone and the IEG 

between the workpiece and the tool is known as the IEG. 

The electrolyte is pumped at the machining area at high velocities in order to 

remove the machining products and remove heat. The IEG is an important factor in 

obtaining a good material removal rate. Also with the reduction of the IEG, the feature 

that is being machined has better geometric resolution since the influence of stray 

current is limited. 

Research also highlights the importance of mass transport of ions being key to 

effective machining. and passivation layers on the workpiece surface is known to reduce 

the rate at which ions leave the anode and are flushed away. Mass transport can also be 

tied back to current density, which is the current generated in the IEG per unit cross 

sectional area. 

2.1.1 Theory of ECM 

Material removal rate (MRR) in ECM is derived from Faraday’s Laws of 

electrolysis.  

 

𝐌𝐑𝐑 =
𝑽

𝒕
= (

𝑴

𝒛𝑭𝒅
) (

𝑬𝑨

𝒈𝒓
) = 𝑪 (

𝑬𝑨

𝒈𝒓
) = 𝑪𝑰       (1) 

 

Where,  

MRR : material removal rate (mm3/min) 

V : removal volume at anode (mm3) 

t : processing time (min) 

M : Atomic mass of anode (g/mol) 

F : Faraday’s constant = 96500 Coulomb 
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z : valency of anode material 

d : density of anode material (g/mm3) 

I : working current (A) 

E : voltage across electrodes (v) 

A : effective area between electrodes (mm2) 

g : inter-electrode gap (mm) 

r : resistivity of system (Ω cm) 

C : specific removal rate (mm3/min/A) 

Where, ρ = density of the material. 

2.1.2 Advantages and issues of ECM 

The advantages of ECM are realized by the ability of the process to machine 

materials that are usually hard to machine with conventional machining processes. The 

flexibility in tool selection is a major advantage. As long as it is conductive, any kind of 

workpiece can be machined by any tool material, provided the appropriate electrolyte is 

selected. This enables machining of hard materials with relatively “soft” tools.  The tool 

wear in an ideal ECM process is zero. But even in practical applications, the tool wear is 

negligible, saving a lot of set up and tool changing costs. The electrolyte used to 

complete the electrical circuit can be filtered and reused in subsequent machining, thus 

saving cost in procuring electrolyte. 
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Figure 3: Agglomeration of ECM By-Products 

 

The biggest limitation of ECM is that only electrically conductive materials can 

be machined and that too at a slower MRR compared to equivalent traditional machining 

processes. Slow MRR is one of the major reasons profound commercialization of ECM 

has not been seen yet. Another key issue is the corrosive property of commonly used 

electrolytes. Lastly, the outcome of machining by ECM often lead to poor quality of 

surface and dimensional accuracy because of agglomeration of ECM by-products in IEG 

(Figure 3). These by-products are detrimental to process stability because they short 

circuit the tool and the workpiece by bridging up the IEG. The agglomeration also 

reduces the rate of ion transportation reaction thereby reducing MRR. Therefore, 

improvement of flushing of these by-product is a key issue in need to be addressed.  
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2.1.3 Applications of ECM 

Electrochemical Machining has the potential to replace most of the traditional 

applications like deburring, shaping, drilling and grinding, etc. This study is based on the 

drilling application of ECM, as explained below. 

Drilling can be performed using any conductive metal tube or pin of appropriate 

diameter as cathode and feeding it into the workpiece (anode). In presence of current and 

flowing electrolyte, a hole will be fabricated roughly the same size as diameter of 

cathode. Use of tube shaped cathode (Figure 4), allows opportunity to use through-the-

tool electrolyte flow which improves flushing. Also, the cross sectional area of tube is 

lesser than a solid rod. Thus, the current density of the former is higher.  

 

 

Figure 4: Drilling By ECM. Reprinted from McGeough (2005) 
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2.2 Parameters of ECM 

The process of ECM is affected by several parameters. However, IEG, feed-rate, 

electrolyte, and power source are key factors that have a major effect on the outcome of 

ECM. These factors are discussed below: 

2.2.1 Interelectrode gap 

The role of IEG and the phenomena happening in it is crucial to the outcome of 

electrochemical machining.  Controlling the IEG, the variation in the IEG and 

maintaining the desired conditions in the IEG can lead to a vastly improved dimensional 

accuracy and material removal rate. 

According to Rajurkar et al. (1995), the variation in pulse voltage is linearly 

correlated to the IEG size.  Hence it should be noted that any phenomena that influences 

either the IEG size or an inclusion of some machining products in the IEG will be 

reflected in the way voltage fluctuates during machining. 
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2.2.2 Feed-Rate 

Higher feed rates would lead to better MRR since more material is removed in 

lesser time. (Wang et al. (2010), Ebeid et al. (2004), Swain et al. (2012), Rao et al. 

(2014)).   However, it must be noted that this happens within the constraints of the rate 

of anodic dissolution and the rate of flushing of machining products. 

Feed rate should be seen as an attempt to maintain the IEG and not as an actual 

way to increase the rate of machining. The rate of machining is governed by the speed at 

which ions leave the anode surface and also at the flow rate of electrolyte and the time 

allowed for it to flush these ions out of the IEG. 

If the feed rate is higher than any of these rates, it will result in variation in IEG 

and in extreme cases it will cause contact between tool and workpiece, resulting in short 

circuiting. 

2.2.3 Electrolyte 

The electrolyte performs the function of completing the electrical circuit between 

cathode and anode. However, the circulation of electrolyte in an effective manner is also 

vital for ECM process. 

Although the machining products might not directly be a factor influencing ECM 

process efficiency, the existence of ECM by-products of electrochemical reaction 

staying in the IEG might short circuit the cathode and anode, causing sparks and 

damaging both the tool and work piece. Such discharges also make the process unstable 

in terms of maintain the IEG or the variations and sudden surges in voltage, etc. Hence it 
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is desirable to have flowing electrolyte which can flush away all the electrolyte in the 

IEG and all the machining products with it.   

It is desirable to have electrolytes with low throwing power. Low throwing 

power means that the ability of the electrolyte to plate uniformly to an irregularly shaped 

cathode is weak. Since no plating or deposition of ions on cathode (tool) is desired, it 

makes sense to prefer low throwing power in ECM. 

 Mukherjee et al. (2008) used 1.5 M sodium chloride (NaCl) as electrolyte 

with a goal to observe the change in valency of aluminum during machining and its 

effect on MRR. Higher concentration of electrolyte might increase the rate of ion 

removal from anode, but that might also be detrimental to the accuracy of machining as 

stray machining might happen.  

The toxicity of electrolytes is a major cause of concern towards widespread 

implementation of ECM. However, use of citric acid as electrolyte to achieve 

environment-friendly ECM is one of the attempts to overcome this limitation (Ryu, 

2015).  

According to McGeough (1974), the voltage required to break down passive 

films on workpiece is reduced by use of bromide or iodide electrolytes. However, poor 

finish is to be expected in this case.  

2.2.4 Voltage 

A lot of initial research and development showed the potential of using pulsed 

current instead of continuous current in electrochemical machining (Figure 5). 
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With excessively high current density, too many ions leave the anode surface. 

The amount may be way too much to be flushed all at the same time, which leaves 

machining products in the narrow IEG. Gradually as the machining progresses, this 

might cause buildup of anode material on the tool. The likelihood is that this deposition 

is not uniform, and hence the rate of anodic transportation is no longer uniform, resulting 

in the distortion of the geometric profile of the feature being machined. 

With pulsed current machining, there is on-time and off-time for peak current to 

be achieved. The off-time is crucial for the flushing away the material removed during 

on-time so as to begin the next on-time phase with fresh electrolyte in the IEG every 

time and minimal deposition on the tool. 

 

 

Figure 5: Comparing Current Density Vs Efficiency for Pulsed and 

Continuous Current. Reprinted from Bhattacharyya et al. (2004). 
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2.3 Ultrasonic Waves and Cavitation 

Ultrasonic waves have a restively short wavelength which results in a very 

narrow beam. High frequency (in the order of at least kHz) has led to several interesting 

applications of ultrasonic waves, mainly due to the phenomenon of cavitation.  

Cavitation occurs due to presence of strong ultrasonic fields in liquids. It is the 

formation and subsequent collapse of “micro-bubbles” in the liquid (Kuttruff, 2012). The 

asymmetric collapse of these bubbles results in micro-jets in the liquid and the symmetric 

collapse results in shockwaves. (Yusof et al., 2016) 

 

 

Figure 6: Micro-Jet Formation Due to Asymmetric Collapse of Cavitation 

Bubble. Reprinted from Wess (2006) 

 

As seen in the Figure 6 above, the collapse of a single bubble near a wall or any 

solid boundary occurs because of asymmetric radial pressure around the bubble. The 

surface of the bubble farthest from the wall experiences deformation due to this and it 

eventually causes an implosion and evolution of the jet (Kuttruff, 2012). According to 

Aglyamov et al. (2008), the life of cavitation micro-bubbles in water is a little over 140 
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µs. However, the high vapor pressure of electrolytes compared to that of water may slow 

down the time taken for the collapse. 

Verhaagen et al. (2016) described a study of how cavitation bubbles clean using 

advanced techniques and instruments such as high-speed imaging, son luminescence 

recordings, and surface cleaning tests. Two distinct bubble groups were identified. The 

bubbles with sizes larger than linear resonance size are in the plane parallel to the surface 

of the transducer, whereas the ones that are smaller are all perpendicular to the transducer 

surface. The smaller bubbles are farther away from the transducer from the large ones and 

behave as streamers. Both bubble groups reported cleaning, according to the authors, 

however the exact cleaning mechanisms could not be predicted. The streamer bubbles 

seemed to clean from the small crevices as well (Xi et al., 2011). 

Figure 7 depicts different stages of two different kinds of cavitation. Micro-jets 

and shockwaves are a result of transient cavitation whereas the scrubbing action is due to 

the stable cavitation. Skoczypiec (2010) believes that it is transient cavitation that is of 

interest with regards to ECM. 
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Figure 7: Creation of Cavitation Bubbles and Their Collapse. (A) 

Displacement Graph, (B) Transient Cavitation, (C) Stable Cavitation, and (D) 

Pressure Graph. Reprinted from Capelo-Martinez (2009). 
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2.3.1 Factors affecting ultrasonic vibration and cavitation 

2.3.1.1 Frequency 

McQueen (1986) compared the efficiencies of cleaning systems with 2 different 

frequencies, one at 40 kHz and another at 220 kHz. This showed that removal of sub 

microscopic contaminants is better at higher frequencies whereas relatively larger 

contaminants are cleaned better in systems emitting relatively lower frequency. 

This might suggest the use of higher frequency ultrasonic assistance when 

machining micro-profiles using ECM.  

