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ABSTRACT

Classical statistical models encounter the computational bottleneck for large

spatial/spatio-temporal datasets. This dissertation contains three articles describ-

ing computationally efficient approximation methods for applying Gaussian process

models to large spatial and spatio-temporal datasets.

The first article extends the FSA-Block approach in [60] in the sense of preserv-

ing more information of the residual covariance matrix. By using a block conditional

likelihood approximation to the residual likelihood, the residual covariance of neigh-

boring data blocks can be preserved, which relaxes the conditional independence

assumption of the FSA-Block approach. We show that the approximated likelihood

by the proposed method is Gaussian with an explicit form of covariance matrix, and

the computational complexity is linear with sample size n. We also show that the

proposed method can result in a valid Gaussian process so that both the parame-

ter estimation and prediction are consistent in the same model framework. Since

neighborhood information are incorporated in approximating the residual covariance

function, simulation studies show that the proposed method can further alleviate the

mismatch problems in predicting responses on block boundary locations.

The second article is the spatio-temporal extension of the FSA-Block approach,

where we model the space-time responses as realizations from a Gaussian process

model of spatio-temporal covariance functions. Since the knot number and locations

are crucial to the model performance, a reversible jump Markov chain Monte Carlo

(RJMCMC) algorithm is proposed to select knots automatically from a discrete set

of spatio-temporal points for the proposed method. We show that the proposed knot

selection algorithm can result in more robust prediction results. Then the proposed
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method is compared with weighted composite likelihood method through simulation

studies and an ozone dataset.

The third article applies the nonseparable auto-covariance function to model the

computer code outputs. It proposes a multi-output Gaussian process emulator with

a nonseparable auto-covariance function to avoid limitations of using separable em-

ulators. To facilitate the computation of nonseparable emulator, we introduce the

FSA-Block approach to approximate the proposed model. Then we compare the

proposed method with Gaussian process emulator with separable covariance models

through simulated examples and a real computer code.
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1. INTRODUCTION

1.1 Gaussian Process Model

Spatial and spatio-temporal datasets are widely observed in many disciplines,

such as the climatology, geology and so on, where the datasets are labeled by spatial

coordinates such as longitude and latitude, as well as time (for space-time data). An

important characteristic of spatial/spatio-temporal data is that nearby observations

(in space or space-time) tend to be more alike than those far apart [15]. For exam-

ple, one simple way to forecast tomorrow’s weather is to use today or last few days’

weather; similar conclusion holds for the spatial data, such as studies in environments

(i.e., ground pollutants, distribution of species). To characterize the dependence of

the responses, the covariance functions are widely used. The interests lie in infer-

ences of the spatial/spatio-temporal dependence structures and subsequently making

predictions on unobserved locations.

The responses are usually treated as realizations of an underlying spatial/spatio-

temporal process, and the most popular process model is the Gaussian process model.

Let X = {x1,x2, . . . ,xn} be a set of locations, where xi = si for spatial data and

xi = (si, ti) for space-time data. Let Y = (y(x1), y(x2), . . . , y(xn))T be a column

vector collecting the responses at X , then we assume that Y ∼ N (Zβ, C(θ)), where

Z is the n× p design matrix, β is a p× 1 regression coefficients vector, and C(θ) is

the covariance matrix depending on parameter vector θ. C(θ) is usually assumed to

be generated from a positive-definite covariance function, such as Matérn covariance

model [51]:

C(x,x′;θ) =
σ2

Γ(ν)
21−ν(h/φ)νKν(h/φ),
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where h = ‖x−x′‖; Γ(·) is the gamma function, Kν(·) is the modified Bessel function

of the second kind, σ2 is the variance parameter, φ > 0 is the dependence range

parameter, and ν > 0 is the smoothness parameter. The log-likelihood function up

to a constant is

`(Y|β,θ) = −1

2
|C(θ)| − 1

2
(Y− Zβ)TC−1(θ)(Y− Zβ).

Given a predictive location xp and assume all parameters are known, then we have

the Best Linear Unbiased Predictor (BLUP),

ŷ(xp) = zT (xp)β + CpnC−1(θ)(Y− Zβ)

and the corresponding Mean Squared Error (MSE)

MSE(ŷ(xp)) = Cp − CpnC−1(θ)CTpn,

where z(xp) is the p×1 vector of covariates at xp, Cp = C(0;θ) and Cpn = C(xp,X ;θ).

From the log-likelihood function and the BLUP formula, C−1(θ) and |C(θ)| need

to be computed for model inference and prediction. To compute the inverse and de-

terminant of the covariance matrix, we need to obtain the Cholesky factor L(θ) such

that C(θ) = L(θ)LT (θ), which typically requires O(n3) Floating-points Operations

Per Second (flops). Since the computation costs grow quickly with the sample size,

the direct application of Gaussian process models to large spatial/spatio-temporal

models can be computationally prohibitive for large datasets. This computational

challenge motives the innovations of new statistical methods scalable to handle large

datasets [67].
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1.2 Popular Approximation Methods for Gaussian Process Model

In this Section, we will give brief summaries of Gaussian process approximation

methods most related to this dissertation. The introduction part in each chapter will

give more comprehensive literature reviews of related methods.

1.2.1 Low-rank approximation models

The basic idea of low-rank models is to project the original process y(x) to a

low-dimensional space spanned by a small number of basis functions. Then the

low-rank approximation methods seek to replace the original covariance matrix with

an approximated low-rank matrix for computational efficiency. The popular low-

rank models include the Predictive Process model [4, 21] and the Fixed Rank K-

riging (FRK) model [13, 40]. Given a set of locations X ∗ = {x∗1, . . . , x∗m}, re-

ferred to as knots, the predictive process model approximates a zero-mean Gaussian

process y(x) using the conditional mean process E(y(x)|y(X ∗)), where y(X ∗) =

(y(x∗1), y(x∗2), . . . , y(x∗m))T . The approximated covariance matrix by the predictive

process model is

Cpp = Cn∗C−1
∗ CTn∗,

where Cn∗ = C(X ,X ∗;θ) and C∗ = C(X ∗,X ∗;θ). Cpp is positive semi-definite

with rank m. When the responses are observed with white noises, fast computations

can be achieved by Sherman-Woodbury-Morrison inversion formula [35] with com-

putational complexity O(nm2). Thus a small number of knots lead to significant

reduction of computations.

Similarly to predictive process model, the FRK model assumes y(x) = ST (x)η

based on a small number of basis functions, where S(x) = (S1(x), . . . , Sr(x))T . η is

3



a r× 1 random vector following a Gaussian distribution N (0, K), where K is a r× r

positive definite matrix to be estimated. The computational complexity of the FRK

model is O(nr2), so it has good computational scalability. Also by construction of

the covariance matrix, the FRK model can handle large datasets with nonstationary

dependence structures.

Although the low-rank approximations has computational complexity linear with

sample size n, it has several limitations. For example, when the dependence range

of the data is small, the low-rank model usually needs a large number of basis func-

tions for providing a satisfactory approximation to the original process. [63] gives a

comprehensive discussion of limitations of low-rank models and points out that the

best low-rank model can perform poorly when the data are strongly correlated for

neighboring observations.

1.2.2 Sparse approximation methods

The sparse approximation methods replace the correlations of distance locations

by zeros and only keep the correlations among neighboring locations. Covariance

tapering [23, 43] is a popular method to induce sparsity for the covariance matrix.

Given a covariance function C(·, ·;θ), the tapered covariance is

Ctaper(x,x′) = C(x,x′;θ)K(‖x− x′‖; γ),

where K(x,x′; γ) is the tapering function which is positive definite and has zero val-

ues when ‖x − x′‖ ≥ γ. Thus a small γ leads to a sparse covariance matrix when

evaluating Ctaper(x,x′) on observed set X . The matrix decomposition algorithms

for sparse matrices are applied subsequently to compute the Cholesky factor of the

approximated covariance matrix by the tapered covariance function. The computa-

tional complexity is O(nr2), where r is the number of nonzero entries per row and

4



column of a sparse matrix. By construction, the covariance tapering approach ig-

nores the dependence of responses far apart, thus its performance is poor when the

dependence range is large.

1.2.3 Composite likelihood approach

The composite likelihood approach approximates the full data likelihood function

by a product of low-dimensional marginal or conditional likelihoods [49, 70]. Since

evaluations of low-dimensional likelihoods are computationally cheaper, the compos-

ite likelihood approach gains the computational efficiency. One simple composition

likelihood approach is the independent blocks approximation [8, 63]. Given a par-

tition of observed responses Y = ∪Kk=1Yk, the independence blocks approximation

approximates the full likelihood L(Y;θ) by
K∏
k=1

L(Yk;θ). If we choose relatively equal

block size nb for each data block, the computational complexity of the independent

blocks approximation is O(nn2
b), so fast computations can be achieved if we choose

nb to be small.

Alternatively, [72, 64] approximates L(Y;θ) by a product of conditional like-

lihoods of data blocks, referred to as the block conditional likelihood approxima-

tion. Motivated by the chain rule L(Y;θ) =
K∏
k=1

L(Yk|Y(k),θ), where Y(k) =

{Y1, . . . ,Yk−1} for k ≥ 1 and Y(1) = ∅, the block conditional likelihood approx-

imation approximates L(Y;θ) by

K∏
k=1

L(Yk|YN(k),θ),

where YN(k) ⊆ Y(k) contains all the neighboring data blocks for kth data block.

Computations of evaluating this approximated likelihood can be greatly reduced if

YN(k) contains a small number of observations. Most recently, [18] proves that the

5



conditional likelihood approximation approach in [72, 64] for K = n can lead to a

valid Gaussian likelihood. In addition, they show that a valid Gaussian process can

be obtained by this approximation so that both parameter estimation and prediction

of the proposed model can be performed in a unified framework.

1.3 Overall Structure

The following is the general structure of this dissertation. Section 2 extends the

Full-Scale Approximation with Block modulating function [60], referred to as the

FSA-Block approach, in the sense of preserving more information of the residual co-

variance function. Given a partition Y = ∪Kk=1Yk, the FSA-Block approach assumes

that Yk’s are conditionally independent given the predictive process component. The

conditional independence assumption may be strong when the predictive process part

does not perform well (e.g, the number of knots is small or the dependence structure

is local). By using the block conditional likelihood approximation to the full residu-

al likelihood, we show that the residual covariance among neighboring Yk’s can be

preserved. Since more information are kept for the residual covariance, the proposed

method enjoys better statistical efficiency. We also show that the proposed method

can result in a valid Gaussian process model so that the parameter estimation and

prediction are consistent. We compare the proposed method with the FSA-Block ap-

proach and the block version of the nearest neighbor process approach [18] through

simulation studies and a real precipitation dataset.

Section 3 is a spatio-temporal extension of the FSA-Block approach, where we

consider modeling the space-time responses by a Gaussian process with a spatial-

temporal covariance function. In addition, we discuss selection methods of the knot

set for the proposed method and introduce a Reversible Jump Markov chain Monte

Carlo algorithm [33] to dynamically update the knot number and knot locations. We

6



demonstrate the effectiveness of proposed method using a simulated nonstationary

dataset and an ozone data of eastern US.

Section 4 applies the FSA-Block approach to approximating the Gaussian pro-

cess emulator for large computer code outputs. A multi-output Gaussian process

emulator with a nonseparable auto-covariance function is proposed to avoid limita-

tions of using separable emulators. To facilitate the computation of nonseparable

emulator, the FSA-Block approach is applied to approximating the nonseparable

auto-covariance function. We compare the performance of the proposed method

with Gaussian process with separable auto-covariance function through simulated

examples and a real computer code of the carbon capture system.

Summary and discussion of potential extensions are given in Section 5. The proofs

of theorems in Section 2 and the algorithm of calculating the posterior distributions

in Section 4 are provided in the Appendix.
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2. A SMOOTH FULL-SCALE APPROXIMATION APPROACH FOR LARGE

SPATIAL DATASETS

2.1 Introduction

Spatial datasets arising from ecology, climatology, and other disciplines have gen-

erated considerable interests for scientists. With the advent of remote sensing and

GPS techniques, the spatial data collection capacity increases dramatically and s-

tatisticians nowadays are facing a large number of observations on variables of in-

terest. The growth in data size imposes computational challenges to the classical

statistical modeling methods [62, 5] and has driven the innovations of new methods

scalable to handle large datasets [67].

One of the most popular models for spatial datasets is the Gaussian process mod-

el, assuming finite observations are jointly Gaussian. Although the Gaussian process

model enjoys the mathematical tractability and can provide prediction intervals for

observations on unobserved locations, its computational complexity generally grows

cubically with the sample size n, due to the expensive matrix factorizations. Specif-

ically, the calculations of inverse and determinant of the data covariance involve the

Cholesky decomposition of the finite sample covariance matrix, whose computation

requires O(n3) floating point operations (flops). The evaluation of the Gaussian

process model will be computationally prohibitive for very large n.

When the covariance matrix has a certain structure, such as the Toeplitz ma-

trix [79], fast computations are available for evaluating the Gaussian process model.

However, since the spatial process is generally observed at irregularly spaced loca-

tions and the dependence of distant pairs of observations is often nonnegligible, the

data covariance matrix does not have any structures in general. Approaches tackling
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the computational challenge have adopted two major paths. The first path is to

approximate the full likelihood function by some simplified versions. The composite

likelihood approach [49, 70], as a general class of pseudo-likelihoods, has been used

to model spatial datasets. The idea is to approximate the ordinary likelihood using

products of marginal or conditional likelihoods of reduced dimensions. For marginal

composite likelihood approach, [16] proposed a composite likelihood approach based

on marginal densities of pairwise differences of responses; also based on bivariate

marginal densities, [69] proposed a pairwise composite likelihood approach for spa-

tial generalized linear mixed models. Recently, [19] proposed to use a composite

likelihood function defined as the product of joint densities of pairwise spatial blocks

and it enjoys better statistical efficiency than the composite likelihood based on bi-

variate marginal densities. For conditional composite likelihood approach, [72] and

[64] constructed composite estimating functions based on conditional densities of

spatial data blocks.

The second path is to approximate the data covariance matrix with either a low-

rank or a sparse matrix whose matrix factorizations are computationally cheaper.

The popular low-rank models include the Gaussian predictive process model [4] and

the Fixed Rank Kriging model [13, 42], where the original spatial process is ap-

proximated by a smoother process based on a small number of basis functions. For

sparse matrix approximations, the covariance tapering method [23, 43] approximates

the original covariance with a sparse matrix by shrinking the dependence of distant

pairs of spatial locations to be zero. Then the algorithms for manipulating sparse

matrices are applied to reduce the computational burden. Instead of working on

the covariance matrix, the Gaussian Markov Random Field model [56, 48] induces a

sparse precision matrix for facilitating computations.

Since the low-rank models may fail to model the local variations well [21, 63]
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and the covariance tapering method, on the contrary, can not capture the large-scale

dependence well, [59] proposed a so-called Full-Scale Approximation approach (F-

SA), which adds a sparse residual covariance component to the covariance of the

Gaussian predictive process model, for approximating the data covariance well un-

der both large and small scale dependence scenarios. Specifically, let C(·, ·;θ) and

Cl(·, ·;θ) be the covariance functions of the original Gaussian process and Gaussian

predictive process, respectively, then the covariance function of the FSA approach

is C† = Cl(·, ·;θ) + (C(·, ·;θ) − Cl(·, ·;θ))K(·, ·), where the function K, referred to as

the modulating function, is positive semi-definite and has a large number of zeros

evaluated on observed spatial locations. If we choose K such that the residual co-

variance is block-diagonal, then the method is called the FSA-Block approach; if

some compactly supported covariance functions are chosen for K, then the method

is called the FSA-Taper approach. [60] has shown that the FSA-Block approach can

have better numerical results than the FSA-Taper approach.

This Section extends the FSA-Block approach in the sense of preserving more

information of the residual covariance. By using a conditional likelihood approxima-

tion, the dependence across blocks of the residual covariance is preserved by the new

proposed approach. Since more information are kept for the data covariance matrix,

we expect that the new proposed approach can perform better than the FSA-Block

approach when the residual dependence across blocks is not negligible. In addition,

the proposed method can produce a smoother prediction surface than that by the

FSA-Block method by using the conditional likelihood approximation, so the mis-

matches of predictions on boundary locations can be alleviated for the proposed

method. We name the new proposed method the Smooth Full-Scale Approximation

approach (SFSA). The approximated data covariance of the SFSA approach can re-

duce to covariance of the FSA-Block approach and the covariance of the conditional
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likelihood approximation approach proposed in [18]. Moreover, we show that the

SFSA approach can define a valid Gaussian process, thus both the parameter es-

timation and prediction can be performed under the unified framework. Since the

covariance function is available for the SFSA approach, the kriging formula can be

directly applied for predictions.

2.2 Methodology

2.2.1 The spatial regression model

Let Y (s) be a response variable observed at a location s, where s belongs to the

spatial domain S ⊆ R2. We model Y (s) through the following spatial regression

model

Y (s) = xT (s)β + w(s) + ε(s), (2.1)

where x(s) is a p×1 vector of covariates, β is the corresponding regression coefficients

vector, w(s) is a latent zero-mean Gaussian process, and ε(s) is a Gaussian white

noise process with constant variance τ 2, independent of w(s) . The covariance of

the spatial process w(s) characterizes the spatial dependence structure and it is

specified by a valid covariance function C(s, s′;θ) = Cov(w(s), w(s′)). For example,

the Matérn covariance is widely used in spatial statistics due to its flexibility of

modeling the smoothness of the spatial process,

C(s, s′;θ) =
σ2

Γ(ν)
21−ν(h/φ)νKν(h/φ), (2.2)

where Γ is the gamma function, Kν is the modified Bessel function of the second

kind, σ2 is the variance parameter, φ is the spatial dependence range parameter and

ν is the smoothness parameter. The variance τ 2 of ε(s) is often referred to as the
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“nugget” effect, accounting for the measurement error effect.

Suppose Y (s) is observed at n spatial locations S = {s1, . . . , sn}. Let Y =

(Y (s1), . . . , Y (sn))T denote the n×1 observed response vector and X = (x(s1), . . . , x(sn))T

denote the n× p design matrix. Then the log-likelihood function is

`(Y|θ,β) = −1

2
|CY| −

1

2
(Y−Xβ)TC−1

Y (Y−Xβ) + constant, (2.3)

where the data covariance CY = Cw+τ 2In and Cw = [C(si, sj)]i,j=1,...,n is the covariance

matrix of w(s) on S. Evaluating (2.3) requires O(n3) flops for calculating |CY| and

C−1
Y in general, so the computational cost can be very intensive or even prohibitive

when n is large.

2.2.2 The FSA-Block approach

Given m locations S∗ = {s∗1, . . . , s∗m}, referred to as knots, the predictive process

model [4] approximates w(s) by the conditional mean process wl(s) = E(w(s)|w∗),

where w∗ = w(S∗) = (w(s∗1), . . . , w(s∗m))T . Since w(s) has zero mean, then wl(s) =

C(s,S∗)C−1
∗ w∗, where C(s,S∗) = [C(s, s∗i )]i=1,...,m and C∗ = [C(s∗i , s∗j)]i,j=1,...,m. The

spatial process w(s) can be decomposed into two independent processes

w(s) = wl(s) + ws(s),

where ws(s) is the exact residual process of w(s). Since the covariance function of

wl(s) is Cl(s, s′) = C(s, S∗)C−1
∗ CT (s′, S∗), the covariance function of ws(s) is Cs(s, s′) =

C(s, s′) − Cl(s, s′). By Schur complement property of linear algebra, Cs is positive

definite when S ∩ S∗ = ∅ and positive semi-definite otherwise. Therefore, if we

approximate w(s) only using wl(s), the covariance information in ws(s) will be lost.

The lost of information of spatial dependence can be severe when the fine scale
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variations of the process are not negligible [21, 63].

Let Cwl = C(S, S∗)C−1
∗ CT (S, S∗) denote the covariance matrix of the predictive

process wl(s) on S, then the exact residual covariance matrix is Cws = Cw−Cwl . This

residual covariance is the covariance matrix of the conditional density p(Y|β,θ,w∗) ∼

N (Xβ+C(S, S∗)C−1
∗ w∗, Cws+τ 2I), up to a matrix proportional to an identity matrix.

Since Cws in general is a dense matrix, evaluating this conditional density will be com-

putationally expensive for large n. Since p(Y|β,θ) =
∫
p(Y|β,θ,w∗) · p(w∗|θ)dw∗,

if we substitute some valid Gaussian density whose computational complexity is

cheaper than p(Y|β,θ,w∗), then after integrating out w∗, an approximated Gaus-

sian data likelihood can be readily obtained. Compared with the covariance matrix

of p(Y|β,θ), the covariance matrix of Y|β,θ,w∗ is closer to a sparse matrix, S-

ince it has smaller off-diagonal entries due to subtracting Cwl from Cw + τ 2I. This

observation leads to the independent blocks approximation to p(Y|β,θ,w∗).

Specifically, given a partition rule P leading to a partition of locations S =

∪Kk=1Sk, let the corresponding partition of observations be Y = ∪Ki=1Yi and Yis have

relatively equal size ni. We assume the data blocks Yi are independent given w∗

and model parameters, that is p(Y|β,θ,w∗) =
∏K

k=1 p(Yk|β,θ,w∗). The FSA-Block

approximation to the data likelihood function is

pFSAB(Y|β,θ) =

∫
w∗

K∏
i=1

p(Yk|β,θ,w∗) · p(w∗|θ)dw∗.

If we group observations properly, then pFSAB(Y|θ,β) ∼ N (Xβ, (Cwl + Cws ◦ TB +

τ 2I)), where TB is a block-diagonal matrix with 1ni1
T
ni

as its ith block, and ◦ is

the Schur product of two matrices. Compared with the approximated covariance

Cwl of the predictive process model, an additional block-diagonal residual covariance

is added to correct the approximation errors within data blocks. Since Cws ◦ TB
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plus τ 2I is still block-diagonal, it takes O(n) order flops to compute its inverse and

determinant. By using the Sherman-Woodbury-Morrison inversion formula, it can

be shown that the computational complexity of the FSA-Block approach is linear

with n [59].

2.2.3 The proposed approach

The independent blocks approximation to p(Y|β,θ,w∗) ignores the residual de-

pendence across blocks. The loss of information can be severe when wl(s) does

not approximate w(s) well and the entries across blocks of the residual covariance

are not negligible. In this case, preserving the large entries of the residual covari-

ance across data blocks may gain better statistical efficiency. Motivated by the

block conditional likelihood approach [64], we propose to use the block condition-

al likelihood approximation for p(Y|β,θ,w∗). Let (k − 1) = {1, 2, . . . , k − 1} and

Y(k−1) = (YT
1 , . . . ,Y

T
k−1)T , then by chain rule

p(Y|β,θ,w∗) = p(Y1|β,θ,w∗) ·
K∏
k=2

p(Yk|Y(k−1),β,θ,w
∗).

