
SYSTEM DEVELOPMENT AND VLSI IMPLEMENTATION OF HIGH

THROUGHPUT AND HARDWARE EFFICIENT POLAR CODE DECODER

A Dissertation

by

TIBEN CHE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Gwan S. Choi
Committee Members, Jiang Hu

Jim Ji
Duncan M. (Hank) Walker

Head of Department, Miroslav M. Begovic

May 2017

Major Subject: Computer Engineering

Copyright 2017 Tiben Che

ABSTRACT

Polar code is the first channel code which is provable to achieve the Shannon capacity.

Additionally, it has a very good performance in terms of low error floor. All these merits

make it a potential candidate for the future standard of wireless communication or storage

system. Polar code is received increasing research interest these years. However, the hard-

ware implementation of hardware decoder still has not meet the expectation of practical

applications, no matter from neither throughput aspect nor hardware efficient aspect. This

dissertation presents several system development approaches and hardware structures for

three widely known decoding algorithms. These algorithms are successive cancellation

(SC), list successive cancellation (LSC) and belief propagation (BP). All the efforts are in

order to maximize the throughput meanwhile minimize the hardware cost.

Throughput centric successive cancellation (TCSC) decoder is proposed for SC decod-

ing. By introducing the concept of constituent code, the decoding latency is significantly

reduced with a negligible decoding performance loss. However, the specifically designed

computation unites dramatically increase the hardware cost, and how to handle the conven-

tional polar code sets and constituent codes sets makes the hardware implementation more

complicated. By exploiting the natural property of conventional SC decoder, datapaths

for decoding constituent codes are compatibly built via computation units sharing tech-

nique. This approach does not incur additional hardware cost expect some multiplexer

logic, but can significantly increase the decoding throughput. Other techniques such as

pre-computing and gate-level optimization are used as well in order to further increase the

decoding throughput. A specific designed partial sum generator (PSG) is also investigated

in this dissertation. This PSG is hardware efficient and timing compatible with proposed

TCSC decoder. Additionally, an polar code construction scheme with constituent codes

ii

optimization is also presents. This construction scheme aims to reduce the constituent

codes based SC decoding latency. Results show that, compared with the state-of-art de-

coder, TCSC can achieve at least 60% latency reduction for the codes with length n = 1024.

By using Nangate FreePDK 45nm process, TCSC decoder can reach throughput up to 5.81

Gbps and 2.01 Gbps for (1024, 870) and (1024, 512) polar code, respectively. Besides,

with the proposed construction scheme, the TCSC decoder generally is able to further

achieve at least around 20% latency deduction with an negligible gain loss. Overlapped

List Successive Cancellation (OLSC) is proposed for LSC decoding as a design approach.

LSC decoding has a better performance than LS decoding at the cost of hardware con-

sumption. With such approach, the l (l > 1) instances of successive cancellation (SC)

decoder for LSC with list size l can be cut down to only one. This results in a dramatic re-

duction of the hardware complexity without any decoding performance loss. Meanwhile,

approaches to reduce the latency associated with the pipeline scheme are also investigated.

Simulation results show that with proposed design approach the hardware efficiency is in-

creased significantly over the recently proposed LSC decoders. Express Journey Belief

Propagation (XJBP) is proposed for BP decoding. This idea origins from extending the

constituent codes concept from SC to BP decoding. Express journey refers to the datapath

of specific constituent codes in the factor graph, which accelerates the belief information

propagation speed. The XJBP decoder is able to achieve 40.6% computational complexity

reduction with the conventional BP decoding. This enables an energy efficient hardware

implementation.

In summary, all the efforts to optimize the polar code decoder are presented in this

dissertation, supported by the careful analysis, precise description, extensively numerical

simulations, thoughtful discussion and RTL implementation on VLSI design platforms.

iii

DEDICATION

To my wife, my father, my mother and my upcoming baby.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Gwan Choi, for his financial support,

thoughtful guidance and kind encouragement all the way along my Ph.D study. He has

always gave me the supports whenever I needed help. I would like to thank Professor

Jiang Hu, Professor Jim Ji and Professor Hank Walker for their time in serving in my

committee. I appreciate Professor Jiang Hu’s introduction and suggestions on polar codes,

which opened a new door for my research. Additionally, I took two courses from him.

Both of them significantly strengthened my understanding of digital circuit design and

inspired me about my research. Professor Jim Ji has been very helpful and he gave me a

lot of suggestions after my prelim examination. I would also like to thank Professor Hank

Walker. Through his excellent and impressive teaching skills, I was enlightened on the

ideas of VLSI testing, which gave me a chance to know more about the IC industry.

I would like to thank all the student’s in Professor Choi’s group. All the senior students,

Ehsan Rohani, Mehnaz Rahman and Jingwei Xu, gave me lots of helps and suggestions at

the beginning of my research. In particular, I would like to thank Jingwei Xu. We worked

on the same area and had cooperation on several papers. He is very thoughtful and smart,

and can always inspired me. Additionally, we had a lot of discussions not only about the

research but also about the career path. I also want to thank to my officemates, Honghuang

Lin, Jimmy Jin, Qian Wang and Zhiyuan Zheng.

I want to express my gratitude to my lovely wife, Tiantian. She has done so much for

me and always believed in me. She quit her job in China and has been to U.S to keep

me company. Because of her, I never feel lonely even at my most helpless moment. Last

but not least, I would like to thank my parents for their support and encouragement in my

whole life.

v

NOMENCLATURE

ECC Error Correct Code

LDPC Low Density Parity Check

RS Reed-Solomon

BCH Bose-Chaudhuri-Hochquenghem

BP Belief Propagation

SC Successive Cancellation

LSC List Successive Cancellation

PSG Partial Sum Generator

SR-PSG Shift-Register Partial Sum Generator

DM-PSG Directly Mapped PSG

SR-CB-PSG Shift-Register Constituent-Code-Based PSG

FPGA Field Programmable Gate Array

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiii

1. INTRODUCTION AND LITERATURE REVIEW 1

1.1 Research Motivation . 1
1.2 Literature Review . 3
1.3 Contributions of Dissertation Work . 6

1.3.1 Throughput Centric Successive Cancellation 6
1.3.2 Overlapped List Successive Cancellation Approach 7
1.3.3 Express Journey Belief Propagation 8
1.3.4 Asynchronous Circuit Design . 8

1.4 Outline of This Dissertation . 9

2. RELEVANT BACKGROUND . 10

2.1 Channel Polarization . 10
2.2 Polar Code Construction and Encoding 13
2.3 Polar Code Decoding . 14

2.3.1 Successive Cancellation . 14
2.3.2 Constituent Based SC Decoding 16
2.3.3 List Successive Cancellation Decoding 18
2.3.4 Belief Propagation Decoding . 20

3. THROUGHPUT CENTRIC SUCCESSIVE CANCELLATION 23

3.1 System Overview . 25

vii

3.2 Dataflow, Latency and Flexibility Analysis 25
3.3 Processing Unit . 29
3.4 Shift-Register Constituent-Code Based Partial Sum Generator 33

3.4.1 Mathematical Derivation . 36
3.4.2 Proposed Architecture . 40

3.5 Fix Point Analysis . 43
3.6 Implementation Results and Relevant Discussion 43
3.7 Construction Scheme with Constituent Codes Optimization 47

3.7.1 Constituent Codes Optimization 49
3.7.2 Simulation Results . 51

4. OVERLAPPED LIST SUCCESSIVE CANCELLATION APPROACH 57

4.1 Path-Overlapping Scheme and Relevant Analysis 59
4.2 Latency Reduction . 62

4.2.1 Latency Reduction via Multi-Decision List SC Decoding 62
4.2.2 Latency Reduction via Path-LLR-Compute-Ahead Scheme 64
4.2.3 Latency Reduction via Adaptive LSC Decoding 64

4.3 Performance Simulation and Analysis 65

5. EXPRESS JOURNEY BELIEF PROPAGATION DECODING FOR POLAR
CODES . 68

5.1 Simplified Belief Propagation Decoding 68
5.1.1 All-Frozen N 0 Codes . 69
5.1.2 All-Information N 1 Codes . 70
5.1.3 Repetition NREP Codes . 70
5.1.4 Single Parity Check N SPC Codes 71

5.2 Scheduling . 73
5.2.1 Round-Trip BP Updating . 73
5.2.2 Early Termination . 75

5.3 Simulation and Discussion . 75
5.3.1 Decoding Performance . 75
5.3.2 Computation Complexity Analysis 77
5.3.3 Discussion . 80

6. ASYNCHRONOUS CIRCUIT APPLICATION 81

6.1 Accelerated Dual-Path Asynchronous Circuit 84
6.1.1 Dual-Path Circuit Design . 84
6.1.2 Power Cycle Schedule . 88
6.1.3 Case Study . 89

6.2 Asynchronous Design for Precision-Scaleable Energy-Efficient LDPC De-
coder . 94

viii

6.2.1 Proposed System . 96
6.2.2 Design Details . 97
6.2.3 Simulations and Analysis . 101

7. SUMMARY . 104

REFERENCES . 106

ix

LIST OF FIGURES

FIGURE Page

1.1 Diagram for communication system . 2

2.1 Channel polarization example of 2 B-DMC channels 11

2.2 Recursive construction of n channel polarization 12

2.3 An example of (8,4) polar code encoder 14

2.4 An example of 8-bit SC decoding via tree presentation 15

2.5 (a) An example ofN 0 andN 1 in 8-bit polar code tree, and (b) An example
of N SPC and NREP in 8-bit polar code tree 18

2.6 List successive cancellation decoding paths on decoding tree 19

2.7 BP factor graph of n=8 polar codes . 20

2.8 Basic kernel of BP algorithm . 21

3.1 Examples of (a) tree architecture and (b) line architecture of 8-bit polar
code decoder . 24

3.2 Overview of proposed system when code length = 16 26

3.3 (a) Conventional tree presentation of 32 bits polar code, and (b) Simplified
tree presentation of 32 bits polar code at rate 0.3125 and 0.6875. 29

3.4 Design details of memory controller . 30

3.5 Design details of PU . 31

3.6 Design details of PU0 . 33

3.7 The conventional architecture of constituent based PSG 35

3.8 The architecture of SR-PSG . 36

x

3.9 (a) Elements shift in generation matrix, and (b) Diagonal cycle-shift in
generation matrix . 37

3.10 Overall architecture of SR-CB-PSG . 41

3.11 (a) PU tree of SC decoder, (b) PUs and their corresponding register, and
(c) Architecture of multiplexing network 42

3.12 An example of (2m-1) shifter for 16-bit polar code decoder 43

3.13 Effect of quantization on the BER/FER performance of (1024,512) code . 44

3.14 Latency reduction vs. code rate . 48

3.15 Examples of constituent codes division optimization 51

3.16 The ber vs Eb/N0 performance for proposed construction scheme 55

4.1 The conventional architecture of LSC decoder 57

4.2 The architecture of proposed design . 59

4.3 Decoding schedule of the path-overlapping scheme for (8,4) polar code
with (a) list size = 2 and (b) list size = 4 60

4.4 Latency overhead for different scheme 63

4.5 Decoding schedule of path-LLR-compute-ahead scheme 64

4.6 The improvement of hardware efficiency with proposed design approach . 66

5.1 (a) An example of N 0 codes in shadow and N 1 codes in gray, (b) An
example of NREP codes in shadow and N SPC codes in gray, and (c) The
simplified factor graph for the example of NREP and N SPC codes. 69

5.2 (a) Computations scheduled in the conventional BP decoders, and (b) Com-
putations scheduled in a round-trip updating fashion. 74

5.3 Decoding performance of the proposed BP decoding algorithm for (1024,
512) polar code with rate 0.5 and max number of iteration of 60. 76

5.4 Average numbers of iterations of the proposed BP decoding algorithm for
(1024, 512) polar code with rate 0.5. 78

xi

5.5 Average numbers of computations consumed to decode each codeword of
by the proposed BP decoding algorithm for (1024, 512) polar code with
rate 0.5. 80

6.1 General model of asynchronous circuits 82

6.2 4 phase protocol . 83

6.3 Overview of dual-path asynchronous circuit system 85

6.4 Timing of DMR . 85

6.5 The details of one asynchronous block 86

6.6 Timing of power cycle scheduling . 88

6.7 One transient fault delay example . 90

6.8 Histogram of delays caused by fault injections 92

6.9 Delays under difference schemes with different FR 93

6.10 Generic LDPC decoding data flow graph 95

6.11 The overview system flow of proposed LDPC decoder 97

6.12 Asynchronous precision-salable VNU design. 98

6.13 Asynchronous precision-salable CNU design 99

6.14 Proposed asynchronous comparator . 100

6.15 Units delays for different bits of precision 101

6.16 Voltage scaling to align processing latency 102

6.17 Normalized power reduction compared with fixed precision LDPC decoder 103

xii

LIST OF TABLES

TABLE Page

3.1 Summary of decoding latency for each constituent polar code 28

3.2 Decoding schedule of pre-computation SC and TCSC for length 32 polar
code . 29

3.3 Truth table of PTU . 32

3.4 Critical path comparison . 44

3.5 Decoder latency comparison for length=1024 polar code 45

3.6 Resource comparison . 45

3.7 Hardware resource of SR-CB-PSG for 1024 code length polar code de-
coder . 46

3.8 Hardware comparison of different (n,k) SC decoder with q-bit quantization
for inner LLRs using tree architecture 46

3.9 Synthesis result for (1024,870) and (1024,512) polar codes 48

3.10 Latency reduction . 56

5.1 Number of all constituent codes with different sizes in a (1024, 512) polar
code with rate 0.5 . 72

5.2 Number of computations of reduced-complexity BP algorithm with all po-
lar codes at rate 0.5 . 78

5.3 Comparison of computations at different code rates 79

6.1 Hardware overhead (unit:µm2) . 94

xiii

1. INTRODUCTION AND LITERATURE REVIEW

This introduction first states the research motivation for this polar code related topic,

especially for the wireless communication and storage applications. After that, the litera-

ture review is presented. Compared with other state of the art polar code coding hardware

architectures, the main contributions of this dissertation are introduced. The outlines of

this dissertation is given in the end of this chapter to guide readers follow this dissertation.

1.1 Research Motivation

Information plays an important role in the real world. People’s activities are all con-

nected by information switching. The technology develops rapidly every day, which makes

the information involved in our daily life exponentially increase. Meanwhile, it has been

facilitating people’s demands for high volume of information as well. This phenomenon

also called data explosion. For example, wireless communication standard has been de-

veloped from the third generation (3G) to the fourth generation (4G) in the decade, and

will release the fifth generation (5G) in the next two years. These changes allow us to have

wireless data swapped with the speed from kilobits per seconds to gigabits per seconds. It

took several hours to download an MP3 song in the past but now we even are able to enjoy

high resolution (4K) video online. Another example of data explosion is that the storage

of computer system has changed form megabyte to tri-byte. How to transfer or store in-

formation efficiently and reliably are always be the first concern for the real application

scenarios.

No matter the data transferring or storage, the process can be abstracted as shown in

Fig. 1.1. Consider that we have source information to send, such as video. First, we need

to compress it to save the bandwidth cost. This is usually done by removing redundancy

information existed in the original information. The encoding approach which aims to

1

compress the original data called source encoding. After that, some carefully selected

redundant information is attached to it. This is for increasing the reliability of the com-

munication, which is referred as channel encoding. While the information carried by the

channel, due to noisy introduced by the channel, the information may incur some unex-

pected error, such as bit flipping or erasing. After receiving those information, those errors

could be fixed via the redundant information which are previously added. This process is

also called channel decoding. After that, all the re-corrected information is decompressed

at the destination side. Similarly, the decompressing process is called source decoding.

Source
Encoder

Channel
Encoder

Information
Source

Source
Decoder

Destination
Channel
Decoder

Source Coding Channel Coding

Channel

Figure 1.1: Diagram for communication system

Above description stresses two very important concepts in the communication system;

source coding and channel coding. The first is trying to increase the channel utilization and

the second one is trying to increase the channel robustness. Both of them are essential to a

communication system. The codes used for channel coding are called error corrected cod-

ing (ECC). This dissertation focuses on the hardware architecture of one kind of channel

coding called polar code.

2

In 1948, Claude E. Shannon [1] pointed out that, for a particular noise level, there

is a theoretical maximum information transfer rate of the channel. This maximum rate

is referred as Shannon capacity. In the next decades, researchers have been working on

searching ECC scheme that is able to achieve Shannon capacity. Lots of channel cod-

ing scheme were proposed, such as convolutional code [2], BCH code [3], ReedSolomon

(RS) code [4], turbo code [5] and low density parity check (LDPC) code [6]. Among

those, turbo code and LDPC code are able to achieve the performance which is very close

to Shannon capacity. They have been selected as the standard of LTE and ViMax, respec-

tively. Recently, a new kind of EEC code called polar code invented since 2009 attracts lot

of research interest. This dissertation work mainly focus on the hardware implementation

of polar codes decoder.

1.2 Literature Review

Although both turbo and LDPC have a very good performance, they never can reach

the Shannon capacity. Besides, they all suffer the error floor problems. In 2009, polar

code was invented by E. Arikan [7]. It is the first channel code which provably is able

to achieve the Shannon capacity. Additionally, its error floor performance is better than

any other existed channel code [8]. Thus, polar codes is receiving increasing research

attention these years. A lot of works have been done to theoretically evaluate and improve

the performance of polar code [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25, 26]. Polar code is also regarded as a potential candidate for future standard of wireless

communication and storage systems. Its encoding scheme is very straightforward and

simply, which is also one of the attractions for real applications. However, the decoding

scheme is more sophisticate and challenging.

Mainly, all the popular decoding scheme can be divided into three categories. The

first one is called successive cancellation (SC) [7]. It decodes the codewords by recur-

3

sively applying the bit cancellation along the decoding factor graph. The second method

is called list successive cancellation (LSC) [10]. It can be regarded as an extension of SC

by exploiting more possibilities in codewords set. The third approach is called belief prop-

agation (BP). This method estimates the correct codewords via a iterative message passing

approach. All of those could directly map to a very straightforward hardware architecture.

However, they suffers from either latency or computation complexity issues. Thus, lots of

works are stressed on an efficient hardware implementation of polar code decoder.

C. Leroux [27] proposed both tree and line architecture of SC decoder. For length n

polar code, it takes (2n-2) clock cycles to decode length n polar code. This is the first paper

to systematically illustrate and evaluated the hardware architecture of SC decoder. Later

on, he [28] proposed a semi-parallel architecture for both tree and line SC decoder, which

gives a good inspiration about the trade-off between hardware complexity and latency. C.

Zhang [29] proposed a low latency SC decoder with pre-computing and overlapped archi-

tecture. Pre-computing technology reduces the latency to (n-1), and the overlap scheme

significantly increase the throughput for multiple frames situation. B. Yuan [30] proposed

an architecture with applying the 2-bit decoding at the last stage and some gate level op-

timization. This further reduce the latency to (3n/4-1). B. Yuan [31] also proposed an

architecture for LSC using multi-bit decision. A. Mishra [32] proposed the ASIC design

for 1024-bit polar code with 180nm technology. Balatsoukas-Stimming [33, 34] provided

the hardware architecture of LSC and LLR based LSC algorithm as well. J. Lin [35] pro-

posed high throughput architecture for LSC with a reduced latency list decoding (RLLD)

algorithm. T. Che [36] proposed a path overlapped design approach which enhances the

hardware efficiency of LSC decoder. Alamdar-Yazdi [37] proposed the simplified SC

(SSC) which can reduce the latency by finding some certain pattern sub-codewords. These

kinds of sub-codewords are also called constituent codes. G. Sarkis [38] proposed the fast-

SSC which can further reduce the latency by exploring more kinds of constituent codes. T.

4

Che [39] proposed the hardware architecture for constituent based SC decoder. This con-

stituent concept can also be extended to LSC decoding. G. Sarkis [40] presented the con-

stituent codes based LSC decoding. SC decoding is based on the feedback from decoded

codewords which is also called partial sum. A partial sum generator (PSG) is needed for

any kind of SC and LSC decoder. The partial sum needs to be calculated at the same clock

cycle when the codewords are determined. Thus, it is on the critical path of the decoding

and can affect the maximum frequency of the decoder. Some works have been done for

a good PSG design. C. Leroux [28] proposed an indicator function based PSG (IF-PSG).

C. Zhang [29] proposed a PSG with feedback part (FB-PSG). J. Lin [41] proposed a hy-

brid PSG for LSC. G. Berhault proposed a shift-register-based PSG (SR-PSG) [42, 43],

which is able to increasing the timing performance and reduce the hardware complex-

ity. Y. Fan [44] proposed a similar architecture with SR-PSG however with higher level

simplification. T. Che [45] proposed a efficient constituent codes based PSG.

There are also many works have been done on BP decoder implementations. Com-

pared with SC decoding, BP suffers from high computation complexity issues. Thus, it

does not receive as much attentions as SC does. However, there are still some valuable

researches have been done on that. A. Pamuk [46] presented a field programmable gate

array (FPGA) implementation of BP decoder with an approximation of message passing

function. Such approximation is done by the min-sum (MS) algorithm which degraded the

decoding performance. B. Yuan [47] explored scaled min-sum (SMS) approximation for

message passing functions remedy the performance penalty at the expense of extra scaling

operations in each message passing. Later on, he [48] further improved the efficiency of

SMS BP decoders using early termination in. C. Zhang [49] proposed a complexity re-

duced sum-product (SP) BP decoding by removing unnecessary computations for frozen

bits in polar codes, which results in around 25% complexity reduction without any de-

coding performance degradation. J. Xu [50] proposed the express journey BP (XJ-BP).

5

XJ-BP introduce the concept of constituent code into BP decoding and also proposes a

new scheduling scheme, which significant reduce the computation complexity.

1.3 Contributions of Dissertation Work

The mainly contribution of my dissertation works has four parts. They are the through-

put centric successive cancellation (TCSC) decoder, overlapped design approach for LSC

decoder, the express journey belief propagation (XJBP) decoder and research on the asyn-

chronous circuit design for channel coding system.

1.3.1 Throughput Centric Successive Cancellation

This work presents hardware architecture of constituent code based successive can-

cellation algorithm for polar codes, which significantly reduces the decoding latency and

dramatically increases the throughput. Constituent codes are those subset of the codeword

with specific patterns. They are used to accelerate the successive cancellation decoding

process of polar code without any performance degradation. Algorithmically, constituent

code based SC algorithm suffers from the fact that its decoder scheduling and the conse-

quent architecture depends on the code rate; this is a challenge for rate-compatible system.

However, by exploiting the homogeneousness between the decoding processes of con-

stituent polar codes and regular polar codes, the presented design is compatible with any

rate. The scheduling plan and the intendedly designed processing core are also described.

Additionally, a specifically designed partial sum generator (PSG) which is compatible with

constituent code based SC decoder is proposed as well. We derive the mathematical pre-

sentation with the partial sums set which is corresponding to each constituent code. From

this, we concoct a shift-register based PSG from . Results show that, compared with the

state-of-art decoder, our design can achieve at least 60% latency reduction for the codes

with length n = 1024. This design is validated via ASIC design with Nangate FreePDK

45nm process.

6

Besides, a polar code construction scheme that reduces constituent-code supplemented

decoding latency is also presented. We modify the traditional construction approach to

yield increased number of desired constituent codes that speeds the decoding process.

For (n, k) polar code, instead of directly setting the k best and (n-k) worst bits to the in-

formation bits and frozen bits, respectively, we thoughtfully swap the locations of some

information and frozen bits according to the quality of their equivalent channels. The

algorithm of constituent codes division optimization is presented. We conducted the simu-

lation of 1024 and 2048 length polar codes with multiple rates and analyzed the decoding

latency for various length codes. The numerical results show that the proposed construc-

tion scheme generally is able to achieve at least around 20% latency deduction with an

negligible gain loss with carefully selected optimization threshold.

1.3.2 Overlapped List Successive Cancellation Approach

This work presents an efficient hardware design approach for list successive cancella-

tion (LSC) decoding of polar codes. By applying path-overlapping scheme, the l instances

of (l > 1) successive cancellation (SC) decoder for LSC with list size l can be cut down

to only one. This results in a dramatic reduction of the hardware complexity without any

decoding performance loss. The architecture of SC decoder is modified to support this

new paradigm as well. Since modifications are made only on architecture and scheduling

plan, no decoding performance gain loss or change is incurred. Three approaches, multi-

decision list SC decoding, path-LLR-compute-ahead scheme and adaptive LSC decoding,

to reduce the latency associated with the pipeline scheme are presented and evaluated as

well. Simulation results show that with proposed design approach the hardware efficiency

is increased significantly over the recently proposed LSC decoders.

7

1.3.3 Express Journey Belief Propagation

This work presents a novel constituent code based belief propagation decoding algo-

rithm for polar codes. The proposed algorithm facilitates belief propagation by utilizing

the specific constituent codes that exist in the factor graph, which results in an express

journey (XJ) for belief information to propagate in each decoding iteration. In addition,

this XJ-BP decoder employs a novel round-trip message passing scheduling method for

the increased efficiency. The proposed method simplifies min-sum (MS) BP decoder by

40.6Along with the round-trip scheduling, the XJ-BP algorithm reduces the computational

complexity of MS BP decoding by 90.4%; this enables an energy-efficient hardware im-

plementation of BP decoding in practice.

1.3.4 Asynchronous Circuit Design

We are not only pursuing a decent design of polar code decoder via the architecture

level, but also enhancing the entire system via the bottom circuit level. Asynchronous

circuit is a technique can yield a good power and reliability performance, which is suitable

for channel coding system. It has recently received increasing attention due to its low

power consumption, high operation speed, less emission of elector-magnetic noise, better

modularity, omission of clock distribution related problems, and robustness with respect

to variations in supply voltage, temperature and fabrication process parameters [51]. I

applied asynchronous circuit technology to two applications. Although both of them use

LDPC decoder as a case study, they can be easily extended to polar code scenarios.