Another important note will be the idea of cleaning at extremely high frequencies 

of the order of MHz This is being termed as megasonic cleaning and it is gaining interest 

because cleaning at this order of frequency minimizes the damage caused to cleaning 

surface due to pitting. The reason given for this is that at frequencies this high, the sound 

field manages to interact directly with the particle to be removed without affecting the 

boundary. The second reason is that the microscopic bubbles generated at this frequency 

tend to resonate rather than collapse. This gives rise to a “scrubbing action” rather than 

the micro-jet or shockwave formation usually responsible for pitting. 

2.3.1.2 Amplitude 

The amplitude or maximum displacement of the ultrasonic transducer is 

proportional to the intensity of cavitation in the liquid. High amplitude may cause 

damage to the ultrasonic transducer and may cause liquid agitation instead of pure 

cavitation (Capelo-Martinez, 2009). However, for viscous liquids a higher amplitude is 

essential to promote cavitation effectively. 
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Low intensity ultrasound is typically used in analysis, testing and imaging 

applications whereas high-intensity ultrasound is used for processing applications such 

as mixing, dispersing and de-agglomeration (Hielscher, 2007).  

2.3.1.3 Liquid  

According to Capelo-Martinez (2009), a higher viscosity and surface tension of 

the liquid used inhibit cavitation. Because of this reason the commonly used liquid for 

such applications is water. Higher cohesive forces binding the liquid molecules make 

cavitation difficult to achieve (Mason et al., 2002). Organic solvents have historically 

been the fluid of preference due to the favorable cavitation conditions they provide in 

terms of viscosity, surface tension and vapor pressure (Mason, 2016). 

2.3.1.4 Temperature 

The role of temperature of liquid in achieving cavitation is two-fold. At higher 

temperatures, the number of active sites to promote cavitation increase and the forces 

binding the liquid molecules weaken. However, according to Mason (2000), better 

cavitation is achieved at lower temperatures, because at higher temperatures more 

solvent vapor fills the bubbles and that makes the collapse less violent and the cavitation 

is less intense than expected. 

As per Niemczewski (1980) in case of water the best temperature for cavitation is 

35 Celsius but with most other aqueous solutions cavitation is best in the range of 50 

degrees Celsius and 65 degrees Celsius. 
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2.3.1.5 State of liquid 

Studies show that with the presence of micro-bubbles of appropriate size present 

already before ultrasound is passed, increases the cavitation activity in the liquid 

significantly and also increases the amount of jetting action (Zijlstra et al., 2015). 

If the liquid already contains dissolved gases, then it increases the micro-bubble 

formation (Li et al., 2015). Since this study applied ultrasonic vibration to flowing 

electrolyte, intense cavitation can be expected due to the presence of dissolved 

electrolyte gas and ECM by-products (Skoczypiec, 2010). 

2.3.2 Safety and Health Risks related to ultrasonics 

The effect of airborne ultrasound may result in hearing loss if there is constant 

exposure to ultrasound in the region of 20-25 kHz, however at 40 kHz there is no health 

risk in terms of hearing since the sound is well beyond hearing range (Kuttruff, 2012). 

While using the ultrasonic probe, care must be taken to avoid touching the probe 

while it is vibrating, as it may cause injury.  

2.4 Ultrasonic Enhancement of ECM 

2.4.1 Passive films on anodic workpiece material 

Passivation or anodic film formation is the rapid formation of thin oxide layer on 

workpiece surface during ECM. This layer firmly attaches to the workpiece surface and 

acts as a barrier to anodic dissolution (Hoar, 1967).   

According to McGeough (1974), the passive film on titanium makes its ECM 

process difficult and requires higher voltage to machine through the passive films. Even 

in this case, the higher voltage will break the passive films only at its weak regions, 
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resulting in an uneven finish during ECM. The same issue was observed in ECM of 

tungsten carbide, where the cobalt present in the material forms a passive film. 

According to Powers (1971), bromide and iodide electrolytes reduce the voltage 

required to break the passive film but still yield a poor finish. 

Partial passivation was the reason for poor finish (CLA greater than 5.2 µm) and 

low current efficiency (40 µm) for ECM of cast iron (McGeough, 1971). 

Past research has attributed this passive films to the unstable anodic dissolution 

and the subsequent variations in the current density. It is believed that the periodic 

formation and rupture is the cause of such fluctuations in current density (Postlethwaite 

et al., 1972). 

Increase in voltage which subsequently increases the current density may 

transition the ECM process from machining in passive to the transpassive state 

(McGeough, 1974). ECM experiments by LaBoda et al. (1967) on low-alloy nickel-

chromium steel that yielded surface roughness of 0.1µm were conducted in transpassive 

region. This transition from passive to transpassive state of ECM is influenced by the 

current density and electrolyte flow-rate (efficient flushing).  

The anodic films which clearly affect the surface finish also affect the 

dimensional control of ECM process and the nature of such films different with different 

electrolytes. 
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2.4.2 Ultrasonic vibration of tool or workpiece 

Bhattacharyya et al. (2007) studied the influence ultrasonic vibration of electrode 

on the output parameters of ECM. His study showed that the effect of ultrasonic vibration 

frequencies is not significant on MRR and overcut of ECM’ed micro-holes. As seen in 

Figure 8 and Figure 9, the frequency range of 3-23 kHz does not show any significant 

effect on MRR or overcut. 

 

 

Figure 8: Influence of Ultrasonic Vibration Frequency On MRR. Reprinted 

from Bhattacharyya et al. (2007). 
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Figure 9: Influence of Ultrasonic Vibration Frequency On Overcut 

Reprinted from Bhattacharyya et al. (2007). 

 

After further experiments in the low frequency range (of the order of Hz), 

Bhattacharyya et al. (2007) concluded that low frequency vibration was a better 

improvement technique than high frequency vibration. 

However, the work of other researchers, described below. Provided with evidence 

of benefits of ultrasonic vibration in ECM. 

Pa (2009) studied the influence of ultrasonic and magnetic fields on ECM in an 

attempt to achieve superfinishing. Tool vibration at very high frequencies was studied, 

ranging between (46-120 kHz). Results showed that using very high frequencies improves 

surface finish by approximately 0.20 µm (Figure 10) . 
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Figure 10: Effect of Ultrasonic Vibration Frequency and Power on Surface 

Roughness during UEMM (Ultrasonic-Assisted Electrochemical Micro-Machining) 

Reprinted from Pa (2009). 

 

In another study to achieve superfinishing, Pa (2006) used a rotating workpiece 

and different designs of electrode along with ultrasonic vibration and pulsed DC current 

(Figure 11). The frequency and power of ultrasonic vibrations was 46 kHz/50W, 46 

kHz/80W, 120 kHz/80W, and 120 kHz/150 W. The pulse period (on/off time) was 100 

ms/100 ms, 100 ms/200 ms, 100 ms/300 ms, 100 ms/400 ms, and 100 ms/500 ms.  
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Figure 11: Set-Up for Surface Smoothening Using ECM. Reprinted from Pa 

(2006). 

 

 

Figure 12: Contribution of Different Factors Towards Surface Finish. 

Reprinted from Pa (2006). 

 

Research work by Pa (2007) to improve surface finish of drilled holes led to 

conclusion that use of pulsed DC current is crucial to flushing of ECM by-products. 

However, it was also observed that use of novel electrode design and ultrasonic 

vibrations can save the cost of implementing pulse DC power source (Figure 12). 
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Ruszaj et al. (2001) reported an improvement in surface quality by ultrasonic 

vibrations of tool during traditional ECM process (Figure 13).  The workpiece machined 

was NC6 steel with brass as the electrode. The power of ultrasonic vibrations was varied 

between 20-120W with a maximum amplitude of 10µm. 

Figure 13: Effect of Interelectrode Voltage on Surface Roughness. Curve 1: 

ECM with Ultrasonic Vibrations, Curve 2: ECM Without Ultrasonic Vibrations 

Adapted from Ruszaj et al. (2001). 

In a study investigating ultrasonic vibration in ECM-CNC process, Sebastian et 

al. (2003) explained that the impact of micro-jets due to ultrasonic cavitation have 

significant effect on the chemical composition and physical morphology and therefore 

affect surface quality and dissolution rate. 
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Figure 14: Influence of Power of Ultrasonic Vibrations and Pulse Time on 

Surface Roughness. Reprinted from Ruszaj et al. (2007). 

 

Use of pulsed current and ultrasonic vibrations was used by Ruszaj et al. (2007), 

in an attempt to achieve polishing effect on NC6 steel. The power of ultrasonic 

vibrations was between 0-120W and pulse time was between 1-9 ms. Surface roughness 

(Ra) was measured to show surface quality and Figure 14 shows that best surface finish 

is achieved at high power of ultrasonic vibrations and low pulse time. Similar research 

was also carried out by Ruszaj et al. (2003) with NC6 steel as workpiece and ultrasonic 

tool vibrations (amplitude: 2- 11 µm) and it was concluded that there exists specific 

amplitude to give optimum surface finish in different machining conditions. 

Skoczypiec (2010) performed simulations of Ultrasonically-assisted ECM 

(USAECM) using Computational Fluid Dynamics (CFD). In order to understand the 

influence of cavitation on the dissolution process, he solved the problem of electrolyte 
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flow when tool is vibrating at 20 kHz frequency and different amplitudes (up to 10 µm). 

The modelled IEG is shown in Figure 15. 

 

 

Figure 15: Modelling of IEG (1mm) With Ultrasonic Vibration of Tool 

Reprinted from Skoczypiec (2010). 

  

The results of this simulation showed that the pressure of electrolyte in the IEG 

constantly changes due to the evolution and rapid collapse of cavitation bubbles (Figure 

16). 
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Figure 16: Pressure of Electrolyte Close to Anode Surface. Ultrasonic 

Vibration Amplitude 5 µm and Period of Vibration = 50 µs. Reprinted from 

Skoczypiec (2010). 

 

 

Wang et al. (2016) used ultrasonic vibrations on a disk-shaped micro-tool for deep 

hole drilling experiments. The disk-shaped tool was to further enable better flushing. 

 

 

Figure 17: Schematic of a Disk-Shaped Tool. Reprinted from Wang et al. 

(2016). 
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The improvement in the ECM process by the ultrasonic vibrations was 

characterized by observing the change in overcut, which improved significantly (Figure 

18). 

Figure 18: Radial Overcut at Different Machining Speeds for ECM With 

and Without Ultrasonic Tool Vibration. Reprinted from Wang et al. (2016). 

This study also observed the movement of the tool driven by a feedback system 

that detected short circuit between tool and workpiece and immediately induced backward 

feed and re-adjusted the IEG size. The number of times this occurrence would happen 

speaks to the process stability and the number of occasions where the IEG reduces (due to 

vibration) but the machining products are still in the narrow IEG.  
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The experiments conducted logged the movement of the tool as it encountered 

short circuit between tool and workpiece. The results with tool vibration and without were 

compared as shown in Figure 19. It is clear that without the influence of ultrasonic 

vibration, the tool back feeds more than the instance where vibration is used. This points 

towards a greater process stability in the case where vibration is used. 