When the sample size n is large, it will be computationally prohibitive to compute

the full conditional density p(Yk|Y(k−1),β,θ,w
∗) for large k. So we may let the

conditioned set of block k be a subvector of Y(k−1) [64],

p̃(Y|β,θ,w∗) =
K∏
k=1

p(Yk|YN(k),β,θ,w
∗), (2.4)

where YN(k) is a nN(k) × 1 subvector of Y(k−1) with location set SN(k), i.e., the

neighboring observations of Yk in Y(k−1); let SN(1) = ∅. In this paper, we consider

the special case that SN(k) contains all locations in q nearest neighboring blocks of
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block k in terms of Euclidean distances of block centers. Specifically,

SN(k) =


∅, if k = 1

{S1, S2, . . . , Sk−1}, if k ≤ q

q nearest neighboring blocks in{S1, S2, . . . , Sk−1}, if k > q

If we choose q � K, then by using a conditional set of a reduced dimension,

the computational cost of evaluating p(Y|β,θ,w∗) can be greatly reduced. The

conditional likelihood approximation includes the independent blocks approximation

as a special case, since the latter uses ∅ as the conditioned set for every Yk.

Let Uk = C(Sk, S∗)C−1
∗ , UN(k) = C(SN(k), S

∗)C−1
∗ , Σk denote the residual covari-

ance of ws(Sk) + ε(Sk), and ΣN(k) denote the covariance of ws(SN(k)) + ε(SN(k)).

Then p(Yk|β,θ,w∗) ∼ N (Ukw
∗,Σk) and p(YN(k)|β,θ,w∗) ∼ N (UN(k)w

∗,ΣN(k)).

Let Σk,N(k) denote the residual cross-covariance between ws(Sk) and ws(SN(k)), then

by conditional normal facts,

p(Yk|YN(k),β,θ,w
∗) ∝ |Σ(k)

con|−
1
2 exp(−1

2
(Yk − Ukw∗ − Σk,N(k)Σ

−1
N(k)(YN(k) − UN(k)w

∗))T

×Σ(k)−1

con (Yk − Ukw∗ − Σk,N(k)Σ
−1
N(k)(YN(k) − UN(k)w

∗))),

where Σ
(k)
con = Σk − Σk,N(k)Σ

−1
N(k)Σ

T
k,N(k). Let

Bkl =


Ink , if l = k;

−Σk,N(k)Σ
−1
N(k)(, n(l−1) + 1 : n(l)), if l ∈ N(k);

0, otherwise,

(2.5)

where n(l) =
∑

1≤i≤l,i∈N(k)

ni. Let B∗k = (Bk1, . . . , BkK), then Yk−Σk,N(k)Σ
−1
N(k)YN(k) =
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B∗kY and Uk − Σk,N(k)Σ
−1
N(k)UN(k) = B∗kU . Therefore, the conditional density

p(Yk|YN(k),β,θ,w
∗) ∝ |Σ(k)

con|−
1
2 (Y− Uw∗)B∗Tk Σ(k)−1

con B∗k(Y− Uw∗).

The proposed method yields p̃(Y|β,θ) =
∫
w∗

K∏
k=1

p(Yk|YN(k),β,θ,w
∗)·p(w∗|θ)dw∗.

The following Theorem 2.2.1 shows that this approximated likelihood is Gaussian

with a closed-form covariance matrix.

Theorem 2.2.1. If Y ∼ N (Xβ, CY), then p̃(Y|β,θ) = N (Xβ, C†Y), where C†Y =

B−1ΣconB
T−1

+C(S, S∗)C−1
∗ CT (S, S∗), B is lower-triangular, and Σcon is block-diagonal.

The proof is given in the Appendix. Σcon is a block-diagonal matrix with Σ
(k)
con as

its kth block and B = (B∗
T

1 , . . . , B∗
T

K )T . Since Σcon is obtained based on the residual

covariance function Cs(s, s′) + τ 2δ(s, s′), where δ(·, ·) is the Kronecker delta function,

it is positive definite with rank n. Since C(S, S∗)C−1
∗ CT (S, S∗) is a positive semi-

definite matrix by the predictive process model, the approximated data covariance

C†Y is positive definite.

2.2.4 Relations to previous methods

The proposed method has connections with the FSA-Block approach and the

block conditional approach by [64]. If we ignore the residual dependence across data

blocks and assume p(Yk|β,θ,w∗) are independent for k = 1, . . . , K, then the matrix

B is an identity matrix and Σcon is a block-diagonal matrix with kth diagonal block

Σk = Cs(Sk, Sk) + τ 2Ink . In this case, the approximated data covariance by the new

proposed method reduces to the covariance of the FSA-Block approach.

Following the proof in [18], the approximated data covariance by the block con-

ditional likelihood approximation approach is B−1ΣconB
T−1

, where B and Σcon have

the same form as that in the proposed method but are calculated based on the
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original data covariance function C(·, ·) + τ 2δ(·, ·), instead of the residual covari-

ance function Cs(·, ·) + τ 2δ(·, ·). It does not have the predictive process covariance

C(S, S∗)C−1
∗ CT (S, S∗), because it assumes Yk are independent given its neighboring

observations, instead of assuming this is true conditional on w∗.

Compared with the approximated data covariance by the FSA-Block approach,

the proposed method can correct part of the approximation errors across data blocks;

compared with the approximated data covariance by the block conditional likelihood

approach, the proposed method does not totally ignore the dependence among non-

neighboring blocks and uses the covariance of predictive process model as approxi-

mations. Therefore, the proposed method can induce a data covariance with smaller

approximation errors. Figure 2.1 shows the absolute values of residual covariance

matrix by three approaches, where the residual covariance is CY−C̃Y for some approx-

imated data covariance matrix C̃Y. Specifically, 4000 locations are randomly selected

in a square domain [0, 10]×[0, 10] and the exponential model C(s, s′) = exp(−‖s−s′‖)

with nugget effect 0.01 is evaluated on these locations. The grid is used to create

blocks and block numbers are in an increasing order from northwest to southeast.

The locations within the same block are grouped together and the neighboring set is

Sk−1 for Sk. Compared with the FSA-Block approach, since the residual covariance

between each block and its neighbors are corrected for the proposed method, we

can observe that the entries of residual covariance matrix within a certain band are

much smaller than those by the FSA-Block approach; compared with the conditional

likelihood approach, while both methods provide good approximations for the covari-

ance within blocks and between each block and its neighboring blocks, the proposed

method leads to smaller entries of the residual covariance across blocks that are not

neighbors due to including the covariance of the predictive process model.
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(a) The proposed method, K = 16
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(b) The proposed method, K = 100
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(c) The FSA-Block approach, K = 16
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(d) The FSA-Block approach, K = 100
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(e) The CCL approach, K = 16
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(f) The CCL approach, K = 100

Figure 2.1: Plots of residual covariance for 3 methods.

2.2.5 Computational complexity of the SFSA approach

Suppose all data blocks have an equal block size nb, and each data block at most

has q neighbors. From the Appendix, evaluating the likelihood of the proposed ap-
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proach needs to compute the quadratic term YTBT (Σ−1
con−Σ−1

conBUΣw∗U
TBTΣ−1

con)BY,

where Σw∗ = (UTBTΣ−1
conBU+C−1

∗ )−1. The computation bottlenecks lie in computa-

tions of Σ−1
con, BU , and UTBTΣ−1

conBU . Since Σcon is block-diagonal, its inverse takes

O(Kn3
b) = O(nn2

b) flops. BU has computational complexity O(nmqnb), because B

is a lower-triangular matrix with at most qnb nonzero entries per row and U is a n by

m matrix. The computation of UTBTΣ−1
conBU involves a product of a m× n matrix

and a n×m matrix, so its computation complexity is O(nm2). Therefore, the com-

putational complexity of the proposed method has the order O(nn2
b +nmqnb+nm2).

If we set the knot size m� n, the block size nb � n, and q � K, then the proposed

method has computational complexity linear with n.

2.2.6 Choices of tuning parameters

The FSA-Block approach needs to specify the knot set and a block partition;

compared with the FSA-Block approach, the proposed SFSA approach has additional

tuning parameters: ordering of blocks and number of neighboring blocks q. For

knots selection, a heuristic way is to predetermine the knot number according to the

balance of available computing resources and pilot studies of statistical efficiency,

then to place the knots with a good space coverage. For example, we can use random

sampling, Latin Hypercube Sampling [52] or a spatial grid for placing the knots.

Alternatively, we can treat the knots as model parameters and select them adaptively

[34, 41, 78]. For the block partition, the goal is to maximize block numbers while

minimizing the residual correlations across blocks. [19] provides some guidance on

blocking strategy, and one recommendation is to use the empirical variogram to

determine the block width. If the residual covariance is fairly isotropic, the partition

algorithm based on Euclidean distances of locations such as K-means clustering is a

simple choice. Unfortunately, since the predictive process covariance is not isotropic,
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the residual covariance function is not isotropic too. In this case, applying clustering

algorithm using the estimated residual covariance may be a better choice for block

partition, but we stick to K-means clustering algorithm in this paper for its simplicity.

The ordering of blocks can also affect the performance of the SFSA approach.

Since the neighbors of one block can only be the past blocks (blocks with a smaller

block number), the choices of neighbors are more restricted for blocks of a relatively

small block number. So it may gain better statistical efficiency if we guarantee that a

block of a small block number has some really close past blocks (the closeness of two

blocks is measured by the distance of block centers). one heuristic way for ordering

blocks is first to number a block with the minimum distance to all other blocks S1,

then number its nearest neighboring block S2; given a current set of numbered blocks

S(k) = {S1, S2, . . . , Sk}, the block in the remaining blocks with the minimum distance

to the set S(k) is numbered Sk+1 and let S(k+1) = {S(k), Sk+1}; we keep ordering the

blocks until k = K. When the spatial locations are irregularly spaced such as the

real dataset in Section 2.5, this heuristic ordering approach empirically works well.

In Section 2.4, we illustrate the effect of number of neighboring blocks q. Based on

the simulation results, a small number of neighboring blocks such as q = 4 (with

several hundred neighboring observations) usually leads to performance very close to

the full covariance model in terms of parameter estimation.

2.3 Parameter Estimation and Prediction

2.3.1 Maximum likelihood estimators

The maximum likelihood estimates of model parameters maximize the log-likelihood

function (2.3). To facilitate computations, we replace the full covariance CY with the
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approximated covariance C†Y in Theorem 2.2.1,

`(Y|θ,β) = −1

2
|C†Y| −

1

2
(Y−Xβ)TC†

−1

Y (Y−Xβ) + constant.

By the proof in Appendix,

C†
−1

Y = Σ−1
con − Σ−1

conBUΣw∗U
TBTΣ−1

con,

where Σw∗ = (UTBTΣ−1
conBU + C−1

∗ )−1 is a m ×m matrix, Σcon is a block-diagonal

matrix and B is a sparse lower-triangular matrix. So the computations C†
−1

Y can be

greatly reduced when we choose the knot size m, the block size nB, and number of

neighboring blocks q to be small. For the determinant,

|C†Y| = |U
TBTΣ−1

conBU + C−1
∗ | · |Σcon| · |C∗|.

Efficient computations can be achieved since we only need to compute the determi-

nants of two m×m matrices and a block-diagonal matrix.

2.3.2 Bayesian inference on model parameters

The Bayesian inference starts from the specifications of prior distributions of

β and θ. The conjugate normal prior π(β) ∼ N (µ0,Σ0) can be assigned to β.

The priors of θ depends on the form of the covariance function. Take the Matérn

covariance model (2.2) as an example, the inverse gamma prior IG(a, b) can be

assigned to variance parameter σ2 and the nugget τ 2 where hyper-parameters a, b are

chosen with guesses of the mean and variance; for the dependence range parameter,

a uniform prior with a reasonable support of practical dependence ranges can be

used; for smoothness parameter ν, usually an uniform prior at (0, 2] is used since
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high-order smoothness can hardly be identified for the real datasets.

We draw posterior samples of model parameters from the posterior p(β,θ|Y) ∝

p(Y|β,θ)π(β)π(θ). The full conditional distribution of β has a closed-form p(β|Y,θ) ∼

N (µβ|·,Σβ|·), where

µβ|· = Σβ|·(X
TC−1

Y Y + Σ−1
0 µ0),

Σβ|· = (XTC−1
Y X + Σ−1

0 )−1.

The Gibbs sampler is used to draw posterior samples fromN (µβ|·,Σβ|·). Since the full

conditional distributions of θ don’t have closed-forms, we use Metropolis-Hastings

algorithm to draw posterior samples of θ. For very large sample size n, we replace

CY with the approximated covariance C†Y by the SFSA approach in µβ|·,Σβ|·, and

p(Y|β,θ), for obtaining posterior samples of model parameters.

2.3.3 Prediction

Let Sp = {s1, . . . , snp} be a set of predictive spatial locations such that Sp∩S = ∅

and Yp = (Y (s1), . . . , Y (snp))
T be the corresponding vector of responses. Given the

partition rule P that partitions S into K blocks, suppose it partitions Sp into r ≤ K

distinct blocks Sp,k with the block number Mk, k = 1, . . . , r. We start from the joint

density p(Yp,Y|β,θ) =
∫
p(Yp|Y,w∗,β,θ) ·p(Y|w∗,β,θ) ·p(w∗|θ)dw∗. Let Yp,k be

the response vector at Sp,k, we define

p̃(Yp|Y,w∗,β,θ) =
r∏

k=1

p̃(Yp,k|Y,w∗,β,θ)

=
r∏

k=1

p(Yp,k|YMk
,YN(Mk),w

∗,β,θ). (2.6)
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This definition assumes Yp,k’s are conditional independent given w∗ and their neigh-

bors in Y. By (2.6), the approximated joint density

p̃(Yp,Y|β,θ) =

∫
p̃(Yp|Y,w∗,β,θ) · p̃(Y|w∗,β,θ) · p(w∗|θ)dw∗

=

∫ r∏
k=1

p(Yp,k|YMk
,YN(Mk),w

∗,β,θ) · p̃(Y|w∗,β,θ) · p(w∗|θ)dw∗,

where p̃(Y|w∗,β,θ) is the Gaussian density in (2.4). Then the approximated condi-

tional density of Yp|Y,β,θ can be directly derived from p̃(Yp,Y|β,θ).

Theorem 2.3.1. Let Xpk denote the design matrix of Yp,k, Upk denote C(Sp,k, S∗)C−1
∗

and Σ
(pk)
con be the residual conditional variance of Yp,k, given its neighbors YN(Mk) and

YMk
. Define Bpk = (Bpk,1, . . . , Bpk,K), where Bpk,l, l = 1, . . . , K has the same defini-

tion as (2.5). Let Xp = (XT
p1
, . . . ,XT

pr)
T , Up = (UT

p1
, . . . , UT

pr)
T , Bp = (Bp1 , . . . , Bpr)

and Σp
con = diag{Σ(p1)

con , . . . ,Σ
(pr)
con }, then the approximated conditional density

Yp|Y,β,θ ∼ N (µp,Σp),

where

µp = Xpβ + FpC†
−1

Y (Y−Xβ),

Σp = Σp
con +BpB

−1ΣconB
T−1

BT
p + UpC∗UT

p − FpC
†−1

Y F T
p ,

Fp = (−BpB
−1ΣconB

T−1

+ UpC∗UT ).

The conditional mean µp is the kriging formula for spatial predictions under

the SFSA approximations. We postpone the proof of Theorem 2.3.1 to the next

subsection 2.3.4 where we prove that the SFSA approach can induce a valid Gaussian

process with a closed-form covariance function.
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2.3.4 The Smooth FSA spatial process

Actually the SFSA approach can yield a valid spatial process so that both the

parameter estimation and prediction can be performed in the same framework. In

Section 2.2.2, we show that the underlying spatial process w(s) can be decom-

posed into two independent processes wl(s) and ws(s), where wl(s) is the predic-

tive process with covariance function Cl(·, ·) and ws(s) is the exact residual pro-

cess with covariance function C(·, ·) − Cl(·, ·). Let w̃s(s) = ws(s) + ε(s) be the

new residual process incorporating the nugget effect, then the data process Y (s) =

xT (s)β+wl(s) + w̃s(s). In the following we show that the proposed method approx-

imates the exact residual process w̃s(s) by a block version of the nearest neighboring

process [18]. Given a partition rule P leading to S = ∪Kk=1Sk, the key assumption

p̃(Y|β,θ,w∗) =
K∏
k=1

p(Yk|YN(k),β,θ,w
∗) of the proposed approach is equivalent to

p̃(w̃s(S)|θ) =
K∏
k=1

p(w̃s(Sk)|w̃s(SN(k)),θ), since w̃s(s) is the only random component

given w∗ and all model parameters. Thus for the SFSA approach, a block ver-

sion of the nearest neighboring approximation is applied to the residual likelihood

p(w̃s(S)|θ). Following the results in [18], the resulting approximated residual covari-

ance matrix is B−1ΣconB
T−1

, denoted by Σ†Y.

Let P partitions a set of predictive locations Sp into r distinct blocks Sp,k and

denote the block number of Sp,k by Mk, k = 1, . . . , r. We assume that

p̃(w̃s(Sp)|w̃s(S),θ) =
r∏

k=1

p(w̃s(Sp,k)|w̃s(SMk
), w̃s(SN(Mk)),θ).

This assumption is equivalent to p̃(Yp|Y,w∗,θ) =
r∏

k=1

p(Yp,k|YMk
,YN(Mk),w

∗,θ) in

subsection 2.3.3. Then let Sv ⊂ S be any spatial location set and Su = Sv \S be the
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predictive location set in Sv. Denote w̃s(Sv) by w̃v and w̃s(Su) by w̃u, we define

p̃(w̃v|θ) =

∫
p̃(w̃u|w̃s(S),θ)p̃(w̃s(S)|θ)

∏
si∈S\Sv

dw̃s(si). (2.7)

It is easy to verify that the defined residual process, denoted by w̃†s(s), satisfies the

conditions of Kolmogorov consistency theorem and is a valid spatial process [18].

According to the law of total covariance

Cov(w̃†s(s), w̃
†
s(s
′)) = E(Cov(w̃†s(s), w̃

†
s(s
′)|w̃s(S)))+Cov(E(w̃†s(s)|w̃s(S)),E(w̃†s(s

′)|w̃s(S))),

the covariance function of w̃†s(s) is

C̃†s(s, s′) =



Σ†Y(s, s′), if s, s′ ∈ S;

−BsΣ
†
Y(S, s′), if s /∈ S, s′ ∈ S;

BsΣ
†
YB

T
s′ , if s, s′ /∈ S, s, s′ belong to different blocks;

BsΣ
†
YB

T
s′ + Σ

(pk)
con (s, s′), if s, s′ /∈ S, s, s′ belong to the same block pk,

where Σ†Y(S1, S2) and Σ
(pk)
con (S1, S2) denote the sub-matrices of Σ†Y and Σ

(pk)
con corre-

sponding to the covariance of location sets S1 and S2, respectively. The covariance

function of the data process by the SFSA approach is

C†(s, s′) = Cl(s, s′) + C̃†s(s, s′).

So the approximated cross covariance between the predictive set Sp and the training

set S is UpC∗UT − BpΣ
†
Y and the kriging formula yields the conditional mean of

Yp given Y in Theorem 2.3.1. The conditional variance in Theorem 2.3.1 can be

obtained similarly.
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2.4 Simulation Study

In this section, we illustrate the effectiveness of our method through simulation

studies and a precipitation dataset. The implementations of all methods are written

in Matlab and run on a processor with 2.9 GHz Xeon CPUs and 16GB memory. For

likelihood function optimization, we use the matlab function fminunc which imple-

ments a Broyden-Fletcher-Goldfarb-Shanno (BFGS) based Quasi-Newton method.

2.4.1 Prediction in spatial holes

Consider 4000 locations randomly selected in the spatial domain S = [0, 10] ×

[0, 10]. We held out 208 locations in the rectangular regions [1.5, 3.5]× [1.5, 2.5] and

[6.5, 8.5] × [6.5, 7.5] as the predictive locations, and the rest of locations were used

as training locations. This prediction scenario mimics the missing pattern of the

satellite datasets where missing data are usually due to sizable holes. We generate

realizations of Y (s) from the model (3.1) with β = 0 and the Matérn covariance

model (2.2). A nugget effect τ 2 is added to covariance model (2.2) accounting for

the measurement errors of responses. We compare the proposed method (denoted by

“SFSA”) with the FSA-Block approach (denoted by “FSAB”), and the block version

of the conditional likelihood approximation approach in [18] (denoted by “CCL”) in

terms of parameter estimation and prediction results. The full covariance model

results (denoted by “FullModel”) serve as the baseline. All three methods require

a partition of the observed dataset, and the SFSA and CCL approaches also need

an ordering of data blocks. In this simulation study, the regular grid block centers

are created for the block partition and the block numbers are sorted in an increasing

order from northwest corner to southeast corner. For the SFSA and the FSA-Block

approaches, we randomly select m = 50, 100 knot locations in S. For the SFSA and

the CCL approaches, we consider using the nearest block (q = 1) in the past blocks
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as the neighbor of each block. The Maximum Likelihood Estimates (MLEs) of model

parameters are calculated based on the training set and the Mean Squared Prediction

Errors (MSPEs) are computed for the prediction set. The Negative Log-Likelihood

values (NLL) up to a constant n
2

log(2π) are also obtained as a measure of model

fitting. We experiment different parameter values of the covariance model (2.2) and

the results are shown in Table 2.1.

In terms of parameter estimation, the SFSA always produces close means and

Mean Squared Errors (MSE) to the full model results for covariance parameters un-

der different dependence range scenarios. For the exponential model ν = 0.5, when

the dependence range is relatively small, both the SFSA and the CCL methods have

smaller MSEs than that by the FSA-Block approach, this is because the predictive

process component of the FSA-Block approach doesn’t give an adequate approxima-

tion to the dependence across blocks, and the loss of information is relatively severe

under the small-scale dependence scenario; when the dependence range is relatively

large such as φ = 4, both the SFSA and the FSA-Block outperform the CCL method,

since the correlations across blocks are not negligible. In this case, the predictive

process component does a good job in approximating the cross-block dependence, so

the SFSA and the FSA-Block can produce smaller MSEs of model parameters. We

remark that the SFSA approach produces smaller MSEs and NLLs than that by the

FSA-Block approach in all 3 dependence range cases for the exponential model, due

to the additional corrections of correlations among neighboring blocks. In addition,

the parameter estimation results of the SFSA approach are less sensitive to the knot

numbers compared to the FSA-Block approach. For the Matérn covariance mod-

el with ν = 1, we have similar observations to the exponential model case. When

the knot number is small (m = 50), the FSA-Block approach yields significantly

larger MSEs than that of the SFSA method for parameters σ2 and φ; the proposed
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Table 2.1: Means and Mean Squared Errors (in parenthesis) of parameters in Matérn
covariance model. The number of blocks K = 100 for all three methods and the
results are based on 200 simulated datasets.