The first one is accelerated dual-path asynchronous circuit architecture. The dual-

path architecture accelerates the asynchronous circuit system by circumventing transient

faults caused delay. Specifically, dual-path asynchronous circuit design and associated ar-

biter are developed. Asynchronous circuit inherently tolerates transient errors however by

incurring additional delay. This in turn can debilitate the circuit to suspension in an envi-

8

ronment where fault rate (FR) is excessively high. Dual-path design approach eliminates

this problem by using whichever output or outcome combination that becomes valid first

in each combination stage. The design approach is illustrated with an LDPC decoder ar-

chitecture that must exhibit high degree of reliability in error-prone operating conditions.

Results show that the decoder can achieve 11.3% and 39.5% speed up for average and

maximum case, respectively, while the arbiter introduces only about 2% area overhead.

The second one is asynchronous precision-scaleable energy-efficient LDPC decoder.The

decoder configures the computation precision to minimize circuit-level switching neces-

sary for given target biterror rate (FER). The asynchronous circuit approach guarantees

the completion of each compute-and-forward phase at necessary voltage levels. The volt-

age level is scheduled to ensure completion of minimum necessary decoding iterations.

The proposed scheme is studied for the specific application of IEEE 802.16e to reduce the

power consumption at a given target FER. The proposed design is evaluated on Nangate

45nm library. The results show that the proposed asynchronous design results in 51%

reduction in terms of power consumption compared with full-precision decoding mode.

1.4 Outline of This Dissertation

The rest of this dissertation is organized as follows: Section 2 introduces the back-

ground of polar codes including its construction, principles and typical decoding algo-

rithms. Section 3, 4, and 5 presents three polar code decoder designs, throughput cen-

tric successive cancellation, overlapped list successive cancellation approach and express

journey belief propagation, respectively. Section 6 introduce my work on asynchronous

design. Section 7 summarizes my dissertation works.

9

2. RELEVANT BACKGROUND

In this section, we first introduce the concept of channel polarization. Based on that,

the construction and encoding scheme of polar code coding are presented. After that, three

widely known kinds of decoding algorithms are described. The constituent based decoding

is introduced as well.

2.1 Channel Polarization

Channel polarization is the key concept to understand that how polar code works. Po-

lar code is first introduced for binary-input discrete memoryless channel (B-DMC). For

a given B-DMC, there are two channel parameter, the symmetric capacity and the Bhat-

tacharyya parameter, need to be defined.

Definition 2.1.1. The symmetric capacity of a B-DMC with input alphabet X = 0, 1 is

defined as:

I(W)
1

2

∑

y∈Y

∑

x∈X

W (y|x) log W (y|x)
1
2
W (y|0) + 1

2
W (y|1) (2.1)

and

Definition 2.1.2. The Bhattacharyya parameter of a channel is defined as

Z(W) ,
∑

y∈Y

√
W (y|0)W (y|1) (2.2)

where W (y|x) denotes the probability of receiving y ∈ Y , given that x ∈ X sent

from the transmitter. Those two parameters are used to described the rate and reliability

of the B-DMC,respectively. Noticeably, the capacity of a symmetric B-DMC actually

equals the mutual information between the input and output of the channel with uniform

distribution on the inputs. It denotes that the reliable communication is possible over a

10

symmetric B-DMC at any rates up to I(W). Z(W) is an upper bound on the probability

of maximum-likelihood (ML) decision error for {0,1} tranmission over channel W .

W

W

u1

u2

x1

x2

y1

y2

WX Y

Wn/2

u1

u2

x1

x2

y1

y2

Wn/2

un/2-1 xn/2-1

un/2 xn/2

un-1 xn-1

un xn

un/2+1

un/2+2

xn/2+1

xn/2+2

yn/2-1

yn-1

yn

yn/2

yn/2+1

yn/2+2
W2

Wn

BR

Figure 2.1: Channel polarization example of 2 B-DMC channels

Channel polarization is done by channel combining and channel splitting. Fig. 2.1

shows an example case for 2 B-DMC channel polarization. As the figure shows, two

separate single bit channels W : X → Y are combined to create a new 2-bit channel

W2 : X 2 → Y2. The transition probability of new W2 is

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2) (2.3)

Then, we split the W2 channel into two new single bit channel, W−(y1, y2|u1) and

W+(y1, y2, u1|u2). Their transition probabilities are calculated as

W (y1, y2|u1) =
1

2

∑

u2∈0,1

W (y1|u1 ⊕ u2)W (y2|u2) (2.4)

W (y1, y2, u1|u2) =
1

2
W (y1|u1 ⊕ u2)W (y2|u2) (2.5)

11

Thus, the symmetric capacity of the two new splitting channel are

I(W (y1, y2|u1)) = I(W)2 (2.6)

I(W (y1, y2, u1|u2)) = 2I(W)− I(W)2 (2.7)

If we have single I(w) = 0.5, then (W (y1, y2|u1)) = 0.25 and I(W (y1, y2, u1|u2)) =

0.75. Thus, we get two split channels with relatively worst and better channel qualities,

respectively.

W

W

u1

u2

x1

x2

y1

y2

WX Y

Wn/2

u1

u2

x1

x2

y1

y2

Wn/2

un/2-1 xn/2-1

un/2 xn/2

un-1 xn-1

un xn

un/2+1

un/2+2

xn/2+1

xn/2+2

yn/2-1

yn-1

yn

yn/2

yn/2+1

yn/2+2
W2

Wn

BR

Figure 2.2: Recursive construction of n channel polarization

Inspired by this idea, if we keep recursively apply such polarize operation, all the

symmetric capacities of original channel would be polarized to either 1 or 0. Fig. 2.2

12

shows an example of the recursively polarization of n channels. BR stands for a bit-reverse

network. The {I(W (i)
N)} can be calculated by the recursive computing

I(W
(2i−1)
N) = I(W

(i)
N/2)

2 (2.8)

I(W
(2i)
N) = 2I(W

(i)
N/2)

2 − I(W (i)
N/2)

2 (2.9)

According to [7], for a B-DMC with error probability ε, if we apply Eq. (2.8) to n channels,

as the n goes infinity, there are ε and 1− ε of n channels’ capacities would to polarized to

0 and 1, respectively. This makes polar code the first channel code that is able to achieve

the channel capacity.

2.2 Polar Code Construction and Encoding

As introduced in [7], a polar code is constructed by successively performing channel

polarization. Mathematically, polar codes are linear block codes of length n = 2m. The

transmitted codeword x , (x1, x2, · · · , xm) is computed by x = uG where G = F⊗m,

and F⊗m is the m-th Kronecker power of F =

1 0

1 1

. Each row of G is correspond-

ing to an equivalent polarizing channel. For an (n,k) polar code, k bits that carry source

information in u are called information bits. They are transmitted via the most k reliable

channels. While the rest n-k bits, called frozen bits, are set to zeros and are placed at

the least n-k reliable channels. Determining the location of the information and frozen

bits depends on the channel model and the channel quality is investigated in [9]. Fig. 2.3

shows an example of (8,4) polar code encoder, where the black and white nodes stand for

the information bits and frozen bits, respectively.

13

ε = 0.3

ε = 0.3

ε = 0.3

ε = 0.3

ε = 0.3

ε = 0.3

ε = 0.3

ε = 0.3

ε = 0.51

ε = 0.51

ε = 0.51

ε = 0.51

ε = 0.09

ε = 0.09

ε = 0.09

ε = 0.09

ε = 0.76

ε = 0.76

ε = 0.26

ε = 0.26

ε = 0.17

ε = 0.17

ε = 0.0081

ε = 0.0081

ε = 0.94

ε = 0.58

ε = 0.45

ε = 0.068

ε = 0.31

ε = 0.029

ε = 0.016

ε = 0.00007

0

0

0

0

u1

u2

u3

x1

x2

x3

x4

x5

x6

x7

8

7

6

4

5

3

2

1

Rank

frozen

data

data

data

data

frozen

frozen

frozen

u4 x8

Figure 2.3: An example of (8,4) polar code encoder

2.3 Polar Code Decoding

2.3.1 Successive Cancellation

Polar codes can be decoded by recursively applying successive cancellation to estimate

ûi using the channel output yN−10 and the previously estimated bits ûi−10 . Typically, the

channel output are represented by log-likelihood ratios (LLR). LLR are defined as:

LLRû
i = ln

P (y|ui = 0)

P (y|ui = 1)
(2.10)

where P (y|x) represents the probability that y is received as x is given in the transmitter.

The estimated bits are obtained at the left side. The entire decoding process is running

stage by stage. For length n polar code, there are m = log2 n stages. Each stage consists

of several computation unite with different functions. The functions are decided by their

locations.

14

This approach is naturally represented by a binary tree whose each node corresponds

to a constituent code. The number of bits in one constituent node in stage m (m = 0,1,2...)

is equal to 2m. Fig. 2.4 shows an example of 8-bit SC decoding. α stands for the soft

Stage
0

g

f

f

g

f

g

f

g

f

f

g

f

g

g

Stage
1 Stage

2 Stage
3

α

α

β
β

l

l

r

r

α

β

Figure 2.4: An example of 8-bit SC decoding via tree presentation

reliability value, typically is log-likelihood ratio (LLR), and β stands for the hard decision.

αl and αr are the message passing from parent node to left and right child, and can be

15

computed according to Eq. (2.11) and Eq. (2.12), respectively.

αl[i] = f(αv[i], αv[i+Nm/2])

= sign(αv[i])sign(αv[i+Nm/2])

· min(|αv[i]|, |αv[i+Nm/2]|)

(2.11)

αr[i] = g(βl[i−Nm/2], αv[i], αv[i−Nm/2])

= (−1)βl[i−Nm/2] · αv[i−Nm/2] + αv[i]

(2.12)

At stage 0, βv of a frozen node is always zero, and for information bit its value is calculated

by threshold detection of the soft reliability according to

βv = h(αv) =

0, if αv > 0

1, otherwise
(2.13)

At intermediate stages, βv can be recursively calculated by

βv[i] =

βl[i]⊕ βr[i] if i ≤ Nm/2

βr[i−Nm/2] otherwise
(2.14)

2.3.2 Constituent Based SC Decoding

SC decoding generally suffers from the high latency due to its inherent serial property.

The processing of getting the partial sum from each note significantly constrain the de-

coding speed. Thus, in order to reduce the latency for calculating partial sum, constituent

based SC decoding has been proposed [37], [38]. By finding some certain patterns in

the source code, some part of the codeword and their corresponding partial sums can be

estimated immediately without traversal. This method significantly reduces the partial-

16

sum-constrained latency. N 0, N 1, N SPC and NREP are the four commonest constituent

code.

N 0 and N 1 are refer to those constituent codes which only contain frozen bits or

information bits, respectively. For N 0 codes, we can set βv to 0 immediately. For N 1

node, βv can be directly determined via threshold detection Eq. (2.13). N SPC and NREP

are two kinds constituent codes containing both frozen bits and information bits. In a

length n N SPC codes, only the first bit is frozen. It renders the constituent codes as a rate

(n-1)/n single parity check (SPC) code. This code can be decoded by performing parity

check with the least reliable bit which has the minimum absolute value of LLR. First, get

the hard decision HDv of βv via threshold detection. Then, calculated the parity by

parity =
Nm∑

i=1

⊕HDv[i]. (2.15)

and, find the index of the least reliable bit via

j = argmin
i
|αv[i]|. (2.16)

Eventually, βv is decided by

βv[i] =

HDv[i]⊕ parity, when i = j

HDv[i], otherwise
(2.17)

In a length n N SPC codes, only the last bit is information bit. In this case, all the βv[i]

should be the same and are reflections of the information contained in the only one in-

formation bit. Thus, the decoding algorithm starts by summing all input LLRs and βv is

17

Stage
0

g

f

f

g

f

g

f

g

f

f

g

f

g

g

Stage
1 Stage

2 Stage
3

α

α

β
β

l

l

r

r

α

β

Ɲ
0

Ɲ
1

Ɲ
SPC

(a)

Stage
0

g

f

f

g

f

g

f

g

f

f

g

f

g

g

Stage
1 Stage

2 Stage
3

α

α

β
β

l

l

r

r

α

β

Ɲ
0

Ɲ
1

Ɲ
SPCƝ

REP

(b)

Figure 2.5: (a) An example of N 0 and N 1 in 8-bit polar code tree, and (b) An example of
N SPC and NREP in 8-bit polar code tree

calculated as

βv[i] =

0, when
∑
αv[i] > 0;

1, otherwise
(2.18)

Fig. 2.5 shows an example of constituent codes in tree presentation.

2.3.3 List Successive Cancellation Decoding

The SC decoding algorithm of polar codes could be regarded as a greedy algorithm to

estimate the transmitted binary sequences. For each bit, there are two candidates, namely,

0 and 1. The selection of the candidate is based on their probability W (y, ui−11 |ûi). This

probability is calculated based on the previously estimated bit. This yields a very low

robustness of entire decoding process since the most a-posterior probability (MAP) will

be missed when any one of the previous decoded bits is not correct. This gives us a hint

that if we can keep more than one path along with the decoding tree, there is a higher

chance we are able to hit the global optimization. The final optimal path as the MAP

estimation is selected by:

ûni = argmax(W (yni |ûni)) (2.19)

The approach by revering multiple paths during SC decoding called list successive

18

1

1

1

1 1 1 1 1 1 1 1

1 1 1

0

0 01

0 0 0 0

0 0 0 0 0 0 0 0

u4
^

u2^

u3^

u1
^

Selected Path

1

1

1

1 1 1 1 1 1 1 1

1 1 1

0

0 01

0 0 0 0

0 0 0 0 0 0 0 0

u4
^

u2^

u3^

u1
^

Figure 2.6: List successive cancellation decoding paths on decoding tree

cancellation. Actually, SC can be regarded as a special case of LSC. Fig. 2.6 shows the

two relationship between LS and LSC. The upper figure is the decoding path of SC, we

can see only one path survival at each layer. The bottom one describe the decoding path of

LSC with list size two, which means two paths are reserved at each layer. The optimized

decoded codeword is selected according to Eq. (2.19)

19

2.3.4 Belief Propagation Decoding

Both SC and LSC are decoding the codewords in a serial fashion. There is another

approach which is able to perform decoding in parallel referred as belief propagation

(BP) [52]. BP is a message passing algorithm which is capable of iteratively refining

the codewrod information along the factor graph. The factor graph of polar code BP de-

coding is based on the encoding architecture. Fig. 2.7 shows an example of factor graph

of a polar code with length n=8.

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

Figure 2.7: BP factor graph of n=8 polar codes

As Fig. 2.7 shows, it’s very similar to the encoding architecture. For length n polar

20

code, there are m stages in the factor graph, m = log2(n). The bits on the most right

column contain the information of the channel output. The bits on the most left column

contain the information for the estimated codeword. For the locations corresponded to

the frozen and information bits, they are feeding∞ (strong 0) and 0 (the most uncertain)

to the factor graph, respectively. The messages are iteratively refining between channel

output and estimated codeword until reaching the maximum iteration number or meeting

early-terminate requirement.

(i, j)

(i+2(j-1), j) (i+2j, j+1)

(i, j+1)Li,j

Ri,j

Li,j+1

Ri,j+1

Li+2 ,j
(j-1)

Ri+2 ,j
(j-1)

Li+2 ,j+1
(j-1)

Ri+2 ,j+1
(j-1)

Figure 2.8: Basic kernel of BP algorithm

The messages are updated with the following rules. Fig. 2.8 shows the basic kernel

of the BP decoding. For each node, there are one incoming message and one outcoming

messages. The message propagated from right to left through node (i,j) is designated by

Li,j . The other message passed from the other direction is referred as Ri,j . Both of them

are presented in LLR form. The outcoming messages is updated based on the incoming

21

message and outcoming messages of other nodes via follows rules:

Li,j = G(Li,j+1, Li+2j−1,j+1 +Ri+2j−1,j) (2.20)

Li+2j−1,j = G(Ri,j, Li,j+1) + Li+2j−1,j+1 (2.21)

Ri,j+1 = G(Ri,j, Li+2j−1,j+1 +Ri+2j−1,j) (2.22)

Ri+2j−1,j+1 = G(Ri,j, Li,j+1) +Ri+2j−1,j (2.23)

where G(x, y) = ln ((1 + xy)/(x+ y)) is the propagation function to update messages[53].

For a simplified hardware design, the function G typically is replaced by min-sum approx-

imating G(x, y) ≈ sign(x)sign(y)min(|x|, |y|).

22

3. THROUGHPUT CENTRIC SUCCESSIVE CANCELLATION 1

This section we are going to talk about the hardware design of throughput centric

successive cancellation (TCSC) decoder and an decoding-latency-reduced construction

scheme with constituent codes optimization. Before that, let’s start with some review of

conventional SC decoder.

The general architecture of SC decoder was firstly evaluated in [27]. It categorizes the

SC decoder into two types. Tree architecture and line architecture. Fig. 3.1 shows exam-

ples of both architectures. From this figure, we can tell both of them are very straightfor-

ward in term of decoding algorithm. The only difference the how to arrange the processing

unit (PU). Tree architecture instantiates each stage with separate PUs. The interconnec-

tions among them are very simple. However, since only one stage is activated every clock

cycle during decoding. This architecture seems not hardware efficient. Line architecture

is designed to reduce the number of PUs. It only needs to instantiate the stage with maxi-

mum number of PUs. Then, the rest stages can be implemented by reusing thoes PUs. This

approach is able to reduce half number of PUs compared with tree architecture. However,

this is resulting from more complex routing logic. This cost becomes more significant

when code size increases. Besides, tree architecture potentially has the merit that high

throughput friendly if pipeline fashion involved for multiple frames scenario [29]. Thus,

this dissertation work focus on the tree architecture. Some improvement is able to benefit

line architecture as well.

Ideally, for length n polar code, 2n-2 clock cycle latency is need to do decoding. Many

efforts have been done to reduce the latency. To the best of knowledge, (3/4n-1) [30] is the

1Part of this section is reprinted with permission from “Tc: throughput centric successive cancellation
decoder hardware implementation for polar codes” by Tiben Che, Jingwei Xu and Gwan Choi, 2016. Pro-
ceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Page 991-995, c©2016 IEEE.

23

PU

PU

PU

PU

PU

PU

R

R

R

R

R

R

PUR

PU

PU

PU

PU

R

R

R

R

R

R

R

(a)

PU

PU

PU

PU

PU

PU

R

R

R

R

R

R

PUR

PU

PU

PU

PU

R

R

R

R

R

R

R

(b)

Figure 3.1: Examples of (a) tree architecture and (b) line architecture of 8-bit polar code
decoder

faster speed which the conventional constituent code can achieve. However, it is still unac-

ceptable especially for very large n. Constituent codes based [37, 38] SC can significantly

reduce the decoding latency. This section presents a throughput centirc hardware archi-

tecture of it. Algorithmically, constituent code based successive cancellation algorithm

suffers from the fact that its decoder scheduling and the consequent architecture depends

on the code rate; this is a challenge for rate-compatible system. However, by exploiting

the homogeneousness between the decoding processes of fast constituent polar codes and

regular polar codes, the presented design is compatible with any rate. The scheduling plan

and the intendedly designed processing core are also described. Additionally, a specif-

ically designed partial sum generator (PSG) which is compatible with consituent code

based SC decoder is proposed as well. We derive the mathematical presentation with the

partial sums set which is corresponding to each constituent codes. From this, we concoct

a shift-register based PSG from. Besides, a polar code construction scheme that reduces

constituent-code supplemented decoding latency is also presented. We modify the tradi-

tional construction approach to yield increased number of desired constituent codes that

24

speeds the decoding process. For (n, k) polar code, instead of directly setting the k best and

(n-k) worst bits to the information bits and frozen bits, respectively, we thoughtfully swap

the locations of some information and frozen bits according to the quality of their equiva-

lent channels. The algorithm of constituent codes division optimization is presented. All

the relevant implementation and simulation results are presented in this section as well.

3.1 System Overview

Fig. 3.2 shows an overview of proposed system when code length = 16. Processing unit

(PU) performs the f and g functions in Eq. (2.11) and Eq. (2.12), respectively, and its

arithmetic part is used to decode N SPC and NREP as well. Pre-computation technique is

also used, which allows the f and g functions update in the same clock cycle. The PU used

in stage 0 has a slight difference with ordinary PU. We denote it with PU0 in the figure.

According to Eq. (2.16), the minimum LLR value needs to be found. The comparator tree

is used to perform this since it inherently exists in the tree architecture of PUs. A judicious

scheduling permits obtaining the minimum value at stage 0 and recording the choice of

smaller input for each PU at each stage. After that, a backward operation implemented by

a series of parity transmit unit (PTU) can help to locate the minimum one among N SPC

constituent polar codes. Design details are illustrated in section 3.3. The estimation of

current bit in SC decoding is bases on the information of previous decoded bits (β). This

information is also called partial sum. Thus, a partial sum generator (PSG) which can co-

operate with decoding pipeline is also needed. The details the PSG design are presented

in Sec. 3.4.

3.2 Dataflow, Latency and Flexibility Analysis

In terms of tree presentation, SC decoder conventionally process one node in each

clock cycle. Traversal of a subtree contained n leaf nodes needs 2n-2 clock cycles. By

using pre-computation as introduced in [29], which calculate all the possible value in

25

PU

PU

PU

PU

PU

PU

PU

PU

R

R

R

R

R

R

R

R

PU

PU

PU

PU

R

R

R

R

PUR

PUR

PU0

u2i-1

u2i

^

^

R

PSG

LLR1
LLR2

PSG

LLR3
LLR4

PSG

LLR5
LLR6

PSG

LLR7
LLR8

PSG

LLR9
LLR10

PSG

LLR11
LLR12

PSG

LLR13
LLR14

PSG

LLR15
LLR16

Partial Sum Generator (PSG)

To PU

PSG

PSG

PSG

PSG

PSG

PSG

PTU

PTU

PTU

PTU

PTU

PTU

PTU

Stage 0 Stage 1 Stage 2 Stage 3

Figure 3.2: Overview of proposed system when code length = 16

Eq. (2.12) as the same clock cycle as Eq. (2.11) is calculated, the latency can be reduced

to n-1. Furthermore, if this subtree is belong to fast constituent polar codes, the latency

can be further reduced.

For N 0, the feedback are all set to 0, and for N 1, the feedback is determined by

26

hard decision of input LLRs. Initially, both the two computations need 1 clock cycle to

generate partial sums after they are activated. Such scheme is presented in my confer-

ence paper [39]. However, by carefully investigating the principle of the hardware and

algorithm, the latency for N 0 can be further reduced. Since we already know 0s are the

feedback from N 0 constituent codes, we can skip the LLR update step and assign this

value directly. The reason why we still hold one clock cycle in [36] is that one clock cycle

to feed feedback into PSG is needed. If we feed the feedback one clock cycle in advance,

we can avoid the timing bubble. But there is still one corner case for such scheme. That

is when the N 0 is right child, we can not do the feed operation in advance since all the

partial should be feed into PSG in order. For this special case, we still need to hold one

clock cycle. However, according to the principle of polar code encoding and the definition

of N 0, the right child N 0 situation is extremely rare. Thus, for most of the time, there is

no clock cycle consumption for N 0.

ForN SPC , according to Eq. (2.15), Eq. (2.16), and Eq. (2.17), we can tell that there are

3 operations needed. Finding the minimum LLR can be done by a comparator tree, which

is naturally existed in SC decoder with tree architecture since every PU has a comparator

for Eq. (2.11). For n LLRs, finding the smallest one use log2 n clock cycles. Meanwhile,

we can obtain the parity bit when the minimum LLR is found, which is explained in the

next subsection. After that, one more clock cycle is need for signal parity check which is

done by an xor gate. Thus, totally, decoding a length nN SPC constituent polar codes need

log2 n+ 1 clock cycles.

For NREP , according to Eq. (2.18), an accumulation operation is needed. Similar to

the comparator tree, an adder tree also exists in SC decoder within the tree architecture

since every PU has an adder for Eq. (2.12). For a length n NREP constituent polar code,

it needs log2 n clock cycles to decode.

Table 3.1 gives the summary of decoding latency for each constituent polar code.

27

Table 3.1: Summary of decoding latency for each constituent polar code

Type N 0 N 1 N SPC NREP

Latency(clock cycle) 0 1 log2 n+ 1 log2 n

N 0 and N 1 have time complexity O(1) and N SPC and NREP have time complexity

O(log2 n). Compared with commonly discussed SC architecture in [28], [29] and [30],

which all have linear time complexity O(n), we can benefit significantly from proposed

scheduling scheme in term of latency, especially with very large n. Fig. 3.3 shows the

conventional tree presentation of 32-bit polar code and the simplified tree presentation of

32-bit polar code at rate 0.3125 and 0.6875. We can tell that both the number of nodes

in these two simplified trees are significantly reduced. In the proposed design, we also

adopt the pre-computation technique which allow us activate the left child node and right

child node simultaneously. Table 3.2 lists the decoding scheduling schemes of 32-bit po-

lar code using pre-computation SC decoder and proposed fast SC decoder at rate 0.3125

and 0.6875. Pre-computation SC decoder needs 31 clock cycles (CCs) to finish decod-

ing, while fast SC decoder both only need 12 CCs at two different rates, which is much

less than that of pre-computation SC decoder. Also note that the latency of two rates just

happen to be the same in this example.