The ultrasonic vibration of the tool narrows the IEG and widens it periodically. 

This causes the machining products to be forced out and fresh electrolyte to pour into the 

IEG periodically as well. Hence, effective flushing is evident.  

 

 

Figure 19: Process Stability Comparison with ECM Performed with and 

Without Use of Ultrasonic Vibrating Tool. Reprinted from Wang et al. (2016). 

 

According to the study, the effect of ultrasonic vibrations changes drastically 

with the current/voltage values. It was noted that this could be owing to the IEG size. 
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The MRR is not at all affected by ultrasonic vibrations with the IEG thickness being 

large (Skoczypiec et al., 2005).  

Mitchell-Smith et al. (2016) conducted Electrochemical Jet Machining (ECJM) 

on titanium. Vibration of workpiece was accomplished by utilizing a set-up as seen in 

Figure 20. 31% reduction in surface roughness (Ra) was obtained due to ultrasonic 

vibration. There was significant reduction in oxide layer formation by use of ultrasonic 

vibration 22% area of sample showed passive layer formation with use of ultrasonic 

vibration, compared to 36 µm area without vibration.  

 

 

Figure 20: ECJM By Ultrasonic Vibration of Workpiece. Reprinted from 

Mitchell-Smith et al. (2016). 
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Figure 21: Increase in High Current Density Region (A) Without Ultrasonic 

Vibration, (B) With Ultrasonic Vibration, (C) Magnification of High and Low 

Current Density Region. Reprinted from Mitchell-Smith et al. (2016). 

 

Figure 21 shows Scanning Electron Microscope (SEM) images of machined 

samples. It is clearly seen that ultrasonic vibration increases the high current density 

area, thereby improving surface quality.  

2.4.3 Ultrasonic vibration of electrolyte 

Nicoară et al. (2006) studied the effect of conducting ECM in ultrasonic field by 

setting up the Electrochemical cell in ultrasonic bath.  

Using two ultrasonic baths of 20 kHz and 56k Hz were used and the effect of 

ultrasound was expected to transmit through the glass walls of the electrochemical cell 

(Figure 22). 
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Figure 22: Use of Ultrasonic Bath to Enhance ECM.  UB : Ultrasonic Bath, 

WP : Workpiece, TE : Tool Electrode, WM: Electrolyte, TGUS: Ultrasonic 

Transducer, EG: Electrical Generator. Reprinted from Nicoară et al. (2006). 

 

This study showed some changes in the plot of voltage and current values with 

time under the influence of the ultrasonic field. The small increase in current over time 

was observed owing to the depassivation caused by ultrasonic field. An increase was also 

observed in material removal rate, with the increasing operating frequency of the 

ultrasonic bath (Table 1). 
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Current 10 A 15 A 

Probe Control 

20 

kHz 

56 

kHz Control 

20 

kHz 

56 

kHz 

M[g] 1.946 1.972 2.014 3.014 3.064 3.096 

MP[g/min] 0.194 0.197 0.207 0.301 0.309 0.309 

 

Table 1: Influence of Ultrasonic Field on Material Removal. Reprinted from 

Nicoară et al. (2006) 

 

This could be from the fact that the source of the ultrasonic field was too far from 

the IEG where the influence is required. The transducers of the ultrasonic bath would have 

to transmit ultrasound through the bath liquid, glass walls of the cell and finally carry 

cavitation to the narrow IEG. The possibility is that the cavitation effect weakens greatly 

by that time. This might suggest that for this particular application of enhancing ECM 

output, the cavitation through ultrasonic baths might not affect the process as it affects 

normal cleaning of samples. 

Han et al. (2009) applied ultrasonic vibration to electrolyte to improve 

Electrochemical Discharge Machining (ECDM) process (Figure 23). An ultrasonic 

vibrator was placed under the workpiece in the electrolyte bath and ultrasonic vibration 

frequency was 1.7 MHz. The results are shown in Figure 24. 
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Figure 23: Ultrasonic Vibration of Electrolyte in ECDM Process. Reprinted 

from Han et al. (2009). 

 

 

 

Figure 24: Influence Electrolyte Formation and Pulsed Voltage on Tool 

Depth. Reprinted from Han et al. (2009). 
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2.5 Summary of literature review 

Use of continuous DC current has been a major factor behind lack of proper 

flushing. Constant anodic dissolution leaves insufficient time for the by-products in the 

IEG to be flushed and fresh electrolyte to be replenished. Physical conditions in the IEG 

are required to be stable in order to maintain uniform conductivity. Use of pulsed-current 

is beneficial to avoid elevated temperatures in IEG and also to allow proper flushing of 

ECM by-product. 

Ultrasonic cavitation plays a crucial role in de-agglomeration of ECM by-

products in the IEG, improved electrolyte replenishment and process stability. However, 

applying ultrasonic vibration to tools or workpiece has some limitations. Mounting a tool 

on ultrasonic head not only raises set-up cost of ultrasonic-aided ECM, but it also makes 

it difficult to incorporate though-tool electrolyte flow during ECM. The ultrasonic 

vibration of workpiece may also increase set-up cost, especially during machining of 

heavy workpieces. Lastly, the direct vibration of tool or workpiece increases the risk of 

dimensional inaccuracy of backlash of vibration. This limitation can be critical for 

precise machining application. Direct ultrasonic vibration of electrolyte may retain 

benefits of cavitation and overcome the above limitations. 
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3. LABORATORY SYSTEM

The existing laboratory set-up and the incorporation of the ultrasonic actuator is 

described in this section. 

3.1 Experimental Set-up 

Figure 25 shows the laboratory prototype of horizontal ECM system with an 

ultrasonic probe used in this study. 

Figure 25: Laboratory Horizontal ECM System with Ultrasonic Probe 

System 
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The components of the ECM system are as follows. 

1) Used electrolyte container 

2) Longer WT2600-2J peristaltic 

pump 

3) ECM cell 

4) Anode terminal 

5) Everlast 255EXT power supply 

6) Cathode terminal 

7) Longer WT2600-2J peristaltic 

pump 

8) Detachable Branson SLPe probe 

9) Fresh electrolyte container 

10)  Branson SLPe ultrasonic 

convertor 

11)  Granite table 

12)  Velmex BiSlide positioning 

system 

13)  Four finger extension clamp 

14) Fixture for ultrasonic actuator 

15) Tee pipe-joint 

16) Tool attachment fixture 

17) Teflon coated stainless steel tool 

18) Workpiece 

19)  Labworks ET-132-2 low 

frequency vibrator  

 

 

 

 

 

 

The entire system rests on a granite table (11) to minimize vibration and maintain 

rigidity during set-up. The existing laboratory system is designed so that the tool moves 

horizontally into the workpiece while machining. This is done to improve flushing of 

electrolyte from the IEG.  The workpiece is clamped on a fixture that has been coupled 

with a low frequency vibrator (19). For this study the low frequency vibrator is not used.  
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The workpiece is clamped inside a plastic ECM cell (5). The stainless steel tool is 

mounted on the Velmex positioning system (12). Using attachment (16) the axis of the 

tool is offset from the axis of the Velmex positioning system (12). This is done to allow 

the ultrasonic probe to be inserted into the hollow tool using fixture (14) and universal 

clamp (13). As seen in the figure above, when the Velmex positioning system moves 

along the lead screw, the tool and the ultrasonic actuator moves along an axis parallel to 

the Velmex system and into the workpiece (18).  A pair of peristaltic pumps, (2) and (7) 

circulate electrolyte to and from the ECM cell. Used electrolyte is collected in container 

(1) while fresh electrolyte is pumped from container (9). Appropriate wiring, (4) and (5), 

connects workpiece (anode) and tool (cathode) to the power source (5).  

Detailed description of each component can be found in Appendix B. 

3.2 Ultrasonic actuator system 

The following requirements were sought for incorporating an ultrasonic actuator 

in the horizontal laboratory ECM system: 

1) The direction of vibration of probe should be along the direction of the tool feed 

2) Ultrasonic waves should be close to the IEG so as to allow optimal flushing 

during deep hole fabrication  

Considering these two requirements, the ultrasonic probe was incorporated on the 

Velmex system as seen in Figure 26. 
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Figure 26: Schematic Showing Incorporation of Ultrasonic Actuator 

 

a) Teflon coated stainless steel 

electrode 

b) Branson SLPe ultrasonic probe 

c) In-flow of fresh electrolyte 

d) Stainless steel washer 

e) Pipe fitting (3/8 inch) with 

drilled hole 

f) Electrolyte collection container 

g) Ultrasonic horn and convertor 

h) Styrofoam disks  

i) PVC Tee-joint 

j) Fixture for mounting tool to 

Velmex system 

A washer (d) was placed in one of the arms of the tee joint (i) and two Styrofoam 

disks (h) are placed as seen above. Finally, a pipe fitting (e) with a hole drilled into the 

center is used to close the arm of the tee joint and the ultrasonic probe tip is pushed 
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through this assembly. This ensured negligible back-pressure of electrolyte near (e). Any 

electrolyte flow towards (e) was collected in (f) and re-circulated back to the fresh 

electrolyte container. During experiments the ultrasonic probe tip (b) is vibrating at 40 

kHz frequency and designated amplitude but there is no vibration near the Styrofoam 

disks (h). This is because the part of the ultrasonic probe near (h) is called the nodal area 

and the probe does not vibrate at nodes. Therefore, there are no concerns of unnecessary 

rubbing of probe with Styrofoam disks. 
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4. EXPERIMENTS

4.1 Design of experiment 

A full factorial experiment was conducted based on four input parameters for 

exploratory investigation of ultrasonic amplitude and other process parameters (Table 2). 

Variables Levels 

Ultrasonic Vibration Amplitude (%) – Av 0, 15, 45 

Peak Current (A) – Ip 22, 26 

Pulsed Current Frequency (Hz) - fc 0, 125, 275 

Tool Feed Rate (µm/s) - fr 10, 15 

Table 2: Experimental Input Parameter 

 Ultrasonic Vibration Amplitude

The ultrasonic vibration intensity is determined by the amplitude of vibration. 

Greater the maximum displacement of microtip, more intense the cavitation produced. 

The commercial ultrasonic probe used during experiments depicts amplitude values in 

the form of percentage. The use of a 3 mm diameter probe gives an amplitude range 

between 10 µm and 70 µm vibration. The micron value of amplitude at 10 µm, 40 µm 

and 70 µm is approximately 12 µm, 34 µm and 68 µm respectively. Other values can be 

approximately visualized from Figure 27. Two levels of ultrasonic vibration amplitude 

(Av) selected were 15 µm and 36 µm. An additional level, where amplitude of vibration 
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was zero, was also added as a reference level.  The selection of these values enabled to 

study the effect of high intensity cavitation of electrolyte on output parameters of ECM. 