σ2(1) φ(1) ν(0.5) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.01(0.037) 1.04(0.045) − 0.011(6.12 · 10−6) −1471.32 0.336
FSAB,m = 100 1.01(0.031) 1.05(0.040) − 0.011(6.86 · 10−6) −1506.92 0.314
CCL 0.99(0.025) 1.00(0.028) − 0.010(4.33 · 10−6) −1580.48 0.336
SFSA,m = 50 1.00(0.027) 1.01(0.030) − 0.010(4.47 · 10−6) −1599.30 0.319
SFSA,m = 100 1.00(0.025) 1.02(0.029) − 0.011(4.67 · 10−6) −1613.68 0.304
FullModel 0.99(0.021) 1.00(0.024) − 0.010(4.20 · 10−6) −1690.62 0.294

σ2(1) φ(2) ν(0.5) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.04(0.155) 2.14(0.697) − 0.011(2.67 · 10−6) −2565.50 0.182
FSAB,m = 100 1.04(0.091) 2.15(0.422) − 0.011(2.92 · 10−6) −2609.06 0.172
CCL 1.00(0.091) 2.00(0.375) − 0.010(2.16 · 10−6) −2664.69 0.186
SFSA,m = 50 1.01(0.086) 2.04(0.363) − 0.010(2.18 · 10−6) −2695.87 0.174
SFSA,m = 100 1.01(0.081) 2.05(0.351) − 0.010(2.19 · 10−6) −2713.50 0.168
FullModel 1.00(0.069) 2.00(0.294) − 0.010(2.13 · 10−6) −2785.12 0.156

σ2(1) φ(4) ν(0.5) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.05(0.242) 4.36(4.21) − 0.010(1.21 · 10−6) −3568.62 0.099
FSAB,m = 100 1.03(0.185) 4.28(3.32) − 0.010(1.16 · 10−6) −3609.01 0.094
CCL 1.02(0.462) 4.09(7.00) − 0.010(9.27 · 10−7) −3654.54 0.106
SFSA,m = 50 1.00(0.166) 4.04(2.71) − 0.010(9.09 · 10−7) −3692.02 0.095
SFSA,m = 100 0.99(0.138) 4.00(2.29) − 0.010(8.76 · 10−7) −3704.48 0.092
FullModel 0.98(0.134) 3.91(2.14) − 0.010(8.97 · 10−7) −3776.61 0.088

σ2(1) φ(1) ν(1) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.04(0.117) 1.05(0.074) 1.00(0.0055) 0.010(1.09 · 10−9) −4228.07 0.099
FSAB,m = 100 1.01(0.096) 1.02(0.064) 1.01(0.0050) 0.010(5.28 · 10−8) −4304.52 0.086
CCL 0.98(0.068) 0.98(0.037) 1.01(0.0046) 0.010(4.82 · 10−10) −4403.75 0.106
SFSA,m = 50 1.00(0.069) 1.00(0.036) 1.01(0.0043) 0.010(3.81 · 10−10) −4443.47 0.093
SFSA,m = 100 0.98(0.063) 0.98(0.034) 1.01(0.0042) 0.010(7.80 · 10−9) −4473.19 0.082
FullModel 0.98(0.055) 0.98(0.030) 1.01(0.0035) 0.010(2.90 · 10−10) −4588.23 0.075

σ2(1) φ(2) ν(1) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.33(0.951) 2.40(1.240) 1.00(0.0062) 0.010(3.17 · 10−12) −5316.19 0.040
FSAB,m = 100 1.07(0.183) 2.07(0.358) 1.03(0.0065) 0.010(1.81 · 10−8) −5396.27 0.035
CCL 1.08(0.238) 2.10(0.448) 1.00(0.0047) 0.010(1.41 · 10−8) −5419.63 0.042
SFSA,m = 50 1.12(0.261) 2.14(0.438) 1.00(0.0040) 0.010(4.92 · 10−9) −5480.01 0.037
SFSA,m = 100 1.07(0.190) 2.07(0.340) 1.01(0.0042) 0.010(5.53 · 10−10) −5509.77 0.034
FullModel 1.07(0.166) 2.08(0.294) 1.00(0.0034) 0.010(1.24 · 10−8) −5584.77 0.030

method produces similar MSEs of parameters for different knot numbers, indicating

its insensitiveness to the knot number.

In terms of prediction, the SFSA and FSA-Block approach outperform the CCL

approach in all scenarios, this may be because the knot-based approaches can gain
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Table 2.2: MSPEs and MSEs of the exponential model with sample size 4000. The
number of blocks K = 100.

σ2(1) φ(1) τ 2(0.2) NLL MSPE
FSAB,m = 50 1.00(0.035) 1.07(0.066) 0.204(1.45 · 10−4) 292.93 0.575
FSAB,m = 100 1.00(0.032) 1.09(0.062) 0.205(1.39 · 10−4) 271.26 0.552
CCL 0.99(0.029) 0.99(0.043) 0.198(1.16 · 10−4) 243.44 0.573
SFSA,m = 50 0.98(0.026) 1.00(0.041) 0.200(1.13 · 10−4) 224.60 0.563
SFSA,m = 100 0.99(0.026) 1.02(0.041) 0.201(1.11 · 10−4) 216.81 0.544
FullModel 0.98(0.025) 0.98(0.035) 0.199(1.0 · 10−4) 174.39 0.525

σ2(1) φ(2) τ 2(0.2) NLL MSPE
FSAB,m = 50 1.09(0.219) 2.43(1.460) 0.204(7.67 · 10−5) −150.74 0.410
FSAB,m = 100 1.07(0.141) 2.40(0.993) 0.204(7.20 · 10−5) −181.75 0.398
CCL 0.98(0.088) 1.99(0.423) 0.199(5.78 · 10−5) −184.00 0.419
SFSA,m = 50 1.02(0.102) 2.13(0.552) 0.201(5.61 · 10−5) −210.51 0.404
SFSA,m = 100 1.01(0.080) 2.12(0.446) 0.201(5.50 · 10−5) −223.05 0.393
FullModel 0.98(0.072) 1.98(0.354) 0.199(5.38 · 10−5) −252.81 0.377

σ2(1) φ(4) τ 2(0.2) NLL MSPE
FSAB,m = 50 1.15(0.518) 5.25(12.30) 0.202(5.26 · 10−5) −481.89 0.316
FSAB,m = 100 1.02(0.179) 4.60(4.03) 0.202(4.79 · 10−5) −512.48 0.309
CCL 0.94(0.275) 3.8(4.82) 0.198(5.04 · 10−5) −499.95 0.324
SFSA,m = 50 0.99(0.214) 4.18(3.80) 0.200(4.39 · 10−5) −528.58 0.311
SFSA,m = 100 0.96(0.150) 4.07(2.72) 0.200(4.37 · 10−5) −538.93 0.305
FullModel 0.93(0.131) 3.74(2.24) 0.198(4.45 · 10−5) −561.92 0.300

additional information for the predictive locations in the spatial hole when we place

knots around or in the spatial hole. The prediction errors of all 3 methods decrease

with the increase of dependence range parameter φ, since more information can be

borrowed from the training set under the large scale dependence structure. Compared

with the FSA-Block approach with equal number of knots, the SFSA has smaller

MSPEs due to additional corrections of correlations across blocks. The prediction

difference between SFSA and FSA-Block is relatively larger when the dependence

scale is small and the process is less smooth, since in this case, the predictive process

component of the FSA-Block doesn’t perform well in approximating the correlations

across blocks. Table 2.2 shows the parameter estimation and prediction results when

the data is generated with a high noise level 0.2. The observations are similar to the

simulation set-up with a low noise level 0.01.
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Figure 2.2: MSE of each covariance parameter against the number of neighboring
blocks for the SFSA approach. The simulation setting is the same as that described
in Section 2.4.1; the covariance model is exponential model with φ = 1, σ2 = 1, and
τ 2 = 0.01.

Figure 2.2 shows how the MSEs and NLL change with the number of neighboring

blocks for the SFSA approach. When q ≥ 4, the SFSA approach can produce results

almost at par with the full covariance model. Notice that the neighboring locations

of a block for q = 4 is only about 200, so the proposed method can achieve good

parameter estimation results at very low costs of computations. For predictions,

figure 2.3 shows how the MSPEs change with number of neighboring blocks. We

find that the prediction performance is more sensitive to the block size than to the

number of neighbors for the prediction in spatial hole scenario. This may be because

for the grid partition, each spatial hole covers more than one block when we choose

K to be large. In this case the predictive locations belonging to the same block can
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not have enough nearby locations due to the block ordering. Thus when we partition

the data into small number of blocks, the prediction error drops more significantly

due to the increased number of very close locations in the neighbor set.
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Figure 2.3: MSPEs against the number of neighboring blocks for the SFSA approach
with K = 25, 100. The simulation setting is the same as that described in Section
2.4.1; the covariance model is exponential model with φ = 1, σ2 = 1, and τ 2 = 0.01.

2.4.2 Prediction on block boundaries

For the FSA-Block approach, when predicting responses on shared boundaries of

two blocks, the prediction of a boundary location depends on which block it belongs

to. Although the FSA-Block approach has the predictive process part as the “global”

support, the discontinuity caused by the independent blocks approximation of the

residual covariance can be severe when the predictive process component does not

perform well due to limited knot number. Since the proposed approach takes the

neighboring blocks information into account for modeling the residual process, we

expect that it can produce a smoother prediction surface than that by the FSA-Block

approach. Compared with the conditional likelihood approximation method [18],

it may also relieve the discontinuity problem for predicting on boundary locations
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due to the additional global information provided by the low-rank process part. In

the following simulation example, we compare the prediction performance of three

methods on locations of block boundaries. We use the regular grid to create the same

100 data blocks as in the previous example, so the lines s1 = 1, 2, · · · , 9 and s2 =

1, 2, · · · , 9 constitute the boundaries of the block partition. We randomly generated

4000 training locations in the spatial domain S. Then 20 predictive locations were

randomly selected on each of the 18 boundary lines to form a prediction set of 360

locations. The ordering of blocks and knot selection method are the same as in

the previous example. We experimented different parameter values of covariance

model (2.2) with ν = 0.5 and the results are shown in Table 2.3.

We focus on the prediction performances of three competing methods. In all 3

scenarios of dependence ranges for the exponential model, the SFSA approach pro-

duces the smallest MSPEs on block boundary locations. The prediction performance

of CCL method is close to that of the SFSA method, indicating that borrowing in-

formation from neighboring points for prediction can create a relatively smoother

prediction surface. The FSA-Block method does not perform as well as the SFSA

method on predicting boundary locations; especially in the case of relatively small

dependence range, the prediction errors by the FSA-Block method is significantly

larger than that by the SFSA approach. For the Matérn covariance with ν = 1,

the SFSA approach still outperforms the FSA-Block in terms of prediction error of

boundary locations. But the differences of prediction errors by the two approach-

es are smaller, since the predictive process component serving as a global predictor

performs better when the underlying process is smoother. We also experimented

the scenario of the responses with a relatively large nugget and results are shown in

Table 2.4. In this scenario, the SFSA and CCL methods outperform the FSA-Block

method for different dependence ranges; the differences of MSPEs between the SF-
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Table 2.3: MSPEs and MSEs (in parenthesis) of the exponential model with sample
size 4000. 360 boundary locations were held out for prediction. The number of blocks
K = 100.

σ2(1) φ(1) ν(0.5) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.02(0.039) 1.06(0.050) − 0.011(7.20 · 10−6) −1580.77 0.168
FSAB,m = 100 1.02(0.028) 1.06(0.035) − 0.011(7.77 · 10−6) −1613.39 0.160
CCL 1.01(0.027) 1.02(0.030) − 0.010(5.35 · 10−6) −1691.35 0.139
SFSA,m = 50 1.01(0.028) 1.03(0.031) − 0.010(5.46 · 10−6) −1711.95 0.137
SFSA,m = 100 1.01(0.024) 1.03(0.027) − 0.010(5.64 · 10−6) −1725.45 0.133
FullModel 1.01(0.023) 1.02(0.025) − 0.010(5.04 · 10−6) −1812.47 0.104

σ2(1) φ(2) ν(0.5) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.06(0.160) 2.19(0.734) − 0.011(2.90 · 10−6) −2724.91 0.091
FSAB,m = 100 1.08(0.106) 2.25(0.508) − 0.011(2.90 · 10−6) −2774.28 0.087
CCL 1.03(0.103) 2.07(0.437) − 0.010(2.07 · 10−6) −2829.41 0.078
SFSA,m = 50 1.03(0.085) 2.09(0.367) − 0.010(2.11 · 10−6) −2861.10 0.075
SFSA,m = 100 1.04(0.078) 2.13(0.339) − 0.010(2.10 · 10−6) −2881.34 0.074
FullModel 1.02(0.062) 2.05(0.259) − 0.010(1.85 · 10−6) −2962.68 0.059

σ2(1) φ(4) ν(0.5) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.04(0.245) 4.32(4.29) − 0.010(9.97 · 10−7) −3782.32 0.053
FSAB,m = 100 1.03(0.209) 4.27(3.70) − 0.010(1.04 · 10−6) −3825.53 0.051
CCL 1.01(0.273) 4.03(4.36) − 0.010(8.08 · 10−7) −3872.83 0.046
SFSA,m = 50 0.97(0.131) 3.93(2.12) − 0.010(7.89 · 10−7) −3910.54 0.044
SFSA,m = 100 0.98(0.126) 3.99(2.06) − 0.010(7.99 · 10−7) −3925.72 0.044
FullModel 0.97(0.107) 3.87(1.67) − 0.010(7.38 · 10−7) −4004.71 0.036

σ2(1) φ(1) ν(1) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.03(0.139) 1.06(0.081) 0.99(0.0052) 0.010(6.79 · 10−11) −4491.28 0.037
FSAB,m = 100 1.04(0.108) 1.06(0.054) 1.00(0.0044) 0.010(1.21 · 10−8) −4560.49 0.034
CCL 1.01(0.083) 1.01(0.040) 1.00(0.0033) 0.010(1.47 · 10−9) −4667.55 0.029
SFSA,m = 50 1.00(0.078) 1.02(0.041) 1.00(0.0035) 0.010(1.48 · 10−11) −4711.32 0.028
SFSA,m = 100 1.01(0.079) 1.02(0.035) 1.00(0.0033) 0.010(1.57 · 10−9) −4738.50 0.027
FullModel 1.00(0.065) 1.01(0.030) 1.00(0.0029) 0.010(9.97 · 10−10) −4867.43 0.020

σ2(1) φ(2) ν(1) τ 2(0.01) NLL MSPE
FSAB,m = 50 1.16(0.504) 2.17(0.709) 1.02(0.0069) 0.010(1.68 · 10−8) −5616.22 0.0199
FSAB,m = 100 1.04(0.168) 1.99(0.303) 1.04(0.0074) 0.010(4.84 · 10−8) −5701.62 0.0186
CCL 1.02(0.223) 1.98(0.371) 1.01(0.0050) 0.010(1.60 · 10−10) −5728.09 0.0178
SFSA,m = 50 1.05(0.217) 2.01(0.327) 1.02(0.0044) 0.010(1.47 · 10−9) −5789.06 0.0169
SFSA,m = 100 1.05(0.221) 2.01(0.343) 1.02(0.0048) 0.010(3.51 · 10−9) −5820.22 0.0165
FullModel 1.03(0.195) 1.99(0.304) 1.01(0.0040) 0.010(3.49 · 10−10) −5903.00 0.0143

SA approach and the FSA-Block approach are larger than the small-nugget scenario

when both the knot number and the dependence range are small.
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Table 2.4: MSPEs of the exponential model with σ2 = 1 and a larger nugget τ 2 = 0.2.
360 boundary locations were held out for prediction. The number of blocks K = 100.

Exponential FSAB,m = 50 m = 100 CCL SFSA,m = 50 m = 100 FullModel
φ = 1 0.404 0.396 0.377 0.370 0.367 0.333
φ = 2 0.320 0.311 0.306 0.299 0.296 0.279
φ = 4 0.270 0.265 0.263 0.259 0.257 0.246

2.5 Real Data Analysis

We analyze the precipitation dataset in United States for the years from 1895 to

1997. It was collected by National Climate Data Center and we consider the yearly

total precipitation anomalies in this analysis, which are yearly totals standardized

by the long-run mean and standard deviation of each weather station. We select the

precipitation anomalies in 1962 [43] to illustrate the proposed SFSA approach, since

this year contains the largest number of observations. According to the analysis in

[38], this dataset appears no significant nonstationarity and anisotropy, therefore the

isotropic covariance models can be applied in the spatial regression model (3.1) for

fitting this dataset. Since observations are on the sphere, the chordal distance with

unit in kilometers is used to calculate the distances among weather stations to ensure

positive-definiteness of the covariance function.

We first partitioned the total 7352 observations into a training set of 7000 ob-

servations and a prediction set of 352 observations. The prediction set contains 143

locations in the space hole (−87,−82)× (35, 38) and 209 locations randomly selected

in the rest of the area. The covariance model (2.2) was used to model the spatial

dependence among observations of weather stations. We fixed the smoothness pa-

rameter ν = 0.5, so the covariance model is the exponential covariance function.

The K-means clustering algorithm was applied to the training set for creating data
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blocks; then we ordered the created data blocks. We also applied K-means clustering

algorithm on the training dataset to obtain 300 cluster centers for the knot set. For

both the SFSA and the CCL methods, the neighboring set of a block is its nearest

neighboring data block. The following Table 2.5 shows the parameter estimation

and prediction results of three approaches by both the Maximum likelihood and the

Bayesian methods; the results of the full covariance model serve as the baseline. For

the Bayesian inference, we obtain the Maximum A Posteriori (MAP) estimates of

parameters and the corresponding MSPEs by using the MAP estimates.

Table 2.5: Maximum Likelihood and Bayesian inference results using the exponential
model.

MLEs σ2 φ τ 2 Log lik MSPE
FSAB,K = 70 0.6792 180.22 0.1078 −5218.69 0.311
CCL,K = 70 0.6866 174.37 0.1043 −5206.07 0.329
SFSA,K = 70 0.6734 170.96 0.1045 −5179.15 0.301
FSAB,K = 25 0.6780 172.29 0.1045 −5190.36 0.296
CCL,K = 25 0.6874 169.64 0.1020 −5177.63 0.282
SFSA,K = 25 0.6863 170.86 0.1026 −5160.71 0.274
Full Model 0.6757 166.84 0.1023 −5150.60 0.272

Bayesian σ2 φ τ 2 DIC MSPE
FSAB,K = 70 0.6718 177.85 0.1074 10439.50 0.309
CLL,K = 70 0.6903 174.68 0.1039 10418.12 0.329
SFSA,K = 70 0.6667 168.22 0.1040 10357.64 0.308
FSAB,K = 25 0.6707 171.07 0.1050 10392.52 0.300
CLL,K = 25 0.6878 170.40 0.1024 10361.55 0.281
SFSA,K = 25 0.6834 171.82 0.1036 10329.95 0.276
Full Model 0.6706 165.65 0.1024 10307.03 0.272

The MLEs of model parameters by all three methods are close to the full model

results. The SFSA approach produces the largest log-likelihood among 3 competing

methods for the same block partition, since it includes other two methods as special

cases. In terms of prediction, when the block number K is relatively large, the

prediction errors of the SFSA and the FSA-Block methods are significantly smaller
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than that of the CCL approach, since the additional correction of residual covariance

between one block and its nearest neighbor may not be as crucial as the inclusion

of the predictive process component. When the block number K is relatively small,

the prediction errors of the SFSA and the CCL methods are significantly smaller

than that of the FSA-Block approach, since the additional correction of residual

covariance may be more crucial for the case of larger block size. We remark that the

SFSA approach has the smallest MSPE for a given K and it has very close prediction

performance to the full model when K = 25. The Bayesian inference results are very

similar to that of MLEs. We can observe that the MAP estimate of each model

parameter by the SFSA approach is close to estimate by the full covariance model.

Besides, the Deviance Information Criteria (DIC) score by the SFSA approach is

smallest among three methods, indicating that it fits the data best.

2.6 Discussion

We propose a Smooth Full-Scale Approximation approach (SFSA) which extend-

s the FSA-Block approach by correcting the approximation errors of correlations

among neighboring blocks. The proposed method incorporates the FSA-Block ap-

proach and the block conditional likelihood approach as special cases and can achieve

better statistical efficiency. Compared with the FSA-Block approach, the SFSA ap-

proach can significantly alleviate the discontinuity problem of predictions on bound-

ary locations and produce a smoother prediction surface. In addition, due to the

additional corrections of correlations across data blocks, the SFSA approach is less

sensitive to the knot set than the FSA-Block approach. So it can produce more

robust results when the number of knots is not sufficient or the knot locations are

not properly placed. The computational complexity of the proposed method is linear

with sample size n when the knot number m, block size nb, and number of neigh-
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boring blocks q are small. Numerical results show that for a few hundreds of knots,

block size, and neighboring locations, the SFSA approach can achieve very close pa-

rameter estimation and prediction results to the full covariance model. Therefore, it

can serve as a computationally efficient tool for modeling large spatial datasets.
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3. FULL-SCALE APPROXIMATIONS OF SPATIO-TEMPORAL

COVARIANCE MODELS∗

3.1 Introduction

Spatio-temporal datasets are widely collected in many scientific disciplines, where

the data are observed in both space and time. The primary interests in analyz-

ing spatio-temporal datasets are to detect meaningful spatio-temporal dependence

patterns, and to subsequently smooth and predict in space-time domain. Recent

developments are mainly in spatio-temporal process models. There are two major

paradigms for modeling dependence structures of spatio-temporal datasets. The first

treats time as discrete and views data as time series of spatial process realizations.

Many works [24, 14, 42, 20] following this direction adopt a state-space framework,

where the dynamics in a time series of spatial fields are explained by a sequence of

state variables driven by a stochastic process.