The main challenge for constituent code based decoder is that the architecture subject

to the rate of codes. This is due to the reason that polar codes with different rates do not

have the uniform distribution of constituent polar codes. Proposed design overcomes this

obstacle by exploring the similarity between the decoding architecture of fast constituent

and regular polar codes. The specific designed PU allows the tree architecture to deal with

both fast constituent and regular polar codes, which means the entire decoding processing

can run smoothly no matter what the distributions of constituent codes are. This archi-

tecture is independent and does not relay on the distribution of constituent codes. This

28

V1
5

V2
4

V1
4

V1
3

V2
3

V3
3

V4
3

V1
2

V2

V7

V8

V16

V15

V1

V2

V1

V32

2

2

2

11

1

1

1

0

0

Stage
0

Stage
1

Stage
2

Stage
2

Stage
4

Stage
5

V5

v6

V5 V1
5

V2
4

V3
3

V6
2

2

V1
5

V1
4

V2
3

V3
2

1

1

V1
4

V4

V11
1

V12
1

v2

3

4

v1
3

v4
2

Ɲ

Ɲ

Ɲ

Ɲ

SPC

REP

1

0

Regular node

Stage
0

Stage
1

Stage
2

Stage
2

Stage
4

Stage
5

(a)

V1
5

V2
4

V1
4

V1
3

V2
3

V3
3

V4
3

V1
2

V2

V7

V8

V16

V15

V1

V2

V1

V32

2

2

2

11

1

1

1

0

0

Stage
0

Stage
1

Stage
2

Stage
2

Stage
4

Stage
5

V5

v6

V5 V1
5

V2
4

V3
3

V6
2

2

V1
5

V1
4

V2
3

V3
2

1

1

V1
4

V4

V11
1

V12
1

v2

3

4

v1
3

v4
2

Ɲ

Ɲ

Ɲ

Ɲ

SPC

REP

1

0

Regular node

Stage
0

Stage
1

Stage
2

Stage
2

Stage
4

Stage
5

(b)

Figure 3.3: (a) Conventional tree presentation of 32 bits polar code, and (b) Simplified tree
presentation of 32 bits polar code at rate 0.3125 and 0.6875.

Table 3.2: Decoding schedule of pre-computation SC and TCSC for length 32 polar code

CC 1 2 3 4 5 6 7 8 9 10 11 12 · · · 30 31

Pre-computation SC
v41
&
v42

v31
&
v32

v21
&
v22

v11
&
v12

v01
&
v02

v03
&
v04

v13
&
v14

v05
&
v06

v07
&
v08

v23
&
v24

v15
&
v16

v09
&
v010

· · ·
v029
&
v030

v031
&
v032

TCSC at rate 0.3125
v41
&
v42

adder tree
v33
&
v34

v25
&
v26

v111
&
v112

comparetor tree
parity
check

TCSC at rate 0.6285
v41
&
v42

v31
&
v32

adder tree
v23
&
v24

v15
&
v16

comparetor tree
parity
check

property provides the flexibility for multiple rates. To switch from one rate to another rate,

only the control signals for given PUs need to be modified.

3.3 Processing Unit

All the outputs of each PU need to be saved to the registers. However, since the each

PU is not activated every clock cycle. There should be a policy to enable and disable the

29

registers update. This can be done via a simple clock gating scheme. Thus such scheme

also benefits the entire architecture in term of low power. Fig. 3.4 shows an example of it.

Q

Q
S ET

CLR

D -

LLR1

LLR2

Unsigned
Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

S2C

ufpsg

bspc

C2S

C2S

0
1

0
1

0
1

+

c3

c1
c2

c4

utpsg

Dout

Cout

brep

0

-

LLR1

LLR2

Unsigned
Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

C2S

C2S

0
1

+

c3

Cout

u2i

bparity

u2i+1

Q

Q
S ET

CLR

D
data

en

0
1

clk

Figure 3.4: Design details of memory controller

Fig. 3.5 shows design details of PU. A single PU can perform f and g functions in

Eq. (2.11) and Eq. (2.12), respectively. Also a PU tree can help to find the minimum values

or do accumulation for multiple inputs. In Fig. 3.5, S stands for signed magnitude number

and C stands for 2’s complement number. Unlike the PU design in [30], in which data

are initially stored as signed magnitude form, our design use 2’s complement as initial

form. We do this for two reasons. 1). According to synthesis result, the critical path of

PU is along with the g function path. By moving number system convert modules to the

f function path, which means using 2’s complement as initial data form, the critical path

is still along with g function path, but with significant reduction. 2). Compared with four

number system convert modules are used in [30], only three are used if use 2’s complement

number. This is more hardware efficient. The benefits of this modification can be seen in

section 3.6.

For each PU, two LLRs are fed simultaneously. Since we use the pre-computation

technique, f and g functions are calculated at the same time. According to Eq. (2.12),

there are only two types of possible results for g function, sum or difference. Its final

30

-

LLR1

LLR2

Unsigned
Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

S2C

ufpsg

bspc

C2S

C2S

0
1

0
1

0
1

+

c3

c1
c2

c4

utpsg

Dout

Cout

brep

0

-

LLR1

LLR2

Unsigned
Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

C2S

C2S

0
1

+

c3

Cout

u2i

bparity

u2i+1

Figure 3.5: Design details of PU

result depends on the corresponding partial sum. The adder is also used for the calculation

ofNREP . When f function is performed, according to Eq. (2.11), both 2 inputs are divided

into two parts: sign bit and unsigned number. Each part is processed separately first, and

then results of two parts are combined together to obtain the updated value. C to S and

S to C modules are needed before and after comparisons, respectively. When it deals with

N SPC , the comparison indicator is output for the parity check bit routing, and the result

of comparison Cout should be hold in register for PTU. utpsg is the partial sum calculated

by the current stage for constituent codes scenario. All the outputs are determined by the

control signals (c1,c2,c3,c4) plus corresponding partial sum bfpsg.

Since every PU does exclusive-or operation to the sign bit of two inputs, according

to Eq. (2.15), the sign bit of the final value in stage 0 should be equal to the parity.

Eq. (2.17) can be performed using an xor gate. The PU that contains the minimum LLR

31

receives the parity check bit and the others receive 0s. The transmission of parity check

bit is done by the PTU which is a two input two output module. One input is the parity

check bit bparity and the other is the comparison indicator of each stage Coutm. The parity

check bit is transmitted via output1 (O1) or output2 (O2) bases on the values of SS. Ta-

ble. 3.3 shows the truth table of PTU. We can obtain the logic expression of O1 and O2 as:

O1 = bparity and Coutm , O2 = bparity and Cout
m. This can be done by two and gates

and one inverter.

Table 3.3: Truth table of PTU

bparity Coutm O1 O2
0 0 0 0
0 1 0 0
1 0 1 0
1 0 0 1

The PU in stage 0, as denote PU0 in Fig. 3.2, has a simpler architecture. Fig. 3.6 shows

the design details of PU0. SinceN SPC cannot exist in stage 0, the top part in Fig. 3.5 which

is relative to single parity check can be removed. Since pre-computing is used, two bits

(u2i,u2i+1) are obtained at the same time. This also means that the PU0 needs to generate

the corresponding partial sums for those two bit. Otherwise, it would not synchronous

with the decoding timing of PSG which can degrade the performance. For g function and

NREP , the output of f function can be feed back to it immediately, and the sign bit of the

result of adding is the partial sum for NREP .

Compared with my paper in [39], there are three main changes. The first one is that

we simplify the multiplexer logic between f function and accumulation forNREP . Instead

of using two MUXs, only one MUX and one and gate are used. This results in better

32

Q

Q
S ET

CLR

D -

LLR1

LLR2

Unsigned
Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

S2C

ufpsg

bspc

C2S

C2S

0
1

0
1

0
1

+

c3

c1
c2

c4

utpsg

Dout

Cout

brep

0

-

LLR1

LLR2

Unsigned
Comparator

|LLR1|

|LLR2|

Sign(LLR1)
Sign(LLR2)

C2S

C2S

0
1

+

c3

Cout

u2i

bparity

u2i+1/
Partial Sum1

Q

Q
S ET

CLR

D
data

en

0
1

clk

Partial Sum0

Figure 3.6: Design details of PU0

timing and silicon area performance. The second one is that we remove the two memory

parts to hold the results of addition and subtraction for pre-computing. Those two are

unnecessary since the inputs of each stage do not change until it finish both left and right

child computation. Logical wise, there is no need to hold those result since the outputs

keeps the same until the inputs change. Timing wise, those part are not on the critical path

thus no need to buffer them. The third change is that clarify the outputs about partial sum

of each PU.

3.4 Shift-Register Constituent-Code Based Partial Sum Generator

Partial sum generator (PSG) is essential to both the constituent code based and the

conventional SC decoder. Its importance can be evaluated from both function and timing

performance. In terms of function, without a correct partial sum calculation, the entire

codewords cannot be decoded correctly. In terms of timing performance, the PSG must

generate the output in the same cycle when the bits are estimated. Otherwise the decoder

need one more cycle to do the partial sum calculation. Such overhead becomes significant

especially for long code length scenario. Additionally, such timing requirement also makes

33

the PSG on the decoding path of the decoder, which decides the maximum operation

frequency of entire system. Thus, a good PSG design is very necessary for the system.

PSG design for constituent code based SC decoder is more complicated than that of

conventional one. First, a routing system is needed for PSG input. Since the partial sum

can be generated from PUs in any stages, and the number of partial sums from each is

different, a multiplexer network is necessary to make sure the correct partials sums are

feed in to the PSG. The details of multiplexer network are described in section 3.4.2.

Second, the computation unit needs more multiplexing logic. The computation of partial

sum is actually based on the encoding architecture. For PSG of consituend code based SC

decoder, the computation unit needs to consider the inputs location for partial sums form

different stage. A MUX is placed at each node of the computation unit. Fig. 3.7 shows

an example of directly mapped constituent codes based PSG for 16-bit polar code (DM-

PSG). From that, we can tell that the critical path after multiplexer network is (logn−1)(M

Xor+ M MUX) where M means the delay of that component. This is not what we

expected since it increases with code length. Thus, a PSG with better timing performance

needs to be investigated.

Among all the aforementioned PSG design, shift-register-based PSG (SR-PSG) [42,

43] gives us a good inspiration. For length n polar code decoder, it consists of n regis-

ters and some other simple combination logic. Along with the estimation of each ûi, the

registers perform shift calculation and the partial sums can be obtained from their cor-

responding register. Its architecture is illustrated in Fig. 3.8. This architecture is built

according to the following rule:

R0 ⇐ ûi · ci,0
Rk ⇐ Rk−1 ⊕ (ûi · ci,k), if k > 0

(3.1)

34

R0

R1

R2

R3

R4

R5

R6

R7

Multiplexing
Network

R0

R1

R2

R3

R4

R5

R6

R7

Multiplexing
Network

Figure 3.7: The conventional architecture of constituent based PSG

where · and⊕ stand for and and exclusive-or operation, respectively. In Fig. 3.8,Rk means

the kth register, ûi means the ith estimated bit. βi,j means the jth partial sum in stage i.

ci,k means the ith row and kth column in the generate matrix G. The matrix generation

unit is able to generate ci,k with very simple logic. The SC decoder consists of many

basic computation parts called processing unit (PU). Each partial sum needs to be feed

into corresponding PU. The shift register based architecture can guarantee that all partial

sum required by a PU are all generated in the same register, which can avoid any extra

routing logic in the circuit.

Such architecture is able to receive the estimated bit and update the corresponding par-

tial sum by every valid cycle, which keeps highly consistent with SC decoding processing.

However, this architecture is not suitable for constituent codes based SC decoder since

35

xor
Q

Q
S ET

C LR

D

xor
Q

Q
S ET

C LR

D

xor
Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

AND AND AND AND

1
1
1
1

0
1
0
1

0
0
1
1

0
0
0
1

ui

Ci,0 Ci,1 Ci,2 Ci,3

β0,0=u0

β1,1=u1

β2,0=u2

β3,2=u3

β4,0=u4

β5,1=u5

β6,0=u6

u7

Step 1 and 5
Step 2 and 6
Step 3 and 7
Step 4 and 8

Step i+1

Step 1
Step 2
Step 3
Step 4
Step 5
Step 6
Step 7
Step 8

Matrix Generation Unit

0
β0,1=u0+u1

u1

β2,2=u2+u3

u3

β4,1=u4+u5

u5

u6+u7

0
0

u1+u2+u3

β1,2=u1+u3

u2+u3

u3

u4+u5+u6

u5+u7

0
0
0

β0,2=u1+u2+u3+u4

u1+u3

u2+u3

u3

u4+u5+u6+u7

^
^
^
^

^
^

^

^

^

^ ^
^
^ ^

^
^ ^

^
^ ^ ^ ^

^ ^ ^
^

^^
^^
^^^

^ ^ ^^
^ ^

^^
^

^ ^ ^ ^

R0 R1 R2 R3

Figure 3.8: The architecture of SR-PSG

some partial sums are obtained directly instead of calculating from estimated bits. Thus,

a PSG for constituent codes based SC decoder should have the capability to generate the

new partial sums from either the directly got intermediate partial sums or the estimated

bits, and to maintain the coherence of them.

3.4.1 Mathematical Derivation

For a length n constituent code, its corresponding estimated bits and partial sums are

denoted as ûci−n+1 . . . ûi
c and βc0 . . . β

c
n−1, respectively. All the βc are obtained at the same

time. For those bits who are not belongs to any constituent codes, we still have to calculate

their corresponding partial sums accroding to Eq. (3.1). Thus, if we still want to keep

consistent between directly got intermediate partial sums and the one-by-one-estimated

bits, we need to derive the mathematical presentation with βc from Eq. (3.1).

36

(a)

(b)

Figure 3.9: (a) Elements shift in generation matrix, and (b) Diagonal cycle-shift in gener-
ation matrix

For k > n and k ∈ [a · n, (a + 1) · n − 1], a = 1, 2, . . ., according to Eq. (3.1), we

37

have
Rk = Rk−1 ⊕ (ûci · ci,k)

= Rk−2 ⊕ (ûci−1 · ci−1,k−1)⊕ (ûci · ci,k)

· · ·

= Rk−n⊕

[
ûci−n+1, · · · , ûci

]

ci−n+1,k−n+1

...

ci,k

.

(3.2)

As we know, ci,k is the element of generation matrix G which is the Kronecker power of

F =

1 0

1 1

. Combine this property with our observation on the matrix, we conduct the

following rule which is also noted in Fig. 3.9a.

ci−n+1,k−n+1

...

ci,k

=

ci−n+1,(a+1)·n−(k mod n)−1

...

ci,(a+1)·n−(k mod n)−1

. (3.3)

According to the definition of generation matrix and concept of constituent code, when

ci,k = 0, the right part of Eq. (3.3) is equal to a all zero vector, and when ci,k = 1

the right part of Eq. (3.3) is equal to the (n− (k mod n)− 1)th column in the generation

matrix for length n polar code. According to the definition of partial sum and Eq. (2.14),

we get

[ûci−n+1, · · · , ûci] · [ci−n+1,p(k), · · · , ci,p(k)]T = βp(k) (3.4)

where p(k) = (n− (k mod n)− 1).

Now we apply above observation back to Eq (3.2). We define the vector Ra =

[Ra·n, · · · , Ra·n+n−1] and ci,a = [ci,a·n, · · · , ci,a·n+n−1] for k ∈ [a · n, (a + 1) · n −

38

1], a = 1, 2, We also define the vectors ûc = [ûci−n+1, · · · , ûci] and β̂c = [βcn−1, . . . , β
c
0].

Then, we have

Ra = [Ra·n, · · · , Ra·n+n−1]

= [R(a−1)·n, · · · , Ra·n−1]⊕

[ûci−n+1, · · · , ûci]

ci−n+1,a·n−n+1 · · · ci−n+1,a·n

...

ci,a·n · · · ci,a·n+n−1

= [R(a−1)·n, · · · , Ra·n−1]⊕

ûc

ci−n+1,p(a·n) · · · ci−n+1,p(a·n+n−1)

...

ci,p(a·n) · · · ci,p(a·n+n−1)

=

0, if ci,a = 0

Ra−1 ⊕ ·βc, if ci,a = 1

(3.5)

For the consistent with Eq. (3.1), we rewrite Eq. (3.5) as follow:

Ra = Ra−1 ⊕ (βc&ci,a) (3.6)

where & stands for the bit-wise and operation.

For 0 6 k < n, similar to Eq. (3.2), we have

Rk = [ûci−k, · · · , ûci] · [ci−k,0, · · · , ci,k]T (3.7)

According to the definition of G and constituent codes, we can conduct that for any length

39

n constituent codes, the first n columns of its corresponding rows in G should also be a

generation matrixGn for length n polar code. As described in Fig. 3.9b, the diagonal cycle

shift is same as each correspond column, and consider the Gn is a lower triangular matrix,

we get

[ci−n+1,k+1, · · · , ci−k−1,n−1, ci−k,0, · · · , ci,k]T

= [ci−n+1,n−1−k, · · · , ci,n−1−k]T

= [0, · · · , 0, ci−k,n−1−k, · · · , ci,n−1−k]T

(3.8)

Thus, Eq. (3.7) can be rewritten as:

Rk = [ûci−k+1, · · · , ûci] · [ci−k,0, · · · , ci,k]T

= [ûci−n+1, · · · , ûci] · [0, · · · , 0, ci−k,0, · · · , ci,k]T

= [ûci−n+1, · · · , ûci] · [ci−n+1,n−1−k, · · · , ci,n−1−k]T

= βcn−k−1

(3.9)

Thus, combine Eq. (3.9) and Eq. (3.6), we derive the mathematical presentation for partial

sum of constituent based polar decoder as follow:

Ra =

βc, if a = 0

Ra−1 ⊕ (βc&ci,a), if a > 1.
(3.10)

3.4.2 Proposed Architecture

According to Eq (3.10), the shift-register constituent-code based partial sum generator

(SR-CB-PSG) is proposed as in Fig. 3.10. Compared with Fig. 3.8, there are three dif-

ferences. The first difference is the input. For SR-PSG, only current estimated bit is sent

into, which means the input is only from the PU from stage 0. However, for SR-CB-PSG,

the inputs are from PUs of any stage, depends on the length of constituent code. Thus,

40

PU0,0

PU1,0

PU1,1

PU2,0

PU2,1

PU2,2

PU2,3

R0

R1

R2

R3 R0

(a) (b) (c)

PU0,0 PU 1,1 PU2,3

PU0,0 PU 1,0 PU2,2

PU0,0 PU 1,1 PU2,1

PU0,0 PU 1,0 PU2,0

PU0,0 PU 1,1 PU2,3

PU0,0 PU 1,0 PU2,2

PU0,0 PU 1,1 PU2,1

PU0,0 PU 1,0 PU2,0

1

0

0

0

1

1

0

0

1

1

xor
Q

Q
S ET

C LR

D

xor
Q

Q
S ET

C LR

D

xor
Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

AND AND AND AND

Matrix Unit

R0 R1 R2 Rn-1

2m-1 Shifter

 ...

Multiple-
xing

Network ...
 ...

...
...

...

...

...
...

 ...

...

Inputs
from PU

Control
Signal

Generator
Control Signal S

Control
Signal M

A2 A3 A4 A5 A6A1A00

S0 S1 S2 S3 S4 S5 S6

C1

C2

C3

Figure 3.10: Overall architecture of SR-CB-PSG

a multiplexing networking is needed to route all the inputs values to the right registers.

The second difference is about the shift function. According to Eq (3.10), instead of just

shifting by one bit, the shifter should have the capability to shift n-bit where n is the length

of constituent code. According to the definition of constituent code, n should be the any

power of 2. Thus, A specific design (2m-1)-bit shifter is proposed. The control signals

for both the muxing networking and shifter are from the Control Signal Generator (CSG)

with simple logic. The last deference is matrix generation unit. For each constituent code,

its corresponding ci,j should be the ith row of the generation matrix, where i is the index

of the last bit in the constituent code. Due to the irregularity of the constituent code, it’s

unnecessary to build an online generator for that. Thus, a pre-calculated ROM is placed.

It’s a trade-off between design complexity and hardware resource. It can be replaced by a

re-configurable memory device like RAM for flexibility.

Fig. 3.11 shows an example of partial sum routing for 8 bit constituent code based

polar code. We can see each register has specific corresponding PU from each stage.

The essential of multiplexing networking is to route the partial sums to the right register.

Noticeably, there are two output form stage 0 since pre-computing is used. For length n

41

PU0,0

PU1,0

PU1,1

PU2,0

PU2,1

PU2,2

PU2,3

R0

R1

R2

R3 R0

(a) (b) (c)

PU0,0 PU 1,1 PU2,3

PU0,0 PU 1,0 PU2,2

PU0,0 PU 1,1 PU2,1

PU0,0 PU 1,0 PU2,0

PU0,0 PU 1,1 PU2,3

PU0,0 PU 1,0 PU2,2

PU0,0 PU 1,1 PU2,1

PU0,0 PU 1,0 PU2,0

1

0

0

0

1

1

0

0

1

1

Figure 3.11: (a) PU tree of SC decoder, (b) PUs and their corresponding register, and (c)
Architecture of multiplexing network

polar code, there are log2 n stages in the decoder and n/2 registers in the SR-CB-PSG. If

the multiplexing networking is built from the basic 2-bit MUX, each register is assigned

an identical MUXs networking made by (log2 n − 1) MUXs. All the networkings share

the same control signal. According to its architecture, the control signals are the direct

binary mapping of its stage index. Totally, n/2 · (log2 n − 1) MUXs are needed. Since

the multiplexer networking needs to wait each PU finish computing to get the valid inputs,

it is on the critical path of the decoder. Thus, it causes additional dlog(log n)e ·4(MUX)

delay, where4(MUX) is the delay for a single MUX.

For (2m-1) shifter, we proposed a barrel-shiftr-based architecture for that. For length n

polar code, m 6 log2 n/2. The shifter performs logic right shift. For k < nc, where k is

the index of the register and nc is the length of the current constituent code, 0s are added to

the left. For k > nc, we do shift. Those behaviors satisfy the first and second in Eq (3.10).

Fig. 3.12 shows an example of (2m-1) shifter for 16-bit polar code decoder. All the

MUXs in the same row can shall the same control signal. Those signals is generated by

a k to 2k decoder, where k = dlog2(log2 n)e for length n polar code. For length n polar

code, there are (n/2− 1) · (log2 n − 1) MUXs are needed for the shifter. Since the shifter

42

PU0,0

PU1,0

PU1,1

PU2,0

PU2,1

PU2,2

PU2,3

R0

R1

R2

R3 R0

(a) (b) (c)

PU0,0 PU 1,1 PU2,3

PU0,0 PU 1,0 PU2,2

PU0,0 PU 1,1 PU2,1

PU0,0 PU 1,0 PU2,0

PU0,0 PU 1,1 PU2,3

PU0,0 PU 1,0 PU2,2

PU0,0 PU 1,1 PU2,1

PU0,0 PU 1,0 PU2,0

1

0

0

0

1

1

0

0

1

1

xor
Q

Q
S ET

C LR

D

xor
Q

Q
S ET

C LR

D

xor
Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

AND AND AND AND

Matrix Unit

R0 R1 R2 Rn-1

2m-1 Shifter

 ...

Multiple-
xing

Network ...
 ...

...
...

...

...

...
...

 ...

...

Inputs
from PU

Control
Signal

Generator
Control Signal S

Control
Signal M

A2 A3 A4 A5 A6A1A00

S0 S1 S2 S3 S4 S5 S6

C1

C2

C3

Figure 3.12: An example of (2m-1) shifter for 16-bit polar code decoder

can start shift data without waiting PU to finish computing, it is not on the critical path.

Thus, it should not deteriorate the timing performance of the decoder at all.

3.5 Fix Point Analysis

Fig. 3.13 shows the effect of quantization on the (1024,512) polar code. For channel

outputs and inner LLRs, we use separate quantization schemes. The quantization schemes

are shown in (C,L,F) format. Where C, L and F are the number of bits used for presenting

channel output, inner LLRs and fraction parts of both channel output and LLRs, respec-

tively. Since no multiplication or division used, which means the length of fraction does

not change, channel outputs and inner LLRs use the same fraction precision. As the result

of the trade-off between hardware efficiency and decoding performance, we choose (4,5,0)

quantization scheme in our design.

3.6 Implementation Results and Relevant Discussion

To the best of our knowledge, the proposed design is the first PSG design especially

design for constituent codes based SC decoder. Thus, there is no reference design we can

43

0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No

B
E

R
/F

E
R

FER (3,5,0)
FER (4,4,0)
FER (4,5,0)
FER (5,6,1)
FER floating point
FER conventioanl SC(floating)
BER (3,5,0)
BER (4,4,0)
BER (4,5,0)
BER (5,6,1)
BER floating point
BER conventioanl SC(floating)

Figure 3.13: Effect of quantization on the BER/FER performance of (1024,512) code

directly compare with. In this section, we list all the result we have and presents some

relevant discussions.

Table 3.4: Critical path comparison

Critical Path
SR-PSG[42] 4(AND) +4(XOR)

DM-PSG dlog2(log2 n)e · 4(MUX) + log2 n(4(MUX) +4(XOR))
SR-CB-PSG dlog2(log2 n)e · 4(MUX) +4(AND) +4(XOR)

Table 3.4 shows the critical path comparison between proposed PSG and the PSG

in [42]. We can tell the delay overhead comes from the muxing network. Ideally, the

44

Table 3.5: Decoder latency comparison for length=1024 polar code

code rate
0.2 0.35 0.5 0.65 0.8

conventional [30] 767
constituent code based 263 298 266 200 160

reduction(%) 65.7 61.1 65.3 73.9 79.1

maximum frequency of constituent codes based SC decoder is lower than that of conven-

tional SC decoder. However, after taking the latency reduction into account, as shown in

Table 3.5, constituent codes based SC decoder is able to achieve much higher throughput.

The conventional SC decoder is referred from [30] which is the lowest latency conven-

tional SC decoder to the best of out knowledge.

Table 3.6 shows the resource consumption estimation of proposed SR-CB-PSG for

length n polar code decoder and the comparison with other two conventional PSG. The

most resource consumption part is the MUX since it used in both multiplexer networking

and shifter. The estimation for the ROM size is based on the average calculation since the

decoding latency changes along with the code rate.

Table 3.6: Resource comparison

SR-CB-PSG DM-PSG [42] [29]
DFF n/2 n/2 n (n2 − 4)/12
MUX (n− 1) · (log2 n− 1) n · (log2 n− 1) - n− 2
XOR n/2− 1 n/4(log2 n− 1) n− 2 n/2− 1
AND n/2 - n/2 -

ROM(bit) n2/10(average) - - -

The proposed design can be targeted on either ASIC or FPGA. We synthesized both

with Nangate FreePDK 45nm process and on Xilinx Kintex-7 FPGA KC705 Evaluation

45

board. Table 3.7 shows the hardware resource of SR-CB-PSG for 1024 code length polar

code decoder on both of them.