Prolonged operation at very high amplitude (> 60 %) increased the chances of damage to 

ultrasonic probe and hence the “high” level was set at 36 µm. The low level was set 15 

µm to observe difference between high and relatively low intensity cavitation.  

 

 

Figure 27: Approximate Values of Amplitudes in Micron In Term of 

Percentage Settings. Adapted from Corporation (2007) 

 

 Peak Current  

Two levels of peak current (Ip) were selected to further study the characteristics 

of laboratory ECM system. The current values selected were high to increase anodic 

dissolution rate. This would allow to observe if successful de-agglomeration of ECM by-

products is achieved. These levels were selected after lower values of peak current result 
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in frequent contact between tool and workpiece. This happened because the constant 

travel speed of tool was faster than dissolution rate due to lower peak current. 
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 Pulsed Current Frequency 

The power source used for experiments provided pulsed current frequency in the 

range of 0- 500 Hz for DC current. For this reason, two levels of pulsed current 

frequency (fv) were selected at 125 Hz and 275 Hz to understand the benefits of more 

off-time during machining on output parameters.  An additional level of zero pulsed 

current frequency (constant DC power) was added in the design in order to observe the 

absolute significance of pulsed current. This level also allowed to understand if 

ultrasonic vibration alone can improve flushing of ECM by-products without using a 

more sophisticated pulsed DC power supply. 

 Feed rate 

Feed rate (fr) was a dominant factor in deciding size of IEG, since experiments 

were performed in an open loop system (No gap monitoring). Use of feed rates less than 

10 µm would result in higher machining time, increase the IEG during machining and 

increase the effect of stray current.  Use of very high feed rates, on the other hand would 

result in contact between tool and workpiece. For this reason, based on initial 

verification experiments, two levels of feed rate used in experiments were 10 µm/s and 

15 µm/s. 

Experiments were performed with direct current (0 Pulse Frequency) and without 

ultrasonic vibration for reference. Each experimental run was performed twice for 

repeatability. The experiments were performed in blocks, where each level of ultrasonic 

vibration acted as a block. The last block of three different experimental settings was 

performed at 0 Hz Pulse frequency (DC current). The experimental runs were not 
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randomized but the additional levels of ultrasonic vibration amplitude and current pulse 

frequency were run after the original full factorial experiment. This would ensure the 

lack of bias in experiments. The consistency of the experimental system was also 

ensured by monitoring current and voltage for every experimental run. Some typical 

current and voltage plots are shown below and Table 3 shows the order of experimental 

runs. 

Each plot depicts repetition of the same operating conditions. For the first set of 

plots (Figure 28 and Figure 29), both voltage and current follow similar trend in terms of 

starting and ending voltage and nature of graphs. The same applies to the second set of 

plots (Figure 30 and Figure 31).  

For an open loop system, there is no feedback to monitor gap conditions and 

adjust tool position during machining. In such a system, voltage and current plots can 

depict the nature of IEG throughout the machining cycle.  
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Figure 28: A Typical Voltage Vs Time Graph of Two Repetitions of The 

Same Operating Conditions: 15 µm Av, 22 A Ip, 125 Fc, 10 Fr 

 

 

Figure 29: A Typical Current Vs Time Graph of Two Repetitions of The 

Same Operating Conditions: 15 µm Av, 22 A Ip, 125 Fc, 10 Fr 
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Figure 30: A Typical Voltage Vs Time Graph of Two Repetitions of The Same 

Operating Conditions: 15 µm Av, 26 A Ip, 275 Fc, 10 Fr 

 

 

Figure 31: A Typical Current Vs Time Graph of Two Repetitions of The 

Same Operating Conditions: 15 µm Av, 26 A Ip, 275 Fc, 10 Fr 
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The figure below shows the cross-sectional view of two ECM’ed holes machined 

at the same operating conditions. The picture further shows the repeatability of the 

laboratory ECM system. 

 

 

Figure 32: Section View by Wire- EDM of A Pair of Holes. Machining 

Conditions: 36 µm Av, 22 A Ip, 275 Fc, 15 µm/Sec Fr. 

 

 

Table 3 below shows the experimental runs at different design points on which 

experiments were performed. 
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Experimental 
Run No. 

Ultrasonic 
Amplitude 

(%) 

Peak 
Current 

(A) 

Pulse 
Frequency 

(Hz) 

Feed 
Rate 

(µm/s) 

1 

15 
 

 
22 

 

125 15 

2 125 10 

3 275 15 

4 275 10 

5 
 

26 
 

125 15 

6 125 10 

7 275 15 

8 275 10 

9 

45 
 

 
22 

 

125 15 

10 125 10 

11 275 15 

12 275 10 

13 

26 
 

125 15 

14 125 10 

15 275 15 

16 275 10 

17 

0 
 

 
22 

 

125 15 

18 125 10 

19 275 15 

20 275 10 

21 
 

26 
 

125 15 

22 125 10 

23 275 15 

24 275 10 

25 0  
22 

 

 
0 
 

15 

26 15 15 

27 45 15 

Table 3: Order of Experimental Runs 
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4.2 Experimental procedure 

All experiments were conducted with Aluminum 6061-T6 as workpiece (60 mm 

long x 50mm wide x 6.3 mm thick). Holes were drilled with commercially teflon coated 

stainless steel tubes (Ø9.5mm OD, 0.3mm thickness). The length of the coated surface 

was 13 mm. 

Potassium bromide (KBr) solution of concentration 1mol/L was used as 

electrolyte. Electrolyte was regularly filtered using settling method. The temperature of 

the electrolyte was measured before each experimental run using a Raytek Raynger ST 

infrared pyrometer. Each experimental run was started with electrolyte temperature in 

the range of 21-26 °C.  Electrolyte conductivity was similarly measured before each run 

using the Hannah HI 8733 conductivity meter and was in the range of 111-121 mS/cm. 

Before  each experimental run, IEG was set using a digital multimeter and the 

Velmex positioning system as follows: 

1. Workpiece and tool were secured and the Teflon coating from end of the tool

was carefully grinded off to ensure conductivity. 

2. The terminals of digital multimeter were connected to the cathode and anode

wires of the machining system. 

3. Tool was slowly brought into contact with the workpiece

4. Beeping sound of multimeter was an indication of contact between tool and

workpiece and movement of tool was stopped. 

5. Using COSMOS program 1 tool was moved exactly 0.3 mm away from the point

of contact and thus initial IEG is set. 
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After setting the IEG, the desired input parameters required for the experimental 

run were set.  

For running experiments, first the IEG is set at 0.3 mm. After turning on both 

pumps and ultrasonic vibration of probe, the power is switched on and immediately after 

that COSMOS program for tool to travel 6.2 mm at designated feed-rate is executed. 

After waiting for about 30 seconds from turning on power, voltage and current 

monitoring is turned on. The 30 second wait is in order to avoid initial surge which may 

damage the monitoring instruments. 

Similarly, about 20 seconds before the end of the machining cycle, voltage and 

current monitoring is turned off. After travelling 6.2 mm perpendicularly into the 

workpiece, the tool is programmed to quickly withdraw away from the surface of the 

workpiece. Power supply, ultrasonic vibration and electrolyte flow is turned off 

immediately upon withdrawal of tool. 
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4.3 Measurement of output parameters 

Alicona IFIF 3D profiler was used to measure the volume, surface roughness and 

taper angle of ECM’ed holes. This profiler generates 3D models of machined features 

based on the principle of focus variation. 

After ECM, all samples were cleaned with water in an ultrasonic bath before 

being dried with compressed air. The samples were kept upside down to facilitate 

removal of dirt from the holes.  

4.3.1 MRR measurement 

4.3.1.1 Calibration of Alicona IF 3D profiler volume measurement: 

In order to calculate the MRR of ECM’ed holes, volume was measured by 

scanning the holes using Alicona IF 3D profiler. In some samples, the scanning was not 

possible at every point on the surface of the hole. This is because the capture of reflected 

light is not possible at sidewalls as seen in Figure 33. 
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Figure 33: Typical 3D Model of Showing Regions in The Sidewall Not 

Scanned (Operating Conditions: 0 µm Av, 26 A Ip , 275 Hz Fc , 15 µm/S Fr) 

 

To verify the volume measurement module of 3D profiler, the volume of holes 

drilled at two different depths was calculated manually and compared with that obtained 

from the 3D profiler. The stepwise procedure is below:  

1. 3 holes were drilled in a stainless steel plate. The circle measurement program of 

the Mitutoyo Vision System was used to measure the diameter of each hole. The 

program calculated the diameter based on the several data points selected along 

circumference of the hole. This step is illustrated in Figure 34. 
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Figure 34: Calculating the Diameter of the Hole Using Mitutoyo Vision 

System 

 

2. The thickness of the plate (i.e. depth of the hole) was measured using the vision 

system as well. The topmost surface of the plate was brought into focus first and 

then focus was changed to the bottom of the hole. The change in Z axis 

coordinates was noted and that was the depth of the hole. This step is shown in 

Figure 35. 
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Figure 35: Measuring Hole Depth Using Vision System 

 

3. 3D models of all the 3 holes were generated using Alicona IF 3D profiler as seen 

in Figure 36. These models were used to obtain volume using the volume 

measurement module of the profiler. 

 

 

Figure 36: 3D Model of Typical Hole Drilled for Calibration 

 

4. Finally, the volume of each hole was calculated based on the diameter and depth. 

These values were then compared with the volume measured using Alicona IF 

profiler for each hole.  



 

58 

 

4.3.1.2 Measurement of MRR of ECM’ed holes 

MRR for the ECM’ed holes was measured using the volume measurement 

module of Alicona IF 3D profiler. The volume measured by the profiler was then 

divided by appropriate machining time to get MRR. Each experimental run was repeated 

once and therefore two different holes were obtained for the same experimental run. 

The volume of the holes was measured twice for each experimental run. As seen 

in Figure 33 ,the generated 3D model enabled setting of a reference plane and the system 

calculated volume below the surface (i.e. the hole volume).  

Below are the steps performed to obtain the volume of each ECM’ed hole: 

1. A 3D model as seen in Figure 33 was obtained by scanning the entire area of the 

hole and focusing at the topmost surface and deepest part of the groove. 

2. Volume measurement module was opened and the topmost surface was selected 

as the reference plane. 