We focus on a paradigm in which both space and time are continuously in-

dexed. A key ingredient is a valid spatio-temporal covariance model that charac-

terizes spatio-temporal dependence structure. A simple but commonly used class

of spatio-temporal covariance model assumes a separable form that factors into a

purely spatial and a purely temporal component. However, separable models do

not allow for space-time interaction and often fail to model a physical process ad-

equately. There is a growing literature on methods for constructing more flexible

spatio-temporal covariance functions. [12] introduced several classes of nonseparable

spatio-temporal covariance functions based on the spectral density of nonnegative

∗Reprinted with permission from “Full-scale approximations of spatio-temporal covariance models
for large datasets” by Bohai Zhang, Huiyan Sang, and Jianhua Z Huang, 2015. Statistica Sinica,
25, 99-114, Copyright [2015] by Academia Sinica.
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finite measures. [30] extended their work and introduced a broader class of nonsepa-

rable spatio-temporal covariance functions, which does not depend on closed forms of

inverse Fourier transforms. [66] developed a class of asymmetric and nonstationary

space-time covariance functions on the sphere.

Parameter estimation and spatio-temporal prediction with these models typically

require O(n3) operations for a spatio-temporal dataset of size n, imposing compu-

tational challenges. One approach to the computation seeks to simplify the model

fitting method mainly through likelihood approximations. Composite likelihood (CL)

methods [71] have been applied to deal with spatial and spatio-temporal datasets due

to their simplicity and sound asymptotic properties. The idea is to use a pseudo-

likelihood by combining likelihood objects constructed from conditional or marginal

models as a surrogate for the ordinary likelihood. Recently, [6] introduced a weighted

composite likelihood (WCL) method based on pairwise differences of spatio-temporal

observations. They showed that the estimators of their methods are consistent and

asymptotic normal under increasing domain asymptotics [11]. [3] also developed a CL

method based on pairwise differences, forming a joint estimation function based on

spatial, temporal and spatio-temporal group-based estimation functions. A second

approach seeks to simplify model specifications of covariance structures to achieve

computational efficiency. Many literature following this path have emerged but pri-

marily focusing on spatial or spatial discrete-time contexts. Existing works here

include covariance tapering [23, 43], Gaussian Markov random-field approximation

[56, 57] and reduced rank approximation [37, 77, 73, 39, 13, 42]. [4] proposed a class

of spatial predictive processes models that is applicable to fitting spatio-temporal

process models with large data sets. The idea of this reduced rank type of approach

is to approximate a spatio-temporal process with a predictive process, the prediction

of a given spatio-temporal process conditional on the random spatio-temporal vector
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at a selected location set of reduced size.

Recently, [59] developed a covariance approximation method, referred to as full-

scale approximation (FSA), for the implementation of univariate spatial process

models with large datasets. Combining merits of reduced rank techniques [13, 4]

and sparse matrix algorithms [23], the FSA approach provides a high quality ap-

proximation to the covariance function at both large and small spatial scales and

achieves computational efficiency.

In this Section, we extend the FSA approach to the spatio-temporal process con-

text. We propose a general-purpose full-scale approximation that can approximate

well the original covariance function at both large and small spatio-temporal scales.

Here the first step produces a reduced rank spatio-temporal covariance that is ef-

fective in capturing large-scale spatio-temporal dependence and the second step a

sparse covariance matrix that can approximate well the small-scale spatio-temporal

dependence unexplained by the first part. Our method yields a new full-scale spatio-

temporal covariance function for any given covariance function that maintains the

flexibility and the richness of spatio-temporal structure while substantially reducing

computational cost. Spatio-temporal predictions of the full-scale covariance approx-

imation models can be carried out efficiently following the conventional prediction

procedure in Gaussian processes.

The method requires careful selection of knots in the reduced rank step, an issue

not addressed by [59], to achieve a good balance between model fitting and compu-

tational time. We propose an adaptive and automatic way to select both the knot

number and knot locations by treating them as random variables. We consider se-

lecting knots either from a set containing all spatio-temporally observed locations or

a fine grid covering entire space-time domain following a Reversible Jump Markov

chain Monte Carlo (RJMCMC) algorithm [33].

40



3.2 The FSA Approach

3.2.1 Model

Let Y (s, t) be a response variable observed at location s and time t, where s ∈

S ⊆ R2, t ∈ [0, T ] ⊆ R+. A general formulation of spatio-temporal process model is

Y (s, t) = µ(s, t) + w(s, t) + ε(s, t), (3.1)

where µ(s, t) is a deterministic mean function, w(s, t) is a zero-mean Gaussian pro-

cess characterizing spatio-temporal variations, and ε(s, t) is a Gaussian white noise

process independent of w(s, t). The variance of ε(s, t) is usually assumed to be a

constant τ 2, called the “nugget effect”, to account for measurement errors. The

spatio-temporal dependence structure of w(s, t) is specified by a spatio-temporal

covariance function Γw(s, t; s′, t′) ≡ Cov(w(s, t), w(s′, t′)). In the spatio-temporal re-

gression framework, we assume µ(s, t) = ZT (s, t)β, where Z(s, t) is a p × 1 column

vector of space-time covariates and β is the associated coefficient vector.

To simplify notation, denote a spatio-temporal point x by (s, t). Let X =

{x1,x2, · · · ,xn}, w = (w(x1), w(x2), · · · , w(xn))T and ε = (ε(x1), ε(x2), · · · , ε(xn))T .

It follows that w ∼ MVN(0,Σw) and ε ∼ MVN(0,Σε), where MVN stands for the

multivariate normal distribution, Σw = [Γw(xi,xj)]i=1:n,j=1:n, and Σε = τ 2In.

The marginal distribution of Y = (Y (x1), · · · , Y (xn))T ∼ MVN(Zβ,Σw + τ 2In),

where Z = (Z(x1), Z(x2), · · · , Z(xn))T . To make likelihood-based or Bayesian infer-

ences, we need to evaluate the likelihood of Y; this requiresO(n3) computational time

due to the inversion of Σw +τ 2In. A similar computational bottleneck is encountered

when performing spatio-temporal prediction.
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3.2.2 Covariance approximation of spatio-temporal process

We propose a full-scale covariance approximation for the latent spatio-temporal

process w by a sum of two independent processes,

w†(x) = wl(x) + ws(x), (3.2)

where wl(x) is a low-rank process that captures the large-scale spatio-temporal de-

pendence structure and ws(x) is a residual process that models the small-scale spatio-

temporal dependence not captured by wl(x). We model the low rank process using

a predictive process on spatio-temporal domain. The predictive process, proposed

by [4], has been shown to be flexible enough to model the large-scale dependence

structure of a spatial process. Given a set of points X ∗ = {x∗1,x∗2, · · · ,x∗m}, called

spatio-temporal knots, the spatio-temporal predictive process is

wl(x) = C(x,X ∗)C∗−1w∗,

where w∗ = (w(x∗1), w(x∗2), · · · , w(x∗m))T , C(x,X ∗) = [Γw(x,x∗j)]j=1:m, and C∗ =

C(X ∗,X ∗) is the covariance matrix of w∗. It follows that the covariance function

of wl is given by

Γwl(x,x
′) = C(x,X ∗)C∗−1CT (x′,X ∗). (3.3)

The covariance matrix of wl evaluated at X is Σwl = C(X ,X ∗)C∗−1CT (X ,X ∗)

where C(X ,X ∗) = [Γw(xi,x
∗
j)]i=1:n,j=1:m. One often chooses m � n, which results

in a low-rank matrix Σwl and hence leads to efficient computations. If the knot set

is chosen to be X , the original spatio-temporal covariance is fully recovered.
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The residual process ws(x) is an important supplement to wl(x) for better ap-

proximating the original process w(x), while maintaining computational efficiency.

The idea is to use a sparse covariance matrix to approximate the covariance of the

exact residual process w(x) − wl(x). The covariance function of w(x) − wl(x) is

Γw(x,x′)− Γwl(x,x
′), and we take the covariance function of ws(x) to be

Γws(x,x
′) = {Γw(x,x′)− Γwl(x,x

′)}K(x,x′), (3.4)

where K(x,x′), referred to as a modulating function, is chosen to ensure Γws is a

valid positive semidefinite function and that is zero for a large proportion of possible

spatio-temporal pairs (x,x′) evaluated at X . The choice of K(x,x′) ensures that

the resulting residual covariance matrix Σws can be handled efficiently.

We describe several strategies for specifying the modulating function K. The first

is to use a tapering function, the result is referred to as FSA-Taper, which sets the

correlation of distant spatio-temporal pairs to zero. In the univariate spatial case, a

number of compactly supported covariance functions have been used for covariance

tapering, for example the spherical covariance function, the family of Wendland

covariance functions, and the bisquare function, to name a few [75, 76, 30, 13]. In

the spatio-temporal context, we consider tapering functions as Schur products of a

purely spatial and a purely temporal tapering function. Let Ku(s, s′; γu) be a tapering

function on the spatial domain satisfying Ku = 0 when ‖s−s′‖ > γu, and Kv(t, t′; γv)

be a tapering function on the temporal domain such that Kv = 0 when ‖t− t′‖ > γv.

Here, γu and γv are referred to as the spatial taper range and the temporal taper

range, respectively. Then K(s, t; s′, t′) = Ku(s, s′; γu)Kv(t, t′; γv).

A second specification of K uses local partitioning: residuals are assumed to

be independent across partitioned space-time subregions, while the original residual
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covariance is preserved within each subregion. Let B1, B2, · · · , BK be a partition

of the space-time domain S × [0, T ], referred to as blocks. Then the modulating

function is

Kblock(x,x′) =

 1 if x,x′ ∈ Bi, i = 1, . . . , K;

0 otherwise.

By rearranging observation indices such that the observations within a block are

grouped together, we obtain a block-diagonal modulating matrix Kblock(X ,X ) with

1ni1
T
ni

the ith block, where 1ni is a column vector of 1s and ni is the number of

observations within the ith block for i = 1, 2, . . . , K. Thus the covariance matrix

of the approximated residual process ws on X is also block-diagonal, whose inverse

can be efficiently computed if the block size is not large. We refer the FSA approach

with K = Kblock as the FSA-Block method.

Let Σw† denote the covariance matrix of observations X given by the FSA-Block

method. It is positive definite (PD) when the knot set does not overlap with the

observation set, otherwise it is positive semidefinite (PSD). To see why, note that

Σw† = Σwl + Σws , where Σwl is the covariance matrix of the predictive process

and Σws is a residual covariance. Here Σws = (Σw − Σwl) ◦ Kblock(X ,X ), where

◦ is the Schur product (entry-wise product) of matrices. Denote the observational

locations in the block Bk by Xk. Then we obtain a block diagonal matrix Σws with

Σk
ws = Γw(Xk,Xk) − Γwl(Xk,Xk) as its kth block. Since Σk

ws is the conditional

covariance of w(Xk) given w(X ∗), it is PD when X ∗ ∩X = ∅ and PSD otherwise.

It follows that Σws and Σw† are PD when X ∗ ∩X = ∅ and PSD otherwise.

The reduced-rank part plus the residual part using local partitioning provides

an exact recovery of the true covariance within each subregion. Specifically, the
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covariance function of w† is

Γw†(x,x
′) =

 Γw(x,x′) if x,x′ ∈ Bi, i = 1, . . . , K;

Γwl(x,x
′) otherwise.

(3.5)

As the covariance approximation errors induced by the FSA-Block only occur for

pairs belonging to different subregions and most of these pairs some distance apart,

the errors Γw(x,x′)− Γw†(x,x
′) are expected to be small for most pairs.

In some cases, by taking advantage of the specific dependence structures, one

can modify the general-purpose spatio-temporal FSA approach to achieve better

covariance approximation and/or further reduce computational cost. For example,

suppose Γw(x,x′) = Γu(s, s
′)Γv(t, t

′) where Γu and Γv are valid covariance functions

in space and time domains, respectively, and that n = N × T observations are

collected at spatial sites S = {s1, . . . , sN} through time points set T = {t1, · · · , tT}.

Then if we permute the observations by sorting the time in an increasing order,

the covariance matrix of w(s, t) at S × T can be written as Σw = Σv ⊗ Σu, where

Σu = [Γu(si, sj)]i,j=1:N , Σv = [Γv(ti, tj)]i,j=1:T , and ⊗ is the Kronecker product. If

ε(s, t) ≡ 0, the resultant data covariance matrix ΣY = Σt ⊗ Σs. The separability

structure of Γw(x,x′) can alleviate the computational demand because it reduces

the dimension of the data covariance matrices that need to be inverted. Specifically,

|ΣY| = |Σv|T |Σu|N and Σ−1
Y = Σ−1

v ⊗ Σ−1
u . However, computational challenge still

exists in the presence of large spatial locations and/or time points. In this case,

the FSA approach can be applied to approximate the spatial covariance Σu and the

temporal covariance Σv respectively.
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3.2.3 Fast computation of parameter estimation and spatio-temporal prediction

In this section, we show the implementation of a spatio-temporal regression model

using the FSA method. Replacing the latent spatio-temporal process w as (3.1) with

its induced spatio-temporal FSA w† as (3.2), we obtain the data model at n observed

locations,

Y = Zβ + w† + ε, ε ∼ MVN(0,Σε), (3.6)

where w† is an n×1 vector of w† evaluated on X . The data likelihood is then given

by Y ∼ MVN(Zβ,Σwl + Σws + Σε).

Here Σws + Σε is a sparse matrix for FSA-Taper or a block diagonal matrix

for FSA-Block, whose inversion can be handled efficiently. We apply the Sherman-

Woodbury-Morrison formula to calculate the inverse of ΣY

Σ−1
Y = (Σws + Σε)

−1 − (Σws + Σε)
−1C(X ,X ∗)

×{C∗ + CT (X ,X ∗)(Σws + Σε)
−1C(X ,X ∗)}−1

×CT (X ,X ∗)(Σws + Σε)
−1. (3.7)

The determinant of ΣY can also be efficiently computed by applying Sylvester’s

determinant theorem,

|ΣY| = |Σws + Σε| × |C∗|−1

×|C∗ + CT (X ,X ∗)(Σws + Σε)
−1C(X ,X ∗)|. (3.8)

Likelihood-based inference uses maximum likelihood or restricted maximum like-

lihood. For Bayesian inference, we need to specify priors for model parameters.
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For the regression coefficient vector β, we assign a vague multivariate normal prior

β ∼ MVN(µβ,Σβ). For the variance of measurement errors τ 2, we assign an inverse-

gamma prior IG(a, b) where the hyper-parameters a, b are chosen with reasonable

guesses of mean and variance. Denote the set of parameters in the spatio-temporal

covariance function Γw by θ, whose prior specification depends on the choice of

the covariance function. Customarily, the inverse-gamma prior can be assigned on

the variance parameter σ2; the spatial/temporal range parameter can be assigned

with a reasonably informative prior, e.g. a uniform prior with its support specified

according to the belief on the practical spatial/temporal dependence range of the

spatio-temporal dataset.

Let Ω = (β,θ, τ 2) be the collection of model parameters. The MCMC method is

used to draw samples of parameters from the posterior

p(Ω|Y) ∝ p(β)p(θ)p(τ 2)p(Y|Ω). (3.9)

The Gibbs sampler is used to update β from MVN(µβ|·,Σβ|·), where

Σβ|· = (ZT (Σwl + Σws + Σε)
−1Z + Σ−1

β )−1,

µβ|· = Σβ|·(ZT (Σwl + Σws + Σε)
−1Y + Σ−1

β µβ).

For parameters without a closed-form of the full conditional distribution, we draw

samples using the Metropolis-Hasting algorithm. For example, for spatial/temporal

dependence range parameters, we can use truncated normal distribution centered at

the current value as the proposal distribution. The log-normal proposal centered at

the current value can also be used for dependence range parameters.

The spatio-temporal process regression model combined with the FSA provides
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a straightforward and efficient prediction using large spatio-temporal datasets. In

classical geostatistics, assuming the model parameters are known, for a given new

spatio-temporal point x0 the approximated best linear unbiased predictor (BLUP)

of Y (x0) is

Ŷ (x0) = ZT (x0)β + Cw†(x0,X ){Σwl + Σws + Σε}−1(Y− Zβ) (3.10)

and the approximated mean square error (MSE) is

MSE(Ŷ (x0)) = σ2 + τ 2 − Cw†(x0,X ){Σwl + Σws + Σε}−1CTw†(x0,X ), (3.11)

where Cw†(x0,X ) = [Γwl(x0,xi) + Γws(x0,xi)]i=1:n,xi∈X is a 1 × n cross-covariance

matrix between w†(x0) and w. In practice, data-based estimates of the parameters

are plugged in the above expression.

The Bayesian approach generalizes to the case of prediction when the covariance

parameters are unknown. The predictive distribution for Y (x0) is a Gaussian distri-

bution with predictive mean given by (4.14) and variance given by (4.15). Therefore,

a random sample of Y (x0) from the (posterior) predictive distribution can be ob-

tained by a draw of Ω from the posterior followed by a draw from the conditional

predictive distribution of Y (x0) given Ω.

Again, the calculation of BLUP and draws from the posterior predictive distribu-

tion involve the inversion of Σwl + Σws + Σε, which can be handled efficiently using

the computational technique described in (3.7).

3.2.4 Selection of tuning parameters

Both the FSA-Taper and the FSA-Block involve tuning parameters: taper ranges

and a knot set are required for the FSA-Taper; block partition in space-time domain
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and a knot set are required for the FSA-Block. The choices of these tuning parameters

determine the approximation performance and the computational complexity of the

FSA model.

Choice of knots is a key ingredient in the low rank component of the FSA. Typi-

cally, a denser knot design can lead to a better approximation of the parent process

but at a cost of heavier computational burden. A heuristic way for selecting knots is

to predetermine a knot number m based on available computational resources, then

to place knots with good space-time coverage. Possible options include random sam-

pling, Latin hypercube sampling [52, 65] and using a regular grid. Alternatively, one

may consider a random knot selection in which knot number m and their locations

are allowed to be chosen automatically.

For random knot selection, [34] introduced an adaptive predictive process model

for spatial data. They fixed the knot number and modeled knot locations with

a point pattern model. [41] applied the FSA-Taper approach to a nonstationary

Matérn covariance function for spatial process, where the knot number was assigned

with an improper flat prior on the set of all positive integers and knot locations were

assigned with a uniform prior over the whole spatial domain.

Motivated by this work, we propose a Bayesian approach to adaptively select

knot number and knot locations for the spatio-temporal FSA method. A RJMCMC

algorithm [33] is offered to update the knot set from a discrete set of spatio-temporal

points. Choices of candidate set include the set of all observed points or a regular

grid covering the entire space-time domain, denoted by L̄. Let m be the knot number

and L be the set of selected knot locations. We propose to assign the knot number

m with a Poisson(λ) prior truncated at λ0, where λ is chosen to balance the trade-off

between computational capacity and model fitting, and λ0 > 0 is set to reflect the

maximum tolerance of computational time. Conditional on the knot number, we
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assume knots are randomly chosen from the candidate knot set, p(L|m) =
(
M
m

)−1
,

where M is the size of L̄.

At each MCMC step, we consider three types of possible moves of selected knot

set, changing from (L,m)→ (L∗,m∗): (a) birth: add a knot by randomly selecting a

point in L̄\L, so m∗ = m+1; (b) death: randomly delete a knot in L, so m∗ = m−1;

and (c) change: randomly choose a knot from L and then replace it with a randomly

chosen point from L̄\L, so m∗ = m. The acceptance ratio α of proposing a move is

given by

α = min

(
1,
p(Y|Ω,m∗,L∗)p(L∗|m∗)p(m∗)J((L∗,m∗)→ (L,m))

p(Y|Ω,m,L)p(L|m)p(m)J((L,m)→ (L∗,m∗))

)
.

Denote the probability of birth, death, and change moves with knot number m

by bm, dm and cm respectively, then bm +dm + cm = 1. If m = 1, we set dm = cm = 0

; if m = λ0, we set bm = 0 and dm = cm = 1
2
; and if 1 < m < λ0, we set

bm = dm = cm = 1
3
. Then J is calculated as follows,

J((L,m)→ (L∗,m∗)) =


bm

M−m if m∗ = m+ 1,

dm
m

if m∗ = m− 1,

cm
m(M−m)

if m∗ = m.

(3.12)

Following this RJMCMC algorithm, the knot number and locations are automati-

cally selected at each iteration. We illustrate this algorithm in Section 3.2 through

simulation experiments.

For the choice of block partition for the FSA-Block, one principle is to maximize

residual correlations within blocks and minimize residual correlations across blocks

so that most of the spatio-temporal correlations are preserved. If the spatio-temporal

residual covariance is fairly isotropic, one simple strategy is to apply the K-means
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clustering algorithm on observed spatio-temporal points to find K cluster centers [44]

and then create partitions in space-time domain. For the choice of tapering range

for the FSA-Taper, some pilot studies can be conducted to give a rough estimate of

the practical spatial/temporal dependence range. For example, we can select several

time points and consider purely spatial datasets to estimate the spatial dependence

range; similarly, we can consider time series at properly selected locations to estimate

the time dependence range. These pilot estimates of dependence range are then

subsequently used to set proper/conservative taper range to balance the trade-off

between covariance approximation accuracy and computation efficiency.

3.2.5 Further improvement of computational efficiency by pre-tapering

Spatio-temporal datasets can be massive if they are observed at a large spatial

domain during a long time period. Although the FSA approach is conceptually

applicable to such datasets, direct application is impractical. A dense knot set is

desirable to achieve a reasonable approximation, and the cross-covariance matrix.

C(X ,X ∗) can bring challenges in matrix operations and storage. The computational

issue is further complicated by a full MCMC implementation requiring a large number

of iterations. Here we propose to pre-taper the original spatio-temporal covariance

function, and then apply our FSA approach to the tapered covariance.

Consider a separable tapering function K(x,x′) = Ku(s, s′; γu)Kv(t, t′; γv), where

Ku and Kv are, respectively, spatial and temporal tapering functions. We create a

sparse approximation to the original covariance Γw as

Γw̃(x,x′) = Γw(x,x′)K(x,x′).

This leads to a spatio-temporal covariance matrix sparser than the original covariance

matrix. If the tapering is done conservatively, the tapered covariance is expected to
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retain most of the spatio-temporal dependence information. Since this matrix still

keeps a large number of non-zero entries due to the massive size of the original co-

variance, we further reduce the computational cost by applying the FSA to Γw̃(x,x′).

Let Σw̃l+Σw̃s be the FSA covariance matrix applied to the pre-tapered covariance

matrix. Due to the pre-tapering, Σw̃l takes a quadratic form that involves a sparse

n×m cross-covariance matrix C(X ,X ∗) and the inverse of a sparse m×m matrix C∗.

This greatly alleviates the computational burden in matrix operations and storage

by applying sparse matrix techniques.