Table 3.7: Hardware resource of SR-CB-PSG for 1024 code length polar code decoder

XC7K325T-2FFG900C FPGA nangate 45nm

Hardware Resource
slice LUTs slice REGs area
1569(< 1%) 512(< 1%) 16333µm2

Noticeably, the architecture we discussed in this paper is based on the consideration

for the worst case, which is that the maximum length of constituent codes could be n/2.

However, for practical application, the maximum length of constituent is fix for certain

code rate and usually cannot approach n/2. For those case, the logic of both the multiplexer

networking and shifter could be even simpler, which will result in a better timing and

silicon area performance.

Table 3.8: Hardware comparison of different (n,k) SC decoder with q-bit quantization for
inner LLRs using tree architecture

Hardware Type [29] [27] [30] Proposed Design
of PU n− 1 n− 1 n− 1 n− 1

of PTU 0 0 0 2/n− 1
of 1 bit REG ≈ 3qn ≈ qn ≈ 3qn ≈ (q + 1)n

HC 1.3 1 1.3 1.11
Latency (clock cycle) n− 1 2n− 2 0.75n− 1 ≈ (0.1 ∼ 0.3)n

Throughput 2 1 2.67 ≈ 6.69 ∼ 22.26
Throughput/HC 1.53 1 1.74 6.02 ∼ 20.05

Table. 3.8 shows the hardware comparisons between proposed design and other state-

of-the-art designs. All the candidates are (n,k) SC decoder with tree architectures, and they

46

all use q-bit quantization for inner LLRs. All the throughputs and hardware complexity

(HC) are normalized to the SC decoder in [27], and the hardware complexity is estimated

based on the synthesis results. The latency for proposed design is a range with respect to

the code rates change from 0.05 to 0.95. From this table, we can see that our proposed

design achieves the highest throughput per unit of hardware complexity. The exact la-

tency depends on the code rate. Fig. 3.14 shows the latency reduction of the proposed

design along with code rates from 0.05 to 0.95. The reduction is relative to the 2b-SC-

Precomputation decoder which so far is known to be the fastest. The figure shows at least

60% latency reduction can be achieved by our proposed design. This is very promising

for many applications where high rate channel codes are needed, such as for data storage

system.

Additionally, we implemented the proposed design with Verilog for the polar code with

length=1024 and synthesized it using Nangate FreePDK 45nm process with Synopsys De-

sign Complier. We calculated the throughput for (1024,870) and (1024,512) polar codes.

Table 3.9 shows the synthesis result for (1024,870) and (1024,512) polar codes. Notice

that the maximum frequency is higher than that reported in [30] which use the same pro-

cess as our design. Our design in theory should have a lower maximum frequency since we

have one more Mux delay for regular and fast constituent polar codes. This performance

improving is attributable to the modification we have done to PU as described in section

3.3.

3.7 Construction Scheme with Constituent Codes Optimization

All the aforementioned works stress on the decoding sides. However, in this section,

we explore the potential of constituent codes from an opposite angle. Since constituent

code is an approach to reduce decoding latency, we stress on the construction scheme to

make the codeword are more constituent-code-friendly. By adjusting the traditional con-

47

Table 3.9: Synthesis result for (1024,870) and (1024,512) polar codes

Silicon Area (µm2) 275899
Max Frequency (GHz) 1.04

Latency (1024,870) (clock cycle) 156
Throughtput(1024,870) (Gbps) 5.81

Latency (1024,512) (clock cycle) 266
Throughtput(1024,512) (Gbps) 2.01

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
60

65

70

75

80

85

90

Code Rate

L
at

en
cy

 R
ed

uc
tio

n(
%

)

Figure 3.14: Latency reduction vs. code rate

struction approach, more expected types of constituent codes are made for decoding. For

(n,k) polar code, instead of directly setting the k best and (n-k) worst bits to the information

bits and frozen bits, respectively, we thoughtfully swap the locations of some information

and frozen bits according to the quality of their equivalent channels. The corresponding

algorithm to optimize the constituent codes division is also described. We conducted the

simulation of 1024 and 2048 length polar codes with multiple rates and analyzed the de-

coding latency for various length codes. The numerical results shows that the proposed

48

construction scheme typically achieves 4-20% latency reduction with negligible loss in

decoding performance with carefully selected optimization threshold. Some relevant dis-

cussions are also presented.

3.7.1 Constituent Codes Optimization

As described before, constituent codes are decoded faster than conventional polar

codes. Thus, in order to reduce the decoding latency, we expect more constituents codes,

especially constituent codes with large length. According to the definition of constituent

codes, the initial distribution of constituent codes is determined by the location of infor-

mation and frozen bits. If we can change the locations, we are able to manually produce

expected constituent codes. However, the location of frozen and information bits are very

sensitive, and random changes may cause negative influence on the coding performance.

Thus, a thoughtful construction scheme to produce more expected constituent code is on

demand. The division of information and frozen bits is decided by the qualities of the

equivalent channels which are corresponding to each bit. Based on the channel model, the

equivalent channel qualities can be calculated accordingly [7] [9] [54] [55]. This gives us a

hint that if we swap some information and frozen bits those with similar channel qualities,

this might only incur a very slight performance loss. The numerical simulation results in

the following section prove this idea. In this work, binary erasure channel (BEC) is used as

our channel model, and thus Bhattacharyya parameter is used as the metric for equivalent

channel quality. This method can be extended to any other kind of channel model.

Now, we have the idea about how to change the division of constituent codes. Next,

we need to consider what kind of changes are desired. For any length n polar code, it can

be regarded as a combination of the following four types of sub-codewords.

• Type-I: All the bits are frozen bits. This is also N 0 constituent code.

• Type-II:All the bits are information bits. This is also N 1 constituent code.

49

• Type-III: Only one bit is information bit, the rest are frozen bits. This can be re-

garded as the combination of one NREP and multiple N 0 constituent codes.

• Type-IV: Only one bit is frozen bit, the rest are information bits. This can be re-

garded as the combination of one N SPC and multiple N 1 constituent codes.

According to T. Che’s results [39], there is only one clock cycle needed for decoding

N 0 and N 1 node. Thus, it is unnecessary to optimize type-I and type-II codes since they

are already fully optimized. Our target should be focused on the type-III and type-IV.

These two types are similar, they all only have one node with different type with others.

There are two situations we need to deal with. The first situation is the optimization for

single type-III or type-IV sub-tree. We can swap the different node with the first or last

one to make it a N SPC or NREP nodes for type-IV or type-III sub-tree, respectively. The

second situation is that the optimization for a combination of type-III and type-IV sub-

trees. For this case, we can swap the different node between the two types to make them

became one type-I and one type-II sub-trees. For the first situation, suppose we have one

Type-III node at stage m+1. It consist of one NREP and one N 0 node at stage m. This is

shown in Fig. 3.15a. Totally, it needs 1 + log2 2
m = m+ 1 to finish decoding. If we move

the place of the information bit to make it a NREP constituent code, the new latency for

decoding should be log2 2
m+1 = m + 1. There is no change if we do this modification.

This is also similar to type-IV situation. For the second situation, suppose we have one

type-III and one type-IV nodes at stage m as shown in Fig. 3.15b, the totally latency for

decoding should be 2m+1. If we swap the information bit in type-III and frozen bit in

type-IV, we get one N 0 and one N 1 nodes. The total should be reduced to 2. This makes

a huge difference. Thus, our target should be the swap operation between type-III and

type-IV nodes.

Based on above discussion, the constituent code division optimization algorithm is

50

Ɲ 0

Ɲ REP
Type-III Ɲ REP

(a)

Type-III

Type-IV

Ɲ 0

Ɲ 1

(b)

Figure 3.15: Examples of constituent codes division optimization

proposed in algorithm (1). After we get the information and frozen bits positions using

the traditional way, we apply this algorithm to adjust the location of some information

and frozen bits to make more desired constituent code. This is an enhancement to the

traditional construction method.

3.7.2 Simulation Results

Fig. 3.16 shows the simulation results of proposed construction scheme. They are

the ber vs Eb/N0 performance for 1024 and 2048 length at different rate with multiple

51

Algorithm 1 constituent code oriented polar code construction
Input: The set of Bhattacharyya parameter, εn; the set of bit property (frozen or infor-

mation), L; the threshold for bit swapping,Th.
Initialize: index = 1.
1: get the sub-codeword-type look up table T from L; this table gives the sub-codeword

type information and its index
2: if T [index] is type-III sub-codeword then
3: get the index i of the information bit in T [index], search all the next type-IV

sub-codewords and find the one whose frozen bit’s Bhattacharyya parameter has the
minimum difference with εn[i]. Recode the index f of that.

4: if |εn[i]− εn[f]| < Th then
5: swap the property of L[i] and L[f], update T .
6: end if
7: end if
8: if T [index] is type-IV sub-codeword then
9: get the index f of the frozen bit in T [index], search all the next type-III sub-

codewords and find the one whose information bit’s Bhattacharyya parameter is has
the minimum difference with εn[f]. Recode the index i of that.

10: if |εn[i]− εn[f]| < Th then
11: swap the property of L[i] and L[f], update T .
12: end if
13: end if
14: increase index by 1, repeat to 2, until to the end of T

52

optimization thresholds. The polar codes is constructed based on the BEC channel and

with target erasure rate 0.3. Table 3.10 shows the decoding latency for each threshold and

the comparison with constituent codes decoding without any optimization and other state-

of-the-art decoders. We even calculated the latencies for the codes with very long length

such as 16384.

According to Fig. 3.16 and Table 3.10, we note that the proposed construction scheme

generally is able to achieve at least around 20% latency reduction with an negligible gain

loss. For a certain code length, we can find that the acceptable threshold is increasing

along with the code size. This is due to the nature of channel polarization. There are more

frozen and information bits mixed in the front and middle part of codeword for lower

rate codes, which gives more flexibility during the optimization. However, this does not

indicate that this coding scheme is not working well on high rate. The interesting part is

that the performance on high rate is as good as the low rate according to Fig. 3.16. It’s

possibly attributable to the following two causes. This first is that the coding performance

of high rate itself is much worse than that of low rate. This cause the difference after

optimization is not so obvious. The second one is that the simulation we run is still not

long enough. This is per coding theory that suggests the longer polar code will generally

yield higher polarization. For a certain code rate, we can find the acceptable threshold

is decreasing along with the code length. Since the longer codes are more polarized, the

difference of each equivalent channel is becoming smaller and smaller as the length is

increasing. This works fine with low and medium length but not so obvious with high

length. This also can be explained by the two reason presented before.

We compared the latency of proposed design with the decoder in [30] which is the

fastest non-constituent-codes-based polar code decoder to the best of our knowledge. We

can see even constituent codes decoder without any optimization is much faster than that.

Our proposed construction scheme is capable of achieving 20% or more latency. This is

53

very important especially for very long code length.

It is noticed that another approach that changing the frozen set to reduce the constituent

codes related latency is reported in [56]. Although the fundamental idea of our work and

that in [56] are similar, these two target two different decoder architectures and proposed

two different constituent code oriented polar code construction methods. Without prior

access to [56], we independently propose our work in this dissertation.

54

1 1.5 2 2.5 3 3.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No

B
E

R
/F

E
R

lenght=1024,rate=0.3

ber no optimization
ber th=1e−13
ber th=5e−12
ber th=1e−11
fer no optimization
fer th=1e−13
fer th=5e−12
fer th=1e−11

1 1.5 2 2.5 3 3.5
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No

B
E

R
/F

E
R

lenght=1024,rate=0.5

ber no optimization
ber th=1e−4
ber th=5e−4
ber th=1e−3
fer no optimization
fer th=1e−4
fer th=5e−4
fer th=1e−3

1 1.5 2 2.5 3 3.5
10−3

10−2

10−1

100

Eb/No

B
E

R
/F

E
R

lenght=1024,rate=0.7

ber no optimization
ber th=0.1
ber th=0.2
ber th=0.4
fer no optimization
fer th=0.1
fer th=0.2
fer th=0.4

1 1.5 2 2.5 3 3.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No

B
E

R
/F

E
R

lenght=2048,rate=0.3

ber no optimization
ber th=1e−18
ber th=1e−17
ber th=1e−16
fer no optimization
fer th=1e−18
fer th=5e−17
fer th=5e−17

1 1.5 2 2.5 3 3.5
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/No

B
E

R
/F

E
R

lenght=2048,rate=0.5

ber no optimization
ber th=1e−6
ber th=5e−5
ber th=1e−4
fer no optimization
fer th=1e−6
fer th=5e−5
fer th=1e−4

1 1.5 2 2.5 3 3.5
10−4

10−3

10−2

10−1

100

Eb/No

B
E

R
/F

E
R

lenght=2048,rate=0.7

ber no optimization
ber th=0.1
ber th=0.2
ber th=0.3
fer no optimization
fer th=0.1
fer th=0.2
fer th=0.3

Figure 3.16: The ber vs Eb/N0 performance for proposed construction scheme

55

Table 3.10: Latency reduction

decoder length rate threshold latency reduction(%)

proposed

1024

0.3

no optimization 303
1e-13 288 4.9
1e-12 260 14
1e-11 234 22.7

0.5

no optimization 266 -
1e-4 255 4.1
5e-4 218 18
1e-3 197 21.8

0.7

no optimization 172 -
0.1 165 4
0.2 137 20
0.4 126 23.6

2048

0.3

no optimization 576 -
1e-18 549 4.6
1e-17 519 9.9
1e-16 493 14.4

0.5

no optimization 493 -
1e-6 487 1.2
1e-5 436 10.5
1e-4 323 33.6

0.7

no optimization 297 -
0.1 269 9.4
0.2 248 16.5
0.3 228 23.2

16384

0.3

no optimization 3992 -
1e-50 3661 8.3
1e-45 3242 18.8
1e-40 2721 31.8

0.5

no optimization 3327 -
1e-13 3187 4.2
1e-12 2898 12.9
1e-11 2465 25.9

0.7

no optimization 1350 -
0.1 1260 6.6
0.2 1165 13.7
0.4 898 33.4

[30]
1024

-
767

-2048 1535
16384 12287

56

4. OVERLAPPED LIST SUCCESSIVE CANCELLATION APPROACH 1

PU
PU

PU
PU

PU
PU

PU

PU

PU

...

...

...

...

...

...

...

.

SC Decoder

MCU

N Copies for
list =N

.

Path Metrics Memory

...

LLR and Partial Sum Memory

...

Survival
Path

Memory

Decoding
Output

Sorting
Module

Figure 4.1: The conventional architecture of LSC decoder

For the LSC algorithm, every information bit can derive two candidate paths, which

are used to represent the decision of bit as 0 or 1. Each path has its own path metric which

is corresponding to its survival probability. When performing the LSC decoding, l paths

are expanded to 2l paths for each estimated information bits. Then the metrics of 2l paths

are calculated to decide the l survivals. All the corresponding inner log likelihood ratios

(LLRs) and partial sum of the reserved paths need to be kept along with l paths as well.

Finally, the l paths are fed back to SC decoders and do all the steps again and again until

1Reprinted with permission from “Overlapped list successive cancellation approach for hardware effi-
cient polar code decoder” by Tiben Che, Jingwei Xu and Gwan Choi, 2016. Proceedings of the 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), Page 2463-2466, c©2016 IEEE.

57

the last information bit is decoded.

The main architecture of aforementioned LSC decoders are similar, as described in

Fig. 4.1. Typically, for a LSC decoder, it has l copies of SC decoders and one metrics

computation units (MCU), one sorting module and three memory banks with respect to

path metrics, current survival paths and LLRs and partial sums. The SC decoder consists of

multiple processing units (PUs) with a tree architecture which consumes most of hardware

resources. Such duplications of SC decoder yield a significant hardware redundancy of

LSC decoder design. In our proposed design, we are trying to avoid such unnecessary

redundancy.

In this section, we present our path-overlapping approach and discuss how perfor-

mance optimization is carried out. Fig. 4.2 shows the architecture of proposed approach

and the examples of the modified architecture of SC decoders associated with the list sizes

two and four. Since the duplications of SC decoder involves the most hardware area con-

sumption which is referred as hardware complexity, we removed all the copies and kept

only one SC decoder. However, this modification of architecture does not mean that we

just simply change parallel computing to a single-threaded lazy serial approach that com-

putes one path at a time. Instead, every path is computed simultaneously in the decoding

threads by judiciously utilizing the decoder hardware as follows: The processing timing

of each path is overlapped with others in the pipeline arrangement. The architecture of

SC decoder is modified to support this new paradigm. Since modifications are made only

on architecture and scheduling plan, no decoding performance gain loss or change is in-

curred. The sorting module, MCU, and related memory components are compatible with

other LSC decoders, and the partial sum generator is scheduled a similar way to be com-

patible with the path-overlapping SC decoder. Thus we do not discuss that in this paper. In

the next subsections, the details of the scheme and the specific SC decoder are discussed.

58

4.1 Path-Overlapping Scheme and Relevant Analysis

SC Decoder

Metrics
Computation Unit

Path Metrics
Memory

LLR and Partial
Sum Memory

Survival
Path

Memory

Decoding
Output

Sorting
Module

PU

PU

PU
PU

PU
PU

PU

PU

PU

...

...

...

...

...

...

...

.PU

Example of 2 paths
overlapping SC decoder

PU

PU

PU

PU

PU PU
PU

PU

...

...

...

...

...

...

...

.

PU

Example of 4 paths
overlapping SC decoder

PU

PU

PU

PU

PU

Figure 4.2: The architecture of proposed design

Simultaneous processing approach for SC decoder is already presented [29]. It is used

for multiple frames in order to increase the throughput. The SC decoder with tree archi-

tecture consists of multiple processing units (PU) arranged like a binary tree. For every

clock cycle, only one stage of PUs in the tree is activated. The basic idea of simultaneous

processing approach is activating multiple decoding stages in one clock cycle by feeding

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 2 1 1 2 1 1 3 2 1 1 L w 2 1 L w 1 L p

2 3 2 1 1 2 1 1

u 1 u 2 u 3 u 4

S=Metrics Sorting, C = LLR copying

Path

NO.

clock cycle

S&C S&C S

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 3 2 1 1 2 1 1 3 2 1 1 2 1 1

2 3 2 1 1 2 1 1

3 2 1 1

4 2 1 1

u 1 u 2 u 3 u 4

S

&

C

S

clock cyclePath

NO.

S=Metrics Sorting, C = LLR copying

L w L p

(b)

Figure 4.3: Decoding schedule of the path-overlapping scheme for (8,4) polar code with
(a) list size = 2 and (b) list size = 4

in several frames in pipeline. This means that each frame comes into the decoder with one

clock cycle delay.

Stemming from the above idea, we realize that the duplications of SC decoder in con-

ventional LSC decoder is unnecessary. All the paths can be fed into the same decoder in

pipelined fashion. Different stages in the single SC decoder can process different paths

simultaneously. Computations of successive paths are overlapped in temporal sense with

only one clock cycle delay. However, the decoding scheme is not exactly the same as mul-

tiple frames overlapping SC decoder. Fig. 4.3a and Fig. 4.3b show the decoding schedule

of two and four path-overlapping scheme, respectively. The numbers mean current acti-

vated stages, and the duplicated stage is marked with gray. The S&C means merits sorting

and coping. According to [29], if a SC decoder is with l path-overlapping scheme, where

l ≤ (2i − 1), it can be constructed by duplicating (2i−1 − 1) stages, where the index starts

from the information bits side with respect to the tree architecture. The duplication plan is

also shown in Fig. 4.2. Noticeably in Fig. 4.3b there is only one duplication of stage one,

60

which is not the same as what presented in Fig. 4.2. This is because the number of copies

in Fig 4.2 are the minimum requirement for all the case. The actual requirement is decided

by the code length and rate. Fig. 4.3b is just a certain case only one stage duplication is

needed for four path-overlapping scheme.

Such architecture significantly reduces hardware complexity. Another advantage of

proposed approach is that it can reduce the critical path length of decoder. Typically, the

critical path lies in the sorting block. For conventional LSC decoder, the sorting block is

composed of staged combination logic. Even for very small list size, e. g. list = 4, the

critical path is much longer than any other module. With proposed approach, since each

path metrics comes with pipeline arrangement, naturally, the sorting block is designed as

a pipeline module which has a shorter critical path than that of combination logic for the

same list size. This means, by applying proposed approach, LSC decoder can run at a

much higher frequency.

Although proposed approach can achieve a higher frequency compared with that of the

conventional LSC decoder, there are few additional clock cycles introduced. These consist

of two parts. The first part is the path pipeline latency Lp. Since all the paths are fed into

decoder with one clock cycle delay, for the LSC with list size l, Lp = (l−1). The second

part is path waiting latency Lw. After the number of path extending to the maximum,

the pipeline processing has to suspend when estimating the newly generated information

bit since the decoder needs to wait for all the paths to finish before commencing metric

sorting and LLR copying. This waiting period is referred to as pipeline stalling. The

waiting time is equal to Lp. Thus, for the list size l LSC with respect to (n,k) polar code,

Lw = (k − log2l − 1) · (l − 1). Thus, the total latency overhead introduced by path-

overlapping scheme Lm can be calculated by:

Lm = Lw + Lp = (k − log2l) · (l − 1). (4.1)

61

This design approach can be applied to any current existing LSC decoders. It signif-

icantly reduce the hardware complexity by eliminating redundant instances, and it incurs

only a few additional clock cycles to achieve the improvement. Henceforth, it is difficult

to evaluate such design approach merely in term of the usage of hardware resource or the

latency. We introduce the hardware efficiency (HE) metric which is noted as e to measure

the performance of proposed approach. The e is defined as: e = Throughput/Area.

From Eq. (4.1), we can tell that the latency overhead would significantly aggregate

with either list size or code rate, which can significantly diminish the e. In order to achieve

a high e with proposed approach, the latency overhead must be reduced to an acceptable

level. In the next sections, we will present three approaches aimed at decreasing the latency

overhead.

4.2 Latency Reduction

4.2.1 Latency Reduction via Multi-Decision List SC Decoding

The first part of Eq. (4.1) corresponds to the path waiting latency. For every instance

of estimating an information bit, the pipeline processing has to suspend until all the paths

finish calculations. This provides an observation that if the times of estimating the infor-

mation bit can be reduced, the Lw will decrease significantly.

Multi-decision is an approach of estimating m bits (m > 1) instead of just one at the

same time. It helps to reduce the number of estimations. Many approaches can be regarded

as multi-decision [31] [57] [39] [58]. Generally, they can be classified into two types. The

first type is referred to as regular mutil-decision decoder; it estimates m bits (m>0) every

time. Most of current multi-decision decoders belong to this type [31] [57]. The second

type is called irregular mutil-decision decoders; the number of bits estimated every time is

not fixed. Currently, only the list fast-SSC decoder [58] belong to this type. It simplifies

the SC decoding by finding certain pattern in the codewords. Such subcodes with certain

62

pattern also refer to constituent codes. The number of bits estimated every time is cor-

responding to the size of constituent code. Besides, the distribution of constituent codes

irregularly change along with code rate.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

Code Rate

L
at

en
cy

 O
ve

rh
ea

d(
cl

oc
k

cy
cl

e)

single bit decision
2−bit decision
4−bit decision
irregular multi−decision

Figure 4.4: Latency overhead for different scheme

For path-overlapping LSC decoder with mutil-decision, Lm can be further reduced to

Lm = α · (l− 1). For m bits regular mutil-decision, α = d(k− log2l)/me. For irregular

mutil-decision, α = S − log2l where S is the total number of constituent codes which

irregularly changes along with code rate. Fig. 4.4 shows the latency overhead of different

schemes for LSC decoder with code length n=1024 and list size l=4. We can see that all

the mutil-decision schemes can significantly reduce latency overhead, and as increasing of

code rate, the irregular mutil-decision scheme can still keep a very low latency overhead.

63

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Conventioanl
Path Overlapped

Scheme

Path-LLR-
Compute-Ahead

Scheme

T

Path1

Path1
Path2

Path3
Path4

Path1
Path2

Path3
Path4

Figure 4.5: Decoding schedule of path-LLR-compute-ahead scheme

4.2.2 Latency Reduction via Path-LLR-Compute-Ahead Scheme

Besides reducing the number of estimations, the other approach to decrease latency

overhead is by avoiding the pipeline stalling. This can be done via path-LLR-compute-

ahead scheme (PLCAS). Fig. 4.5 shows this decoding schedule. A single bar means the

decoding process between estimations of two successive information bits. When pipeline

stalling occurs in one path, instead of waiting, current path can do a pre-estimating be-

tween two candidates (0 and 1) which it solely generates without suspension. The pipeline

processing continues with the one with larger metrics and keeps the other to compared

with the next coming paths. If more suitable paths are found later, the previous computed

ones are discarded. With this scheme, the Lm for the best case is equal to pipeline latency

Lp, which means the entire processing is handled without any stalling, and the Lm for the

worst case is equal to simple path-overlapping scheme.

4.2.3 Latency Reduction via Adaptive LSC Decoding

In Eq. (4.1), the second part of the formulation is equal to the Lp. It is determined by

the number of paths set in the pipeline. This makes the latency overhead increas linearly

with respect to the list size l. If we can decrease this value, the latency overhead can be

significantly reduced. Typically, Lp is fixed for a LSC with given length. However, by

applying adaptive LSC algorithm [59], the Lp is allowed to change on the fly according to

64

current metrics of each path. The list size would decrease during the decoding processing,

which in retrospect reduces the latency overhead.

In [59], basic hardware architecture is also proposed. Even though the list size would

decrease along the decoding processing, the architecture proposed in [59] still needs l

copies of SC decoder for its initial status. The usage of hardware resource is same as

regular LSC decoder. Proposed approach can exploit the metric of adaptive LSC decoder

via cutting down the unnecessary hardware complexity. With proposed approach there is

no redundant hardware even when the list size decrease. Such property allows adaptive

LSC decoder to benefit more in term of e. This will be shown in section. 4.3.