3. Volume measurement was selected and the 3D profiler automatically computed 

volume above and below the surface. Since the topmost surface was the reference 

plane, volume under the surface was the volume of the hole. 
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4.3.2 Surface finish measurement 

 

 

Figure 37: Surface Roughness Measurement Location 

 

The line roughness module of the 3D profile was used to obtain surface 

roughness (Ra and Rz) measurements. 10 values of average surface roughness (Ra) at 

each experimental run and mean peak roughness (Rz) at selected design points were 

obtained in the following manner: 

1. A small sample of surface was scanned in the groove of the ECM’ed hole as 

seen in Figure 37.  

2. Line roughness measurement module was selected and a measurement on the 

sample was made. Measurements were made along the length of the groove 
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surface by drawing a 4 mm long profile and not across it to avoid 

measurement of waviness instead of roughness.  

3. In order to complete 4 mm profile length profile was drawn in a zig-zag 

manner as seen in Figure 38. The zig zag profile line in the figure is over-

highlighted for visibility. 

4. 5 measurements were made on each sample and then this process was 

repeated for the second sample of the same set of experimental conditions, 

giving 10 values of average surface roughness (Ra). Figure 38 shows a 

snapshot of the line roughness measurement procedure. 
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Figure 38: Line Measurement at the Bottom of the Hole. (a) 3D Model of the 

Sample Surface (b) Line Measurement Module Showing Top View of the Surface 

on which Sample Line is Drawn for Measurement 

 

Typical measurements for average peak roughness (Rz) were also performed in a 

similar manner for all samples ECM’ed at 22 A Ip and 15 µm/s fr.  

The typical surface topography plot shown in Figure 49 is generated exporting 

the numerical data for individual roughness profiles and superimposing two appropriate 

different roughness profiles. 
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4.3.3 Taper angle measurement 

 

 

Figure 39: Definition of Wall Taper Angle in An ECM'ed Hole 

 

Figure 39 illustrates taper in an ECM’ed hole and an approximate taper angle 

corresponding to it. This taper angle was measured for typical experimental conditions, 

namely all the samples ECM’ed at 22 A Ip and 15 µm/s fr. The profile measurement 

module of the 3D profiler was used to measure taper angle in the following manner: 

1. 3D model of ECM’ed hole was opened in the form measurement module of the 

Alicona IF profiler. The top view of the ECM’ed hole appears. A line is drawn 

across the groove of the hole to generate a sectional profile of the side wall of the 

hole. This step is illustrated in Figure 40 (a).  

2. Next, data points are selected along 20 different points (maximum allowed by the 

system) along the hole sidewall. After registering these points, 20 more points 
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are selected along the vertical feed axis. Each click of the mouse registers a 

point. This step is illustrated in Figure 40 (b). 

3. After data point selection, the form measurement module fits an angle through 

both the sets of points selected above and thus taper angle is obtained as seen in 

Figure 40 (c).  
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Figure 40: Taper Angle Measurement by 3D Profiler 

 

After data was collected, Minitab Software was used to analyze data and observe 

the effects of relevant process parameters on MRR, Roughness parameters (Ra and Rz) 

and Taper angle of hole.  



65 

5. RESULTS AND DISCUSSION

This section discusses the effect of process parameters on MRR and hole quality, 

which includes profile roughness parameters (Ra and Rz) and taper angle of hole side 

wall.  

Table 4 contains mean and standard deviation of output parameters measured. 

Complete experimental data are documented in Appendices C, D and E. 

The ECM by-products mentioned and discussed in subsequent sections are 

formed as below:  

5.1 ECM by-product formation 

Workpiece material: Aluminum (Al) 

Electrolyte material: Potassium Bromide (KBr) 

The anodic dissolution of the workpiece generates Aluminum cations as shown 

below: 

𝑨𝒍 →  𝟑𝑨𝒍𝟑+   +  𝟑𝒆−  (2) 

As for the aqueous solution of the electrolyte KBr, hydroxyl ions are formed 

from water and electrolysis of KBr occurs as follows: 

𝑯𝟐𝑶 +  𝟐𝒆− →  𝑯𝟐   +  𝟐𝑶𝑯−  (3) 

𝑲𝑩𝒓 →  𝑲+   +  𝑩𝒓−    (4)

The reactions above can be combined into one reaction: 

𝑨𝒍 +  𝟑𝑯𝟐𝑶 +  𝑲𝑩𝒓 →  𝟐𝑨𝒍𝟑+ +  𝟑𝑯𝟐 + 𝟔𝑶𝑯− +  𝑲+ + 𝑩𝒓−     (5) 

Therefore, the ECM by-product formed during this study is either dialuminum 

hexabromide or the more stable aluminum bromide. 

𝑨𝒍𝟑+ + 𝑩𝒓− → 𝑨𝒍𝑩𝒓𝟑(𝐚𝐥𝐮𝐦𝐢𝐧𝐮𝐦 𝐭𝐫𝐢𝐛𝐫𝐨𝐦𝐢𝐝𝐞) +
 𝑨𝒍𝟐𝑩𝒓𝟔(𝐝𝐢𝐚𝐥𝐮𝐦𝐢𝐧𝐮𝐦 𝐡𝐞𝐱𝐚𝐛𝐫𝐨𝐦𝐢𝐝𝐞)   (6) 



 

66 

 

Amplitude 

(%) 

Peak Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed Rate 

(µm/s)  

MRR (mm3/min) Line Roughness-Ra (µm) *Peak Roughness Rz (µm)  *Taper Angle (°) 

Mean 
Standard 

Deviation  
Mean 

Standard 

Deviation  
Mean 

Standard 

Deviation  
Mean 

Standard 

Deviation  

15 

22 125 15 21.99 0.26 1.41 0.25 3.67 0.91 1.68 1.76 

22 125 10 31.14 0.14 1.34 0.11 - -  - - 

22 275 15 33.28 0.36 1.07 0.17 3.13 0.95 0.69 0.48 

22 275 10 30.15 0.08 1.00 0.07 - - - - 

26 125 15 28.73 0.77 0.90 0.12 - -  - - 

26 125 10 31.57 0.46 1.33 0.17 -  - - - 

26 275 15 31.37 0.84 0.85 0.12 -  - - - 

26 275 10 32.34 0.12 1.17 0.09 -  - - - 

45 

22 125 15 20.05 0.10 1.24 0.17 6.08 1.30 1.47 0.36 

22 125 10 28.69 0.36 1.47 0.26 -  - - - 

22 275 15 30.67 0.44 1.69 0.22 4.04 0.92 0.89 1.62 

22 275 10 29.70 0.09 1.84 0.31 -  - - - 

26 125 15 27.71 1.03 1.39 0.13 -  - - - 

26 125 10 30.84 0.11 2.40 0.66 -  - - - 

26 275 15 27.05 0.85 1.11 0.28 -  - 
 - 

26 275 10 30.84 0.15 2.46 0.73 -  - - - 

0 

22 125 15 29.21 0.36 2.16 0.42 9.81 0.97 2.71 0.55 

22 125 10 31.60 0.14 3.18 0.83 -  - - - 

22 275 15 33.54 0.20 2.53 0.79 12.28 2.79 2.31 0.39 

22 275 10 32.38 0.03 3.10 0.83 -  - - - 

26 125 15 34.53 0.01 2.91 0.93 -  - - - 

26 125 10 32.04 0.06 3.09 0.51 -  - - - 

26 275 15 37.82 0.15 2.75 0.77 -  - -  - 

26 275 10 37.26 0.66 3.26 0.52 -  - -  - 

0 

22 0 15 

29.75 0.34 1.97 0.24 11.47 3.56 10.99 1.92 

15 30.06 0.38 1.05 0.13 2.96 0.41 3.85 0.63 

45 30.63 0.32 1.03 0.11 3.34 0.38 5.24 0.23 

 

Table 4: Average MRR, Line Roughness and Taper Angle Measurements. * Taper Angle and Rz, were 

Measured Only for Samples ECM’ed at 22 A Ip and 15 µm/S fr
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5.2 Material Removal Rate 

5.2.1 MRR measurement calibration 

Below are the results from the calibration of the volume measurement as 

discussed in section 4.3.1.1. Table 5 shows the dimensions required to calculate volume 

of drilled holes. It also shows the theoretical volume V1 and the volume measured by 

Alicona IF profiler V2. The percentage difference between V1 and V2 is negligible (< 1%). 

Hole 

Measured 

Hole 

depth 

(mm) 

Measured diameter (mm) Average 

Diameter 

(mm) 

Average 

Theoretical 

Volume 

(mm3) 

Volume 

measured 

by Alicona 

Profiler 

(mm3) 

Percentage 

change 

between V1 

and V2 

1 2 3 4 5 V1 V2 

1 

3.30 

8.45 8.46 8.44 8.42 8.42 8.44 184.53 185.55 0.55 

2 8.56 8.48 8.43 8.51 8.41 8.48 186.26 185.06 -0.64 

3 8.48 8.43 8.48 8.47 8.45 8.46 185.55 185.49 -0.03 

Table 5: Calibration Results of Volume Measurement by Alicona IF Profiler 

From above it can be seen that that there seems to be negligible influence of 

regions not scanned on the volume measurement by Alicona. 
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5.2.2 MRR results 

MRR depends on the anodic dissolution reaction rate. According to Faraday’s 

law, the material removed in unit time is proportional to the charge applied to the 

electrochemical cell. Therefore, an increase in the value of peak current results in a 

higher MRR (Figure 41). 

Figure 41: Effect of Peak Current and Feed Rate on MRR (Operating 

Conditions: 125 Hz Fc, 36 µm Av). Interval Plot Is 95% Confidence Interval (CI) of 

the Mean. 

From Figure 41 there is reduction in MRR with increasing feed rate. Since the 

travel distance of the tool is fixed (6.2 mm), a slower feed rate leads to more machining 
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time. This increases the time for stray current to increase overcut of the ECM’ed hole. 

Figure 42 illustrates the occurrence of overcut during ECM. Therefore, a slower feed 

rate i.e. longer machining time results in higher MRR. This factor becomes especially 

significant with the depth of the hole is higher. The effect of overcut can be seen in the 

section view of the hole groove in Figure 43. 

Figure 42: Illustration of Overcut In ECM 
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Figure 43: Comparison of Hole Groove At (A) Low (10 µm/S) and (B) High 

(15 µm/S) Feed Rates (Operating Conditions: 0 µm Av 22 A Ip, 125 Hz Fc) 

Figure 44 shows the effect of pulse frequency and ultrasonic vibration on MRR at 

22 A Ip and 15 µm/s fr.  At 0 Hz pulse frequency, there is insignificant change in MRR as 

ultrasonic vibration amplitude increases. 