3.3 Simulation Studies

In this section, we report on simulation studies to evaluate the performance of the

spatio-temporal FSA approach. In the first simulation study, we show the effective-

ness of FSA-Block in approximating stationary spatio-temporal covariance models,

and compare it with the independent blocks model (denoted as “Block”), predictive

process model (denoted as “PP”) and modified predictive process model (denoted as

“Modified PP”) ([21]). In the second simulation study, we illustrate the FSA with

random knot selection for a nonstationary spatio-temporal covariance model. In both

simulation studies, the full covariance model (denoted as “FM”) is also implemented

to serve as the benchmark. The implementations of all methods were written in

Matlab and run on a processor with 2.9 GHz Xeon CPUs and 16GB memory. For

likelihood function optimization, we used the matlab function fminunc which imple-

ments a Broyden-Fletcher-Goldfarb-Shanno (BFGS) based Quasi-Newton method.

3.3.1 Simulation study 1

We randomly selected 4000 spatio-temporal locations on a space-time domain

S ×T , where S = [0, 20]× [0, 20] and T = [0, 20]. The selected locations were then

divided into a training set of size 3500 and a test set of size 500, where the test set
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included 243 points in a space-time hole [5, 10]× [5, 10]× [0, 20] and 257 randomly

selected points from the remaining space-time locations. We obtained realizations

of the spatio-temporal process Y (s, t) at the selected points following the model in

(3.1).

We first experimented with a nonseparable space-time covariance function pro-

posed by [30],

C(h, u) =
σ2(

20|u|2α
a

+ 1
) exp

− 3‖h‖

c
(

20|u|2α
a

+ 1
)η/2

 , (h, u) ∈ Rd × R, (3.13)

where a, c > 0 are temporal and spatial dependence range parameters respectively;

α ∈ (0, 1] is the smoothness parameter; and η ∈ [0, 1] is the space-time interaction

parameter. The mean of the regression model µ(s, t) was set to 0 for the entire

region. We used equal variance τ 2 = 0.01 for the variance of ε(s, t). The true values

of the covariance parameters and other model parameters are shown in Table 3.1.

Two parameter settings were considered: the first had a = 10 and c = 20, for a

large-scale spatio-temporal dependence structure; the second had a = 5 and c = 10,

for a small-scale spatio-temporal dependence structure. The maximum likelihood

estimators (MLEs) were obtained based on the training set and the mean squared

prediction errors (MSPE) were calculated based on the predictions of the test set for

evaluation.

We implemented the FSA-Block approach using 500 spatio-temporal knots and

35 blocks. The knots were chosen randomly from S×T and the 35 block centers were

created by the K-means clustering algorithm based on Euclidean distances of space-

time points. For comparisons, the independent blocks method with the same 35

blocks and the predictive process method with the same 500 knots were considered.
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The smoothness parameter α in the covariance model was fixed to be 0.5. The

parameter estimations and the prediction results of different approaches are shown

in the Table 3.1.

Table 3.1: The means and MSEs (in parenthesis) of each parameter and MSPE
results for covariance model with a nugget. The results are based on 100 runs of
simulations.

Method Mean and MSEs MSPE
a c η σ2 τ 2

10 20 0.5 1 0.01
FM 9.68 (1.75) 19.81 (4.31) 0.48 (0.0395) 0.97 (0.0062) 0.01 (0.0001) 0.34

FSA-Block 11.73 (5.84) 25.09 (34.71) 0.48 (0.0687) 1.04 (0.0104) 0.04 (0.0009) 0.37
Block 9.48 (2.38) 19.89 (4.97) 0.39 (0.0923) 0.96 (0.0090) 0.02 (0.0001) 0.43
PP 23.47 (206.36) 37.54 (349.67) 0.87 (0.2175) 2.25 (1.6948) 0.40 (0.1499) 0.45

Modified PP 26.16 (293.08) 42.26 (539.68) 0.86 (0.2224) 1.51 (0.2989) 0.03 (0.0011) 0.46
5 10 0.5 1 0.01

FM 5.10 (0.27) 10.19 (0.40) 0.47 (0.0368) 0.99 (0.0020) 0.02 (0.0004) 0.60
FSA-Block 5.82 (1.15) 11.68 (3.85) 0.46 (0.0809) 0.97 (0.0035) 0.06 (0.0031) 0.63

Block 5.03 (0.29) 10.18 (0.60) 0.43 (0.0560) 0.97 (0.0028) 0.03 (0.0006) 0.66
PP 17.75 (181.76) 21.24 (135.58) 0.62 (0.1947) 1.52 (0.3322) 0.64 (0.4006) 0.73

Modified PP 19.04 (221.35) 21.87 (150.45) 0.80 (0.2076) 1.18 (0.0554) 0.15 (0.0223) 0.73

Under the first parameter setting, where the spatio-temporal dependence range

was large, the FSA-Block approach clearly outperformed the other methods in terms

of prediction. The independent blocks method gave less accurate predictions. The

predictive process model and the modified predictive process model did not work well

either in terms of prediction, possibly requiring a denser knot set for a satisfactory

approximation.

The FSA-Block obtained reasonable estimates for the range parameters a and c,

but higher MSEs than the independent blocks method. The estimate of the nugget

effect τ 2 obtained by the FSA-Block was slightly higher than the truth. The biases
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may be attributed to its predictive process part, which underestimates the correla-

tions between blocks due to the limited number of knots. The naive independent

blocks method worked well in terms of parameter estimation, which is not surpris-

ing since local information may be enough for estimating a stationary model with

dense observations. The parameter estimation results of the predictive process model

had noticeable biases, again perhaps due to the use of limited knots. Besides, the

predictive process model gives a much larger estimate of the nugget effect due to

its underestimation of the variance at each location [21]. The modified predictive

process provided a bias correction for the variance at each location, so its estimates

of τ 2 and σ2 were better than those obtained from the predictive process model, but

it still underestimated correlations, leading to biased estimation of range parameter-

s. The FSA-Block provides bias-correction for the predictive process model within

each block, thus the estimates of range parameters, the nugget, and the variance had

much smaller biases than those obtained from the predictive process model and the

modified predictive process model.

When the spatio-temporal dependence range was relatively small, the FSA-Block

still gave comparable prediction performance with the full covariance model, while

the predictive process model and the modified predictive process model gave worse

prediction performance than under large-scale spatio-temporal dependence. The

predictive process model fails to capture small-scale dependence and thus its perfor-

mance is often sensitive to the strength of dependence, and its parameter estimation

has fairly large biases. The FSA approach seems to be more robust and capable of

adjusting the biases in the estimation of the range parameters at different scales of

dependence range.

We compared the methods assuming no nugget effect in the covariance model, but

do not include the results of the predictive process model because, without nugget
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it leads to a low-rank covariance matrix that can’t be inverted. The results are

presented in Table 3.2. Again, the FSA-Block outperforms the independent blocks

method in terms of prediction. Besides, comparing with the case with the nugget

effect (see Table 3.1), the FSA-Block provides more accurate parameter estimation

when there is no nugget effect. In particular for set-up 2, the estimates of a, η, and

σ2 by the FSA-Block are very close to those from the full covariance model.

Table 3.2: The means and MSEs (in parenthesis) of each parameter and MSPE
results for the covariance model without nugget. The results are based on 100 runs
of simulations.

Settings Method Mean and MSEs MSPE
a c η σ2

Set-up 1 10 20 0.5 1
FM 10.16 (1.14) 20.32 (2.43) 0.53 (0.0373) 1.01 (0.0048) 0.33

FSA-Block 10.52 (1.58) 22.55 (10.03) 0.46 (0.0433) 1.05 (0.0076) 0.37
Block 9.76 (1.32) 19.81 (1.95) 0.48 (0.0649) 0.99 (0.0042) 0.42

Set-up 2 5 10 0.5 1
FM 5.01 (0.27) 10.01 (0.34) 0.51 (0.0311) 1.00 (0.0021) 0.59

FSA-Block 5.11 (0.28) 10.67 (0.94) 0.53 (0.0379) 1.01 (0.0021) 0.62
Block 4.90 (0.28) 9.98 (0.47) 0.47 (0.0501) 0.99 (0.0024) 0.66

The Matérn class [51, 62] is another widely used stationary covariance family due

to its flexibility in accommodating different smoothness. We simulated data from

the Matérn covariance model with

C(h, u) =
σ2

Γ(ν)2ν−1

(
3

√
‖h‖2

φ2
s

+
|u|2
φ2
t

)ν

Kν

(
3

√
‖h‖2

φ2
s

+
|u|2
φ2
t

)
, (3.14)

where φs, φt > 0 are spatial and temporal range parameters, respectively, ν > 0 is the

smoothness parameter, and Kν denotes the modified Bessel function of the second

kind of order ν. We experimented with ν = 0.5, 1, 2 to investigate the performance
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of the FSA-Block method in terms of parameter estimations and predictions under

different level of smoothness. Other particulars were the same as in the simulation

study for Gneiting’s nonseparable covariance model. The MLEs were obtained for

all model parameters and we took ν ∈ (0, 3] when estimating it. The parameter

estimations and prediction results are shown in Table 3.3.

Table 3.3: The means and MSEs (in parenthesis) of each parameter and MSPE results
for Matérn’s covariance model. The results are based on 100 runs of simulations.

Method Mean and MSEs MSPE
φt φs ν σ2 τ 2

5 10 0.5 1 0.01
FM 4.65 (0.68) 9.23 (2.45) 0.54 (0.0041) 0.96 (0.0102) 0.02 (4.1 · 10−4) 0.37

FSA-Block 4.42 (0.86) 8.87 (3.24) 0.61 (0.0196) 0.95 (0.0113) 0.05 (2.0 · 10−3) 0.39
Block 4.46 (0.73) 8.87 (2.81) 0.55 (0.0044) 0.94 (0.0107) 0.02 (3.8 · 10−4) 0.42
PP 2.13 (8.27) 4.19 (33.89) 3.00 (6.2494) 1.13 (0.0408) 0.34 (1.1 · 10−1) 0.46

Modified PP 2.15 (8.17) 4.24 (33.30) 3.00 (6.2499) 0.90 (0.0235) 0.25 (5.7 · 10−2) 0.46
5 10 1 1 0.01

FM 4.90 (0.54) 9.71 (1.99) 1.02 (0.0051) 0.97 (0.0213) 0.01 (6.6 · 10−6) 0.11
FSA-Block 4.73 (0.59) 9.44 (2.21) 1.08 (0.0134) 0.98 (0.0217) 0.01 (2.0 · 10−5) 0.13

Block 4.69 (0.57) 9.31 (2.25) 1.04 (0.0068) 0.94 (0.0245) 0.01 (7.3 · 10−6) 0.16
PP 2.69 (5.43) 5.33 (21.99) 2.98 (3.9449) 1.78 (0.7571) 0.11 (1.1 · 10−2) 0.18

Modified PP 2.73 (5.24) 5.42 (21.19) 2.99 (3.9710) 1.19 (0.1121) 0.07 (3.3 · 10−3) 0.18
5 10 2 1 0.01

FM 4.83 (0.39) 9.61 (1.54) 2.06 (0.0281) 0.95 (0.0422) 0.01 (2.2 · 10−7) 0.02
FSA-Block 4.81 (0.56) 9.56 (2.04) 2.21 (0.0963) 1.13 (0.1020) 0.01 (4.7 · 10−7) 0.02

Block 4.56 (0.66) 9.06 (2.64) 2.15 (0.0709) 0.90 (0.0551) 0.01 (2.7 · 10−7) 0.13
PP 4.61 (0.34) 9.14 (1.21) 2.60 (0.3807) 2.23 (1.6538) 0.02 (1.1 · 10−4) 0.03

Modified PP 4.81 (0.23) 9.59 (0.76) 2.56 (0.3500) 1.42 (0.2555) 0.01 (2.6 · 10−6) 0.03

Overall, the FSA-Block method and independent blocks method give reasonable

estimates of the model parameters for different true values of ν, while the predic-

tive process/modified predictive process tends to overestimate ν and gives notably

biased estimates of other parameters, especially when ν is relatively small. In terms

of prediction performance, it appears that the FSA-Block method achieves compa-
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rable results to the full covariance model under all the three parameter settings.

The prediction performance of the other three competing methods depends on the

true value of smoothness parameter ν. Specifically, the independent blocks method

achieves good prediction results and outperforms the predictive process/modified

predictive process models when ν is relatively small, but its prediction performance

is inferior to the predictive process/modified predictive process models when ν is

large.

3.3.2 Simulation study 2

We applied the RJMCMC algorithm described in Section 2.4 to automatically

select knots when applying the FSA. We used the same set of space-time locations as

in simulation study 1 and we simulated Y (s, t) at these locations following the model

in (3.1), with µ = 0 and τ 2 = 0. The spatio-temporal random effect w was assumed

to have a separable nonstationary correlation function Γw(si, ti; sj, tj) = Γu(si, sj) ·

Γv(ti, tj), where Γu and Γv were nonstationary spatial and temporal covariances

constructed following [54]. Here the square spatial domain [0, 20] × [0, 20] was

divided equally into 4 subregions with D(si) such that D(si) = l if si belong to the

lth subregion,

Γu(si, sj) = |HD(si)|
1
4 |HD(sj)|

1
4

∣∣∣∣HD(si) + HD(sj)

2

∣∣∣∣− 1
2

exp(
√
Qij),

where Qij = (si−sj)T
(

HD(si)
+HD(sj)

2

)−1

(si−sj) is the Mahalanobis distance. HD(s) is

referred to as the kernel covariance matrix. The eigenvalue decomposition of HD(s)

has clear geometric interpretations: the square roots of the eigenvalues of HD(s)

control the range of the spatial dependence and the eigenvector matrix corresponds
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to a rotation matrix. We reparameterize HD(s) as

HD(s) = R(θD(s))

 λD(s),1 0

0 λD(s),2

RT (θD(s)),

where λD(s),1, λD(s),2 are eigenvalues of HD(s), and R(θD(s)) is a rotation matrix.

Anisotropy is introduced to the covariance function by allowing different values of

λD(s),1 and λD(s),2. Nonstationarity is achieved by assuming a spatially-varying kernel

covariance across different subregions. The time domain was divided equally into 2

intervals and Γv was constructed in a similar way as Γu. In this experiment, for

simplicity, we set R’s to be identity matrices. We used the same 35 blocks as in

simulation study 1 for the FSA-Block approach. The true values of model parameters

are shown in the second column of Table 3.4.

For Bayesian posterior inferences, flat priors were adopted for all λ’s, and trun-

cated normal distributions on (0, 50) were used as their proposal distributions. The

prior for knot number m was set to be Poisson(50), truncated at λ0 = 700. Con-

ditional on the knot number, we assign uniform priors from the set containing all

observed space-time points for knot locations. We then followed the RJMCMC al-

gorithm in Section 2.4 to draw samples of knots. We compared this method with

the FSA-Block approach using the fixed knot design, where the knot set was pre-

determined by choosing a random sample from the observed location set. We ran

7000 iterations after a burning period of 1000 iterations. 3500 posterior samples were

collected with thinning, using every 3rd iteration.

In Table 3.4, the fixed and random knot designs give fairly close estimates of the

covariance parameters. These estimates are also close to those from the full model,

suggesting that the FSA-Block is capable of providing a good approximation to a
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Table 3.4: Parameter estimation and prediction results for FSA-Block approach
with knots selected by RJMCMC algorithm. For number of knots m, we report its
posterior means.

Parameters True value Full Model Random knots m = 50 m = 100 m = 300
λs11 , λs12 40 39.81 (4.28) 42.95 (3.79) 42.22 (4.10) 39.45 (4.37) 40.86 (4.10)
λs21 , λs22 25 20.91 (2.53) 22.75 (2.70) 19.76 (2.32) 20.86 (2.38) 21.95 (2.48)
λs31 , λs32 20 23.37 (2.82) 23.93 (2.95) 24.64 (3.23) 22.97 (2.92) 22.27 (2.84)
λs41 , λs42 10 10.08 (1.07) 10.13 (1.14) 9.98 (1.11) 9.87 (1.18) 9.42 (1.07)
λt1 40 37.06 (4.98) 43.75 (4.28) 41.93 (4.80) 41.52 (4.92) 40.40 (5.03)
λt2 10 11.59 (1.53) 12.23 (1.64) 11.86 (1.65) 11.51 (1.50) 11.81 (1.64)

MSPE - 0.231(0.001) 0.265(0.008) 0.287(0.001) 0.271 (0.001) 0.262(0.001)
m - - 82.90 - - -

Time(hour) - 25.49 8.05 6.35 7.75 8.90

nonstationary spatio-temporal covariance model. The prediction performance of the

FSA-Block approach with the fixed knot design seems to depend on the knot number.

Under the random knot scenario, the posterior mean of the knot number m given

by the RJMCMC algorithm is close to 83, but its MSPE is just slightly larger than

that of the FSA with 300 fixed knots, indicating that the RJMCMC algorithm can

be effective in determining a reasonable knot number and selecting the “most useful”

knots from a candidate set.

3.4 Analysis of The Eastern US Ozone Data

We applied the spatio-temporal FSA to the daily surface ozone data collected at

513 monitoring stations in the eastern US from May 1, 1998 to October 31, 1999.

The observations are the maxima of hourly means over 8 consecutive hours of ozone.

The raw data can be downloaded from www.image.ucar.edu/Data/Ozmax/.

We followed the procedure described in [28] and [6] to pre-process the daily ob-

servations. The daily maximum 8-hour ozone measurement at station s and day t is
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assumed to have the decomposition,

Y (s, t) = µ(s, t) + σ(s)w(s, t),

where µ(s, t) = a(s) +
3∑
j=1

{bj(s) cos(2πjt/184) + cj(s) sin(2πjt/184)}, modeling the

seasonal effect. The coefficients in the seasonal effect µ(s, t) were estimated by or-

dinary least square and σ(s) was estimated using the residuals after removing the

seasonal effect. Following [28], the estimated coefficients matrix of the seasonal ef-

fect were further smoothed over space. Figure 3.1 shows the locations of the 513

monitoring stations and the seasonal effect in 1999.
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Figure 3.1: 513 ozone monitoring station locations and the estimated averaged sea-
sonal effect in 1999.

We modeled the spatio-temporal component w(s, t) by a Gaussian process with

mean 0 and a nonseparable spatio-temporal covariance function as in (3.13), with s

defined on the sphere. Since the station locations are on the sphere, the transformed
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great circle distance [29, 28] was used to ensure positive-definiteness of the covariance

function: d(s, s′) = 2r sin
(

∆φ
2

)
, where r is the radius of the earth and ∆φ ∈ [0, π]

is the central angle between s and s′. We used kilometer as the unit of spatial lags

and day as the unit of temporal lags.

Using only the monthly data in June and July, 1998 and 1999, allows us to

implement the full covariance model whose results can be used as a benchmark. For

each monthly dataset containing roughly 15, 000 observations, we randomly selected

1500 space-time data points as a hold-out set for prediction and used the rest as

training data. We obtained the maximum likelihood estimates of model parameters

of the full model, the FSA-Block method, and the weighted composite likelihood

(WCL) method [6] for the training data. For the FSA-Block approach, we applied

Latin hypercube sampling to obtain 400 space-time knots and the K-means clustering

algorithm to divide the monthly data into 14 blocks. The WCL method needs to

specify a pair of spatio-temporal lags (ds, dt) such that the weights wij = 1 when

d(s, s′) ≤ ds and |ti− tj| ≤ dt, wij = 0 otherwise. Following [6], we set ds = 400, dt =

3, obtained by minimizing the asymptotic variances of WCL estimators.

Table 3.5 shows the parameter estimation and prediction results for each monthly

dataset in June and July in 1998 and 1999. In general, parameter estimates of

the FSA-Block method are close to those from the full model, implying that the

FSA-Block method can approximate the original model reasonably well. The WCL

method overestimates the spatial range parameter c. This may be due to the fact

that it only includes pairs within certain distance for inference and thus may fail to

incorporate large-scale dependence information. As the WCL estimate of η is always

on the boundary of its parameter space, the estimate of α has the same problem in

half of the cases, indicating possible convergence problems when using the WCL for

parameter estimation.
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We focused on comparing the prediction performance using the parameter esti-

mates from the WCL, the FSA-Block, and the full model. Since the training set is

large, computation of the BLUP using all training data is expensive, we used the

training data within 4 days from each test data point when computing the BLUP.

Although our FSA-Block method can be applied to the full training set and provides

efficient computation for the BLUP, we used the partial training data and the full

covariance model for fair comparison. Table 3.5 shows that the prediction results

of the FSA-Block method and the full model are close to each other, and that both

methods provide slightly better prediction performance than the WCL method.

Table 3.5: Parameter estimation and prediction results of monthly data. The root
mean squared predictive errors (RMSPE) were made based on the within 4 days’
training data.

Month Methods a c η α RMSPE
1998, June FSA 22.70 414.40 0.023 0.212 0.335

WCL 24.73 1299.63 1 0.503 0.339
FullModel 20.95 414.22 0.033 0.149 0.334

1998, July FSA 21.94 358.58 0.092 0.167 0.359
WCL 25.77 1119.10 1 0.3467 0.359

FullModel 21.28 356.99 0.076 0.138 0.359
1999, June FSA 20.63 454.71 0.061 0.305 0.317

WCL 17.69 1027.91 1 1 0.330
FullModel 18.45 467.64 0.042 0.233 0.317

1999, July FSA 23.91 338.94 0.036 0.260 0.430
WCL 16.90 827.70 1 1 0.450

FullModel 20.36 353.93 0.010 0.181 0.430

We considered larger datasets of around 45000 daily ozone observations from

June to August in 1998 and 1999. We randomly held out 4500 space-time data

points for prediction. We considered three covariance models to fit the data: model

A is the separable covariance model in (3.13) with η = 0; model B is the nonseparable

covariance model in (3.13); and model C is the Matérn covariance model in (3.14).
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Here MLEs of model parameters were only obtained for the FSA-Block and WCL

methods only since the full covariance model is not computationally feasible. For

the WCL method, the weights were chosen in the same way as in the monthly data

analysis; for the FSA-Block method, we applied Latin hypercube sampling to obtain

400 space-time knots and the K-means clustering algorithm to divide each summer

dataset into 54 blocks. Prediction was performed for both methods using partial

training data.

Parameter estimations and prediction results are shown in Table 3.6. It appears

that Gneiting’s covariance models (Model A and B) outperform the Matérn covari-

ance model (Model C) in terms of prediction. The separable and the nonseparable

Gneiting models provide comparable prediction results, indicating that a simple sep-

arable covariance model may be capable of modeling the spatio-temporal dependence

of the summer ozone datasets. For all three covariance models, the FSA-Block clear-

ly outperforms the WCL method in terms of prediction performance. The parameter

estimations using WCL seem problematic in some cases, for example, estimates of

η and α for Gneiting models are on the boundary of the parameter space for the

dataset in the summer of 1999.