4.3 Performance Simulation and Analysis

Fig. 4.6 shows the improvement of e with proposed design approach for widely pro-

posed LSC decoders with code length n=1024 and list size l=4. The x-axis is the rate of

polar code, and the y-axis is the ratio of e with proposed approach over e with ordinary

approach. The e with ordinary approach for a given LSC decoder has a consistent value.

We apply proposed approach to four types of LSC decoder. They are conventional LSC

decoder which also is regarded as 1-bit decision LSC decoder, 4-bit decision LSC decoder,

irregular multi-bit decision decoder and the adaptive LSC decoder. We also calculated the

upper and lower bound of the e improvement with PLCAS. These simulations are based

on the decoders described in [33], [31], [58] and [39], the related synthesis results and the

analysis we made in the previous sections.

In Fig. 4.6, all the curves are beyond the ratio of one, which means with the proposed

approach, all the decoders are able to achieve a better hardware efficiency. According to

curve 1 and curve 2, the hardware efficiency of regular decision decoder, 1-bit and 4-bit

decision decoder, is decreasing alone with the code rate increasing. This is because the

latency overhead is larger at higher code rate. Besides, the regular multi-bit (4-bit) decoder

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

1

1.5

2

2.5

Code Rate

H
E

 w
ith

 (
pr

op
os

ed
/o

rd
in

ar
y)

 a
pp

ro
ac

h

Curve 1: conventioanl (1−bit decision) LSC decoder/
lower bound of LSC decoder with PLCAS

Curve 2: 4−bit decision LSC decoder
Curve 3: irregular multi−bit decision LSC decoder
Curve 4: adaptive LSC decoder
Curve 5: upper bound of LSC decoder with PLCAS

Figure 4.6: The improvement of hardware efficiency with proposed design approach

achieves more improvement of e than that of conventional (1-bit) decoder, which is due to

the latency reduction as we described in section 4.2.1. This can easily derive that for n-bit-

decision regular decoder, the bigger the n, the more the improvement of e can be achieved

with proposed approach. Curve 1 and 5 indicate the range of the e improvement with

PLCAS. The actual value depends on the channel outputs and channel quality. According

to curve 4 and curve 1, we can tell that the adaptive LSC help proposed approach to dra-

matically increase the hardware efficiency. Such increasing benefits from the decreasing

of latency overhead as we analyze in section 4.2. Another very interesting phenomenon is

about the improvement of irregular multi-bit decision (list fast-SSC decoder). The gain of

e does not change too much with code rate varying. This is because the latency overhead

of irregular multi-bit decision decoder does not linearly change along with coder rate. The

66

average improvement of irregular multi-bit decision is less than that of regular one. This

is due to that the inherent latency of irregular LSC decoder is already very low [39].

Noticeably all the improvements are calculated based on the assumption that the max-

imum frequency of decoder with proposed approach or ordinary approach are the same.

However, according to the analysis in section 4.1, the maximum frequency of decoder

with proposed approach should be measurably higher, which implies that the actual im-

provements of e in Fig. 4.6 should be even more pronounced in practice. Additionally,

all the approaches mentioned above can argument each other. Using multiple approaches

together can further increase the hardware efficiency. The presented design properties in-

dicate that proposed approach can measurably contain the hardware complexity associated

with large scale LSC decoder implementation.

67

5. EXPRESS JOURNEY BELIEF PROPAGATION DECODING FOR POLAR

CODES 1

In this section, a method by which the constituent codes are utilized to reduce the

min-sum BP decoding complexity is presented. For those specific constituent codes, the

message passing rules are innovatively simplified to reduce computational complexity for

belief propagation.

Furthermore, to the best of our knowledge, all existing BP decoders schedule the com-

putations in the same manner as mentioned in [46]. To explore an efficient BP decoder

design, we derive an alternative scheduling method stemming from ideas discussed by

Guo et al. at [12]. In [12], polar codes are proposed to be concatenated with parity check

codes to achieve better decoding performances. We describe and compare the two dif-

ferent scheduling methods in this paper to show that the substitute scheduling method is

significantly superior to the conventionally used one in terms of decoding efficiency.

We show that along with the alternative scheduling method, the complexity reduced

min-sum BP algorithm yields almost same decoding performance of the SMS algorithm

with substantially reduced amount of computations. Compared with the conventional MS

BP decoding, our proposed method does reduce the computations by 91.5% as well as

significantly improves the decoding performance.

5.1 Simplified Belief Propagation Decoding

In this section, we will present different types of constituent codes that exist in the

factor graph of polar codes which could help reduce the complexity of BP decoding al-

gorithm. The general idea of our algorithm is to refine the estimation of the transmitted

1Reprinted with permission from “XJ-BP: Express Journey Belief Propagation Decoding for Polar
Codes” by Jingwei Xu, Tiben Che and Gwan Choi, 2015. Proceedings of the 2015 IEEE Global Com-
munications Conference (GLOBECOM), Page 1-6, c©2015 IEEE.

68

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

(a)

(1, 1)

(2, 1)

(3, 1)

(5, 1)

(4, 1)

(6, 1)

(7, 1)

(8, 1)

(1, 2)

(2, 2)

(3, 2)

(5, 2)

(4, 2)

(6, 2)

(7, 2)

(8, 2)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

(b)

(1, 3)

(2, 3)

(3, 3)

(5, 3)

(4, 3)

(6, 3)

(7, 3)

(8, 3)

(1, 4)

(2, 4)

(3, 4)

(5, 4)

(4, 4)

(6, 4)

(7, 4)

(8, 4)

(c)

Figure 5.1: (a) An example ofN 0 codes in shadow andN 1 codes in gray, (b) An example
of NREP codes in shadow and N SPC codes in gray, and (c) The simplified factor graph
for the example of NREP and N SPC codes.

codeword x̂ without traversing the whole factor graph in each iteration. The various con-

stituent codes are studied in this section to simplify the factor graph as well as so as to

reduce the decoding the complexity

5.1.1 All-Frozen N 0 Codes

First type of the useful constituent codes are the codes whose left leaf nodes are all

frozen bits. These codes are referred as N 0 codes. Fig. 5.1a shows an example of N 0

code, where the shadowed nodes of {(1,2), (2,2)} compose a N 0 code. Noticeably, the

lengths of N 0 codes vary significantly as the different rates and sizes of the polar codes.

For those codes, there is no necessity to compute their LLRs, since the codeword is fixed

by the frozen bits already. If the frozen bits are set to 0, the nodes of N 0 codes are also 0

in the encoding factor graph. Thus, by setting messages R of nodesN 0 codes as∞ before

the decoding, the decoding could be performed in iterations without operating redundant

processing elements left to the N 0 codes.

69

5.1.2 All-Information N 1 Codes

As the counterpart of the N 0 codes, N 1 codes have their all leaf nodes of information

bits. We found the N 1 codes do also help reducing the computation complexity. An

existence ofN 1 code in the n=8 polar code example is given in Fig. 5.1a. In the figure, the

grayed codeword {(7, 2), (8, 2)} is a N 1 code whose leaf nodes are all information bits.

From the aspect of the factor graph, the refinement does originate from checking in-

formation provided by the frozen bits on leaf nodes. Since there is no frozen bits on the

leaf nodes, it is implied that the messages do not get refined by further message passing

through N 1 codes. From the Eq. (2.20), it also shows that the Ri,j+1 and Ri+2j−1,j+1 do

not get updated with consistent zeros of Ri,j and Ri+2j−1,j . Thus the computations forN 1

codes could be removed through BP decoding.

5.1.3 Repetition NREP Codes

Another observation from the factor graph is that there exist considerable amount of

constituent codes which only have a single information bit on the last leaf nodes. Those

codes duplicate the only information bit multiple times to construct the codeword. The

repetition codes are referred as NREP codes.

The example given in Fig. 2.7 does contain aNREP code as shows in Fig. 5.1b, where

the shadowed nodes {(1,3),(2,3),(3,3),(4,3)} constitute a NREP code.

Since we already know that NREP codes are formed by duplication, the conventional

factor graph could be simplified without message passing through multiple message stages.

The corresponding example of the factor graph of theNREP code is given in the Fig. 5.1c,

where the top 4 shadowed nodes constitute a repetition code. Since each node is a duplica-

tion of others, they share the belief messages with others in the factor graph. The message

70

passing rule of the NREP codes follows the theory of factor graph [53] as:

Ri,j =
∑

k 6=i

Lk,j (5.1)

For a repetition code with length l, the complexity of conventional BP is O(l log l).

Whereas the complexity of the proposed updating rule is O(l). Specifically, the pro-

posed algorithm for length-l NREP codes takes (2l-1) two-input additions. Indiscrimi-

nately treating nodes ofNREP codes as normal nodes by using conventional BP consumes

(2l log2 l) comparisons operations and same amount additions. Thus abundant existences

of longerNREP codes in polar codes reduce the amount of computations by the proposed

simplified message passing rule.

5.1.4 Single Parity Check N SPC Codes

The other type of constituent codes abundantly exist in polar codes is single parity

check code. For those constituent codes who only have a single frozen bit on the first

leaf node, the codewords are actually single parity check (SPC) codes, the sums of whose

codewords are always zero in binary field. The SPC codes are also referred as N SPC .

As Fig. 5.1b shows, the leaf nodes of the grayed constituent codeword

{(5,3),(6,3),(7,3),(8,3)} are all information bits except the first one. Similar as NREP

codes, it is unnecessary to roam thorough all conventional computations to update the mes-

sages R of those nodes. Since the codeword is a SPC code, the factor graph of the N SPC

codes could be modeled as a parity check node connected with all bits of the codeword.

The modified factor graph of the N SPC code in the example is shown in Fig. 5.1c. The

single parity check code consists of the bottom 4 nodes in the figure, where an additional

parity check nodes is added to propagate the belief information among the nodes. With

71

the consistency on using min-sum algorithm, the parity check update could be written as:

Ri,j =
∏

k 6=i

sgn(Lk,j) ·min
k 6=i
|Lk,j| (5.2)

Similar as the repetition codes, the complexity of the modified message passing algo-

rithm is O(l) for length-l single parity check code which is superior to the complexity of

the conventional algorithm, O(l log l). Thus with longer constituent codes, more compu-

tation could be saved from the proposed algorithm.

Noticeably, the N 0 and N 1 codes are not usually included inside N SPC and NREP

codes in reality. Simplifications of message passing on those four different types of con-

stituent codes could be applied all together. The distributions of exclusive constituent

codes in a (1024, 512) are shown in Table 5.1. As the table shows, there are consider-

able amount of constituent codes in the polar code. Especially, there are more number of

NREP and N SPC codes than N 0 and N 1 codes. Thus an efficient BP algorithm design

for the NREP and N SPC codes could substantially further reduce the BP decoding com-

plexity. Also notice that the distribution of the constituent codes does also depend on the

code rate and rate of 0.5 polar codes contain relatively less number of constituent codes.

With higher code rate, it is more motivated to apply the proposed methods to simplify the

message passing. The details of complexity analysis will be presented in Section 5.3.2.

Table 5.1: Number of all constituent codes with different sizes in a (1024, 512) polar code
with rate 0.5

Constituent codes sizes
All

4 8 16 32 64 128
N 0 3 3 2 2 0 1 11
N 1 3 3 2 1 0 0 9
NREP 16 8 4 1 1 1 31
N SPC 15 5 3 1 1 0 25

72

With the constituent codes applied to reduce computations, the conventional factor

graph is simplified so that the LLRs of û are not immediately available from BP itera-

tions. Thus in the proposed algorithm, we focus on refining the estimations of transmitted

codeword x̂ instead of messages û. The estimated LLRs of x̂, the soft estimations of trans-

mitted codeword x in log likelihood ratio, are represented by Eq. (2.10). As aforemen-

tioned, Li,m+1 are LLRs from the channel outputs. So in our algorithm, Ri,m+1 is refined

in iterations to accomplish decoding. The details how the computations are scheduled to

accommodate the simplification is presented in the next section.

5.2 Scheduling

In this section, we present the two different ways to schedule the computations of

conventional BP decoding algorithm. And the scheduling plan with the proposed BP de-

coding is illustrated as well. Finally, we give a method to early terminate the iterations of

BP decoding.

5.2.1 Round-Trip BP Updating

As aforementioned, the computations of all existing conventional BP decoders are

based on the processing element of Fig. 2.8. In the BP processing elements, the messages

are computed for both directions of left-to-right and right-to-left simultaneously. Fig. 5.2a

shows computations scheduled by the conventional BP decoding. As the figure shows,

each iteration consists of m stages of computations, where m = log2(N) is the number

of stages in the factor graph. For each stage, the messages of both direction Ri+1,j and

Li,j of each stage are computed. And the computations are repeated in one-way direction

from left to right iteratively. However, this scheduling method is lack of efficiency. For

example, it is inefficient to update Li,1 in time stamp 1 before having updated Li,2 in time

stamp 2.

Another way to schedule the computations is separately updating right-to-left message

73

Steps 1

Update
Ri,2

2 ... m m+1

1st iteration

m+2 ... 2m

2nd iteration

...

Li,1

Ri,3

Li,2

...

...

Ri,m+1

Li,m

Ri,2

Li,1

Ri,3

Li,2

...

...

Ri,m+1

Li,m

...

...

(a)

Steps 1

Update Li,1

2

Li,2

... m m+1

... Li,m

1st iteration

Ri,2

m+2

Ri,3

... 2m

... Ri,m+1

...

...

(b)

Figure 5.2: (a) Computations scheduled in the conventional BP decoders, and (b) Compu-
tations scheduled in a round-trip updating fashion.

and left-to-right messages. Fig. 5.2b shows the schedule of messages updated in this fash-

ion. As the figure shows, the computations of each iterations are separated to two parts. In

the first part, the Li,j messages are updated from column m+1 to the most left nodes ex-

isting in the modified factor graph. The second is following to update the other direction

message Ri,j from left to the column m+1. Since in each iteration there is a round trip

through the factor graph, this scheduling scheme is referred as round-trip scheduling in

this paper. Though each iteration of the modified scheduling contains a round-trip visiting

of nodes instead of one-way traverse, the amount of computations is same as that of the

conventional scheduling, because only half of messages, either Li,j or Ri,j , are updated

in each direction. Furthermore, the round-trip scheduling significantly improves the effi-

ciency in terms of number of iterations. Section 5.3.2 will discuss the number of iterations

in details.

In this work, we promote the round-trip scheduling to update Ri,m+1 as mentioned

above, because of the superior efficiency of it. However, different with conventional BP

74

decoding, for constituent NREP and N SPC codes, instead of Eq. (2.20), Eq. (5.1) and

(5.2) are used to update messages R.

5.2.2 Early Termination

In this paper, we applied early termination to determine whether the decoding is suc-

cessfully done or not.

Polar codes belong to the block codes. For block codes, H matrix could be used for

codeword detection. According to the coding theory [60], the parity check matrix H could

be derived given generator matrixG′. HereG′ is a k×nmatrix consisting rows of matrix G

corresponding to the positions of the information bits. Then the termination of a decoding

is indicated by the equation:

x̂H = 0 (5.3)

where x̂ is the hard decision of the transmitted codeword estimations, i.e.

x̂i =

0, LLRx̂
i > 0

1, otherwise

(5.4)

5.3 Simulation and Discussion

In this section, we set up simulations to verify the proposed algorithm. Compared with

the conventional BP decoding algorithm, the complexity and performance of the proposed

algorithm are also analyzed and discussed in this section. As an example, (1024, 512)

polar code is used to emulate the proposed decoder with max number of iterations of 60.

5.3.1 Decoding Performance

Fig. 5.3 shows the decoding performances of four decoding strategies. They are the

conventional min-sum (MS) BP algorithm with conventional scheduling, the conventional

75

1 1.5 2 2.5 3 3.5
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
[dB]

FE
R

Min−sum
Min−sum round−trip
Scaled min−sum in [7]
XJ−BP

Figure 5.3: Decoding performance of the proposed BP decoding algorithm for (1024, 512)
polar code with rate 0.5 and max number of iteration of 60.

MS BP algorithm with round-trip scheduling, the scaled min-sum (SMS) algorithm pro-

posed in [48] with conventional scheduling and the proposed algorithm. As the results

show, the min-sum BP decoding with the round-trip computation scheduling consider-

ably outperforms the conventional min-sum algorithm. The performance of the min-sum

BP algorithm with round-trip updating is very close to that of the scaled min-sum algo-

rithm [48].

We also show that the proposed simplified BP algorithm yields almost same perfor-

mance as the BP algorithm which roams through unpruned factor graph does. It means

that the simplifications for constituent codes do not result in any degradation in decoding

performance.

76

5.3.2 Computation Complexity Analysis

After showing the decoding performance of the proposed algorithm, here we explore

complexity reduction by the proposed BP algorithm.

First of all, the average numbers of iterations of those algorithms are summarized in

the Fig. 5.4. It is shown in the figure that with the round-trip scheduling computations,

the efficiency of the BP algorithm is significantly increased. Noticeably scaled min-sum

BP algorithm reduces the number of iterations, however the reduction is in the cost of the

additional scaling computation in each node update. The interesting phenomenon from

this experiment is that the round-trip scheduling significantly improves the iteration effi-

ciency without computation complexity cost. Under the condition of high Eb/N0 = 3.5,

the round-trip BP scheduling only takes 3.98 average iterations to complete decoding. As

aforementioned in Section 5.2, the computations amounts of conventional scheduling and

round-trip scheduling in each iteration are same. Compared with 24.5 average number of

iterations, the decoding efficiency is immediately improved by 83.7% without considering

the simplification on factor graph yet. Also, it is addressed that the proposed BP algorithm

does not reduce the number of iterations compared with the round-trip BP scheduling

without simplifying the factor graph.

Secondly, we evaluate the reduction of computations in each iteration resulting from

the proposed simplified factor graph. As mentioned above, computations for nodes of N 0

and N 1 codes could be removed directly. While the computations of NREP and N SPC

codes could be reduced by simplifying the factor graphs for them.

The numbers of total operations (2-input addition or 2-input comparison) are shown in

the Table. 5.2. In the table, polar codes are set at rate=0.5 and the channel polarization is

done under the binary erasure channel (BEC) model with erasure ratio of 0.3. It is shown

that the total number of computations used in decoding rate=0.5 polar codes could be

77

1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

E
b
/N

0
[dB]

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

Min−sum
Min−sum round−trip
Scaled min−sum in [7]
XJ−BP

Figure 5.4: Average numbers of iterations of the proposed BP decoding algorithm for
(1024, 512) polar code with rate 0.5.

Table 5.2: Number of computations of reduced-complexity BP algorithm with all polar
codes at rate 0.5

Polar code sizes
128 256 512 1024 2048

Conventional BP 1792 4096 9216 20480 45056
Proposed BP 1040 2488 5536 12160 27304
Ratios [%] 58.0% 60.9% 60.1% 59.4% 60.6%

reduced by around 40% in each iteration using the proposed simplified BP algorithm. And

we found that this ratio keeps around 40% even with the codeword length size increasing to

significantly long. In another word, the proposed simplification saves around 40% amount

of computations regardless of lengths of the polar codes.

Another factor that affects the simplification is the code rate. Because with more ei-

ther frozen bits or information bits in the messages, the constituent codes happen more

78

Table 5.3: Comparison of computations at different code rates

Code Rates
1/2 2/3 3/4 5/6 7/8

conventional BP 20480 20480 20480 20480 20480
Proposed BP 12160 11488 10680 9376 8936
Ratios [%] 59.4% 56.1% 52.3% 45.8% 44.6%

frequently in the polar code. Table. 5.3 shows the number of computations for proposed

algorithm decoding a polar code of length 1024 at different typical code rates. As the ta-

ble shows, the proposed algorithm saves more computation resource to decode polar code

with higher code rates. This is because that more constituent codes exist in the factor graph

with more unbalanced number of frozen bits and information bits.

Finally, the overall complexity reduction is evaluated by considering both the reduced

number of iterations and simplified computations in each iteration. Take the (1024, 512)

codes as an example, Fig. 5.5 shows the average number of computations to decode one

codeword at different levels of Eb/N0. Due to the extra scaling operations, SMS consumes

around 34% more computations over the conventional MS decoding algorithm, although

SMS outperforms conventional BP in terms of decoding performance. Compared with

conventional BP decoding, the round-trip scheduling reduces the number of computations

by 83.7% at Eb/N0=3.5 resulting from the reduced number of iterations. Based on round-

trip scheduling, the proposed method does not yield any further improvement on number

of necessary iterations. However the proposed simplified factor graph so as to reduce the

computations in each iteration by 40.6%. As a results, the overall complexity is reduced

by 91.5% using the proposed algorithm with round-trip scheduling, compared with con-

ventional BP decoding.

79

1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2
x 10

6

E
b
/N

0
[dB]

A
ve

ra
ge

 n
um

be
r o

f c
om

pu
ta

tio
ns

Min−sum
Min−sum round−trip
Scaled min−sum BP in [7]
XJ−BP

Figure 5.5: Average numbers of computations consumed to decode each codeword of by
the proposed BP decoding algorithm for (1024, 512) polar code with rate 0.5.

5.3.3 Discussion

From the aspect of practical implementation, the conventional BP processing element

symmetrically computes updates for messages R and L. Traditional computations for R

are as same as those for L. In practical implementation for the proposed algorithm, the

processing elements should be designed as only to deal with functions G(x, y + z) and

G(x, y) + z to satisfy only one-direction message computations.

The message updating rules are different between normal nodes and nodes of the spe-

cific constituent codes in mathematics. But the basic operations of additions and compar-

isons for them are very similar. Thus the proposed processing elements could be multi-

plexed between normal and specific constituent codes.

80

6. ASYNCHRONOUS CIRCUIT APPLICATION 1

In the previous sections several novel design approaches of system or architecture

level to enhance the performance of polar code decoder are proposed. In order to further

strengthen the throughput and energy performance of polar code decoder, efforts from bot-

tom circuit level have been made as well. Asynchronous circuit is a technique can yield a

good power and reliability performance, which is suitable for channel coding system.

Asynchronous circuit is receiving an increased attention due to its low power con-

sumption, high speed, less emission of electromagnetic noise, better modularity, omission

of clock distribution related problems, and robustness with respect to variations in supply

voltage, temperature and fabrication process parameters [51]. Asynchronous circuits that

can mask 100% of the non-permanent faults is presented in [61]. A comparison between

synchronous and asynchronous circuits under the scope of power-supply noise has been

described in [62]. The obtained results demonstrate that the asynchronous circuit is sig-

nificantly more robust than the synchronous one. A low-energy asynchronous interleaver

for clockless fully parallel low-density parity-check (LDPC) decoder is presented in [63]

that achieves 92% energy reduction. Asynchronous circuits are unlike the synchronous

circuits that consist of registers and combinational logic. The transitions in a synchronous

circuit are largely driven by a global clock which triggers all the registers at the same

time. A significant design, performance, and energy considerations must be given to en-

sure correct register-to-register data forwarding. On the contrary, in asynchronous circuits,

data forwarding from the input to the output ports are not controlled by an external signal

1Reprinted with permission from: (1) “Accelerated Dual-Path Asynchronous Circuit” by Tiben Che,
Jingwei Xu and Gwan Choi, 2015. IEEE Transactions on Circuits and Systems II: Express Briefs, Page 856
- 860, c©2015 IEEE. (2) “Asynchronous Design for Precision-Scaleable Energy-Efficient LDPC Decoder”
by Jingwei Xu, Tiben Che, Ehsan Rohani and Gwan Choi, 2014. Proceedings of the 2014 48th Asilomar
Conference on Signals, Systems and Computers, Page 136-140, c©2014 IEEE.

81

such as clock, but instead by handshaking between receiving and forwarding units via ac-

knowledgement signals. The processing-flow model of asynchronous circuits is shown in

Fig. 6.1. The REQ signal from previous stage informs the next stage that the new data is

ready. Then the combinational logic circuit commences to compute. After the combina-

tional computing, the control module will then generate an ACK signal and send it back

to the previous module to inform that current computing cycle is complete and it is ready

to receive new data.

Depending on the number of phases used in this process, the handshake is classified

as 2-phase or 4-phase protocol. The comparison between these is illustrated in [64]. In

this paper, 4-phase protocol is taken into consideration since very efficient optimization

can be done at the logic and architectural levels when using four-phase protocols. Fig. 6.2

shows the how it works [65]:(1) the sender issues data and sets REQ high. (2) the receiver

receives the data and sets ACK high. (3) the sender responds by taking REQ low. From

this point data may not be valid. (4) the receiver acknowledges this by taking ACK low.

At this point the sender may prepare for the next communication cycle.