With the application of pulsed current, the MRR at 125 Hz pulsed current 

frequency without any ultrasonic vibration is the same as MRR at 0 Hz. This indicates that 

the off time in machining at 125 Hz is not significantly influencing MRR yet.  MRR 

significantly increases at 275 Hz and no ultrasonic vibration. This is due to the off time in 

machining that allows for ECM by-products to flush out of the IEG promoting stable 



71 

anodic dissolution. The use of pulsed DC current also reduces overheating and possible 

evaporation of electrolyte at the IEG. This promotes stable gap conditions and may 

contribute to improvement of MRR. 

Figure 44: Effect of DC Pulse Frequency and Ultrasonic Vibration on MRR 

(Operating Conditions: 22A Ip, 15 µm/S Fr). Interval Plot Is 95% CI of The Mean. 

Lastly, the combined effect of pulsed current and ultrasonic vibration seems to 

have a negative effect on MRR. The reason for that maybe the very high ultrasonic 

vibration amplitudes causing excessive cavitation in the electrolyte during, which results 

in reduction in rate of anodic dissolution during the on-time cycle of machining. Bubble 

formation due to intense cavitation results in periodic blocking of current between 

electrodes (Ryu, 2015).  The bursting of cavitation bubbles increases the local pressure in 

IEG and suppresses the ionization process at the anode. This may slow down the ion 
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transport rate resulting in smaller MRR.  Such results of reduction in MRR at high 

amplitude ultrasonic have been observed by other researchers.  Wang et al. (2016) 

observed reduction of MRR during ultrasonic vibration of disk shaped tool at amplitude 

11 µm vibration amplitude and frequency of 28 kHz. 

Based on the data in Table 4, a linear regression equation for MRR can developed 

as below: 

𝑴𝑹𝑹 =  𝟏𝟒. 𝟕𝟐 −  𝟎. 𝟐𝟑𝟏𝟕 𝑨𝒗 +  𝟎. 𝟔𝟗𝟗 𝑰𝒑 +  𝟎. 𝟎𝟐𝟐𝟕𝟕 𝒇𝒄 −  𝟎. 𝟐𝟎𝟏 𝒇𝒓       (7) 

 If feed-rate is replaced by machining time the following equivalent model is applicable 

 𝑴𝑹𝑹 =  𝟗. 𝟕𝟏 −  𝟎. 𝟐𝟑𝟏𝟕 𝑨𝒗 +  𝟎. 𝟔𝟗𝟗 𝑰𝒑 +  𝟎. 𝟎𝟐𝟐𝟕𝟕 𝒇𝒄 −  𝟎. 𝟐𝟗𝟐𝒕𝒎     (8) 

Where, 

MRR  : Material Removal Rate (mm3/min) 

Av : Amplitude of vibration (0,15 µm)  

Ip : Peak current (22,26 A) 

fc : Pulsed current frequency (125,275 Hz) 

fr : Feed rate (10,15 µm/s) for fixed drilling depth (6.2 mm) 

tm : Machining time (10.33 minutes at 10 µm/s, 6.89 minutes at 15 µm/s) 

The coefficients of this model are applicable to input parameter values in the 

range specified above only.  The R2 value of this linear model is 66.78%. The residual 

plots below indicate the goodness-of-fit of the model. Since feed-rate and machining 
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time are equivalent factors, the residual plots of both the models above remain the same. 

The histogram plot roughly represents a bell curve, indicating that the residuals are 

normally distributed. There is no notable pattern in the residual versus fitted values and 

observation plots. This indicates that for the given factorial levels, the regression model 

captures majority of explanatory information. 

Figure 45: Residual Plots for Linear Regression Model of MRR 
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5.3 Profile Roughness   

As already illustrated in Figure 42 and discussed in previous section, deep holes 

ECM’ed at slow feed rate result in a lot of stray machining. According to Serway et al. 

(2013), the voltage distribution during ECM of a plate with a hollow coated tube will be 

as seen in Figure 46. It is clear from below that the electrical field is strongest at the 

central column and exactly below the hollow tube. Due to this, the column in the center 

of the ECM’ed hole is more significantly machined by stray current during experiments 

performed low feed. All the ECM by-products generated by machining of the central 

column need to be flushed out of the IEG during experiments. At low feed rate, this 

debris interferes with the machining of the hole and that may cause non- uniform 

machining in the IEG. It is due to these effects that a better surface finish was seen at 

higher feed rates ( Figure 47). 
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Figure 46: Effect of Stray Current and Voltage Distribution during ECM. 
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Figure 47: Effect of Feed Rate at Different Levels of Fc and Av. Interval Plots Are 95% CI of The Mean.
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Figure 47 and Figure 48 also show the effect of ultrasonic vibration amplitude on 

surface roughness. It can be seen from Figure 47 that the best surface finish is achieved 

at 15 µm ultrasonic vibration amplitude and 26 A peak current. This may be because the 

rate of dissolution at 26 A Ip and the rate of flushing at 15 µm Av result in uniform 

machining in the IEG, giving a smoother surface.  

As seen in Figure 48, pulsed current frequency without ultrasonic vibration 

increases surface roughness somewhat. The increase in MRR due to pulsed current 

maybe the reason behind the rougher surface. However, the best surface finish is 

obtained when 275 Hz fc is applied along with 15 µm Av. It is worth noting that better 

surface finish is also realized without the use of pulsed current at 15 µm and 36 µm Av. 

 

 

Figure 48: Effect of DC Pulse Frequency and Ultrasonic Vibration 

Amplitude on Average Line Roughness (Ra) (Operating Conditions: 22A Ip, 15 

µm/S Fr). Interval Plot Is 95% CI of The Mean. 
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De-passivation of passive films, prevention of salt deposition and de-

agglomeration of ECM by-products are thought to have contributed in surface finish 

improvement as discussed below. 

 De-passivation

The prevention of formation of passivation layers is said to enhance the surface 

quality of ECM’ed feature (Ruszaj et al., 2007). There has been evidence of passivation 

layer formation, which may be several nanometers thick, for most metals in the form of 

non-conducting oxide (McGeough, 1974). It is present on most metals and there is 

evidence of its formation on aluminum as well (Racicot et al., 1996; Tak et al., 1994). 

The reduction in Ra and subsequent smoothening of profile can be attributed to reduction 

in passivation of anode surface. The formation of passivation layer results in non-

uniform current density throughout the anode surface (Mitchell-Smith et al., 2016).  This 

causes anodic dissolution to be at different rates at different points in the IEG during 

machining, resulting in a rougher surface finish. However, the continuous rupturing of 

such dissolution inhibiting layers creates uniform conditions for machining giving a 

smoother surface. Similar results were obtained by Mitchell-Smith et al. (2016) as 

previously seen in Figure 21. 

 De-agglomeration of ECM by-products

The intense ultrasonic vibration prohibits deposition of salt layers on anode 

surface and constantly de-agglomerates debris particles to produce smoother surface. 
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Surface smoothening also may occur due to collapse of cavitation bubbles and 

microscopic roughening of surface (Ryu, 2015; Wang et al., 2016).  

Figure 49 illustrates 2 typical roughness profiles where ultrasonic vibration 

results in smoothening of ECM’ed surface by reducing the peak roughness. All other 

operating conditions are constant and the sample length is the same (4 mm) for both the 

profiles below. The sample lengths were randomly taken at similar locations in each of 

the ECM’ed sample (as seen in Figure 37).  

As seen below, application of 15 µm ultrasonic vibration amplitude reduces the 

peak roughness from over 15 µm to about 5 µm resulting in a decrease in the Ra value 

(from about 2.5 µm to 1.2 µm). 
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Figure 49: 2 Typical Surface Topography Samples (Operating Conditions: 

Fc = 275Hz, Ip=22A, Fr=15 µm/S). 

 

The mean peak roughness value plot below shows reduced value of Rz for 

instances where ultrasonic vibration is used. The collapse of microscopic bubbles near 

the anode surface suppresses ionization (reducing MRR) while breaking up 

agglomerated ECM by-products on anodic surface. This reduced Rz values contribute to 

overall roughness reduction. The slight increase in roughness at 36 µm ultrasonic 

vibration amplitude indicates that highly intense cavitation is detrimental to surface 

finish of ECM’ed hole. Highly intense cavitation bubbles collapsing on the surface of 

the anode cause micro-pitting and therefore increase the surface roughness.  
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Figure 50: Effect of DC Pulse Frequency and Ultrasonic Vibration 

Amplitude on Average Peak Roughness (Rz) (Operating Conditions: 22 A Ip, 15 

µm/S Fr). Interval Plot Is 95% CI of The Mean. 

 

Using the data from Table 4, a simple linear regression model of Line Roughness 

(Ra) with main effects of input parameters was obtained as follows:  

 

 𝑹𝒂 = 𝟑. 𝟓𝟏𝟗 − 𝟎. 𝟏𝟏𝟓𝟕𝟗 ∗ 𝑨𝒗 + 𝟎. 𝟎𝟏𝟒𝟖 ∗ 𝑰𝒑 − 𝟎. 𝟎𝟕𝟐𝟒 ∗ 𝒇𝒓 − 𝟎. 𝟎𝟎𝟎𝟒𝟖𝟐 ∗ 𝒇𝒄   (9) 

 

Where, 

Ra  : Average line surface roughness (µm) 

Av : Amplitude of vibration (0,15 µm)  

Ip : Peak Current (22,26 A) 
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fc : Pulsed current frequency (125,275 Hz) 

fr : Feed rate (10,15 µm/s) 

 

The R2 value of this linear model is 94.41%. The coefficients of this model are 

applicable to input parameter values in the range specified above only.  The residual 

plots below indicate goodness-of-fit of the model. The histogram plot of residuals 

roughly represents a bell curve indicating that the residuals. There is no clear pattern 

observed in the plots for residuals vs fitted value and observation order. This indicates 

sufficiently unbiased estimation of model coefficients.  

 

 

Figure 51: Residual Plots for Linear Regression Model of Line Surface 

Roughness (Ra) 
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5.4 Hole Taper Angle  

Recall that the horizontal tubular electrode is used in machining of holes in this 

study. Hole taper was measured at the “12‘o’clock” position of the hole, or the top part of 

the hole. This is because at the lower part of the hole (“6‘o’clock” position) there is 

evidence of erosion (Figure 52). This erosion occurs due to fast flowing electrolyte 

throughout the machining cycle under the influence of gravity. 

 

 

Figure 52: Illustrating Erosion Areas in ECM'ed Hole At “6 ‘O’ Clock” 

Position 

 

The passivation layers in the part of the anode directly intersecting with tool face 

force a change in the current density profile of the machined feature. Hence, it is 
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believed that such a phenomenon during deep drilling reduces removal in the direction 

of the feed and promotes geometrical inaccuracy in the form of taper of hole walls. The 

agglomerated ECM by-products may also erode the side walls while being flushed out of 

the IEG. 

 

The results in Figure 53 show that without pulsed current the taper angle is the 

highest, proving the effect of pulse off time in improvement of geometric accuracy. 