We applied the RJMCMC algorithm described in Section 3.2.4 to automatically

select knots when applying the FSA-Block on the summer ozone datasets in 1998 and

1999. We considered only Gneiting’s model (3.13) since it achieves better prediction

performance than the Matérn covariance model. As the MLEs of η are close to

zero for both datasets, and there is no significant difference between the separable

and nonseparable models in terms of the parameter estimates of other parameters

and prediction, we only applied model A here. For Bayesian inference, a uniform

prior with support specified according to the prior belief on the practical range was

assigned to the spatial/temproal range parameter. A uniform prior on (0, 1] was
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Table 3.6: Parameter estimation and prediction results of summer ozone. Model A
is the separable covariance model in (3.13) with space-time interaction parameter
η = 0. Model B is the nonseparable covariance model in (3.13). And model C is the
Matérn covariance model in (3.14).

Gneiting’s model
Year Method Model a c η α RMSPE

FSA A 20.17 376.88 − 0.268 0.372
1998 B 20.78 378.62 0.062 0.267 0.372

WCL A 29.22 1106.17 − 0.716 0.385
B 23.98 1060.31 1 0.775 0.382

Matérn model
Model φt φs ν RMSPE

FSA C 2.55 1958.93 0.274 0.436
WCL C 12.30 285.89 1.830 0.635

Gneiting’s model
Year Method Model a c η α RMSPE

FSA A 19.15 418.08 − 0.270 0.380
1999 B 19.22 418.32 0.008 0.270 0.380

WCL A 20.01 1022.59 − 1 0.402
B 14.63 1001.88 1 1 0.401

Matérn model
Model φt φs ν RMSPE

FSA C 1.49 2863.92 0.251 0.447
WCL C 9.91 132.79 2.750 0.821

taken for α, and a Poisson(100) prior truncated at λ0 = 700 was assigned to the knot

number m. We ran 8000 iterations to collect 2000 posterior samples after a burn-

in period of 4000 iterations, thinning by using every third iteration. The posterior

prediction was calculated using the partial training data by plugging in the maximum

a posteriori (MAP) estimates of the knot set and the other model parameters. We

used the same number of blocks as in the MLE cases.

Table 3.7 shows the Bayesian posterior sample means and standard deviations (in

the parenthesis) of model parameters from FSA-Block with random knot selection

for the summer ozone datasets in 1998 and 1999. For both datasets, the posterior

sample means of range parameters are close to the corresponding MLE estimates
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Table 3.7: Parameter estimation and prediction results of summer ozone datasets by
FSA-Block with random knot selection.

Method Year a c α m RMSPE

FSA
1998 18.80(0.46) 380.82(4.05) 0.164(0.009) 247.74 0.373
1999 18.83(0.40) 417.70(3.90) 0.191(0.009) 246.92 0.380

with 400 fixed knots, while the posterior sample mean of α is slightly less than its

MLE counterpart. For each summer ozone dataset, the posterior mean of the knot

number m is about 250, but its RMSPE is about the same as that from the MLE

result with 400 fixed knots (see Table 3.6), implying that the RJMCMC algorithm

can be effective in determining a reasonable knot number and selecting useful knots

from the candidate set.

3.5 Discussion

We have proposed a method FSA to approximate a spatio-temporal covariance

function. Our construction provides a flexible framework for statistically and compu-

tationally efficient parameter estimation and prediction for modeling of large spatio-

temporal datasets. We have focused on the FSA-Block variation that provides exact

bias-corrections for spatio-temporal pairs of the covariance matrix within blocks.
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4. APPLICATIONS OF GAUSSIAN PROCESS MODEL TO UNCERTAINTY

QUANTIFICATION OF COMPUTER CODE OUTPUTS

4.1 Introduction

The computer model plays a crucial role in scientific research for studying behav-

iors of complex systems through computer experiments. In the context of Uncertainty

Quantification (UQ), a key question of interest is to examine how computer model

outputs change with different configurations of input parameters controlling physi-

cal variables, initial or boundary conditions, and so on. Although a computer model

with a fine resolution is desired since it often produces more accurate simulations,

it can be computationally prohibitive to produce a large number of fine resolution

simulation runs at different input values. This motivates the use of computationally

inexpensive surrogate models to facilitate learning of response surface.

Gaussian process models were first used in [17] and [58] for building surrogate

models for computer experiments. Oakley and O’Hagan [53] later applied Gaus-

sian process emulators for uncertainty quantification under the Bayesian framework.

Covariance function is a key ingredient in such models since it determines the depen-

dence structure of the Gaussian process. In the context of Gaussian process emula-

tors, the most widely used auto-covariance function is usually stationary and separa-

ble in each input dimension; the cross-covariance among outputs is also assumed to

be separable from dependence in other dimensions for mathematical tractability. For

example, [10] proposed a stationary multi-output Gaussian process emulator based

on separable cross-covariance. Also based on separable cross-covariance, [46] gener-

alized the work in [10] and [32] to a Bayesian Treed multivariate Gaussian process

model, accounting for both the nonstationarity and the multivariate features of the
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data.

The assumption of separability allows fitting Gaussian process model in each in-

put dimension separately. It leads to a separable covariance structure of covariance

function and hence alleviate the computational demand by reducing the dimension

of the covariance matrices to be inverted. One such example is in [7], where they

introduced a multi-output separable Gaussian process model assuming the auto-

covariance function of each output is separable in input, space and time. Then by

making use of the properties of Kronecker product, the inverse of the covariance ma-

trix of one output can be decomposed into the Kronecker product of inverses of an

input covariance, a purely spatial covariance, and a purely temporal covariance, all

of which typically have reduced dimensions so that data likelihood can be evaluated

efficiently. Although the separable auto-covariance model has the aforementioned

merits, it suffers from several limitations. First, it is lack of flexibility to allow for

interactions between different types of correlations. [12] pointed out that if a station-

ary spatio-temporal covariance function is separable, then the temporal dependence

structure can not vary spatially and the spatial dependence structure can not vary

temporally. However, in spatio-temporal statistics, the space-time interaction effect

is often of particular interest. Such a limitation is also encountered by the sepa-

rable emulator; the dependence structure of one input dimension is not allowed to

change with other input dimensions. Second, the separable covariance function also

has implications on conditional independence of outputs [45]. For instance, given

a stationary bivariate Gaussian process f(·, ·) with a separable covariance function,

it can be shown that f(ξ, t) and f(ξ′, t′) are independent given f(ξ, t′). A more

comprehensive discussion of separable model can be found in [55].

Since the separable covariance may be restrictive in some cases, it is often de-

sirable to consider a more general class of nonseparable auto-covariance models. In
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spatio-temporal statistics, much work have been done to construct flexible classes

of nonseparable auto-covariance functions in space and time [12, 30, 66]. Typically

the nonseparable space-time model has a parameter β ∈ [0, 1], referred to as the

spatio-temporal interaction parameter, and the model reduces to be separable when

β = 0. More sophisticated nonseparable covariance model of three or higher input

dimensions can be constructed following the work by [1], where they extended meth-

ods in [30] to propose a nonseparable cross-covariance model for multivariate random

fields. Motivated by these work in spatial statistics, we develop a flexible class of

nonseparable auto-covariances for uncertainty quantification of computer models. In

particular, this class of models includes separable models as special cases.

For computations, it is well known that the Gaussian process model scales badly

with sample size n, requiring O(n3) order of computations. Large sample size n

typically makes the computations for the Gaussian process emulator prohibitive,

unless some particular structures of the covariance functions are assumed, e.g. the

separability. To overcome the computational bottleneck, we introduce the Full-Scale

approximation (FSA) approach to reduce computations [59, 60], which applies to

both separable and nonseparable covariance structure. The FSA approach combines

the ideas of a reduced rank Gaussian process [4] and covariance tapering [43] to

provide a satisfactory approximation of the original covariance, under both large

and small dependence scales of the data. Its computational complexity is linear with

n, reducing the computational cost significantly.

The major contributions of this Section have two folds: first we propose a flexible

class of nonseparable auto-covariance functions for each computer output to model

the interaction effect among input, space and time. This class of models relaxes the

separability assumption that is typically made for Gaussian process emulators and

provides a more flexible and general tool to describe dependence for computer model
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outputs. Second, we introduce the FSA approach to provide efficient computation-

s for nonseparable Gaussian process emulator. Since the FSA approach applies to

any given covariance structure of a computer model output, it can also be combined

with separable model to further reduce computational cost in the case when certain

input dimensions have large sample sizes for simulation accuracy. In this paper, we

illustrate our method assuming a stationary covariance function for each comput-

er model output. We remark that our computational approach directly applies to

nonstationary covariance functions as well.

4.2 Methodology

We consider a physical problem with input domain Xξ ⊆ Rkξ , spatial domain

Xs ⊆ Rks and temporal domain in an interval Xt = [0, T ] ⊆ R+, where kξ, ks are

the dimensions of the input and spatial domain. The input domain Xξ is usually

assumed to bounded and can thus be considered as a compact subset of Rkξ .

In computer simulations, spatial and temporal domain are often fixed while sim-

ulations are run at a set of samples from the input domain. Therefore, we can

represent the whole domain as a tensor product of the input, spatial, and temporal

domain. For an input parameter ξ ∈ Xξ, the computer simulation returns the (multi-

output) response on a given (a priori known) set of ns spatial points (s1, . . . , sns)
T

and nt time steps (t1, . . . , tnt)
T . A single choice from the input domain ξ generates a

multi-output response data which can be represented as a (nsnt)× q matrix, where

q is the number of the output variables from a computer simulation.

Let n = nξnsnt denote the total sample size. We define xi = (ξi, si, ti), denoting

an input, space and time point for i = 1, · · · , n. For modeling reasons we represent

the output as a q multivariate response f(xi) = f(ξi, si, ti) ∈ Rq. For simplicity, we

call the input domain, spatial domain, and temporal domain as input, space, and
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time respectively throughout this paper. We will collectively denote input of f(·) by

x = (ξ, s, t) and the domain of x by X = (x1, · · · ,xn).

4.2.1 Multivariate Gaussian process regression model

We model f(x) as a q-dimensional Gaussian process:

f(·)|B, θ̃ ∼ Nq(µ(·;B),Γ(·, ·; θ̃)), (4.1)

where µ(·;B) is the mean function and Γ(·, ·; θ̃) is the covariance function of the

q-dimensional Gaussian process f(x). A typical choice of the mean function µ(·;B)

is the linear regression model: µ(x) = hT (x)B, where h(x) is formed by m basis

functions evaluated at x and B is a m × q unknown regression coefficients ma-

trix. The cross-covariance is often assumed to be separable from other dependence

[50], that is, Γ(·, ·; θ̃) = ρ(·, ·;θ)Σ, where Σ is the covariance matrix that model-

s the cross-dependence structure of q distinct components of f(·), and ρ(·, ·;θ) is

the auto-correlation within each component. Let the correlation parameter vector

θ ∈ Θ and have dimension dθ. In this work we will follow the assumption that the

cross-covariance among multivariate components and auto-correlation within each

component are separable for simplicity. More general nonseparable cross-covariance

models can be constructed following the work in [22].

Let Y = (fT (x1), fT (x2), · · · , fT (xn))T be the n × q matrix of computer model

output, H = (h(x1), . . . ,h(xn))T ∈ Rn×m be the design matrix in the regression

mean function, and R = [ρ(xi,xj)]i,j=1:n ∈ Rn×n be the correlation matrix at a given

set of n points X . The data likelihood function is given by the following matrix
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normal distribution

Y |B,Σ,θ ∼ Nn×q(HB,R,Σ), (4.2)

L(Y |B,Σ,θ) ∝ |R|−q/2|Σ|−n/2 exp

(
−1

2
tr
(
Σ−1(Y −HB)TR−1(Y −HB)

))
.

To evaluate the above likelihood function, we need to compute the determinant and

inverse of the n × n matrix R. When n is very large, the computation burden can

often lead to failures in calculating these quantities. In Section 2.3, we will intro-

duce a covariance approximation method to facilitate the computations for likelihood

evaluations.

Squared exponential kernel function is one classical choice of the separable auto-

correlation function ρ(·, ·),

ρ(x,x′) = exp

− kξ∑
i=1

(ξi − ξ′i)2

φ2
i

−
ks∑
j=1

(sj − s′j)2

c2
j

− (t− t′)2

a2

 , (4.3)

where φi, ci and a are dependence range parameters of input, space and time respec-

tively. (4.3) assumes the separability in input, space and time, because it implies

ρ(xi,xj) = ρξ(ξi, ξj)ρs(si, sj)ρt(ti, tj). When computer model outputs are gener-

ated on a nξ × ns × nt regular grid of input, space and time, and data are or-

dered properly, we have R = Rξ ⊗ Rs ⊗ Rt, where Rξ = [ρξ(ξi, ξj)]i,j=1,...,nξ , Rs =

[ρs(si, sj)]i,j=1,...,ns , Rt = [ρt(ti, tj)]i,j=1,...,nt . Since R−1 = R−1
ξ ⊗ R−1

s ⊗ R−1
t and

|R| = |Rξ|nsnt|Rs|nξnt|Rt|nξns , the computations of evaluating the likelihood can be

greatly reduced when n is very large.

Although the computer model is deterministic, a small variance term τ 2δx=x′ is

usually added to ρ(x,x′;θ) for numerical stability, where δ is the Kronecker delta

function. This small variance term is also referred to as the “nugget” effect in spatial
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statistics, accounting for the measurement error. We incorporate the nugget effect

parameter τ 2 in θ throughout the paper for simplicity. For auto-correlation model

that is separable in input, space and time, three nugget terms τ 2
ξ δξi=ξj , τ

2
s δsi=sj , and

τ 2
t δti=tj are added to ρξ(·, ·), ρs(·, ·), and ρt(·, ·) respectively. Adding nuggets in this

way can preserve the separability so that fast computations can still be achieved.

4.2.2 Nonseparable auto-correlation models

Although the separable auto-correlation model is easy to construct and leads to

reduced computational costs, it may be too restrictive in some applications due to its

implications on the covariance dependence structures. Take a computer model output

f(·, ·) with two dimensional input parameters (ξ, t) as an example, the separable

covariance implies that

Corr((f(ξ, t), f(ξ′, t′))|f(ξ, t′)) = 0,

under the Gaussian process assumption [45, 55]. This implication on conditional cor-

relation may be too restrictive in some applications. Besides, the separable structure

also implies that

Corr(f(ξ, t), f(ξ, t′)) = ρt(t, t
′),

which means the correlation structure of dimension t can not vary over the dimension

ξ. [55] showed that if a process f(ξ, t) has a separable covariance function, then

f(ξ, t) is second-order identical to the product of second-order uncorrelated processes

f (1)(ξ) and f (2)(t). More comprehensive discussions of the implications of separable

covariance function for emulation can be found in[55].

Therefore, the nonseparable auto-covariance model may be preferred when these

assumptions are not true for the dataset. We propose to use the nonseparable covari-

73



ance functions [12, 30, 66] for the Gaussian process emulator. These models are more

general and include separable covariance functions as special cases. One example of

nonseparable correlation functions in input and time is

ρ(x,x′) =

(
|v|2α

a
+ 1

)− kξ
2

exp

−
√∑kξ

i=1 |ui|2/φ2
i(

|v|2α
a

+ 1
)β/2

 , (4.4)

where ui = |ξi − ξ′i|, v = |t − t′|; a > 0 is the dependence range parameter in time,

φi > 0 is the dependence range parameter for ith input dimension, α ∈ (0, 1] is

the smoothness parameter and β ∈ [0, 1] is the input-time interaction parameter.

When β = 0, it reduces to the separable case. In this paper, we construct a more

sophisticated nonseparable model in input, space and time following the work in [1],

ρ(h,u, v) =

(
a1

(
‖u‖2

(a4|v|α4 + 1)β4

)α1

+ 1

)−β1ks/2
(a2|v|2α2 + 1)−β2kξ/2

×(a3‖h‖2α3 + 1)−β3/2(a4|v|2α4 + 1)−β4kξ/2 exp

− c1‖h‖2γ1(
a1

(
‖u‖2

(a4|v|2α4+1)β4

)α1

+ 1
)β1γ1


× exp

(
− c2‖u‖2γ2

(a2|v|2α2 + 1)β2γ2
− c3|v|2γ3

(a3‖h‖2α3 + 1)β3γ3

)
, (4.5)

where h = ‖s− s′‖,u = ‖ξ− ξ′‖ and v = |t− t′|. To ensure the positive-definiteness

of (4.5), we need ci > 0, γi ∈ (0, 1] for i = 1, 2, 3, and aj > 0, αj ∈ (0, 1], βj ∈ [0, 1]

for j = 1, . . . , 4. The parameters α1, . . . , α4 and γ1, γ2, γ3 can be interpreted as

smoothness parameters; a1, . . . , a4 and c1, c2, c3 are scale parameters; β1, . . . , β4 are

interaction parameters, modeling the two-way and three-way interactions among

input, space and time. If we fix the smoothness parameters γj = 0.5, j = 1, 2, 3,

then it is more clearly to see that βj’s determine the interaction effects. Although
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the model in (4.5) is very flexible, it involves too many unknown model parameters.

In this paper, we will focus on the nonseparable auto-correlation model between two

components of input, space and time, with similar form to (4.4).

4.2.3 FSA-Block approximation

Since the computations of R−1 and |R| in (4.2) become expensive or even infeasi-

ble when n is large, we need to employ some computational techniques to overcome

the computation bottleneck. There are several existing methods to facilitate com-

putations of the Gaussian process model that rely on covariance approximations.

Popular covariance approximation models include the Gaussian predictive process

[4, 21], the fixed rank kriging model [13], and the covariance tapering [43, 23], to

name a few.

In this work we propose to use the Full-Scale Approximation with Block mod-

ulating function (FSA-Block) to speed up computations [59, 60]. It consists of a

summation of a reduced rank covariance and a sparse covariance with the block

diagonal structure. This approach combines the merits of both reduced rank and

sparse covariances without adding much computational complexity.

In the following we describe the FSA-Block approach for a Gaussian process with

zero-mean, unit variance and a correlation function ρ(·, ·). The FSA-Block approxi-

mation is motivated by the Karhunen-Loéve orthogonal expansion (K-L expansion)

of the Gaussian Process, which decomposes a covariance function as:

ρ(x,x′) =
∞∑
i=1

λiψi(x)ψi(x
′), (4.6)

where λi are the eigenvalues of the process, ψi(x) are the corresponding orthonor-

mal eigenfunctions; the eigenvalue-eigenfunction pairs are solutions to the integral
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equation
∫
D
ρ(x, t)ψi(t)dt = λiψi(x).

The leading terms in (4.6) are often assumed to capture the main feature of the

covariance and thus the residual terms are typically dropped from the expansion to

yield a reduced rank approximation of the covariance. Although increasing the rank

can preserve more information about the fine scale covariance pattern, computations

become more expensive. Motivated from the decomposition in (4.6), we give a more

careful treatment of the covariance that can preserve most information present in

both the leading reduced rank terms and the residual covariance yet still achieves

computational efficiency.

Solving the integral equation for the K-L expansion is typically a challenging

task. We use the Nyström discretization [2], a numerical method for solving integral

equations, to approximate the reduced rank part of the K-L decomposition. Consider

a set of knots X ∗ = {x∗1, . . . ,x∗n∗}. Let R∗∗ denote the n∗ × n∗ correlation matrix

whose (i, j) entry is ρ(x∗i ,x
∗
j). Let {u(n∗)

i } and {λ(n∗)
i } be the eigenvectors and the

eigenvalues for the correlation matrixR∗∗. The Nyström approximation of the leading

n∗ eigenfunctions and eigenvalues for the correlation kernel ρ(x,x′) are

ψi(x) ≈
√
n∗

λ
(n∗)
i

ρ(x,X ∗)u
(n∗)
i , λi ≈

λ
(n∗)
i

n∗
, for i = 1, · · · , n∗.

It can be proved that the Nyström approximation method leads to a reduced rank

correlation

ρpp(x,x
′) = ρ(x,X ∗)R−1

∗∗ ρ
T (x′,X ∗),

where ρ(x,X ∗) = [ρ(x,x′)]x′∈X ∗ . Using the reduced rank model derived from the

Nyström approximated correlation, ρ(x,x′)− ρpp(x,x′) remains to be positive semi-
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definite following the Schur complement property in linear algebra. We approximate

it by multiplying the residual correlation with a modulating function K(x,x′), that is,

ρε(·, ·) = (ρ(·, ·)−ρpp(·, ·))K(·, ·). The modulating function has to be chosen to ensure

ρε(x,x
′) is positive semi-definite. We also assume it has the property of having zero

entries for a large proportion of possible location pairs (x,x′) so that ρε(·, ·) evaluated

on X is a sparse matrix. One specific choice of K(·, ·) is the block modulating

function. Given a partition of observed locations ∪Ki=1Bi = {x1, . . . ,xn} = X , it is

defined as

Kblock(x,x′) =

 1 if x,x′ ∈ Bi, i = 1, . . . , K;

0 Otherwise.

If observations are grouped together within each Bi, the ρε(·, ·) on X yields a block-

diagonal matrix whose inverse can be computed easily.

The FSA-Block method approximates the parent correlation function ρ by the

sum of ρpp(·, ·) and an approximated residual correlation function ρε(·, ·):

ρ†(x,x′) = ρpp(x,x
′) + ρε(x,x

′),

which is still a valid correlation function. Under this correlation approximation, R

is approximated by R† = Rnn∗R
−1
∗∗ R

T
nn∗ + Rε, where Rnn∗ = ρ(X ,X ∗) and Rε =

ρε(X ,X ). The Sherman-Woodbury-Morrison inversion formula yields

R†−1 = R−1
ε −R−1

ε Rnn∗(R
T
nn∗R

−1
ε Rnn∗ +R∗∗)

−1RT
nn∗R

−1
ε . (4.7)

Thus R†−1 involves the calculations of inverses of a block diagonal matrix Rε and a

n∗ × n∗ matrix RT
nn∗R

−1
ε Rnn∗ + R∗∗. If we choose n∗ and block size to be small, the
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computations of R−1 using R†−1 can be greatly reduced. Indeed, the computational

complexity of calculating R†−1 is O(nn∗2 + nn2
b), where nb is the average block size.

The determinant of R† can also be computed efficiently using Sylvester’s determinant

theorem

|R†| = |Rε||R∗∗|−1|R∗∗ +RT
nn∗R

−1
ε Rnn∗ |. (4.8)

So instead of computing the determinant of a big n × n matrix, we only need to

compute the determinants of a n∗ × n∗ matrix and a block-diagonal matrix.

As described above, fast computations can be achieved using the FSA-Block

approach. The correlation function of the FSA-Block approach is

ρ†(x,x′) =

 ρ(x,x′) if x,x′ ∈ Bi, i = 1, . . . , K;

ρpp(x,x
′) otherwise.