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Power Cycle Control

Circuit 1
Duplication

A

Circuit 1
Duplication

B

ACK

Asynchronous
Block 1

A
rb

ite
r

Circuit 2
Duplication

A

Circuit 2
Duplication

B

ACK

Asynchronous
Block 2

A
rb

ite
r DATA

ACK
Circuit n

Duplication
A

Circuit n
Duplication

B

ACK

Asynchronous
Block n

A
rb

ite
r

ACK

REQ

ACK

DATA

(1) (2) (3) (4)

A.T1 A.T2 A.T3

B.T1 B.T2 B.T3

B.T1 A.T3
T

Part A Path

Part B Path

Optimal Timing A.T2

Figure 6.1: General model of asynchronous circuits

There are two ways to implement the hand shake protocol. One is the bundled data and

the other is the dual rail logic. Bundled data means the data signal uses normal boolean

levels to encode information, and the separate request and acknowledge wires are bundled

82

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Power Cycle Control

Circuit 1
Duplication

A

Circuit 1
Duplication

B

ACK

Asynchronous
Block 1

A
rb

ite
r

Circuit 2
Duplication

A

Circuit 2
Duplication

B

ACK

Asynchronous
Block 2

A
rb

ite
r DATA

ACK
Circuit n

Duplication
A

Circuit n
Duplication

B

ACK

Asynchronous
Block n

A
rb

ite
r

ACK

REQ

ACK

DATA

(1) (2) (3) (4)

A.T1 A.T2 A.T3

B.T1 B.T2 B.T3

B.T1 A.T3
T

Part A Path

Part B Path

Optimal Timing A.T2

Figure 6.2: 4 phase protocol

with the data signals. Dual rail protocol encodes the request signal into the data signals,

and uses two bits to present one information bit. There are three channel states of every

single bit: invalid, valid with a 1 and valid with a 0, which are represented by 00, 01 and 10,

respectively. All the bundled data protocols rely on delay matching, which means we need

to fix the delay of request and acknowledge signals when we design it. In order to satisfy

the timing of the hand shaking protocol, the delay should be longer than the critical path of

the corresponding combination logic. In our design, we consider the situation where the

completion time of combination logic has some fluctuation in every asynchronous cycle

due to transient faults, and we can always choose the faster path to trigger the acknowledge

signal to previous stage. Under such circumstance, the timing of protocol signals should

not be fixed. Compared with bundled data, dual rails should be a better candidate for

our design since the acknowledge signal is the data itself, which means the timing of

acknowledge signal can change in real-time and respond adaptively. Thus, we adopt the

4-phase handshake protocol and dual-rail encoding schemes in our design.

In this section two asynchronous applications related to my dissertation works, dual-

path asynchronous circuit and asynchronous design for precision-scaleable energy-efficient

LDPC, are presented. Although both of them use LDPC decoder as a case study, they can

be easily extended to polar code scenarios.

83

6.1 Accelerated Dual-Path Asynchronous Circuit

This section proposes a design approach that duplicates asynchronous circuit in a novel

way. This approach not only exploits the merits of redundancy for fault tolerance [66] [67],

but also considers the potential timing benefits rooted in the fact that there must be a faster

path out of the two. By introducing an elaborate scheduling of the datapaths in the design,

our approach significantly reduces overall system delay while substantiating the robustness

attributable to redundancy and asynchronous circuits. In the dual-path design, the first

valid signal received from the two replicated units is used to drive both subsequent paths;

the valid output is then multiplexed out to both replicas of the next stage. This ensures

that the combinational processing is forwarded only through the components that lie in

the faster paths through the redundant network. Besides the tolerance to transient fault,

the system is also designed to be immune from latch-ups through use of a power cycling

scheme. The design approach is illustrated through a case study of LDPC decoder, which

is often embedded in low-power error-prone mobile devices. An architecture reported

in [68] is adopted and the proposed designs are instantiated. The designs are subjected

to timing and fault-injection analysis to study relative merits of the proposed schemes.

Compared with ordinary design, at the FR of 400/clock cycle, the proposed system reduces

the delay overhead from 19.5% to 7.5%. Meanwhile the arbiter introduces only 2% area

overhead in additional to the 2X duplication overhead. The results show the decoder can

be significantly improved in terms of speed.

6.1.1 Dual-Path Circuit Design

Fig. 6.3 shows the general model of the dual-path asynchronous design. The system

consists of duplicate asynchronous units in every asynchronous stage, and uses the same

hand shake protocol as the regular asynchronous circuit. The acknowledgement signal

(ACK) is generated by a specifically designed arbiter based on the performance of each

84

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Power Cycle Control

Circuit 1
Duplication

A

Circuit 1
Duplication

B

ACK

Asynchronous
Block 1

A
rb

ite
r

Circuit 2
Duplication

A

Circuit 2
Duplication

B

ACK

Asynchronous
Block 2

A
rb

ite
r DATA

ACK
Circuit n

Duplication
A

Circuit n
Duplication

B

ACK

Asynchronous
Block n

A
rb

ite
r

ACK

REQ

ACK

DATA

(1) (2) (3) (4)

A.T1 A.T2 A.T3

B.T1 B.T2 B.T3

B.T1 A.T3
T

Part A Path

Part B Path

Optimal Timing A.T2

Figure 6.3: Overview of dual-path asynchronous circuit system

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Power Cycle Control

Circuit 1
Duplication

A

Circuit 1
Duplication

B

ACK

Asynchronous
Block 1

A
rb

ite
r

Circuit 2
Duplication

A

Circuit 2
Duplication

B

ACK

Asynchronous
Block 2

A
rb

ite
r DATA

ACK
Circuit n

Duplication
A

Circuit n
Duplication

B

ACK

Asynchronous
Block n

A
rb

ite
r

ACK

REQ

ACK

DATA

(1) (2) (3) (4)

A.T1 A.T2 A.T3

B.T1 B.T2 B.T3

B.T1 A.T3
T

Part A Path

Part B Path

Optimal Timing A.T2

Figure 6.4: Timing of DMR

duplicate path. A power cycle control signal is also assigned to each asynchronous block.

As reported in [69], transient faults can induce output delay in QDI asynchronous

circuits. Under hazardous environment, the accumulative delay of each asynchronous

stage can become considerably large. Dual-path design has two candidates in every asyn-

chronous stage, and the next stage is always stimulated by the output of the faster one

of the two. This approach can dramatically decrease the delay of the whole system. An

example with three asynchronous stages of this scheduling is shown in Fig. 6.4. Each of

same stage in path A and path B has a variation of completion time. For every stage, the

faster path is always chosen. Eventually, the delay of system is dramatically decreased

since it is a combination of the faster paths from all the stages. In addition to the timing

benefits, the dual-path design significantly enhances the inherent robustness that conven-

tional asynchronous circuits provide. A carefully devised dual-path design can guarantee

85

that the system will always have working alternate path for continuous processing.

Dual Rail
Combination

Logic A

C

Dual Rail
Combination

Logic A

C

C

C

C

ACK to previous stage

ACK from next stage

D.T

D.F

D.T.A

D.F.B

D.T.B

D.F.B

D.T

D.F

Sub.ACK.A

Sub.ACK.B

Block B

Block A

Arbiter circuit

Power Cycle
Control

Power Cycle
Control

ACK.B

ACK.A

S

Figure 6.5: The details of one asynchronous block

Fig. 6.5 shows the details of one asynchronous block in Fig. 6.3. An example of

1-bit pipeline is given. It can be easily extended to n-bit situation. N bit pipeline can

be implemented by using a number of 1 bit pipeline in parallel, and using a completion

detector to synchronize acknowledge of each bit to generate the final acknowledge signal.

Fig. 6.5 shows that the asynchronous block consists of two regular asynchronous block

and one arbiter unit. Block A and block B are exactly the same. All the combination logics

used are dual rail, which guarantee that the circuit avoids losing its QDI property. Block A

and Block B receive the input dual rail signals at the same time, then the combination

logic starts working. However, an consequence of transient faults, these two might not

finish at the same time. Sub.ACK.A and Sub.ACK.B are acknowledge signals generated

by Block A and Block B. These two signals are the inputs of the arbiter unit. They are

used to generate an arbitrating signal which contains the information of faster one of these

two blocks. This arbitrating signal is fed into following multiplex network to choose the

86

corresponding dual rail path. The final acknowledge ACK is determined by these dual rail

signals of the chosen path. In order to correctly choose the faster path, two factors need to

be taken into consideration. (1) In 4 phase protocol, the detection of faster path does not

only apply to the phase 2, where ACK changes from low to high, but also applies to the

phase 4, where ACK changes from high to low. Thus, a way to unify the two situations is

necessary since the behaviors of these two phases are in reverse. (2) Once the right path is

chosen, it cannot change, no matter the other path will finish or not.

As shown in Fig. 6.2, in phase 2 and phase 4, the ACK signal from next stage ACK.N

has value of 0 and 1, respectively. Thus, by using the signal with a XNOR gate we can

unify the outcome of phase 2 and phase 4. ACK.A and ACK.B are two signals after

unifying. Any one becomes high first means that path is faster no matter which phase they

are in. Then, a C gate is used to generate the control signal S. C gate is a basic element in

asynchronous circuit; its output will not change unless the two inputs have the same value.

With this property, since ACK.B goes through an inverter, as long as neither of these two

path are done, ACK.A and ACK.B are different. Thus, C holds the old value according

to the previous choice. Once one path is done and the other is not, ACK.A and ACK.B

become the same, which makes C gate output the corresponding value. After a while, even

though the slower path is done, at that moment, since ACK.A and ACK.B go to different

again, the output of C gate will not change. If ACK.A and ACK.B happen to go high at

the same time, the C hold gate would still hold the previous value, which means it would

choose previous path.

Consequently the system is always driven by the faster of the Block A and Block B

in every asynchronous stage. This ensures that the overall system timing is spanned by

only the faster modules in each stage. The performances of this design under application

example are discussed later in Section 6.1.3.

87

ACK.A

ACK.B

T1 T2 T4

System
suspension

T3

Figure 6.6: Timing of power cycle scheduling

6.1.2 Power Cycle Schedule

In our design, we only consider single event latch-up (SEL) situation in every asyn-

chronous stage since the probability of coincidental latch-ups in the same asynchronous

stage in both paths is low. Since it is dual-path design, system is assured to run smoothly

regardless of whichever block exhibits latch-up in any asynchronous stage. However, this

situation still can slow down the system since only one circuit path is alive in some asyn-

chronous stages and thus there is no faster one to be chosen. To prevent the vulnerability

from the latch-up faults, a specific power cycle scheme is also developed in our design. At

first, a power cycling scheme based on the likelihood of having latch-ups for each path has

been considered. However, its hardware overhead is too high since a significant number of

registers are needed to hold statistical information about the winner of two paths in every

asynchronous stage in each and every cycle. Therefore, we employee a simpler power

cycle scheme alternatively power cycle after a certain number of clock cycles. If the path

that triggers the power cycle incurs a latch-up, the faults will be fixed. During recycle pe-

88

riod there is another path can make sure the system continues to operate without faults. If

one path has latch-up while recycling the other, then the whole system will not shut down

but only hold for a recycling period since it is an asynchronous system, and the latched

up path will be fixed in the next power cycle. The inherent property of asynchronous and

dual-path design allows the system to benefit a lot from a simple power cycle scheme with

negligible cost.

Fig. 6.6 shows a timing example of this scheme. It shows the acknowledge signal of an

asynchronous stage triggering completion acknowledgement for the both paths. Suppose

at time T1 path B exhibits a latch-up. Then, no acknowledge signal will be triggered from

the path B. In this case, the system can still operate without an error but its speed will now

be governed by the performance of path A. At time T2, a power cycle operation is issued

to path A. During this process, no acknowledge signal will generated by path A until the

power cycle completes at time T3. During this time, the entire system will suspend for

a very small period. At time T4, another power cycle for the path B is issued, and the

entire system continues to operate relying on the path A. After path B completes its power

cycle, the latch-up is now eliminated and the system continues to operate with two active

duplicated paths.

6.1.3 Case Study

A development of satellite communication (SatCom) involves coordinating perfor-

mance, power and the reliability challenges from transients and permanent hazards from

space radiation. Channel coding techniques are usually accompanied with the satellite

communication receiver to increase the fidelity. We performed a design study of a low-

density parity-check (LDPC) decoder [68], one of the widely used codec hardware com-

ponents, to illustrate the effectiveness of the proposed asynchronous redundant designs.

LDPC decoder has the property to decode received data through iterative methods to clean

89

1.2 1.4 1.6 1.8 2 2.2
x 10-8

-20

-7.5

5 x 10-5

Time [s]

C
ur

re
nt

 [A
]

(a).Current through a net to the ground without fault injections

(b).Current through a net to the ground with fault injections

(c).Output voltage responses

2.01 2.015 2.02 2.025 2.03 2.035
x 10-8

0

0.2

0.4

0.6

0.8

1

Time [s]

V
ol

ta
ge

 [V
]

output response with fault injection
output response without fault injection

1.2 1.4 1.6 1.8 2 2.2
x 10-8

-20

-7.5

5 x 10-5

Tims [s]

C
ur

re
nt

 [A
]

Figure 6.7: One transient fault delay example

the code words of errors. If the delay in each decoding step is reduced, more iterations can

be done to achieve higher fidelity transmission. Especially for SatCom, effective decoding

is crucial for the power-sensitive and error prone satellite receiver.

90

To evaluate the timing performance and overhead cost of the proposed methodology

under transient faults, the RTL codes of basic units of LDPC decoder is first synthesized by

Synopsys Design Compiler. Then the corresponding SPICE netlist is generated by Synop-

sys Primetime on Nangate 45nm CMOS technology library. The overheads of the control

module are estimated by the synthesis results. An example of the delays is presented in

the Fig. 6.7, where a net is chosen for transient fault injection. According to [70], transient

faults, especially those generated by particle strikes, which is very common in SatCom,

can be modeled by an electric charge injected to a circuit node. Thereby the transient fault

is modeled as a negative impulse of current in our experiment. Fig. 6.7(a) shows the cur-

rent response of a net without any transient fault. Fig. 6.7 (b) shows the current response

of the same net in Fig. 6.7 with transient fault.The delay induced by transient faults is

modeled as is introduced in [71], and a negative current pulse is added at around 12 ns. As

a result, the output response has an extra delay caused by the transient fault as shown in

Fig. 6.7 (c). By injecting the delay faults, the timing performance of the proposed system

is analyzed.

To explore relationship between error injection and delay, the error model present

in [71] is used in our experiments. In the reference, the radiation is modeled as a cur-

rent source connected to nets. For a certain level of radiation, a quantity of electric charge

will be injected to a random net during the transition time. Noticeably, the fault injection

does not always necessarily result in a propagation delay, which depends on when the fault

happens and the magnitude of charge. In order to obtain the effect of radiation on delays,

SPICE simulation is running with additional current source injections. Fig. 6.8 shows the

histogram how the injected current affects the completion timing. To ensure the random-

ness of these faults, each current source is added randomly to one node of the circuit at a

random time slot. The experiment unit has the inherent baseline delay of 177.5 ps without

any interference. As the figure shows, 200 experiments were done for the fault injection

91

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

Extra delays caused by fault injection (ps)

N
um

be
r o

f e
ve

nt
s

ou
t o

f 2
00

 e
xp

er
im

en
ts

Figure 6.8: Histogram of delays caused by fault injections

over the circuits. Among that, 24 out of 200 experiments are delayed by the injected fault,

and the extra delays range from 20 ps to 70 ps, which presents 11.3% to 39.5% increase

respectively to the inherent delay.

To evaluate how the modeled error affects the whole system performance, fault rate

(FR) is also introduced here as the number of injected faults over one clock cycle. Ac-

cording to the statistic information in fig. 6.8, a total delay can be estimated. Based on the

introduced fault model, the timing analysis of the proposed scheme is given following.

To compare with the ordinary asynchronous circuits, the proposed design is imple-

mented with the computation units of the LDPC decoder. All designs are tested over same

FR to explore the timing performance. As Fig. 6.9 shows, the time to complete the op-

eration is affected by the fault injection rate. In the figure, the delays for two schemes,

the ordinary asynchronous circuit and the proposed dual-path asynchronous circuit, are

presented. As the figure shows, a higher FR results in a larger delay, and traditional cir-

cuits has the maximum delay out of these two. Under the FR 400/clock cycle, the delay

92

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

X: 350
Y: 19.56

D
el

ay
s

O
ve

rh
ea

d(
%

)

Fault Injection Rate (1/clock cycle)

X: 350
Y: 7.557

Ordinary
Proposed Dual-Path

Figure 6.9: Delays under difference schemes with different FR

overhead of traditional circuit can reach 19.5%, and the proposed design can reduce the

overhead to only 7.5%. We also can tell that the delay of proposed design increases slower

than that of ordinary design as the increasing of FR. According to the result presented in

Fig. 6.8, a transient fault can cause delay or not. For ordinary asynchronous circuit, as

the increasing of FR, it gets a higher chance of being hit by a transient fault with delay.

However, for proposed dual-path design, the chance is much lower since the probability of

being hit by a transient fault with delay is squared own to the duplicated path. Even under

a very small chance that both paths will be introduced delay, only the faster one will be

chosen.

Check Node Unite (CNU) and Variable Node Unite (VNU) are two most costly and

crucial combinational logic parts in a LDPC decoder. We use Synopsys to synthesis the

circuits on Nangate 45nm CMOS technology library. Table 6.1 shows the area overhead

of CNU,VNU, and proposed Arbiter.

As the table shows, proposed Arbiter incurs only 2.12% increase of area to original

93

Table 6.1: Hardware overhead (unit:µm2)

CNU VNU proposed Arbiter
2369.793 1207.373 42.560

design. Since it is duplicate design, the 100% overhead of duplication cannot be avoid.

However, considering the huge speed up and a higher robustness of entire system es-

pecially under harsh electromagnetic interference environments, the whole overhead is

acceptable.

In this example, we show that the proposed asynchronous circuits design could be

adopted into an application of LDPC decoder. With the acceptable overhead, our scheme

could highly speed up the circuits in a hazard electromagnetic or radiation surrounding .

6.2 Asynchronous Design for Precision-Scaleable Energy-Efficient LDPC Decoder

Low-density parity-check codes [6] are powerful error-correcting codes that perform

very close to the Shannon limit and are used in many communication standards such as

IEEE 802.16e (WiMAX) [72], DVB-S2 and IEEE 802.11n (WiFi). LDPC performance is

significantly affected by the decoding algorithm. Excellent LDPC performance is achieved

by soft decoding typically with the sum-product (SP) algorithm. The algorithm operates

by iteratively passing a posteriori probability or log-likelihood ratio (LLR) messages along

the edges of a factor graph [73], which involves check-node update and variable-node up-

date. In practice, the variants of SP algorithm such as min-sum (MS), offset min-sum

(OMS) algorithms are used to be implemented for avoiding overflow and efficient hard-

ware implementation.

The basic data flow chart of LDPC decoder is given in Fig. 6.10. There are different

algorithms on how to propagate the belief through the check nodes and variable nodes.

In practice, min-sum algorithm and its variants are popular for its simplified operation on

94

2

Detector

Received
Symbols

LDPC Decoder

Variable N
odes

Check N
odes

Iteratively decoding

Voltage
Regulator

SNR
Estimator

sink

Control

Fig. 1. The overview system flow of proposed LDPC decoder

V1
V2
V3
V4
V5
V6
V7
V8

V9

V1
V2
V3
V4
V5
V6
V7
V8

V9

Check nodes
Update

Variable nodes
Update

iteration

S1

S2

S3

S4
S5

S6

S1

S2

S3

S4
S5

S6

Fig. 2. Generic LDPC decoding data flow graph

II. PROPOSED SYSTEM

Fig. 1 shows the overview system for the proposed LDPC
decoder. The LDPC decoder is composed by the check nodes
units (CNU) and variable nodes units (VNU) which iteratively
refine the received bit stream. In the proposed system, the
LDPC decoder consists of precision-scalable units which are
designed in asynchronous circuits as delay variously depending
on the precision of the calculation in use. The control model
is introduced here to determine the pair of necessary com-
putation precision and voltage supply, for a given decoding
fidelity, according to the interference strength. Different with
the conventional synchronous precision-scalable design, event-
driven asynchronous circuits allow not to dynamically scale the
operating frequency along with voltage scaling. To accommo-
date the precision scalability, the modifications of CNU and
VNU are presented in this paper.

A. LDPC Decoding Flow
The basic data flow chart of LDPC decoder is given in

Fig. 2. In literature there are different algorithms on how to
propagate the belief through the check nodes and variable
nodes. In practice, min-sum algorithm and its variants are
popular for its simplified operation on belief propagation (BP).
In this paper, min-sum algorithm is taken as the example to

DATA

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Fig. 3. Asynchronous circuits data path model

be applied on our precision-adaptive decoder design in asyn-
chronous circuits. Noticeably, although min-sum algorithm is
taken to be implemented in our paper, the design flow could be
extended to apply any other BP LDPC decoding algorithms.

When to update the check nodes at ith iteration, for each
variable node Vn and the set of its neighboring variable nodes
m ∈ M(n), the message sent from variable nodes to check
nodes, Qi

nm, could be presented as:

Qi
nm = yn +

∑

m′∈M(n)\m

R(i)
mn. (1)

R
(i)
mn is the message sent from check nodes Sm to variable

node Vn. It is updated in the other phase of variable nodes
update by the following equation:

R(i)
mn = (

∏

n′∈N(m)\m

sign(Qi
n′m)) min

n′∈N(m)\m
(Qi

n′m) (2)

In this paper, those computations above are implemented in
a way that the precision is reconfigurable so that only necessary
bits of precision will be used to compute Qi

nm and R
(i)
mn on

the fly. The details of the implementation will be presented in
the Section IV.

B. Asynchronous Circuits
In synchronous circuits, significant effort on design, per-

formance and timing must be given to ensure correct register-
to-register data forwarding. Especially for DVFS technique,
when the voltage scaling, frequency scaling needs be carefully
scheduled to avoid any flaws in the clock-driven data forward-
ing paths. Asynchronous circuits are unlike the synchronous
circuits that consist of registers and combination logic, driven
by a global clock. On the contrary, in asynchronous circuits,
data forwarding from the input to the output ports are con-
trolled by handshaking between receiving and forwarding units
via acknowledgement signals. The processing-flow model of
asynchronous circuits is shown in Fig. 3. The REQ signal
from previous stage informs the next stage that the new data is
ready. Then the combinational logic (CL) circuit commences
to compute. After the combinational computing, the control
module (CTL) generates an ACK signal and send it back to
the previous module to inform that current computing cycle is
complete and it is ready to receive new data.

In this paper, the combinational logic for the VNU and
CNU are designed with the scalability of the precision. Under
different configurations of the precision, the combinational
logic costs different amount of resources in terms of voltage
or time to complete computations. Due to the nature of the
clock-free asynchronous circuits, the voltage could be scaled
down for low-precision calculations so as to reduce the power
consumption. The details on how the precision impacts the
decoding performance and precision-scalable units implemen-
tation are discussed in the remaining of this paper.

Figure 6.10: Generic LDPC decoding data flow graph

belief propagation. In this paper, min-sum algorithm is taken as the example to be applied

on our precision-adaptive decoder design in asynchronous circuits. Noticeably, although

min-sum algorithm is taken to be implemented in our paper, the design flow could be

extended to apply other BP LDPC decoding algorithm.

When to update the check nodes at ith iteration, for each variable node Vn and the set

of its neighboring variable nodes m ∈ M(n), the message sent from variable nodes to

check nodes, Qi
nm, could be presented as: yn +

∑
m′∈M(n)\mR

(i)
mn. R(i)

mn is the message

sent from check nodes Sm to variable node Vn. It is updated in the variable nodes update

phase by the following equation:

R(i)
mn = (

∏

n′∈N(m)\m

sign(Qi
n′m)) min

n′∈N(m)\m
(Qi

n′m) (6.1)

Power consumption is crucial to a decoder system. Thus, the dynamic voltage and

95

frequency scaling (DVFS) technique is introduced into the LDPC decoder design for the

purpose of low power [74]. Although DVFS helps significantly reduce the power con-

sumption, it introduces difficulties on the coordination between voltage and scaling to

avoid time violation. Fortunately, the natures of asynchronous circuits overcome the prob-

lems mentioned in DVFS technique and make asynchronous circuits a powerful method to

do low-power design [75].

In this work, a precision-scalable based LDPC decoder facilitated by the asynchronous

circuits technique is proposed. First, a set of precision-adaptive calculation units are pro-

posed to premise the flexibility of the decoder in precision. Furthermore, to get the optimal

quantization scheme in terms of performance for each precision, the impacts of different

fixed-point word sizes with various quantization schemes are presented. To target a given

BER performance, the moderation of the necessary precision and circuits delays are eval-

uated by the SPICE simulations; and the corresponding power reduction is derived.

6.2.1 Proposed System

Fig. 6.11 shows the overview system for the proposed LDPC decoder. The LDPC

decoder is composed by the check nodes units (CNU) and variable nodes units (VNU)

which iteratively refine the received bit stream. In the proposed system, the LDPC de-

coder consists of precision-scalable units which are designed in asynchronous circuits as

various delays depending on the precision of the calculation in use. The control model is

introduced here to determine necessary the pair of computation precision and voltage sup-

ply, for a given decoding fidelity, according to the strength of the interference. Different

with the conventional synchronous precision-scalable design, event-driven asynchronous

circuits allow not to dynamically scale the supply voltage along with voltage scaling. To

accommodate the precision scalability, the modifications of CNU and VNU are presented

as well.

96

2

Detector

Received
Symbols

LDPC Decoder
Variable N

odes

Check N
odes

Iteratively decoding

Voltage
Regulator

SNR
Estimator

sink

Control

Fig. 1. The overview system flow of proposed LDPC decoder

V1
V2
V3
V4
V5
V6
V7
V8

V9

V1
V2
V3
V4
V5
V6
V7
V8

V9

Check nodes
Update

Variable nodes
Update

iteration

S1

S2

S3

S4
S5

S6

S1

S2

S3

S4
S5

S6

Fig. 2. Generic LDPC decoding data flow graph

II. PROPOSED SYSTEM

Fig. 1 shows the overview system for the proposed LDPC
decoder. The LDPC decoder is composed by the check nodes
units (CNU) and variable nodes units (VNU) which iteratively
refine the received bit stream. In the proposed system, the
LDPC decoder consists of precision-scalable units which are
designed in asynchronous circuits as delay variously depending
on the precision of the calculation in use. The control model
is introduced here to determine the pair of necessary com-
putation precision and voltage supply, for a given decoding
fidelity, according to the interference strength. Different with
the conventional synchronous precision-scalable design, event-
driven asynchronous circuits allow not to dynamically scale the
operating frequency along with voltage scaling. To accommo-
date the precision scalability, the modifications of CNU and
VNU are presented in this paper.