However, the addition of ultrasonic vibration further reduces the taper angle, such that 

the combined effect of pulsed current at 275 Hz and 15-36 µm ultrasonic vibration 

amplitude brings the taper angle very close to 1°. Ultrasonic vibrations in fast flowing 

vibration breaks down machining products and hence makes removal of the debris easier 

from the deep hole and narrow side gaps.  
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Figure 53: Effect of DC Pulse Frequency and Ultrasonic Vibration 

Amplitude on Taper Angle of Hole (Operating Conditions: 22A Ip, 15µm/S Fr). 

Interval Plot Is 95% CI of The Mean. 
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6. CONCLUSION AND RECOMMENDATIONS

A novel technique of applying ultrasonic vibrations to electrolyte in an existing 

laboratory ECM system was developed in this study. This experimental system used 

horizontal orientation of tool and workpiece and pulsed power for better flushing of 

ECM by-products. 

1. Intense ultrasonic vibration of electrolyte negatively affected the rate of

ionization, thereby reducing MRR of ECM’ed holes. 

2. The intense cavitation caused improved de-agglomeration of ECM by-products

to improve flushing and this reduced the wear on the side gap of holes, reducing 

taper angle. Use of pulse current also improved the flushing of ECM by-products 

to increase MRR and reduce taper angle of hole. 

3. De-passivation of anodic films during ECM significantly made uniform material

removal possible and reduced the surface roughness. 

4. As expected, as higher peak current increased the material removal rate. A

slower feed-rate resulted in more overcut due to stray current, effectively 

increasing the MRR. 

5. Linear regression models were generated for two levels of each process variable

in this study. The models were generated for two output parameters, MRR and 

Ra, with R2 values 66 % and 94% respectively. 

Based on this study, the following avenues should be considered for future work: 

 The effect of ultrasonic vibration of electrolyte of MRR can be better understood

with a closed loop experimental system which monitors gap continuously.
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 It is possible that highly intense cavitation negatively affects anodic reaction and 

hence the MRR. Lower amplitude range of ultrasonic vibration should be 

investigated to seek improvement in MRR. 

 A more thorough experimental investigation of this new method of ultrasonic 

vibration is required. Completely randomized experimentation will confirm the 

absence of bias in the results. Use of more levels and estimation of curvature 

will give more accurate models. 

 Use of other materials as workpiece will give further insight into effect of 

process parameters. 

 The effect of higher range of DC pulse frequency (of the order kHz and above) 

combined with ultrasonic vibration on quality of holes should be investigated. 
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APPENDIX A: COSMOS PROGRAMS 

 

1. IEG setting: This program moves the tool 0.3 mm from the workpiece surface to 

give starting IEG. 

F C S1M1000, I1M-120, R 

 

Command Meaning  

F Start 

C Cancel previous commands 

S1M1000 Motor 1 set to move at the speed of 

1000 steps*1/s 

I1M-120 Motor 1 moves 120 steps in backward 

direction 

R End 

 

 

 

 

 

 

                                                 

1 Each step equals 2.5 µm 
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2. Drilling at low feed-rate: This program moves the tool 6.2 mm in the direction 

of the workpiece surface at 10 µm/s 

F C S1M4, I1M2480, S1M1000, I1M-2480, R 

 

Command Meaning 

F Start 

C Cancel previous commands 

S1M4 Motor 1 set to move at the speed of 4 

steps/s 

I1M2480 Motor 1 moves 2480 steps in forward 

direction 

S1M1000 Motor 1 set to move at the speed of 

1000 steps/s 

I1M-2480 Motor 1 moves 2480 steps in 

backward direction 

R End 
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3. Drilling at high feed-rate: This program moves the tool 6.2 mm in the direction 

of the workpiece surface at 15 µm/s. 

F C S1M5, I1M2480, S1M1000, I1M-2480, R 

 

Command Meaning 

F Start 

C Cancel previous commands 

S1M5 Motor 1 set to move at the speed of 5 

steps/s 

I1M2480 Motor 1 moves 2480 steps in forward 

direction 

S1M1000 Motor 1 set to move at the speed of 

1000 steps/s 

I1M-2480 Motor 1 moves 2480 steps in 

backward direction 

R End 
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APPENDIX B: DESCRIPTION OF COMPONENTS 

Velmex BiSlide positioning system and VXM controller 

The Velmex Bi-Slide system is a positioning system of high accuracy. The lead 

screw resolution is 0.00025” and its repeatability is 0.00015” ("Velmex Motorized 

BiSlide Systems," 2016). The load carrying capacity of Velmex Bi-slide is up to 300 lbs. 

It uses PTFE bearings which give smoother movement and less friction. It operates 

without lubrication and it uses strong I-beam cross section made of hard aluminum. 

The stepper motors that control the X and Z axis motion of the Bi-Slide can be 

programmed to move a specific distance at a specific speed in those axes. This is 

accomplished by COSMOS software. Manual operation of motors is done using a 

controller provided for the same. 

In case of emergency during running a programmed motion of the motors, the 

motion can be stopped to avoid any damage or losses. The tool and the ultrasonic probe 

was mounted on the Bi-Slide by designing and fabricating appropriate holder. This 

enabled the servo-motors to move the tool and the ultrasonic probe at the desired feed 

rate and drill holes of desired depth. 

The servomotor motion is programmed in order to have a constant feed-rate into 

the workpiece. 
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Figure 54: (A) Velmex Bislide Positioning System ("Velmex Motorized 

BiSlide Systems," 2016) (B) VXM Controller System ("Velmex Motor Controllers - 

VXM," 2016) 

Everlast 255 Ext DC power supply 

The power supply is a constant current. The specific name of the model is 

PowerTIG 255EXT/324 EXT TIG/ Stick Welder. The Welder has AC/DC capacity and 

is controlled by Digital Microprocessor. It is capable of Advanced Soft Square, Soft 

Square Sine and triangular AC wave forms. The starting current range is 5-250 A for AC 

and DC. The ending current range is 3-250 A for DC and 5-250 for AC. It is also 

capable of pulsed frequency in DC (1-500Hz), Advanced AC square wave (0.1-10Hz) 

and AC (1-250 Hz).  For the experiments ‘Normal’ EasyStart Up setting is used to work 

with standard set-up. Since this power source is not being used for welding, no preflow 

is needed and is set at 0 seconds. 

The upslope setting for the power source is set at 0 seconds (available 0-25 

seconds). This indicates the amount of time taken from escalating from initial amperage 

to the welding amp value. The welding amps represent the peak value of amperage. 
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Pulse on-time represents the amount of time the current is in the “welding” stage 

compared to the background current stage. 

The pulse current setting controls the background current as a percentage value 

of the peak current. This indicates the drop in current at each pulse. This is set at 50 µm 

duty cycle. 

Pulse frequency setting determines the number of on-time off-time cycles 

achieved in a single second. This setting has options between 1-500Hz for DC Voltage. 

Note that at higher pulse frequency the noise level of the power source is high and 

higher protection is recommended. 

The end amps set the final amperage value before the power source stops 

transmitting current. 

The pulse mode selector offers three modes: Pulse OFF, Standard Pulse and 

Advanced AC pulse. The mode used is Standard mode (in DC voltage). The advanced 

pulse mode works only with AC voltage. Pulse setting controls the heat input during 

power transmission. 

The 2T option is just a press and hold option, which starts the cycle 

automatically. 

To operate with pedal, the same sequence applies once “pedal mode” is selected. 

Since there no pre-flow or post flow required in ECM, we select the 2T option. 

The waveform selected is DC since the ECM experiments are going to be on 

pulse DC power. 
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Purge Gas is used to provide additional cooling post welding (for welding 

applications). For this case, purge gas flow is set to “off”. 

 

 

Figure 55: Pulsed DC Power Source For ECM System ("PowerTIG 255EXT 

- TIG Welders | Everlast Generators," 2016) 

 

Longer WT600-2J peristaltic pump 

Two Longer WT2600-2J pumps with KZ25 pump heads were used to pump 

electrolyte through the tool into ECM bath and also pump out the collected electrolyte 

from the bath. This pump works on a DC brushless motor. The flow rate of this pump 

ranges from 4.2 to 6000 ml/min. The key advantages of this pump are low vibration 

which is essential for a rigid ECM system and low maintenance which is important 

because of the risk of corrosion.  
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Figure 56: One Unit of Longer Peristaltic Pump for Electrolyte Circulation 

with KZ25 Pump Head 

 

Branson SLPe ultrasonic probe system  

The Branson SLPe ultrasonic system has constant frequency of 40 kHz and 

operates with a removable microtip 0.125 in diameter. The microtip gives adjustable 

amplitude in the range of 12 µm – 68 µm.  

The tip was inserted at the nodal point into the electrolyte flow path. The 

amplitude is zero at nodal point so this ensures that there is negligible rubbing of 

vibrating probe with the Styrofoam packing. 
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Figure 57: Branson SLPe Ultrasonic Probe System ("Branson Ultrasonic 

SLP Cell Disruptor 150 watts 117V 101-063-726," 2016) 

 

Fluke 45 multimeter and Tektronic current probe 

The Tektronix A662 current probe is connected to Fluke 45 digital multimeter to 

monitor current by converting it on voltage scale as follows: 10 mV = 1A.  

 

 

Figure 58: Current Monitoring Using (A) Tektronix Current Probe ("A621 

A622 Current Probes Datasheet | Tektronix," 2016) and Fluke45 Multimeter 

("Fluke 45 Dual Display Multimeter," 2016) 
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Keysight 34450 multimeter 

Keysight multimeter was used to monitor voltage during ECM drilling process. 

The voltage data was logged using BenchVue software. The multimeter was switched on 

few seconds after the machining process started and switched of few seconds before the 

end of machining cycle. This was done to avoid damage to multimeter. Multimeter was 

used in high-impedance mode to further protect it from surges due to high current of 

power source. 

 

 

Figure 59: Keysight Multimeter For Voltage Monitoring ("34450A Digital 

Multimeter," 2016) 

 

Alicona IF 3D profiler 

The Alicona IF measurement system is a non-contact type of 3D profiler and 

works on the principle of focus variation. 5X and 10X magnification lens are available 

for measurement of form and roughness. This profiler was used to generate 3D models 

for holes and then volume of the holes was measured to calculate MRR. It was also used 

to generate surface roughness and taper angle of the hole.  
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Figure 60: Alicona IF 3D Profiler  ("Alicona InfiniteFocus," 2016) 

 

Mitutoyo Vision System and Olympus Optical Microscope 

The Mitutoyo Vision System and Olympus microscope were used to calibrate 

Alicona IF volume measurement module by measuring dimensions of different known 

shapes and then using formulae to calculate their volumes. 