Therefore, the correlation within blocks are preserved exactly and the correlation

across blocks are approximated by that of the reduced rank part. Since the FSA-

Block approach provides a general way of approximating any given covariance func-

tions without further restrictions on the parent covariance structures, it also applies

to the separable auto-covariance model if computations in certain dimensions are

infeasible due to large sample sizes in those dimensions. For example, if learning the

response on a highly fine-resolution spatial grid is desirable in certain studies, the

FSA-Block approach can be applied only to a spatial correlation function to facilitate

computations.
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4.3 Bayesian Inference of Model Parameters and Prediction

4.3.1 Prior specifications

For the multivariate Gaussian process regression model, the unknown parameter

set is {B,Σ,θ}. We assume the prior distributions of {B,Σ} and θ are indepen-

dent, namely π(B,Σ,θ) = π(B,Σ)π(θ). For π(B,Σ), we assign a noninformative

conjugate prior

π(B,Σ) ∝ |Σ|−
q+1
2 . (4.9)

The prior specification of π(θ) depends on the specific form of the covariance function.

Customarily, the inverse-gamma prior can be assigned to the nugget τ 2; the input

(spatial/temporal) range parameter can be assigned with a reasonably informative

prior, e.g. an uniform prior with its support specified according to the belief of the

practical input (spatial/temporal) dependence range of the computer model outputs;

for the smoothness parameter, a uniform prior with a reasonable support reflecting

prior information about the smoothness of the process can be assigned.

4.3.2 Bayesian inference on the model parameters

In the Bayesian framework, inference on the parameters of the model is performed

through the posterior distribution which can be computed according to the Bayes

theorem. Here, the density of the posterior distribution is not available in closed

form. However, we can resort to the MCMC methods in order to perform inference.

We consider an MCMC sampler which consists of updating blocks of (B,Σ|Y, θ) and

(θ|Y ) separately. The pseudo-code of one sweep of this MCMC sampler in given in

Algorithm 1. A sketch of the derivation of the conditional posterior distributions

involved in the MCMC sampler is given below.
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Algorithm 1 Blocks of the MCMC sampler

• Update θ by using a Metropolis-Hastings within Gibbs algorithm [68, 36] tar-
geting π(θ|Y ).

For i = 1, ..., dθ:

1. Draw θ′i from a proposal distribution Qi(·|θ), where Qi(·|·) is pre-defined
by the researcher, and set θ′ = (θ1, ...,θi−1,θ

′
i,θi+1, ...,θdθ).

2. Accept θ′ as the next state with prob. min{1, π(θ′|Y )
π(θ|Y )

Qi(θi|θ′)
Qi(θ

′
i|θ)
}.

• Update (B,Σ), by sampling directly as

– Sample Σ|Y,θ from IW(n−m,Y TR−1Y − B̂T
gls(H

TR−1H)B̂gls).

– Sample B|Y,Σ,θ from Nm×q(B̂gls, (H
TR−1H)−1,Σ).

According to the Bayes theorem, the density of the joint posterior distribution of

(B,Σ,θ|Y ) is such that

π(B,Σ,θ|Y ) ∝ |R|−q/2|Σ|−n/2 exp

(
−1

2
tr
(
Σ−1(Y −HB)TR−1(Y −HB)

))
× |Σ|−

q+1
2 × π(θ). (4.10)

The joint posterior density (4.10) is not available in closed form. However, it is

straightforward to show that π(B,Σ,θ|Y ) = π(B,Σ|Y,θ) × π(θ|Y ). Therefore, we

opt to sample from π(θ|Y ) and π(B,Σ|Y,θ) separately.

The conditional posterior distribution of (B,Σ|Y,θ) is of standard form π(B,Σ|Y, θ) =

π(B|Y,Σ,θ)× π(Σ|Y,θ), such that

B|Y,Σ,θ ∼ Nm×q(B̂gls, (H
TR−1H)−1,Σ); (4.11)

Σ|Y,θ ∼ IW(n−m,Y TR−1Y − B̂T
gls(H

TR−1H)B̂gls), (4.12)
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where Nm×q stands for the matrix-normal distribution, IW stands for the Inverse

Wishart distribution, and B̂gls is the generalized least squares estimator of B, i.e.,

B̂gls = (HTR−1H)−1HTR−1Y . This convenient form results allow us to sample

directly from the conditional posterior π(B,Σ|Y, θ).

By integrating out the hyper-parameter matrices B and Σ in (4.10), it is easy to

show that the marginal posterior distribution of θ|Y is

π(θ|Y ) ∝ π(θ)|R|−
q
2 |HTR−1H|−

q
2 |(Y −HB̂gls)

TR−1(Y −HB̂gls)|−
n−m

2 . (4.13)

The marginal posterior π(θ|Y ) cannot be sampled directly, however its density (4.13)

is known up to a normalizing constant. Therefore, one can draw samples from π(θ|Y )

by using a Metropolis-Hastings within Gibbs algorithm [68, 36] sampler. A log-

normal distribution or a truncated normal distribution centered at the current value

can be used as the proposal distribution Qi(·;θ) in Algorithm 1.

It is worth mentioning that, when the sample size n is large, we can replace R in

(4.11), (4.12), and (4.13) with the FSA-Block approximated correlation matrix R†

introduced in Section 2.3, and then apply the inversion formula (4.7) to efficiently

calculate the inverse of R†. The details of calculating the approximated posterior

distributions by the FSA-Block approach are given in the Appendix.

Regarding Algorithm 1, in practice, instead of running the whole sweep recursive-

ly, one can run the first block recursively in order to collect a sample from π(θ|Y ) at

first stage, and then use these draws in order to sample from π(B,Σ|Y, θ) at second

stage. In cases where parallel computing environment is available, this may reduce

the computational cost of sampling.
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4.3.3 Prediction

The Bayesian predictive distribution provides a natural measure on the function

space of surrogate models. At a new point xp, the predictive distribution has its

mean

E(f(xp)|B,θ, Y ) = hT (xp)B +Rp,nR
−1(Y −HB) (4.14)

and variance

Var(f(xp)|B,Σ,θ, Y ) = (1−Rp,nR
−1RT

p,n)⊗ Σ, (4.15)

where Rp,n = [ρ(xp,x)]x∈X is the 1 × n correlation vector. When n is too large so

that R−1 is computationally prohibitive, we can again apply the FSA-Block approx-

imation method to approximating R with R† whose inversion can be done efficiently

using (4.7).

In uncertainty quantification, interest lies especially on the means and the asso-

ciated error bars of response surfaces. We can obtain a sample of the mean response

of the ith output by integrating out the input parameters ξ in xp in (4.14),

M i
p = h̄TpBi + R̄pR

−1(Yi −HBi), (4.16)

where Yi = (fi(x1), . . . , fi(xn))T , Bi = (B1i, . . . , Bmi)
T , h̄p =

∫
h(xp)p(ξ)dξ, R̄p =∫

Rp,np(ξ)dξ, and p(ξ) is the joint density of input variables. The covariance of M i
p

is

V i
p =

∫
E(fi(xp)|Bi,θ, Yi)E(fi(xp)|Bi,θ, Yi)

Tp(ξ)dξ −M i
pM

iT
p . (4.17)
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In the case when (4.16) and (4.17) are not available in closed forms, the integrals can

be approximated by the Monte Carlo method on a dense grid of the input space.

4.4 Numerical Results

4.4.1 2-input and 1-output example

We use a simulation example to show that the nonseparable covariance model can

outperform the separable model in some cases. We consider the following function

to generate output data,

f(x1, x2) = x1 exp

(
−
√
x2

1 + x2
2

)
,

where the inputs x1, x2 ∈ [−6, 6]. In this case f(x1, x2) 6= f1(x1)f2(x2), and hence

the separable covariance model may not be adequate according to the theory in [55].

We then use a Gaussian process model in (4.1) with constant means as a sur-

rogate to fit the simulated function values. We consider the following nonseparable

covariance model [30],

C(f(x1, x2), f(x′1, x
′
2)) =

σ2(
v2α

a
+ 1
) exp

(
− u2

c
(
v2α

a
+ 1
)β
)
, (4.18)

where u = |x1 − x′1| and v = |x2 − x′2|. We also consider two separable models for

comparisons; (a). the covariance model as in (4.18) but with the interaction param-

eter β = 0 (denoted by “Sep”), and (b). the commonly used squared exponential

covariance model (denoted by “Sqexp”). A fixed small nugget effect τ 2 = 10−6 was

added to the covariance function for numerical stability. We experimented with dif-

ferent sample sizes n for the training set. We also fixed a prediction set and evaluate

the mean squared prediction errors (MSPE) to compare the prediction performance

of different covariance models. Specifically, the training sets were n = 200, 500 func-
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tion values evaluated at locations selected by Latin Hypercube Sampling (LHS).

The prediction set was fixed to be 100 function values evaluated at hold-out loca-

tions selected by LHS. Uniform priors with a reasonable support were assigned to

the dependence range parameters a and c; the uniform prior on [0, 1] was assigned

to the smoothness parameter α and interaction parameter β in (4.18). We collected

6000 posterior samples after a burn-in period of 1000 iterations. Then the posterior

means of model parameters were plugged in (4.14) to obtain prediction results. The

parameter estimation and prediction results are summarized in Table 4.1. First we

Table 4.1: Posterior means and MSPEs.

a c α β B0 σ2 MSPE
n = 200 Nonsep 3.728 4.633 1.000 0.641 −0.001 0.0061 1.67 · 10−5

Sep 2.978 3.711 1.000 0 −6.59 · 10−5 0.0053 3.67 · 10−5

Sqexp 1.105 1.984 − − −4.28 · 10−4 0.0033 3.88 · 10−5

n = 500 Nonsep 2.693 2.314 0.990 0.721 2.30 · 10−4 0.0039 4.28 · 10−7

Sep 2.246 1.987 0.979 0 3.28 · 10−5 0.0033 1.57 · 10−6

Sqexp 0.933 1.016 − − 3.31 · 10−5 0.0023 9.58 · 10−6

observed that in both experimental cases, the posterior mean estimates of β of the

nonseparable model are far from zero, indicating the existence of the interaction ef-

fect. Also for both cases, the nonseparable model outperforms the separable models

in terms of the prediction. For relatively large sample size n = 500, the estimation

of β becomes more accurate (posterior variance reduces from 0.021 to 0.008) and the

prediction results of the nonseparable model are obviously better than those of the

two separable covariance models.
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4.4.2 Krainchnan-Orszag three-mode problem

In this example, we consider the system of ordinary differential equations with

respect to t as in [74],

dy1

dt
= y1y3,

dy2

dt
= −y2y3,

dy3

dt
= −y2

1 + y2
2,

subject to stochastic initial conditions y1(0) = 1, y2(0) = 0.1ξ1, y3(0) = ξ2, where

ξi ∼ U(−1, 1), i = 1, 2. This problem has 2 input variables and 3 outputs. It

is of interest because the response has a discontinuity line at ξ1 = 0, inducing a

nonstationary response surface in input space. Here we applied the stationary non-

separable covariance model to this problem with a relatively large sample size n to

obtain reasonable prediction results. However the Bayesian inference is computation-

ally intensive due to large sample size, hence the FSA-Block approach was applied

to the nonseparable model for computational efficiency.

The training set was obtained at 600 input points selected by Latin Hypercube

Sampling on a time grid T = 1, 2, . . . , 10. We considered the validation set of a

31 × 31 input grid on time points 11 and 12, which allows us to assess prediction

performance in both input and time scenario. The multivariate Gaussian process

model in (4.1) with constant means were used to fit for each output yi(t), i = 1, 2, 3.

The nonseparable auto-correlation function considered was the model in (4.4) with

kξ = 2, and the same two separable models as in the previous simulation study were

used for comparison purpose. A fixed nugget τ 2 = 10−6 was added to the covariance

model to improve numerical stability. When implementing the nonseparable model,
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we applied the FSA-Block approach with 20 input knots selected by LHS at each

time grid point (in total 200 knots) and 30 blocks created by K-means clustering

algorithm. The prior specifications of model parameters were similar to those in

the previous example. After a burn-in period of 1000 iterations, we collected 6000

posterior samples for inference. The posterior means of model parameters were

plugged in (4.14) to obtain the predictive response surface.

Table 4.2: Posterior means of model parameters and MSPEs.

nξ = 600 Nonsep Sep Sqexp
a 3.306 1.315 1.265
c1 5.748 6.540 4.608
c2 21.648 22.796 16.351
α 0.999 0.999 −
β 0.996 0 −
B10 0.478 0.461 0.474
B20 −0.106 0.002 −0.006
B30 −0.044 −0.209 −0.197
Σ11 0.296 0.505 0.312
Σ12 0.007 −0.001 0.0003
Σ13 −0.017 −0.047 −0.033
Σ22 1.257 1.187 0.768
Σ23 0.108 0.114 0.072
Σ33 1.567 1.729 1.107

MSPEsp&t 0.307 0.337 0.325

Table 4.2 shows the parameter estimations and prediction results of the three

covariance models. The posterior mean of β by the nonseparable model is very

close to 1, suggesting that modeling the interaction between input and time may be

beneficial. The separable model in (4.4) with β = 0 produced parameter estimates

close to those from the nonseparable model, except for a much smaller estimate of

the time dependence parameter. In terms of the prediction, the nonseparable model

obviously outperforms the two separable models. Specifically, it produces MSPEs
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(0.078, 0.233) for y1(t) and y2(t) respectively, which are significantly smaller than

(0.090, 0.247) by the separable model in (4.4) with β = 0 and (0.092, 0.290) by the

squared exponential model; for y3(t), the nonseparable model has a comparable result

to that of separable models.
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Figure 4.1: Predictive surface of input space of y1 at time points 5 and 10 using the
nonseparable model.

We then checked the predictive input surface of each output by the nonseparable

model at selected time points, and reported the results in Figure 4.1, Figure 4.2 and

Figure 4.3, respectively. We randomly chose the results at time points 5 and 10 for

illustrations. For y1(t) and y2(t), the predictive input surfaces by the nonseparable

model are very close to the true response surfaces in general, but the prediction errors

are high around ξ1 = 0 for y3(t) at time point 10. Figure 4.4 shows the MSPE surfaces

of 3 outputs in input space by averaging MSPEs over time, and it is more clear that

the prediction errors of y3(t) peaked at ξ1 = 0. Recall that here the computer model
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Figure 4.2: Predictive surface of input space of y2 at time points 5 and 10 using the
nonseparable model.
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Figure 4.3: Predictive surface of input space of y3 at time points 5 and 10 using the
nonseparable model.
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outputs have a discontinuous point at ξ1 = 0. Therefore, the stationary covariance

function may not be adequate to model this nonstationary feature. In order to have

better prediction results, we need more observations sampled around ξ1 = 0 for the

stationary covariance models or consider a nonstationary covariance model. We also

checked the predictive input surfaces of 3 outputs by the 2 separable models, and

the results are similar to the nonseparable model results.

Figure 4.4: The MSPEs averaged over time by the nonseparable model.

The predictive mean time curve is also of crucial interest, which shows the shape

of the mean response curve averaged over input space. We obtained the predictive

mean response curve of t for each output over 100 LHS selected input points. Then

predictions were done at 50 equidistant time steps in [0, 10] and it was repeated for
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100 times to obtain the error bars of the predictive mean time curve. To calculate

the mean of a sampled response curve, we used the method in (4.16). The results of

computer code outputs at integer time grid were used as baselines. Figure 4.5 shows

the predictive mean curves for y1(t) and y3(t) as a function of time, as well as their

corresponding 95% confidence intervals using the nonseparable model. We can see

that the error bars of the predictive mean curves are tight and can cover the true

means of the computer code outputs, indicating the effectiveness of the nonseparable

model.
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Figure 4.5: The predictive mean curve in time by the nonseparable model. The
blue line is the predictive mean curve of time; the dash lines are corresponding 95%
confidence intervals; the red dots are the means of the computer code outputs.

4.4.3 Flow through porous media example

We use this example to show the effectiveness of our method in modeling large

computer code outputs. The proposed Gaussian process surrogate model was applied
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to a petroleum reservoir simulation of a much larger data size. The object is a two-

dimensional, single phase, steady flow through a random permeability field. The

spatial domain Xs = [0, 1]2, representing an idealized oil reservoir. The pressure

p and the velocity fields of the flow u are of key interests and they are connect-

ed via Darcy law: u = −K∇p in Xs, where K is the permeability tensor. The

pressure p satisfies −∇ · (K∇p) = f in Xs, where f may be used to model the

injection/production wells. One specific choice of f is

f(s) =


−r, if|si − w/2| < w/2, for i = 1, 2,

r, if|si − 1 + w/2| < w/2, for i = 1, 2,

0, otherwise.

There are two wells at the lower-left and upper-right corners of the spatial domain,

with r and w specifying well rates and well sizes respectively (r = 10 and w=1/8 in

this case). After specifying the permeability tensor K and imposing certain boundary

conditions, the pressure p and the velocities u can be solved numerically.

Specifically, K is assumed to be isotropic Kij = Kδij and modeled by a log-

Gaussian process: K(s) = exp(G(s)), where δ is the Kronecker delta function and

G(·) ∼ GP(mG, CG(·, ·)). The covariance function CG(·, ·) is the separable exponen-

tial covariance. The truncated Karhunen-Loève expansion on G(·) gives its finite

dimension representation

K(ξ; s) = exp

(
mG +

p∑
k=1

wkψk(s)

)
,

where wk are uncorrelated standard Gaussian random variables and ψk(s) are eigen-

functions of the exponential covariance function CG(·, ·). Then uniform variables

ξk = Φ(wk) ∼ U([0, 1]) are treated as input variables. More details of this example
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can be found in [7]. In this example, we truncate G(·) after p = 50 terms.

The training set is on a 24× 32× 32 input-spatial grid, so the total training data

has 24576× 3 observations. The nonseparable model considered here is

ρ(x,x′) =
(
|du|2α + 1

)−1
exp

(
−
√
|h1|2/c2

1 + |h2|2/c2
2

(|du|2α + 1)β/2

)
, (4.19)

where du =

√
kξ∑
i=1

u2i
φ2i
, ui = |ξi − ξ′i|, hj = |sj − s′j| for i = 1, . . . , kξ and j = 1, 2. A

small nugget effect τ 2 = 10−6 was fixed during the parameter estimation step. We

applied the FSA-Block approach with 200 knots selected by LHS and 100 blocks

created by K-means algorithm to the nonseparable model, making computations of

model implementation feasible. After the parameter estimation step, the posterior

means of model parameters were plugged in (4.14) to make predictions at a finer

100× 64× 64 input-spatial grid. We considered the separable model in (4.19) with

β = 0 and the squared exponential model for comparisons. Although this problem

has a high-dimensional input space (50 input variables), we experimented using the

first kξ = 3 input variables (corresponding to the first 3 leading terms in the K-L

expansion of G(·)). We also experimented using a larger number of input variables

(kξ = 5), but there are only slight differences for the prediction performances. So we

focused on the smaller dimension kξ = 3 case.

Table 4.3 gives the parameter estimation results of different models as well as

MSPEs. For the nonseparable model, the posterior mean estimate of β is close to

1, implying modeling the interaction effect may be beneficial. Figure 4.6 shows the

predictive mean response surfaces in spatial domain by the nonseparable model, using

the first 3 input variables. We can see the spatial patterns of the predictive mean

response surfaces are very similar to the Monte Carlo estimates using the computer
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Table 4.3: Posterior means of model parameters and prediction results of each output
component.

nξ = 24 Nonsep Sep (τ 2 = 0.01) Sqexp (τ 2 = 0.01)
φ1 5.564 9.689 25.722
φ2 95.443 11.111 34.041
φ3 142.046 47.540 76.473
c1 1.265 0.686 0.724
c2 1.258 0.222 0.420
α 0.083 0.0938 −
β 0.999 0 −
B10 −0.478 0.1038 −0.177
B20 −0.550 −0.0033 −0.498
B30 −0.026 0.0002 0.003
Σ11 0.0086 0.0099 10.758
Σ12 0.0015 0.0016 2.946
Σ13 2.8× 10−5 2.9× 10−5 0.0164
Σ22 0.0084 0.0036 8.491
Σ23 3.9× 10−5 2.6× 10−5 0.056
Σ33 0.0001 0.0001 0.139

MSPEsp (0.0035, 0.0036, 0.1030) (0.0029, 0.0028, 0.1030) (0.0033, 0.0035, 0.1030)

model outputs, which can be viewed as the true values. Figure 4.7 gives the error

bars of the predictive response surfaces in spatial domain.

For the separable models, we also used kξ = 3 in order to do fair comparisons with

the nonseparable model. When we fixed a small nugget τ 2 = 10−6 for the input and

spatial covariance parts, the estimates of parameters of the two separable models

had relatively large variances, due to the numerical instability. Especially for the

squared exponential model assuming infinite smoothness in input space, it yielded

estimates of mean parameters with very large variances (over 106) and can not obtain

reasonable prediction results. Then we increased τ 2 = 0.01 suggested in [7] for these

separable models and the results are shown in Table 4.3. The prediction results of

the separable model with β = 0 are better than those of the nonseparable model,

this may be because a covariance function separable in input and space was used

in the log-normal process to model the permeability field K, which might lead to
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Figure 4.6: Predictive mean surfaces by the nonseparable model versus the Monte
Carlo estimates based on 24 input points. Upper panels: velocity in y-direction uy;
middle panels: velocity in x-direction ux; lower panels: pressure p.

certain level of separability in input and space for the outputs. Besides, the separable

model in (4.19) with β = 0 is superior to the squared exponential model in terms of

prediction, this may be due to an additional parameter α modeling the smoothness

in input space. We remark that although the squared exponential separable model

produced reasonable prediction results, the estimates of variance are in general fairly

large compared with the data scales. In contrast, the nonseparable model with the

FSA-Block approximation does not suffer much with the numerical stability problem,

this may be because the correlations cross data blocks are approximated well by that

of the reduced rank correlation model.

94



Predictive standard deviation of y(1)

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(a) Error bar of uy

Predictive standard deviation of y(2)

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

(b) Error bar of ux

Predictive standard deviation of y(3)

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.005

0.01

0.015

0.02

0.025

(c) Error bar of the pressure p

Figure 4.7: Predictive standard deviations by the nonseparable model.