A. LDPC Decoding Flow
The basic data flow chart of LDPC decoder is given in

Fig. 2. In literature there are different algorithms on how to
propagate the belief through the check nodes and variable
nodes. In practice, min-sum algorithm and its variants are
popular for its simplified operation on belief propagation (BP).
In this paper, min-sum algorithm is taken as the example to

DATA

CTL

R1
CL1

CTL

R2
CL2

CTL

R3

ACK
REQ

ACK
REQ

ACK
REQ

ACK
REQ

Fig. 3. Asynchronous circuits data path model

be applied on our precision-adaptive decoder design in asyn-
chronous circuits. Noticeably, although min-sum algorithm is
taken to be implemented in our paper, the design flow could be
extended to apply any other BP LDPC decoding algorithms.

When to update the check nodes at ith iteration, for each
variable node Vn and the set of its neighboring variable nodes
m ∈ M(n), the message sent from variable nodes to check
nodes, Qi

nm, could be presented as:

Qi
nm = yn +

∑

m′∈M(n)\m

R(i)
mn. (1)

R
(i)
mn is the message sent from check nodes Sm to variable

node Vn. It is updated in the other phase of variable nodes
update by the following equation:

R(i)
mn = (

∏

n′∈N(m)\m

sign(Qi
n′m)) min

n′∈N(m)\m
(Qi

n′m) (2)

In this paper, those computations above are implemented in
a way that the precision is reconfigurable so that only necessary
bits of precision will be used to compute Qi

nm and R
(i)
mn on

the fly. The details of the implementation will be presented in
the Section IV.

B. Asynchronous Circuits
In synchronous circuits, significant effort on design, per-

formance and timing must be given to ensure correct register-
to-register data forwarding. Especially for DVFS technique,
when the voltage scaling, frequency scaling needs be carefully
scheduled to avoid any flaws in the clock-driven data forward-
ing paths. Asynchronous circuits are unlike the synchronous
circuits that consist of registers and combination logic, driven
by a global clock. On the contrary, in asynchronous circuits,
data forwarding from the input to the output ports are con-
trolled by handshaking between receiving and forwarding units
via acknowledgement signals. The processing-flow model of
asynchronous circuits is shown in Fig. 3. The REQ signal
from previous stage informs the next stage that the new data is
ready. Then the combinational logic (CL) circuit commences
to compute. After the combinational computing, the control
module (CTL) generates an ACK signal and send it back to
the previous module to inform that current computing cycle is
complete and it is ready to receive new data.

In this paper, the combinational logic for the VNU and
CNU are designed with the scalability of the precision. Under
different configurations of the precision, the combinational
logic costs different amount of resources in terms of voltage
or time to complete computations. Due to the nature of the
clock-free asynchronous circuits, the voltage could be scaled
down for low-precision calculations so as to reduce the power
consumption. The details on how the precision impacts the
decoding performance and precision-scalable units implemen-
tation are discussed in the remaining of this paper.

Figure 6.11: The overview system flow of proposed LDPC decoder

In this work, the combinational logic for the VNU and CNU are designed with the

scalability of the precision. Under different configurations of the precision, the combina-

tional logic costs different amount of resources in terms of voltage or time to complete

computations. Due to clockless nature of the asynchronous circuits, the voltage could be

scaled down for low-precision calculations so as to reduce the power consumption. The

details on how the precision impacts the decoding performance and precision-scalable

units implementation are discussed in the following section.

6.2.2 Design Details

As aforementioned, the decoding procedure is operated by the iterations between two

basic computation units, VNUs and CNUs. Here, the two units with the precision recon-

figurablility are implemented as asynchronous circuits.

The variable node units with precision-scalability is presented first. Each VNU has

multiple inputs and the same number of outputs. Without losing the generality, Fig. 6.12

97

3

10 12 14 16 18 20 22
10−3

10−2

10−1

SNR [dB]

FE
R

8 bits
6 bits
4 bits

Fig. 4. FER performances for different word lengths

III. IMPACTS OF PRECISION ON DECODING
PERFORMANCE

In this section, we present how the performance is affected
by the different selections of the precision and what parameters
have impacts on the performance along with the adjustment
of the precision. In our case, the clipping scheme is chosen
to optimize the FER performance. All simulation results are
based on the 16QAM 4 × 4 MIMO wireless transmission
with 2304 code size and 1/2 coding rate LDPC codes in IEEE
802.16e standard.

To obtain the decoding performances with different pre-
cisions, we exhaustively search the best clipping window for
each number of precision. We found that with reserving more
signifcant bits in the LLR, the FER curve drops more earlier
under lower SNR. However, the clipping window to reserve
more signifcant bits also results in a relatively higher error
floor. With shifting the LLR clipping window to contain more
least signifcant bits (LSBs), the FER curves do not drop until
a relatively high SNR is given. The clipping window with
more LSBs needs higher SNR to achieve a given target FER
decoding performance though, it mitigates the effect of error
floor.

This impact could be explained as following. With limited
precision, the details of LLR are lost with clipping window
with more MSBs to achieve low error floor. Although LSBs
keep more details of the LLR, the clipping window with more
LSBs obscures the confidences of the LLR so as to result in
degraded performance when SNR is relatively low.

In this paper, the optimal clipping window is determined
based on the error floor below the FER of 10−3. If we move
the clipping window to least significant side, the first window
which gives no error floor before FER dropping to 10−3 is
recognized as the optimal clipping window.

To derive the optimal clipping parameters for the proposed
precision-scalable LDPC decoder, the performances of the
min-sum LDPC decoder with different precisions are sim-
ulated. For each precision, the optimal clipping scheme is
derived by the methoed mentioned in the previous. Fig. 4

Sum

in1

in2

in3

out1

out2

out3

VNU
Precision scalable adder

FA FA

Precision Control

... FA

Fig. 5. Asynchronous precision-scalable VNU design

shows the optimal decoding performances of the proposed
LDPC decoder with precisions of 8, 6 and 4 bits. As shown
in the figure, under the given circumstance, within 3 dB
difference on the SNR the necessary precision of the LLR
could be reduced from 8-bit to 4-bit for a given FER target.

In the following, to utilize the reduction on necessary
precision, the details how the precision-scalable LDPC decoder
is implemented are given.

IV. IMPLEMENTATION OF THE PROPOSED SYSTEM

As aforementioned, the decoding procedure is operated by
the iterations between two basic computation units, VNUs
and CNUs. In this section, the two units with the precision
reconfigurablility are implemented with consideration of the
asynchronous circuits.

A. Variable Node Units
The variable node units with precision-scalability is pre-

sented first. Each VNU has multiple inputs and the same
number of outputs. Without losing the generality, Fig. 5 shows
a VNU with 3 inputs and outputs. The inputs are fed the
values from the outputs of the CNUs. The VNU generates
the outputs by the summations of the input values except
the value from the corresponding input with same index, as
described in (1). The number of inputs is as many as 7 in
the standard LDPC matrix. To reduce the complexity of the
VNU, usually the VNU is designed to sum all inputs together
first and then subtract the input value from the summation for
the corresponding output. This algorithm is implemented by a
adder tree which sums all inputs first and multiple adders to
subtract the inputs.

The precision scalability is augmented by designing a
precision-reconfigurable adder. As Fig. 5 shows, the carry-in
for each full adder is gated by a control signal. The control
signal could gate each specific carry-in signal. Therefore,
the precision of adder is adjusted by enabling the specific
number of full adders by the control signals. Thus the critical
path is reduced for less precision requirement operation. In
the asynchronous fashion, there is no clock to constraint the
completion. Each stages passes the data to the neighbor by the
asynchronous protocol. With different precisions, the delays
of the unit are adjusted without any overhead on the clock
configuration. Therefore, asynchronous circuits offer more
feasibility of the scalability than conventional synchronous
circuits.

B. Check Node Units
Compared with the VNU, CNU is of greater complexity

to execute (2). The CNU also contains multiple inputs and
outputs. Each output of the CNU is the minimum values out of

Figure 6.12: Asynchronous precision-salable VNU design.

shows a VNU with 3 inputs and outputs. The inputs are fed the values from the outputs of

the CNUs. The VNU generates the outputs by the summations of the input values except

the value from the corresponding input with same index. The number of inputs is as many

as 7 in the standard LDPC matrix. To reduce the complexity of the VNU, usually the

VNU is designed to sum all inputs together first and then subtract the input value from the

summation for the corresponding output. This algorithm is implemented by a adder tree

which sums all inputs first and multiple adders to subtract the inputs.

The precision scalability is augmented by designing a precision-reconfigurable adder.

As Fig. 6.12shows, the carry-in for each full adder is gated by a control signal. The control

signal could gate each specific carry-in signal. Therefore, the precision of adder is adjusted

by enabling the specific number of full adders by the control signals. Thus the critical path

is reduced for less precision requirement operation. In the asynchronous fashion, there

is no clock to constraint the completion. Each stages passes the data to the neighbor by

the asynchronous protocol. With different precisions, the delays of the unit are adjusted

without any overhead on the clock configuration. Therefore, asynchronous circuits offer

more feasibility of the scalability than conventional synchronous circuits.

Compared with the VNU, CNU is of greater complexity. Fig. 6.13 shows the archi-

tecture of the CNU. The critical path of the CNU is marked by the dashed line in the

98

4

the all inputs except the corresponding input with same index.
An efficient way to complete the computation is first to sort out
all the inputs to get the minimum and second minimum (sub-
min) values. Subsequently the inputs are compared with the
min and sub-min value to determine which to be propagated
to the output. Fig. 6 shows the architecture of the CNU. The
critical path of the CNU is marked by the dashed line in
the figure, which consists of the absolute value calculation,
a sorting unit and a comparator.

In the first operation, the 2’s complementary number is
translated to sign-magnitude number. Then the magnitude
values are passed to the sorting units to get the minimum
and sub-minimum values out of all of the magnitudes. Finally,
the minimum and sub-minimum values are selected in the
comparator for each output. From the figure, it is shown
that the critical path mainly contains the sorting units and
a comparator. And sorting unit could be made by multiple
comparators. Therefore, to reduce the completion time of the
CNU in lower precision, we proposed the precision-scalable
comparator for the comparator as well as the sorting operator.

To accommodate the scalability of the precision, the bit
comparator units (BCUs) is introduced as the single units in
the comparators. As Fig.7 shows, the proposed comparator is
composed by multiple BCUs which are concatenated together.
The most right BCU corresponds to the MSB, while the left
most one is for LSB. For a certain number of precision, the
necessary number of BCUs are clipped out by the precision
control signal. The critical path of the proposed comparator
starts from the right to the left. Since the values after absolute
operation are unsigned, each BCU plays role on determine
which value of the inputs is greater by checking if two bits
are same are not. Also the BCU needs notify the BCU in the
next level if the comparison is done. If the comparison is done
by the previous stage BCU, the subsequent BCUs output the
results correspondingly.

The details of the BCU is also given in the figure. Inputs a
and b are the two bits of the operators. They are compared by
a XOR gate to determine if comparison between the two bits
is done in this stage. The ack input is used to acknowledge the
BCU that the comparison is done by the previous BCU. The
winner input indicates which number has the greater value.

Distinct with conventional comparator, since we utilize the
asynchronous technique here, the comparator proposed here is
not only equipped with ability of precision reconfiguration, it is
also designed to get the result as soon as possible by checking
from MSB to LSB. If the comparison is done earlier in more
significant bits, the critical path for the following BCUs is
reduced, so that the computation could be completed earlier
without the clock constraints.

In the following, the evaluations of the proposed method
in terms of computation latency, voltage scaling and power
reduction are given.

V. SETUP AND SIMULATION

To evaluate the proposed method, we first synthesize
the precision-scalable computation units by Synopsys Design
Compiler on Nangate 45nm library. The original design with-
out precision reduction is referenced as the baseline design. For
timing analysis of the proposed method, the critical paths under
different precision configurations are extracted by Synopsys
Primetime and evaluated by the Synopsys Hspice.

CNU
in1
in2
in3
in4
in5

Abs()

Sign()

Com
parator

sorting
Sub_min

out1
out2
out3
out4
out5

Fig. 6. Asynchronous precision-scalable CNU design

Precision scalable comparator

BCU

Precision Control

... BCUBCU
...

Bit Comparator Unit

a
b

ack
winner

ack_out

M
U

X

b

M
U

X

b

winner_out

a Bit of winner

Fig. 7. Proposed asynchronous comparator

A. Timing Analysis of the proposed units
First of all, the delays of the proposed units with different

precision configurations are evaluated by the SPICE simula-
tion. And the results are shown in the Fig. 8. As the figure
shows, the latency of the computation units are substantially
affected by the number of bits involved in the computation. To
utilize the time reduction of the lower-precision computation
in high-SNR situations, the supply voltage could be tuned
down without losing throughput. Because the asynchronous
circuits applied, overhead of frequency control is dismissed as
we mentioned above. The results voltage scaling is discussed
in the following subsection.

B. Voltage Scaling
Here we examined the necessary voltage supplies for

computations under different precision without losing the
throughput. VNU is taken as an example here to illustrate
the voltage scaling. Fig. 9 shows the latency over the sup-
ply voltage of VNU with different precisions. The baseline
latency is referenced as the 8-bit full precision. To achieve the
same latency, lower voltage supplies are sufficient for those
lower-precision computations according to the curves. And the
voltage scaling points are indicated as the necessary voltage
supply for different precisions.

C. Comparisons with full-precision decoding
According to the supply voltages reductions examined

above, we derived the normalized power reduction to the
LDPC decoder running at full precision by the power, P ∝

Figure 6.13: Asynchronous precision-salable CNU design

figure, which consists of the absolute value calculation, a sorting unit and a comparator. In

the first operation, the 2’s complementary number is translated to sign-magnitude number.

Then the magnitude values are passed to the sorting units to get the minimum and sub-

minimum values out of all of the magnitudes. Finally, the minimum and sub-minimum

values are selected in the comparator for each output. From the figure, it is shown that the

critical path mainly contains the sorting units and a comparator. And sorting unit could

be made by multiple comparators. Therefore, to reduce the completion time of the CNU

in lower precision, we proposed the precision-scalable comparator for the comparator as

well as the sorting operator.

To accommodate the scalability of the precision, the bit comparator units (BCUs) is

introduced as the single units in the comparators. As Fig. 6.14 shows, the proposed com-

parator is composed by multiple BCUs which are concatenated together. The most right

BCU corresponds to the MSB, while the left most one is for LSB. For a certain number of

precision, the necessary number of BCUs are clipped out by the precision control signal.

The critical path of the proposed comparator starts from the right to the left. Since the

values after absolute operation are unsigned, each BCU plays role on determine which

value of the inputs is greater by checking if two bits are same are not. Also the BCU needs

99

4

the all inputs except the corresponding input with same index.
An efficient way to complete the computation is first to sort out
all the inputs to get the minimum and second minimum (sub-
min) values. Subsequently the inputs are compared with the
min and sub-min value to determine which to be propagated
to the output. Fig. 6 shows the architecture of the CNU. The
critical path of the CNU is marked by the dashed line in
the figure, which consists of the absolute value calculation,
a sorting unit and a comparator.

In the first operation, the 2’s complementary number is
translated to sign-magnitude number. Then the magnitude
values are passed to the sorting units to get the minimum
and sub-minimum values out of all of the magnitudes. Finally,
the minimum and sub-minimum values are selected in the
comparator for each output. From the figure, it is shown
that the critical path mainly contains the sorting units and
a comparator. And sorting unit could be made by multiple
comparators. Therefore, to reduce the completion time of the
CNU in lower precision, we proposed the precision-scalable
comparator for the comparator as well as the sorting operator.

To accommodate the scalability of the precision, the bit
comparator units (BCUs) is introduced as the single units in
the comparators. As Fig.7 shows, the proposed comparator is
composed by multiple BCUs which are concatenated together.
The most right BCU corresponds to the MSB, while the left
most one is for LSB. For a certain number of precision, the
necessary number of BCUs are clipped out by the precision
control signal. The critical path of the proposed comparator
starts from the right to the left. Since the values after absolute
operation are unsigned, each BCU plays role on determine
which value of the inputs is greater by checking if two bits
are same are not. Also the BCU needs notify the BCU in the
next level if the comparison is done. If the comparison is done
by the previous stage BCU, the subsequent BCUs output the
results correspondingly.

The details of the BCU is also given in the figure. Inputs a
and b are the two bits of the operators. They are compared by
a XOR gate to determine if comparison between the two bits
is done in this stage. The ack input is used to acknowledge the
BCU that the comparison is done by the previous BCU. The
winner input indicates which number has the greater value.

Distinct with conventional comparator, since we utilize the
asynchronous technique here, the comparator proposed here is
not only equipped with ability of precision reconfiguration, it is
also designed to get the result as soon as possible by checking
from MSB to LSB. If the comparison is done earlier in more
significant bits, the critical path for the following BCUs is
reduced, so that the computation could be completed earlier
without the clock constraints.

In the following, the evaluations of the proposed method
in terms of computation latency, voltage scaling and power
reduction are given.

V. SETUP AND SIMULATION

To evaluate the proposed method, we first synthesize
the precision-scalable computation units by Synopsys Design
Compiler on Nangate 45nm library. The original design with-
out precision reduction is referenced as the baseline design. For
timing analysis of the proposed method, the critical paths under
different precision configurations are extracted by Synopsys
Primetime and evaluated by the Synopsys Hspice.

CNU
in1
in2
in3
in4
in5

Abs()

Sign()

Com
parator

sorting
Sub_min

out1
out2
out3
out4
out5

Fig. 6. Asynchronous precision-scalable CNU design

Precision scalable comparator

BCU

Precision Control

... BCUBCU
...

Bit Comparator Unit

a
b

ack
winner

ack_out

M
U

X

b

M
U

X
b

winner_out

a Bit of winner

Fig. 7. Proposed asynchronous comparator

A. Timing Analysis of the proposed units
First of all, the delays of the proposed units with different

precision configurations are evaluated by the SPICE simula-
tion. And the results are shown in the Fig. 8. As the figure
shows, the latency of the computation units are substantially
affected by the number of bits involved in the computation. To
utilize the time reduction of the lower-precision computation
in high-SNR situations, the supply voltage could be tuned
down without losing throughput. Because the asynchronous
circuits applied, overhead of frequency control is dismissed as
we mentioned above. The results voltage scaling is discussed
in the following subsection.

B. Voltage Scaling
Here we examined the necessary voltage supplies for

computations under different precision without losing the
throughput. VNU is taken as an example here to illustrate
the voltage scaling. Fig. 9 shows the latency over the sup-
ply voltage of VNU with different precisions. The baseline
latency is referenced as the 8-bit full precision. To achieve the
same latency, lower voltage supplies are sufficient for those
lower-precision computations according to the curves. And the
voltage scaling points are indicated as the necessary voltage
supply for different precisions.

C. Comparisons with full-precision decoding
According to the supply voltages reductions examined

above, we derived the normalized power reduction to the
LDPC decoder running at full precision by the power, P ∝

Figure 6.14: Proposed asynchronous comparator

notify the BCU in the next level if the comparison is done. If the comparison is done by

the previous stage BCU, the subsequent BCUs output the results correspondingly. The

details of the BCU is also given in the figure. Inputs a and b are the two bits of the opera-

tors. They are compared by a XOR gate to determine if comparison between the two bits

is done in this stage. The ack input is used to acknowledge the BCU that the comparison

is done by the previous BCU. The winner input indicates which number has the greater

value. Distinct with conventional comparator, since we utilize the asynchronous technique

here, the comparator proposed here is not only equipped with ability of precision recon-

figuration, it is also designed to get the result as soon as possible by checking from MSB

to LSB. If the comparison is done earlier in more significant bits, the critical path for the

following BCUs is reduced, so that the computation could be completed earlier without

the clock constraints. In the following, the evaluations of the proposed method in terms of

computation latency, voltage scaling and power reduction are given.

100

6.2.3 Simulations and Analysis

To evaluate the proposed method, we first synthesize the precision-scalable computa-

tion units by Synopsys Design Compiler on Nangate FreePDK 45nm library. The original

design without precision reduction is referenced as the baseline design. For timing analy-

sis of the proposed method, the critical paths under different precision configurations are

extracted by Synopsys Primetime and evaluated by the Synopsys Hspice.

5

2 4 6 8
0

100

200

300

400

500

600

Precision [bits]

La
te

nc
y

[p
s]

VNU
comparator

Fig. 8. Units delays for different precisions

0.8 0.85 0.9 0.95 1 1.05 1.1
400

450

500

550

600

650

700

Vdd [V]

La
te

nc
y

[p
s]

7 bits
6 bits
5 bits
4 bits

Voltage
Scaling
Points

Baseline
Latency

Fig. 9. Voltage Scaling to align processing latency

High SNR Low SNR

4 5 6 7 8
0

20

40

60

80

100

Precision [bits]

P
ow

er
 c

on
su

m
pt

io
n

[%
] VNU

CNU
Total

Fig. 10. Normalized power reduction compared with fixed precision LDPC
decoder

V 2
dd. Fig. 10 shows the relatively power consumption compared

with full 8-bit precision LDPC decoder. With high SNR
environments, 4-bit precision LDPC decoder could be taken to
do decoding for a given target transmission reliability with only
cost of 49% power consumption as the full-precision running

decoder.
Noticeably, the specific algorithm and simulation environ-

ment are set in this paper though, the method presented in this
paper is algorithm independent and could be applied into any
other specific cases.

VI. CONCLUSION AND DISCUSSION

In this paper, we explored the feasibility and effect of
the precision-scalable energy-efficient LDPC decoder equipped
with the asynchronous techniques. The IEEE 802.16e is taken
as the background for the design in this paper. To design a solid
precision-scalable LDPC decoder, the impacts of LLR clipping
on the performance of different precision computations are
also studied. To get an optimal performance, we found the
clipping schemes should be carefully taken for calculations
with different precisions. Furthermore, the basic units in the
LDPC decoder, VNU and CNU are explored and modified as
precision-reconfigurable. A series of experiments and deriva-
tion are deducted to show that the proposed LDPC decoder is
able to operate with 4-bit precision, half of the normally used
precision under higher SNR to achieve 51% power reduction.

REFERENCES
[1] R. G. Gallager, “Low-density parity-check codes,” Information Theory,

IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.
[2] D. J. MacKay, “Good error-correcting codes based on very sparse

matrices,” Information Theory, IEEE Transactions on, vol. 45, no. 2,
pp. 399–431, 1999.

[3] IEEE 802.16 Working Group and others, “IEEE Standard for Local and
Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband
Wireless Access Systems,” IEEE Std, vol. 802, pp. 16–2004, 2004.

[4] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” Information Theory, IEEE Transactions on,
vol. 47, no. 2, pp. 498–519, Feb 2001.

[5] A. J. Blanksby and C. J. Howland, “A 690-mw 1-gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 3, pp. 404–412, 2002.

[6] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
architectures for layered decoding for irregular LDPC codes of WiMax,”
in Communications, 2007. ICC’07. IEEE International Conference on.
IEEE, 2007, pp. 4542–4547.

[7] W. Wang, E. Kim, K. K. Gunnam, and G. S. Choi, “Low-power vlsi
design of ldpc decoder using dynamic voltage and frequency scaling
for additive white gaussian noise channels,” Journal of Low Power
Electronics, vol. 5, no. 3, pp. 303–312, 2009.

[8] T. Mohsenin, H. Shirani-mehr, and B. M. Baas, “LDPC Decoder
with an Adaptive Wordwidth Datapath for Energy and BER Co-
optimization,” VLSI Des., vol. 2013, pp. 7:7–7:7, Jan. 2013. [Online].
Available: http://dx.doi.org/10.1155/2013/913018

[9] T. Lin, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “An ultra-low power
asynchronous-logic in-situ self-adaptive system for wireless sensor
networks,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 2, pp.
573–586, 2013.

[10] J. Spars and S. Furber, Principles Asynchronous Circuit Design.
Springer, 2002.

[11] E. Rohani, J. Xu, T. Che, M. Rahman, G. Choi, and M. Lu, “Asyn-
chronous baseband processor design for cooperative mimo satellite
communication,” in Circuits and Systems (MWSCAS), 2014 IEEE 57th
International Midwest Symposium on. IEEE, 2014, pp. 833–836.

[12] N. Onizawa, V. C. Gaudet, and T. Hanyu, “Low-energy asynchronous
interleaver for clockless fully parallel ldpc decoding,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 58, no. 8, pp.
1933–1943, 2011.

Figure 6.15: Units delays for different bits of precision

First of all, the delays of the proposed units with different precision configurations are

evaluated by the SPICE simulation. And the results are shown in the Fig. 6.15. As the

figure shows, the latency of the computation units are substantially affected by the number

of bits involved in the computation. To utilize the time reduction of the lower-precision

computation in high-SNR situations, the supply voltage could be tuned down without los-

ing throughput. Because the asynchronous circuits applied, overhead of frequency control

101

is dismissed as we mentioned above.

5

2 4 6 8
0

100

200

300

400

500

600

Precision [bits]

La
te

nc
y

[p
s]

VNU
comparator

Fig. 8. Units delays for different precisions

0.8 0.85 0.9 0.95 1 1.05 1.1
400

450

500

550

600

650

700

Vdd [V]

La
te

nc
y

[p
s]

7 bits
6 bits
5 bits
4 bits

Voltage
Scaling
Points

Baseline
Latency

Fig. 9. Voltage Scaling to align processing latency

High SNR Low SNR

4 5 6 7 8
0

20

40

60

80

100

Precision [bits]

P
ow

er
 c

on
su

m
pt

io
n

[%
] VNU

CNU
Total

Fig. 10. Normalized power reduction compared with fixed precision LDPC
decoder

V 2
dd. Fig. 10 shows the relatively power consumption compared

with full 8-bit precision LDPC decoder. With high SNR
environments, 4-bit precision LDPC decoder could be taken to
do decoding for a given target transmission reliability with only
cost of 49% power consumption as the full-precision running

decoder.
Noticeably, the specific algorithm and simulation environ-

ment are set in this paper though, the method presented in this
paper is algorithm independent and could be applied into any
other specific cases.