The high magnification and imaging of the Olympus of the microscope was also 

used to take images of the cross-section of the ECM’ed holes. 
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APPENDIX C: MRR DATA 

The following table contains line MRR measurements for all design points on which experiments were performed. 

Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed 

Rate 

(µm/s) 

Volume Removed 

(mm3) 

Machining 

Time (minutes) 

MRR 

(mm3/min) 

Average MRR 

(mm3/min) 

1 2 1 2 

1 15 22 125 15 153.09 149.53 6.88 22.25 21.73 21.99 

2 15 22 125 10 320.16 323.13 10.33 30.99 31.28 31.14 

3 15 22 275 15 228.97 223.97 6.88 33.28 33.28 33.28 

4 15 22 275 10 312.34 310.65 10.33 30.24 30.07 30.15 

5 15 26 125 15 202.98 192.36 6.88 29.50 27.96 28.73 

6 15 26 125 10 321.45 330.88 10.33 31.12 32.03 31.57 

7 15 26 275 15 210.04 221.59 6.88 30.53 32.21 31.37 

8 15 26 275 10 332.88 335.29 10.33 32.22 32.46 32.34 
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Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed Rate 

(µm/s) 

Volume Removed 

(mm3) 

Machining 

Time 

(minutes) 

MRR 

(mm3/min) 

Average 

MRR 

(mm3/min) 

     1 2  1 2  

9 45 22 125 15 138.64 137.29 6.88 20.15 19.95 20.05 

10 45 22 125 10 292.63 300.17 10.33 28.33 29.06 28.69 

11 45 22 275 15 210.98 210.98 6.88 30.67 30.67 30.67 

12 45 22 275 10 305.88 307.76 10.33 29.61 29.79 29.70 

13 45 26 125 15 197.73 183.50 6.88 28.74 26.67 27.71 

14 45 26 125 10 319.73 317.53 10.33 30.95 30.74 30.84 

15 45 26 275 15 191.92 180.27 6.88 27.90 26.20 27.05 

16 45 26 275 10 317.00 320.12 10.33 30.69 30.99 30.84 
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Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed Rate 

(µm/s) 

Volume Removed 

(mm3) 

Machining 

Time 

(minutes) 

MRR 

(mm3/min) 

Average 

MRR 

(mm3/min) 

     1 2  1 2  

17 0 22 125 15 203.46 198.50 6.88 29.57 28.85 29.21 

18 0 22 125 10 327.84 325.00 10.33 31.74 31.46 31.60 

19 0 22 275 15 229.39 232.13 6.88 33.34 33.74 33.54 

20 0 22 275 10 334.24 334.78 10.33 32.36 32.41 32.38 

21 0 26 125 15 237.49 237.65 6.88 34.52 34.54 34.53 

22 0 26 125 10 331.58 330.41 10.33 32.10 31.99 32.04 

23 0 26 275 15 259.13 261.22 6.88 37.66 37.97 37.82 

24 0 26 275 10 391.75 378.13 10.33 37.92 36.60 37.26 

25 0 22 10 15 206.16 203.66 6.88 29.96 29.60 29.90 
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Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed Rate 

(µm/s) 

Volume Removed 

(mm3) 

Machining 

Time 

(minutes) 

MRR 

(mm3/min) 

Average 

MRR 

(mm3/min) 

     1 2  1 2  

25 0 22 0 15 202.34 207.06 6.88 29.41 30.10 29.75 

26 10 22 0 15 201.72 197.91 6.88 29.32 28.77 29.04 

28 45 22 0 15 212.95 208.51 6.88 30.95 30.31 30.63 
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APPENDIX D: SURFACE ROUGHNESS DATA 

The following table contains line average surface roughness measurements for all design points on which experiments 

were performed. 

Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed 

Rate 

(µm/s) 

Surface Roughness- Ra 

Average 

Ra (µm) 

Sample 1 Sample 2 

1 2 3 4 5 1 2 3 4 5 

1 15 22 125 15 1.09 1.87 1.40 1.55 1.14 1.52 1.04 1.49 1.66 1.37 1.41 

2 15 22 125 10 1.33 1.17 1.46 1.48 1.34 1.46 1.29 1.17 1.32 1.41 1.34 

3 15 22 275 15 1.10 1.20 0.74 0.90 0.91 1.05 1.35 1.16 1.21 1.08 1.07 

4 15 22 275 10 1.15 0.88 1.10 0.98 1.02 0.99 0.99 0.94 1.01 1.00 1.00 

5 15 26 125 15 0.86 0.74 0.96 0.72 1.14 0.98 0.97 0.94 0.84 0.91 0.90 

6 15 26 125 10 1.22 1.61 1.37 1.55 1.55 1.32 1.15 1.20 1.15 1.15 1.33 

7 15 26 275 15 0.86 0.72 0.93 0.71 0.92 0.67 0.82 0.99 0.85 1.04 0.85 

8 15 26 275 10 1.10 1.14 1.22 1.17 1.21 1.22 1.10 1.12 1.06 1.41 1.17 



111 

Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed 

Rate 

(µm/s) 

Surface Roughness- Ra 

Average 

Ra (µm) 

Sample 1 Sample 2 

1 2 3 4 5 1 2 3 4 5 

9 45 22 125 15 1.48 1.32 1.01 1.23 1.29 0.97 1.47 1.38 1.06 1.20 1.24 

10 45 22 125 10 1.24 1.90 1.54 1.47 1.36 1.44 1.35 1.20 2.01 1.22 1.47 

11 45 22 275 15 1.93 1.99 1.66 1.91 1.90 1.43 1.76 1.49 1.50 1.38 1.69 

12 45 22 275 10 1.70 1.88 1.93 1.56 1.68 2.63 1.95 1.76 1.44 1.87 1.84 

13 45 26 125 15 1.43 1.53 1.65 1.11 1.31 1.41 1.40 1.38 1.32 1.36 1.39 

14 45 26 125 10 3.62 2.93 1.77 2.65 3.21 2.43 1.76 1.99 2.11 1.50 2.40 

15 45 26 275 15 1.06 1.22 1.06 1.85 0.86 0.97 0.84 1.21 1.13 0.87 1.11 

16 45 26 275 10 2.35 2.12 2.16 1.18 3.12 1.78 3.13 2.72 3.87 2.20 2.46 
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Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed 

Rate 

(µm/s) 

Surface Roughness- Ra 

Average 

Ra (µm) 

Sample 1 Sample 2 

1 2 3 4 5 1 2 3 4 5 

17 0 22 125 15 1.40 2.72 1.98 2.42 2.33 1.40 2.33 2.34 2.46 2.18 2.16 

18 0 22 125 10 1.82 3.00 2.91 1.91 4.12 2.54 3.99 3.91 3.76 3.84 3.18 

19 0 22 275 15 2.49 2.06 2.58 2.46 2.59 1.69 1.72 4.12 1.82 3.78 2.53 

20 0 22 275 10 3.63 3.95 3.79 3.81 3.02 1.97 1.92 3.42 3.70 1.79 3.10 

21 0 26 125 15 1.74 2.25 4.48 4.33 1.75 2.30 2.79 2.68 3.19 3.56 2.91 

22 0 26 125 10 3.08 3.17 3.33 3.08 3.08 3.42 2.57 4.08 1.99 3.13 3.09 

23 0 26 275 15 1.14 2.80 2.81 4.32 2.08 3.15 2.45 2.96 2.99 2.82 2.75 

24 0 26 275 10 3.54 3.45 3.27 3.91 2.10 3.76 3.38 3.38 2.51 3.33 3.26 
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Experimental 

Run No. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed 

Rate 

(µm/s) 

Surface Roughness- Ra 

Average 

Ra (µm) 

Sample 1 Sample 2 

1 2 3 4 5 1 2 3 4 5 

25 0 22 0 15 1.74 1.88 2.10 1.81 1.88 1.82 1.94 2.58 1.82 2.17 1.97 

26 15 22 0 15 1.18 1.25 0.97 1.28 1.05 0.91 0.93 1.05 0.93 0.99 1.05 

27 45 22 0 15 1.09 1.11 1.25 0.95 1.01 1.05 1.00 0.86 0.92 1.10 1.03 
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The following table consists of selected measurements for mean peak surface roughness (Rz). These measurements are 

for holes ECM’ed at 22 A Ip and 15 µm/s fr. 

Amplitude 

(%) 

Peak 

Current 

(A) 

Pulse 

Frequency 

(Hz) 

Feed Rate 

(µm/sec) 

 Surface Roughness- Rz (µm) 

Average 

Rz (µm) 

Sample 1 Sample 2 

1 2 3 4 5 1 2 3 4 5 

15 22 125 15 4.14 3.28 3.82 4.69 3.39 4.64 2.12 4.79 3.63 2.19 3.67 

15 22 275 15 2.63 2.32 2.80 3.35 3.15 4.06 5.41 2.30 2.03 3.29 3.13 

45 22 125 15 4.91 4.73 5.92 6.06 9.28 5.88 5.36 6.66 7.14 4.87 6.08 

45 22 275 15 3.96 4.58 5.07 3.55 4.05 4.69 4.15 5.24 2.09 2.97 4.04 

0 22 125 15 11.06 10.09 10.00 8.02 11.40 10.16 9.22 9.82 9.81 8.56 9.81 

0 22 275 15 13.03 17.93 8.48 8.79 13.49 8.53 12.90 12.86 13.10 13.65 12.28 

0 22 0 15 6.93 7.43 16.83 7.59 11.20 9.22 10.53 14.06 16.24 14.69 11.47 

15 22 0 15 2.90 2.81 2.41 3.26 2.94 2.55 3.31 2.66 2.82 3.89 2.96 

45 22 0 15 3.70 2.47 3.44 3.29 3.45 3.59 3.38 2.85 3.47 3.76 3.34 
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APPENDIX E: TAPER ANGLE DATA 

Following table contains the taper angle measurements of the holes ECM’ed at 22 A Ip and 15 µm/s fr. The 

measurement of the taper angle was at 5 different locations in the “12 ‘o’ clock” region.

DC Pulse 

Frequency (Hz) 

Ultrasonic Vibration 

Amplitude (%) 

Taper Angle (Degrees) Average Taper 

Angle (Degrees) 1 2 3 4 5 

0 0 10.75 10.41 14.22 10.76 8.82 10.99 

125 0 2.30 2.02 3.28 2.87 3.13 2.72 

275 0 1.88 2.09 2.91 2.17 2.48 2.31 

0 15 5.77 1.74 2.52 5.62 3.59 3.85 

125 15 2.79 1.44 1.41 1.40 1.39 1.69 

275 15 0.35 0.82 0.13 0.94 1.19 0.69 

0 45 5.30 2.48 8.41 4.43 5.59 5.24 

125 45 1.82 0.60 0.84 2.15 1.97 1.47 

275 45 0.79 0.60 1.27 0.79 0.94 0.88 