4.5 The Regenerator of A Carbon Capture Unit

In this section, we apply the nonseparable Gaussian process surrogate model to a

real example from the regenerator of a carbon capture unit. A carbon capture unit

provides an alternative solution for limiting the carbon dioxide (CO2) emissions. All

carbon capture units contain an absorber device and a regenerator device. The solid

sorbent particles capable of reacting with the CO2 gas are looped through these

two devices. In the absorber, the exhaust flue gas from a power plant reacts with

the solid sorbent particles and its CO2 component is trapped. Then after further

processing steps, the cleaned exhaust flue gas is released into the atmosphere and the

depleted sorbent particles are transferred to the regenerator. In the regenerator, the

reverse chemical reaction is done to release CO2 from the depleted sorbent particles
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for further processing (i.e. liquefaction and sequestration for long-term storage) and

the regenerated sorbent particles are recycled back to the absorber. Since the bulk of

the energy penalty is related to the regenerator, its efficiency is of crucial interests.

Recently, [61] developed a computational fluid dynamics (CFD)-based model for

the fluid dynamics of the regenerator. The flow of sorbent particles is characterized

by the density of solid volume fraction, which is sensitive to the system operating

conditions such as the particle diameter dp (with unit micro meters, µm) and the

scaled velocity vg/umf of gas injected at the bottom inlet (dimensionless; details see

[27]), denoted by (dp, vg/umf ). Figure 4.8 shows the solid volume fractions for 2

input points at a given time. It is clear that both the value and the spatial pattern

of the solid volume fractions can change drastically for different input points. If

the intermediate solid volume fraction values in [0.2, 0.4] are more likely to result in

better efficiency of the regenerator device, then the input point (150, 4.3) is superior

to (350, 4) according to figure 4.8, since it has a larger proportion of intermediate

solid volume fractions. Specifying the operation conditions in favor of a certain

range of solid volume fractions needs a number of computer simulations. The CFD-

based simulations are very time-consuming, taking days to complete one simulation

under paralleled computing system. So it is challenging to run a large number

of simulations to study the behaviors of the sorbent distribution under different

operating conditions. Therefore, the Gaussian process model is used instead as an

effective tool for the uncertainty quantification purpose [46].

The computer model outputs are the solid volume fractions over a time period,

ranging from 0 to 0.6083. We focused on solid volume fraction values in (0.1, 0.6],

since without much knowledge of the reaction kinetics, we expect that the interme-

diate values are more likely to result in better performance of the regenerator [46].

We focused on the discrete distribution of the solid volume fractions created using 5
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Spatial image at time 271 for input (350,4)
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Figure 4.8: Images of the solid volume fractions at time 271 for 2 input points.

equal length bins (0.1, 0.2], · · · , (0.5, 0.6], aiming to check effects of the distribution

of the solid volume fractions on the reaction kinetics. Denote the response vector by

f(ξ, t) = (π1, π2, · · · , π5)T , it was treated as a function of 2 input variables dp and

vg/umf , as well as time t.

The training data set was on a 46× 101 input-time grid, and we randomly held

out 4 input points on the same time grid for evaluating model performances. The

Gaussian process regression model in (4.1) with constant means was fitted to this

data. We used the same nonseparable correlation function as in Section 4.4.2. The

FSA approach with 15 blocks and 300 knots were applied to replace the full covariance

model to speed up computations. The results of the same two separable models as

in previous studies were again included for comparisons.

The parameter estimation and prediction results are summarized in Table 4.4.

The posterior mean estimate of the input-time interaction parameter β of the non-

separable model is very close to 1, indicating the existence of the interaction effect.

The nonseparable model and the separable model in (4.4) with β = 0 have close

estimates of the smoothness parameter α, which is not surprising since it is related

97



Table 4.4: Posterior means of model parameters and the overall MSPEs.

n = 4646 a c1 c2 α β B10 B20 B30 B40 B50

Nonsep 15.131 92.993 0.943 0.638 0.993 0.095 0.120 0.138 0.178 0.236
Sep 6.263 485.10 6.791 0.586 0 0.104 0.134 0.087 0.110 0.252

Sqexp 1.147 499.280 7.349 − − 0.105 0.136 0.086 0.106 0.257
Σ11 Σ12 Σ13 Σ14 Σ15 Σ22 Σ23 Σ24 Σ25 Σ33

Nonsep 0.0020 −0.0003 −0.0001 0.0048 −0.0054 0.0038 −0.0001 0.0199 −0.0224 0.0037
Sep 0.0088 −0.0037 −0.0010 −0.0002 0 0.0119 −0.0061 −0.0008 0.0001 0.0172

Sqexp 0.0209 −0.0081 −0.0022 −0.0009 −0.0001 0.0277 −0.0132 −0.0021 −0.0004 0.0392
Σ34 Σ35 Σ44 Σ45 Σ55 MSPE

Nonsep 0.0120 −0.0151 0.3009 −0.3310 0.3677 0.0011
Sep −0.0086 −0.0011 0.0233 −0.0140 0.0191 0.0017

Sqexp −0.0194 −0.0030 0.0615 −0.0401 0.0548 0.0018

to the process properties in the dimension of time. Besides, all three correlation

models produced a large estimate of the range parameter in the dimension of dp and

a small estimate of the range parameter in the dimension of vg/umf , indicating that

the computer code outputs are more sensitive to the vg/umf variable.

In terms of prediction, the nonseparable model with the FSA approximation

approach outperforms the two separable models. Specifically, the nonseparable model

has the same prediction performance as the separable models for π1, π2, π3, but it

has smaller MSPEs (0.0022, 0.0013) for π4 and π5, compared with (0.0032, 0.0033)

by the separable model in (4.4) with β = 0 and (0.0034, 0.0036) by the squared

exponential model. Figure 4.9 shows the predictive probabilities by the nonseparable

model and the real computer code results for the hold-out set of 4 input points. We

can observe that the predictive probabilities are close to the real data results in

general. Figure 4.10 shows the predictive mean input surfaces of 5 probabilities by

the nonseparable model, where the predictions were made on a dense 70× 70 input

grid at time points t = 270, 271, . . . , 280. Based on these predictive mean surfaces

of the input space, particular input regions can be found to improve the efficiency

of the regenerator unit. For example, if the intermediate solid volume fractions in
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Figure 4.9: The left panels are predictive distributions of solid volume fractions under
different combinations of dp and K = vg/umf ; the right panels are corresponding
computer code results.
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Figure 4.10: Predictive mean input surfaces of 5 probabilities by the nonseparable
model.

(0.3, 0.4] would result in better efficiency of the regenerator unit, then we may pay

special attention to the high probability area of the predictive mean surface of π3.

For example, Figure 4.10 indicates that dp ∈ (150µm, 250µm) and vg/umf ∈ (4, 8)

might be good choices of operating conditions. Other predictive mean surfaces of

probabilities may also be useful for specifying the values of input variables that can

result in good efficiency of the regenerator.
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4.6 Discussion

In this Section, we extended the commonly used separable covariance Gaussian

process surrogate models by using a more flexible nonseparable auto-covariance func-

tion, which includes separable model as a special case. The nonseparable model has

the advantage of not only modeling dependence within each dimension in input, s-

pace and time but also interactions in dependence among different dimensions. This

model relaxes the restrictions imposed by separable models on the conditional and

marginal properties of a Gaussian process [55], and hence has broader applications

especially in cases where the assumption of separability is problematic.

We also introduced a new computational method, referred to as the full-scale

approximation with block modulating function approach (FSA-Block), to ease com-

putational burdens associated with fitting the proposed nonseparable model to large

computer code outputs. We illustrated the effectiveness of the nonseparable model

with the FSA-Block approach through various simulation examples and a real data

set from the computer code of the regenerator device of a carbon capture system.

The FSA-Block approach introduced here does not depend on the separable struc-

ture of the covariance matrix and hence can be used flexibly in various ways. For

example, when the covariance function is partially separable and the number of ob-

servations in certain nonseparable dimensions is large, we can apply the FSA-Block

approach only to the nonseparable part to facilitate computations. In this Section,

we focused on the stationary auto-covariance functions. Nevertheless, this computa-

tional method also applies to nonstationary covariance functions such as the nonsta-

tionary model in [54], where spatial regions have different dependence structures.
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5. CONCLUSIONS

This dissertation has discussed several approximation methods of Gaussian pro-

cess models for large spatial and spatio-temporal datasets. Specifically, we have pro-

posed a Smooth Full-Scale Approximation method for large spatial datasets, which

extends the FSA-Block approach in the sense of preserving residual covariance a-

mong neighboring blocks. We also show that the proposed method can result in

a valid Gaussian process so that both parameter estimation and prediction can be

done in a unified framework. Since more residual correlations are preserved, the

SFSA approach is less sensitive to the knot set. In addition, as a spatio-temporal

extension of the FSA-Block approach, we have proposed a spatio-temporal full-scale

approximations of covariance functions for large space-time datasets. Since the knot

number and knot locations are crucial to the approximation performance, we intro-

duce a Bayesian algorithm for automatically selecting the knot number and location-

s, to avoid the risk of the ad-hoc selection. Last, we have applied the FSA-Block

approach to Gaussian process models for computer code outputs. To model the de-

pendence structure of input, space and time, previous Gaussian process models use

the separable covariance function for computational efficiency. We have proposed

a multi-outputs Gaussian process model with nonseparable covariance functions to

relax the separability. To facilitate computations, the FSA-Block approach is applied

to approximate the nonseparable covariance model.

There are several potential extensions for the proposed methods in this disserta-

tion. A natural extension of the proposed method in Section 2 is the spatio-temporal

setting [42, 6, 78], where we can consider a spatio-temporal partition of responses

and define the neighboring blocks in space and time. In this case, the Euclidean
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distance of spatio-temporal locations may not be a good measure of distance. We

will also explore using other measures to define the block partition and neighbor-

ing blocks that minimize the residual covariance across non-neighboring blocks. In

Section 2 and Section 3, we have used the K-means clustering algorithm to choose

block centers and subsequently create the block partition, which is pre-specified for

the proposed approximation method. An interesting direction for the future work is

to treat the partition as unknown and select it adaptively using a Bayesian method,

such as the tree-generating process [9, 31, 47].

In Section 4, we considered a separable cross-covariance structure among differ-

ent outputs. A natural extension is to build a totally nonseparable emulator with

both a nonseparable auto-covariance function and a nonseparable cross-covariance.

The Linear Model of Coregionalization (LMC) [26, 25, 22] and the cross-covariance

functions based on latent dimensions [1] may be applied to relax the separable cross-

covariance assumption. Investigations on new computational methods are also prob-

lems of interest to facilitate the more demanding computational needs of the totally

nonseparable model.
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APPENDIX A

PROOF OF THEOREMS

A.1 Proof of Theorem 2.2.1

Proof. Without loss of generality, let β = 0 for notation convenience. We first

prove that the approximated density in (2.4) is Gaussian. Let U denote C(S, S∗)C−1
∗ ,

Uk denote C(Sk, S∗)C−1
∗ , SN(k) denote the location set of YN(k) and UN(k) denote

C(SN(k), S
∗)C−1
∗ , then

K∏
k=1

p(Yk|YN(k),w
∗,θ)

= (2π)−
n
2 ·

K∏
k=1

|Σ(k)
con|−

1
2 | · exp{−1

2

K∑
k=1

(Yk − Ukw∗ − Σk,N(k)Σ
−1
N(k)(YN(k) − UN(k)w

∗))T

×Σ(k)−1
con (Yk − Ukw∗ − Σk,N(k)Σ

−1
N(k)(YN(k) − UN(k)w

∗))},

where Σ
(k)
con is the residual conditional variance defined as Σk − Σk,N(k)Σ

−1
N(k)Σ

T
k,N(k),

Σk = Cs(Sk, Sk) + τ 2Ink ,Σk,N(k) = Cs(Sk, SN(k)), and ΣN(k) = Cs(SN(k), SN(k)) +

τ 2InN(k)
. Next, we introduce some notations to obtain the quadratic term of the

Gaussian density. Let

Bkl =


Ink , if l = k;

−Σk,N(k)Σ
−1
N(k)(, n(l−1) + 1 : n(l)), if l ∈ N(k);

0, otherwise,

(A.1)
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where N(k)(i) is the ith entry of N(k), denoting the index of ith neighboring block of

block k, and n(l) =
∑

i≥1,i<=l

nN(k)(i). LetB∗k = (Bk1, . . . , BkK), then Yk−Σk,N(k)Σ
−1
N(k)YN(k) =

B∗kY and Uk − Σk,N(k)Σ
−1
N(k)UN(k) = B∗kU . Thus

K∏
k=1

p(Yk|YN(k),w
∗,θ)

= (2π)−
n
2 ·

K∏
k=1

|Σ(k)
con|−

1
2 | · exp{−1

2

K∑
k=1

(Y− Uw∗)TB∗Tk Σ(k)−1
con B∗k(Y− Uw∗)}

= (2π)−
n
2 · |Σcon|−

1
2 | · exp{−1

2
(Y− Uw∗)TBTΣ−1

conB(Y− Uw∗)},

where Bn×n = (B∗T1 , B∗T2 , . . . , B∗TK )T , and Σcon = diag{Σ(1)
con,Σ

(2)
con, . . . ,Σ

(K)
con }. Since

Bkl is a nonzero matrix only for l ≤ k, by form of B, B is a n × n lower-triangular

matrix with 1s as diagonal entries. Therefore |B| = 1 and it is clear that

K∏
k=1

p(Yk|YN(k),w
∗,θ) = N (Uw∗, B−1ΣconB

T−1

). (A.2)

The approximated data density

p̃(Y|θ)

=

∫
w∗

K∏
k=1

p(Yk|YN(k),w
∗,θ) · p(w∗|θ)dw∗

= (2π)−
n+m

2

∫
w∗

exp{−1

2
(Y− Uw∗)TBTΣ−1

conB(Y− Uw∗)− 1

2
w∗TC−1

∗ w∗}

×|C∗|−
1
2 · |Σcon|−

1
2 .
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Note that Σ−1
w∗ = UTBTΣ−1

conBU+C−1
∗ and µw∗ = Σw∗U

TBTΣ−1
conBY, after integrating

out w∗

p̃(Y|θ) = (2π)−
n
2 exp{−1

2
YTBT (Σ−1

con − Σ−1
conBUΣw∗U

TBTΣ−1
con)BY}

×|UTBTΣ−1
conBU + C−1

∗ |−
1
2 · |Σcon|−

1
2 · |C∗|−

1
2

By Sherman-Woodbury-Morrison inversion formula,

Σ−1
con − Σ−1

conBUΣw∗U
TBTΣ−1

con = (Σcon +BUC∗U
TBT )−1.

Using the fact that |B| = 1 and the Sylvester’s theorem,

|(BT (Σcon +BUC∗UTBT )−1B)−1| = |B−1| · |BT−1| · |Σcon| · |In + Σ−1
conBUC∗U

TBT |

= |Σcon| · |Im + UTBTΣ−1
conBUC∗|

= |Σcon| · |C∗| · |UTBTΣ−1
conBU + C−1

∗ |.

So p̃(Y|θ) ∼ N (0, B−1ΣconB
T−1

+ UC∗UT ).

A.2 Proof of Theorem 2.3.1

Proof. Without loss of generality, assume β = 0. By assumption,

p̃(Yp,Y|θ)

=

∫
p̃(Yp|Y,w∗,θ) · p̃(Y|w∗,θ) · p(w∗|θ)dw∗

=

∫ r∏
k=1

p(Yp,k|YMk
,YN(Mk),w

∗,θ) ·
K∏
k=1

p(Yk|YN(k),w
∗,θ) · p(w∗|θ)dw∗.
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Let Bpk = (Bpk,1, . . . , Bpk,K), where Bpk,l has the same definition as (2.5), then the

quadratic term of p(Yp,k|YMk
,YN(Mk),w

∗,θ) is

(Yp,k − Upkw∗ +BpkY−BpkUw
∗)TΣ(pk)−1

con (Yp,k − Upkw∗ +BpkY−BpkUw
∗).

LetB∗pk = (0, . . . , Inpk , . . . , Bpk), Ỹ = (Yp,1, . . . ,Yp,r,YT )T , and Ũ = (UT
p1
, . . . , UT

pr , U
T )T ,

then

p̃(Yp,Y|θ) ∝
∫

exp{−
r∑

k=1

1

2
(Ỹ− Ũw∗)TB∗Tpk Σ(pk)−1

con B∗pk(Ỹ− Ũw
∗)}

× exp{−1

2
(Y− Uw∗)TBTΣ−1

conB(Y− Uw∗)} · exp{−1

2
w∗C∗−1w∗}dw∗

×
r∏

k=1

|Σ(pk)
con |−

1
2 · |Σcon|−

1
2 · |C∗|−

1
2dw∗.

Let B∗p = (B∗Tp1 , . . . , B
∗T
pr )T and Σp

con = diag{Σ(p1)
con , . . . ,Σ

(pr)
con }, then

r∑
k=1

(Ỹ− Ũw∗)TB∗Tpk Σ(pk)−1

con B∗pk(Ỹ− Ũw
∗) = (Ỹ− Ũw∗)TB∗Tp Σp−1

conB
∗
p(Ỹ− Ũw∗).

Let Bp = (BT
p1
, . . . , BT

pr)
T , B̃ =

 Inp Bp

0 B

 and Σ̃con =

 Σp
con 0

0 Σcon

. Since

B∗p = (Inp , Bp), it can be shown that

p̃(Yp,Y|θ) ∝
∫

exp{−1

2
(Ỹ− Ũw∗)T B̃T Σ̃−1

conB̃(Ỹ− Ũw∗)− 1

2
w∗C∗−1w∗}

×|Σ̃con|−
1
2 · |C∗|−

1
2dw∗.

Similar to proof in Theorem 2.2.1, after integrating out w∗,

Yp,Y|θ ∼ N (X̃β, B̃−1Σ̃conB̃
T−1

+ ŨC∗ŨT ),
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where X̃ = (XT
p ,X

T )T . Since

B̃−1 =

 Inp Bp

0 B


−1

=

 Inp −BpB
−1

0 B−1

 ,

by the conditional normal distribution fact, Yp|Y,θ ∼ N (µp,Σp), where µp and Σp

are defined in Theorem 2.3.1.
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APPENDIX B

CALCULATING THE APPROXIMATED π(θ|Y ) BY THE FSA-BLOCK

APPROACH

The MCMC sampler requires evaluating log π(θ|Y ) to obtain posterior samples of

θ. By (4.13), we need to compute |R|, |HTR−1H| and |(Y −HB̂gls)
TR−1(Y −HB̂gls)|

to evaluate log π(θ|Y ). Since

(Y −HB̂gls)
TR−1(Y −HB̂gls) = Y TR−1Y − Y TR−1H(HTR−1H)−1HTR−1Y,

computing these determinants needs HTR−1H, Y TR−1Y and HTR−1Y . When the

sample size n is too large such that calculation of R−1 is prohibitive, we replace R−1

by R†−1 in (4.7) to make computations feasible. We give the implementation details

below for evaluating the approximated posterior distribution of θ by the FSA-Block

approach.

Suppose ∪Ki=1Bi = X is a partition of observed locations. Let Yi denote the

ni × 1 response vector in block i and Hi be the design matrix of Yi such that H =

(HT
1 , · · · , HT

K)T . Since the approximated residual covariance Rε is block-diagonal, let

Rε = diag(Rε,1, · · · , Rε,K) with ith diagonal block Rε,i. Denote the cross-covariance

between observations in Bi and the knot set X ∗ by Rni,n∗ = [ρ(x,x′)]x∈Bi,x′∈X ∗ and

the covariance of observations in Bi by Rni,ni = [ρ(x,x′)]x,x′∈Bi . The approximated

log π(θ|Y ) by the FSA-Block approach can be evaluated in the following sequence:

1. Compute Rε,i = Rni,ni −Rni,n∗R
−1
∗∗ R

T
ni,n∗

for i = 1, 2, . . . , K.
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2. Calculate

Y TR−1
ε Y =

K∑
i=1

Y T
i R

−1
ε,i Yi,

HTR−1
ε H =

K∑
i=1

HT
i R
−1
ε,iHi,

HTR−1
ε Y =

K∑
i=1

HT
i R
−1
ε,i Yi,

RT
nn∗R

−1
ε Y =

K∑
i=1

RT
ni,n∗

R−1
ε,i Yi,

RT
nn∗R

−1
ε H =

K∑
i=1

RT
ni,n∗

R−1
ε,iHi,

RT
nn∗R

−1
ε Rnn∗ =

K∑
i=1

RT
ni,n∗

R−1
ε,i Rni,n∗ .

3. Calculate

Y TR†−1Y = Y TR−1
ε Y − Y TR−1

ε Rnn∗(R
T
nn∗R

−1
ε Rnn∗ +R∗∗)

−1RT
nn∗R

−1
ε Y,

HTR†−1H = HTR−1
ε H −HTR−1

ε Rnn∗(R
T
nn∗R

−1
ε Rnn∗ +R∗∗)

−1RT
nn∗R

−1
ε H,

HTR†−1Y = HTR−1
ε Y −HTR−1

ε Rnn∗(R
T
nn∗R

−1
ε Rnn∗ +R∗∗)

−1RT
nn∗R

−1
ε Y.

4. Calculate the Cholesky decompositions of the following matrices

Y TR†−1Y − Y TR†−1H(HTR†−1H)−1HTR†−1Y = QT
1Q1,

HTR†−1H = QT
2Q2,

RT
nn∗R

−1
ε Rnn∗ +R∗∗ = QT

3Q3,

Rε,i = QT
ε,iQε,i,

R∗∗ = QT
∗Q∗.
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5. Compute the following log of determinants:

log |Y TR†−1Y − Y TR†−1H(HTR†−1H)−1HTR†−1Y | = 2

q∑
i=1

log |Q1,ii|,

log |HTR†−1H| = 2
m∑
i=1

log |Q2,ii|,

log |R†| = 2
K∑
i=1

ni∑
j=1

log |Qε,i,jj|+ 2
n∗∑
i=1

log |Q3,ii| − 2
n∗∑
i=1

log |Q∗,ii|,

whereQ1,ii, Q2,ii, Q3,ii, Q∗,ii are ith diagonal entries ofQ1, Q2, Q3 andQ∗ respectively;

Qε,i,jj is jth diagonal entry of Qε,i for i = 1, 2, . . . , K.

6. Compute the approximated log π(θ|Y ) by the FSA-Block method for sampling θ

log π̃(θ|Y ) = log π(θ)− q

2
log |R†| − q

2
log |HTR†−1H|+ log(C)

−n−m
2

log |Y TR†−1Y − Y TR†−1H(HTR†−1H)−1HTR†−1Y |,

where C is the normalizing constant of π(θ|Y ) and log(C) will be canceled when

computing the acceptance ratio in the M-H algorithm.

Since Y TR†−1Y , HTR†−1H and (Y −HB̂gls)
TR†−1(Y −HB̂gls) have been calculat-

ed, we remark that (B,Σ) can also be efficiently sampled following the Algorithm 1.
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