VI. CONCLUSION AND DISCUSSION

In this paper, we explored the feasibility and effect of
the precision-scalable energy-efficient LDPC decoder equipped
with the asynchronous techniques. The IEEE 802.16e is taken
as the background for the design in this paper. To design a solid
precision-scalable LDPC decoder, the impacts of LLR clipping
on the performance of different precision computations are
also studied. To get an optimal performance, we found the
clipping schemes should be carefully taken for calculations
with different precisions. Furthermore, the basic units in the
LDPC decoder, VNU and CNU are explored and modified as
precision-reconfigurable. A series of experiments and deriva-
tion are deducted to show that the proposed LDPC decoder is
able to operate with 4-bit precision, half of the normally used
precision under higher SNR to achieve 51% power reduction.

REFERENCES
[1] R. G. Gallager, “Low-density parity-check codes,” Information Theory,

IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.
[2] D. J. MacKay, “Good error-correcting codes based on very sparse

matrices,” Information Theory, IEEE Transactions on, vol. 45, no. 2,
pp. 399–431, 1999.

[3] IEEE 802.16 Working Group and others, “IEEE Standard for Local and
Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband
Wireless Access Systems,” IEEE Std, vol. 802, pp. 16–2004, 2004.

[4] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” Information Theory, IEEE Transactions on,
vol. 47, no. 2, pp. 498–519, Feb 2001.

[5] A. J. Blanksby and C. J. Howland, “A 690-mw 1-gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 3, pp. 404–412, 2002.

[6] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
architectures for layered decoding for irregular LDPC codes of WiMax,”
in Communications, 2007. ICC’07. IEEE International Conference on.
IEEE, 2007, pp. 4542–4547.

[7] W. Wang, E. Kim, K. K. Gunnam, and G. S. Choi, “Low-power vlsi
design of ldpc decoder using dynamic voltage and frequency scaling
for additive white gaussian noise channels,” Journal of Low Power
Electronics, vol. 5, no. 3, pp. 303–312, 2009.

[8] T. Mohsenin, H. Shirani-mehr, and B. M. Baas, “LDPC Decoder
with an Adaptive Wordwidth Datapath for Energy and BER Co-
optimization,” VLSI Des., vol. 2013, pp. 7:7–7:7, Jan. 2013. [Online].
Available: http://dx.doi.org/10.1155/2013/913018

[9] T. Lin, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “An ultra-low power
asynchronous-logic in-situ self-adaptive system for wireless sensor
networks,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 2, pp.
573–586, 2013.

[10] J. Spars and S. Furber, Principles Asynchronous Circuit Design.
Springer, 2002.

[11] E. Rohani, J. Xu, T. Che, M. Rahman, G. Choi, and M. Lu, “Asyn-
chronous baseband processor design for cooperative mimo satellite
communication,” in Circuits and Systems (MWSCAS), 2014 IEEE 57th
International Midwest Symposium on. IEEE, 2014, pp. 833–836.

[12] N. Onizawa, V. C. Gaudet, and T. Hanyu, “Low-energy asynchronous
interleaver for clockless fully parallel ldpc decoding,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 58, no. 8, pp.
1933–1943, 2011.

Figure 6.16: Voltage scaling to align processing latency

Here we examined the necessary voltage supplies for computations under different

precision without losing the throughput. VNU is taken as an example here to illustrate the

voltage scaling. Fig. 6.16 shows the latency over the supply voltage of VNU with different

precisions. The baseline latency is referenced as the 8-bit full precision. To achieve the

same latency, lower voltage supplies are sufficient for those lower-precision computations

according to the curves. And the voltage scaling points are indicated as the necessary

voltage supply for different bits of precision.

According to the supply voltages reductions examined above, we derived the nor-

malized power reduction to the LDPC decoder running at full precision by the power,

P ∝ V 2
dd. Fig. 6.17 shows the relatively power consumption compared with full 8-bit pre-

cision LDPC decoder. With high SNR environments, 4-bit precision LDPC decoder could

be taken to do decoding for a given target transmission reliability with only cost of 49%

power consumption as the full-precision running decoder.

102

5

2 4 6 8
0

100

200

300

400

500

600

Precision [bits]

La
te

nc
y

[p
s]

VNU
comparator

Fig. 8. Units delays for different precisions

0.8 0.85 0.9 0.95 1 1.05 1.1
400

450

500

550

600

650

700

Vdd [V]

La
te

nc
y

[p
s]

7 bits
6 bits
5 bits
4 bits

Voltage
Scaling
Points

Baseline
Latency

Fig. 9. Voltage Scaling to align processing latency

High SNR Low SNR

4 5 6 7 8
0

20

40

60

80

100

Precision [bits]

P
ow

er
 c

on
su

m
pt

io
n

[%
] VNU

CNU
Total

Fig. 10. Normalized power reduction compared with fixed precision LDPC
decoder

V 2
dd. Fig. 10 shows the relatively power consumption compared

with full 8-bit precision LDPC decoder. With high SNR
environments, 4-bit precision LDPC decoder could be taken to
do decoding for a given target transmission reliability with only
cost of 49% power consumption as the full-precision running

decoder.
Noticeably, the specific algorithm and simulation environ-

ment are set in this paper though, the method presented in this
paper is algorithm independent and could be applied into any
other specific cases.

VI. CONCLUSION AND DISCUSSION

In this paper, we explored the feasibility and effect of
the precision-scalable energy-efficient LDPC decoder equipped
with the asynchronous techniques. The IEEE 802.16e is taken
as the background for the design in this paper. To design a solid
precision-scalable LDPC decoder, the impacts of LLR clipping
on the performance of different precision computations are
also studied. To get an optimal performance, we found the
clipping schemes should be carefully taken for calculations
with different precisions. Furthermore, the basic units in the
LDPC decoder, VNU and CNU are explored and modified as
precision-reconfigurable. A series of experiments and deriva-
tion are deducted to show that the proposed LDPC decoder is
able to operate with 4-bit precision, half of the normally used
precision under higher SNR to achieve 51% power reduction.

REFERENCES
[1] R. G. Gallager, “Low-density parity-check codes,” Information Theory,

IRE Transactions on, vol. 8, no. 1, pp. 21–28, 1962.
[2] D. J. MacKay, “Good error-correcting codes based on very sparse

matrices,” Information Theory, IEEE Transactions on, vol. 45, no. 2,
pp. 399–431, 1999.

[3] IEEE 802.16 Working Group and others, “IEEE Standard for Local and
Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband
Wireless Access Systems,” IEEE Std, vol. 802, pp. 16–2004, 2004.

[4] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” Information Theory, IEEE Transactions on,
vol. 47, no. 2, pp. 498–519, Feb 2001.

[5] A. J. Blanksby and C. J. Howland, “A 690-mw 1-gb/s 1024-b, rate-
1/2 low-density parity-check code decoder,” Solid-State Circuits, IEEE
Journal of, vol. 37, no. 3, pp. 404–412, 2002.

[6] K. K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
architectures for layered decoding for irregular LDPC codes of WiMax,”
in Communications, 2007. ICC’07. IEEE International Conference on.
IEEE, 2007, pp. 4542–4547.

[7] W. Wang, E. Kim, K. K. Gunnam, and G. S. Choi, “Low-power vlsi
design of ldpc decoder using dynamic voltage and frequency scaling
for additive white gaussian noise channels,” Journal of Low Power
Electronics, vol. 5, no. 3, pp. 303–312, 2009.

[8] T. Mohsenin, H. Shirani-mehr, and B. M. Baas, “LDPC Decoder
with an Adaptive Wordwidth Datapath for Energy and BER Co-
optimization,” VLSI Des., vol. 2013, pp. 7:7–7:7, Jan. 2013. [Online].
Available: http://dx.doi.org/10.1155/2013/913018

[9] T. Lin, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “An ultra-low power
asynchronous-logic in-situ self-adaptive system for wireless sensor
networks,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 2, pp.
573–586, 2013.

[10] J. Spars and S. Furber, Principles Asynchronous Circuit Design.
Springer, 2002.

[11] E. Rohani, J. Xu, T. Che, M. Rahman, G. Choi, and M. Lu, “Asyn-
chronous baseband processor design for cooperative mimo satellite
communication,” in Circuits and Systems (MWSCAS), 2014 IEEE 57th
International Midwest Symposium on. IEEE, 2014, pp. 833–836.

[12] N. Onizawa, V. C. Gaudet, and T. Hanyu, “Low-energy asynchronous
interleaver for clockless fully parallel ldpc decoding,” Circuits and
Systems I: Regular Papers, IEEE Transactions on, vol. 58, no. 8, pp.
1933–1943, 2011.

Figure 6.17: Normalized power reduction compared with fixed precision LDPC decoder

103

7. SUMMARY

In this dissertation, hardware efficiency improvements on different types of polar codes

decoders are explored in system and VLSI architecture level.

TCSC decoder is proposed for high throughput demanding scenario. By absorbing the

concept of constituent code into hardware design, the decoding latency is significantly re-

duced. Constituent code based SC decoder lacks the flexibility since it is highly code rate

dependent. Our design overcomes the weakness by by exploiting the homogeneousness

between the decoding processes of constituent polar codes and regular polar codes, which

the presented design is compatible with any rate. The scheduling plan and the intendedly

designed processing core are also described. Additionally, a specifically designed partial

sum generator (PSG) which is compatible with constituent code based SC decoder is pro-

posed as well. We derive the mathematical presentation with the partial sums set which

is corresponding to each constituent code. From this, we concoct a shift-register based

PSG from . Results show that, compared with the state-of-art decoder, our design can

achieve at least 60% latency reduction for the codes with length n = 1024. This design is

validated via ASIC design with Nangate FreePDK 45nm process. Besides, a polar code

construction scheme that reduces constituent-code supplemented decoding latency is also

presented. This construction schme is constituent codes oriented, which allows more our

expected kinds of constituent are generated. We conducted the simulation of 1024 and

2048 length polar codes with multiple rates and analyzed the decoding latency for various

length codes. The numerical results show that the proposed construction scheme generally

is able to achieve at least around 20% latency deduction with an negligible gain loss with

carefully selected optimization threshold.

Path-overlapped approach is proposed for a more hardware efficient LSC design. By

104

applying path-overlapping scheme, the l instances of (l > 1) successive cancellation (SC)

decoder for LSC with list size l can be cut down to only one. This results in a dramatic

reduction of the hardware complexity without any decoding performance loss. The ar-

chitecture of SC decoder is modified to support this new paradigm as well. Since mod-

ifications are made only on architecture and scheduling plan, no decoding performance

gain loss or change is incurred. Three approaches, multi-decision list SC decoding, path-

LLR-compute-ahead scheme and adaptive LSC decoding, to reduce the latency associated

with the pipeline scheme are presented and evaluated as well. Simulation results show that

with proposed design approach the hardware efficiency is increased significantly over the

recently proposed LSC decoders.

XJ-BP is the result of algorithm and system level study of BP decoding, which sig-

nificant reduced the computation complexity. The proposed algorithm facilitates belief

propagation by utilizing the specific constituent codes that exist in the factor graph, which

results in an express journey for belief information to propagate in each decoding itera-

tion. In addition, a novel more efficient round-trip message passing scheduling method is

proposed. The proposed method simplifies min-sum (MS) BP decoder by 40.6Along with

the round-trip scheduling, the XJ-BP algorithm reduces the computational complexity of

MS-BP decoding by 90.4%; this enables an energy-efficient hardware implementation of

BP decoding in practice.

Asynchronous circuit is bottom level technique can be obtained in the decoder system

to achieve a better performance. In this dissertation work, it is introduced into two appli-

cations. They are dual-path asynchronous circuit and asynchronous design for precision-

scaleable energy-efficient LDPC. The first one yields a faster and more reliable system and

the second one makes the entire system more energy efficient. Although both of them use

LDPC decoder as a case study, they can be easily extended to polar code scenarios.

105

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mo-

bile Computing and Communications Review, vol. 5, no. 1, pp. 3–55, 2001.

[2] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm,” IEEE Transactions on Information Theory, vol. 13, no. 2,

pp. 260–269, 1967.

[3] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group

codes,” Information and Control, vol. 3, no. 1, pp. 68–79, 1960.

[4] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal

of The Society for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300–304,

1960.

[5] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding:

turbo-codes,” IEEE Transactions on Communications, vol. 44, no. 10, pp. 1261–

1271, 1996.

[6] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information

Theory, vol. 8, no. 1, pp. 21–28, 1962.

[7] E. Arikan, “Channel polarization: a method for constructing capacity-achieving

codes for symmetric binary-input memoryless channels,” IEEE Transactions on In-

formation Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[8] A. Eslami and H. Pishro-Nik, “On bit error rate performance of polar codes in finite

regime,” in Proceedings of the 2010 48th Annual Allerton Conference on Communi-

cation, Control, and Computing (Allerton), pp. 188–194, IEEE, 2010.

106

[9] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions on Informa-

tion Theory, vol. 59, no. 10, pp. 6562–6582, 2013.

[10] I. Tal and A. Vardy, “List decoding of polar codes,” in Proceedings of the 2011 IEEE

International Symposium on Information Theory (ISIT), pp. 1–5, IEEE, 2011.

[11] K. Niu and K. Chen, “Crc-aided decoding of polar codes,” IEEE Communications

Letters, vol. 16, no. 10, pp. 1668–1671, 2012.

[12] J. Guo, M. Qin, A. G. i Fabregas, and P. H. Siegel, “Enhanced belief propagation

decoding of polar codes through concatenation,” in Proceedings of the 2014 IEEE

International Symposium on Information Theory (ISIT), pp. 2987–2991, IEEE, 2014.

[13] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics Letters, vol. 48,

no. 12, pp. 695–697, 2012.

[14] K. Chen, K. Niu, and J. Lin, “Improved successive cancellation decoding of polar

codes,” IEEE Transactions on Communications, vol. 61, no. 8, pp. 3100–3107, 2013.

[15] R. Mori and T. Tanaka, “Performance of polar codes with the construction using

density evolution,” IEEE Communications Letters, vol. 13, no. 7, 2009.

[16] E. E. Gad, Y. Li, J. Kliewer, M. Langberg, A. A. Jiang, and J. Bruck, “Asymmetric

error correction and flash-memory rewriting using polar codes,” IEEE Transactions

on Information Theory, vol. 62, no. 7, pp. 4024–4038, 2016.

[17] Y. Li, H. Alhussien, E. F. Haratsch, and A. A. Jiang, “A study of polar codes for

mlc nand flash memories,” in Proceedings of the 2015 International Conference on

Computing, Networking and Communications (ICNC), pp. 608–612, IEEE, 2015.

[18] S.-N. Hong, D. Hui, and I. Marić, “Capacity-achieving rate-compatible polar codes,”

in Proceedings of the 2016 IEEE International Symposium on Information Theory

(ISIT), pp. 41–45, IEEE, 2016.

107

[19] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: characterization of expo-

nent, bounds, and constructions,” IEEE Transactions on Information Theory, vol. 56,

no. 12, pp. 6253–6264, 2010.

[20] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes for channel

and source coding,” in Proceedings of the 2009 IEEE International Symposium on

Information Theory (ISIT), pp. 1488–1492, IEEE, 2009.

[21] Y. Wang and K. R. Narayanan, “Concatenations of polar codes with outer bch codes

and convolutional codes,” in Proceedings of the 2014 52nd Annual Allerton Confer-

ence on Communication, Control, and Computing (Allerton), pp. 813–819, IEEE,

2014.

[22] O. O. Koyluoglu and H. El Gamal, “Polar coding for secure transmission and key

agreement,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 5,

pp. 1472–1483, 2012.

[23] E. Arikan, “Systematic polar coding,” IEEE Communications Letters, vol. 15, no. 8,

pp. 860–862, 2011.

[24] B. Li, H. Shen, and D. Tse, “An adaptive successive cancellation list decoder for

polar codes with cyclic redundancy check,” IEEE Communications Letters, vol. 16,

no. 12, pp. 2044–2047, 2012.

[25] C. Xiong, J. Lin, and Z. Yan, “Symbol-decision successive cancellation list decoder

for polar codes,” IEEE Transactions on Signal Processing, vol. 64, no. 3, pp. 675–

687, 2016.

[26] T. Che and G. Choi, “An encoding scheme with constituent codes optimization for

polar code-aim to reduce the decoding latency,” arXiv preprint arXiv:1612.02545,

2016.

108

[27] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures for successive

cancellation decoding of polar codes,” in Proceedings of the 2011 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1665–1668,

IEEE, 2011.

[28] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-

cancellation decoder for polar codes,” IEEE Transactions on Signal Processing,

vol. 61, no. 2, pp. 289–299, 2013.

[29] C. Zhang and K. K. Parhi, “Low-latency sequential and overlapped architectures for

successive cancellation polar decoder.,” IEEE Transactions on Signal Processing,

vol. 61, no. 10, pp. 2429–2441, 2013.

[30] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation polar decoder archi-

tectures using 2-bit decoding,” IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 61, no. 4, pp. 1241–1254, 2014.

[31] B. Yuan and K. K. Parhi, “Low-latency successive-cancellation list decoders for polar

codes with multibit decision,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 23, no. 10, pp. 2268–2280, 2015.

[32] A. Mishra, A. Raymond, L. Amaru, G. Sarkis, C. Leroux, P. Meinerzhagen, A. Burg,

and W. Gross, “A successive cancellation decoder asic for a 1024-bit polar code in

180nm cmos,” in Proceedings of the 2012 IEEE Asian Solid State Circuits Confer-

ence (A-SSCC), pp. 205–208, IEEE, 2012.

[33] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hardware

architecture for list successive cancellation decoding of polar codes,” IEEE Transac-

tions on Circuits and Systems II: Express Briefs, vol. 61, no. 8, pp. 609–613, 2014.

109

[34] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “Llr-based successive cancel-

lation list decoding of polar codes,” IEEE Transactions on Signal Processing, vol. 63,

no. 19, pp. 5165–5179, 2015.

[35] J. Lin, C. Xiong, and Z. Yan, “A high throughput list decoder architecture for polar

codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24,

no. 6, pp. 2378–2391, 2016.

[36] T. Che, J. Xu, and G. Choi, “Overlapped list successive cancellation approach for

hardware efficient polar code decoder,” in Proceedings of the 2016 IEEE Interna-

tional Symposium on Circuits and Systems (ISCAS), pp. 2463–2466, IEEE, 2016.

[37] A. Alamdar-Yazdi and F. R. Kschischang, “A simplified successive-cancellation de-

coder for polar codes,” IEEE Communications Letters, vol. 15, no. 12, pp. 1378–

1380, 2011.

[38] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast polar decoders:

algorithm and implementation,” IEEE Journal on Selected Areas in Communications,

vol. 32, no. 5, pp. 946–957, 2014.

[39] T. Che, J. Xu, and G. Choi, “Tc: throughput centric successive cancellation decoder

hardware implementation for polar codes,” in Proceedings of the 2016 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 991–

995, IEEE, 2016.

[40] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Fast list decoders for

polar codes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2,

pp. 318–328, 2016.

[41] J. Lin and Z. Yan, “A hybrid partial sum computation unit architecture for list de-

coders of polar codes,” in Proceedings of the 2015 IEEE International Conference

110

on Acoustics, Speech and Signal Processing (ICASSP), pp. 1076–1080, IEEE, 2015.

[42] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial sums generation architecture

for successive cancellation decoding of polar codes,” in Proceedings of the 2013

IEEE Workshop on Signal Processing Systems (SiPS), pp. 407–412, IEEE, 2013.

[43] G. Berhault, C. Leroux, C. Jego, and D. Dallet, “Partial sums computation in po-

lar codes decoding,” in Proceedings of the 2015 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 826–829, IEEE, 2015.

[44] Y. Fan and C.-y. Tsui, “An efficient partial-sum network architecture for semi-parallel

polar codes decoder implementation,” IEEE Transactions on Signal Processing,

vol. 62, no. 12, pp. 3165–3179, 2014.

[45] T. Che and G. Choi, “An efficient partial sums generator for constituent code based

successive cancellation decoding of polar codes,” arXiv preprint arXiv:1611.09452,

2016.

[46] A. Pamuk, “An fpga implementation architecture for decoding of polar codes,” in

Proceedings of the 2011 8th International Symposium on Wireless Communication

Systems (ISWCS), pp. 437–441, IEEE, 2011.

[47] B. Yuan and K. K. Parhi, “Architecture optimizations for bp polar decoders,” in Pro-

ceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 2654–2658, IEEE, 2013.

[48] B. Yuan and K. K. Parhi, “Early stopping criteria for energy-efficient low-latency

belief-propagation polar code decoders,” IEEE Transactions on Signal Processing,

vol. 62, no. 24, pp. 6496–6506, 2014.

[49] Y. Zhang, Q. Zhang, X. Pan, Z. Ye, and C. Gong, “A simplified belief propagation

decoder for polar codes,” in Proceedings of the 2014 IEEE International Wireless

111

Symposium (IWS), pp. 1–4, IEEE, 2014.

[50] J. Xu, T. Che, and G. Choi, “Xj-bp: express journey belief propagation decoding for

polar codes,” in Proceedings of the 2015 IEEE Global Communications Conference

(GLOBECOM), pp. 1–6, IEEE, 2015.

[51] J. Sparso, “Asynchronous circuit design-a tutorial,” in Chapters 8 Principles of Asyn-

chronous Circuit Design-A Systems Perspective, pp. 1–152, Kluwer Academic Pub-

lishers, 2006.

[52] E. Arikan, “A performance comparison of polar codes and reed-muller codes,” IEEE

Communications Letters, vol. 12, no. 6, 2008.

[53] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press,

2008.

[54] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Transactions on

Communications, vol. 60, no. 11, pp. 3221–3227, 2012.

[55] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of polar code construc-

tions for the awgn channel,” arXiv preprint arXiv:1501.02473, 2015.

[56] P. Giard, A. Balatsoukas-Stimming, G. Sarkis, C. Thibeault, and W. J. Gross, “Fast

low-complexity decoders for low-rate polar codes,” Journal of Signal Processing

Systems, pp. 1–11, 2016.

[57] C. Xiong, J. Lin, and Z. Yan, “Symbol-based successive cancellation list decoder

for polar codes,” in Proceedings of the 2014 IEEE Workshop on Signal Processing

Systems (SiPS), pp. 1–6, IEEE, 2014.

[58] G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W. J. Gross, “Unrolled polar de-

coders, part ii: fast list decoders,” arXiv preprint arXiv:1505.01466, 2015.

112

[59] C. Zhang, Z. Wang, X. You, and B. Yuan, “Efficient adaptive list successive cancella-

tion decoder for polar codes,” in Proceedings of the 2014 48th Asilomar Conference

on Signals, Systems and Computers, pp. 126–130, Nov 2014.

[60] T. K. Moon, “Error correction coding,” Mathematical Methods and Algorithms. Jhon

Wiley and Son, 2005.

[61] J. Cortadella, A. Kondratyev, L. Lavagno, and C. P. Sotiriou, “Desynchronization:

Synthesis of asynchronous circuits from synchronous specifications,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10,

pp. 1904–1921, 2006.

[62] L. Cristofoli, A. Henglez, J. Benfica, L. Bolzani, F. Vargas, A. Atienza, and F. Silva,

“On the comparison of synchronous versus asynchronous circuits under the scope of

conducted power-supply noise,” in Proceedings of the 2010 Asia-Pacific Symposium

on Electromagnetic Compatibility (APEMC), pp. 1047–1050, IEEE, 2010.

[63] N. Onizawa, T. Hanyu, and V. C. Gaudet, “High-throughput bit-serial ldpc decoder lsi

based on multiple-valued asynchronous interleaving,” IEICE Transactions on Elec-

tronics, vol. 92, no. 6, pp. 867–874, 2009.

[64] M. Renaudin, “Asynchronous circuits and systems: a promising design alternative,”

Microelectronic Engineering, vol. 54, no. 1, pp. 133–149, 2000.

[65] J. Spars and S. Furber, Principles Asynchronous Circuit Design. Springer, 2002.

[66] G. Rui, C. Wei, L. Fang, D. Kui, and W. Zhiying, “Modified triple modular redun-

dancy structure based on asynchronous circuit technique,” in Proceedings of the 2006

21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems

(DFT)., pp. 184–196, IEEE, 2006.

113

[67] R. Gong, W. Chen, F. Liu, K. Dai, and Z. Wang, “A new approach to single event

effect tolerance based on asynchronous circuit technique,” Journal of Electronic Test-

ing, vol. 24, no. 1-3, pp. 57–65, 2008.

[68] K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-rate layered decoder architec-

ture for block ldpc codes of the ieee 802.11 n wireless standard,” in Proceedings of

the 2007 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1645–

1648, IEEE, 2007.

[69] Y. Monnet, M. Renaudin, and R. Leveugle, “Asynchronous circuits transient faults

sensitivity evaluation,” in Proceedings of the 2005 42nd Design Automation Confer-

ence, pp. 863–868, ACM, 2005.

[70] D.-I. F. W. Friesenbichler, Effects and Mitigation of Transient Faults in Quasi Delay-

Insensitive Logic. PhD thesis, Technische Universität Wien, 2011.

[71] Q. Zhou and K. Mohanram, “Cost-effective radiation hardening technique for com-

binational logic,” in Proceedings of the 2004 IEEE/ACM International conference on

Computer-aided design, pp. 100–106, IEEE Computer Society, 2004.

[72] IEEE 802.16 Working Group and others, “IEEE standard for local and metropolitan

area networks, part 16: air interface for fixed broadband wireless access systems,”

IEEE Std, vol. 802, pp. 16–2004, 2004.

[73] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-

product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2,

pp. 498–519, 2001.

[74] W. Wang, E. Kim, K. K. Gunnam, and G. S. Choi, “Low-power vlsi design of ldpc

decoder using dynamic voltage and frequency scaling for additive white gaussian

noise channels,” Journal of Low Power Electronics, vol. 5, no. 3, pp. 303–312, 2009.

114

[75] T. Lin, K.-S. Chong, J. S. Chang, and B.-H. Gwee, “An ultra-low power

asynchronous-logic in-situ self-adaptive vdd system for wireless sensor networks,”

IEEE Journal of Solid-State Circuits, vol. 48, no. 2, pp. 573–586, 2013.

115

